FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 4

Prepared for:
TIMBERRIDGE DEVELOPMENT GROUP, LLC 2138 FLYING HORSE CLUB DRIVE
COLORADO SPRINGS CO 80921
(719) 592-9333

Prepared by:
CLASSIC CONSULTING
619 N. CASCADE AVE SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job No. 1185.31

PCD Project No. SF-1827

FINAL DRAINAGE REPORT FOR

RETREAT AT TIMBERRIDGE FILING NO. 4

ENGINEERS STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable, master plan of the drainage basin. I accept responsibility for any liability caused by anyerligept acts, errors, or omissions on my part in preparing this report.

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: TIMBERRIDGE DEVELOPMENT GROUP, LLC
By:

Title:

$$
\text { LarEN J. Mare } \angle A N D
$$

Address:
2138 Flying Horse Club Drive
Colorado Springs, CO 80921

EL PAVO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Pas County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.
County Engineer, / ECM Administrator
Conditions:

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

TABLE OF CONTENTS:
PURPOSE Page 4
GENERAL DESCRIPTION Page 4
EXISTING DRAINAGE CONDITIONS Page 4
PROPOSED DRAINAGE CONDITIONS Page 6
DETENTION/SWQ FACILITIES Page 10
DRAINAGE CRITERIA Page 10
FLOODPLAIN STATEMENT Page 12
DRAINAGE AND BRIDGE FEES Page 12
CONSTRUCTION COST OPINION (POND 4) Page 14
SUMMARY Page 15
REFERENCES Page 16

APPENDICES

VICINITY MAP
SOILS MAP (WEB SOIL SURVEY)
F.E.M.A. MAP / LOMR (08-08-0541P)

RECOMMENDATIONS PER SAND CREEK DBPS
HYDROLOGIC / HYDRAULIC CALCULATIONS
STORMWATER QUALITY / BMP CALCULATIONS
DETENTION POND CALCULATIONS
DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

PURPOSE

The purpose of this Final Drainage Report is to address on-site and off-site drainage patterns and identify specific drainage improvements and facilities required to minimize impacts to the adjacent properties.

GENERAL DESCRIPTION

The Retreat at TimberRidge Filing No. 4 is 34.471 -acre site located in a portion of section 22, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north, west and east by unplatted 5+ Ac. rural residential properties and south by Arroya Lane and future Sterling Ranch property (zoned for future urban development). The site is in the upper portion of the Sand Creek Drainage Basin. Large lot rural single family residential is proposed in this Filing.

The average soil condition reflects Hydrologic Group " B " (Pring coarse sandy loam) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge Filing No. 4 property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. The majority of the site is mainly covered with native grasses with large groupings of pine trees along the south boundary adjacent to Arroya Lane and the northeast portion of the property. Arroya Lane (private gravel roadway) borders the entire southern boundary with some private gravel drives heading north into the property.

There are several natural ravines traversing the site from east to southwest. Off-site flows from portions of Black Forest and unplatted 5 Ac.+ rural residential lots enter the site along the north
and east boundary. (See off-site Drainage Map) These off-site flows travel through the natural ravines towards the southwest corner of the property where a temporary sediment basin collects on-site and these off-site flows. This temporary facility was proposed and constructed as a part of the Retreat at TimberRidge Filing No. 3 development. With the development of Filing 4, this facility will be converted into a permanent EDB. The natural ridge along the south boundary creates some minor on-site flows that bypass the previously mentioned temporary sediment basin. However, these flows travel as sideroad ditch flows along the north side of Arroya Lane and are then collected in a storm system and routed towards an off-site Rain Garden south of Arroya Lane constructed with Filing 3 development.

The following descriptions represent the pre-development flow basins for the property:

Basin EX-1 ($\left.Q_{5}=\mathbf{7 c f s}, Q_{100}=\mathbf{4 4} \mathbf{c f s}\right)$ consists of a 31.6 Ac. on-site basin that makes up the majority of the property. This basin accepts off-site flows as described below and conveys the combined flows via the natural ravines on site towards the existing temporary sediment basin.

Basin OS-1 $\left(\mathbf{Q}_{5}=\mathbf{2} \mathbf{~ c f s}, \mathbf{Q}_{100}=\mathbf{1 0} \mathbf{c f s}\right)$ consists of a 5.5 Ac . off-site basin from the adjacent $5 \mathrm{Ac} .+$ rural residential lot to the north that sheet and swale flows on-site into Basin EX-1.

Basin OS-2 ($\left.\mathbf{Q}_{5}=\mathbf{3} \mathbf{~ c f s}, Q_{100}=\mathbf{1 6} \mathbf{c f s}\right)$ consists of a 9.6 Ac . off-site basin again from the adjacent 5 Ac. + rural residential lot to the north that sheet flows on-site into Basin EX-1.

Basin OS-3 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{1} \mathbf{c f s}, \mathbf{Q}_{100}=\mathbf{5} \mathbf{c f s}\right)$ consists of a 2.5 Ac. off-site basin from the adjacent $5 \mathrm{Ac} .+$ rural residential lot to the east that sheet flows on-site into Basin EX-1.

Basin EX-2 ($\left.\mathbf{Q}_{5}=\mathbf{2 ~ c f s , ~} \mathrm{Q}_{100}=\mathbf{6} \mathbf{~ c s}\right)$ consists of 3.3 Ac. on-site basin that sheet flows towards the sideroad ditch along the north side of Arroya Lane. The collected ditch flows then travel west towards an existing Type C inlet at Design Point E2 and are then routed via storm sewer towards the off-site Rain Garden south of Arroya Lane.

Basin EX-3 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{0 . 1} \mathbf{~ c f s}, \mathrm{Q}_{\mathbf{1 0 0}} \mathbf{= 0 . 6} \mathbf{~ c f s}\right)$ consists of a 0.22 Ac . minor basin at the extreme southeast corner of the property that sheet flows off-site to a low point that crosses Arroya Lane. These minor flows are then routed just east around the existing water tank site. These flows will ultimately be handled in the future Sterling Ranch development south of this property.

Basin EX-4 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{0 . 5} \mathbf{~ c f s ,} \mathrm{Q}_{100}=\mathbf{1 . 5} \mathbf{c f s}\right)$ consists of 0.49 Ac . minor basin due west of the existing temporary sediment basin. These minor flows will continue to sheet flow off-site and ultimately into Arroya Lane where they are captured and treated in the previously mentioned Rain Garden south of Arroya Lane.

Design Point E1 ($\left.Q_{5}=11 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{6 9} \mathbf{c f s}\right)$ consists of the total on-site and off-site flows combined from basins OS-1, OS-2, OS-3 and EX-1 that are tributary to the existing temporary sediment basin.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge Filing No. 4 will consist of 10 large lot rural residential properties ranging from 2.5 Ac . min. to 5.0 Ac . lots. These lots will have a paved street and roadside ditches. Development of these rural lots will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County ECM, Section I.7.1.B.5, rural lots of 2.5 ac . and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater quality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the existing temporary sediment basin on-site is proposed to be converted to a permanent detention/stormwater quality facility and will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device.

Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2-year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 -year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. As reasonably possible, WQCV will be provided for all new roads and urban lots. The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

The following descriptions represent the proposed developed design points for the property:

Design Point $1\left(Q_{5}=\mathbf{7 c s}, Q_{100}=\mathbf{4 0} \mathbf{c f s}\right)$ represents developed flows from Basins $A(11.2 \mathrm{Ac}$.), OS-1A (4.7 Ac.) and OS-2 (9.6 Ac.). These basins develop flows that are conveyed through lots 2-6 in natural ravines within private drainage easements towards the corner of lot 2. At this location a berm on lot 2 will be constructed to allow for the capture of these flows into a proposed CDOT Type D inlet. This facility will completely capture both the $5-\mathrm{yr}$. and $100-\mathrm{yr}$. developed flows. A private (District maintained) 36" RCP storm sewer will convey these flows further downstream. The emergency overflow route for this sump condition will be over the constructed berm and then routed within private drainage easements across lots 1 and 2 towards Design Point 3 and the adjacent proposed Pond 4.

Design Point $\mathbf{2}\left(\mathrm{Q}_{\mathbf{5}}=\mathbf{5} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{2 5} \mathbf{c f s}\right)$ represents developed flows from Basins $\mathrm{B}(13.4 \mathrm{Ac}$.) and OS-3 (2.5 Ac.). These basins develop flows that are conveyed through lots 6-10 in natural ravines within private drainage easements towards Design Point 2. At this location a proposed CDOT Type D inlet will completely capture both the 5 -yr. and 100-yr. developed flows with a proposed private 36 " RCP storm sewer conveying these flows further downstream. The

Page 7
emergency overflow route for this sump condition will be over the highpoint in the sideroad ditch and directly into Basin C.

Design Point 3 ($\mathbf{Q}_{5}=\mathbf{2} \mathbf{c f s}, Q_{100}=\mathbf{1 0} \mathbf{c f s}$) represents developed flows from Basins $D(4.3 \mathrm{Ac}$.) and OS-1B (0.80 Ac .). These basins develop sheet flows in a southerly direction towards Design Point 3. At this location a proposed grated inlet will be installed to completely capture both the $5-y r$. and 100-yr. developed flows. A private (District maintained) 18 " RCP storm pipe will then convey these flows further downstream. The emergency overflow at this sump condition will pond up 2.0^{\prime} and then spill over the berm and be travel directly into the adjacent Pond 4.

Design Point $4\left(Q_{5}=\mathbf{1 3} \mathbf{c f s}, Q_{100}=\mathbf{7 5} \mathbf{c f s}\right)$ represents the total developed flows tributary to the proposed full spectrum private (District maintained) EDB Pond 4.

Basin $E\left(Q_{5}=0.8 \mathrm{cfs}, Q_{100}=\mathbf{4 c f s}\right)$ represents the southern portion of Lot 1 that will continue to sheet flow directly into the proposed Pond 4 and the area of the pond itself.

The following represents the proposed Pond 4 design:
(See MHFD-Detention Design Sheets in Appendix)

Total Tributary acreage: 48.5 Ac. (Basins: A, B, D, E, OS-1, OS-2 and OS-3)
0.201 Ac.-ft. WQCV required
0.114 Ac.-ft. EURV required
1.216 Ac.-ft. 100-yr. Storage
1.531 Ac.-ft. Total

Total In-flow:	$\mathrm{Q}_{5}=13 \mathrm{cfs}$,	$\mathrm{Q}_{100}=75 \mathrm{cfs}$
Pre-Development Release:	$\mathrm{Q}_{5}=11 \mathrm{cfs}$,	$\mathrm{Q}_{100}=69 \mathrm{cfs}$
Pond Design Release:	$\mathrm{Q}_{5}=9.5 \mathrm{cfs}$,	$\mathrm{Q}_{100}=58.2 \mathrm{cfs}$

See detailed outlet structure design below:

CONSULTING
ENGINEERS \& SURVEYORS

Top of Micropool elev:
7248.00

Max. 100 yr. WSE: 7255.98

9'x4' Conc. Outlet box with front edge height of 3.50' above Micropool elev. Box slope at $4: 1$ with $36^{\prime \prime}$ RCP outfall pipe with restrictor plate 21 " above pipe inv. Orifice Plate design: Bottom hole $=\mathbf{0 . 7 9}$ sq-in. and top 2 holes $=\mathbf{0 . 8 9}$ sq-in.

Hole spacing $=14.00$ "

Emergency Spillway: $\mathbf{2 5}^{\prime}$ wide with spillway elev. of $\mathbf{7 2 5 6 . 0 0}$ and slope of $\mathbf{2 . 0 \%}$ draining directly into sideroad ditch along north side of Arroya Lane.

Top of embankment $=\mathbf{7 2 5 8 . 0 0}$
(Ownership and maintenance by the Retreat at TimberRidge Metro District 2)

Design Point $\mathbf{5}\left(\mathbf{Q}_{\mathbf{5}}=\mathbf{2 c f s}, \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{8} \mathbf{c f s}\right)$ represents developed flows from Basin $\mathrm{C}(3.3 \mathrm{Ac}$.). This basin develops sheet flows in a southwesterly direction towards the sideroad ditch along the north side of Arroya Lane. These ditch flows are then conveyed westerly towards Design Point 5. At this location a proposed public $18^{\prime \prime}$ RCP culvert will be installed to completely convey both the $5-\mathrm{yr}$. and 100-yr. developed flows under Nature Refuge Way. These flows then travel as ditch flow towards Design Point 6.

