This is a SWMP, not an O&M Manual. What we need is an O&M Manual for how to operate and maintain the proposed EDB after construction has been completed.

## STORM WATER MANAGEMENT PLAN FOR VOLLMER SUBSTATION EL PASO COUNTY, COLORADO

August 2024

Prepared For:

**TRI-STATE GENERATION AND TRANSMISSION ASSOCIATION, INC.** Chris Ansari 1100 West 116<sup>th</sup> Avenue, Westminster, CO 80234 (720) 454-0699

Prepared By:

**TERRA NOVA ENGINEERING, INC.** 721 S. 23<sup>rd</sup> ST. Colorado Springs, CO 80904 (719) 635-6422

TNE Job No. 1845.00 County Job No. AASI-19-006 and PPR2147

#### **CONTACT INFORMATION**

#### **SWMP APPLICANT:**

Tri-State Generation and Transmission Association, Inc. attn: Chris Ansari 1100 West 116<sup>th</sup> Avenue Westminster, CO 80234 (719) 495-2283, zsutton@tristategt.org

#### **CONTRACTOR:**

Tri-State Generation and Transmission Association, Inc. attn: Chris Ansari 1100 West 116<sup>th</sup> Avenue Westminster, CO 80234 (719) 495-2283, zsutton@tristategt.org

#### **ENGINEER:**

Terra Nova Engineering, Inc. L Ducett, P.E. 721 S. 23<sup>rd</sup> St. Colorado Springs, CO 80904 719-635-6422 Office 1@tnesinc.com

#### EROSION CONTROL SUPERVISOR/ SWMP ADMINISTRATOR:

Tri-State Generation and Transmission Association, Inc. attn: Chris Ansari 1100 West 116<sup>th</sup> Avenue Westminster, CO 80234 (719) 495-2283, zsutton@tristategt.org

SWMP is to be maintained on site in the construction trailer whenever work is occurring. If construction trailer is not available, another alternative must be provided.

## **COLORADO DISCHARGE PERMIT SYSTEM (CDPS)**

TO: Site Inspector Responsible For All CDPS Requirements

The following storm water pollution management plan (SWMP) is a detailed account of the requirements for the CDPS permit. The main objective of this plan is to prevent any contamination of the storm water while construction activity is taking place.

This document must be kept at the construction site at all times and be made available to the public and any representative of the Colorado Department of Health – Water Quality Control Division, if requested.

Enclosed are temporary erosion control details for the construction site and storm sewer outfall points (Detail A). The operation and maintenance inspection record should be used as a guideline for the inspection of permanent and temporary control devices. Items to be inspected are not limited to those listed. The inspections should be made at regular intervals and before and after storm events. The inspection records must be signed and kept in this binder for no less than three (3) years.

## **STORM WATER MANAGEMENT PLAN FOR** Vollmer Substation – El Paso County, Colorado

#### **TABLE OF CONTENTS**

| Site Description and Existing Conditions                | Page 5  |
|---------------------------------------------------------|---------|
| Construction Activities                                 | Page 5  |
| Construction Schedule and Sequence                      | Page 6  |
| Potential Sources of Pollution                          | Page 7  |
| Implementation of Control Measures                      | Page 7  |
| Materials Handling                                      | Page 8  |
| Waste Management and Disposal                           | Page 8  |
| Spill Prevention and Control Plan                       | Page 8  |
| Maintenance, Inspection, and Repair                     | Page 12 |
| Final Stabilization and Long Term Stormwater Management | Page 13 |
| Requirements That Are Not Applicable                    | Page 13 |

#### APPENDIX

GENERAL LOCATION MAP EROSION CONTROL PLAN & DETAILS SELECT UDFCD BMP DESCRIPTION SHEETS GENERAL PERMIT APPLICATION OPERATION AND MAINTENANCE INSPECTION FORM OPERATION AND MAINTENANCE INSPECTION RECORD

#### STORM WATER MANAGEMENT PLAN FOR Vollmer Substation – El Paso County, Colorado

#### SITE DESCRIPTION & EXISTING CONDITIONS

This site is approximately 4.96 acres of undeveloped land located in the northwest part of El Paso County, approximately 3,600 feet east of the north end of Mohawk Road. This site is being developed as an electrical substation. The development will also include constructing a gravel access road, a series of power poles to the substation, and a temporary construction road. The site is located in the southeast quarter of Section 34, Township 12 South, Range 65 West of the 6<sup>th</sup> Principal Meridian currently within El Paso County, Colorado. The site is bounded on all sides by undeveloped open space (rural residential). The site is contained within the Sand Creek Basin. Existing vegetation onsite consists of grasses with approximately 80% ground cover per aerial photos.

Soils for this project are delineated by the map in the appendix as Columbine gravelly sandy loam (19), 0 to 3 percent slopes. Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group A. Gravelly sandy loam typically has medium-high erosion potential.

The site lies within the Sand Creek Drainage Basin, with storm runoff draining to the south onsite primarily as sheet flow, before entering the proposed extended detention basin, and then flowing off the site to the south in a swale. The ultimate receiving waters for the Site is Fountain Creek.

No known toxic materials have been treated, stored, disposed, spilled or leaked onto the site.

No stream crossings are located on the site.

No sources of non-stormwater discharge have been identified onsite.

#### **CONSTRUCTION ACTIVITY**

The proposed development is an electrical substation, with a water quality extended detenion basin, access road, and a series of power poles to the substation. Proposed construction activities include regrading the site and

access road, construction of the electrical substation structures, installation of culverts at three access road crossings, construction of two drainage channels on the north side of the site, construction of a water quality extended detention basin, construction of a temporary construction road for the power poles, and construction of the power poles. Potential pollutants at the site include suspended solids, fuels, and lubricants.

Practices to minimize contact of construction materials, equipment, and vehicles within the storm water include installation of silt fencing and sedimentation control logs, installation of vehicle tracking control, and sub-contractor cleaning and hauling of excess debris and material upon completion of work. Construction material loading and unloading, and access to such areas occur from staging areas shown on the map. See Erosion Control plan for Vehicle Tracking access point during construction. Street sweeping may be used to clean up sediment tracked offsite. The concrete washout area will be removed and disposed of as required by this permit as well as the SWMP permit.

There will be no on-site mobile fueling. Contractor shall have the Hazardous Material emergency response number posted on the site. No concrete or asphalt batch plants are planned for the construction site. The site will be considered stabilized when site vegetation is 70% established and grading and building construction has been completed. There will be 21.6 acres of disturbed soil area. The estimate for cut on this site is 4,522 cy and for fill it is 6,027 cy for a net fill of 1,505 cy.

No non-stormwater discharges are anticipated at the site.

#### CONSTRUCTION SCHEDULE AND SEQUENCE

Grading will begin in Spring 2022 with completion of construction activities anticipated to be in the Fall of 2022. The construction sequence will be: clear and grub, access road construction and final grading, extended detention basin construction, electrical structure construction, landscaping/stabilization, and cleanup.

Before clearing and grubbing may begin the first level of BMP's are to be installed. These will include silt fencing and/or sediment control logs and vehicle tracking control at the exit point from the access road. The staging area is also to be setup with appropriate measures to protect the surrounding areas.

The second level of BMP's shall be installed once the previous BMP's and construction are completed. This level includes any disturbed areas and stockpiles which are not at final grade, but will remain dormant for longer than 30 days to be mulched within 21 days after interim grading. Any area that is going to remain in an interim state for more than 60 days shall also be seeded. All temporary soil erosion control measures and BMP's shall be maintained until permanent soil erosion control measures are implemented and vegetation has been established to 70% on areas not to be covered with pavement or other finished products.

Erosion control measures shall be implemented in a manner that will protect properties and public facilities from the adverse effects of erosion and sedimentation as a result of construction and earthwork activities.

#### POTENTIAL SOURCES OF POLLUTION

The potential sources of pollution associated with this development are:

- Disturbed and stored soils
- Vehicle tracking of sediments
- Management of contaminated soils (if exist)
- Loading and unloading operations
- Outdoor storage activities (erodible building materials, fertilizers, chemicals, etc.)
- Vehicle and equipment maintenance and fueling
- Significant dust or particulate generating processes
- Routine maintenance activities involving fertilizers, pesticides, herbicides, fuels, solvents, etc.)
- Onsite waste management practices (waste piles, liquid wastes, dumpsters)
- Concrete truck / equipment washing
- Non-industrial waste sources such as worker trash and portable toilets

#### IMPLEMENATION OF CONTROL MEASURES

BMP design specifications and implementation information can be found in the UDFCD BMP Description Sheets included in the Appendix. This project does not rely on BMPs owned or operated by another entity.

#### **MATERIALS HANDLING**

All construction materials shall be handled in a manner to minimize the chance of stormwater contamination. Stockpile and material staging areas are shown on the Erosion Control Plan. Additional materials handling info is included in the Spill prevention and Control Plan section.

#### WASTE MANAGEMENT AND DISPOSAL

All waste and debris created by construction activities at the site shall be disposed of in compliance with all laws, regulations, and ordinances of the federal, state and local agencies. Waste bins will be checked for leaks and remaining capacity each time they are used. Waste bins will be emptied when they are full (at a minimum).

#### SPILL PREVENTION AND CONTROL PLAN

The Site Superintendent will act as the point of contact for any spill that occurs at this jobsite. The Construction Manager will be responsible for implementation of prevention practices, spill containment / cleanup, worker training, reporting and complete documentation in the event of a spill. The Site Superintendent shall immediately notify the Owner, /Construction Manager, State and the Local Fire Department in addition to the legally required Federal, State, and Local reporting channels (including the National Response Center, 800.424.8802) if a reportable quantity is released to the environment.

#### SPILL PREVENTION BEST MANAGEMENT PRACTICES

This section describes spill prevention methods Best Management Practices (BMP) that will be practiced to eliminate spills before they happen.

#### Equipment Staging and Maintenance

- Store and maintain equipment in a designated area.
- Reduce the amount of hazardous materials and waste by substituting non-hazardous or less hazardous materials.

- Use secondary containment (drain pan) to catch spills when removing or changing fluids.
- Use proper equipment (pumps, funnels) to transfer fluids.
- Keep spill kits readily accessible.
- Check incoming vehicles for leaking oil and fluids.
- Transfer used fluids and oil filters to waste or recycling drums immediately following generation.
- Inspect equipment routinely for leaks and spills.
- Repair equipment immediately, if necessary implement a preventative maintenance schedule for equipment and vehicles.

#### Fueling Area

- Perform fueling in designated fueling area minimum 50' away from federal waters.
- Use secondary containment (drain pan) to catch spills.
- Use proper equipment (pumps, funnels) to transfer fluids.
- Keep spill kits readily accessible.
- Inspect fueling areas routinely for leaks and spills.
- Hazardous Material Storage Areas: Reduce the amount of hazardous materials by substituting nonhazardous or less hazardous materials.

#### Hazardous Material Storage Areas

- Minimize the quantity of hazardous materials brought onsite.
- Store hazardous materials in a designated area away from drainage points.

#### Unexpected Contaminated Soil and Water

- Investigate historical site use.
- Perform all excavation activities carefully and only after the Owner/Construction.
- Manager directs any activities.

#### SPILL CONTAINMENT METHODS

The following discussion identifies the types of secondary containment that will be used in the event of a spill. Table 1 summarizes the containment methods for each potential source.

- Equipment Staging and Maintenance Area: An equipment leak from a fuel tank, equipment seal, or hydraulic line will be contained within a spill containment cell placed beneath all stationary potential leak sources. An undetected leak from parked equipment will be cleaned up using hand shovels and containerized in a 55-gallon steel drum for offsite disposal.
- Fueling Area: A small spill during fueling operations will be contained using fuel absorbent pads at the nozzle. The transfer of fuel into portable equipment will be performed using a funnel and/or hand pump and a spill pad used to absorb any incidental spills/drips. Any leaking tanks or drums will have fluids removed and transferred to another tank, drum, or container for the fluids. A spill response kit will be located near the fueling area or on the fuel truck for easy access. The spill response kit will include plastic sheeting, tarps, over pack drums, absorbent litter, and shovels.
- Hazardous Material Storage Area: A spill from containers or cans in a hazardous material storage area will be contained within the storage cabinet these materials are kept in.
- Unexpected Contaminated Soil: If contaminated soil is encountered during the project, the Owner/Construction Manager will be notified immediately. Small quantities of suspected contaminated soil will be placed on a 6-mil plastic liner and covered with 6-mil plastic. A soil berm or silt fence will be used to contain the stockpile and prevent migration of contaminated liquids in the soil.

