PRELIMINARY DRAINAGE REPORT
 for

SETTLERS VIEW SUBDIVISION

Prepared for:
Hannigan and Associates, Inc.
19360 Spring Valley Road
Monument, Colorado 80132

February 17, 2017
Revised November 16, 2017

Prepared by:

19 E. Willamette Avenue
Colorado Springs, CO 80903
(719)-477-9429
(719)-471-0766 fax
www.jpsengr.com

JPS Project No. 111603
PCD File No.: SP-17-006

SETTLERS VIEW SUBDIVISION PRELIMINARY DRAINAGE REPORT TABLE OF CONTENTS

PAGE
EXECUTIVE SUMMARY i
DRAINAGE STATEMENT ii
FLOODPLAIN STATEMENT iii
I. GENERAL LOCATION AND DESCRIPTION. 1
II. DRAINAGE BASINS AND SUB-BASINS 3
III. DRAINAGE DESIGN CRITERIA 4
IV. DRAINAGE PLANNING FOUR STEP PROCESS. 4
V. DRAINAGE FACILITY DESIGN 5
VI. EROSION / SEDIMENT CONTROL 10
VII. COST ESTIMATE AND DRAINAGE FEES. 10
VIII. SUMMARY 10

APPENDICES

APPENDIX A Hydrologic Calculations

APPENDIX B Hydraulic Calculations
APPENDIX C Detention Pond Calculations
APPENDIX D Drainage Cost Estimate

APPENDIX E Figures

Figure A1 Vicinity Map
Figure FIRM Floodplain Map
Sheet EX1 Historic Drainage Plan
Sheet D1 Developed Drainage Plan
Sheet D1.1 Enlarged Developed Drainage Plan
Sheet C1 Site Grading \& Erosion Control Plan

SETTLERS VIEW- FINAL DRAINAGE REPORT EXECUTIVE SUMMARY

A. Background

- Settlers View is a proposed residential subdivision of a 40-acre parcel located northwest of Hodgen Road and Steppler Road in El Paso County.
- The proposed subdivision consists of 14 rural residential lots with 2.5-acre minimum lot sizes.
- Settlers View is located within the East and West Cherry Creek Drainage Basins, each of which comprise total drainage areas in excess of 30 square miles. The Settlers View property represents less than 0.2 percent of the total basin area.

B. General Drainage Concept

- Developed drainage within the site will be conveyed along paved streets with roadside ditches and culverts, as well as grass-lined channels through drainage easements, following historic drainage patterns.
- Developed flows from the subdivision will be detained to historic levels through an on-site private stormwater detention pond.
- Subdivision drainage improvements will be designed and constructed to meet El Paso County standards,

C. Drainage Impacts

- The proposed detention pond will detain to historic flows at the downstream property boundary, ensuring no significant adverse developed drainage impact on downstream properties.
- Drainage facilities within public road rights-of-way will be dedicated to the County for maintenance. The proposed stormwater detention pond will be maintained by the subdivision HOA.

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. \#29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:
Printed Name: Brenda Brinkman, Owner
Date
4507 Silver Nell Drive, Colorado Springs, CO 80908

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E.
Date
County Engineer / ECM Administrator
Conditions:

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, no parts of the Settlers View Subdivision are located in a FEMA designated floodplain, as shown on FIRM panel No. 08041C0325F, dated March 17, 1997.

John P. Schwab, P.E. \#29891

I. GENERAL LOCATION AND DESCRIPTION

A. Background

Settlers View is a proposed rural residential subdivision located in northeastern El Paso County, Colorado. The Settlers View parcel (El Paso County Assessor's Number 61000-00-463) is located between Grandview Subdivision and Settlers Ranch Subdivision, west of Steppler Road, as shown in Figure A1 (Appendix E). Settlers Ranch Subdivision will consist of 14 low-density residential lots (2.5 -acre minimum size) on a 40 -acre parcel. The north boundary of this site adjoins the current termination of Silver Nell Drive in Grandview Subdivision.

B. Scope

This report is intended to fulfill the El Paso County requirements for a Preliminary Drainage Report (PDR) for submittal with the Preliminary Plan application. The report provides a summary of site drainage issues impacting the proposed development, including analysis of impacts from upstream drainage areas, site-specific developed drainage patterns, and impacts on downstream facilities. This PDR report has been prepared based on the guidelines and criteria presented in the El Paso County Drainage Criteria Manual.

C. Site Location and Description

The Settlers View parcel is located in the Northeast Quarter of Section 23, Township 11 South, Range 66 West of the 6th Principal Meridian. The site is currently a vacant meadow tract, with some existing trees at the north end of the property.

The property is currently zoned RR-5 (Rural Residential; 5-acre minimum lots), and the proposed subdivision will include re-zoning the property to RR-2.5 (Rural Residential; 2.5-acre minimum lots). The proposed low-density lots will be served by individual wells and septic systems.

The north boundary of the property borders the existing Grandview Subdivision, and the south boundary of the property adjoins the approved Settlers Ranch Subdivision, both of which consist primarily of 2.5 -acre lots. The west boundary of the borders an undeveloped 40 -acre ranch property, and the east boundary of the site adjoins a currently vacant 40 -acre property which is proposed for development as the Abert Ranch Subdivision, with 2.5-acre minimum lots.

Access through Settlers View Subdivision will be provided by extension of Silver Nell Drive southeasterly through the property, along with construction of the proposed Settlers View Road extending southwest from Silver Nell Drive. Subdivision infrastructure improvements will include paving of new public roadways through the site, as well as grading, drainage, and utility service improvements for the proposed residential lots. Local roads will be classified as rural minor residential roads, with 60 -feet rights-of-way and paved widths of 28 -feet.

Ground elevations within the parcel range from a low point of approximately 7,570 feet above mean sea level at the west boundary of the parcel, to a high point of 7,650 feet near the north boundary.

This site is located along the ridge between the East and West Cherry Creek drainage basins. Surface drainage from the east edge of the property flows easterly towards tributaries of East Cherry Creek, and surface drainage from the western part of the site flows southwesterly towards tributaries of West Cherry Creek. The terrain is rolling with slopes ranging from 2% to 8%. Existing vegetation is typical eastern Colorado prairie grass.

D. General Soil Conditions

According to the Soil Survey of El Paso County prepared by the Soil Conservation Service, on-site soils are comprised of the following soil types (see Appendix A):

- Type 25 - Elbeth sandy loam: Hydrologic Group B (northwest corner of site)
- Type 67 - Peyton sandy loam: Hydrologic Group B (east side of property)
- Type 92 - Tomah-Crowfoot: Hydrologic Group B (southwest part of property; majority of site)

E. References

City of Colorado Springs \& El Paso County "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014.

El Paso County "Engineering Criteria Manual," January 9, 2006.
FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0325-F, March 17, 1997.
JPS Engineering, Inc., "Final Drainage Report for Grandview Subdivision," September 7, 2007 (approved by El Paso County 9/14/07).

JPS Engineering, Inc., "Master Development Drainage Plan (MDDP) and Preliminary Drainage Report for Walden Preserve Subdivision," December 10, 2004 (approved by El Paso County 12/20/04).

JPS Engineering, Inc., "Final Drainage Report for Settlers Ranch Subdivision Filing No. 1," October 18, 2005 (approved by El Paso County 10/19/05).

JPS Engineering, Inc., "Final Drainage Report for Settlers Ranch Subdivision Filing No. 2," May 30, 2008 (approved by El Paso County 3/31/09).

JPS Engineering, Inc., "Final Drainage Report for Walden Pines Subdivision," March 24, 2004.