Design Point $6\left(Q_{5}=\mathbf{3 c f s}, Q_{100}=\mathbf{9} \mathbf{c f s}\right)$ represents flows from Basin $F(0.61 \mathrm{Ac}$.) and the previously mentioned developed flows from Design Point 5. At this location the existing CDOT Type C inlet (constructed with Filing 3) will completely capture both the $5-\mathrm{yr}$. and $100-\mathrm{yr}$. developed flows. These developed flows are consistent with the previously approved drainage report for Filing 3 and are conveyed further west where they combine with other developed flows within Arroya Lane and then towards the existing Rain Garden 1 south of Arroya Lane (also constructed with Filing 3). The Pond 4 emergency overflow is tributary to this design point. In an emergency situation only, a portion of this overflow may be captured by this inlet.

DETENTION / STORMWATER QUALITY FACILITES

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to Rain Gardens and an Extended Detention Basin. Site Planning and design techniques for this large lot rural residential development should help limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. The proposed Pond 4 will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. The proposed SWQ facilities are to be private facilities with ownership and maintenance by the TimberRidge Metropolitan District 2. All drainage facilities and storm pipes even within the public Right of Way (except the 18" RCP culvert within the Arroya Lane Right-of-Way) will also be owned and maintained by the TimberRidge Metropolitan District 2. The 18" RCP culvert within Arroya Lane will be owned and maintained by El Paso County.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for detention/SWQ basin sizing, inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

The City of Colorado Springs/EI Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture
volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed rural lot impervious area (roof tops, patios, etc.) will sheet flow across lengthy landscape/natural areas within the large lots and to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or the detention facility. This will minimize directly connected impervious areas within the project site.

Reference the Water Quality Treatment Plan Map in the Appendix for the following:

Area qualifies for 20\% exclusion (ECM I.7.1.C.1)
Area treated in proposed permanent Pond 4 Areas treated in existing Rain Garden Facility 1

Filing No. 4 Total platted area
0.71 ac.
48.5 ac .
3.91 ac .

34.471 ac.

2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the large rural lot areas, developed flows will travel via roadside ditches along the public streets and eventually public storm systems. The various sideroad ditches will include the following stabilization: Seeding/matting with Permanent erosion control blanket (North American Green SC150 or equiv.), permanent TRM (North American Green P300 or equiv.), sediment control logs and permanent rock check dams, all as described on the final CDs. These collected flows are then routed directly to an existing Rain Garden and a proposed extended detention basin (full-spectrum facilities). Where developed
flows are not able to be routed to public street, sheet flows will travel across landscaped rear yards and then through undeveloped property prior to entering Sand Creek.
3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the existing Rain Garden (as designed, accounted for and constructed with Filing 3 - SF2241) and proposed Full-Spectrum permanent Extended Detention Basin (Pond 4) designed per current El Paso County drainage criteria. Reference Runoff Reduction Calculations in Appendix for the areas that show a 100\% WQCV Reduction and meets El Paso County standards.
4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are proposed based on specific phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

This site is NOT located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C0535G with effective date of December 7, 2018. (See Appendix).

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.
The fees are calculated using the following impervious acreage method approved by El Paso County and fees form the original Final Plat submittal date in 2018. The Retreat at TimberRidge Filing No. 4 has a total area of 34.47 acres with the following different land uses proposed:

1.30 Ac.	Pond Tract
21.96 Ac.	2.5 Ac. lots $(1-5,8,10)$ and adjacent roadway
10.02 Ac.	5.0 Ac. lots $(6-7)$
1.19 Ac.	Future rural Public ROW Tract
34.47 Ac.	Total

The percent imperviousness for this subdivision is calculated as follows:

Fees for Pond Tract

(Per El Paso County Percent Impervious Chart: 7\%)
1.30 Ac. x 7\% = 0.09 Impervious Ac.

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11% with 25% fee reduction for 2.5 ac. lots planned - ECM 3.10.2a) - Reduction for Drainage Fees only
21.96 Ac. $\times 11 \% \times 75 \%=1.81$ Impervious Ac. (Drainage Fees)
21.96 Ac. x 11\% = 2.42 Impervious Ac. (Bridge Fees)

Fees for 5.0 Ac. lots

(Per El Paso County Percent Impervious Chart: 7\% with 25\% fee reduction for 5.0 ac. lots planned - ECM 3.10.2a) - Reduction for Drainage Fees only
10.02 Ac. $\times 7 \% \times 75 \%=0.53$ Impervious Ac. (Drainage Fees)
10.02 Ac. x 7\% = 0.70 Impervious Ac. (Bridge Fees)

Fees for future rural public ROW Tract

(Per El Paso County Percent Impervious Chart: 55\%)
1.19 Ac. $\times 55 \%=0.65$ Impervious Ac.
Total Impervious Acreage:
3.08 Imp. Ac. (Drainage Fees)
Total Impervious Acreage:
3.86 Imp. Ac. (Bridge Fees)

The following calculations are based on the 2018 Sand Creek drainage/bridge fees: ESTIMATED FEE TOTALS:

Drainage Fees
\$ 17,197.00 x 3.08 Impervious Ac. $=\quad \$ \mathbf{5 2 , 9 6 6 . 7 6}$

Bridge Fees

$\$ 5,210.00 \times 3.86$ Impervious Ac. $=\$ \mathbf{2 0 , 1 1 0 . 6 0}$
(Developer may elect to use Sand Creek Basin credits for drainage fees based on proposed improvements to Sand Creek constructed along with this filing and previous filings immediately downstream, as approved by County Staff and City/County Drainage Board)

CONSTRUCTION COST OPINION

Private Full-Spectrum Detention Facility 4

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	Concrete Forebay	1 EA	\$25,000.00	\$ 25,000.00
2.	Concrete Outlet Structure	1 EA	\$30,000.00	\$ 30,000.00
3.	Concrete Trickle Channel	160LF	\$65.00/LF	\$ 10,400.00
4.	Emergency Overflow Weir	75 CY	\$139/CY	\$ 10,425.00
5.	Outlet pipe (36 " RCP)	105 LF	\$151/CY	\$ 15,855.00
6.	Access roads (road base)	75 CY	\$66/CY	\$ 4,950.00
SUB-TOTAL				\$ 96,630.00
10\% ENGINEERING				\$ 9,663.00
5\% CONTINGENCY				\$ 4,831.50
TOTAL				\$ 111,124.50

SUMMARY

The proposed Retreat at TimberRidge Filing No. 4 is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the pre-development conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements.

PREPARED BY:

Classic Consulting Engineers \& Surveyors, LLC

Marc A. Whorton, P.E.
Project Manager

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3" Urban Drainage and Flood Control District, dated January 2016.
3. "Final Drainage Report for Forest Gate Subdivision" Law \& Mariotti Consultants, Inc. dated October 2004.
4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
6. "Preliminary Drainage Report for The Retreat at TimberRidge Preliminary Plan - South of Arroya Lane", Classic Consulting, approved October 2018.
7. "2018 Sterling Ranch MDDP", M\&S Civil Consultants, Inc., June 2018
8. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
9. "Final Drainage Report for Retreat at TimberRidge Filing No. 2", Classic Consulting, approved September, 2022.
10. "Final Drainage Report for Retreat at TimberRidge Filing No. 3", Classic Consulting, dated January, 2024.

APPENDIX

VICINITY MAP

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
䟿 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(5) Landfill

A Lava Flow
M. Marsh or swamp
(9) Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
ㄹS. Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	21.2	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	13.4	15.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	98.3	$\mathbf{1 0 . 1 \%}$
Totals for Area of Interest	$\mathbf{1 3 2 . 8}$	$\mathbf{7 4 . 0 \%}$	

El Paso County Area, Colorado

40—Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g
Elevation: 7,000 to 7,700 feet
Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy alluvium derived from arkose

Typical profile

$E-0$ to 16 inches: gravelly loamy sand
Bt - 16 to 40 inches: gravelly sandy loam
C-40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: F048AY908CO - Mixed Conifer
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h
Elevation: 7,000 to 7,700 feet
Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy alluvium derived from arkose

Typical profile

E-0 to 16 inches: gravelly loamy sand
Bt - 16 to 40 inches: gravelly sandy loam
C-40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group: B
Ecological site: F048AY908CO - Mixed Conifer
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit SettingNational map unit symbol: 369kElevation: 6,800 to 7,600 feetFarmland classification: Not prime farmland
Map Unit Composition
Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects ofthe mapunit.
Description of Pring
Setting
Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock
Typical profile
A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO - Loamy Park
Hydric soil rating: No
Minor Components
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit:
Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023
F.E.M.A. MAP

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Table 6-2. Rainfall Depths for Colorado Springs

Return Period	1-Hour Depth	6-Hour Depth	24 -Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
Where Z=6,840 ft/100			

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves 2 and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

- Thunderstorms: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14 year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1 -hour rainfall depth to create the distribution shown in Table $6-3$ with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG AKB	HSG C\&D	HSG A\&B	H5G CRA	HSGA\&B	H5G C8:D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C8D
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
			.										
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
	-												.
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time (t_{i}) plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_{t}) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 6-10. NRCS Curve Numbers for Frontal Storms \& Thunderstorms for Developed Conditions (ARCII)

Fully Developed Urban Areas (vegetation established) ${ }^{\mathbf{1}}$	Treatment	Hydrologic Condition	\% 1	Pre-Development CN			
				HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover $<50 \%$)	-----	-----	---	68	79	86	89
Fair condition (grass cover 50\% to 75\%)	----	---	---	49	69	79	84
Good condition (grass cover > 75\%)	\cdots	-----	---	39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way	-----	-----	\cdots	98	98	98	98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)	.-...	-----	---	98	98	98	98
Paved; open ditches (Including right-of-way)	-----	-----	---	83	89	92	93
Gravel (including right-of-way)	-----	-----	---	76	85	89	91
Dirt (including right-of-way)	----	-----	\cdots	72	82	87	89
Western desert urban areas:							
Natural desert landscaping (pervious areas only)	-----	-	\cdots	63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2 -inch sand or gravel mulch and basin borders)	-----	-----	\cdots	96	96	96	96
Urban districts:							
Commercial and business	-----	-----	85	89	92	94	95
Industrial	-----	-----	72	81	88	91	93
Residential districts by average lot size:							
1/8 acre or less (town houses)	-	\cdots	65	77	85	90	92
1/4 acre	\cdots	-----	38	61	75	83	87
1/3 acre	---	-----	30	57	72	81	86
1/2 acre	-----	-----	25	54	70	80	85
1 acre	---	-----	20	51	68	79	84
2 acres	-----	-----	12	46	65	77	82
Developing Urban Areas ${ }^{1}$	Treatment ${ }^{2}$	Hydrologic Condition ${ }^{3}$	\% 1	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)	--...	-----	---	77	86	91	94
Cultivated Agricultural Lands ${ }^{1}$	Treatment	Hydrologic Condition	\%1	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil	-....	\cdots	77	86	91	94
	Crop residue cover (CR)	Poor	---	76	85	90	93
		Good	---	74	83	88	90
Row crops	$\begin{aligned} & \text { Straight row } \\ & \text { (SR) } \\ & \hline \end{aligned}$	Poor	---	72	81	88	91
		Good	---	67	78	85	89
	SR + CR	Poor	---	71	80	87	90
		Good	---	64	75	82	85
	Contoured (C)	Poor	---	70	79	84	88
		Good	---	65	75	82	86
	C+CR	Poor	---	69	78	83	87
		Good	\cdots	64	74	81	85
	Contoured \& terraced (C\&T)	Poor	---	66	74	80	82
		Good	--..	62	71	78	81
	C\&T+CR	Poor	---	65	73	79	81
		Good	\cdots	61	70	77	80
Small grain	SR	Poor	---	65	76	84	88
		Good	\cdots	63	75	83	87
	SR + CR	Poor	---	64	75	83	86
		Good	---	60	72	80	84
	C	Poor	---	63	74	82	85
		Good	-	61	73	81	84
	C + CR Poor	Poor	---	62	73	81	84
		Good	\cdots	60	72	80	83
	C\&T	Poor	---	61	72	79	82
		Good	...	59	70	78	81
	C\&T + CR	Poor	---	60	71	78	81
		Good	---	58	69	77	80

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathrm{I}_{100}=\mathbf{- 2 . 5 2} \ln (\mathrm{D})+\mathbf{1 2 . 7 3 5}$
$\mathrm{I}_{50}=\mathbf{- 2 . 2 5} \ln (\mathrm{D})+\mathbf{1 1 . 3 7 5}$
$\mathrm{I}_{\mathbf{2 5}}=\mathbf{- 2 . 0 0} \ln (\mathrm{D})+10.111$
$\mathrm{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (\mathrm{D})+\mathbf{8 . 8 4 7}$
$\mathrm{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathrm{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