#### **Table 1: Spill Prevention and Containment Methods**

| Potential Spill Source                 | Containment Method(s)                                                 |
|----------------------------------------|-----------------------------------------------------------------------|
| Equipment staging and maintenance area | Spill containment pad, spill kit, pumps, funnels                      |
| Fueling area (site equipment only)     | Spill containment pad, spill kit, pumps, funnels                      |
| Hazardous material staging area        | Spill containment pad, spill kit, pumps, funnels                      |
| Unexpected contaminated soil           | Plastic liner, plastic cover, soil berm, hay bales, lined super sacks |

#### SPILL COUNTERMEASURES

Every preventative measure shall be taken to keep contaminated or hazardous materials contained. If a release occurs, the following actions shall be taken:

1. **Stop the Spill**: The severity of a spill at the site is anticipated to be minimal as large containers/quantities of Hazardous Materials are not anticipated. The type of spill would occur while dispensing material at the hazardous materials storage facility and would likely be contained in secondary containment. Thus, the use spill kits or other available absorbent materials should stop the spill.

2. **Warn Others**: Notify co-workers and supervisory personnel of the release. Notify emergency responders if appropriate. For site personnel, an alarm system will consist of three one second blasts on an air horn sounded by the person discovering a spill or fire. In the event of any spill, the Superintendent and Project Manager shall be notified if the spill is 5 gallons or more the STATE will be contacted along with the Fire Department.

3. **Isolate the Area**: Prevent public access to the area and continue to minimize the spread of the material. Minimize personal exposure throughout emergency response actions.

4. Containment: A spill shall only be contained by trained personnel and if it is safe to do so. DO NOT

PLACE YOURSELF IN DANGER. Attempt to extinguish a fire only if it is in the incipient stage; trash can size or smaller. For larger spills, wait for the arrival of emergency response personnel and provide directions to the location of the emergency.

5. **Complete a Spill and Incident Report**: For each spill of a Hazardous Material a spill and incident report shall be completed and submitted to the Owner/Construction Manager and if applicable to the Engineer and the State of Colorado Department of Public Health and Environment.

#### MAINTENANCE, INSPECTION, AND REPAIR

The owner or his representative shall inspect and monitor all drainage facilities using the enclosed Inspection Forms in the appendix. In order to ensure that all graded surfaces, structures, vegetation, erosion and sediment control measures and other protective devices identified in the erosion control plan are maintained in good and effective condition, an Operation and Maintenance Inspection Monitoring Program will be implemented by the permit holder during the construction phase. A systematic inspection of all the above mentioned protective devices will be performed by trained personnel using the operation and maintenance inspection record form in the appendix at least once every 14 days. Also, post-storm event inspections must be conducted within 24 hours after the end of any precipitation or snowmelt event that causes surface erosion. Provided the timing is appropriate, the post-storm inspections may be used to fulfill the 14-day routine inspection requirement. A more frequent inspection schedule than the minimum inspections described may be necessary to ensure that BMPs continue to operate as needed to comply with the plan. All monitoring records are to be kept with the SWMP for a period of no less than three (3) years. All maintenance/repair of temporary and permanent erosion and sediment control facilities shall be per the details included in this report.

This lot will be considered stabilized when all construction activities have been completed and vegetation has been re-established. Erosion control measures, including silt fence, must be removed after final stabilization.

Any major revisions or modification to this Storm Water Management Plan will require a report addendum and erosion control map revision. Minor revisions may be signed off by the County Storm Water Field Inspector. The SWMP should be viewed as a "living document" that is continuously being reviewed and modified as a part of the overall process of evaluating and managing SW quality issues at the site. The QSM shall amend the SWMP when there is a change in design, construction, O&M of the site which would require the implementation of new or revised BMPs or if the SWMP proves to be ineffective in achieving the general objectives of controlling pollutants in SW discharges associated with construction activity or when BMPs are no longer necessary and are removed.

The onsite SWMP will be located at:

#### FINAL STABILIZATION AND LONG TERM STORMWATER MANAGEMENT

Permanent stabilization measures include landscaping per the approved landscaping plan. These temporary BMPS's are to be removed once the 70% vegetation or permanent landscaping has been established. At this point in the construction process, all landscaping should be in place and maintained for a period of time that allows for its establishment on the site.

Long term stormwater management is provided by the extended detention basin onsite.

#### **REQUIREMENTS THAT ARE NOT APPLICABLE**

The requirement for a phasing plan is not applicable as only one phase is proposed.

The requirement for spill prevention and pollution controls for dedicated batch plants is not applicable as no batch plants are proposed.

The requirement to show the location of any dedicated asphalt / concrete batch plants is no applicable as no batch plants are proposed.

#### **PREPARED BY:**

**Terra Nova Engineering, Inc.** L Ducett, P.E. President

Jobs/1845.00/Word/184500 SWMP-RPT.doc

# **GENERAL LOCATION MAP**



Vollmer Substation Vicinity Map



# EROSION CONTROL PLAN & DETAILS (see back pocket)

THIS DESIGN WAS PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF TERRA NOVA ENGINEERING, INC.

#### L DUCETT, P.E. COLORADO P.E. NO. 32339

# <u>LEGEND</u>

| 7262 —          | EXISTING 2' CONTOUR     |
|-----------------|-------------------------|
| 7260            | EXISTING 10' CONTOUR    |
|                 | FLOW DIRECTION          |
| _ · ·           | SURFACE FLOW CHANNEL    |
| — x —           | FENCE LINE              |
| <del>7261</del> | PROPOSED 1' CONTOUR     |
| <del></del>     | PROPOSED 5' CONTOUR     |
|                 | PROPOSED EDGE OF GRAVEL |
|                 | CONSTRUCTION BOUNDARY   |
|                 | LIMITS OF DISTURBANCE   |
| PR              | PROPOSED                |
| EX              | EXISTING                |

# EROSION CONTROL LEGEND

|       | ION CONTROL LLOL                        |                   | IMPLEMENTATION |
|-------|-----------------------------------------|-------------------|----------------|
| KEY   |                                         | SYMBOL            | PHASE          |
| SF    | SILT FENCE                              |                   | INITIAL        |
| (SSA) | STABILIZED STAGING AREA                 | A 4               | INITIAL        |
| (VTC) | VEHICLE TRACKING CONTROL                |                   | INITIAL        |
| SP    | STOCKPILE MANAGEMENT<br>WITH PROTECTION |                   | INITIAL        |
| CWA   | CONCRETE WASHOUT AREA                   |                   | INITIAL        |
| SCL   | SEDIMENT CONTROL LOG                    | SCL               | INITIAL        |
| PSMU  | PERMANENT SEEDING AND<br>MULCHING       | y y<br>y y<br>y y | FINAL          |
| (IP)  | INLET PROTECTION                        |                   | INITIAL        |
| SB    | SEDIMENT BASIN                          | $\bigcirc$        | INITIAL        |

# <u>NOTES</u>

1. PROTECT SAND FILTER FROM SEDIMENT LOADING DURING CONSTRUCTION ACTIVITIES. SITE MUST BE STABILIZED BEFORE ALLOWING FLOW INTO THE SAND FILTER. 2. CONTRACTOR MAY, AT THEIR OPTION, SUBSTITUTE WATTLES FOR SILT FENCE OR SILT FENCE FOR WATTLES. 3. EXISTING VEGETATION IS NATIVE GRASSES.

![](_page_18_Figure_9.jpeg)

# **VOLLMER SUBSTATION** EL PASO COUNTY, CO GRADING, EROSION, & SEDIMENT CONTROL PLAN NOVEMBER 2021

![](_page_18_Figure_12.jpeg)

THIS DESIGN WAS PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF TERRA NOVA ENGINEERING, INC.

L DUCETT, P.E. COLORADO P.E. NO. 32339

|                                                                                                                                                  |                   |                    |       | Unit       |    |                  | (with Pre  | -Plat Cons |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------|------------|----|------------------|------------|------------|
| Description                                                                                                                                      | Quantity          | Units              |       | Cost       |    | Total            | % Complete | Rer        |
| <b>SECTION 1 - GRADING AND EROSION CON</b>                                                                                                       | NTROL (Constru    | ction and <b>F</b> | Perm  | anent BMPs | ;) |                  | <u>.</u>   |            |
| * Earthwork                                                                                                                                      |                   |                    |       |            | -  |                  |            |            |
| less than 1,000; \$5,300 min                                                                                                                     |                   | CY                 | \$    | 8.00       | =  | \$<br>-          |            | \$         |
| 1,000-5,000; \$8,000 min                                                                                                                         |                   | CY                 | \$    | 6.00       | =  | \$<br>-          |            | \$         |
| 5,001-20,000; \$30,000 min                                                                                                                       | 6,027             | CY                 | \$    | 5.00       | =  | \$<br>30,135.00  |            | \$         |
| 20,001-50,000; \$100,000 min                                                                                                                     |                   | CY                 | \$    | 3.50       | =  | \$<br>-          |            | \$         |
| 50,001-200,000; \$175,000 min                                                                                                                    |                   | CY                 | \$    | 2.50       | =  | \$<br>-          | 1          | \$         |
| greater than 200,000; \$500,000 min                                                                                                              |                   | CY                 | \$    | 2.00       | =  | \$<br>-          | 1          | \$         |
| * Permanent Seeding (inc. noxious weed mgmnt.)                                                                                                   |                   | AC                 | \$    | 828.00     | =  | \$<br>-          |            | \$         |
| * Mulching                                                                                                                                       |                   | AC                 | \$    | 777.00     | =  | \$<br>-          |            | \$         |
| * Permanent Erosion Control Blanket                                                                                                              |                   | SY                 | \$    | 6.00       | =  | \$<br>-          |            | \$         |
| * Permanent Pond/BMP Construction                                                                                                                |                   | CY                 | \$    | 21.00      | =  | \$<br>-          |            | \$         |
| * Permanent Pond/BMP (provide engineer's estimate)                                                                                               | 1                 | EA                 | \$    | 15,000.00  | =  | \$<br>15,000.00  |            | \$         |
|                                                                                                                                                  |                   | EA                 |       |            | =  | \$<br>-          | 1          | \$         |
| Safety Fence                                                                                                                                     |                   | LF                 | \$    | 3.00       | =  | \$<br>-          | 1          | \$         |
| Temporary Erosion Control Blanket                                                                                                                |                   | SY                 | \$    | 3.00       | =  | \$<br>-          | 1          | \$         |
| Vehicle Tracking Control                                                                                                                         | 1                 | EA                 | \$    | 2,453.00   | =  | \$<br>2,453.00   | 1          | \$         |
| Silt Fence                                                                                                                                       |                   | LF                 | \$    | 2.60       | =  | \$<br>-          | 1          | \$         |
| Temporary Seeding                                                                                                                                | 1.2               | AC                 | \$    | 650.00     | =  | \$<br>780.00     |            | \$         |
| Temporary Mulch                                                                                                                                  | 1.2               | AC                 | \$    | 777.00     | =  | \$<br>932.40     |            | \$         |
| Erosion Bales                                                                                                                                    |                   | EA                 | \$    | 26.00      | =  | \$<br>-          |            | \$         |
| Erosion Logs/Straw Waddle                                                                                                                        | 7,520             | LF                 | \$    | 5.00       | =  | \$<br>37,600.00  |            | \$         |
| Rock Check Dams                                                                                                                                  |                   | EA                 | \$    | 518.00     | =  | \$<br>-          |            | \$         |
| Inlet Protection                                                                                                                                 |                   | EA                 | \$    | 173.00     | =  | \$<br>-          |            | \$         |
| Sediment Basin                                                                                                                                   | 1                 | EA                 | \$    | 1,824.00   | =  | \$<br>1,824.00   |            | \$         |
| Concrete Washout Basin                                                                                                                           | 1                 | EA                 | \$    | 932.00     | =  | \$<br>932.00     |            | \$         |
| Spill Kit                                                                                                                                        | 1                 | EA                 | \$    | 200.00     | =  | \$<br>200.00     | 1          | \$         |
| [insert items not listed but part of construction plans]                                                                                         |                   |                    |       |            | =  | \$<br>-          | 1          | \$         |
|                                                                                                                                                  | MA INTENA NCE (35 | % of Cons          | truct | ion BMPs)  | =  | \$<br>15,652.49  |            | \$         |
| * - Subject to defect w arranty financial assurance. A minimum of 20% shall be retained until final acceptance (MAXIMUM OF 80% COMPLETE ALLOWED) |                   | Secti              | on 1  | Subtotal   | =  | \$<br>105,508.89 |            | \$ 1       |

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

# **VOLLMER SUBSTATION** EL PASO COUNTY, CO EROSION, & SEDIMENT CONTROL PLAN NOVEMBER 2021

![](_page_19_Figure_8.jpeg)

![](_page_19_Figure_9.jpeg)

![](_page_19_Picture_10.jpeg)

# <u>NOTES</u>

1. PROTECT SAND FILTER FROM SEDIMENT LOADING DURING CONSTRUCTION ACTIVITIES. SITE MUST BE STABILIZED BEFORE ALLOWING FLOW INTO THE SAND FILTER. 2. CONTRACTOR MAY, AT THEIR OPTION, SUBSTITUTE WATTLES FOR SILT FENCE OR SILT FENCE FOR WATTLES.

