ENGINEERING REVIEW COMMENTS IN

 BLUE BOXES WITH BLUE TEXTSee comment letter also.

FINAL DRAINAGE REPORT
 FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

Prepared for:
TIMBERRIDGE DEVELOPMENT GROUP, LLC 2138 FLYING HORSE CLUB DRIVE
COLORADO SPRINGS CO 80921
(719) 592-9333

CCES

Responses

Prepared by:
CLASSIC CONSULTING
619 N. CASCADE AVE SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job No. 1185.31
PCD Project No. SF-1827

EPC STORMWATER REVIEW COMMENTS
IN ORANGE BOXES WITH BLACK TEXT

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: TIMBERRIDGE DEVELOPMENT GROUP, LLC
By : \qquad

Title:

Address:
2138 Flying Horse Club Drive
Colorado Springs, CO 80921

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.
County Engineer, / ECM Administrator
Conditions:

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

TABLE OF CONTENTS:
PURPOSE Page 4
GENERAL DESCRIPTION Page 4
EXISTING DRAINAGE CONDITIONS Page 4
PROPOSED DRAINAGE CONDITIONS Page 6
DETENTION/SWQ FACILITIES Page 9
DRAINAGE CRITERIA Page 10
FLOODPLAIN STATEMENT Page 12
DRAINAGE AND BRIDGE FEES Page 12
SUMMARY Page 14
REFERENCES Page 15

APPENDICES

VICINITY MAP
SOILS MAP (WEB SOIL SURVEY)
F.E.M.A. MAP / LOMR (08-08-0541P)

RECOMMENDATIONS PER SAND CREEK DBPS
HYDROLOGIC / HYDRAULIC CALCULATIONS
STORMWATER QUALITY / BMP CALCULATIONS
DETENTION POND CALCULATIONS
DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 4

PURPOSE

The purpose of this Final Drainage Report is to address on-site and off-site drainage patterns and identify specific drainage improvements and facilities required to minimize impacts to the adjacent properties.

GENERAL DESCRIPTION

The Retreat at TimberRidge Filing No. 4 is 34.471 -acre site located in a portion of section 22, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north, west and east by unplatted 5+ Ac. rural residential properties and south by Arroya Lane and future Sterling Ranch property (zoned for future urban development). The site is in the upper portion of the Sand Creek Drainage Basin. Large lot rural single family residential is proposed in this Filing.

The average soil condition reflects Hydrologic Group " B " (Pring coarse sandy loam) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge Filing No. 4 property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. The majority of the site is mainly covered with native grasses with large groupings of pine trees along the south boundary adjacent to Arroya Lane and the northeast portion of the property. Arroya Lane (private gravel roadway) borders the entire southern boundary with some private gravel drives heading north into the property.

There are several natural ravines traversing the site from east to southwest. Off-site flows from portions of Black Forest and unplatted 5 Ac.+ rural residential lots enter the site along the north
and east boundary. (See off-site Drainage Map) These off-site flows travel through the natural ravines towards the southwest corner of the property where a temporary sediment basin collects on-site and these off-site flows. This temporary facility was proposed and constructed as a part of the Retreat at TimberRidge Filing No. 3 development. With the development of Filing 4, this facility will be converted into a permanent EDB. The natural ridge along the south boundary creates some minor on-site flows that bypass the previously mentioned temporary sediment basin. However, these flows travel as sideroad ditch flows along the north side of Arroya Lane and are then collected in a storm system and routed towards an off-site Rain Garden south of Arroya Lane constructed with Filing 3 development.

The following descriptions represent the pre-development flow basins for the property:

Basin EX-1 ($\left.Q_{5}=\mathbf{7 c f s}, Q_{100}=\mathbf{4 4} \mathbf{c f s}\right)$ consists of a 31.6 Ac. on-site basin that makes up the majority of the property. This basin accepts off-site flows as described below and conveys the combined flows via the natural ravines on site towards the existing temporary sediment basin.

Basin OS-1 $\left(\mathbf{Q}_{\mathbf{5}}=\mathbf{2} \mathbf{~ c f s}, \mathbf{Q}_{\mathbf{1 0 0}}=\mathbf{1 0} \mathbf{c f s}\right)$ consists of a 5.5 Ac . off-site basin from the adjacent $5 \mathrm{Ac} .+$ rural residential lot to the north that sheetflows on-site into Basin EX-1. and swale Added

Basin OS-2 ($\left.\mathbf{Q}_{5}=\mathbf{3} \mathbf{~ c f s , ~} \mathbf{Q}_{100}=\mathbf{1 6} \mathbf{~ c f s}\right)$ consists of a 9.6 Ac. off-site basin again from the adjacent 5 Ac. + rural residential lot to the north that sheet flows on-site into Basin EX-1.

Basin OS-3 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{1} \mathbf{c f s}, \mathbf{Q}_{100}=\mathbf{5} \mathbf{c f s}\right)$ consists of a 2.5 Ac. off-site basin from the adjacent $5 \mathrm{Ac} .+$ rural residential lot to the east that sheet flows on-site into Basin EX-1.

Basin EX-2 ($\left.\mathbf{Q}_{5}=\mathbf{2 ~ c f s , ~} \mathrm{Q}_{100}=\mathbf{6} \mathbf{~ c s}\right)$ consists of 3.3 Ac. on-site basin that sheet flows towards the sideroad ditch along the north side of Arroya Lane. The collected ditch flows then travel west towards an existing Type C inlet at Design Point E2 and are then routed via storm sewer towards the off-site Rain Garden south of Arroya Lane.

Basin EX-3 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{0 . 1} \mathbf{~ c f s}, \mathrm{Q}_{\mathbf{1 0 0}} \mathbf{= 0 . 6} \mathbf{~ c f s}\right)$ consists of a 0.22 Ac . minor basin at the extreme southeast corner of the property that sheet flows off-site to a low point that crosses Arroya Lane. These minor flows are then routed just east around the existing water tank site. These flows will ultimately be handled in the future Sterling Ranch development south of this property.

Basin EX-4 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{0 . 5} \mathbf{~ c f s ,} \mathrm{Q}_{100}=\mathbf{1 . 5} \mathbf{c f s}\right)$ consists of 0.49 Ac . minor basin due west of the existing temporary sediment basin. These minor flows will continue to sheet flow off-site and ultimately into Arroya Lane where they are captured and treated in the previously mentioned Rain Garden south of Arroya Lane.

Design Point E1 ($\left.Q_{5}=11 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{6 9} \mathbf{c f s}\right)$ consists of the total on-site and off-site flows combined from basins OS-1, OS-2, OS-3 and EX-1 that are tributary to the existing temporary sediment basin.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge Filing No. 4 will consist of 10 large lot rural residential properties ranging from 2.5 Ac . min. to 5.0 Ac . lots. These lots will have a paved street and roadside ditches. Development of these rural lots will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County ECM, Section I.7.1.B.5, rural lots of 2.5 ac . and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater quality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the existing temporary sediment basin on-site is proposed to be converted to a permanent detention/stormwater quality facility and will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device.

Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2-year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 -year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. As reasonably possible, WQCV will be provided for all new roads and urban lots. The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

The following descriptions represent the proposed developed design points for the property:

Design Point $1\left(Q_{5}=\mathbf{7 c s}, Q_{100}=\mathbf{4 0} \mathbf{c f s}\right)$ represents developed flows from Basins $A(11.2 \mathrm{Ac}$.), 85% of OS-1 (5.5 Ac.) and OS-2 (9.6 Ac.). These basins develop flows that are conveyed through lots 2-6 in natural ravines within private drainage easements towards the corner of lot 2. At this location a berm on lot 2 will be constructed to allow for the capture of these flows into a proposed CDOT Type D inlet. This facility will completely capture both the $5-\mathrm{yr}$. and $100-\mathrm{yr}$. developed flows. A proposed 36 " RCP storm sewer will convey these flows further downstream. The emergency overflow route for this sump condition will be over the constructed berm and then routed within private drainage easements across lots 1 and 7 towards Design Point 3 and the adjacent proposed Pond 4.

Revised to private district-maintained Design Point $2\left(Q_{5}=\mathbf{5 c f s}, Q_{100}=\mathbf{2 5} \mathbf{c f s}\right)$ represents developed flows from Basins $B(13.4 \mathrm{Ac}$.) and OS-3 (2.5 Ac .). These basins develop flows that are conveyed through lots 6-10 in natural ravines within private drainage easements towards Design Point 2. At this location a proposed CDOT Type D inlet will completely capture both the $5-\mathrm{yr}$. and $100-\mathrm{yr}$. developed flows with a proposed $36^{\prime \prime}$ RCP form sewer conveying these flows further downstream. The emergency

Page 7
overflow route for this sump cı Added additional e highpoint in the sideroad ditch and basin
directly into Basin C.
add a name label to
match the drainage plan
Design Point $3\left(Q_{5}=\mathbf{2 c f s}, Q_{100}=\mathbf{1 0} \mathbf{c f s}\right)$ represents developed flows from Basins $D(4.3 \mathrm{Ac}$.) and 15% OS-1 (5.5 Ac.). These basins develop sheet flows in a southerly direction towards Design Point 3. At this location a proposed grated inlet will be installed to completely capture both the $5-\mathrm{yr}$. and 100-yr. developed flows. An $18^{\prime \prime}$ RCPstorm pipe will then convey these flows further downstream. The emergency overflow at this sumpeendition will pond un $7 \mathrm{n}^{\prime}$ and then cnill over the berm and be travel directly into the adjacent Pond 4

Design Point $4\left(Q_{5}=\mathbf{1 3} \mathbf{c f s}, Q_{100}=\mathbf{7 5} \mathbf{c f s}\right)$ represents the total developed flows tributary to the proposed full spectrum EDB Pond 4.

Basin $E\left(Q_{5}=\mathbf{0 . 8} \mathbf{c f s}, Q_{100}=\mathbf{4 c s}\right)$ represents the southern portion of Lot 1 that will continue to sheet flow directly into the proposed Pond 4 and the area of the pond itself.

The following represents the proposed Pond 4 design:
(See MHFD-Detention Design Sheets in Appendix)

Total Tributary acreage: 48.5 Ac. (Basins: A, B, D, E, OS-1, OS-2 and OS-3)
0.201 Ac.-ft. WQCV required
0.114 Ac.-ft. EURV required
1.216 Ac.-ft. 100-yr. Storage
1.531 Ac.-ft. Total

Total In-flow:	$Q_{5}=13 \mathrm{cfs}$,	$Q_{100}=75 \mathrm{cfs}$
Pre-Development Release:	$Q_{5}=11 \mathrm{cfs}$,	$Q_{100}=69 \mathrm{cfs}$
Pond Design Release:	$Q_{5}=9.5 \mathrm{cfs}$,	$\mathrm{Q}_{100}=58.2 \mathrm{cfs}$

(Ownership and maintenance by the Retreat at TimberRidge Metro District 2)

Design Point $\mathbf{5}\left(\mathbf{Q}_{\mathbf{5}}=\mathbf{2} \mathbf{c f s}, \mathbf{Q}_{\mathbf{1 0 0}}=\mathbf{8} \mathbf{c f s}\right)$ represents developed flows from Basin $\mathrm{C}(3.3 \mathrm{Ac}$.). This basin develops sheet flows in a southwesterly direction towards the sideroad ditch along the north side of Arroya Lane. These ditch flows are then conveyed westerly towards Design Point 5. At this location a proposed $18^{\prime \prime}$ RCP culvert will be installed to completely convey both the 5yr. and 100-yr. developed flows under Nature Refuge Way. These flows then travel as ditch flow towards Design Point 6.

Design Point $6\left(Q_{5}=\mathbf{3} \mathbf{c f s}, Q_{100}=\mathbf{9} \mathbf{c f s}\right)$ represents flows from Basin $F(0.61 \mathrm{Ac}$.) and the previously mentioned developed flows from Design Point 5. At this location the existing CDOT Type C inlet (constructed with Filing 3) will completely capture both the $5-\mathrm{yr}$. and $100-\mathrm{yr}$. developed flows. These developed flows are consistent with the previously approved drainage report for Filing 3 and are conveyed further west where they combine with other developed flows within Arroya Lane and then towards the existing Rain Garden 1 south of Arroya Lane (also constructed with Filing 3). Add that any overflows from Pond 4 will pass through this design point and some of this
Added flow may be intercepted through the inlet.

DETENTION / STORMWATER QUALITY FACILITES

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to Rain Gardens and an Extended Detention Basin. Site Planning and design techniques for this large lot rural residential development should help limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. The proposed Pond 4 will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. The proposed SWQ facilities are to b private facilities with ownership and maintenance by the Ti Include a cost estimate for each PBMP with line The drainage facilities within the public Right of Way will be items for all components (ex: riprap, road base County.

Arroya Lane

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for detention/SWQ basin sizing, inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

The City of Colorado Springs/EI Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed rural lot impervious area (roof tops, patios, etc.) will sheet flow across lengthy landscape/natural areas within the large lots and to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or the detention facility. This will minimize directly connected impervious areas within the project site.

Reference the Water Quality Treatment Plan Map in the Appendix for the following:

Area qualifies for 20% exclusion (ECM I.7.1.C.1)
Area treated in proposed permanent Pond 4
Areas treated in existing Rain Garden Facility 1

Filing No. 4 Total platted area
0.71 ac.
48.5 ac .
3.91 ac.

34.471 ac .

2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the large rural lot areas, developed flows will travel via roadside ditches along the public streets and eventually public storm systems. These collected flows are then routed directly to an existing Rain Garden and a proposed extended detention basin (fullspectrum facilities). Where developed flows are not able to be routed to public street, sheet flows will travel across landscaped rear yards and Added ih undeveloped property prior to entering Sand Creek.

Address specific stabilization of onsite ditches and channels
3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the existing Rain Garden (constructed with Filing 3) and proposed Full-Spectrum permanent Extended Detention/Basin designed per current El Paso County drainage criteria. Reference Runoff Reduction Calculations in Appendix for the areas that show a 100\% WQCV Reduction and meets El Paso County standards. Added

4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control pian and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are proposed based on specific
phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

Revised

Portions of this site are focated within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535G with effective date of December 7, 2018 and the previously mentioned LOMR 08-08-0541P with an effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.
The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge Filing No. 4 has a total area of 34.47 acres with the following different land uses proposed:

1.30 Ac.	Pond Tract
21.96 Ac.	2.5 Ac. lots $(1-5,8,10)$ and adjacent roadway
10.02 Ac.	5.0 Ac. lots $(6-7)$
1.19 Ac.	Future rural Public ROW Tract
34.47 Ac.	Total

The percent imperviousness for this subdivision is calculated as follows:

Fees for Pond Tract

(Per El Paso County Percent Impervious Chart: 7\%)
1.30 Ac. x 7\% = 0.09 Impervious Ac.