JPS Engineering, Inc., "Final Drainage Report for Walden Preserve Subdivision Filing No. 1," May 11, 2005.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The proposed development lies within both the West Cherry Creek Drainage Basin (CYCY 0400) and East Cherry Creek Drainage Basin (CYCY 0200), as classified by El Paso County. Drainage from the west part of the site flows southwesterly to an eastern tributary of West Cherry Creek, which flows to a confluence with the main channel north of Walker Road. Downstream agricultural areas generally drain northerly towards the main channel of West Cherry Creek.

Drainage from the east part of the site flows easterly to a tributary of East Cherry Creek.
No drainage planning study has been completed for this drainage basin or any adjacent drainage basins. In the absence of plans for regional drainage facilities, El Paso County generally requires new developments to provide stormwater detention to maintain historic runoff flows leaving developed areas.

The major drainage basins lying in and around the proposed development are depicted in Figure EX1. The Settlers View parcel is located near the southerly limits of the West Cherry Creek and East Cherry Creek Drainage Basins, each of which comprise total drainage areas in excess of 30 square miles. As such, the proposed 40 -acre Settlers View subdivision represents less than 0.2 percent of the total basin area, which is primarily ranch land.

B. Floodplain Impacts

The proposed development area is located beyond the limits of any 100-year floodplain delineated by the Federal Emergency Management Agency (FEMA). The floodplain limits in the vicinity of the site are shown in Flood Insurance Rate Map (FIRM) Panel Number 08041C0325F, dated March 17, 1997, as shown in Figure FIRM (Appendix E).

C. Sub-Basin Description

The existing drainage basins lying in and around the proposed development are depicted in Figure EX1 (Appendix E). The existing on-site topography has been delineated as several sub-basins draining to design points at the east and west boundaries of the site.

The developed drainage basins lying within the proposed development are depicted on Figure D1. The developed site layout has been divided into sub-basins based on the proposed road layout within the site. The natural drainage patterns will be impacted through development by site grading and concentration of runoff in subdivision roadside ditches and channels.

On-site flows will be diverted to the existing natural drainage swales and channels running through the property, following historic drainage paths.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

No Drainage Basin Planning Study (DBPS) has been completed for either the West Cherry Creek Drainage Basin or the East Cherry Creek Drainage Basin. Previous drainage reports for completed subdivision filings have proposed to provide on-site detention for mitigation of developed flows.

B. Hydrologic Criteria

In accordance with the El Paso County Drainage Criteria Manual, Rational Method procedures were utilized for hydrologic calculations since the tributary drainage basins are below 100 acres.

Rational Method hydrologic calculations were based on the following assumptions:

- Design storm (minor)
- Design storm (major)
- Time of Concentration - Overland Flow
- Time of Concentration - Gutter/Ditch Flow
- Rainfall Intensities
- Hydrologic soil type
- Runoff Coefficients - undeveloped: Existing pasture/range areas
- Runoff Coefficients - developed:
- Runoff Coefficients - developed:
Proposed lot areas (2.5-acre lots)

5-year
100-year
"Airport" equation (300' max. developed)
"SCS Upland" equation
El Paso County I-D-F Curve
B
C5
C100

$$
0.08
$$

0.35

Hydrologic calculations are enclosed in Appendix A, and peak design flows are identified on the drainage basin drawings.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and re-development projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development.

The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The proposed rural residential subdivision development with 2.5-acre minimum lot sizes provides for inherently minimal drainage impacts based on the limited impervious areas associated with rural residential development.
- Minimize Directly Connected Impervious Areas (MDCIA): The rural residential development will have roadside ditches along all roads, providing for impervious areas to drain across pervious areas. Based on the roadside ditches throughout the subdivision, the subdivision is classified as MDCIA Level One.
- Grass Swales: The proposed roadside ditches will drain to existing and proposed grasslined drainage swales following historic drainage patterns through the property.

Step 2: Stabilize Drainageways

- Proper erosion control measures will be implemented along the roadside ditches and grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- FSD: A Full-Spectrum Detention Pond will be provided at the west boundary of the site. On-site drainage will be routed through the extended detention basin, which will capture and slowly release the WQCV over a 72 -hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial or commercial land uses are proposed within this rural residential subdivision.
- On-site drainage will be routed through the private Full-Spectrum Detention (FSD) basin to minimize introduction of contaminants to the County's public drainage system.

V. DRAINAGE FACILITY DESIGN

A. General Concept

Development of the Settlers View Subdivision will require site grading and paving, resulting in additional impervious areas across the site. The general drainage pattern will consist of grading away from home sites to swales and roadside ditches along the internal roads within the subdivision, conveying runoff flows through the site. Runoff from the site will flow by roadside ditches to cross culverts at low points in the road profiles, and grass-lined channels connecting to existing natural swales at the site boundaries.

The stormwater management concept for the Settlers View development will be to provide roadside ditches and natural swales as required to convey developed drainage through the site to existing natural outfalls.

Individual lot grading will provide positive drainage away from building sites, and direct developed flows into the system of roadside ditches and drainage swales running through the subdivision.

A stormwater detention pond will be constructed at the west boundary of the subdivision to mitigate the impact of developed flows and maintain historic peak flows downstream of the property.

B. Specific Details

1. Existing Drainage Conditions

Historic drainage conditions within the site are depicted in Figure EX1. Basin A comprises the eastern side of the property, which drains easterly along several existing natural swales. Basin A flows easterly to Design Pont \#A, with historic peak flows calculated as $\mathrm{Q}_{5}=3.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=21.6 \mathrm{cfs}$.

Basin A discharges to an existing grass-lined drainage swale flowing easterly across the adjoining 40 -acre property to an existing stock pond, ultimately crossing Steppler Road in an existing 48-inch RCP Culvert.

The west side of the property has been delineated as Basin S, which flows southwesterly to an existing grass-lined drainage swale at the west boundary of the site. Off-site Basin OS1 comprises a relatively small area within the adjoining Grandview Subdivision, which flows southwesterly into the northwest corner of Basin S. Additionally, off-site drainage from Basin D9 of the adjoining Settlers Ranch Subdivision flows northwesterly through Basin S. Flows from Basins OS1, D9, and S combine at Design Pont \#S, with historic peak flows calculated as $\mathrm{Q}_{5}=10.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=73.1 \mathrm{cfs}$.

Basin S discharges to an existing grass-lined drainage swale flowing westerly across the adjoining 40 -acre property to the existing downstream drainage channel and series of ponds within the Walden Preserve Subdivision.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and hydrologic calculations are enclosed in Appendix B.

The east side of the property has been delineated as Basins A, B, and C in the developed condition, and these basins will continue to sheet flow easterly through the proposed Abert Ranch Subdivision.

Basin A flows easterly to Design Point \#A, with developed peak flows calculated as $\mathrm{Q}_{5}=5.5 \mathrm{cfs}$ and $\mathrm{Q}_{100}=22.4$ cfs. Basin B flows easterly to Design Point \#B, with developed peak flows calculated as $\mathrm{Q}_{5}=1.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=6.8 \mathrm{cfs}$. Basin C flows easterly to Design

Point \#C, with developed peak flows calculated as $\mathrm{Q}_{5}=0.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=3.1 \mathrm{cfs}$. Combined developed flows from Basins A, B, and C are calculated as $\mathrm{Q}_{5}=7.6$ cfs and $\mathrm{Q}_{100}=31.2$ cfs (Design Point \#A1).

Development plans for the proposed Abert Ranch Subdivision on the adjoining ranch property to the east include upgrade of an existing stock pond to meet stormwater detention requirements for the Abert Ranch site, including the minimal developed drainage contribution from Settlers View Basins A, B, and C.