3. EXISTING VEGETATION IS NATIVE GRASSES. 4. AERIAL IMAGES ARE FROM JUNE 2017.

5. PLACEMENT OF EROSION CONTROLS ALONG THE PROPOSED ELECTRIC TOWER ROUTE IS BASED ON INSPECTION OF THE SITE AND NOT TOPOGRAPHIC INFO. EROSION CONTROL LOCATIONS MAY NEED TO BE ADJUSTED SO THEY ARE PLACED ON THE DOWNHILL SIDE OF THE DISTURBED AREA. THE CONTRACTOR SHALL USE THEIR BEST JUDGEMENT ON PLACING THE EROSION CONTROLS TO OFFER THE BEST PROTECTION TO DOWNSTREAM AREAS. 6. CONTRACTOR TO MARK UP PLANS SHOWING THE ACTUAL FIELD INSTALLATION OF EROSION CONTROL BMPS.

| YMBOL           | IMPLEMENTATION<br>PHASE |                 |                         |
|-----------------|-------------------------|-----------------|-------------------------|
|                 | INITIAL                 |                 |                         |
| A               | INITIAL                 | LEGEND          |                         |
|                 |                         | 7262            | EXISTING 2' CONTOUR     |
|                 | INITIAL                 | 7260            | EXISTING 10' CONTOUR    |
| RININI RININI A |                         | -               | FLOW DIRECTION          |
|                 | INITIAL                 | _ · ·           | SURFACE FLOW CHANNEL    |
|                 | INITIAL                 | —— X ——         | FENCE LINE              |
|                 |                         | <del>7261</del> | PROPOSED 1' CONTOUR     |
| - SCL           | INITIAL                 | <del>7265</del> | PROPOSED 5' CONTOUR     |
| ~               |                         |                 | PROPOSED EDGE OF GRAVEL |
| v v<br>v v      | FINAL                   |                 | CONSTRUCTION BOUNDARY   |
| $\bigcirc$      |                         |                 | LIMITS OF DISTURBANCE   |
|                 | INIIIAL                 | PR              | PROPOSED                |
| $\bigcirc$      | INITIAL                 | EX              | EXISTING                |
|                 |                         |                 |                         |

| REVISIONSDESCRIPTIONDATENO.11/30/2111/30/21                                                    |                                                                                                                        |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| UNTIL SUCH TIME AS THESE<br>DRAWINGS ARE APPROVED<br>BY THE APPROPRIATE<br>REVIEMING AGENCIES, | IEKKA NOVA ENGINEEKING,<br>INC. APPROVES THEIR USE<br>ONLY FOR THE<br>PURPOSES DESIGNATED BY<br>WRITTEN AUTHORIZATION. |
| PREPARED FOR:<br>MVEA<br>ATTN: DAVF WALDNFR                                                    | 11140 E. WOODMEN RD<br>PEYTON, CO 80831<br>(719) 495-2283                                                              |
| 721 S. 23RD STREET<br>COLORADO SPRINGS, CO 80904                                               | OFFICE: 719-635-6422 Creative Civil Engineering Inc.                                                                   |
| VOLLMER SUBSTATION                                                                             | GRADING, EROSION, & SEDIMENT CONTROL PLAN<br>Erosion and sediment control plan                                         |
| DESIGNED<br>DRAWN BY<br>CHECKED E<br>H-SCALE<br>V-SCALE<br>JOB NO. 18<br>DATE ISSU             | BY LD<br>DLF<br>BY LD<br>AS SHOWN<br>NA<br>B45.00<br>ED 11/29/21                                                       |

![](_page_20_Figure_0.jpeg)

Stockpile Management (SM) **MM-2** STOCKPILE PROTECTION MAINTENANCE NOTES 1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE, INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE. STOCKPILE PROTECTION MAINTENANCE NOTES JCH TIME AS THE S ARE APPROVEI C APPROPRIATE IG AGENCIES, IOVA ENGINEERIN PROVES THEIR US OR THE S DESIGNATED E AUTHORIZATION. 4. IF PERIMETER PROTECTION MUST BE MOVED TO ACCESS SOIL STOCKPILE, REPLACE PERIMETER CONTROLS BY THE END OF THE WORKDAY. 5. STOCKPILE PERIMETER CONTROLS CAN BE REMOVED ONCE ALL THE MATERIAL FROM THE STOCKPILE HAS BEEN USED. (DETAILS ADAPTED FROM PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD) NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED. UNTIL S DRAMIN BY TH REVIEWI TERRA INC. AP ONLY PURPOS С D ĂА ΣΨ < └ □  $\Box$  $\vdash \frown \Box$  $\vdash$   $\frown$  $\triangleleft$ Urban Drainage and Flood Control District SP-4 November 2010 Urban Storm Drainage Criteria Manual Volume 3 SC-2 Sediment Control Log (SCL) SEDIMENT CONTROL LOG INSTALLATION NOTES 1. SEE PLAN VIEW FOR LOCATION AND LENGTH OF SEDIMENT CONTROL LOGS. 2. SEDIMENT CONTROL LOGS THAT ACT AS A PERIMETER CONTROL SHALL BE INSTALLED PRIOR TO ANY UPGRADIENT LAND-DISTURBING ACTIVITIES. 3. SEDIMENT CONTROL LOGS SHALL CONSIST OF STRAW, COMPOST, EXCELSIOR OR COCONUT FIBER, AND SHALL BE FREE OF ANY NOXIOUS WEED SEEDS OR DEFECTS INCLUDING RIPS, HOLES AND OBVIOUS WEAR. CE S. K 4. SEDIMENT CONTROL LOGS MAY BE USED AS SMALL CHECK DAMS IN DITCHES AND SWALES, HOWEVER, THEY SHOULD NOT BE USED IN PERENNIAL STREAMS OR HIGH VELOCITY DRAINAGE 721 COL OFF WAYS. 5. IT IS RECOMMENDED THAT SEDIMENT CONTROL LOGS BE TRENCHED INTO THE GROUND TO A DEPTH OF APPROXIMATELY % OF THE DIAMETER OF THE LOG. IF TRENCHING TO THIS DEPTH IS NOT FEASIBLE AND/OR DESIRABLE (SHORT TERM INSTALLATION WITH DESIRE NOT TO DAMAGE LANDSCAPE) A LESSER TRENCHING DEPTH MAY BE ACCEPTABLE WITH MORE ROBUST STAKING 6. THE UPHILL SIDE OF THE SEDIMENT CONTROL LOG SHALL BE BACKFILLED WITH SOIL THAT IS FREE OF ROCKS AND DEBRIS. THE SOIL SHALL BE TIGHTLY COMPACTED INTO THE SHAPE OF A RIGHT TRIANGLE USING A SHOVEL OR WEIGHTED LAWN ROLLER. 7. FOLLOW MANUFACTURERS' GUIDANCE FOR STAKING. IF MANUFACTURERS' INSTRUCTIONS DO NOT SPECIFY SPACING, STAKES SHALL BE PLACED ON 4' CENTERS AND EMBEDDED A MINIMUM OF 6" INTO THE GROUND, 3" OF THE STAKE SHALL PROTRUDE FROM THE TOP OF THE LOG. STAKES THAT ARE BROKEN PRIOR TO INSTALLATION SHALL BE REPLACED. Ó SEDIMENT CONTROL LOG MAINTENANCE NOTES 1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. ∢ MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE S EROSION, AND PERFORM NECESSARY MAINTENANCE. മ 2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE ហ DOCUMENTED THOROUGHLY. 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE. 4. SEDIMENT ACCUMULATED UPSTREAM OF SEDIMENT CONTROL LOG SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY 1/2 OF THE HEIGHT OF THE SEDIMENT CONTROL LOG. 5. SEDIMENT CONTROL LOG SHALL BE REMOVED AT THE END OF CONSTRUCTION. IF DISTURBED AREAS EXIST AFTER REMOVAL, THEY SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION. (DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, JEFFERSON COUNTY, COLORADO, DOUGLAS COUNTY, COLORADO, AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD) NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED. ESIGNED BY LD RAWN BY DLF Urban Drainage and Flood Control District SCL-5 November 2010 Urban Storm Drainage Criteria Manual Volume 3 HECKED BY LD SCALE AS SHOW

SCALE NA

)B NO. 1845.00

ATE ISSUED 11/29/

HEET NO. 6 OF

![](_page_21_Figure_0.jpeg)

| irrigation to wet a<br>uring dry or warm s<br><b>Table 1</b> 4 | nd settle the seed seeding times.<br>4-9. Recomme | l bed. Firm<br>nded Seed | ing of the s<br>I Mix for I | eedbed followin<br>High Water T | ng seeding v<br>able Conc      | vill improve results<br><b>litions<sup>1</sup></b> |
|----------------------------------------------------------------|---------------------------------------------------|--------------------------|-----------------------------|---------------------------------|--------------------------------|----------------------------------------------------|
| Common Name<br>(Variety)                                       | Scientific<br>Name                                | Growth<br>Season         | Growth<br>Form              | Seeds/Lb                        | Lbs<br>PLS/<br>Acre<br>Drilled | Lbs<br>PLS/Acre<br>Broadcast or<br>Hydroseeded     |
| Redtop <sup>2</sup>                                            | Agrostis alba                                     | Warm                     | Sod                         | 5,000,000                       | 0.1                            | 0.2                                                |
| Switchgrass<br>(Pathfinder)                                    | Panicum<br>virgatum                               | Warm                     | Sod/<br>Bunch               | 389,000                         | 2.2                            | 4.4                                                |
| Western<br>wheatgrass<br>(Arriba)                              | Pascopyrum<br>smithii                             | Cool                     | Sod                         | 110,000                         | 7.9                            | 15.8                                               |
| Indian saltgrass                                               | Distichlis<br>spicata                             | Warm                     | Sod                         | 520,000                         | 1.0                            | 2.0                                                |
| Wooly sedge                                                    | Carex<br>lanuginose                               | Cool                     | Sod                         | 400,000                         | 0.1                            | 0.2                                                |
| Baltic rush                                                    | Juncus<br>balticus                                | Cool                     | Sod                         | 109,300,000                     | 0.1                            | 0.2                                                |
| Prairie cordgrass                                              | Spartina<br>pectinata                             | Cool                     | Sod                         | 110,000                         | 1.0                            | 2.0                                                |
| Annual rye                                                     | Lolium<br>multiflorum                             | Cool                     | Cover<br>crop               | 227,000                         | 10.0                           | 20.0                                               |
|                                                                |                                                   |                          |                             | TOTAL                           | 22.4                           | 44.8                                               |
| Wildflowers                                                    |                                                   |                          | <u>.</u>                    |                                 |                                |                                                    |
| Nuttall's<br>sunflower                                         | Helianthus<br>nuttallii                           |                          |                             | 250,000                         | 0.10                           | 0.20                                               |
| Wild bergamot                                                  | Monarda<br>fistulosa                              |                          | <u> </u>                    | 1,450,000                       | 0.12                           | 0.24                                               |
| Yarrow                                                         | Achillea<br>millefolium                           |                          | <u>17</u>                   | 2,770,000                       | 0.06                           | 0.12                                               |
| Blue vervain                                                   | Verbena<br>hastata                                |                          | s <b>—</b>                  |                                 | 0.12                           | 0.24                                               |
|                                                                |                                                   |                          |                             | TOTAL                           | 0.40                           | 0.80                                               |

Revegetation

| (Variety)                                                   | Scien<br>Nai                                                     |
|-------------------------------------------------------------|------------------------------------------------------------------|
| Sheep fescue<br>(Durar)                                     | Festuca                                                          |
| Western<br>wheatgrass<br>(Arriba)                           | Pascopy<br>smithii                                               |
| Alkali sacaton                                              | Spolobo<br>airoides                                              |
| Slender wheatgrass                                          | Elymus<br>trachyce                                               |
| Canadian bluegrass<br>(Ruebens) <sup>1</sup>                | Poa<br>compre.                                                   |
| Switchgrass<br>(Pathfinder)                                 | Panicun<br>virgatur                                              |
| Annual rye                                                  | Lolium<br>multiflo                                               |
| Wildflowers                                                 | ā.                                                               |
| Blanket flower                                              | Faillara<br>aristata                                             |
| Prairie coneflower                                          | Ratibida<br>columna                                              |
|                                                             | Petalos                                                          |
| Purple prairie<br>clover                                    | purpure                                                          |
| Purple prairie<br>clover<br>Gayfeather                      | purpure<br>Liatris<br>punctate                                   |
| Purple prairie<br>clover<br>Gayfeather<br>Flax              | purpure<br>Liatris<br>punctate<br>Linum l                        |
| Purple prairie<br>clover<br>Gayfeather<br>Flax<br>Penstemon | purpure<br>Liatris<br>punctata<br>Linum l<br>Pensten<br>strictus |

May 2014

Δ

ഹ

 $\sim$ 

000

 $\mathbf{C}$ 

 $\overline{}$ 

 $\sim$ 

 $\sim$ 

 $\hat{\mathbf{O}}$ 

 $\infty$ 

 $\overline{}$ 

 $\overline{}$ 

wg,

Ó

ш U

8

Š

84

 $\overline{}$ 

awings/

 $\square$ 

00

ഹ

184

Ś

0

N:\jo|

O

City of Colorado Springs Drainage Criteria Manual, Volume 1 14-21

14-22

![](_page_21_Figure_10.jpeg)

HEET NO. 7 OF 3

![](_page_21_Figure_11.jpeg)

Table 14-10. Recommended Seed Mix for Transition Areas<sup>1</sup> ntific me i ovina vrum olus \_\_\_\_ aulus m rum dia aris temum lewisii non ium

saltgrass (Distichlis spicata) in salty soils.