JOB NAME: JOB NUMBER: DATE: CALCULATED BY	RETREAT 1185.31 $02 / 21 / 24$ $M A W$	AT TIMBER		$\overline{N G N O .} 4$																
								SIN RUN	F COE	ICIENT S	MA									
			C VA	UE DCM TAB						UE DCM TAB					"C"			EIGHTE		WEIGHTED IMP.
BASIN	TOTAL AREA (AC)	LAND USE	PERCENT IMP.	AREA (AC)	C(2)	C(5)	C(100)	LAND USE	PERCENT IMP.	AREA (AC)	C (2)	C(5)	C(100)	C(2)	C(5)	$\mathrm{C}(100)$	CA(2)	CA(5)	CA(100)	PERCENT
EX-1	31.60	UNDEV.	2.0\%	31.60	0.03	0.09	0.36			0.00	0.02	0.08	0.35	0.03	0.09	0.36	0.95	2.84	11.38	2.0\%
EX-2	3.30	UNDEV.	2.0\%	2.92	0.03	0.09	0.36	PAVED RD.	100.0\%	0.38	0.89	0.90	0.96	0.13	0.18	0.43	0.43	0.60	1.42	13.3\%
EX-3	0.22	UNDEV.	2.0\%	0.20	0.03	0.09	0.36	GRAVEL RD.	80.0\%	0.02	0.57	0.59	0.70	0.08	0.14	0.39	0.02	0.03	0.09	9.1\%
EX-4	0.49	UNDEV.	2.0\%	0.39	0.03	0.09	0.36	PAVED RD.	100.0\%	0.10	0.89	0.90	0.96	0.21	0.26	0.48	0.10	0.13	0.24	22.0\%
OS-1	5.50	5 AC.+ RES,	5.0\%	5.50	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.22	0.58	2.06	5.0\%
OS-2	9.60	$5 \mathrm{AC}$. . RES,	5.0\%	9.60	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.38	1.01	3.60	5.0\%
OS-3	2.50	5 AC.+ RES,	5.0\%	2.50	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.10	0.26	0.94	5.0\%

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $02 / 21 / 24$ MAW *ALL STORM SEWER TO BE P	E FILING \boldsymbol{N} VATE UNLESS SUR	OTHERWISE N FFACE RO	TED TING SUN					
Design Point(s)	Contributing Basins / Design Point	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Facility/ Inlet Size*
E1	EX-1, OS-1, OS-2, OS-3	4.69	17.98	33.8	2.30	3.87	11	69	
E2	EX-2	0.60	1.42	25.8	2.71	4.54	2	6	

JOB NAME: JOB NUMBER: DATE: CALCULATED BY	RETREAT 1185.31 $05 / 17 / 24$ MAW	AT TIMBER	RIDGE FIL	NG NO. 4																
								SIN RUN	F COEF	ICIENT S	MMA									
			C VAL	UE DCM TAB					C V	UE DCM TAB					"C"			WEIGHTE		WEIGHTED IMP.
BASIN	TOTAL AREA (AC)	LAND USE	PERCENT IMP.	AREA (AC)	C(2)	C(5)	C(100)	LAND USE	PERCENT IMP.	AREA (AC)		C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)	PERCENT
OS-1A	4.70	$5 \mathrm{AC} .+\mathrm{RES}$,	5.0\%	4.70	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.19	0.49	1.76	5.0\%
OS-1B	0.80	5 AC. + RES,	5.0\%	0.80	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.03	0.08	0.30	5.0\%
OS-2	9.60	5 AC.+ RES,	5.0\%	9.60	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.38	1.01	3.60	5.0\%
OS-3	2.50	5 AC. +RES ,	5.0\%	2.50	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.10	0.26	0.94	5.0\%
A	11.20	RES. 2.5 AC .	10.0\%	8.10	0.06	0.13	0.40	RES. 5 AC.	5.0\%	3.10	0.04	0.11	0.38	0.05	0.12	0.39	0.61	1.38	4.40	8.6\%
B	13.40	RES. 2.5 AC .	10.0\%	6.50	0.06	0.13	0.40	RES. 5 AC.	5.0\%	6.90	0.04	0.11	0.38	0.05	0.12	0.39	0.67	1.57	5.19	7.4\%
C	2.80	RES. 2.5 AC .	10.0\%	2.45	0.06	0.13	0.40	PAVED ROAD	100.0\%	0.35	0.89	0.90	0.96	0.16	0.23	0.47	0.46	0.63	1.32	21.3\%
D	4.30	RES. 2.5 AC.	10.0\%	4.30	0.06	0.13	0.40			0.00	0.05	0.12	0.39	0.06	0.13	0.40	0.26	0.56	1.72	10.0\%
E	2.00	RES. 2.5 AC .	10.0\%	0.85	0.06	0.13	0.40	POND TRACT	7.0\%	1.15	0.05	0.12	0.39	0.05	0.12	0.39	0.11	0.25	0.79	8.3\%
F	0.50	RURAL ROW	13.0\%	0.40	0.07	0.16	0.41	PAVED ROAD	100.0\%	0.10	0.05	0.12	0.39	0.07	0.15	0.41	0.03	0.08	0.20	30.4\%

TOTAL AREA
TRIBUTARY TO
PROP. ON-SITE
POND
48.50
7.1\%

Basins tributaty to proposed on-site Pond
Basin tributary to exist. Rain Garden within RTR Fil. 3

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $05 / 17 / 24$ MAW *ALL STORM SEWER TO BE P	VATE UNLESS	OTHERWISE N FACE RO	TED TING SUN					
Design Point(s)	Contributing Basins / Design Point	$\begin{aligned} & \text { Equivalent } \\ & \text { CA(5) } \end{aligned}$	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Facility/ Inlet Size*
1	OS-1A, OS-2, A	2.88	9.77	30.7	2.44	4.10	7	40	TYPE D InLET
2	OS-3, B	1.83	6.13	30.0	2.48	4.16	5	25	TYPE D INLET
3	OS-1B, D	0.64	2.02	22.9	2.89	4.85	2	10	GRATED INLET
$\begin{gathered} \hline 4 \text { (TOTAL POND } \\ \text { INFLOW) } \\ \hline \end{gathered}$	DP-1, DP-2, DP-3, E	5.60	18.70	31.8	2.39	4.01	13	75	PROP. POND
5	C	0.63	1.32	22.4	2.92	4.90	2	6	18" RCP CULVT
6	DP-5, F	0.71	1.52	25.8	2.71	4.55	2	6	$\begin{aligned} & \text { EXIST. TYPEC } \\ & \text { CDOT INLET } \\ & \hline \end{aligned}$

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $03 / 01 / 24$ MAW PIPES ARE LISTED AT MAXIMU REFER TO INDIVIDUAL PIPE S PIPES ARE TO BE PRIVATE UN PRIVATE STORM MATERIALS	GE FILING N M SIZE REQUIR EETS FOR HYDR ESS OTHERW O BE RCP OR		MODATE Q100 MATION. OLYPROPYLE	NS AT WPP) RY	UM SLO SELEC	BYCC	ACTOR	
Pipe Run	Contributing Basin / Design Point / Pipe Run	Equivalent CA(5)	Equivalent CA(100)	$\begin{gathered} \text { Maximum } \\ \text { Tc } \\ \hline \end{gathered}$	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
1	DP-1	2.88	9.76	30.7	2.44	4.10	7	40	PROP. 36" RCP
2	DP-2	1.83	6.13	30.0	2.48	4.16	5	25	PROP. 36" RCP
3	PR-1, PR-2	4.71	15.88	31.3	2.42	4.05	11	64	PROP. 42" RCP
4	DP-3	0.65	2.03	22.9	2.89	4.85	2	10	PROP. 18" RCP
5	$\begin{aligned} & \text { PR-3, PR-4 } \\ & \text { (42" RCP OUTFALL) } \end{aligned}$	5.36	17.91	31.3	2.42	4.05	13	73	PROP. 42" RCP

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 1

Design Information (Input)			$\begin{aligned} & \mathrm{ft} / \mathrm{ft} \\ & \text { inches } \\ & \text { cfs } \end{aligned}$
Pipe Invert Slope	So =	0.0100	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D =	36.00	
Design discharge	$\mathrm{Q}=$	40.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	7.07	
Full-flow wetted perimeter	$\mathrm{Pf}=$	9.42	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	66.88	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.69	radians
Flow area	An =	4.05	sq ft
Top width	$\mathrm{Tn}=$	2.98	ft
Wetted perimeter	$\mathrm{Pn}=$	5.06	ft
Flow depth	$\mathrm{Yn}=$	1.67	ft
Flow velocity	$\mathrm{Vn}=$	9.88	fps
Discharge	Qn =	40.00	cfs
Percent of Full Flow	Flow $=$	59.8\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.49	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c $=$	1.95	radians
Critical flow area	Ac $=$	5.17	sq ft
Critical top width	$\mathrm{Tc}=$	2.78	ft
Critical flow depth	$\mathrm{Yc}=$	2.06	ft
Critical flow velocity	$\mathrm{Vc}=$	7.73	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 2

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0100	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	36.00	
Design discharge	$\mathrm{Q}=$	25.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	7.07	
Full-flow wetted perimeter	Pf =	9.42	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	66.88	
Calculation of Normal Flow Condition			
Half Central Angle ($0<$ Theta<3.14) Flow area	Theta $=$	1.42	radians sq ft
	$\mathrm{An}=$	2.85	
Top width	Tn =	2.96	ft
Wetted perimeter	$\mathrm{Pn}=$	4.25	ft
Flow depth	Yn =	1.27	ft
Flow velocity	$\mathrm{Vn}=$	8.78	fps
Discharge	Qn =	25.00	cfs
Percent of Full Flow	Flow $=$	37.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.58	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.65	radians
Critical flow area	Ac $=$	3.87	sq ft
Critical top width	Tc =	2.99	ft
Critical flow depth	Yc =	1.61	ft
Critical flow velocity	$\mathrm{Vc}=$	6.46	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 3

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0340	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	42.00	
Design discharge	$\mathrm{Q}=$	64.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	9.62	
Full-flow wetted perimeter	Pf =	11.00	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	186.01	
Calculation of Normal Flow Condition			
Half Central Angle ($0<T h e t a<3.14$) Flow area	Theta $=$	1.38	radians sq ft
	$\mathrm{An}=$	3.65	
Top width	Tn =	3.44	ft
Wetted perimeter	$\mathrm{Pn}=$	4.83	ft
Flow depth	$\mathrm{Yn}=$	1.42	ft
Flow velocity	$\mathrm{Vn}=$	17.54	fps
Discharge	Qn =	64.00	cfs
Percent of Full Flow	Flow $=$	34.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.00	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.02	radians
Critical flow area	Ac $=$	7.38	sq ft
Critical top width	Tc =	3.16	ft
Critical flow depth	Yc =	2.51	ft
Critical flow velocity	$\mathrm{Vc}=$	8.68	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 3

Design Information (Input)			$\mathrm{ft} / \mathrm{ft}$ inches cfs
Pipe Invert Slope	So =	0.0358	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D =	42.00	
Design discharge	$\mathrm{Q}=$	64.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	9.62	
Full-flow wetted perimeter	$\mathrm{Pf}=$	11.00	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	190.88	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.37	radians
Flow area	An =	3.58	sq ft
Top width	$\mathrm{Tn}=$	3.43	ft
Wetted perimeter	$\mathrm{Pn}=$	4.79	ft
Flow depth	$\mathrm{Yn}=$	1.40	ft
Flow velocity	$\mathrm{Vn}=$	17.87	fps
Discharge	Qn =	64.00	cfs
Percent of Full Flow	Flow $=$	33.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.08	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c $=$	2.02	radians
Critical flow area	Ac $=$	7.38	sq ft
Critical top width	$\mathrm{Tc}=$	3.16	ft
Critical flow depth	$\mathrm{Yc}=$	2.51	ft
Critical flow velocity	$\mathrm{Vc}=$	8.68	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 4

Design Information (Input)			
Pipe Invert Slope	So =	0.0400	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	18.00	inches
Design discharge	Q =	10.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	21.07	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.54	radians
Flow area	An =	0.85	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	$\mathrm{Pn}=$	2.31	ft
Flow depth	$\mathrm{Yn}=$	0.73	ft
Flow velocity	$\mathrm{Vn}=$	11.77	$f \mathrm{fp}$
Discharge	Qn =	10.00	cfs
Percent of Full Flow	Flow =	47.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.75	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.25	radians
Critical flow area	Ac =	1.54	sq ft
Critical top width	Tc =	1.17	ft
Critical flow depth	$\mathrm{Yc}=$	1.22	ft
Critical flow velocity	$\mathrm{Vc}=$	6.50	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 5

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0100	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	42.00	
Design discharge	$\mathrm{Q}=$	73.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	9.62	
Full-flow wetted perimeter	Pf =	11.00	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	100.88	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	$\begin{array}{r} \text { Theta }= \\ \text { An }= \end{array}$	1.83	radians sq ft
Flow area		6.39	
Top width	Tn =	3.38	ft
Wetted perimeter	$\mathrm{Pn}=$	6.42	ft
Flow depth	$\mathrm{Yn}=$	2.21	ft
Flow velocity	$\mathrm{Vn}=$	11.42	fps
Discharge	Qn =	73.01	cfs
Percent of Full Flow	Flow =	72.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.46	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.13	radians
Critical flow area	Ac $=$	7.89	sq ft
Critical top width	Tc =	2.97	ft
Critical flow depth	Yc =	2.68	ft
Critical flow velocity	$\mathrm{Vc}=$	9.25	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: RETREAT AT TIMBERRIDGE FILING NO. 4
Pipe ID: ${ }^{36 " P}$ Pond Outfall Pipe