The west side of the property has been delineated as Basins S1-S4 based on the developed road configuration, and these basins will continue to flow westerly to the existing drainage swale at the western property boundary.

Developed Basin S1 will flow southwesterly to the proposed Culvert S1 crossing Silver Nell Drive at Design Point \#S1. Culvert S1 will flow southwesterly through the existing grass-lined drainage swale in Basin S3 to a proposed Full-Spectrum Detention Pond (Pond S3) at the west boundary of the subdivision. The existing swale will be stabilized with erosion control blanket lining.

Off-site drainage from Basin D9 of the adjoining Settlers Ranch Subdivision will flow northwesterly through Basin S2 to the proposed Culvert S2 crossing Settlers View Road at Design Point \#S2, continuing through a grass-lined channel to Detention Pond S3.

Flows from Basins D9 and S1-S3 combine at Design Point \#S3, with developed peak flows of $\mathrm{Q}_{5}=19.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=78.1 \mathrm{cfs}$. Developed flow impacts from the subdivision will be mitigated by routing flows through Detention Pond \#S3.

Off-site Basin OS1 will continue to flow northwesterly through Basin S4 to the west boundary of the site.

Flows from Basins D9, OS1, and S1-S4 ultimately combine at downstream Design Point \#S, with developed peak flows calculated as $\mathrm{Q}_{5}=22.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=90.6 \mathrm{cfs}$.

C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the proposed development will result in developed flows exceeding historic flows from the parcel. The increase in developed flows will be mitigated through on-site stormwater detention facilities.

The comparison of developed to historic discharges at key design points is summarized as follows:

Design Point	Historic Flow			Developed Flow			Comparison of Developed to Historic Flow ($\mathrm{Q}_{5} \% / \mathrm{Q}_{100} \%$)
	Area (ac)	$\begin{gathered} \mathrm{Q}_{5} \\ (\mathrm{cfs}) \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{100} \\ & \text { (cfs) } \\ & \hline \end{aligned}$	Area (ac)	$\begin{gathered} \mathrm{Q}_{5} \\ (\mathrm{cfs}) \end{gathered}$	Q_{100} (cfs)	
A	15.0	3.0	21.6	15.0	7.6	31.2	253\% / 144\% (increase)
S	46.8	10.0	73.1	46.8	22.0	90.6	220\% / 124\% (increase)

D. Detention Ponds

The Developed storm runoff downstream of the proposed subdivision will be maintained at historic levels by routing flows through a proposed detention pond at the west boundary of the property. Pond \#S3 will be constructed as a Full-Spectrum Detention (FSD) Pond to mitigate developed flow impacts from the proposed subdivision. The pond outlet structure has been designed with multiple orifice openings to detain the full spectrum of storm events.

Detailed pond routing calculations have been performed utilizing the Denver Urban Drainage "UDDetention" software package (see Appendix C). The pond outlet structure configuration has been designed to maintain the calculated pond discharge below the target outflow, while maintaining the maximum water surface elevation below the pond spillway. Final detention pond design parameters are summarized as follows:

Pond	Inflow $\left(\mathrm{Q}_{100}, \mathrm{cfs}\right)$	Outflow $\left(\mathrm{Q}_{100}, \mathrm{cfs}\right)$	Volume $(\mathrm{ac}-\mathrm{ft})$	Outlet Structure
Pond \#S3	78.1	40.6	1.2	30-inch SD w/ orifice plates

15-foot wide gravel maintenance access roads will be provided for all stormwater detention facilities. The proposed detention ponds will be privately owned and maintained by the subdivision homeowners association (HOA).

E. On-Site Drainage Facility Design

Developed sub-basins and proposed drainage improvements are depicted in the enclosed Drainage Plan (Sheet D1). In accordance with El Paso County standards, new roadways will be graded with a minimum longitudinal slope of 1.0 percent. The typical local road section will consist of a 28 foot paved width with 2 -foot gravel shoulders and $4: 1$ slopes to 2.5 -foot ditches.

On-site drainage facilities will consist of roadside ditches, grass-lined channels, and culverts. Hydraulic calculations for preliminary sizing of major on-site drainage facilities are enclosed in Appendix D, and design criteria are summarized as follows:

1. Culverts

The internal road system has been graded to drain roadside ditches to low points along the road profile, where cross-culverts will convey developed flows into grass-lined channels following historic drainage paths. Culvert pipes have been specified as reinforced concrete pipe (RCP) with a minimum diameter of 18 -inches. Culvert sizes have been identified based on a maximum headwater-to-depth ratio (HW/D) of 1.0 for the minor (5-year) design storm. Final culvert design calculations were performed utilizing the FHWA HY-8 software package to perform a detailed analysis of inlet and outlet control conditions, meeting El Paso County criteria for allowable overtopping. HY8 calculation results are summarized in the "Culvert Sizing Summary" Table in Appendix B. Riprap outlet protection will be provided at all culverts.

2. Open Channels

Drainage easements will be dedicated along major drainage channels following historic drainage paths through the subdivision. These channels will generally be grass-lined channels designed to convey 100-year flows, with a trapezoidal cross-section, variable bottom width and depth, 4:1 maximum side slopes, 1-foot freeboard, and a minimum slope of 0.5 percent.

The proposed drainage channels have been sized utilizing Manning's equation for open channel flow, assuming a friction factor ("n") of 0.030 for dry-land grass channels. Maximum allowable velocities will be evaluated based on El Paso County drainage criteria, typically allowing for a maximum 100 -year velocity of 5 feet per second. Erosion control mats have been specified for channel segments with maximum 100-year velocities up to 8 feet per second. The proposed channels will generally be seeded with native grasses for erosion control. Erosion control mats, ditch checks, and/or riprap channel lining will be provided where required based on erosive velocities. Ditch flows will be diverted to drainage channels at the nearest practical location to minimize excessive roadside ditch sizes. Detailed channel hydraulic calculations are enclosed in Appendix B.

Primary drainage swales crossing proposed lots have been placed in drainage easements, with variable widths based on the required channel sections.

F. Anticipated Drainage Problems and Solutions

The proposed stormwater Detention Pond \#S3 has been designed to mitigate the impacts of developed drainage from this project. The overall drainage plan for the subdivision includes a system of roadside ditches, channels, and culverts to convey developed flows through the site. The primary drainage problems anticipated within this development will consist of maintenance of these drainage channels, culverts, and detention pond facilities. Care will need to be taken to implement proper erosion control measures in the proposed roadside ditches, channels, and swales. Ditches will be designed to meet allowable velocity criteria. Erosion control mats, ditch checks,
and riprap channel lining will be installed where necessary to minimize erosion concerns. Proper construction and maintenance of the proposed detention facilities will minimize downstream drainage impacts. Public roadway improvements and ditches within the public right-of-way will be owned and maintained by El Paso County. The proposed stormwater detention pond and drainage channels located within open space tracts will be owned and maintained by the subdivision HOA.

VI. EROSION / SEDIMENT CONTROL

The Contractor will be required to implement Best Management Practices (BMP's) for erosion control through the course of construction. Sediment control measures will include installation of silt fence at the toe of disturbed slopes and hay bales protecting drainage ditches. Cut slopes will be stabilized during excavation as necessary and vegetation will be established for stabilization of disturbed areas as soon as possible. All ditches will be designed to meet El Paso County criteria for slope and velocity. The proposed detention pond will serve as a sediment basin during the construction phase of the project.