![](_page_22_Figure_1.jpeg)

#### **Temporary and Permanent Seeding (TS/PS) EC-2**

### Description

P

 $\infty$ 

 $\sim$ 

 $\infty$ 

-

 $\sim$ 

O

Ñ

0

 $\infty$ 

 $\overline{}$ 

<u>\_\_\_</u>

dwg,

ш

J

500

184

awings/

 $\overline{\Box}$ 

00

Ь

184

N:\jobs/`

Temporary seeding can be used to stabilize disturbed areas that will be inactive for an extended period. Permanent seeding should be used to stabilize areas at final grade that will not be otherwise stabilized. Effective seeding includes preparation of a seedbed, selection of an appropriate seed mixture, proper planting techniques, and protection of the seeded area with mulch, geotextiles, or other appropriate measures.

#### **Appropriate Uses**

When the soil surface is disturbed and will remain inactive for an extended period (typically 30 days or longer),

proactive stabilization measures should be implemented. If the inactive period is short-lived (on the order of two weeks), techniques such as surface roughening may be appropriate. For longer periods of inactivity, temporary seeding and mulching can provide effective erosion control. Permanent seeding should be used on finished areas that have not been otherwise stabilized.

Douglas County

Photograph TS/PS -1. Equipment used to drill seed. Photo courtesy of

Typically, local governments have their own seed mixes and timelines for seeding. Check jurisdictional requirements for seeding and temporary stabilization.

### **Design and Installation**

Effective seeding requires proper seedbed preparation, selection of an appropriate seed mixture, use of appropriate seeding equipment to ensure proper coverage and density, and protection with mulch or fabric until plants are established.

The USDCM Volume 2 Revegetation Chapter contains detailed seed mix, soil preparations, and seeding and mulching recommendations that may be referenced to supplement this Fact Sheet.

Drill seeding is the preferred seeding method. Hydroseeding is not recommended except in areas where steep slopes prevent use of drill seeding equipment, and even in these instances it is preferable to hand seed and mulch. Some jurisdictions do not allow hydroseeding or hydromulching.

#### **Seedbed Preparation**

Prior to seeding, ensure that areas to be revegetated have soil conditions capable of supporting vegetation. Overlot grading can result in loss of topsoil, resulting in poor quality subsoils at the ground surface that have low nutrient value, little organic matter content, few soil microorganisms, rooting restrictions, and conditions less conducive to infiltration of precipitation. As a result, it is typically necessary to provide stockpiled topsoil, compost, or other

| Temporary and Permanent Seeding |     |  |  |  |
|---------------------------------|-----|--|--|--|
| Functions                       |     |  |  |  |
| Erosion Control                 | Yes |  |  |  |
| Sediment Control                | No  |  |  |  |
| Site/Material Management        | No  |  |  |  |
|                                 |     |  |  |  |

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3

TS/PS-1

#### **Temporary and Permanent Seeding (TS/PS) EC-2**

soil amendments and rototill them into the soil to a depth of 6 inches or more.

Topsoil should be salvaged during grading operations for use and spread on areas to be revegetated later. Topsoil should be viewed as an important resource to be utilized for vegetation establishment, due to its water-holding capacity, structure, texture, organic matter content, biological activity, and nutrient content. The rooting depth of most native grasses in the semi-arid Denver metropolitan area is 6 to 18 inches. At a minimum, the upper 6 inches of topsoil should be stripped, stockpiled, and ultimately respread across areas that will be revegetated.

Where topsoil is not available, subsoils should be amended to provide an appropriate plant-growth medium. Organic matter, such as well digested compost, can be added to improve soil characteristics conducive to plant growth. Other treatments can be used to adjust soil pH conditions when needed. Soil testing, which is typically inexpensive, should be completed to determine and optimize the types and amounts of amendments that are required.

If the disturbed ground surface is compacted, rip or rototill the surface prior to placing topsoil. If adding compost to the existing soil surface, rototilling is necessary. Surface roughening will assist in placement of a stable topsoil layer on steeper slopes, and allow infiltration and root penetration to greater depth.

Prior to seeding, the soil surface should be rough and the seedbed should be firm, but neither too loose nor compacted. The upper layer of soil should be in a condition suitable for seeding at the proper depth and conducive to plant growth. Seed-to-soil contact is the key to good germination.

Seed Mix for Temporary Vegetation

To provide temporary vegetative cover on disturbed areas which will not be paved, built upon, or fully landscaped or worked for an extended period (typically 30 days or more), plant an annual grass appropriate for the time of planting and mulch the planted areas. Annual grasses suitable for the Denver metropolitan area are listed in Table TS/PS-1. These are to be considered only as general recommendations when specific design guidance for a particular site is not available. Local governments typically specify seed mixes appropriate for their jurisdiction.

## Seed Mix for Permanent Revegetation

To provide vegetative cover on disturbed areas that have reached final grade, a perennial grass mix should be established. Permanent seeding should be performed promptly (typically within 14 days) after reaching final grade. Each site will have different characteristics and a landscape professional or the local jurisdiction should be contacted to determine the most suitable seed mix for a specific site. In lieu of a specific recommendation, one of the perennial grass mixes appropriate for site conditions and growth season listed in Table TS/PS-2 can be used. The pure live seed (PLS) rates of application recommended in these tables are considered to be absolute minimum rates for seed applied using proper drill-seeding equipment.

If desired for wildlife habitat or landscape diversity, shrubs such as rubber rabbitbrush (Chrysothamnus nauseosus), fourwing saltbush (Atriplex canescens) and skunkbrush sumac (Rhus trilobata) could be added to the upland seedmixes at 0.25, 0.5 and 1 pound PLS/acre, respectively. In riparian zones, planting root stock of such species as American plum (Prunus americana), woods rose (Rosa woodsii), plains cottonwood (Populus sargentii), and willow (Populus spp.) may be considered. On non-topsoiled upland sites, a legume such as Ladak alfalfa at 1 pound PLS/acre can be included as a source of nitrogen for perennial grasses.

TS/PS-2

June 2012

# **SC-7**

# Sediment Basin (SB)

| Upstream Drainage<br>Area (rounded to<br>nearest acre), (ac)                  | Basin Bottom Width<br>(W), (ft)                                                                | Spillway Crest<br>Length (CL), (ft)                                              | Hole<br>Diameter<br>(HD), (in                                                                    |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 12 ½<br>21<br>28<br>33 ½<br>43<br>47 ¼<br>51<br>55<br>58 ¼<br>61<br>64<br>67 ½<br>70 ½<br>73 ¼ | 2<br>3<br>5<br>6<br>8<br>9<br>11<br>12<br>13<br>15<br>16<br>18<br>19<br>21<br>22 | 952<br>1916<br>2752<br>2752<br>2952<br>2752<br>2753<br>1916<br>3752<br>1<br>1 76<br>1 36<br>1 36 |

SEDIMENT BASIN INSTALLATION NOTES

1. SEE PLAN VIEW FOR -LOCATION OF SEDIMENT BASIN.

- -TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN). -FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.
- -FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMBER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.
- 2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.
- 3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.
- 4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.
- 5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.
- 6. PIPE SCH 40 OR GREATER SHALL BE USED. 7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S)
- FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES.

SB-6

#### Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3

August 2013

**EC-4** 

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 June 2012

# Mulching (MU)

## Description

Mulching consists of evenly applying straw, hay, shredded wood mulch, rock, bark or compost to disturbed soils and securing the mulch by crimping, tackifiers, netting or other measures. Mulching helps reduce erosion by protecting bare soil from rainfall impact, increasing infiltration, and reducing runoff. Although often applied in conjunction with temporary or permanent seeding, it can also be used for temporary stabilization of areas that cannot be reseeded due to seasonal constraints.

![](_page_22_Picture_55.jpeg)

standard mechanical dry application methods or using hydromulching equipment that hydraulically applies a slurry of water, wood fiber mulch, and often a tackifier.

#### **Appropriate Uses**

![](_page_22_Picture_58.jpeg)

Photograph MU-1. An area that was recently seeded, mulched, and crimped.

Use mulch in conjunction with seeding to help protect the seedbed and stabilize the soil. Mulch can also be used as a temporary cover on low to mild slopes to help temporarily stabilize disturbed areas where growing season constraints prevent effective reseeding. Disturbed areas should be properly mulched and tacked, or seeded, mulched and tacked promptly after final grade is reached (typically within no longer than 14 days) on portions of the site not otherwise permanently stabilized.

Standard dry mulching is encouraged in most jurisdictions; however, hydromulching may not be allowed in certain jurisdictions or may not be allowed near waterways.

Do not apply mulch during windy conditions.

## **Design and Installation**

sites. Consider the following:

Prior to mulching, surface-roughen areas by rolling with a crimping or punching type roller or by track walking. Track walking should only be used where other methods are impractical because track walking with heavy equipment typically compacts the soil.

A variety of mulches can be used effectively at construction

![](_page_22_Picture_66.jpeg)

June 2012

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 MU-1

# Sediment Basin (SB)

# **SC-7**

SEDIMENT BASIN MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY. 3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET

BELOW THE SPILLWAY CREST). 5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION. 6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

August 2013

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 SB-7

**EC-4** 

# Mulching (MU)

- Clean, weed-free and seed-free cereal grain straw should be applied evenly at a rate of 2 tons per acre and must be tacked or fastened by a method suitable for the condition of the site. Straw mulch must be anchored (and not merely placed) on the surface. This can be accomplished mechanically by crimping or with the aid of tackifiers or nets. Anchoring with a crimping implement is preferred, and is the recommended method for areas flatter than 3:1. Mechanical crimpers must be capable of tucking the long mulch fibers into the soil to a depth of 3 inches without cutting them. An agricultural disk, while not an ideal substitute, may work if the disk blades are dull or blunted and set vertically; however, the frame may have to be weighted to afford proper soil penetration.
- Grass hay may be used in place of straw; however, because hay is comprised of the entire plant including seed, mulching with hay may seed the site with non-native grass species which might in turn out-compete the native seed. Alternatively, native species of grass hay may be purchased, but can be difficult to find and are more expensive than straw. Purchasing and utilizing a certified weed-free straw is an easier and less costly mulching method. When using grass hay, follow the same guidelines as for straw (provided above).
- On small areas sheltered from the wind and heavy runoff, spraying a tackifier on the mulch is satisfactory for holding it in place. For steep slopes and special situations where greater control is needed, erosion control blankets anchored with stakes should be used instead of mulch.
- Hydraulic mulching consists of wood cellulose fibers mixed with water and a tackifying agent and should be applied at a rate of no less than 1,500 pounds per acre (1,425 lbs of fibers mixed with at least 75 lbs of tackifier) with a hydraulic mulcher. For steeper slopes, up to 2000 pounds per acre may be required for effective hydroseeding. Hydromulch typically requires up to 24 hours to dry; therefore, it should not be applied immediately prior to inclement weather. Application to roads, waterways and existing vegetation should be avoided.
- Erosion control mats, blankets, or nets are recommended to help stabilize steep slopes (generally 3:1 and steeper) and waterways. Depending on the product, these may be used alone or in conjunction with grass or straw mulch. Normally, use of these products will be restricted to relatively small areas. Biodegradable mats made of straw and jute, straw-coconut, coconut fiber, or excelsior can be used instead of mulch. (See the ECM/TRM BMP for more information.)
- Some tackifiers or binders may be used to anchor mulch. Check with the local jurisdiction for allowed tackifiers. Manufacturer's recommendations should be followed at all times. (See the Soil Binder BMP for more information on general types of tackifiers.)
- Rock can also be used as mulch. It provides protection of exposed soils to wind and water erosion and allows infiltration of precipitation. An aggregate base course can be spread on disturbed areas for temporary or permanent stabilization. The rock mulch layer should be thick enough to provide full coverage of exposed soil on the area it is applied.