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11% with 25% fee reduction for 2.5 ac. lots planned - ECM 3.10.2a) - Reduction for Drainage Fees only
21.96 Ac. $\times 11 \% \times 75 \%=1.81$ Impervious Ac. (Drainage Fees)
21.96 Ac. x 11\% = 2.42 Impervious Ac. (Bridge Fees)

Fees for 5.0 Ac. lots

(Per El Paso County Percent Impervious Chart: 7\% with 25\% fee reduction for 5.0 ac. lots planned - ECM 3.10.2a) - Reduction for Drainage Fees only
10.02 Ac. x 7\% x 75\% = 0.53 Impervious Ac. (Drainage Fees)
10.02 Ac. x 7\% = 0.70 Impervious Ac. (Bridge Fees)

Fees for future rural public ROW Tract

(Per El Paso County Percent Impervious Chart: 55\%)
1.19 Ac. x 55\% = 0.65 Impervious Ac.

Total Impervious Acreage:	3.08 Imp. Ac. (Drainage Fees)
Total Impervious Acreage:	3.86 Imp. Ac. (Bridge Fees)

The following calculations are based on the 2024 Sand Creek drainage/bridge fees:

ESTIMATED FEE TOTALS:

Drainage Fees
\$25,632.00 x 3.08 Impervious Ac
$=\$ 78,946.56$

Bridge Fees
\$ 10,484.00 x 3.86 Impervious Ac.
$=\quad \$ 40,468.24$

d

Classic ENGINEERS \& SURVEYORS

SUMMARY

The proposed Retreat at TimberRidge Filing No. 4 is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the pre-development conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements.

PREPARED BY:

Classic Consulting Engineers \& Surveyors, LLC

Marc A. Whorton, P.E.
Project Manager

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3" Urban Drainage and Flood Control District, dated January 2016.
3. "Final Drainage Report for Forest Gate Subdivision" Law \& Mariotti Consultants, Inc. dated October 2004.
4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
6. "Preliminary Drainage Report for The Retreat at TimberRidge Preliminary Plan - South of Arroya Lane", Classic Consulting, approved October 2018.
7. "2018 Sterling Ranch MDDP", M\&S Civil Consultants, Inc., June 2018
8. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
9. "Final Drainage Report for Retreat at TimberRidge Filing No. 2", Classic Consulting, approved September, 2022.
10. "Final Drainage Report for Retreat at TimberRidge Filing No. 3", Classic Consulting, dated January, 2024.

APPENDIX

VICINITY MAP

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
䟿 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(5) Landfill

A Lava Flow
M. Marsh or swamp
(9) Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
ㄹS. Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	21.2	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	13.4	15.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	98.3	$\mathbf{1 0 . 1 \%}$
Totals for Area of Interest	$\mathbf{1 3 2 . 8}$	$\mathbf{7 4 . 0 \%}$	

El Paso County Area, Colorado

40—Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g
Elevation: 7,000 to 7,700 feet
Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy alluvium derived from arkose

Typical profile

$E-0$ to 16 inches: gravelly loamy sand
Bt - 16 to 40 inches: gravelly sandy loam
C-40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: F048AY908CO - Mixed Conifer
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h
Elevation: 7,000 to 7,700 feet
Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Sandy alluvium derived from arkose

Typical profile

E-0 to 16 inches: gravelly loamy sand
Bt - 16 to 40 inches: gravelly sandy loam
C-40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group: B
Ecological site: F048AY908CO - Mixed Conifer
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit SettingNational map unit symbol: 369kElevation: 6,800 to 7,600 feetFarmland classification: Not prime farmland
Map Unit Composition
Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects ofthe mapunit.
Description of Pring
Setting
Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock
Typical profile
A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO - Loamy Park
Hydric soil rating: No
Minor Components
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit:
Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 21, Aug 24, 2023
F.E.M.A. MAP

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Table 6-2. Rainfall Depths for Colorado Springs

Return Period	1-Hour Depth	6-Hour Depth	24 -Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
Where Z=6,840 ft/100			

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves 2 and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

- Thunderstorms: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14 year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1 -hour rainfall depth to create the distribution shown in Table $6-3$ with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-vear		5-year		10-year		25-year		50-year		100-year	
		HSG AKB	HSG C\&D	HSG A\&B	H5G CRA	HSGA\&B	H5G C8:D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C8D
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
			.										
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
	-												
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time (t_{i}) plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_{t}) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 6-10. NRCS Curve Numbers for Frontal Storms \& Thunderstorms for Developed Conditions (ARCII)

Fully Developed Urban Areas (vegetation established) ${ }^{\mathbf{1}}$	Treatment	Hydrologic Condition	\% 1	Pre-Development CN			
				HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover $<50 \%$)	-----	-----	---	68	79	86	89
Fair condition (grass cover 50\% to 75\%)	----	---	---	49	69	79	84
Good condition (grass cover > 75\%)	\cdots	-----	---	39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way	-----	-----	\cdots	98	98	98	98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)	.-...	-----	---	98	98	98	98
Paved; open ditches (Including right-of-way)	-----	-----	---	83	89	92	93
Gravel (including right-of-way)	-----	-----	---	76	85	89	91
Dirt (including right-of-way)	----	-----	\cdots	72	82	87	89
Western desert urban areas:							
Natural desert landscaping (pervious areas only)	-----	-	\cdots	63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2 -inch sand or gravel mulch and basin borders)	-----	-----	\cdots	96	96	96	96
Urban districts:							
Commercial and business	-----	-----	85	89	92	94	95
Industrial	-----	-----	72	81	88	91	93
Residential districts by average lot size:							
1/8 acre or less (town houses)	-	\cdots	65	77	85	90	92
1/4 acre	\cdots	-----	38	61	75	83	87
1/3 acre	---	-----	30	57	72	81	86
1/2 acre	-----	-----	25	54	70	80	85
1 acre	---	-----	20	51	68	79	84
2 acres	-----	-----	12	46	65	77	82
Developing Urban Areas ${ }^{1}$	Treatment ${ }^{2}$	Hydrologic Condition ${ }^{3}$	\% 1	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)	--...	-----	---	77	86	91	94
Cultivated Agricultural Lands ${ }^{1}$	Treatment	Hydrologic Condition	\%1	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil	-....	\cdots	77	86	91	94
	Crop residue cover (CR)	Poor	---	76	85	90	93
		Good	---	74	83	88	90
Row crops	$\begin{aligned} & \text { Straight row } \\ & \text { (SR) } \\ & \hline \end{aligned}$	Poor	---	72	81	88	91
		Good	---	67	78	85	89
	SR + CR	Poor	---	71	80	87	90
		Good	---	64	75	82	85
	Contoured (C)	Poor	---	70	79	84	88
		Good	---	65	75	82	86
	C+CR	Poor	---	69	78	83	87
		Good	\cdots	64	74	81	85
	Contoured \& terraced (C\&T)	Poor	---	66	74	80	82
		Good	--..	62	71	78	81
	C\&T+CR	Poor	---	65	73	79	81
		Good	\cdots	61	70	77	80
Small grain	SR	Poor	---	65	76	84	88
		Good	\cdots	63	75	83	87
	SR + CR	Poor	---	64	75	83	86
		Good	---	60	72	80	84
	C	Poor	---	63	74	82	85
		Good	-	61	73	81	84
	C + CR Poor	Poor	---	62	73	81	84
		Good	\cdots	60	72	80	83
	C\&T	Poor	---	61	72	79	82
		Good	...	59	70	78	81
	C\&T + CR	Poor	---	60	71	78	81
		Good	---	58	69	77	80