VII. COST ESTIMATE AND DRAINAGE FEES

A cost estimate for proposed drainage improvements is enclosed in Appendix D, with a total estimated cost of approximately $\$ 42,500$ for subdivision drainage improvements. The developer will finance all construction costs for proposed roadway and drainage improvements, and public facilities will be owned and maintained by El Paso County upon final acceptance. Private drainage facilities will be owned and maintained by the subdivision HOA. This parcel is located in the West Cherry Creek and East Cherry Creek Drainage Basins. No drainage and bridge fees will be due at time of recordation of the final plat as the subject site is not located in a fee basin.

VIII. SUMMARY

Settlers View is a proposed residential subdivision consisting of 14 lots on a 40-acre parcel located between Grandview Subdivision and Settlers Ranch Subdivision on the west side of Steppler Road in northeastern El Paso County. Development of the proposed Settlers View Subdivision will generate an increase in developed runoff from the site, which will be mitigated through construction of on-site stormwater detention facilities. The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities constructed to El Paso County standards will safely convey runoff to suitable outfalls. Based on the on-site stormwater detention concept, no new downstream drainage facilities are proposed.

The proposed detention pond will ensure that overall developed flows from the Settlers View Subdivision remain consistent with historic levels. Construction and proper maintenance of the proposed drainage and erosion control facilities will ensure that this subdivision has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS

Hydrologic Soil Group-EI Paso County Area, Colorado

Hydrologic Soil Group

Hydrologic Soil Group-Summary by Map Unit - El Paso County Area, Colorado (CO625)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
25	Elbeth sandy loam, 3 to 8 percent slopes	B	3.0	7.2\%
67	Peyton sandy loam, 5 to 9 percent slopes	B	14.0	33.6\%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	B	24.6	59.2\%
Totals for Area of Interest			41.6	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
El Paso County Area, Colorado 13
25-Elbeth sandy loam, 3 to 8 percent slopes 13
67-Peyton sandy loam, 5 to 9 percent slopes 14
92-Tomah-Crowfoot loamy sands, 3 to 8 percent slopes 15
References 17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

みodəy əэınosəy l!os mołsnว

Map Unit Legend

El Paso County Area, Colorado (CO625)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
25	Elbeth sandy loam, 3 to 8 percent slopes	3.0	7.2\%
67	Peyton sandy loam, 5 to 9 percent slopes	14.0	33.6\%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	24.6	59.2\%
Totals for Area of Interest		41.6	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

25-Elbeth sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 367x
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Elbeth and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Elbeth

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 3 inches: sandy loam
E - 3 to 23 inches: loamy sand
Bt -23 to 68 inches: sandy clay loam
C-68 to 74 inches: sandy clay loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Hydric soil rating: No

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

67-Peyton sandy loam, 5 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369d
Elevation: 6,800 to 7,600 feet
Mean annual air temperature: 43 to 45 degrees F
Frost-free period: 115 to 125 days
Farmland classification: Not prime farmland
Map Unit Composition
Peyton and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam
Bt - 12 to 25 inches: sandy clay loam
$B C-25$ to 35 inches: sandy loam
C-35 to 60 inches: sandy loam
Properties and qualities
Slope: 5 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

92-Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent
Crowfoot and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand
E - 10 to 22 inches: coarse sand
C - 48 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
A - 0 to 12 inches: loamy sand
$E-12$ to 23 inches: sand
Bt - 23 to 36 inches: sandy clay loam
C - 36 to 60 inches: coarse sand
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.7 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

SETTLERS VIEW SUBDIVISION
COMPOSITE RUNOFF COEFFICIENTS - TYPICAL RURAL RESIDENTIAL LOTS

DEVELOPED CONDITIONS 5-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	AREA (\%)	$\begin{gathered} \text { SUB-AREA 1 } \\ \text { DEVELOPMENT// } \\ \text { COVER } \end{gathered}$	C	AREA (\%)	\qquad	C	AREA (\%)	SUB-AREA 3 DEVELOPMENT COVER	C	WEIGHTED C VALUE
2.5-ACRE LOTS	2.50	11.00	BUILDING / PAVEMENT	0.90	89.00	LANDSCAPED	0.08				0.170
5-ACRE LOTS	2.50	7.00	BUILDING / PAVEMENT	0.90	93.00	LANDSCAPED	0.08				0.137
100-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	AREA (\%)	SUB-AREA 1 DEVELOPMENT// COVER	C	$\begin{aligned} & \text { AREA } \\ & \text { (AC) } \\ & \hline \end{aligned}$	SUB-AREA 2 DEVELOPMENT/ COVER	C	AREA (\%)	SUB-AREA 3 DEVELOPMENT COVER	C	WEIGHTED C VALUE
2.5-ACRE LOTS	2.50	11.00	BUILDING / PAVEMENT	0.96	89.00	LANDSCAPED	0.35				0.417
5-ACRE LOTS	2.50	7.00	BUILDING / PAVEMENT	0.96	93.00	LANDSCAPED	0.35				0.393
IMPERVIOUS AREAS											
BASIN	TOTAL AREA (AC)	AREA (\%)	SUB-AREA 1 DEVELOPMENT// COVER	PERCENT IMPERVIOUS	AREA (\%)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	AREA (\%)	SUB-AREA 3 DEVELOPMENT COVER	PERCENT IMPERVIOUS	$\begin{array}{\|c} \text { WEIGHTED } \\ \% \text { IMP } \\ \hline \end{array}$
2.5-ACRE LOTS	2.50	11.00	BUILDING / PAVEMENT	100	89.00	LANDSCAPED	0				11.000
5-ACRE LOTS	2.50	7.00	BUILDING / PAVEMENT	100	93.00	LANDSCAPED	0				7.000

SETTLERS METHON
HISTORIC FLOWS

[^0]DEVELOPED FLOWS

					Overland Flow			Channel flow					TOTAL	$\begin{array}{\|c\|} \hline \text { TOTAL } \\ \text { Tc }{ }^{(4)} \\ \text { (MIN) } \\ \hline \end{array}$	INTENSITY ${ }^{(5)}$		PEAK FLOW	
				C				CHANNEL	CONVEYANCE		SCS ${ }^{(2)}$							
BASIN	DESIGN POINT	AREA (AC)	5-YEAR ${ }^{\text {(7) }}$	100-YEAR ${ }^{(7)}$	LENGTH (FT)	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	$\begin{aligned} & \text { Tco }^{(1)} \\ & \text { (MIN) } \end{aligned}$	LENGTH (FT)	$\begin{gathered} \text { COEFFICIENT } \\ \text { C } \end{gathered}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	$\begin{gathered} \text { VELOCITY } \\ \text { (FT/S) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Tt}^{(3)} \\ (\mathrm{MIN}) \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Tc}^{(4)} \\ (\mathrm{MIN}) \\ \hline \end{array}$		$\begin{gathered} \text { 5-YR } \\ \text { (IN/HR) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 100-YR } \\ & \text { (IN/HR) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q5 }^{(6)} \\ & \text { (CFS) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Q100 }^{(6)} \\ \text { (CFS) } \\ \hline \end{gathered}$
WEST CHERRY CREEK BASIN																		
OS1	OS1	4.01	0.170	0.417	300	0.073	15.2	450	15.00	0.058	3.61	2.1	17.3	17.3	3.31	5.55	2.25	9.28
S4		2.46	0.080	0.350			0.0	200	15.00	0.05	3.35	1.0	1.0	5.0	5.17	8.68	1.02	7.47
OS1,S4	S4	6.47	0.136	0.392									18.3	18.3	3.22	5.41	2.83	13.71
S1	S1	4.30	0.170	0.417	300	0.033	19.8	0				0.0	19.8	19.8	3.10	5.21	2.27	9.34
D9	D9	14.30	0.170	0.417	250	0.080	13.5	700	15.00	0.074	4.08	2.9	16.3	16.3	3.39	5.70	8.25	33.97
S2	S2a	9.04	0.170	0.417	300	0.073	15.2	650	15.00	0.049	3.33	3.3	18.4	18.4	3.21	5.39	4.93	20.32
Tc Channel S2							0.0	280	15.00	0.025	2.37	2.0	2.0	5.0				
D9,S2	S2	23.34	0.170	0.417									18.4	18.4	3.21	5.39	12.74	52.46
S3	S3a	12.67	0.170	0.417	300	0.060	16.2	1000	15.00	0.049	3.31	5.0	21.3	21.3	3.00	5.03	6.46	26.58
Tc Channel S3							0.0	1000	15.00	0.050	3.35	5.0	5.0	5.0				
D9,S1-S3	S3	40.31	0.170	0.417									24.8	24.8	2.77	4.65	18.97	78.09
OS1,D9,S1-S4	S	46.78	0.170	0.417									24.8	24.8	2.77	4.65	22.01	90.62
EAST CHERRY CREEK BASIN																		
A	A	10.74	0.170	0.417	300	0.033	19.8	400	15.00	0.075	4.11	1.6	21.4	21.4	2.99	5.01	5.45	22.44
B	B	2.93	0.170	0.417	300	0.050	17.3	0				0.0	17.3	17.3	3.31	5.56	1.65	6.79
C	C	1.28	0.170	0.417	300	0.067	15.7	0				0.0	15.7	15.7	3.45	5.80	0.75	3.10
A,B,C	A1	14.95	0.170	0.417									21.4	21.4	2.99	5.01	7.59	31.24