### Maintenance and Removal

After mulching, the bare ground surface should not be more than 10 percent exposed. Reapply mulch, as needed, to cover bare areas.

TIME AS T RE APPROV PPROPRIATI AGENCIES, ENGINEERI ES THEIR ( THE ESIGNATED СĽ MM  $\Box$ ĂА ΣЩ < ∟  $\Box$  $\vdash \leftarrow \square$  $\vdash$   $\frown$  $\triangleleft$ 721 COL SUBSTATION ER S ESIGNED BY LD RAWN BY DLF HECKED BY LD -SCALE AS SHOWN SCALE NA DB NO. 1845.00 ATE ISSUED 11/29/ HEET NO. 8 OF 8

MU-2

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 June 2012

**SELECT UDFCD BMP DESCRIPTION SHEETS** 

| TITLE                              | KEY | SYMBOL               |
|------------------------------------|-----|----------------------|
| BRUSH BARRIER                      | BB  | —— BB —— BB —— BB —— |
| CHECK DAM                          | CD  | - t                  |
| COMPOST BLANKET AND BERMS          | CB  |                      |
| CONSTRUCTION FENCE                 | CF  | CF CF CF             |
| CULVERT INLET PROTECTION           | CIP |                      |
| STABILIZED CONSTRUCTION<br>ROADWAY | SCR | SCR                  |
| CONCRETE WASHOUT AREA              | CWA |                      |
| DIVERSION DITCHES/CHANNELS         |     |                      |

| TITLE                              | <u>KEY</u> | SYMBOL |  |
|------------------------------------|------------|--------|--|
| DEWATERING OPERATIONS              |            |        |  |
| EARTH DIKES AND DRAINAGE<br>SWALES | ED/<br>DS  |        |  |
| EROSION CONTROL BLANKET            | ECB<br>TRM |        |  |
| INLET PROTECTION                   | IP         |        |  |
| MULCHING                           | MU         | MU     |  |
| OUTLET PROTECTION                  | OP         |        |  |
| PERMANENT SEEDING                  | PS         | PS     |  |
| REINFORCED CHECK DAM               | RCD        |        |  |

| TITLE                                 | KEY | SYMBOL   |  |
|---------------------------------------|-----|----------|--|
| ROCK SOCKS                            | RS  |          |  |
| ROUGH CUT STREET CONTROL              | RCS |          |  |
| SEDIMENT BASIN                        | SB  |          |  |
| SEDIMENT CONTROL LOG                  | SCL |          |  |
| SILT FENCE                            | SF  | SF SF SF |  |
| SURFACE ROUGHENING                    | SR  | SR       |  |
| STABILIZED STAGING AREA               | SSA |          |  |
| STOCKPILE MANAGEMENT W/<br>PROTECTION | SP  |          |  |

| TITLE                                            | KEY  | SYMBOL   |  |
|--------------------------------------------------|------|----------|--|
| STOCKPILE MANAGEMENT W/<br>PROTECTION IN ROADWAY | SPR  |          |  |
| STRAW BALE BARRIER                               | SBB  | <u> </u> |  |
| SEDIMENT TRAP                                    | ST   |          |  |
| TEMPORARY SEEDING                                | TS   | TS       |  |
| TERRACING                                        | TER  |          |  |
| TEMPORARY STREAM CROSSING<br>W/CULVERT           | TSCC |          |  |
| TEMPORARY STREAM CROSSING<br>W/FORD              | TSCF |          |  |
| TEMPORARY SLOPE DRAIN                            | TSD  |          |  |

![](_page_28_Figure_1.jpeg)

# Description

Surface roughening is an erosion control practice that involves tracking, scarifying, imprinting, or tilling a disturbed area to provide temporary stabilization of disturbed areas. Surface roughening creates variations in the soil surface that help to minimize wind and water erosion. Depending on the technique used, surface roughening may also help establish conditions favorable to establishment of vegetation.

# Appropriate Uses

Surface roughening can be used to provide temporary stabilization of disturbed areas, such as when

![](_page_29_Picture_6.jpeg)

**Photograph SR-1.** Surface roughening via imprinting for temporary stabilization.

revegetation cannot be immediately established due to seasonal planting limitations. Surface roughening is not a stand-alone BMP, and should be used in conjunction with other erosion and sediment controls.

Surface roughening is often implemented in conjunction with grading and is typically performed using heavy construction equipment to track the surface. Be aware that tracking with heavy equipment will also compact soils, which is not desirable in areas that will be revegetated. Scarifying, tilling, or ripping are better surface roughening techniques in locations where revegetation is planned. Roughening is not effective in very sandy soils and cannot be effectively performed in rocky soil.

# **Design and Installation**

Typical design details for surfacing roughening on steep and mild slopes are provided in Details SR-1 and SR-2, respectively.

Surface roughening should be performed either after final grading or to temporarily stabilize an area during active construction that may be inactive for a short time period. Surface roughening should create depressions 2 to 6 inches deep and approximately 6 inches apart. The surface of exposed soil can be roughened by a number of techniques and equipment. Horizontal grooves (running parallel to the contours of the land) can be made using tracks from equipment treads, stair-step grading, ripping, or tilling.

Fill slopes can be constructed with a roughened surface. Cut slopes that have been smooth graded can be roughened as a subsequent operation. Roughening should follow along the contours of the slope. The

tracks left by truck mounted equipment working perpendicular to the contour can leave acceptable horizontal depressions; however, the equipment will also compact the soil.

| Surface Roughening       |     |  |  |
|--------------------------|-----|--|--|
| Functions                |     |  |  |
| Erosion Control          | Yes |  |  |
| Sediment Control         | No  |  |  |
| Site/Material Management | No  |  |  |

# **Maintenance and Removal**

Care should be taken not to drive vehicles or equipment over areas that have been surface roughened. Tire tracks will smooth the roughened surface and may cause runoff to collect into rills and gullies.

Because surface roughening is only a temporary control, additional treatments may be necessary to maintain the soil surface in a roughened condition.

Areas should be inspected for signs of erosion. Surface roughening is a temporary measure, and will not provide long-term erosion control.

SURFACE ROUGHENING INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION(S) OF SURFACE ROUGHENING.

2. SURFACE ROUGHENING SHALL BE PROVIDED PROMPTLY AFTER COMPLETION OF FINISHED GRADING (FOR AREAS NOT RECEIVING TOPSOIL) OR PRIOR TO TOPSOIL PLACEMENT OR ANY FORECASTED RAIN EVENT.

3. AREAS WHERE BUILDING FOUNDATIONS, PAVEMENT, OR SOD WILL BE PLACED WITHOUT DELAY IN THE CONSTRUCTION SEQUENCE, SURFACE ROUGHENING IS NOT REQUIRED.

4. DISTURBED SURFACES SHALL BE ROUGHENED USING RIPPING OR TILLING EQUIPMENT ON THE CONTOUR OR TRACKING UP AND DOWN A SLOPE USING EQUIPMENT TREADS.

5. A FARMING DISK SHALL NOT BE USED FOR SURFACE ROUGHENING.

#### SURFACE ROUGHENING MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACE UPON DISCOVERY OF THE FAILURE.

4. VEHICLES AND EQUIPMENT SHALL NOT BE DRIVEN OVER AREAS THAT HAVE BEEN SURFACE ROUGHENED.

5. IN NON-TURF GRASS FINISHED AREAS, SEEDING AND MULCHING SHALL TAKE PLACE DIRECTLY OVER SURFACE ROUGHENED AREAS WITHOUT FIRST SMOOTHING OUT THE SURFACE.

6. IN AREAS NOT SEEDED AND MULCHED AFTER SURFACE ROUGHENING, SURFACES SHALL BE RE-ROUGHENED AS NECESSARY TO MAINTAIN GROOVE DEPTH AND SMOOTH OVER RILL EROSION.

(DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

# Description

Temporary seeding can be used to stabilize disturbed areas that will be inactive for an extended period. Permanent seeding should be used to stabilize areas at final grade that will not be otherwise stabilized. Effective seeding includes preparation of a seedbed, selection of an appropriate seed mixture, proper planting techniques, and protection of the seeded area with mulch, geotextiles, or other appropriate measures.

# **Appropriate Uses**

When the soil surface is disturbed and will remain inactive for an extended period (typically 30 days or longer),

![](_page_33_Picture_6.jpeg)

**Photograph TS/PS -1.** Equipment used to drill seed. Photo courtesy of Douglas County.

proactive stabilization measures should be implemented. If the inactive period is short-lived (on the order of two weeks), techniques such as surface roughening may be appropriate. For longer periods of inactivity, temporary seeding and mulching can provide effective erosion control. Permanent seeding should be used on finished areas that have not been otherwise stabilized.

Typically, local governments have their own seed mixes and timelines for seeding. Check jurisdictional requirements for seeding and temporary stabilization.

# **Design and Installation**

Effective seeding requires proper seedbed preparation, selection of an appropriate seed mixture, use of appropriate seeding equipment to ensure proper coverage and density, and protection with mulch or fabric until plants are established.

The USDCM Volume 2 *Revegetation* Chapter contains detailed seed mix, soil preparations, and seeding and mulching recommendations that may be referenced to supplement this Fact Sheet.

Drill seeding is the preferred seeding method. Hydroseeding is not recommended except in areas where steep slopes prevent use of drill seeding equipment, and even in these instances it is preferable to hand seed and mulch. Some jurisdictions do not allow hydroseeding or hydromulching.

#### **Seedbed Preparation**

Prior to seeding, ensure that areas to be revegetated have soil conditions capable of supporting vegetation. Overlot grading can result in loss of topsoil, resulting in poor quality subsoils at the ground surface that have low nutrient value, little organic matter content, few soil microorganisms, rooting restrictions, and conditions less conducive to infiltration of precipitation. As a result, it is typically necessary to provide stockpiled topsoil, compost, or other

| Temporary and Permanent Seeding |     |  |  |
|---------------------------------|-----|--|--|
| Functions                       |     |  |  |
| Erosion Control                 | Yes |  |  |
| Sediment Control                | No  |  |  |
| Site/Material Management        | No  |  |  |

# **EC-2** Temporary and Permanent Seeding (TS/PS)

soil amendments and rototill them into the soil to a depth of 6 inches or more.

Topsoil should be salvaged during grading operations for use and spread on areas to be revegetated later. Topsoil should be viewed as an important resource to be utilized for vegetation establishment, due to its water-holding capacity, structure, texture, organic matter content, biological activity, and nutrient content. The rooting depth of most native grasses in the semi-arid Denver metropolitan area is 6 to 18 inches. At a minimum, the upper 6 inches of topsoil should be stripped, stockpiled, and ultimately respread across areas that will be revegetated.

Where topsoil is not available, subsoils should be amended to provide an appropriate plant-growth medium. Organic matter, such as well digested compost, can be added to improve soil characteristics conducive to plant growth. Other treatments can be used to adjust soil pH conditions when needed. Soil testing, which is typically inexpensive, should be completed to determine and optimize the types and amounts of amendments that are required.

If the disturbed ground surface is compacted, rip or rototill the surface prior to placing topsoil. If adding compost to the existing soil surface, rototilling is necessary. Surface roughening will assist in placement of a stable topsoil layer on steeper slopes, and allow infiltration and root penetration to greater depth.

Prior to seeding, the soil surface should be rough and the seedbed should be firm, but neither too loose nor compacted. The upper layer of soil should be in a condition suitable for seeding at the proper depth and conducive to plant growth. Seed-to-soil contact is the key to good germination.

#### Seed Mix for Temporary Vegetation

To provide temporary vegetative cover on disturbed areas which will not be paved, built upon, or fully landscaped or worked for an extended period (typically 30 days or more), plant an annual grass appropriate for the time of planting and mulch the planted areas. Annual grasses suitable for the Denver metropolitan area are listed in Table TS/PS-1. These are to be considered only as general recommendations when specific design guidance for a particular site is not available. Local governments typically specify seed mixes appropriate for their jurisdiction.

#### Seed Mix for Permanent Revegetation

To provide vegetative cover on disturbed areas that have reached final grade, a perennial grass mix should be established. Permanent seeding should be performed promptly (typically within 14 days) after reaching final grade. Each site will have different characteristics and a landscape professional or the local jurisdiction should be contacted to determine the most suitable seed mix for a specific site. In lieu of a specific recommendation, one of the perennial grass mixes appropriate for site conditions and growth season listed in Table TS/PS-2 can be used. The pure live seed (PLS) rates of application recommended in these tables are considered to be absolute minimum rates for seed applied using proper drill-seeding equipment.