Design Information (Input)			ft/ft
Pipe Invert Slope Pipe Manning's n-value Pipe Diameter Design discharge	So =	0.0382	
	$\mathrm{n}=$	0.0130	
	$\mathrm{D}=$	36.00	
	$\mathrm{Q}=$	58.20	
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	130.71	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.51	radians
Flow area	$\mathrm{An}=$	3.24	sq ft
Top width	Tn =	2.99	ft
Wetted perimeter	$\mathrm{Pn}=$	4.52	ft
Flow depth	Yn =	1.40	ft
Flow velocity	$\mathrm{Vn}=$	17.96	fps
Discharge	Qn =	58.20	cfs
Percent of Full Flow	Flow $=$	44.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.04	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.27	radians
Critical flow area	Ac $=$	6.22	sq ft
Critical top width	Tc =	2.29	ft
Critical flow depth	Yc =	2.47	ft
Critical flow velocity	$\mathrm{Vc}=$	9.35	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Project: RETREAT AT TIMBERRIDGE FILING NO. 4
ID: PIPE RUN 6 (18" RCP CULVERT)

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Design Information:			
Design Discharge	Q	8	cfs
Circular Culvert:			
Barrel Diameter in Inches	D $=$	18	inches
Inlet Edge Type (Choose from pull-down list)	Groov	dge Projec	
OR:			
Box Culvert:		OR	
Barrel Height (Rise) in Feet	H (Rise) $=$		ft
Barrel Width (Span) in Feet	W (Span) =		ft
Inlet Edge Type (Choose from pull-down list)			
Number of Barrels	\# Barrels =	1	
Inlet Elevation	Elev IN =	7273.68	ft
Outlet Elevation OR Slope	So =	0.03	$\mathrm{ft} / \mathrm{ft}$
Culvert Length	$\mathrm{L}=$	75.83	ft
Manning's Roughness	$\mathrm{n}=$	0.013	
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0	
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1	
Tailwater Surface Elevation	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$		ft
Max Allowable Channel Velocity	$\mathrm{V}=$	5	ft / s
Calculated Results:			
Culvert Cross Sectional Area Available	A $=$	1.77	ft^{2}
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	0.70	ft
Culvert Critical Depth	$\mathrm{Y}_{\mathrm{c}}=$	1.10	ft
Froude Number	$\mathrm{Fr}=$	2.40	Supercritical!
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.20	
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	1.37	
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.57	ft
Headwater:			
Inlet Control Headwater	$\mathrm{HW}_{\mathrm{I}}=$	1.67	ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	N/A	ft
Design Headwater Elevation	HW =	7275.35	ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/D =	1.11	
Outlet Control Headwater Approximation	te for Low Flow	Backwat	alculations Req
Outlet Protection:			
Flow/(Diameter^2.5)	$\mathrm{Q} / \mathrm{D}^{\wedge} 2.5=$	2.90	$\mathrm{ft}^{0.5} / \mathrm{s}$
Tailwater Surface Height	$\mathrm{Y}_{\mathrm{t}}=$	0.60	ft
Tailwater/Diameter	Yt/D $=$	0.40	
Expansion Factor	$1 /(2 * \tan (\Theta))=$	4.51	
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	1.60	ft^{2}
Width of Equivalent Conduit for Multiple Barrels	$\mathrm{W}_{\text {eq }}=$	-	ft
Length of Riprap Protection	$\mathbf{L}_{\mathrm{p}}=$	6	ft
Width of Riprap Protection at Downstream End	T =	3	ft
Adjusted Diameter for Supercritical Flow	$\mathrm{Da}=$	1.10	ft
Minimum Theoretical Riprap Size	$\mathrm{d}_{50} \mathrm{~min}=$	4	in
Nominal Riprap Size	d_{50} nominal $=$	6	in
MHFD Riprap Type	Type =	VL	

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.
Friday, Mar 12024

Pipe Run 6 (18 In. RCP Culvert)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

$$
\begin{aligned}
& =7271.40 \\
& =75.83 \\
& =3.01 \\
& =7273.68 \\
& =18.0 \\
& =\text { Circular } \\
& =18.0 \\
& =1 \\
& =0.013 \\
& =\text { Circular Concrete } \\
& =\text { Square edge w/headwall }(C) \\
& =0.0098,2,0.0398,0.67,0.5
\end{aligned}
$$

$$
=7277.60
$$

$$
=30.00
$$

$$
=50.00
$$

Calculations

Qmin (cfs) $\quad=8.00$
Qmax (cfs) $\quad=8.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted

Qtotal (cfs)	$=8.00$
Qpipe (cfs)	$=8.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=4.92$
Veloc Up (ft/s)	$=5.79$
HGL Dn (ft)	$=7272.70$
HGL Up (ft)	$=7274.78$
Hw Elev (ft)	$=7275.48$
Hw/D (ft)	$=1.20$
Flow Regime	$=$ Inlet Control

Channel Report

Diversion Channel across Lots 2\&3 (private)

Triangular	
Side Slopes (z:1)	$=3.00,3.00$
Total Depth (ft)	$=4.00$
	$=7280.00$
Invert Elev (ft)	$=2.70$
Slope (\%)	$=0.035$
N-Value	
Calculations	Known Q
Compute by:	$=40.00$

Highlighted

Depth (ft)	$=1.54$
Q (cfs)	$=40.00$
Area (sqft)	$=7.11$
Velocity (ft/s)	$=5.62$
Wetted Perim (ft)	$=9.74$
Crit Depth, Yc (ft)	$=1.62$
Top Width (ft)	$=9.24$
EGL (ft)	$=2.03$

Elev (ft)

Section

Depth (ft)

Reach (ft)

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-1

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)		
NRCS Vegetal Retardance (A, B, C, D, or E)		
Manning's n (Leave cell D16 blank to manually enter an n value)		
Channel Invert Slope		
Bottom Width		
Left Side Slope		
Right Side Sloe		
Check one of the following soil types:		
Soil Type:	Max. Velocity ($\mathrm{V}_{\text {max }}$)	Max Froude No.
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm
A, B, C, D, or E

Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm
MINOR STORM Allowable Capacity is based on Depth Criterion	$\mathrm{Q}_{\text {allow }}=$	65.6	337.3
MAJOR STORM Allowable Capacity is based on Depth Criterion	$\mathrm{d}_{\text {allow }}=$	2.00	4.00

MAJOR STORM Allowable Capacity is based on Depth Criterion
Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-1

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-2

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)		
NRCS Vegetal Retardance (A, B, C, D, or E)		
Manning's n (Leave cell D16 blank to manually enter an n value)		
Channel Invert Slope		
Bottom Width		
Left Side Slope		
Right Side Sloe		
Check one of the following soil types:		
Soil Type:	Max. Velocity ($\mathrm{V}_{\text {max }}$)	Max Froude No.
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm
A, B, C, D, or E

Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm
MINOR STORM Allowable Capacity is based on Depth Criterion	$\mathbf{Q a l l o w}^{\text {a }}$	101.5	532.6
MAJOR STORM Allowable Capacity is based on Depth Criterion	$\mathrm{d}_{\text {allow }}=$	2.00	4.00
Water Depth in Channel Based On Design Peak Flow			
Design Peak Flow	$\mathbf{Q}_{0}=$	5.0	25.0
Water Depth	d =	0.49	1.07

[^0]MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-2

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-3

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope

Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

Soil Type:	Max. Velocity $\left(\mathrm{V}_{\text {Max }}\right)$	Max Froude No. $\left(\mathrm{F}_{\text {Max }}\right)$
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

RETREAT AT TIMBERRIDGE FILING NO. 4

DP-3

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

EDB 4 Trickle Channel Calculations

Rectangular

Bottom Width (ft)	$=2.50$
Total Depth (ft)	$=0.50$
	$=7250.08$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=3.00$

Highlighted
Depth (ft)
$=0.29$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=3.000$
$=0.73$
$=4.14$
$=3.08$
$=0.36$
$=2.50$
$=0.56$

Elev (ft)

Depth (ft)

Reach (ft)

100 Yr. HGL Calculations
 Map Layout

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Table

Time	Intensity
$\mathbf{5}$	8.68
$\mathbf{1 0}$	6.93
$\mathbf{2 0}$	5.19
$\mathbf{3 0}$	4.16
$\mathbf{4 0}$	3.44
$\mathbf{6 0}$	2.42
$\mathbf{1 2 0}$	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90

Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7254.11

Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution $(c f s)$	Drainage Area (Ac.)	Runoff Coefficient	$5 y r$ Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
$\begin{aligned} & \text { 42" Storm Sewer } \\ & \text { Outfall } \end{aligned}$	7255.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 1 SWR 1-1	7260.50	73.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 6 SWR 6-1	7258.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2-1	7280.22	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3-1	7281.84	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 5 SWR 5-1	7275.98	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 4 SWR 4-1	7275.53	40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution					Total Design Flow				
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	$\underset{(\mathrm{min})}{\text { Manhole Tc }}$	Peak Flow (cfs)	Comment
42" Storm Sewer Outfall	0.00	0.00	0.00	0.00	0.00	606.19	0.12	0.07	73.00	
MH 1 SWR 1-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	73.00	
MH 6 SWR 6-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	
MH 2 SWR 2-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.00	
MH 3 SWR 3-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.00	
MH 5 SWR 5-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25.00	
MH 4 SWR 4-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.00	

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	$\begin{array}{\|c} \text { Mannings } \\ n \end{array}$	Bend Loss	Lateral Loss	Cross Section	$\begin{gathered} \text { Rise } \\ \text { (ft or in) } \end{gathered}$	$\begin{gathered} \text { Span } \\ \text { (ft or in) } \end{gathered}$
MH 1 SWR 1-1	31.58	7251.00	1.0	7251.32	0.013	0.03	1.00	CIRCULAR	42.00 in	42.00 in
MH 6 SWR 6-1	16.63	7253.32	4.0	7253.98	0.013	0.46	0.00	CIRCULAR	18.00 in	18.00 in
MH 2 SWR 2-1	349.42	7252.82	3.6	7265.33	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
MH 3 SWR 3-1	100.00	7266.83	3.4	7270.23	0.013	0.63	1.00	CIRCULAR	42.00 in	42.00 in
MH 5 SWR 5-1	42.30	7270.73	1.0	7271.15	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in

MH 4 SWR 4-1	43.64	7270.73	1.0	7271.15	0.013	0.63	1.00	CIRCULAR	36.00 in	36.00 in

Sewer Flow Summary:

| | Full Flow Capacity | Critical Flow | | Normal Flow | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Flow
 (cfs) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Froude
 Number | Flow
 Condition | Flow
 (cfs) | Surcharged
 Length
 (ft) | Comment |$|$

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	$\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} 2\right) \end{gathered}$	Comment
MH 1 SWR 1-1	73.00	CIRCULAR	42.00 in	9.62						
MH 6 SWR 6-1	10.00	CIRCULAR	18.00 in	1.77						
MH 2 SWR 2-1	64.00	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
MH 3 SWR 3-1	64.00	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
MH 5 SWR 5-1	25.00	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
MH 4 SWR 4-1	40.00	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7254.11

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1-1	7251.00	7251.32	0.00	0.00	7254.11	7254.11	7255.23	0.10	7255.33
MH 6 SWR 6-1	7253.32	7253.98	0.23	0.00	7254.34	7255.69	7256.19	0.00	7256.19
MH 2 SWR 2-1	7252.82	7265.33	0.03	0.21	7254.35	7267.84	7259.18	9.83	7269.01
MH 3 SWR 3-1	7266.83	7270.23	0.43	0.00	7268.27	7272.74	7273.02	0.88	7273.91
MH 5 SWR 5-1	7270.73	7271.15	0.26	0.49	7274.46	7274.52	7274.66	0.06	7274.71
MH 4 SWR 4-1	7270.73	7271.15	0.31	0.19	7273.91	7274.00	7274.41	0.11	7274.52

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi}^{\wedge} 2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}$ _fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})$ - Junction Loss $\mathrm{K} * \mathrm{~V}$ _fi ${ }^{\wedge} 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.