[^1]7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

APPENDIX B

HYDRAULIC CALCULATIONS

SETTLERS VIEW
DITCH CALCULATION SUMMARY
PROPOSED ROADSIDE DITCHES

$\begin{array}{l\|} \hline \stackrel{\rightharpoonup}{\mathrm{Q}} \\ \hline \end{array}$	z						3		ш	3	ш	3	
○®	\bigcirc		$\stackrel{-}{\square}$	N	3	RON			$\begin{array}{\|c} \hline \mathbf{0} \\ \hline \mathbf{0} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{o} \\ & \hline \mathbf{0} \\ & \hline 1 \end{aligned}$	$\underset{\sim}{2}$	$\underset{\sim}{n}$	
$\underset{\sim}{\substack{\text { O } \\ \text { ¢ }}}$			$\stackrel{\sim}{\sim}$	－	Pu	$\underset{\sim}{2}-10$				$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{O} \\ \hline 6 \\ \hline \end{array}$	$\underset{\sim}{2}$	
	－												

[^2]5）$V \max =5.0 \mathrm{fps}$ per EI Paso County criteria（p．10－13）for fescue（dry land grass）for 100－year flows
6）Vmax $=8.0 \mathrm{fps}$ with Erosion Control Blankets（Tensar Eronet SC150 or equal）

SETTLERS VIEW
CHANNEL CALCULATIONS DEVELOPED FLOWS

EXISTING / PROPOSED CHANNELS

CHANNEL	DESIGN POINT	EXISTING SLOPE (\%)	PROPOSED SLOPE $(\%)$	BOTTOM (BITH (B, FT)	SIDE SLOPE (Z)	$\begin{gathered} \text { CHANNEL } \\ \text { DEPTH } \\ \text { (FT) } \\ \hline \end{gathered}$	FRICTION FACTOR (n)	$\begin{aligned} & \text { Q100 } \\ & \text { FLOW } \\ & \text { (CFS) } \end{aligned}$	$\begin{aligned} & \text { Q100 } \\ & \text { DEPTH } \\ & \text { (FT) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Q100 } \\ \text { VELOCITY } \\ \text { (FT/S) } \end{gathered}$ (FT/S)	CHANNEL LINING
S2.1	S2	0.025	0.025	4	4:1	2.0	0.030	52.5	1.05	6.10	GRASS / ECB
S2.2	S2	0.058	0.058	6	4:1	2.0	0.030	52.5	0.70	8.00	GRASS / ECB
S3	S3	0.053	0.053	10	10:1	2.0	0.030	78.1	0.70	7.00	GRASS / ECB

The complete line of RollMax" products offers a variety of options for both short-term and permanent erosion control needs. Reference the RollMax Products Chart below to find the right solution for your next project.

RollMax Product Selection Chart

TEMPORARY
ERONET

Hydraulic Analysis Report

Project Data

Project Title: Settlers View
Designer: JPS
Project Date: Friday, February 10, 2017
Project Units: U.S. Customary Units
Notes:

Channel Analysis: Ditch-1425-1629-N

Notes:
Input Parameters
Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0376 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 1.0000 cfs

Result Parameters

Depth: 0.3215 ft
Area of Flow: $0.3617 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 2.3420 ft
Hydraulic Radius: 0.1544 ft
Average Velocity: $2.7648 \mathrm{ft} / \mathrm{s}$
Top Width: 2.2503 ft
Froude Number: 1.2153
Critical Depth: 0.3490 ft
Critical Velocity: $2.3460 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0243 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.49 ft
Calculated Max Shear Stress: $0.7542 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3623 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-1425-1629-S

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0376 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 1.6000 cfs

Result Parameters

Depth: 0.3834 ft
Area of Flow: $0.5146 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 2.7934 ft
Hydraulic Radius: 0.1842 ft
Average Velocity: $3.1095 \mathrm{ft} / \mathrm{s}$
Top Width: 2.6840 ft
Froude Number: 1.2515
Critical Depth: 0.4212 ft
Critical Velocity: $2.5773 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0228 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 3.01 ft
Calculated Max Shear Stress: $0.8996 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4322 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-1629-2065-N

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0600 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 3.3000 cfs

Result Parameters

Depth: 0.4608 ft
Area of Flow: $0.7432 \mathrm{ft}{ }^{\wedge} 2$
Wetted Perimeter: 3.3572 ft
Hydraulic Radius: 0.2214 ft
Average Velocity: $4.4402 \mathrm{ft} / \mathrm{s}$
Top Width: 3.2257 ft
Froude Number: 1.6301
Critical Depth: 0.5626 ft
Critical Velocity: $2.9788 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0207 \mathrm{ft} / \mathrm{tt}$
Critical Top Width: 4.02 ft
Calculated Max Shear Stress: $1.7253 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.8288 \mathrm{lb} / \mathrm{ft} \wedge 2$

Channel Analysis: Ditch-1629-2065-S

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0600 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 2.0000 cfs

Result Parameters

Depth: 0.3819 ft
Area of Flow: $0.5105 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 2.7824 ft
Hydraulic Radius: 0.1835 ft
Average Velocity: $3.9177 \mathrm{ft} / \mathrm{s}$
Top Width: 2.6734 ft
Froude Number: 1.5799
Critical Depth: 0.4605 ft
Critical Velocity: $2.6949 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0221 \mathrm{ft} / \mathrm{tt}$
Critical Top Width: 3.29 ft
Calculated Max Shear Stress: $1.4299 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.6869 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-2065-2323-E

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0697 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 6.1000 cfs

Result Parameters

Depth: 0.5641 ft
Area of Flow: $1.1138 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 4.1099 ft
Hydraulic Radius: 0.2710 ft
Average Velocity: $5.4766 \mathrm{ft} / \mathrm{s}$
Top Width: 3.9489 ft
Froude Number: 1.8172
Critical Depth: 0.7193 ft
Critical Velocity: $3.3682 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0191 \mathrm{ft} / \mathrm{tt}$
Critical Top Width: 5.14 ft
Calculated Max Shear Stress: $2.4535 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.1787 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-2065-2323-W

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0697 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 1.3000 cfs