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathrm{I}_{100}=\mathbf{- 2 . 5 2} \ln (\mathrm{D})+\mathbf{1 2 . 7 3 5}$
$\mathrm{I}_{50}=\mathbf{- 2 . 2 5} \ln (\mathrm{D})+\mathbf{1 1 . 3 7 5}$
$\mathrm{I}_{\mathbf{2 5}}=\mathbf{- 2 . 0 0} \ln (\mathrm{D})+10.111$
$\mathrm{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (\mathrm{D})+\mathbf{8 . 8 4 7}$
$\mathrm{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathrm{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

JOB NAME: JOB NUMBER: DATE: CALCULATED BY	RETREAT 1185.31 $02 / 21 / 24$ $M A W$	AT TIMBER		$\overline{N G N O .} 4$																
								SIN RUN	F COE	ICIENT	MA									
			C VA	UE DCM TAB						UE DCM TAB					"C"			EIGHTE		WEIGHTED IMP.
BASIN	TOTAL AREA (AC)	LAND USE	PERCENT IMP.	AREA (AC)	C(2)	C(5)	C(100)	LAND USE	PERCENT IMP.	AREA (AC)	C (2)	C(5)	C(100)	C(2)	C(5)	$\mathrm{C}(100)$	CA(2)	CA(5)	CA(100)	PERCENT
EX-1	31.60	UNDEV.	2.0\%	31.60	0.03	0.09	0.36			0.00	0.02	0.08	0.35	0.03	0.09	0.36	0.95	2.84	11.38	2.0\%
EX-2	3.30	UNDEV.	2.0\%	2.92	0.03	0.09	0.36	PAVED RD.	100.0\%	0.38	0.89	0.90	0.96	0.13	0.18	0.43	0.43	0.60	1.42	13.3\%
EX-3	0.22	UNDEV.	2.0\%	0.20	0.03	0.09	0.36	GRAVEL RD.	80.0\%	0.02	0.57	0.59	0.70	0.08	0.14	0.39	0.02	0.03	0.09	9.1\%
EX-4	0.49	UNDEV.	2.0\%	0.39	0.03	0.09	0.36	PAVED RD.	100.0\%	0.10	0.89	0.90	0.96	0.21	0.26	0.48	0.10	0.13	0.24	22.0\%
OS-1	5.50	5 AC.+ RES,	5.0\%	5.50	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.22	0.58	2.06	5.0\%
OS-2	9.60	$5 \mathrm{AC}$. . RES,	5.0\%	9.60	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.38	1.01	3.60	5.0\%
OS-3	2.50	$5 \mathrm{AC}$. + RES,	5.0\%	2.50	0.04	0.11	0.38			0.00	0.02	0.08	0.35	0.04	0.11	0.38	0.10	0.26	0.94	5.0\%

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $02 / 21 / 24$ MAW *ALL STORM SEWER TO BE P	E FILING \boldsymbol{N} VATE UNLESS SUR	OTHERWISE N FFACE RO	TED TING SUN					
Design Point(s)	Contributing Basins / Design Point	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Facility/ Inlet Size*
E1	EX-1, OS-1, OS-2, OS-3	4.69	17.98	33.8	2.30	3.87	11	69	
E2	EX-2	0.60	1.42	25.8	2.71	4.54	2	6	

total AREA
TRIBUTARY TO
PROP. ON-SITE
POND
48.50
7.1\%

Basins tributaty to proposed on-site Pond Basin tributary to exist. Rain Garden within RTR Fil. 3

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $02 / 29 / 24$ MAW *ALL STORM SEWER TO BE P	VATE UNLESS	OTHERWISE N FACE ROU	DTED UTING SUM	RY				
Design Point(s)	Contributing Basins / Design Point	$\begin{gathered} \text { Equivalent } \\ C A(5) \\ \hline \end{gathered}$	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Facility/ Inlet Size*
1	85\% OS-1, OS-2, A	2.88	9.76	30.7	2.44	4.10	7	40	TYPE D InLET
2	OS-3, B	1.83	6.13	30.0	2.48	4.16	5	25	TYPE D INLET
3	15\% OS-1, D	0.65	2.03	22.9	2.89	4.85	2	10	GRATED INLET
$\begin{gathered} \hline 4 \text { (TOTAL POND } \\ \text { INFLOW) } \\ \hline \end{gathered}$	DP-1, DP-2, DP-3, E	5.60	18.70	31.8	2.39	4.01	13	75	PROP. POND
5	C	0.84	1.62	21.4	2.99	5.01	2	8	18" RCP CULVT
6	DP-5, F	0.93	1.86	21.4	2.99	5.01	3	9	$\begin{aligned} & \text { EXIST. TYPE C } \\ & \text { CDOT INLET } \end{aligned}$
We found an error in the basin areas. The total area for both basins C\&F is 3.3 ac. that matches the Filing 3 report. Basin areas and flows for C\&F are now correct.			In the Filing 3 drainage report OS-4 which corresponds with DP-6 is listed as having flows of 2 and 6 cfs. Discuss discrepancies between original calculations and proposed results and verify the rain garden can still accept all flows from filing 4.						

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	RETREAT AT TIMBERRID 1185.31 $03 / 01 / 24$ MAW PIPES ARE LISTED AT MAXIMU REFER TO INDIVIDUAL PIPE S PIPES ARE TO BE PRIVATE UN PRIVATE STORM MATERIALS	GE FILING N M SIZE REQUIR EETS FOR HYDR ESS OTHERW O BE RCP OR		MODATE Q100 MATION. OLYPROPYLE	NS AT WPP) RY	UM SLO SELEC	BYCO	ACTOR	
Pipe Run	Contributing Basin / Design Point / Pipe Run	Equivalent CA(5)	Equivalent CA(100)	$\begin{gathered} \text { Maximum } \\ \text { Tc } \\ \hline \end{gathered}$	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
1	DP-1	2.88	9.76	30.7	2.44	4.10	7	40	PROP. 36" RCP
2	DP-2	1.83	6.13	30.0	2.48	4.16	5	25	PROP. 36" RCP
3	PR-1, PR-2	4.71	15.88	31.3	2.42	4.05	11	64	PROP. 42" RCP
4	DP-3	0.65	2.03	22.9	2.89	4.85	2	10	PROP. 18" RCP
5	$\begin{aligned} & \text { PR-3, PR-4 } \\ & \text { (42" RCP OUTFALL) } \end{aligned}$	5.36	17.91	31.3	2.42	4.05	13	73	PROP. 42" RCP