36" Pond Outfall - 100yr HGL

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Table

Time	Intensity
$\mathbf{5}$	8.68
$\mathbf{1 0}$	6.93
$\mathbf{2 0}$	5.19
$\mathbf{3 0}$	4.16
$\mathbf{4 0}$	3.44
$\mathbf{6 0}$	2.42
$\mathbf{1 2 0}$	0.67

Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints

Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7234.00

Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution $(c f s)$	Drainage Area (Ac.)	Runoff Coefficient	$5 y r$ Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
$\begin{aligned} & \text { 36" Storm Sewer } \\ & \text { Outfall } \end{aligned}$	7211.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 1 SWR 1-1	7240.05	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2-1	7246.00	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3-1	7251.50	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution				Total Design Flow					
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak (low (cfs)	Coment

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	$\underset{n}{\text { Mannings }}$	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH 1 SWR 1-1	86.65	7230.45	2.8	7232.88	0.013	0.03	1.00	CIRCULAR	36.00 in	36.00 in
MH 2 SWR 2-1	196.07	7233.38	2.7	7238.67	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in
MH 3 SWR 3-1	126.43	7240.17	3.8	7245.00	0.013	0.20	1.00	CIRCULAR	36.00 in	36.00 in

Sewer Flow Summary:

| | Full Flow Capacity | Critical Flow | | Normal Flow | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Flow
 (cfs) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Froude
 Number | Flow
 Condition | Flow
 (cfs) | Surcharged
 Length
 (ft) | Comment |$|$

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

| | | Existing | | Calculated | | Used | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Peak
 Flow
 (cfs) | Cross
 Section | Rise | Span | Rise | Span | Rise | Span | Area
 (ft^2) | Comment |
| MH 1 SWR 1-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 | |
| MH 2 SWR 2-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 | |
| MH 3 SWR 3-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 27.00 in | 27.00 in | 36.00 in | 36.00 in | 7.07 | |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7234.00

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1-1	7230.45	7232.88	0.00	0.00	7234.00	7235.35	7235.05	1.65	7236.71
MH 2 SWR 2-1	7233.38	7238.67	1.39	0.00	7237.04	7241.14	7238.10	4.40	7242.50
MH 3 SWR 3-1	7240.17	7245.00	0.21	0.00	7241.57	7247.47	7246.58	2.25	7248.83

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer $\# 0$, is not considered a sewer.
- Bend loss $=$ Bend K * V_fi ^ $2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}_{-}$fo ${ }^{\wedge} 2 /\left(2^{*} \mathrm{~g}\right)-$ Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi} \wedge 2 /\left(2^{*} \mathrm{~g}\right)$.
- Friction loss is always Upstream EGL - Downstream EGL.

STORMWATER QUALITY CALCULATIONS

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Project:	RETREAT AT TIMBERRIDGE FILING NO. 4
Basin ID:	POND 4
Water	

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Basin ID: POND 4

$\left.\begin{array}{l}\text { 100.YR } \\ \text { VOUME }\end{array}\right]_{\text {EU }}$

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.91	0.201	Orifice Plate
Zone 2 (EURV)	3.35	0.114	Orifice Plate
Zone 3 (100-year)	6.17	1.216	Weir\&Pipe (Restrict)
	Total (all zones)	1.531	

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)			
Underdrain Orifice Invert Depth	$=$	N / A	ft (distance below the filtration media surface)
Underdrain Orifice Diameter $=$	N / A	inches	

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
$=0$ ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.50	N/A	feet
Overflow Weir Slope Length =	4.12	N/A	feet
Grate Open Area / 100-yr Orifice Area $=$	6.86	N/A	
Overflow Grate Open Area w/o Debris =	29.35	N/A	ft^{2}
Overflow Grate Open Area w/ Debris =	14.68	N/A	ft^{2}

Depth to Invert of Outlet Pipe $=$	Zone 3 Restrictor	Not Selected	ft (distance below basin bot inches	
	3.00	N/A		
$\begin{aligned} \text { Outlet Pipe Diameter }\end{aligned}=$	36.00	N/A		
	21.00	inches		
User Input: Emergency Spillway (Rectangular or Trapezoidal)				
Spillway Invert Stage=	6.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet		
Spillway Crest Length =	25.00			
Spillway End Slopes =	3.00	$\mathrm{H}: \mathrm{V}$		
Freeboard above Max Water Surface $=$	1.00	feet		

Calculated ParametersO	for Outlet Pipe w/	Flow Restriction
	Zone 3 Restrictor	Not Selected
	4.28	N/A
	1.00	N/A
	1.74	N/A
	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.93	feet feet acres acre-ft
Stage at Top of Freeboard =	7.93	
Basin Area at Top of Freeboard =	0.61	
Basin Volume at Top of Freeboard $=$	2.52	

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.85
CUHP Runoff Volume (acre-ft) =	0.201	0.315	0.541	1.291	2.054	3.459	4.396	5.766	11.146
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.541	1.291	2.054	3.459	4.396	5.766	11.146
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	6.1	17.2	26.0	45.5	57.2	71.6	133.9
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A		11.0				69.0	
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.13	0.23	0.54	0.94	1.18	1.42	2.76
Peak Inflow Q (cfs) =	N/A	N/A	8.4	19.7	28.6	48.0	59.8	74.3	136.6
Peak Outflow Q (cfs) $=$	0.1	0.1	1.5	9.5	17.5	36.7	47.4	58.2	130.4
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.9	0.7	0.8	0.8	0.8	1.0
Structure Controlling Flow =	Plate	Plate	Overflow Weir 1	Outlet Plate 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.05	0.3	0.6	1.2	1.6	2.0	2.1
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	50	55	47	43	35	31	26	8
Time to Drain 99\% of Inflow Volume (hours) =	42	54	61	57	54	49	47	44	34
Maximum Ponding Depth (ft) =	2.91	3.35	3.74	4.28	4.61	5.21	5.50	5.98	6.89
Area at Maximum Ponding Depth (acres) $=$	0.22	0.29	0.36	0.42	0.43	0.46	0.48	0.50	0.55
Maximum Volume Stored (acre-ft) =	0.203	0.316	0.440	0.653	0.797	1.066	1.198	1.433	1.916

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	0:15:00	0.00	0.00	0.04	0.07	0.09	0.06	0.07	0.07	0.15
	0:20:00	0.00	0.00	0.17	0.53	0.98	0.17	0.20	0.24	1.71
	0:25:00	0.00	0.00	2.06	7.44	14.04	1.94	2.56	4.22	25.79
	0:30:00	0.00	0.00	6.58	16.97	25.62	25.93	33.77	40.74	86.94
	0:35:00	0.00	0.00	8.37	19.75	28.59	41.71	52.67	65.59	125.12
	0:40:00	0.00	0.00	8.29	18.84	27.07	48.05	59.82	74.25	136.60
	0:45:00	0.00	0.00	7.31	16.64	24.77	46.61	57.77	73.56	134.74
	0:50:00	0.00	0.00	6.42	14.79	22.16	44.63	55.37	70.63	129.26
	0:55:00	0.00	0.00	5.61	12.95	19.72	40.44	50.43	65.81	121.03
	1:00:00	0.00	0.00	4.96	11.45	17.83	36.26	45.54	61.13	113.40
	1:05:00	0.00	0.00	4.45	10.21	16.28	32.85	41.60	57.59	107.42
	1:10:00	0.00	0.00	3.90	9.03	14.78	29.09	37.10	51.34	97.17
	1:15:00	0.00	0.00	3.34	7.81	13.29	25.30	32.53	44.54	85.98
	1:20:00	0.00	0.00	2.79	6.56	11.38	21.53	27.76	37.75	73.33
	1:25:00	0.00	0.00	2.32	5.59	9.83	17.98	23.21	31.53	61.97
	1:30:00	0.00	0.00	2.04	4.99	8.67	15.42	19.99	27.03	53.40
	1:35:00	0.00	0.00	1.82	4.49	7.68	13.43	17.44	23.54	46.62
	1:40:00	0.00	0.00	1.63	3.97	6.79	11.77	15.30	20.57	40.76
	1:45:00	0.00	0.00	1.43	3.46	5.96	10.27	13.37	17.91	35.51
	1:50:00	0.00	0.00	1.24	2.96	5.17	8.91	11.62	15.46	30.69
	1:55:00	0.00	0.00	1.05	2.48	4.37	7.61	9.94	13.16	26.16
	2:00:00	0.00	0.00	0.85	2.00	3.56	6.35	8.32	11.01	21.92
	2:05:00	0.00	0.00	0.66	1.52	2.75	5.11	6.72	8.96	17.78
	2:10:00	0.00	0.00	0.46	1.05	1.97	3.88	5.13	6.91	13.69
	2:15:00	0.00	0.00	0.28	0.62	1.29	2.66	3.56	4.90	9.83
	2:20:00	0.00	0.00	0.14	0.35	0.89	1.58	2.19	3.11	6.70
	2:25:00	0.00	0.00	0.09	0.25	0.68	0.98	1.43	2.05	4.71
	2:30:00	0.00	0.00	0.07	0.19	0.53	0.62	0.96	1.37	3.34
	2:35:00	0.00	0.00	0.05	0.15	0.41	0.40	0.64	0.89	2.32
	2:40:00	0.00	0.00	0.04	0.11	0.31	0.25	0.42	0.55	1.56
	2:45:00	0.00	0.00	0.03	0.09	0.23	0.16	0.28	0.32	1.00
	2:50:00	0.00	0.00	0.02	0.06	0.17	0.10	0.18	0.16	0.60
	2:55:00	0.00	0.00	0.02	0.05	0.12	0.06	0.12	0.08	0.35
	3:00:00	0.00	0.00	0.01	0.03	0.08	0.04	0.08	0.06	0.24
	3:05:00	0.00	0.00	0.01	0.02	0.05	0.03	0.06	0.04	0.17
	3:10:00	0.00	0.00	0.01	0.02	0.04	0.02	0.05	0.04	0.14
	3:15:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.03	0.11
	3:20:00	0.00	0.00	0.00	0.01	0.02	0.01	0.03	0.02	0.08
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.06
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.04
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft^{2}]	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
7248	0.00	106	0.002	0	0.000	0.00	For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.
7250	2.00	2,988	0.069	3,094	0.071	0.06	
7252	4.00	17,546	0.403	23,628	0.542	4.58	
7254	6.00	21,886	0.502	63,060	1.448	58.31	
7256	8.00	26,651	0.612	111,597	2.562	318.05	
							Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

\square	

REFERENCE DOCUMENTS

(RAIN GARDEN 1 CONSTRUCTED W/FILING 3)

Description

A BMP that utilizes bioretention is an engineered, depressed landscape area designed to capture and filter or infiltrate the water quality capture volume (WQCV). BMPs that utilize bioretention are frequently referred to as rain gardens or porous landscape detention areas (PLDs). The term PLD is common in the UDFCD region as this manual first published the BMP by this name in 1999. In an effort to be consistent with terms most prevalent in the stormwater industry, this document generally refers to the treatment process as bioretention and to the BMP as a rain garden.

The design of a rain garden may provide detention for events exceeding that of the WQCV. There are generally two ways to achieve this. The design can provide the flood control volume above the WQCV or the design can provide and slowly release the flood control volume in an area downstream of one or more rain gardens. See the Storage chapter in Volume 2 of the USDCM for more information.

This infiltrating BMP requires consultation with a geotechnical engineer when proposed adjacent to a structure. A geotechnical engineer can assist with evaluating the suitability of soils, identifying potential impacts, and establishing minimum distances

Photograph B-1. This recently constructed rain garden provides bioretention of pollutants, as well as an attractive amenity for a residential building. Treatment should improve as vegetation matures.
between the BMP and structures.

Terminology

The term bioretention refers to the treatment process although it is also frequently used to describe a BMP that provides biological uptake and retention of the pollutants found in stormwater runoff. This BMP is sometimes referred to as a porous landscape detention (PLD) area or rain garden.

Bioretention (Rain Garden)	
Functions	
LID/Volume Red.	Yes
WQCV Capture	Yes
WQCV+Flood Control	Yes
Fact Sheet Includes EURV Guidance	No
Typical Effectiveness for Targeted Pollutants ${ }^{3}$	
Sediment/Solids	Very Good ${ }^{1}$
Nutrients	Moderate
Total Metals	Good
Bacteria	Moderate
Other Considerations	
Life-cycle Costs ${ }^{4}$	Moderate
${ }^{1}$ Not recommended for watersheds with high sediment yields (unless pretreatment is provided). ${ }^{3}$ Based primarily on data from the International Stormwater BMP Database (www.bmpdatabase.org). ${ }^{4}$ Based primarily on BMP-REALCOST available at www.udfcd.org. Analysis based on a single installation (not based on the maximum recommended watershed tributary to each BMP).	

Site Selection

This BMP allows WQCV treatment within one or more areas designated for landscape (see design step 7 for suggusted vegetation). In this way, it is an excellent alternative to extended detention basins for small sites. A typical rain garden serves a tributary area of one impervious acre or less, although they can be designed for larger tributary areas. Multiple installations can be used within larger sites. Rain gardens should not be used when a baseflow is anticipated. They are typically small and installed in locations such as:

- Parking lot islands
- Street medians
- Landscape areas between the road and a detached walk
- Planter boxes that collect roof drains

Bioretention requires a stable watershed. Retrofit applications are typically successful for this reason. When the watershed includes phased construction, sparsely vegetated areas, or steep slopes in sandy soils, consider another BMP or provide pretreatment before runoff from these areas reaches the rain garden.