Result Parameters

Depth: 0.3159 ft
Area of Flow: $0.3494 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 2.3018 ft
Hydraulic Radius: 0.1518 ft
Average Velocity: $3.7210 \mathrm{ft} / \mathrm{s}$
Top Width: 2.2116 ft
Froude Number: 1.6499
Critical Depth: 0.3876 ft
Critical Velocity: $2.4724 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0234 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.77 ft
Calculated Max Shear Stress: $1.3741 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.6601 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-1060-1630-E

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0750 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 14.2000 cfs

Result Parameters

Depth: 0.7639 ft
Area of Flow: $2.0422 \mathrm{ft}^{\wedge}$ 2
Wetted Perimeter: 5.5651 ft
Hydraulic Radius: 0.3670 ft
Average Velocity: $6.9532 \mathrm{ft} / \mathrm{s}$
Top Width: 5.3471 ft
Froude Number: 1.9827
Critical Depth: 1.0086 ft
Critical Velocity: $3.9883 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0170 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 7.21 ft
Calculated Max Shear Stress: $3.5749 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.7174 \mathrm{lb} / \mathrm{ft} \wedge 2$

Channel Analysis: Ditch-1060-1630-E

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0750 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 5.3000 cfs

Result Parameters

Depth: 0.5279 ft
Area of Flow: $0.9752 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 3.8456 ft
Hydraulic Radius: 0.2536 ft
Average Velocity: $5.4348 \mathrm{ft} / \mathrm{s}$
Top Width: 3.6950 ft
Froude Number: 1.8643
Critical Depth: 0.6800 ft
Critical Velocity: $3.2748 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0194 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 4.86 ft
Calculated Max Shear Stress: $2.4704 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.1868 \mathrm{lb} / \mathrm{ft} \wedge 2$

Channel Analysis: Ditch-1630-1932-E

Notes:
Input Parameters
Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0300 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 6.1000 cfs

Result Parameters

Depth: 0.6607 ft
Area of Flow: $1.5280 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 4.8137 ft
Hydraulic Radius: 0.3174 ft
Average Velocity: $3.9922 \mathrm{ft} / \mathrm{s}$
Top Width: 4.6251 ft
Froude Number: 1.2240
Critical Depth: 0.7193 ft
Critical Velocity: $3.3682 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0191 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 5.14 ft
Calculated Max Shear Stress: $1.2369 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.5942 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Ditch-1630-1932-W

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0300 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 3.9000 cfs

Result Parameters

Depth: 0.5587 ft
Area of Flow: $1.0925 \mathrm{ft}^{\wedge}$ 2
Wetted Perimeter: 4.0703 ft
Hydraulic Radius: 0.2684 ft
Average Velocity: $3.5699 \mathrm{ft} / \mathrm{s}$
Top Width: 3.9108 ft
Froude Number: 1.1903
Critical Depth: 0.6015 ft
Critical Velocity: $3.0800 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0202 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 4.30 ft
Calculated Max Shear Stress: $1.0459 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.5025 \mathrm{lb} / \mathrm{ft} \wedge 2$

Channel Analysis: Channel-S2.1

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $4.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 4.0000 ft
Longitudinal Slope: $0.0250 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 52.5000 cfs

Result Parameters

Depth: 1.0536 ft
Area of Flow: $8.6543 \mathrm{ft}{ }^{\wedge} 2$
Wetted Perimeter: 12.6879 ft
Hydraulic Radius: 0.6821 ft
Average Velocity: $6.0664 \mathrm{ft} / \mathrm{s}$
Top Width: 12.4285 ft
Froude Number: 1.2811
Critical Depth: 1.1965 ft
Critical Velocity: $4.9938 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0147 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 13.57 ft
Calculated Max Shear Stress: $1.6436 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.0641 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Channel-S2.2

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $4.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 6.0000 ft
Longitudinal Slope: $0.0580 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 52.5000 cfs

Result Parameters

Depth: 0.7366 ft
Area of Flow: $6.5902 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 12.0743 ft
Hydraulic Radius: 0.5458 ft
Average Velocity: $7.9664 \mathrm{ft} / \mathrm{s}$
Top Width: 11.8930 ft
Froude Number: 1.8860
Critical Depth: 1.0506 ft
Critical Velocity: $4.8978 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0148 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 14.41 ft
Calculated Max Shear Stress: $2.6660 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.9754 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Channel-S3

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $10.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $10.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 10.0000 ft
Longitudinal Slope: $0.0530 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 78.1000 cfs

Result Parameters

Depth: 0.6711 ft
Area of Flow: $11.2158 \mathrm{ft}{ }^{\wedge} 2$
Wetted Perimeter: 23.4898 ft
Hydraulic Radius: 0.4775 ft
Average Velocity: $6.9634 \mathrm{ft} / \mathrm{s}$
Top Width: 23.4229 ft
Froude Number: 1.7734
Critical Depth: 0.9142 ft
Critical Velocity: $4.4627 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0155 \mathrm{ft} / \mathrm{tt}$
Critical Top Width: 28.28 ft
Calculated Max Shear Stress: $2.2196 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $1.5791 \mathrm{lb} / \mathrm{ft} \wedge 2$
SETTLERS VIEW
CULVERT DESIGN SUMMARY

BASIN	DESIGN POINT	$\begin{gathered} \text { RD } \\ \text { CL } \\ \text { ELEV } \end{gathered}$	$\begin{gathered} \text { INV } \\ \text { IN } \\ \text { ELEV } \end{gathered}$	$\begin{aligned} & \hline \text { INV } \\ & \text { OUT } \\ & \text { ELEV } \end{aligned}$	$\begin{gathered} \text { PIPE } \\ \text { LENGTH } \\ \text { (FT) } \\ \hline \end{gathered}$	\# of CULVERTS	$\begin{gathered} \hline \text { PIPE } \\ \text { DIA } \\ \text { (FT) } \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ \text { Q5 } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \hline \text { PER PIPE } \\ \text { Q5 } \\ \text { (CFS) } \\ \hline \end{gathered}$	MAX ALLOWABLE HEADWATER	$\begin{gathered} \hline \text { CALC } \\ \text { HW } \\ \text { ELEV } \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ \text { Q100 } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \hline \text { PER PIPE } \\ \text { Q100 } \\ \text { (CFS) } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { CALC } \\ \text { HW } \\ \text { ELEV } \end{gathered}$
S1	S1	7620.23	7617.50	7614.00	64.0	1	1.5	2.3	2.3	7619.00	7618.8	9.34	9.34	7620.9	7619.9
S2	S2	7587.72	7584.14	7583.50	64.0	1	2.0	12.7	12.7	7586.14	7586.0	52.50	52.50	7588.4	7588.0

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 2.3 cfs
Design Flow: 9.34 cfs
Maximum Flow: 15 cfs

Table 1 - Summary of Culvert Flows at Crossing: Crossing S1

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert S1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7618.75	2.30	2.30	0.00	1
7618.98	3.57	3.57	0.00	1
7619.18	4.84	4.84	0.00	1
7619.36	6.11	6.11	0.00	1
7619.54	7.38	7.38	0.00	1
7619.75	8.65	8.65	0.00	1
7619.87	9.34	9.34	0.00	1
7620.23	11.19	11.10	0.03	35
7620.27	12.46	11.26	1.17	6
7620.29	13.73	11.36	2.32	4
7620.31	15.00	11.45	3.52	4
7620.23	11.09	11.09	0.00	Overtopping