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 1

Design Information (Input)			$\begin{aligned} & \mathrm{ft} / \mathrm{ft} \\ & \text { inches } \\ & \text { cfs } \end{aligned}$
Pipe Invert Slope	So =	0.0100	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D =	36.00	
Design discharge	$\mathrm{Q}=$	40.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	7.07	
Full-flow wetted perimeter	$\mathrm{Pf}=$	9.42	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	66.88	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.69	radians
Flow area	An =	4.05	sq ft
Top width	$\mathrm{Tn}=$	2.98	ft
Wetted perimeter	$\mathrm{Pn}=$	5.06	ft
Flow depth	$\mathrm{Yn}=$	1.67	ft
Flow velocity	$\mathrm{Vn}=$	9.88	fps
Discharge	Qn =	40.00	cfs
Percent of Full Flow	Flow $=$	59.8\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.49	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c $=$	1.95	radians
Critical flow area	Ac $=$	5.17	sq ft
Critical top width	$\mathrm{Tc}=$	2.78	ft
Critical flow depth	$\mathrm{Yc}=$	2.06	ft
Critical flow velocity	$\mathrm{Vc}=$	7.73	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 2

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0100	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	36.00	
Design discharge	$\mathrm{Q}=$	25.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	7.07	
Full-flow wetted perimeter	Pf =	9.42	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	66.88	
Calculation of Normal Flow Condition			
Half Central Angle ($0<$ Theta<3.14) Flow area	Theta $=$	1.42	radians sq ft
	$\mathrm{An}=$	2.85	
Top width	Tn =	2.96	ft
Wetted perimeter	$\mathrm{Pn}=$	4.25	ft
Flow depth	Yn =	1.27	ft
Flow velocity	$\mathrm{Vn}=$	8.78	fps
Discharge	Qn =	25.00	cfs
Percent of Full Flow	Flow $=$	37.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.58	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.65	radians
Critical flow area	Ac $=$	3.87	sq ft
Critical top width	Tc =	2.99	ft
Critical flow depth	Yc =	1.61	ft
Critical flow velocity	$\mathrm{Vc}=$	6.46	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 3

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0340	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	42.00	
Design discharge	$\mathrm{Q}=$	64.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	9.62	
Full-flow wetted perimeter	Pf =	11.00	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	186.01	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	$\begin{array}{r} \text { Theta }= \\ \text { An }= \end{array}$	1.38	radians sq ft
Flow area		3.65	
Top width	Tn =	3.44	ft
Wetted perimeter	$\mathrm{Pn}=$	4.83	ft
Flow depth	$\mathrm{Yn}=$	1.42	ft
Flow velocity	$\mathrm{Vn}=$	17.54	fps
Discharge	Qn =	64.00	cfs
Percent of Full Flow	Flow =	34.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.00	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.02	radians
Critical flow area	Ac $=$	7.38	sq ft
Critical top width	Tc =	3.16	ft
Critical flow depth	Yc =	2.51	ft
Critical flow velocity	$\mathrm{Vc}=$	8.68	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 3

Design Information (Input)			ft/ft
Pipe Invert Slope	So =	0.0358	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	42.00	
Design discharge	$\mathrm{Q}=$	64.00	
Full-Flow Capacity (Calculated)			sq ft ft radians cfs
Full-flow area	Af $=$	9.62	
Full-flow wetted perimeter	Pf =	11.00	
Half Central Angle	Theta $=$	3.14	
Full-flow capacity	Qf =	190.88	
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	$\begin{array}{r} \text { Theta }= \\ \text { An }= \end{array}$	1.37	radians sq ft
Flow area		3.58	
Top width	Tn =	3.43	ft
Wetted perimeter	$\mathrm{Pn}=$	4.79	ft
Flow depth	Yn =	1.40	ft
Flow velocity	$\mathrm{Vn}=$	17.87	fps
Discharge	Qn =	64.00	cfs
Percent of Full Flow	Flow $=$	33.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.08	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.02	radians
Critical flow area	Ac $=$	7.38	sq ft
Critical top width	Tc =	3.16	ft
Critical flow depth	Yc =	2.51	ft
Critical flow velocity	$\mathrm{Vc}=$	8.68	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 4

Design Information (Input)			
Pipe Invert Slope	So =	0.0400	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	18.00	inches
Design discharge	$\mathrm{Q}=$	10.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	21.07	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.54	radians
Flow area	An =	0.85	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	$\mathrm{Pn}=$	2.31	ft
Flow depth	$\mathrm{Yn}=$	0.73	ft
Flow velocity	$\mathrm{Vn}=$	11.77	$f \mathrm{fp}$
Discharge	Qn =	10.00	cfs
Percent of Full Flow	Flow =	47.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.75	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.25	radians
Critical flow area	Ac =	1.54	sq ft
Critical top width	Tc =	1.17	ft
Critical flow depth	$\mathrm{Yc}=$	1.22	ft
Critical flow velocity	$\mathrm{Vc}=$	6.50	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: RETREAT AT TIMBERRIDGE FILING NO. 4

Pipe ID: Pipe Run 5

Design Information (Input)			
Pipe Invert Slope	So $=$	0.0100	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D $=$	42.00	inches
Design discharge	Q =	73.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	100.88	cfs
Calculation of Normal Flow Condition			
Half Central Angle ($0<$ Theta<3.14)	Theta $=$	1.83	radians
Flow area	$\mathrm{An}=$	6.39	sq ft
Top width	Tn =	3.38	ft
Wetted perimeter	$\mathrm{Pn}=$	6.42	ft
Flow depth	$\mathrm{Yn}=$	2.21	ft
Flow velocity	$\mathrm{Vn}=$	11.42	fps
Discharge	Qn =	73.01	cfs
Percent of Full Flow	Flow =	72.4\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.46	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.13	radians
Critical flow area	Ac $=$	7.89	sq ft
Critical top width	Tc =	2.97	ft
Critical flow depth	Yc =	2.68	ft
Critical flow velocity	$\mathrm{Vc}=$	9.25	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: RETREAT AT TIMBERRIDGE FILING NO. 4
Pipe ID: ${ }^{36 " P}$ Pond Outfall Pipe

Design Information (Input)			ft/ft
Pipe Invert Slope Pipe Manning's n-value Pipe Diameter Design discharge	So =	0.0382	
	$\mathrm{n}=$	0.0130	
	$\mathrm{D}=$	36.00	
	$\mathrm{Q}=$	58.20	
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	130.71	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.51	radians
Flow area	$\mathrm{An}=$	3.24	sq ft
Top width	Tn =	2.99	ft
Wetted perimeter	$\mathrm{Pn}=$	4.52	ft
Flow depth	Yn =	1.40	ft
Flow velocity	$\mathrm{Vn}=$	17.96	fps
Discharge	Qn =	58.20	cfs
Percent of Full Flow	Flow $=$	44.5\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	3.04	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	2.27	radians
Critical flow area	Ac $=$	6.22	sq ft
Critical top width	Tc =	2.29	ft
Critical flow depth	Yc =	2.47	ft
Critical flow velocity	$\mathrm{Vc}=$	9.35	$f p s$
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Project: RETREAT AT TIMBERRIDGE FILING NO. 4
ID: PIPE RUN 6 (18" RCP CULVERT)

Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Design Information:			
Design Discharge	Q	8	cfs
Circular Culvert:			
Barrel Diameter in Inches	D $=$	18	inches
Inlet Edge Type (Choose from pull-down list)	Groov	dge Projec	
OR:			
Box Culvert:		OR	
Barrel Height (Rise) in Feet	H (Rise) $=$		ft
Barrel Width (Span) in Feet	W (Span) =		ft
Inlet Edge Type (Choose from pull-down list)			
Number of Barrels	\# Barrels =	1	
Inlet Elevation	Elev IN =	7273.68	ft
Outlet Elevation OR Slope	So =	0.03	$\mathrm{ft} / \mathrm{ft}$
Culvert Length	$\mathrm{L}=$	75.83	ft
Manning's Roughness	$\mathrm{n}=$	0.013	
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0	
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1	
Tailwater Surface Elevation	$\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=$		ft
Max Allowable Channel Velocity	$\mathrm{V}=$	5	ft / s
Calculated Results:			
Culvert Cross Sectional Area Available	A $=$	1.77	ft^{2}
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	0.70	ft
Culvert Critical Depth	$\mathrm{Y}_{\mathrm{c}}=$	1.10	ft
Froude Number	$\mathrm{Fr}=$	2.40	Supercritical!
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.20	
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	1.37	
Sum of All Loss Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.57	ft
Headwater:			
Inlet Control Headwater	$\mathrm{HW}_{\mathrm{I}}=$	1.67	ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	N/A	ft
Design Headwater Elevation	HW =	7275.35	ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/D =	1.11	
Outlet Control Headwater Approximation	te for Low Flow	Backwat	alculations Req
Outlet Protection:			
Flow/(Diameter^2.5)	$\mathrm{Q} / \mathrm{D}^{\wedge} 2.5=$	2.90	$\mathrm{ft}^{0.5} / \mathrm{s}$
Tailwater Surface Height	$Y_{t}=$	0.60	ft
Tailwater/Diameter	Yt/D $=$	0.40	
Expansion Factor	$1 /(2 * \tan (\Theta))=$	4.51	
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	1.60	ft^{2}
Width of Equivalent Conduit for Multiple Barrels	$\mathrm{W}_{\text {eq }}=$	-	ft
Length of Riprap Protection	$\mathbf{L}_{\mathrm{p}}=$	6	ft
Width of Riprap Protection at Downstream End	T =	3	ft
Adjusted Diameter for Supercritical Flow	$\mathrm{Da}=$	1.10	ft
Minimum Theoretical Riprap Size	$\mathrm{d}_{50} \mathrm{~min}=$	4	in
Nominal Riprap Size	d_{50} nominal $=$	6	in
MHFD Riprap Type	Type =	VL	

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.
Friday, Mar 12024

Pipe Run 6 (18 In. RCP Culvert)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

$$
\begin{aligned}
& =7271.40 \\
& =75.83 \\
& =3.01 \\
& =7273.68 \\
& =18.0 \\
& =\text { Circular } \\
& =18.0 \\
& =1 \\
& =0.013 \\
& =\text { Circular Concrete } \\
& =\text { Square edge w/headwall }(C) \\
& =0.0098,2,0.0398,0.67,0.5
\end{aligned}
$$

$$
=7277.60
$$

$$
=30.00
$$

$$
=50.00
$$

Calculations

Qmin (cfs) $\quad=8.00$
Qmax (cfs) $\quad=8.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted

Qtotal (cfs)	$=8.00$
Qpipe (cfs)	$=8.00$
Qovertop (cfs)	$=0.00$
Veloc Dn (ft/s)	$=4.92$
Veloc Up (ft/s)	$=5.79$
HGL Dn (ft)	$=7272.70$
HGL Up (ft)	$=7274.78$
Hw Elev (ft)	$=7275.48$
Hw/D (ft)	$=1.20$
Flow Regime	$=$ Inlet Control

100 Yr. HGL Calculations
 Map Layout

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Table

Time	Intensity
$\mathbf{5}$	8.68
$\mathbf{1 0}$	6.93
$\mathbf{2 0}$	5.19
$\mathbf{3 0}$	4.16
$\mathbf{4 0}$	3.44
$\mathbf{6 0}$	2.42
$\mathbf{1 2 0}$	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90

Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7254.11

Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution $(c f s)$	Drainage Area (Ac.)	Runoff Coefficient	$5 y r$ Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
$\begin{aligned} & \text { 42" Storm Sewer } \\ & \text { Outfall } \end{aligned}$	7255.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 1 SWR 1-1	7260.50	73.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 6 SWR 6-1	7258.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2-1	7280.22	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3-1	7281.84	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 5 SWR 5-1	7275.98	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 4 SWR 4-1	7275.53	40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution					Total Design Flow				
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	$\underset{(\mathrm{min})}{\text { Manhole Tc }}$	Peak Flow (cfs)	Comment
42" Storm Sewer Outfall	0.00	0.00	0.00	0.00	0.00	606.19	0.12	0.07	73.00	
MH 1 SWR 1-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	73.00	
MH 6 SWR 6-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	
MH 2 SWR 2-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.00	
MH 3 SWR 3-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.00	
MH 5 SWR 5-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25.00	
MH 4 SWR 4-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.00	

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	$\begin{array}{\|c} \text { Mannings } \\ n \end{array}$	Bend Loss	Lateral Loss	Cross Section	$\begin{gathered} \text { Rise } \\ \text { (ft or in) } \end{gathered}$	$\begin{gathered} \text { Span } \\ \text { (ft or in) } \end{gathered}$
MH 1 SWR 1-1	31.58	7251.00	1.0	7251.32	0.013	0.03	1.00	CIRCULAR	42.00 in	42.00 in
MH 6 SWR 6-1	16.63	7253.32	4.0	7253.98	0.013	0.46	0.00	CIRCULAR	18.00 in	18.00 in
MH 2 SWR 2-1	349.42	7252.82	3.6	7265.33	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
MH 3 SWR 3-1	100.00	7266.83	3.4	7270.23	0.013	0.63	1.00	CIRCULAR	42.00 in	42.00 in
MH 5 SWR 5-1	42.30	7270.73	1.0	7271.15	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in

MH 4 SWR 4-1	43.64	7270.73	1.0	7271.15	0.013	0.63	1.00	CIRCULAR	36.00 in	36.00 in

Sewer Flow Summary:

| | Full Flow Capacity | Critical Flow | | Normal Flow | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Flow
 (cfs) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Froude
 Number | Flow
 Condition | Flow
 (cfs) | Surcharged
 Length
 (ft) | Comment |$|$

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	$\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} 2\right) \end{gathered}$	Comment
MH 1 SWR 1-1	73.00	CIRCULAR	42.00 in	9.62						
MH 6 SWR 6-1	10.00	CIRCULAR	18.00 in	1.77						
MH 2 SWR 2-1	64.00	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
MH 3 SWR 3-1	64.00	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
MH 5 SWR 5-1	25.00	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
MH 4 SWR 4-1	40.00	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7254.11

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1-1	7251.00	7251.32	0.00	0.00	7254.11	7254.11	7255.23	0.10	7255.33
MH 6 SWR 6-1	7253.32	7253.98	0.23	0.00	7254.34	7255.69	7256.19	0.00	7256.19
MH 2 SWR 2-1	7252.82	7265.33	0.03	0.21	7254.35	7267.84	7259.18	9.83	7269.01
MH 3 SWR 3-1	7266.83	7270.23	0.43	0.00	7268.27	7272.74	7273.02	0.88	7273.91
MH 5 SWR 5-1	7270.73	7271.15	0.26	0.49	7274.46	7274.52	7274.66	0.06	7274.71
MH 4 SWR 4-1	7270.73	7271.15	0.31	0.19	7273.91	7274.00	7274.41	0.11	7274.52

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi}^{\wedge} 2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}$ _fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})$ - Junction Loss $\mathrm{K} * \mathrm{~V}$ _fi ${ }^{\wedge} 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.