If desired for wildlife habitat or landscape diversity, shrubs such as rubber rabbitbrush (*Chrysothamnus nauseosus*), fourwing saltbush (*Atriplex canescens*) and skunkbrush sumac (*Rhus trilobata*) could be added to the upland seedmixes at 0.25, 0.5 and 1 pound PLS/acre, respectively. In riparian zones, planting root stock of such species as American plum (*Prunus americana*), woods rose (*Rosa woodsii*), plains cottonwood (*Populus sargentii*), and willow (*Populus spp*.) may be considered. On non-topsoiled upland sites, a legume such as Ladak alfalfa at 1 pound PLS/acre can be included as a source of nitrogen for perennial grasses.

Seeding dates for the highest success probability of perennial species along the Front Range are generally in the spring from April through early May and in the fall after the first of September until the ground freezes. If the area is irrigated, seeding may occur in summer months, as well. See Table TS/PS-3 for appropriate seeding dates.

| Species <sup>a</sup><br>(Common name) | Growth<br>Season <sup>b</sup> | Pounds of<br>Pure Live Seed<br>(PLS)/acre <sup>c</sup> | Planting<br>Depth<br>(inches) |
|---------------------------------------|-------------------------------|--------------------------------------------------------|-------------------------------|
| 1. Oats                               | Cool                          | 35 - 50                                                | 1 - 2                         |
| 2. Spring wheat                       | Cool                          | 25 - 35                                                | 1 - 2                         |
| 3. Spring barley                      | Cool                          | 25 - 35                                                | 1 - 2                         |
| 4. Annual ryegrass                    | Cool                          | 10 - 15                                                | 1/2                           |
| 5. Millet                             | Warm                          | 3 - 15                                                 | 1/2 - 3/4                     |
| 6. Sudangrass                         | Warm                          | 5–10                                                   | 1/2 - 3/4                     |
| 7. Sorghum                            | Warm                          | 5–10                                                   | 1/2 - 3/4                     |
| 8. Winter wheat                       | Cool                          | 20–35                                                  | 1 - 2                         |
| 9. Winter barley                      | Cool                          | 20–35                                                  | 1 - 2                         |
| 10. Winter rye                        | Cool                          | 20–35                                                  | 1 - 2                         |
| 11. Triticale                         | Cool                          | 25-40                                                  | 1 - 2                         |

| Table TS/PS-1 | Minimum Drill Seeding | g Rates for Various | <b>Temporary</b> A | Annual Grasses |
|---------------|-----------------------|---------------------|--------------------|----------------|
|---------------|-----------------------|---------------------|--------------------|----------------|

<sup>a</sup> Successful seeding of annual grass resulting in adequate plant growth will usually produce enough dead-plant residue to provide protection from wind and water erosion for an additional year. This assumes that the cover is not disturbed or mowed closer than 8 inches.

Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1 or where access limitations exist. When hydraulic seeding is used, hydraulic mulching should be applied as a separate operation, when practical, to prevent the seeds from being encapsulated in the mulch.

<sup>b</sup> See Table TS/PS-3 for seeding dates. Irrigation, if consistently applied, may extend the use of cool season species during the summer months.

<sup>c</sup> Seeding rates should be doubled if seed is broadcast, or increased by 50 percent if done using a Brillion Drill or by hydraulic seeding.
| Common <sup>a</sup><br>Name           | Botanical<br>Name                 | Growth<br>Season <sup>b</sup> | Growth<br>Form | Seeds/<br>Pound | Pounds of<br>PLS/acre |
|---------------------------------------|-----------------------------------|-------------------------------|----------------|-----------------|-----------------------|
| Alakali Soil Seed Mix                 |                                   |                               |                |                 |                       |
| Alkali sacaton                        | Sporobolus airoides               | Cool                          | Bunch          | 1,750,000       | 0.25                  |
| Basin wildrye                         | Elymus cinereus                   | Cool                          | Bunch          | 165,000         | 2.5                   |
| Sodar streambank wheatgrass           | Agropyron riparium 'Sodar'        | Cool                          | Sod            | 170,000         | 2.5                   |
| Jose tall wheatgrass                  | Agropyron elongatum 'Jose'        | Cool                          | Bunch          | 79,000          | 7.0                   |
| Arriba western wheatgrass             | Agropyron smithii 'Arriba'        | Cool                          | Sod            | 110,000         | 5.5                   |
| Total                                 |                                   |                               |                |                 | 17.75                 |
| Fertile Loamy Soil Seed Mix           |                                   |                               |                |                 |                       |
| Ephriam crested wheatgrass            | Agropyron cristatum<br>'Ephriam'  | Cool                          | Sod            | 175,000         | 2.0                   |
| Dural hard fescue                     | Festuca ovina 'duriuscula'        | Cool                          | Bunch          | 565,000         | 1.0                   |
| Lincoln smooth brome                  | Bromus inermis leyss<br>'Lincoln' | Cool                          | Sod            | 130,000         | 3.0                   |
| Sodar streambank wheatgrass           | Agropyron riparium 'Sodar'        | Cool                          | Sod            | 170,000         | 2.5                   |
| Arriba western wheatgrass             | Agropyron smithii 'Arriba'        | Cool                          | Sod            | 110,000         | 7.0                   |
| Total                                 |                                   |                               |                |                 | 15.5                  |
| High Water Table Soil Seed Mix        |                                   |                               |                |                 |                       |
| Meadow foxtail                        | Alopecurus pratensis              | Cool                          | Sod            | 900,000         | 0.5                   |
| Redtop                                | Agrostis alba                     | Warm                          | Open sod       | 5,000,000       | 0.25                  |
| Reed canarygrass                      | Phalaris arundinacea              | Cool                          | Sod            | 68,000          | 0.5                   |
| Lincoln smooth brome                  | Bromus inermis leyss<br>'Lincoln' | Cool                          | Sod            | 130,000         | 3.0                   |
| Pathfinder switchgrass                | Panicum virgatum<br>'Pathfinder'  | Warm                          | Sod            | 389,000         | 1.0                   |
| Alkar tall wheatgrass                 | Agropyron elongatum<br>'Alkar'    | Cool                          | Bunch          | 79,000          | 5.5                   |
| Total                                 |                                   |                               |                |                 | 10.75                 |
| Transition Turf Seed Mix <sup>c</sup> |                                   |                               | •              | •               |                       |
| Ruebens Canadian bluegrass            | Poa compressa 'Ruebens'           | Cool                          | Sod            | 2,500,000       | 0.5                   |
| Dural hard fescue                     | Festuca ovina 'duriuscula'        | Cool                          | Bunch          | 565,000         | 1.0                   |
| Citation perennial ryegrass           | Lolium perenne 'Citation'         | Cool                          | Sod            | 247,000         | 3.0                   |
| Lincoln smooth brome                  | Bromus inermis leyss<br>'Lincoln' | Cool                          | Sod            | 130,000         | 3.0                   |
| Total                                 |                                   |                               |                |                 | 7.5                   |

| Common<br>Name                                 | Botanical<br>Name                                                                                                                       | Growth<br>Season <sup>b</sup> | Growth<br>Form            | Seeds/<br>Pound | Pounds of<br>PLS/acre |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------|-----------------------|--|--|
| Sandy Soil Seed Mix                            |                                                                                                                                         |                               |                           | l               | I                     |  |  |
| Blue grama                                     | Bouteloua gracilis                                                                                                                      | Warm                          | Sod-forming<br>bunchgrass | 825,000         | 0.5                   |  |  |
| Camper little bluestem                         | Schizachyrium scoparium<br>'Camper'                                                                                                     | Warm                          | Bunch                     | 240,000         | 1.0                   |  |  |
| Prairie sandreed                               | Calamovilfa longifolia                                                                                                                  | Warm                          | Open sod                  | 274,000         | 1.0                   |  |  |
| Sand dropseed                                  | Sporobolus cryptandrus                                                                                                                  | Cool                          | Bunch                     | 5,298,000       | 0.25                  |  |  |
| Vaughn sideoats grama                          | Bouteloua curtipendula<br>'Vaughn'                                                                                                      | Warm                          | Sod                       | 191,000         | 2.0                   |  |  |
| Arriba western wheatgrass                      | Agropyron smithii 'Arriba'                                                                                                              | Cool                          | Sod                       | 110,000         | 5.5                   |  |  |
| Total                                          |                                                                                                                                         |                               |                           |                 | 10.25                 |  |  |
| Heavy Clay, Rocky Foothill Seed                | Mix                                                                                                                                     |                               |                           |                 |                       |  |  |
| Ephriam crested wheatgrass <sup>d</sup>        | Agropyron cristatum<br>'Ephriam'                                                                                                        | Cool                          | Sod                       | 175,000         | 1.5                   |  |  |
| Oahe Intermediate wheatgrass                   | Agropyron intermedium<br>'Oahe'                                                                                                         | Cool                          | Sod                       | 115,000         | 5.5                   |  |  |
| Vaughn sideoats grama <sup>e</sup>             | Bouteloua curtipendula<br>'Vaughn'                                                                                                      | Warm                          | Sod                       | 191,000         | 2.0                   |  |  |
| Lincoln smooth brome                           | Bromus inermis leyss<br>'Lincoln'                                                                                                       | Cool                          | Sod                       | 130,000         | 3.0                   |  |  |
| Arriba western wheatgrass                      | Agropyron smithii 'Arriba'                                                                                                              | Cool                          | Sod                       | 110,000         | 5.5                   |  |  |
| Total                                          |                                                                                                                                         |                               |                           |                 | 17.5                  |  |  |
| <sup>a</sup> All of the above seeding mixes as | <sup>a</sup> All of the above seeding mixes and rates are based on drill seeding followed by crimped straw mulch. These rates should be |                               |                           |                 |                       |  |  |

#### Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses (cont.)

All of the above seeding mixes and rates are based on drill seeding followed by crimped straw mulch. These rates should be doubled if seed is broadcast and should be increased by 50 percent if the seeding is done using a Brillion Drill or is applied through hydraulic seeding. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1. If hydraulic seeding is used, hydraulic mulching should be done as a separate operation.

<sup>b</sup> See Table TS/PS-3 for seeding dates.

<sup>c</sup> If site is to be irrigated, the transition turf seed rates should be doubled.

<sup>d</sup> Crested wheatgrass should not be used on slopes steeper than 6H to 1V.

<sup>e</sup> Can substitute 0.5 lbs PLS of blue grama for the 2.0 lbs PLS of Vaughn sideoats grama.

|                          | Annua<br>(Numbers in<br>species in T | Annual Grasses<br>(Numbers in table reference<br>species in Table TS/PS-1) |              | ll Grasses |
|--------------------------|--------------------------------------|----------------------------------------------------------------------------|--------------|------------|
| Seeding Dates            | Warm                                 | Cool                                                                       | Warm         | Cool       |
| January 1–March 15       |                                      |                                                                            | ✓            | ~          |
| March 16–April 30        | 4                                    | 1,2,3                                                                      | $\checkmark$ | ✓          |
| May 1–May 15             | 4                                    |                                                                            | $\checkmark$ |            |
| May 16–June 30           | 4,5,6,7                              |                                                                            |              |            |
| July 1–July 15           | 5,6,7                                |                                                                            |              |            |
| July 16–August 31        |                                      |                                                                            |              |            |
| September 1–September 30 |                                      | 8,9,10,11                                                                  |              |            |
| October 1–December 31    |                                      |                                                                            | $\checkmark$ | ✓          |

| Table | TS/PS-3. | Seeding | <b>Dates for</b> | Annual and | Perennial | Grasses |
|-------|----------|---------|------------------|------------|-----------|---------|
|-------|----------|---------|------------------|------------|-----------|---------|

### Mulch

Cover seeded areas with mulch or an appropriate rolled erosion control product to promote establishment of vegetation. Anchor mulch by crimping, netting or use of a non-toxic tackifier. See the Mulching BMP Fact Sheet for additional guidance.

# Maintenance and Removal

Monitor and observe seeded areas to identify areas of poor growth or areas that fail to germinate. Reseed and mulch these areas, as needed.

An area that has been permanently seeded should have a good stand of vegetation within one growing season if irrigated and within three growing seasons without irrigation in Colorado. Reseed portions of the site that fail to germinate or remain bare after the first growing season.

Seeded areas may require irrigation, particularly during extended dry periods. Targeted weed control may also be necessary.

Protect seeded areas from construction equipment and vehicle access.

Soil binders include a broad range of treatments that can be applied to exposed soils for temporary stabilization to reduce wind and water erosion. Soil binders may be applied alone or as tackifiers in conjunction with mulching and seeding applications.

Acknowledgement: This BMP Fact Sheet has been adapted from the 2003 California Stormwater Quality Association (CASQA) Stormwater BMP Handbook: Construction (<u>www.cabmphandbooks.com</u>).