Table 2 - Culvert Summary Table: Culvert S1

Total Discharg e (cfs)	Culvert Discharg e (cfs)	Headwat er Elevatio n (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwate r Depth (ft)	Outlet Velocity (ft/s)	Tailwate r Velocity (ft/s)
2.30	2.30	7618.75	0.748	0.0*	1-S2n	0.296	0.569	0.296	0.164	9.466	3.021
3.57	3.57	7618.98	0.981	0.0*	1-S2n	0.368	0.721	0.368	0.211	10.516	3.502
4.84	4.84	7619.18	1.176	0.0*	1-S2n	0.433	0.842	0.433	0.250	11.502	3.867
6.11	6.11	7619.36	1.357	0.0*	1-S2n	0.488	0.950	0.488	0.285	12.201	4.167
7.38	7.38	7619.54	1.544	0.0*	5-S2n	0.543	1.049	0.561	0.317	12.242	4.423
8.65	8.65	7619.75	1.750	0.0*	5-S2n	0.590	1.134	0.623	0.346	12.442	4.646
9.34	9.34	7619.87	1.873	0.0*	5-S2n	0.615	1.180	0.644	0.361	12.872	4.758
11.19	11.10	7620.23	2.233	0.0*	5-S2n	0.680	1.274	0.718	0.398	13.307	5.026
12.46	11.26	7620.27	2.269	0.0*	5-S2n	0.685	1.282	0.724	0.422	13.349	5.191
13.73	11.36	7620.29	2.293	0.0*	5-S2n	0.689	1.286	0.728	0.445	13.377	5.344
15.00	11.45	7620.31	2.313	0.0*	5-S2n	0.692	1.290	0.731	0.466	13.401	5.485

* Full Flow Headwater elevation is below inlet invert.

Site Data - Culvert S1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7618.00 ft
Outlet Station: 64.00 ft
Outlet Elevation: 7614.00 ft
Number of Barrels: 1

Culvert Data Summary - Culvert S1

Barrel Shape: Circular
Barrel Diameter: 1.50 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting
Inlet Depression: NONE

Table 3 - Downstream Channel Rating Curve (Crossing: Crossing S1)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
2.30	7614.16	0.16	3.02	0.51	1.41
3.57	7614.21	0.21	3.50	0.66	1.46
4.84	7614.25	0.25	3.87	0.78	1.49
6.11	7614.29	0.29	4.17	0.89	1.52
7.38	7614.32	0.32	4.42	0.99	1.54
8.65	7614.35	0.35	4.65	1.08	1.56
9.34	7614.36	0.36	4.76	1.13	1.57
11.19	7614.40	0.40	5.03	1.24	1.59
12.46	7614.42	0.42	5.19	1.32	1.60
13.73	7614.44	0.44	5.34	1.39	1.62
15.00	7614.47	0.47	5.49	1.45	1.63

Tailwater Channel Data - Crossing S1

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 4.00 ft
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0500
Channel Manning's n: 0.0300
Channel Invert Elevation: 7614.00 ft

Roadway Data for Crossing: Crossing S1

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 50.00 ft
Crest Elevation: 7620.23 ft
Roadway Surface: Paved
Roadway Top Width: 32.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 12.7 cfs
Design Flow: 52.5 cfs
Maximum Flow: 60 cfs

Table 4 - Summary of Culvert Flows at Crossing: Crossing S2

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert S2 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7586.02	12.70	12.70	0.00	1
7586.49	17.43	17.43	0.00	1
7587.08	22.16	22.16	0.00	1
7587.74	26.89	26.39	0.43	27
7587.82	31.62	26.84	4.66	6
7587.88	36.35	27.16	9.12	5
7587.92	41.08	27.42	13.56	4
7587.97	45.81	27.66	18.10	4
7588.00	50.54	27.87	22.52	3
7588.02	52.50	27.96	24.48	3
7588.07	60.00	28.25	31.65	3
7587.72	26.26	26.26	0.00	Overtopping

Table 5 - Culvert Summary Table: Culvert S2

Total Discharg e (cfs)	Culvert Discharg e (cfs)	Headwat er Elevatio n (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwate r Depth (ft)	Outlet Velocity (ft/s)	Tailwate r Velocity (ft/s)
12.70	12.70	7586.02	1.877	0.0*	1-S2n	1.070	1.279	1.083	0.389	7.310	4.327
17.43	17.43	7586.49	2.349	2.063	5-S2n	1.317	1.503	1.328	0.464	7.882	4.784
22.16	22.16	7587.08	2.941	2.737	5-S2n	1.605	1.679	1.605	0.530	8.209	5.155
26.89	26.39	7587.74	3.601	3.412	$\begin{gathered} \hline 7-M 2 \\ c \\ \hline \end{gathered}$	2.000	1.795	1.795	0.589	8.879	5.467
31.62	26.84	7587.82	3.680	3.503	$\begin{gathered} \hline \text { 7-M2 } \\ c \end{gathered}$	2.000	1.805	1.805	0.643	8.995	5.740
36.35	27.16	7587.88	3.736	3.570	$\begin{gathered} \text { 7-M2 } \\ \mathrm{c} \end{gathered}$	2.000	1.812	1.812	0.693	9.078	5.983
41.08	27.42	7587.92	3.783	3.621	$\begin{gathered} 7-\mathrm{M} 2 \\ \mathrm{c} \\ \hline \end{gathered}$	2.000	1.817	1.817	0.739	9.146	6.202
45.81	27.66	7587.97	3.825	3.662	$\begin{gathered} 7-M 2 \\ c \\ \hline \end{gathered}$	2.000	1.822	1.822	0.783	9.208	6.401
50.54	27.87	7588.00	3.863	3.703	$\begin{gathered} 7-M 2 \\ c \end{gathered}$	2.000	1.826	1.826	0.825	9.264	6.587
52.50	27.96	7588.02	3.879	3.719	$\begin{gathered} \hline 7-M 2 \\ c \\ \hline \end{gathered}$	2.000	1.828	1.828	0.842	9.287	6.660
60.00	28.25	7588.07	3.933	3.781	$\begin{gathered} 7-\mathrm{M} 2 \\ \mathrm{c} \end{gathered}$	2.000	1.833	1.833	0.902	9.367	6.919

* Full Flow Headwater elevation is below inlet invert.

Site Data - Culvert S2

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7584.14 ft
Outlet Station: 64.00 ft
Outlet Elevation: 7583.50 ft
Number of Barrels: 1

Culvert Data Summary - Culvert S2

Barrel Shape: Circular
Barrel Diameter: 2.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting
Inlet Depression: NONE

Table 6 - Downstream Channel Rating Curve (Crossing: Crossing S2)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
12.70	7583.89	0.39	4.33	0.85	1.34
17.43	7583.96	0.46	4.78	1.01	1.38
22.16	7584.03	0.53	5.15	1.16	1.40
26.89	7584.09	0.59	5.47	1.29	1.42
31.62	7584.14	0.64	5.74	1.40	1.44
36.35	7584.19	0.69	5.98	1.51	1.45
41.08	7584.24	0.74	6.20	1.62	1.47
45.81	7584.28	0.78	6.40	1.71	1.48
50.54	7584.33	0.83	6.59	1.80	1.49
52.50	7584.34	0.84	6.66	1.84	1.49
60.00	7584.40	0.90	6.92	1.97	1.51

Tailwater Channel Data - Crossing S2

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 6.00 ft
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0350
Channel Manning's n: 0.0300
Channel Invert Elevation: 7583.50 ft

Roadway Data for Crossing: Crossing S2

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 50.00 ft
Crest Elevation: 7587.72 ft
Roadway Surface: Paved
Roadway Top Width: 32.00 ft

DRAINAGE CRITERIA mANUAL
culvert $51, \Delta=1.5^{-1}$
$Q_{100}=9.3$ cts
$\frac{Q}{\Delta 1.5}=\frac{9.3}{(1.5)^{15}}=5.1$
$Y_{t}=0.36$
$\frac{y_{t}}{\Delta}=\frac{.36}{1.5}=0.24$

Use D_{a} instead of D whenever flow is supercritical in the barrel. * Use Type L for a distance of 3D downstream
use Type M Riprapo

FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET.