The surface of the rain garden should be flat. For this reason, rain gardens can be more difficult to incorporate into steeply sloping terrain; however, terraced applications of these facilities have been successful in other parts of the country.

When bioretention (and other BMPs used for infiltration) are located adjacent to buildings or pavement areas, protective measures should be implemented to avoid adverse impacts to these structures. Oversaturated subgrade soil underlying a structure can cause the structure to settle or result in moisture-related problems. Wetting of expansive soils or bedrock can cause swelling, resulting in structural movements. A geotechnical engineer should evaluate the potential impact of the BMP on adjacent structures based on an evaluation of the subgrade soil, groundwater, and bedrock conditions at the site. Additional minimum requirements include:

- In locations where subgrade soils do not allow infiltration and/or where infiltration could adversely impact adjacent structures, include a drainage layer (with underdrain) under the growing medium.
- In locations where potentially expansive soils or bedrock exist, placement of a rain garden adjacent to structures and pavement should only be considered if the BMP includes a drainage layer (with underdrain) and an impermeable geomembrane liner designed to restrict seepage.

Designing for Maintenance

Recommended maintenance practices for all BMPs are in Chapter 6 of this manual. During design, consider the following to ensure ease of maintenance over the long-term:

- Do not put a filter sock on the underdrain. This is not necessary and can cause the underdrain to clog.
- The best surface cover for a rain garden is full vegetation. Use rock mulch sparingly within the rain garden because rock mulch limits infiltration and is more difficult to maintain. Wood mulch handles sediment build-up better than rock mulch; however, wood mulch floats and may clog the overflow depending on the configuration of the outlet or settle unevenly. Some municipalities may not allow wood mulch for this reason.

Is Pretreatment Needed?

Designing the inflow gutter to the rain garden at a minimal slope of 0.5% can facilitate sediment and debris deposition prior to flows entering the BMP. Be aware, this will reduce maintenance of the BMP, but may require more frequent sweeping of the gutter to ensure that the sediment does not impede flow into the rain garden.

- Consider all potential maintenance requirements such as mowing (if applicable) and replacement of the growing medium. Consider the method and equipment for each task required. For example, in a large rain garden where the use of hand tools is not feasible, does the shape and configuration of the rain garden allow for removal of the growing medium using a backhoe?
- Provide pre-treatment when it will reduce the extent and frequency of maintenance necessary to maintain function over the life of the BMP. For example, if the tributary is larger than one acre, prone to debris or the use of sand for ice control, consider a small forebay.
- Make the rain garden as shallow as possible. Increasing the depth unnecessarily can create erosive side slopes and complicate maintenance. Shallow rain gardens are also more attractive.
- Design and adjust the irrigation system (temporary or permanent) to provide appropriate water for the establishment and maintenance of selected vegetation.

Design Procedure and Criteria

1. Subsurface Exploration and Determination of a No-Infiltration, Partial Infiltration, or Full Infiltration Section: Infiltration BMPs can have three basic types of sections. The appropriate section will depend on land use and activities, proximity to adjacent structures and soil characteristics. Sections of each installation type are shown in Figure B-1.

- No-Infiltration Section: This section includes an underdrain and an impermeable liner that prevents infiltration of stormwater into the subgrade soils. Consider using this section when any of the following conditions exist:
o The site is a stormwater hotspot and infiltration could result in contamination of groundwater.
o The site is located over contaminated soils and infiltration could mobilize these contaminants.
o The facility is located over potentially expansive soils or bedrock that could swell due to infiltration and potentially damage adjacent structures (e.g., building foundation or pavement).
- Partial Infiltration Section: This section does not include an impermeable liner, and allows some infiltration. Stormwater that does not infiltrate is collected and removed by an underdrain
system.
- Full Infiltration Section: This section is designed to infiltrate the water stored in the basin into the subgrade below. UDFCD recommends a minimum infiltration rate of 2 times the rate needed to drain the WQCV over 12 hours. A conservative design could utilize the partial infiltration section with the addition of a valve at the underdrain outlet. In the event that infiltration does not remain adequate following construction, the valve could be opened and allow this section to operate as a partial infiltration section.

A geotechnical engineer should scope and perform a subsurface study. Typical geotechnical investigation needed to select and design the section includes:

- Prior to exploration review geologic and geotechnical information to assess near-surface soil, bedrock and groundwater conditions that may be encountered and anticipated ranges of infiltration rate for those materials. For example, if the facility is located adjacent to a structure and the site is located in a general area of known shallow, potentially expansive bedrock, a noinfiltration section will likely be required. It is also possible that this BMP may be infeasible, even with a liner, if there is a significant potential for damage to the adjacent structures (e.g., areas of dipping bedrock).
- Drill exploratory borings or exploratory pits to characterize subsurface conditions beneath the subgrade and develop requirements for subgrade preparation. Drill at least one boring or pit for every $40,000 \mathrm{ft}^{2}$, and at least two borings or pits for sites between $10,000 \mathrm{ft}^{2}$ and $40,000 \mathrm{ft}^{2}$. The boring or pit should extend at least 5 feet below the bottom of the base, and at least 20 feet in areas where there is a potential of encountering potentially expansive soils or bedrock. More borings or pits at various depths may be required by the geotechnical engineer in areas where soil types may change, in low-lying areas where subsurface drainage may collect, or where the water table is likely within 8 feet below the planned bottom of the base or top of subgrade. Installation of temporary monitoring wells in selected borings or pits for monitoring groundwater levels over time should be considered where shallow groundwater is encountered.
- Perform laboratory tests on samples obtained from the borings or pits to initially characterize the subgrade, evaluate the possible section type, and to assess subgrade conditions for supporting traffic loads. Consider the following tests: moisture content (ASTM D 2216); dry density (ASTM D 2936); Atterberg limits (ASTM D 4318); gradation (ASTM D 6913); swellconsolidation (ASTM D 4546); subgrade support testing (R-value, CBR or unconfined compressive strength); and hydraulic conductivity. A geotechnical engineer should determine the appropriate test method based on the soil type.
- For sites where a full infiltration section may be feasible, perform on-site infiltration tests using a double-ring infiltrometer (ASTM D 3385). Perform at least one test for every $160,000 \mathrm{ft}^{2}$ and at least two tests for sites between $40,000 \mathrm{ft}^{2}$ and $160,000 \mathrm{ft}^{2}$. The tests should be located near completed borings or pits so the test results and subsurface conditions encountered in the borings can be compared, and at least one test should be located near the boring or pit showing the most unfavorable infiltration condition. The test should be performed at the planned top of subgrade underlying the growing media.
- Be aware that actual infiltration rates are highly variable dependent on soil type, density and moisture content and degree of compaction as well as other environmental and construction influences. Actual rates can differ an order of magnitude or more from those indicated by infiltration or permeability testing. Select the type of section based on careful assessment of the subsurface exploration and testing data.

The following steps outline the design procedure and criteria, with Figure B-1 providing a corresponding cross-section.
2. Basin Storage Volume: Provide a storage volume based on a 12 -hour drain time.

Find the required WQCV (watershed inches of runoff). Using the imperviousness of the tributary area (or effective imperviousness where LID elements are used upstream), use Figure 3-2 located in Chapter 3 of this manual to determine the WQCV based on a 12 -hour drain time.

Calculate the design volume as follows:

$$
V=\left[\frac{\mathrm{WQCV}}{12}\right] A
$$

Equation B-1
Where:

$$
V=\text { design volume }\left(\mathrm{ft}^{3}\right)
$$

$A=$ area of watershed tributary to the rain garden $\left(\mathrm{ft}^{2}\right)$
3. Basin Geometry: UDFCD recommends a maximum WQCV ponding depth of 12 inches to maintain vegetation properly. Provide an inlet or other means of overflow at this elevation. Depending on the type of vegetation planted, a greater depth may be utilized to detain larger (more infrequent) events. The bottom surface of the rain garden, also referred to here as the filter area, should be flat. Sediment will reside on the filter area of the rain garden; therefore, if the filter area is too small, it may clog prematurely. If the filter area is not flat, the lowest area of the filter is more likely to clog as it will have a higher sediment loading. Increasing the filter area will reduce clogging and decrease the frequency of maintenance. Equation B-2 provides a minimum filter area allowing for some of the volume to be stored beyond the area of the filter (i.e., above the sideslopes of the rain garden).

Note that the total surcharge volume provided by the design must also equal or exceed the design volume. Where needed to meet the the required volume, also consider the porosity of the media at 14 percent. Use vertical walls or slope the sides of the basin to achieve the required volume. Sideslopes should be no steeper than 4:1 (horizontal:vertical).

$$
A_{F}=0.02 A I
$$

Equation B-2

Where:
$A_{F}=$ minimum (flat) filter area (ft^{2})
$A=$ area tributary to the rain garden $\left(\mathrm{ft}^{2}\right)$
$I=$ imperviousness of area tributary to the rain garden (percent expressed as a decimal)
4. Growing Medium: Provide a minimum of 18 inches of growing medium to enable establishment of the roots of the vegetation (see Figure B-1). A previous version of this manual specified a mixture consisting of 85% coarse sand and a 15% compost/shredded paper mixture (by volume). Based on field monitoring of this medium, compost was removed to reduce export of nutrients and fines and silts were added to both benefit the vegetation and increase capture of metals in stormwater.

Table B-1 specifies the growing media as well as other materials discussed in this Fact Sheet. Growing media is engineered media that requires a high level of quality control and must almost always be imported. Obtaining a particle size distribution and nutrient analysis is the only way to ensure that the media is acceptable. UDFCD has identified placement of media not meeting the specification as the most frequent cause of failure. Sample the media after delivery and prior to placement or obtain a sample from the supplier in advance of delivery and placement and have this analyzed prior to delivery.

Other Rain Garden Growing Medium Amendments

The specified growing medium was designed for filtration ability, clogging characteristics, and vegetative health. It is important to preserve the function provided by the rain garden growing medium when considering additional materials for incorporation into the growing medium or into the standard section shown in Figure B-1. When desired, amendments may be included to improve water quality or to benefit vegetative health as long as they do not add nutrients, pollutants, or modify the infiltration rate. For example, a number of products, including steel wool, capture and retain dissolved phosphorus (Erickson 2009). When phosphorus is a target pollutant, proprietary materials with similar characteristics may be considered. Do not include amendments such as top soil, sandy loam, and compost.

Table B-1. Material specification for bioretention/rain garden facilities

Material		Specification			mittals	Testing	Notes
Bioretention Growing Media (soil + organics)	Bioretention soil	Particle size distribution: $80-90 \%$ sand (0.05 - 2.0 mm diameter) $3-17 \%$ silt ($0.002-0.5 \mathrm{~mm}$ diameter) $3-17 \%$ clay (<0.002 diameter) Chemical attribute and nutrient analusis: pH 6.8-7.5 organic matter < 1.5% nitrogen < 15 ppm phosphorus < 15 ppm salinity <6 mmhostcm			Particle size distribution and nutrient analysis required.		Percentages are in weight.
	Bioretention organics	$3 \mathrm{to} 5 \%$ shredded mulch (by weight of g	wing media]				bioretention soil required. Aged 6 months (minimum).
Landscape mulch		Shredded hardwood					Aged 6 months (minimum). No weed fabric allowed.
Underdrain aggregate	CDOT filter material (Class B or C as specified)		Mass Perce	nt Passing Square Mesh Sier			
		Sieve Size	Class B	Class C	Particle size distribution required		
		$37.5 \mathrm{~mm}\left(1.5{ }^{\text {" }}\right.$)	100				
		19.0 mm ($0.75^{\prime \prime}$)		100			
		4.75 mmm (No.4)	20-60	60-100			
		1.18 um (No. 16]	10-30				
		300 um (No .50)	$0-10$	10-30			
		150 um (No .1000		$0-10$			
		75 um (No .200$)$	0-3	0.3			
Underdrain Pipe		Pipe diameter and type	Maximum slot width (inches)	Minimum open area (per foot)	Required	Pipe must conform to requirements of ASTM designation F949. There shall be no evidence of splitting, cracking, or breaking when the pipe is tested per ASTM test method D2412 in accordance F794 section 8.5 F794 949 section 7.5 and ASTM	Contech A-2000 slotted pipe (or equal)
		4-inch s solted PVC	0.032	$1.90 \mathrm{in}^{2}$			
		6 -inch sloted PVC	0.032	1.98 in . $^{\text {. }}$			
Impermeable liner			Thickness 0.76 mm (30 mil)	Test method	Required	Thermal welding required for fully lined facilities (not a cutain). Leak testing in the field required.	
		Thickness, \% Tolerance	+-5	ASTMD 1593			
		Tensile strength, , NNMm (Ibirin)	12.25 (70)	ASTM D882, method B			
		Modulus at 100% elongation, kNm	5.25 [30]	ASTM D882, method B			
		Ultimate elongation,\%	${ }^{350}$	ASTM D8 82, method A			
		Low temperature impact, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	${ }^{\text {-29 (-2) }}$	ASTM D 1790			
		Volatie loss, \% maximum	0.7	ASTM D882, method A			
		Pinholes, no. per 8 m${ }^{2}$ (no. per 10 yd. ${ }^{2}$)	1(max)	NA			
		Bonded seam strength \% of tensile		NA			

5. Underdrain System: When using an underdrain system, provide a control orifice sized to drain the design volume in 12 hours or more (see Equation B-3). Use a minimum orifice size of 3/8 inch to avoid clogging. This will provide detention and slow release of the WQCV, providing water quality benefits and reducing impacts to downstream channels. Space underdrain pipes a maximum of 20 feet on center. Provide cleanouts to enable maintenance of the underdrain. Cleanouts can also be used to conduct an inspection (by camera) of the underdrain system to ensure that the pipe was not crushed or disconnected during construction.