**Photograph SB-1.** Tackifier being applied to provide temporary soil stabilization. Photo courtesy of Douglas County.

# **Appropriate Uses**

Soil binders can be used for short-term, temporary stabilization of soils on both mild and steep slopes. Soil binders are often used in areas where work has temporarily stopped, but is expected to resume before revegetation can become established. Binders are also useful on stockpiled soils or where temporary or permanent seeding has occurred.

Prior to selecting a soil binder, check with the state and local jurisdiction to ensure that the chemicals used in the soil binders are allowed. The water quality impacts of some types of soil binders are relatively unknown and may not be allowed due to concerns about potential environmental impacts. Soil binders must be environmentally benign (non-toxic to plant and animal life), easy to apply, easy to maintain, economical, and should not stain paved or painted surfaces.

Soil binders should not be used in vehicle or pedestrian high traffic areas, due to loss in effectiveness under these conditions.

Site soil type will dictate appropriate soil binders to be used. Be aware that soil binders may not function effectively on silt or clay soils or highly compacted areas. Check manufacturer's recommendations for appropriateness with regard to soil conditions. Some binders may not be suitable for areas with existing vegetation.

# **Design and Installation**

Properties of common soil binders used for erosion control are provided in Table SB-1. Design and installation guidance below are provided for general reference. Follow the manufacturer's instructions for application rates and procedures.

| Soil Binders             |          |  |  |  |  |
|--------------------------|----------|--|--|--|--|
| Functions                |          |  |  |  |  |
| Erosion Control          | Yes      |  |  |  |  |
| Sediment Control         | No       |  |  |  |  |
| Site/Material Management | Moderate |  |  |  |  |

|                                           | Binder Type                              |                                         |                                              |                                              |
|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|
| Evaluation Criteria                       | Plant Material<br>Based<br>(short lived) | Plant Material<br>Based<br>(long lived) | Polymeric<br>Emulsion Blends                 | Cementitious-<br>Based Binders               |
| Resistance to Leaching                    | High                                     | High                                    | Low to Moderate                              | Moderate                                     |
| Resistance to Abrasion                    | Moderate                                 | Low                                     | Moderate to High                             | Moderate to High                             |
| Longevity                                 | Short to Medium                          | Medium                                  | Medium to Long                               | Medium                                       |
| Minimum Curing Time<br>before Rain        | 9 to 18 hours                            | 19 to 24 hours                          | 0 to 24 hours                                | 4 to 8 hours                                 |
| Compatibility with<br>Existing Vegetation | Good                                     | Poor                                    | Poor                                         | Poor                                         |
| Mode of Degradation                       | Biodegradable                            | Biodegradable                           | Photodegradable/<br>Chemically<br>Degradable | Photodegradable/<br>Chemically<br>Degradable |
| Specialized Application<br>Equipment      | Water Truck or<br>Hydraulic<br>Mulcher   | Water Truck or<br>Hydraulic<br>Mulcher  | Water Truck or<br>Hydraulic Mulcher          | Water Truck or<br>Hydraulic Mulcher          |
| Liquid/Powder                             | Powder                                   | Liquid                                  | Liquid/Powder                                | Powder                                       |
| Surface Crusting                          | Yes, but<br>dissolves on<br>rewetting    | Yes                                     | Yes, but dissolves on rewetting              | Yes                                          |
| Clean Up                                  | Water                                    | Water                                   | Water                                        | Water                                        |
| Erosion Control<br>Application Rate       | Varies                                   | Varies                                  | Varies                                       | 4,000 to 12,000<br>lbs/acre Typ.             |

| Table SB-1. Properties of Soil Binders for Erosion | Control (Source: | CASQA 2003) |
|----------------------------------------------------|------------------|-------------|
|----------------------------------------------------|------------------|-------------|

Factors to consider when selecting a soil binder generally include:

- **Suitability to situation**: Consider where the soil binder will be applied, if it needs a high resistance to leaching or abrasion, and whether it needs to be compatible with existing vegetation. Determine the length of time soil stabilization will be needed, and if the soil binder will be placed in an area where it will degrade rapidly. In general, slope steepness is not a discriminating factor.
- Soil types and surface materials: Fines and moisture content are key properties of surface materials. Consider a soil binder's ability to penetrate, likelihood of leaching, and ability to form a surface crust on the surface materials.
- **Frequency of application**: The frequency of application can be affected by subgrade conditions, surface type, climate, and maintenance schedule. Frequent applications could lead to high costs. Application frequency may be minimized if the soil binder has good penetration, low evaporation, and good longevity. Consider also that frequent application will require frequent equipment clean up.

An overview of major categories of soil binders, corresponding to the types included in Table SB-1 follows.

### Plant-Material Based (Short Lived) Binders

• **Guar**: A non-toxic, biodegradable, natural galactomannan-based hydrocolloid treated with dispersant agents for easy field mixing. It should be mixed with water at the rate of 11 to 15 lbs per 1,000 gallons. Recommended minimum application rates are provided in Table SB-2.

| Table SB-2. | Application | <b>Rates for</b> | Guar | Soil | Stabilizer |
|-------------|-------------|------------------|------|------|------------|
|-------------|-------------|------------------|------|------|------------|

|                            | Slope (H:V) |     |     |     |     |
|----------------------------|-------------|-----|-----|-----|-----|
|                            | Flat        | 4:1 | 3:1 | 2:1 | 1:1 |
| Application Rate (lb/acre) | 40          | 45  | 50  | 60  | 70  |

- **Psyllium**: Composed of the finely ground muciloid coating of plantago seeds that is applied as a wet slurry to the surface of the soil. It dries to form a firm but rewettable membrane that binds soil particles together but permits germination and growth of seed. Psyllium requires 12 to 18 hours drying time. Application rates should be from 80 to 200 lbs/acre, with enough water in solution to allow for a uniform slurry flow.
- **Starch**: Non-ionic, cold-water soluble (pre-gelatinized) granular cornstarch. The material is mixed with water and applied at the rate of 150 lb/acre. Approximate drying time is 9 to 12 hours.

### Plant-Material Based (Long Lived) Binders

- Pitch and Rosin Emulsion: Generally, a non-ionic pitch and rosin emulsion has a minimum solids content of 48 percent. The rosin should be a minimum of 26 percent of the total solids content. The soil stabilizer should be a non-corrosive, water dilutable emulsion that upon application cures to a water insoluble binding and cementing agent. For soil erosion control applications, the emulsion is diluted and should be applied as follows:
  - For clayey soil: 5 parts water to 1 part emulsion

• For sandy soil: 10 parts water to 1 part emulsion

Application can be by water truck or hydraulic seeder with the emulsion and product mixture applied at the rate specified by the manufacturer.

### **Polymeric Emulsion Blend Binders**

- Acrylic Copolymers and Polymers: Polymeric soil stabilizers should consist of a liquid or solid polymer or copolymer with an acrylic base that contains a minimum of 55 percent solids. The polymeric compound should be handled and mixed in a manner that will not cause foaming or should contain an anti-foaming agent. The polymeric emulsion should not exceed its shelf life or expiration date; manufacturers should provide the expiration date. Polymeric soil stabilizer should be readily miscible in water, non-injurious to seed or animal life, non-flammable, should provide surface soil stabilization for various soil types without inhibiting water infiltration, and should not re-emulsify when cured. The applied compound should air cure within a maximum of 36 to 48 hours. Liquid copolymer should be diluted at a rate of 10 parts water to 1 part polymer and the mixture applied to soil at a rate of 1,175 gallons/acre.
- Liquid Polymers of Methacrylates and Acrylates: This material consists of a tackifier/sealer that is a liquid polymer of methacrylates and acrylates. It is an aqueous 100 percent acrylic emulsion blend of 40 percent solids by volume that is free from styrene, acetate, vinyl, ethoxylated surfactants or silicates. For soil stabilization applications, it is diluted with water in accordance with manufacturer's recommendations, and applied with a hydraulic seeder at the rate of 20 gallons/acre. Drying time is 12 to 18 hours after application.
- **Copolymers of Sodium Acrylates and Acrylamides**: These materials are non-toxic, dry powders that are copolymers of sodium acrylate and acrylamide. They are mixed with water and applied to the soil surface for erosion control at rates that are determined by slope gradient, as summarized in Table SB-3.

|                            | Slope (H:V) |            |            |  |
|----------------------------|-------------|------------|------------|--|
|                            | Flat to 5:1 | 5:1 to 3:1 | 2:2 to 1:1 |  |
| Application Rate (lb/acre) | 3.0-5.0     | 5.0-10.0   | 10.0-20.0  |  |

#### Table SB-3. Application Rates for Copolymers of Sodium Acrylates and Acrylamides

- **Polyacrylamide and Copolymer of Acrylamide**: Linear copolymer polyacrylamide is packaged as a dry flowable solid. When used as a stand-alone stabilizer, it is diluted at a rate of 11 lb/1,000 gal. of water and applied at the rate of 5.0 lb/acre.
- **Hydrocolloid Polymers**: Hydrocolloid Polymers are various combinations of dry flowable polyacrylamides, copolymers, and hydrocolloid polymers that are mixed with water and applied to the soil surface at rates of 55 to 60 lb/acre. Drying times are 0 to 4 hours.

### **Cementitious-Based Binders**

• **Gypsum**: This formulated gypsum based product readily mixes with water and mulch to form a thin protective crust on the soil surface. It is composed of high purity gypsum that is ground, calcined and processed into calcium sulfate hemihydrate with a minimum purity of 86 percent. It is mixed in a hydraulic seeder and applied at rates 4,000 to 12,000 lb/acre. Drying time is 4 to 8 hours.

### Installation

After selecting an appropriate soil binder, the untreated soil surface must be prepared before applying the soil binder. The untreated soil surface must contain sufficient moisture to assist the agent in achieving uniform distribution. In general, the following steps should be followed:

- Follow manufacturer's written recommendations for application rates, pre-wetting of application area, and cleaning of equipment after use.
- Prior to application, roughen embankment and fill areas.
- Consider the drying time for the selected soil binder and apply with sufficient time before anticipated rainfall. Soil binders should not be applied during or immediately before rainfall.
- Avoid over spray onto roads, sidewalks, drainage channels, sound walls, existing vegetation, etc.
- Soil binders should not be applied to frozen soil, areas with standing water, under freezing or rainy conditions, or when the temperature is below 40°F during the curing period.
- More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate.
- Generally, soil binders require a minimum curing time of 24 hours before they are fully effective. Refer to manufacturer's instructions for specific cure time.
- For liquid agents:
  - Crown or slope ground to avoid ponding.
  - $\circ$  Uniformly pre-wet ground at 0.03 to 0.3 gal/yd<sup>2</sup> or according to manufacturer's recommendations.
  - Apply solution under pressure. Overlap solution 6 to 12 in.
  - Allow treated area to cure for the time recommended by the manufacturer, typically at least 24 hours.
  - Apply second treatment before first treatment becomes ineffective, using 50 percent application rate.
  - $\circ$  In low humidity, reactivate chemicals by re-wetting with water at 0.1 to 0.2 gal/yd<sup>2</sup>.

# **Maintenance and Removal**

Soil binders tend to break down due to natural weathering. Weathering rates depend on a variety of sitespecific and product characteristics. Consult the manufacturer for recommended reapplication rates and reapply the selected soil binder as needed to maintain effectiveness.

Soil binders can fail after heavy rainfall events and may require reapplication. In particular, soil binders will generally experience spot failures during heavy rainfall events. If runoff penetrates the soil at the top of a slope treated with a soil binder, it is likely that the runoff will undercut the stabilized soil layer and discharge at a point further down slope.

Areas where erosion is evident should be repaired and soil binder or other stabilization reapplied, as needed. Care should be exercised to minimize the damage to protected areas while making repairs.

Most binders biodegrade after exposure to sun, oxidation, heat and biological organisms; therefore, removal of the soil binder is not typically required.

Mulching consists of evenly applying straw, hay, shredded wood mulch, rock, bark or compost to disturbed soils and securing the mulch by crimping, tackifiers, netting or other measures. Mulching helps reduce erosion by protecting bare soil from rainfall impact, increasing infiltration, and reducing runoff. Although often applied in conjunction with temporary or permanent seeding, it can also be used for temporary stabilization of areas that cannot be reseeded due to seasonal constraints.

Mulch can be applied either using standard mechanical dry application methods or using hydromulching equipment that hydraulically applies a slurry of water, wood fiber mulch, and often a tackifier.