DRAINAGE ZRITER:A धANUA

$$
\begin{aligned}
& \text { Culvert } 52 . \Delta=2.0^{\prime} \\
& Q_{1 W}=52.5 C=5 \\
& \frac{Q}{\Delta .5}=\frac{52.5}{(2)^{145}}=18.6 \\
& Y_{t}=0.84^{\prime} \\
& \frac{Y_{t}}{\Delta}=\frac{0.84}{2.0}=0.42
\end{aligned}
$$

Use D_{a} instead of D whenever flow is supercritical in the barrel. * Use Type L for a distance of 30 downstream
Use Type H Riprap

FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET.

APPENDIX C

DETENTION POND CALCULATIONS

| (|
| ---: | :--- |

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
Total Area of Each Orifice Row (numbered from lowest to highest)

Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)
Stage of Orifice Centroid (ft)	Row 8 (optional)					
Orifice Area (sq. inches)	0.00	0.71	1.42			

Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)		
									Stage of Orifice Centroid (ft)
:---									
Orifice Area (sq. inches)									

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Invert of Vertical Orifice $=$	Not Selected	Not Selected	
	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid $=$	N/A	N/A

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	WORKBOOK								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
3.94 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:03:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:07:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:11:49	0.17	0.28	0.20	0.30	0.65	1.58	2.15	2.88	4.17
1.268	0:15:46	0.45	0.76	0.53	0.81	1.74	4.32	5.90	7.93	11.69
	0:19:42	1.15	1.95	1.36	2.09	4.47	11.09	15.14	20.37	30.02
	0:23:38	3.15	5.36	3.75	5.73	12.28	30.43	41.55	55.87	82.28
	0:27:35	3.68	6.30	4.39	6.74	14.59	36.68	50.38	68.22	102.33
	0:31:31	3.50	6.00	4.17	6.42	13.93	35.11	48.28	65.48	98.76
	0:35:28	3.18	5.46	3.79	5.84	12.68	31.96	43.95	59.59	90.08
	0:39:24	2.82	4.85	3.37	5.20	11.33	28.68	39.50	53.64	81.18
	0:43:20	2.41	4.17	2.88	4.47	9.79	24.91	34.40	46.84	71.11
	0:47:17	2.11	3.64	2.52	3.90	8.53	21.64	29.93	40.84	62.13
	0:51:13	1.91	3.29	2.28	3.53	7.73	19.63	27.11	36.92	56.00
	0:55:10	1.55	2.70	1.86	2.89	6.38	16.35	22.63	30.88	47.04
	0:59:06	1.25	2.19	1.50	2.35	5.21	13.47	18.69	25.55	39.02
	1:03:02	0.94	1.66	1.13	1.79	4.02	10.54	14.69	20.18	31.00
	1:06:59	0.68	1.22	0.83	1.31	3.00	8.01	11.24	15.53	24.01
	1:10:55	0.50	0.89	0.61	0.96	2.17	5.88	8.31	11.55	17.99
	1:14:52	0.40	0.70	0.48	0.75	1.68	4.47	6.28	8.69	13.45
	1:18:48	0.33	0.57	0.39	0.62	1.38	3.64	5.10	7.01	10.79
	1:22:44	0.28	0.49	0.33	0.53	1.17	3.08	4.30	5.91	9.07
	1:26:41	0.25	0.43	0.30	0.46	1.03	2.69	3.75	5.15	7.88
	1:30:37	0.22	0.39	0.27	0.42	0.93	2.42	3.36	4.61	7.04
	1:34:34	0.21	0.36	0.25	0.39	0.85	2.22	3.08	4.22	6.44
	1:38:30	0.15	0.26	0.18	0.28	0.63	1.64	2.28	3.14	4.83
	1:42:26	0.11	0.19	0.13	0.21	0.46	1.19	1.66	2.27	3.49
	1:46:23	0.08	0.14	0.10	0.15	0.34	0.88	1.22	1.68	2.58
	1:50:19	0.06	0.10	0.07	0.11	0.25	0.65	0.91	1.25	1.92
	1:54:16	0.04	0.07	0.05	0.08	0.18	0.47	0.66	0.91	1.41
	1:58:12	0.03	0.05	0.03	0.06	0.13	0.33	0.47	0.65	1.01
	2:02:08	0.02	0.04	0.02	0.04	0.09	0.24	0.34	0.47	0.74
	2:06:05	0.01	0.02	0.02	0.03	0.06	0.17	0.24	0.33	0.52
	2:10:01	0.01	0.01	0.01	0.01	0.04	0.10	0.15	0.21	0.34
	2:13:58	0.00	0.01	0.00	0.01	0.02	0.06	0.08	0.12	0.19
	2:17:54	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.09
	2:21:50	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.03
	2:25:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:29:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:33:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:37:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:41:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:49:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:53:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:57:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:01:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:09:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:13:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:17:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:24:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:16:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:23:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:31:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:43:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

Stage - Storage Description	Stage [ft]	$\begin{aligned} & \text { Area } \\ & {\left[f t^{\wedge} 2\right]} \end{aligned}$	Area [acres]	Volume [ft^3]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

APPENDIX D

DRAINAGE COST ESTIMATE

APPENDIX E

FIGURES

[^0]: 1) $\operatorname{OVERLAND~FLOW~Tco~}=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT)})^{*}\left(\right.\right.$ OVERLAND FLOW LENGTH^ $(0.5) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)$

 $\mathrm{C}=5$ FOR TILLAGE/FIELD
 $\mathrm{C}=7$ FOR SHORT PASTURE AND LAWNS
 $C=7$ FOR
 $C=10$ FOR NEARLY BARE GROUND
 2) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL $\mathrm{I}_{5}=-1.5^{*} \ln (\mathrm{Tc})+7.583$
 $\mathrm{I}_{100}=-2.52 * \ln (\mathrm{Tc})+12.735$
[^1]: 1) OVERLAND FLOW Tco $=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT })^{\star}\left(\right.\right.$ OVERLAND FLOW LENGTH^$(0.5) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)$
 2) $\begin{aligned} \text { SCS VELOCITY } & =C^{*}((\text { SLOPE(FT/FT)^0.5) } \\ C & =2.5 \text { FOR HEAVY MEADOW }\end{aligned}$
 $C=5$ FOR TILLAGE/FIELD
 $C=7$ FOR SHORT PASTURE AND LAWNS
 $C=10$ FOR NEARLY BARE GROUND
 $C=15$ FOR GRASSED WATERWAY
 $\mathrm{C}=15$ FOR GRASSED
 $\mathrm{C}=20$ FOR PAVED AREAS AND SHALLOW PAVED SWALES
 3) MANNING'S CHANNEL TRAVEL TIME $=$ L/V (WHEN CHANNEL VELOCITY IS KNOWN)
 4) TC = TCO + Tt
 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL
 $I_{5}=-1.5 * \ln (\mathrm{Tc})+7.583$
 $\mathrm{I}_{100}=-2.52 * \ln (\mathrm{Tc})+12.735$
 6) $Q=C$| $\mathrm{I}_{100}=-$ |
 | :--- |
[^2]: 1）Channel flow calculations based on Manning＇s Equation
 2）Channel depth includes 1 ＇minimum freeboard
 3）$n=0.03$ for grass－lined non－irrigated channels（minimum）
 4）$n=0.045$ for riprap－lined channels