36" Pond Outfall - 100yr HGL

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100
Rainfall Calculation Method: Table

Time	Intensity
$\mathbf{5}$	8.68
$\mathbf{1 0}$	6.93
$\mathbf{2 0}$	5.19
$\mathbf{3 0}$	4.16
$\mathbf{4 0}$	3.44
$\mathbf{6 0}$	2.42
$\mathbf{1 2 0}$	0.67

Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints

Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7234.00

Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution $(c f s)$	Drainage Area (Ac.)	Runoff Coefficient	$5 y r$ Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
$\begin{aligned} & \text { 36" Storm Sewer } \\ & \text { Outfall } \end{aligned}$	7211.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 1 SWR 1-1	7240.05	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2-1	7246.00	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3-1	7251.50	58.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution				Total Design Flow					
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak (low (cfs)	Coment

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	$\underset{n}{\text { Mannings }}$	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH 1 SWR 1-1	86.65	7230.45	2.8	7232.88	0.013	0.03	1.00	CIRCULAR	36.00 in	36.00 in
MH 2 SWR 2-1	196.07	7233.38	2.7	7238.67	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in
MH 3 SWR 3-1	126.43	7240.17	3.8	7245.00	0.013	0.20	1.00	CIRCULAR	36.00 in	36.00 in

Sewer Flow Summary:

| | Full Flow Capacity | Critical Flow | | Normal Flow | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Flow
 (cfs) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Depth
 (in) | Velocity
 (fps) | Froude
 Number | Flow
 Condition | Flow
 (cfs) | Surcharged
 Length
 (ft) | Comment |$|$

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

| | | Existing | | Calculated | | Used | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Element
 Name | Peak
 Flow
 (cfs) | Cross
 Section | Rise | Span | Rise | Span | Rise | Span | Area
 (ft^2) | Comment |
| MH 1 SWR 1-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 | |
| MH 2 SWR 2-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 30.00 in | 30.00 in | 36.00 in | 36.00 in | 7.07 | |
| MH 3 SWR 3-1 | 58.20 | CIRCULAR | 36.00 in | 36.00 in | 27.00 in | 27.00 in | 36.00 in | 36.00 in | 7.07 | |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7234.00

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1-1	7230.45	7232.88	0.00	0.00	7234.00	7235.35	7235.05	1.65	7236.71
MH 2 SWR 2-1	7233.38	7238.67	1.39	0.00	7237.04	7241.14	7238.10	4.40	7242.50
MH 3 SWR 3-1	7240.17	7245.00	0.21	0.00	7241.57	7247.47	7246.58	2.25	7248.83

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer $\# 0$, is not considered a sewer.
- Bend loss $=$ Bend K * V_fi ^ $2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}_{-}$fo ${ }^{\wedge} 2 /\left(2^{*} \mathrm{~g}\right)-$ Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi} \wedge 2 /\left(2^{*} \mathrm{~g}\right)$.
- Friction loss is always Upstream EGL - Downstream EGL.
Provide headwater calculations for the area inlets. Added

Provide ditch and channel flow calculations for the proposed ditches and diversion.

Provide ECB/TRM specifications.

Added

Rock check dams are still proposed in the private diversion channel area to help minimize any erosion and sediment transport especially during establishment.

Determine if permanent check dams are necessary in these ditches. El Paso County does not prefer to accept and maintain permanent check dams because they can become a maintenance issue.

(Discuss with Staff)

Revised.
Now proposing TRM in side road ditches rather than rock check dams.

STORMWATER QUALITY CALCULATIONS

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)
Project: RETREAT AT TIMBERRIDGE FILING NO. 4
Basin ID: POND 4

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.91	0.201	Orifice Plate
Zone 2 (EURV)	3.35	0.114	Orifice Plate
Zone 3 (100-year)	6.17	1.216	Weir\&Pipe (Restrict)
	tal (all zones)	1.531	

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$f_{f \mathrm{ft}^{2}}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate =	3.50	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	14.00	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	sq. inches	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	eet

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
$=0$ ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.50	N/A	feet
Overflow Weir Slope Length =	4.12	N/A	feet
Grate Open Area / 100-yr Orifice Area $=$	6.86	N/A	
Overflow Grate Open Area w/o Debris =	29.35	N/A	ft^{2}
Overflow Grate Open Area w/ Debris =	14.68	N/A	ft^{2}

Depth to Invert of Outlet Pipe $=$	Zone 3 Restrictor	Not Selected	ft (distance below basin botto
	3.00	N/A	
$\begin{aligned} \text { Outlet Pipe Diameter } & = \\ \text { Restrictor Plate Height Above Pipe Invert } & =\end{aligned}$	36.00	N/A	inches
	21.00 V	inches	
User Input: Emergency Spillway (Rectangular or Trapezoidal)			
Spillway Invert Stage=	6.00	(relative to basi	bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	25.00	et	
Spillway End Slopes =	3.00		
Freeboard above Max Water Surface $=$	1.00	et	

	for Outlet Pipe w/	ow Restriction
	Zone 3 Restrictor	Not Selected
	4.28	N/A
	1.00	N/A
	1.74	N/A
	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.93	feet feet acres acre-ft
Stage at Top of Freeboard =	7.93	
Basin Area at Top of Freeboard =	0.61	
Basin Volume at Top of Freeboard =	2.52	

Routed Hydrograph Results Design Storm Return Period =	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
Design Storm Return Period $=$ One-Hour Rainfall Depth (in) $=$ CUHP Runoff Volume (acre-ft) $=$ Inflow Hydrograph Volume (acre-ft) $=$CUHP Predevelopment Peak Q (cfs) $=$ OPTIONAL Override Predevelopment Peak Q (cfs) $=$ Predevelopment Unit Peak Flow, q (cff/acre) $=$ Peak Inflow Q (cfs) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.85
	0.201	0.315	0.541	1.291	2.054	3.459	4.396	5.766	11.146
	N/A	N/A	0.541	1.291	2.054	3.459	4.396	5.766	11.146
	N/A	N/A	6.1	17.2	26.0	45.5	57.2	71.6	133.9
	N/A	N/A		11.0				269.0	
	N/A	N/A	0.13	0,23	0.54	0.94	1.18	269.0	2.76
	N/A	N/A	8.4	19.7	28.6	48.0	59.8	74.3	136.6
			1.5	9.5	17.5	36.7	47.4	58.2	130.41.0
Ratio Peak o These are the values from			N/A	0.9	0.7	0.8 ,	0.8	0.8	
			Overflow Weir	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
maxve the pre-devellopment map Max Vf			0.05	0.3	0.6	1.2	1.6	2.0	2.1
Max V_{ϵ}Time to Drain 97 and calcs. (See page 38 of			N/A						
			55	48	43	35	31	26	8
Time to Drain 99 report or pre-		5	61	58	54	49	47	44	
	.		3.74	4.28	4.61	5.21	5.50	5.98	6.89
Area at Maxilıun! runumiy vepun (aves) =		U. 29	0.36	- 0.42	0.43	0.46	0.48	0.50	0.55
Maximum Volume Stored (acre-ft) =	0.203	0.316	0.440	0.653	0.797	1.066	1.198	1.433	1.916

Where do the optional override values come from?