Calculate the diameter of the orifice for a 12-hour drain time using Equation B-3 (Use a minimum orifice size of $3 / 8$ inch to avoid clogging.):

$$
D_{12 \text { hour drain time }}=\sqrt{\frac{V}{1414 y^{0.41}}}
$$

Equation B-3

Where:
$D \quad=$ orifice diameter (in)
$y \quad=$ distance from the lowest elevation of the storage volume (i.e., surface of the filter) to the center of the orifice (ft)
$V \quad=$ volume (WQCV or the portion of the WQCV in the rain garden) to drain in 12 hours (ft^{3})

In previous versions of this manual, UDFCD recommended that the underdrain be placed in an aggregate layer and that a geotextile (separator fabric) be placed between this aggregate and the growing medium. This version of the manual replaces that section with materials that, when used together, eliminate the need for a separator fabric.

The underdrain system should be placed within an 6-inch-thick section of CDOT Class B or Class C filter material meeting the gradation in Table B-1. Use slotted pipe that meets the slot dimensions provided in Table B-3.
6. Impermeable Geomembrane Liner and Geotextile Separator Fabric: For noinfiltration sections, install a 30 mil (minimum) PVC geomembrane liner, per Table $\mathrm{B}-1$, on the bottom and sides of the basin, extending up at least to the top of the underdrain layer. Provide at least 9 inches (12 inches if possible) of cover over the membrane where it is attached to the wall to protect the membrane from UV deterioration. The geomembrane should be fieldseamed using a dual track welder, which allows for nondestructive testing of almost all field seams. A small amount of single track is allowed in limited areas to seam around pipe perforations, to patch seams removed for destructive seam testing, and for limited repairs. The liner should be installed with slack to prevent tearing due to backfill, compaction, and settling. Place CDOT Class B geotextile separator fabric above the geomembrane to protect it from being punctured during the placement of the filter material above the liner. If the subgrade contains angular rocks or other material that could puncture the geomembrane, smooth-roll the surface to create a suitable surface. If smooth-rolling the surface does not provide a

Photograph B-2. The impermeable membrane in this photo has ripped from the bolts due to placement of the media without enough slack in the membrane.

Photograph B-3. Ensure a water-tight connection where the underdrain penetrated the liner. The heat-welded "boot" shown here is an alternative to the clamped detail shown in Figure B-2.
suitable surface, also place the separator fabric between the geomembrane and the underlying subgrade. This should only be done when necessary because fabric placed under the geomembrane can increase seepage losses through pinholes or other geomembrane defects. Connect the geomembrane to perimeter concrete walls around the basin perimeter, creating a watertight seal between the geomembrane and the walls using a continuous batten bar and anchor connection (see Figure B-3). Where the need for the impermeable membrane is not as critical, the membrane can be attached with a nitrile-based vinyl adhesive. Use watertight PVC boots for underdrain pipe penetrations through the liner (see Figure B-2) or the technique shown in photo B-3.

Table B-2. Physical requirements for separator fabric ${ }^{1}$

Property	Class B		Test Method
	Elongation $<50 \%{ }^{2}$	Elongation $>50 \%^{2}$	
Grab Strength, N (lbs.)	800 (180)	510 (115)	ASTM D 4632
Puncture Resistance, N (lbs.)	310 (70)	180 (40)	ASTM D 4833
Trapezoidal Tear Strength, N (lbs.)	310 (70)	180 (40)	ASTM D 4533
Apparent Opening Size, mm (US Sieve Size)	AOS < 0.3mm (US Sieve Size No. 50)		ASTM D 4751
Permittivity, sec ${ }^{-1}$	0.02 default value, must also be greater than that of soil		ASTM D 4491
Permeability, cm/sec	k fabric > k soil for all classes		ASTM D 4491
Ultraviolet Degradation at 500 hours	50\% strength retained for all classes		ASTM D 4355

${ }^{1}$ Strength values are in the weaker principle direction
${ }^{2}$ As measured in accordance with ASTM D 4632
7. Inlet and Outlet Control: In order to provide the proper drain time, the bioretention area can be restricted at the underdrain outlet with an orifice plate or can be designed without an underdrain (provided the subgrade meets the requirements above). Equation B-3 is a simplified equation for sizing an orifice plate for a 12-hour drain time. UD-BMP or UD-Detention, available at www.udfcd.org, also perform this calculation.

How flow enters and exits the BMP is a function of the overall drainage concept for the site. Curb cuts can be designed to both allow stormwater into the rain garden as well as to provide release of stormwater in excess of the WQCV. Roadside rain gardens located on a steep site might pool and overflow into downstream cells with a single curb cut, level spreader, or outlet structure located at the most downstream cell. When selecting the

Photograph B-4. The curb cut shown allows flows to enter this rain garden while excess flows bypass the facility.
type and location of the outlet structure, ensure runoff will not short-circuit the rain garden. This is a frequent problem when using a curb inlet located outside the rain garden for overflow.

For rain gardens with concentrated points of inflow, provide a forebay and energy dissipation. A depressed concrete slab works best for a forebay. It helps maintain a vertical drop at the inlet and allows for easily removal of sediment using a square shovel. Where rock is used for energy dissipation, provide separator fabric between the rock and growing medium to minimize subsidence.
8. Vegetation: UDFCD recommends that the filter area be vegetated with drought tolerant species that thrive in sandy soils. Table B-3 provides a suggested seed mix for sites that will not need to be irrigated after the grass has been established.

Mix seed well and broadcast, followed by hand raking to cover seed and then mulched. Hydromulching can be effective for large areas. Do not place seed when standing water or snow is present or if the ground is frozen. Weed control is critical in the first two to three years, especially when starting with seed.

When using sod, specify sand-grown sod. Do not use conventional sod. Conventional sod is grown in clay soil that will seal the filter area, greatly reducing overall function of the BMP.

When using an impermeable liner, select plants with diffuse (or fibrous) root systems, not taproots. Taproots can damage the liner and/or underdrain pipe. Avoid trees and large shrubs that may interfere with restorative maintenance. Plant these outside of the area of growing medium. Use a cutoff wall to ensure that roots do not grow into the underdrain or place trees and shrubs a conservative distance from the underdrain.
9. Irrigation: Provide spray irrigation at or above the WQCV elevation or place temporary irrigation on top of the rain garden surface. Do not place sprinkler heads on the flat surface. Remove temporary irrigation when vegetation is established. If left in place this will become buried over time and will be damaged during maintenance operations.

Adjust irrigation schedules during the growing season to provide the minimum water necessary to maintain plant health and to maintain the available pore space for infiltration.

Designing for Flood Protection

Provide the WQCV in rain gardens that direct excess flow into to a landscaped basin designed for flood control or design a single basin to provide water quality and flood control. See the Storage chapter in Volume 2 of the USDCM for more information. UD-Detention, available at www.udfcd.org, will facilitate design either alternative.

Table B-3. Native seed mix for rain gardens

Common Name	Scientific Name	Variety	PLS lbs per Acre	Ounces per Acre
Sand bluestem	Andropogon hallii	Garden	3.5	
Sideoats grama	Bouteloua curtipendula	Butte	3	
Prairie sandreed	Calamovilfa longifolia	Goshen	3	
Indian ricegrass	Oryzopsis hymenoides	Paloma	3	
Switchgrass	Panicum virgatum	Blackwell	4	
Western wheatgrass	Pascopyrum smithii	Ariba	3	
Little bluestem	Schizachyrium scoparium	Patura	3	
Alkali sacaton	Sporobolus airoides		3	
Sand dropseed	Sporobolus cryptandrus		3	
Pasture sage ${ }^{1}$	Artemisia frigida			2
Blue aster ${ }^{1}$	Aster laevis			4
Blanket flower 1	Gaillardia aristata			8
Prairie coneflower ${ }^{1}$	Ratibida columnifera			4
Purple prairieclover ${ }^{1}$	Dalea (Petalostemum) purpurea			4
Total lbs per acre:			27.5	22
			28.9	

${ }^{1}$ Wildflower seed (optional) for a more diverse and natural look.
${ }^{2}$ PLS = Pure Live Seed.

Aesthetic Design

In addition to effective stormwater quality treatment, rain gardens can be attractively incorporated into a site within one or several landscape areas. Aesthetically designed rain gardens will typically either reflect the character of their surroundings or become distinct features within their surroundings. Guidelines for each approach are provided below.

Reflecting the Surrounding

- Determine design characteristics of the surrounding. This becomes the context for the drainage improvement. Use these characteristics in the structure.
- Create a shape or shapes that "fix" the forms surrounding the improvement. Make the improvement part of the existing surrounding.
- The use of material is essential in making any new improvement an integral part of the whole. Select materials that are as similar as possible to the surrounding architectural/engineering materials. Select materials from the same source if possible. Apply materials in the same quantity, manner, and method as original material.
- Size is an important feature in seamlessly blending the addition into its context. If possible, the overall size of the improvement should look very similar to the overall sizes of other similar objects in the improvement area.

Reflective Design

A reflective design borrows the characteristics, shapes, colors, materials, sizes and textures of the built surroundings. The result is a design that fits seamlessly and unobtrusively in its environment.

- The use of the word texture in terms of the structure applies predominantly to the selection of plant material. The materials used should as closely as possible, blend with the size and texture of other plant material used in the surrounding. The plants may or may not be the same, but should create a similar feel, either individually or as a mass.

Creating a Distinct Feature

Designing the rain garden as a distinct feature is limited only by budget, functionality, and client preference. There is far more latitude in designing a rain garden that serves as a distinct feature. If this is the intent, the main consideration beyond functionality is that the improvement create an attractive addition to its surroundings. The use of form, materials, color, and so forth focuses on the improvement itself and does not necessarily reflect the surroundings, depending on the choice of the client or designer.

Figure B-1 - Typical rain garden plan and sections

FULL INFILTRATION SECTION

Figure B-2. Geomembrane Liner/Underdrain Penetration Detail

Figure B-3. Geomembrane Liner/Concrete Connection Detail

Construction Considerations

Proper construction of rain gardens involves careful attention to material specifications, final grades, and construction details. For a successful project, implement the following practices:

- Protect area from excessive sediment loading during construction. This is the most common cause of clogging of rain gardens. The portion of the site draining to the rain garden must be stabilized before allowing flow into the rain garden. This includes completion of paving operations.
- Avoid over compaction of the area to preserve infiltration rates (for partial and full infiltration sections).
- Provide construction observation to ensure compliance with design specifications. Improper installation, particularly related to facility dimensions and elevations and underdrain elevations, is a common problem with rain gardens.

Photograph B-3. Inadequate construction staking may have contributed to flows bypassing this rain garden.

- When using an impermeable liner, ensure enough slack in the liner to allow for backfill, compaction, and settling without tearing the liner.
- Provide necessary quality assurance and quality control (QA/QC) when constructing an impermeable geomembrane liner system, including but not limited to fabrication testing, destructive and non-destructive testing of field seams, observation of geomembrane material for tears or other defects, and air lace testing for leaks in all field seams and penetrations. QA/QC should be overseen by a professional engineer. Consider requiring field reports or other documentation from the engineer.
- Provide adequate construction staking to ensure that the site properly drains into the facility, particularly with respect to surface drainage away from adjacent buildings. Photo B-3 and Photo B-4 illustrate a construction error for an otherwise correctly designed series of rain gardens.

References

Erickson, Andy. 2009. Field Applications of Enhanced Sand Filtration. University of Minnesota Stormwater Management Practice Assessment Project Update. http://wrc.umn.edu.