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	0:15:00	0.00	0.00	0.04	0.07	0.09	0.06	0.07	0.07	0.15
	0:20:00	0.00	0.00	0.17	0.53	0.98	0.17	0.20	0.24	1.71
	0:25:00	0.00	0.00	2.06	7.44	14.04	1.94	2.56	4.22	25.79
	0:30:00	0.00	0.00	6.58	16.97	25.62	25.93	33.77	40.74	86.94
	0:35:00	0.00	0.00	8.37	19.75	28.59	41.71	52.67	65.59	125.12
	0:40:00	0.00	0.00	8.29	18.84	27.07	48.05	59.82	74.25	136.60
	0:45:00	0.00	0.00	7.31	16.64	24.77	46.61	57.77	73.56	134.74
	0:50:00	0.00	0.00	6.42	14.79	22.16	44.63	55.37	70.63	129.26
	0:55:00	0.00	0.00	5.61	12.95	19.72	40.44	50.43	65.81	121.03
	1:00:00	0.00	0.00	4.96	11.45	17.83	36.26	45.54	61.13	113.40
	1:05:00	0.00	0.00	4.45	10.21	16.28	32.85	41.60	57.59	107.42
	1:10:00	0.00	0.00	3.90	9.03	14.78	29.09	37.10	51.34	97.17
	1:15:00	0.00	0.00	3.34	7.81	13.29	25.30	32.53	44.54	85.98
	1:20:00	0.00	0.00	2.79	6.56	11.38	21.53	27.76	37.75	73.33
	1:25:00	0.00	0.00	2.32	5.59	9.83	17.98	23.21	31.53	61.97
	1:30:00	0.00	0.00	2.04	4.99	8.67	15.42	19.99	27.03	53.40
	1:35:00	0.00	0.00	1.82	4.49	7.68	13.43	17.44	23.54	46.62
	1:40:00	0.00	0.00	1.63	3.97	6.79	11.77	15.30	20.57	40.76
	1:45:00	0.00	0.00	1.43	3.46	5.96	10.27	13.37	17.91	35.51
	1:50:00	0.00	0.00	1.24	2.96	5.17	8.91	11.62	15.46	30.69
	1:55:00	0.00	0.00	1.05	2.48	4.37	7.61	9.94	13.16	26.16
	2:00:00	0.00	0.00	0.85	2.00	3.56	6.35	8.32	11.01	21.92
	2:05:00	0.00	0.00	0.66	1.52	2.75	5.11	6.72	8.96	17.78
	2:10:00	0.00	0.00	0.46	1.05	1.97	3.88	5.13	6.91	13.69
	2:15:00	0.00	0.00	0.28	0.62	1.29	2.66	3.56	4.90	9.83
	2:20:00	0.00	0.00	0.14	0.35	0.89	1.58	2.19	3.11	6.70
	2:25:00	0.00	0.00	0.09	0.25	0.68	0.98	1.43	2.05	4.71
	2:30:00	0.00	0.00	0.07	0.19	0.53	0.62	0.96	1.37	3.34
	2:35:00	0.00	0.00	0.05	0.15	0.41	0.40	0.64	0.89	2.32
	2:40:00	0.00	0.00	0.04	0.11	0.31	0.25	0.42	0.55	1.56
	2:45:00	0.00	0.00	0.03	0.09	0.23	0.16	0.28	0.32	1.00
	2:50:00	0.00	0.00	0.02	0.06	0.17	0.10	0.18	0.16	0.60
	2:55:00	0.00	0.00	0.02	0.05	0.12	0.06	0.12	0.08	0.35
	3:00:00	0.00	0.00	0.01	0.03	0.08	0.04	0.08	0.06	0.24
	3:05:00	0.00	0.00	0.01	0.02	0.05	0.03	0.06	0.04	0.17
	3:10:00	0.00	0.00	0.01	0.02	0.04	0.02	0.05	0.04	0.14
	3:15:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.03	0.11
	3:20:00	0.00	0.00	0.00	0.01	0.02	0.01	0.03	0.02	0.08
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.06
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.04
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ {[\mathrm{ft}]} \end{gathered}$	Area [ft ${ }^{2}$]	Area [acres]	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
7248	0.00	106	0.002	0	0.000	0.00	For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
7249	1.00	1,547	0.036	826	0.019	0.03	
7250	2.00	2,988	0.069	3,094	0.071	0.06	
7251	3.00	10,267	0.236	9,721	0.223	0.11	
7252	4.00	17,546	0.403	23,628	0.542	4.58	
7253	5.00	19,716	0.453	42,259	0.970	29.26	
7254	6.00	21,886	0.502	63,060	1.448	58.31	
7255	7.00	24,268	0.557	86,137	1.977	144.05	
7256	8.00	26,651	0.612	111,597	2.562	318.05	

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |

	-			-		

DRAINAGE MAPS

BASIN RUNOFF SUMMARY																				
bsas				$$				$$						$$						
	0.8	${ }^{24}$	ns	Oer										${ }^{4}$	20					
${ }_{8}{ }^{2}$	${ }^{0 \cdot 8}$	000	1.2	0,12	${ }^{30}$	10	${ }^{26}$	${ }^{20}$	5	${ }^{22}$	${ }^{5}$	${ }^{32}$	${ }^{38}$	27	27	${ }^{4}$			2	
${ }^{\text {ex }}$	${ }_{0}^{012}$	${ }^{001}$	${ }^{00}$	12	70	${ }^{4}$	${ }^{83}$						${ }^{8}$	${ }^{36}$	440	${ }^{2}$			0	
${ }_{\text {® }}{ }^{\text {a }}$	0.10	${ }^{013}$	${ }_{0} 2$	12	${ }^{\text {w }}$	3	${ }^{123}$						${ }^{123}$	${ }^{365}$	38	${ }^{64}$			0.	
	02	${ }_{0}^{0.8}$	${ }^{28}$	0	${ }_{30}$	12	${ }^{22}$	${ }^{25}$	108	20			28	23	28	${ }^{4}$				
082	0	19	$3 \times$	${ }^{0.6}$	${ }_{3}$	10	214	mom	400	${ }^{20}$	${ }^{\text {s }}$		${ }^{23}$	20	22	4		${ }^{18}$		
	0.0	028	09	0	${ }^{30}$			${ }_{30}$	500							${ }^{4}$				

SURFACE ROUTING SUMMARY									
Design	Contributing Basins /Design Point	$\left.\right\|_{\substack{\text { Equivalen } \\ \text { CAss }}} \text { Sur }$	Equivion	${ }_{\text {maximum }}^{\substack{\text { co }}}$	Intensity		Fow		
					(15)	11000	Q(5)	a(100)	
${ }^{\text {E }}$	Ex1,085,08, $2,0,03$	${ }_{4}^{49}$	${ }^{17,98}$	${ }^{338}$	${ }^{230}$	${ }^{387}$	11	${ }^{69}$	
2	Ex2	000	1.12	228	221	454	2	${ }^{6}$	