Hunt, William F., Davis, Allen P., Traver, Robert. G. 2012. "Meeting Hydrologic and Water Quality
Goals through Targeted Bioretention Design" Journal of Environmental Engineering. (2012) 138:698-707. Print.

Designer:	Marc A. Whorton, P.E.
Company:	Classic Consulting
	September 20, 2023
Project:	Retreat at TimberRidge Filing No. 3
Location:	Arroya Lane (Rain Garden 1)

1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, I_{a}
 (100% if all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio ($\mathrm{i}=\mathrm{I}_{\mathrm{a}} / 100$)
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time (WQCV $=0.8^{*}\left(0.91^{*} i^{3}-1.19 * i^{2}+0.78 * i\right)$
D) Contributing Watershed Area (including rain garden area)
E) Water Quality Capture Volume (WQCV) Design Volume Vol = (WQCV / 12) * Area
F) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired)
$\mathrm{V}_{\text {WQCV USER }}=$ \qquad cu ft
2. Basin Geometry
A) WQCV Depth (12-inch maximum)
$\begin{aligned} \mathrm{D}_{\text {WQCv }} & =\frac{12}{} \mathrm{in} \\ \mathrm{Z} & =4.00 \mathrm{ft} / \mathrm{ft}\end{aligned}$
B) Rain Garden Side Slopes ($Z=4 \mathrm{~min}$., horiz. dist per unit vertical)
 (Use "0" if rain garden has vertical walls)
sq ft
\qquad
 sqf
$\mathrm{A}_{\text {Top }}=2718 \mathrm{sq}$ ft
$\mathrm{V}_{\mathrm{T}}=2,327 \mathrm{cuft}$
C) Mimimum Flat Surface Area
D) Actual Flat Surface Area
E) Area at Design Depth (Top Surface Area)
F) Rain Garden Total Volume $\left(\mathrm{V}_{\mathrm{T}}=\left(\left(\mathrm{A}_{\mathrm{Top}}+\mathrm{A}_{\text {Actual }}\right) / 2\right)^{*}\right.$ Depth $)$
$\left[\begin{array}{l}\text { Choose One } \\ \text { 18" Rain Garden Growing Media } \\ \text { Other (Explain): } \\ \hline\end{array}\right.$
3. Underdrain System
A) Are underdrains provided?
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice
\square
4. Growing Media

18 Rain Garden Growing Media
Other (Explain):
ii) Volume to Drain in 12 Hours

$$
\begin{aligned}
\mathrm{y} & =1.5 \mathrm{ft} \\
\mathrm{Vol}_{12} & =1,776 \mathrm{cu} \mathrm{ft} \\
\mathrm{D}_{\mathrm{o}} & =1 \mathrm{1} 1 / 16 \mathrm{in}
\end{aligned}
$$

Project: RETREAT AT TIMBERRIDGE FILING No. 3

Basin ID: RAIN GARDEN

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)
Project: RETREAT AT TIMBERRIDGE FILING NO. 3 Basin ID: RAIN GARDEN 1

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)				Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth $=$	1.50	ft (distance below the filtration media surface)	Underdrain Orifice Area =	0.0	ft^{2}
Underdrain Orifice Diameter $=$	1.08	inches	Underdrain Orifice Centroid =	0.05	feet

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

User Input: Vertical Orifice (Circular or Rectangular)

Calculated Parameters for Vertical Orifice

	Calculated Parameters for Vertical Orifice	
Vertical Orifice Area	$=$Not Selected Not Selected 	
Vertical Orifice Centroid	$=$	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 2 Weir	Not Selected	t (relative
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	1.00	1.95	
Overflow Weir Front Edge Length =	3.00		feet
Overflow Weir Grate Slope =	4.00		$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides $=$	3.00		feet
Overflow Grate Type =	Close Mesh Grate		
Debris Clogging \% =	50\%		\%

Calculated Parameters for Overflow Weir $=0 \mathrm{ft}) \quad$ Height of Grate Upper Edge, H_{t} Overflow Weir Slope Length $=$
Grate Open Area / 100-yr Orifice Area Overflow Grate Open Area w/o Debris Overflow Grate Open Area w/ Debris =

Zone 2 Weir	Not Selected
1.75	
3.09	
9.67	
7.34	
3.67	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

Depth to Invert of Outlet Pipe $=$ Outlet Pipe Diameter $=$	Zone 2 Restrictor	Not Selected	ft (distance below basin bot inches
	2.00		
	18.00		
Restrictor Plate Height Above Pipe Invert $=$	8.00	inches	
er Input: Emergency Spillway (Rectangular or Trapezoidal)			
Spillway Invert Stage=	2.50	ft (relative to bas	bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	10.00	feet	
Spillway End Slopes =	3.00	$\mathrm{H}: \mathrm{V}$	
Freeboard above Max Water Surface $=$	1.00	feet	

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Zone 2 Restrictor	Not Selected
	ft^{2}
0.76	
0.39	
1.46	feet
	N / A

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.85
CUHP Runoff Volume (acre-ft) =	0.042	0.112	0.118	0.209	0.294	0.430	0.529	0.664	1.221
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.118	0.209	0.294	0.430	0.529	0.664	1.221
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.6	1.6	2.4	4.3	5.4	6.7	12.6
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.32	0.48	0.86	1.08	1.35	2.51
Peak Inflow Q (cfs) $=$	N/A	N/A	1.5	2.7	3.5	5.5	6.6	8.1	14.3
Peak Outflow Q (cfs) $=$	0.0	3.5	0.6	1.7	2.6	4.7	5.9	7.0	13.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.0	1.1	1.1	1.1	1.0	1.1
Structure Controlling Flow =	Filtration Media	Overflow Weir 1	Outlet Plate 1	Spillway					
Max Velocity through Grate 1 (fps) =	N/A	0.70	0.08	0.2	0.3	0.6	0.8	0.9	1.0
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	12	16	18	17	16	15	14	13	9
Time to Drain 99\% of Inflow Volume (hours) =	12	16	18	18	18	18	17	17	15
Maximum Ponding Depth (ft) =	0.82	1.84	1.26	1.46	1.58	1.80	1.90	2.08	2.83
Area at Maximum Ponding Depth (acres) $=$	0.06	0.08	0.07	0.07	0.07	0.08	0.08	0.08	0.10
Maximum Volume Stored (acre-ft) =	0.042	0.112	0.069	0.083	0.093	0.109	0.116	0.131	0.200

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
	0:15:00	0.00	0.00	0.05	0.09	0.11	0.07	0.09	0.09	0.17
	0:20:00	0.00	0.00	0.19	0.37	0.51	0.19	0.24	0.29	0.75
	0:25:00	0.00	0.00	0.83	1.59	2.41	0.81	1.00	1.21	3.85
	0:30:00	0.00	0.00	1.43	2.58	3.47	3.83	4.78	5.58	10.67
	0:35:00	0.00	0.00	1.52	2.66	3.54	5.08	6.21	7.60	13.72
	0:40:00	0.00	0.00	1.46	2.50	3.33	5.47	6.64	8.08	14.33
	0:45:00	0.00	0.00	1.31	2.27	3.08	5.24	6.35	7.94	14.05
	0:50:00	0.00	0.00	1.19	2.07	2.80	5.03	6.10	7.61	13.44
	0:55:00	0.00	0.00	1.08	1.87	2.56	4.56	5.55	7.09	12.59
	1:00:00	0.00	0.00	0.99	1.71	2.37	4.16	5.09	6.66	11.88
	1:05:00	0.00	0.00	0.91	1.56	2.20	3.83	4.70	6.31	11.29
	1:10:00	0.00	0.00	0.81	1.42	2.03	3.42	4.22	5.60	10.14
	1:15:00	0.00	0.00	0.71	1.26	1.86	3.02	3.74	4.91	9.00
	1:20:00	0.00	0.00	0.61	1.10	1.64	2.62	3.24	4.20	7.72
	1:25:00	0.00	0.00	0.54	0.99	1.46	2.25	2.79	3.58	6.63
	1:30:00	0.00	0.00	0.49	0.91	1.32	1.97	2.45	3.12	5.80
	1:35:00	0.00	0.00	0.45	0.84	1.20	1.75	2.17	2.75	5.13
	1:40:00	0.00	0.00	0.42	0.76	1.09	1.56	1.94	2.44	4.54
	1:45:00	0.00	0.00	0.38	0.67	0.99	1.39	1.72	2.15	4.01
	1:50:00	0.00	0.00	0.34	0.59	0.89	1.23	1.53	1.89	3.52
	1:55:00	0.00	0.00	0.30	0.52	0.78	1.08	1.34	1.64	3.05
	2:00:00	0.00	0.00	0.26	0.44	0.66	0.93	1.16	1.40	2.61
	2:05:00	0.00	0.00	0.21	0.35	0.53	0.76	0.95	1.15	2.13
	2:10:00	0.00	0.00	0.16	0.27	0.41	0.59	0.74	0.90	1.66
	2:15:00	0.00	0.00	0.12	0.19	0.30	0.43	0.54	0.66	1.22
	2:20:00	0.00	0.00	0.09	0.14	0.23	0.29	0.37	0.45	0.88
	2:25:00	0.00	0.00	0.07	0.11	0.19	0.21	0.27	0.32	0.65
	2:30:00	0.00	0.00	0.05	0.09	0.15	0.16	0.20	0.24	0.48
	2:35:00	0.00	0.00	0.04	0.07	0.12	0.12	0.15	0.17	0.36
	2:40:00	0.00	0.00	0.03	0.06	0.10	0.09	0.11	0.12	0.26
	2:45:00	0.00	0.00	0.03	0.05	0.08	0.07	0.09	0.08	0.19
	2:50:00	0.00	0.00	0.02	0.04	0.06	0.05	0.07	0.06	0.13
	2:55:00	0.00	0.00	0.02	0.03	0.05	0.04	0.05	0.04	0.09
	3:00:00	0.00	0.00	0.01	0.02	0.04	0.03	0.04	0.03	0.07
	3:05:00	0.00	0.00	0.01	0.02	0.03	0.02	0.03	0.03	0.06
	3:10:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.05
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.04
	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.03
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft 2]	Area [acres]	Volume [ft $\left.{ }^{3}\right]$	Volume [ac- ft$]$	Total Outflow [cfs]
Media Surface	0.00	1,922	0.044	0	0.000	0.00
7235	1.00	2,720	0.062	2,321	0.053	0.05
7236	2.00	3,592	0.082	5,458	0.125	6.95
7237	3.00	4,606	0.106	9,540	0.219	19.73
7238	4.00	5,688	0.131	14,687	0.337	83.61
	star best results, include the of all grade slope					
changes (e.g. ISV and Floor)						
from the S-A-V table on						
Sheet 'Basin'.						

		\square	\square	\square	-	

DRAINAGE MAPS

BASIN RUNOFF SUMMARY																				
bsas				$$				$$						$$						
	0.8	${ }^{24}$	ns	Oer										${ }^{4}$	20					
${ }_{8}{ }^{2}$	${ }^{0 \cdot 8}$	000	1.2	0,12	${ }^{30}$	10	${ }^{26}$	${ }^{20}$	5	${ }^{22}$	${ }^{5}$	${ }^{32}$	${ }^{38}$	27	27	${ }^{4}$			2	
${ }^{\text {ex }}$	${ }_{0}^{012}$	${ }^{001}$	${ }^{00}$	12	70	${ }^{4}$	${ }^{83}$						${ }^{8}$	${ }^{36}$	440	${ }^{2}$			0	
${ }_{\text {® }}{ }^{\text {a }}$	0.10	${ }^{013}$	${ }_{0} 2$	12	${ }^{\text {w }}$	3	${ }^{123}$						${ }^{123}$	${ }^{365}$	38	${ }^{64}$			0.	
	02	${ }_{0}^{0.8}$	${ }^{28}$	0	${ }_{30}$	12	${ }^{22}$	${ }^{25}$	108	20			28	23	28	${ }^{4}$				
082	0	19	$3 \times$	${ }^{0.6}$	${ }_{3}$	10	214	mom	400	${ }^{20}$	${ }^{\text {s }}$		${ }^{23}$	20	22	4		${ }^{18}$		
	0.0	028	09	0	${ }^{30}$			${ }_{30}$	500							${ }^{4}$				

SURFACE ROUTING SUMMARY									
Design	Contributing Basins /Design Point	$\left.\right\|_{\substack{\text { Equivalen } \\ \text { CAss }}} \text { Sur }$	Equivion	${ }_{\text {maximum }}^{\substack{\text { co }}}$	Intensity		Fow		
					(15)	11000	Q(5)	a(100)	
${ }^{\text {E }}$	Ex1,085,08, $2,0,03$	${ }_{4}^{49}$	${ }^{17,98}$	${ }^{338}$	${ }^{230}$	${ }^{387}$	11	${ }^{69}$	
2	Ex2	000	1.12	228	221	454	2	${ }^{6}$	

[^0]: Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
 Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