**Photograph MU-1.** An area that was recently seeded, mulched, and crimped.

# **Appropriate Uses**

Use mulch in conjunction with seeding to help protect the seedbed and stabilize the soil. Mulch can also be used as a temporary cover on low to mild slopes to help temporarily stabilize disturbed areas where growing season constraints prevent effective reseeding. Disturbed areas should be properly mulched and tacked, or seeded, mulched and tacked promptly after final grade is reached (typically within no longer than 14 days) on portions of the site not otherwise permanently stabilized.

Standard dry mulching is encouraged in most jurisdictions; however, hydromulching may not be allowed in certain jurisdictions or may not be allowed near waterways.

Do not apply mulch during windy conditions.

# **Design and Installation**

Prior to mulching, surface-roughen areas by rolling with a crimping or punching type roller or by track walking. Track walking should only be used where other methods are impractical because track walking with heavy equipment typically compacts the soil.

A variety of mulches can be used effectively at construction sites. Consider the following:

| Mulch                    |          |  |  |  |
|--------------------------|----------|--|--|--|
| Functions                |          |  |  |  |
| Erosion Control          | Yes      |  |  |  |
| Sediment Control         | Moderate |  |  |  |
| Site/Material Management | No       |  |  |  |

- Clean, weed-free and seed-free cereal grain straw should be applied evenly at a rate of 2 tons per acre and must be tacked or fastened by a method suitable for the condition of the site. Straw mulch must be anchored (and not merely placed) on the surface. This can be accomplished mechanically by crimping or with the aid of tackifiers or nets. Anchoring with a crimping implement is preferred, and is the recommended method for areas flatter than 3:1. Mechanical crimpers must be capable of tucking the long mulch fibers into the soil to a depth of 3 inches without cutting them. An agricultural disk, while not an ideal substitute, may work if the disk blades are dull or blunted and set vertically; however, the frame may have to be weighted to afford proper soil penetration.
- Grass hay may be used in place of straw; however, because hay is comprised of the entire plant including seed, mulching with hay may seed the site with non-native grass species which might in turn out-compete the native seed. Alternatively, native species of grass hay may be purchased, but can be difficult to find and are more expensive than straw. Purchasing and utilizing a certified weed-free straw is an easier and less costly mulching method. When using grass hay, follow the same guidelines as for straw (provided above).
- On small areas sheltered from the wind and heavy runoff, spraying a tackifier on the mulch is satisfactory for holding it in place. For steep slopes and special situations where greater control is needed, erosion control blankets anchored with stakes should be used instead of mulch.
- Hydraulic mulching consists of wood cellulose fibers mixed with water and a tackifying agent and should be applied at a rate of no less than 1,500 pounds per acre (1,425 lbs of fibers mixed with at least 75 lbs of tackifier) with a hydraulic mulcher. For steeper slopes, up to 2000 pounds per acre may be required for effective hydroseeding. Hydromulch typically requires up to 24 hours to dry; therefore, it should not be applied immediately prior to inclement weather. Application to roads, waterways and existing vegetation should be avoided.
- Erosion control mats, blankets, or nets are recommended to help stabilize steep slopes (generally 3:1 and steeper) and waterways. Depending on the product, these may be used alone or in conjunction with grass or straw mulch. Normally, use of these products will be restricted to relatively small areas. Biodegradable mats made of straw and jute, straw-coconut, coconut fiber, or excelsior can be used instead of mulch. (See the ECM/TRM BMP for more information.)
- Some tackifiers or binders may be used to anchor mulch. Check with the local jurisdiction for allowed tackifiers. Manufacturer's recommendations should be followed at all times. (See the Soil Binder BMP for more information on general types of tackifiers.)
- Rock can also be used as mulch. It provides protection of exposed soils to wind and water erosion and allows infiltration of precipitation. An aggregate base course can be spread on disturbed areas for temporary or permanent stabilization. The rock mulch layer should be thick enough to provide full coverage of exposed soil on the area it is applied.

# **Maintenance and Removal**

After mulching, the bare ground surface should not be more than 10 percent exposed. Reapply mulch, as needed, to cover bare areas.

Rolled Erosion Control Products (RECPs) include a variety of temporary or permanently installed manufactured products designed to control erosion and enhance vegetation establishment and survivability, particularly on slopes and in channels. For applications where natural vegetation alone will provide sufficient permanent erosion protection, temporary products such as netting, open weave textiles and a variety of erosion control blankets (ECBs) made

of biodegradable natural materials (e.g., straw, coconut fiber) can be used. For applications where natural



**Photograph RECP-1.** Erosion control blanket protecting the slope from erosion and providing favorable conditions for revegetation.

vegetation alone will not be sustainable under expected flow conditions, permanent rolled erosion control products such as turf reinforcement mats (TRMs) can be used. In particular, turf reinforcement mats are designed for discharges that exert velocities and sheer stresses that exceed the typical limits of mature natural vegetation.

# **Appropriate Uses**

RECPs can be used to control erosion in conjunction with revegetation efforts, providing seedbed protection from wind and water erosion. These products are often used on disturbed areas on steep slopes, in areas with highly erosive soils, or as part of drainageway stabilization. In order to select the appropriate RECP for site conditions, it is important to have a general understanding of the general types of these products, their expected longevity, and general characteristics.

The Erosion Control Technology Council (ECTC 2005) characterizes rolled erosion control products according to these categories:

- **Mulch control netting**: A planar woven natural fiber or extruded geosynthetic mesh used as a temporary degradable rolled erosion control product to anchor loose fiber mulches.
- **Open weave textile**: A temporary degradable rolled erosion control product composed of processed natural or polymer yarns woven into a matrix, used to provide erosion control and facilitate vegetation establishment.
- Erosion control blanket (ECB): A temporary degradable rolled erosion control product composed of processed natural or polymer fibers which are mechanically, structurally or chemically bound together to form a continuous matrix to provide erosion control and facilitate vegetation establishment. ECBs can be further differentiated into rapidly degrading single-net and double-net types or slowly degrading types.

|                          | 200000 |
|--------------------------|--------|
| Functions                |        |
| Erosion Control          | Yes    |
| Sediment Control         | No     |
| Site/Material Management | No     |

Rolled Erosion Control Products

Turf Reinforcement Mat (TRM): A rolled erosion control product composed of non-degradable synthetic fibers, filaments, nets, wire mesh, and/or other elements, processed into a permanent, three-dimensional matrix of sufficient thickness. TRMs, which may be supplemented with degradable components, are designed to impart immediate erosion protection, enhance vegetation establishment and provide long-term functionality by permanently reinforcing vegetation during and after maturation. Note: TRMs are typically used in hydraulic applications, such as high flow ditches and channels, steep slopes, stream banks, and shorelines, where erosive forces may exceed the limits of natural, unreinforced vegetation or in areas where limited vegetation establishment is anticipated.

Tables RECP-1 and RECP-2 provide guidelines for selecting rolled erosion control products appropriate to site conditions and desired longevity. Table RECP-1 is for conditions where natural vegetation alone will provide permanent erosion control, whereas Table RECP-2 is for conditions where vegetation alone will not be adequately stable to provide long-term erosion protection due to flow or other conditions.

| Product Description                                                        | Slope<br>Applications* |                         | Channel<br>Applications*              | Minimum<br>Tensile<br>Strength <sup>1</sup> | Expected<br>Longevity |
|----------------------------------------------------------------------------|------------------------|-------------------------|---------------------------------------|---------------------------------------------|-----------------------|
|                                                                            | Maximum<br>Gradient    | C Factor <sup>2,5</sup> | Max. Shear<br>Stress <sup>3,4,6</sup> |                                             |                       |
| Mulch Control Nets                                                         | 5:1 (H:V)              | ≤0.10 @<br>5:1          | 0.25 lbs/ft <sup>2</sup><br>(12 Pa)   | 5 lbs/ft<br>(0.073 kN/m)                    |                       |
| Netless Rolled<br>Erosion Control<br>Blankets                              | 4:1 (H:V)              | ≤0.10 @<br>4:1          | 0.5 lbs/ft <sup>2</sup><br>(24 Pa)    | 5 lbs/ft<br>(0.073 kN/m)                    | Up to 12              |
| Single-net Erosion<br>Control Blankets &<br>Open Weave Textiles            | 3:1 (H:V)              | ≤0.15 @<br>3:1          | 1.5 lbs/ft <sup>2</sup><br>(72 Pa)    | 50 lbs/ft<br>(0.73 kN/m)                    | months                |
| Double-net Erosion<br>Control Blankets                                     | 2:1 (H:V)              | ≤0.20 @<br>2:1          | 1.75 lbs/ft <sup>2</sup><br>(84 Pa)   | 75 lbs/ft<br>(1.09 kN/m)                    |                       |
| Mulch Control Nets                                                         | 5:1 (H:V)              | ≤0.10 @<br>5:1          | 0.25 lbs/ft <sup>2</sup><br>(12 Pa)   | 25 lbs/ft<br>(0.36 kN/m)                    | 24 months             |
| Erosion Control<br>Blankets & Open<br>Weave Textiles<br>(slowly degrading) | 1.5:1 (H:V)            | ≤0.25 @<br>1.5:1        | 2.00 lbs/ft <sup>2</sup><br>(96 Pa)   | 100 lbs/ft<br>(1.45 kN/m)                   | 24 months             |
| Erosion Control<br>Blankets & Open<br>Weave Textiles                       | 1:1 (H:V)              | ≤0.25 @<br>1:1          | 2.25 lbs/ft <sup>2</sup><br>(108 Pa)  | 125 lbs/ft<br>(1.82 kN/m)                   | 36 months             |

#### Table RECP-1. ECTC Standard Specification for Temporary Rolled Erosion Control Products (Adapted from Erosion Control Technology Council 2005)

\* C Factor and shear stress for mulch control nettings must be obtained with netting used in conjunction with pre-applied mulch material. (*See Section 5.3 of Chapter 7 Construction BMPs for more information on the C Factor.*)

<sup>1</sup> Minimum Average Roll Values, Machine direction using ECTC Mod. ASTM D 5035.

<sup>2</sup> C Factor calculated as ratio of soil loss from RECP protected slope (tested at specified or greater gradient, H:V) to ratio of soil loss from unprotected (control) plot in large-scale testing.

<sup>3</sup> Required minimum shear stress RECP (unvegetated) can sustain without physical damage or excess erosion (> 12.7 mm (0.5 in) soil loss) during a 30-minute flow event in large-scale testing.

<sup>4</sup> The permissible shear stress levels established for each performance category are based on historical experience with products characterized by Manning's roughness coefficients in the range of 0.01 - 0.05.

<sup>5</sup> Acceptable large-scale test methods may include ASTM D 6459, or other independent testing deemed acceptable by the engineer.

<sup>6</sup> Per the engineer's discretion. Recommended acceptable large-scale testing protocol may include ASTM D 6460, or other independent testing deemed acceptable by the engineer.

### Table RECP-2. ECTC Standard Specification for Permanent<sup>1</sup> Rolled Erosion Control Products (Adapted from: Erosion Control Technology Council 2005)

| Product Type                                                                                                                                     | Slope<br>Applications | Channel Applications                   |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|-----------------------------------------------|
| TRMs with a minimum thickness of<br>0.25 inches (6.35 mm) per ASTM D<br>6525 and UV stability of 80% per<br>ASTM D 4355 (500 hours<br>exposure). | Maximum<br>Gradient   | Maximum<br>Shear Stress <sup>4,5</sup> | Minimum<br>Tensile<br>Strength <sup>2,3</sup> |
|                                                                                                                                                  | 0.5:1 (H:V)           | 6.0 lbs/ft <sup>2</sup> (288 Pa)       | 125 lbs/ft (1.82<br>kN/m)                     |
|                                                                                                                                                  | 0.5:1 (H:V)           | 8.0 lbs/ft <sup>2</sup> (384 Pa)       | 150 lbs/ft (2.19<br>kN/m)                     |
|                                                                                                                                                  | 0.5:1 (H:V)           | 10.0 lbs/ft <sup>2</sup> (480 Pa)      | 175 lbs/ft (2.55<br>kN/m)                     |

<sup>1</sup> For TRMs containing degradable components, all property values must be obtained on the nondegradable portion of the matting alone.

<sup>2</sup> Minimum Average Roll Values, machine direction only for tensile strength determination using <u>ASTM</u> <u>D 6818</u> (Supersedes Mod. <u>ASTM D 5035</u> for RECPs)

 $^3$  Field conditions with high loading and/or high survivability requirements may warrant the use of a TRM with a tensile strength of 44 kN/m (3,000 lb/ft) or greater.

<sup>4</sup> Required minimum shear stress TRM (fully vegetated) can sustain without physical damage or excess erosion (> 12.7 mm (0.5 in.) soil loss) during a 30-minute flow event in large scale testing.

<sup>5</sup> Acceptable large-scale testing protocols may include <u>ASTM D 6460</u>, or other independent testing deemed acceptable by the engineer.

# **Design and Installation**

RECPs should be installed according to manufacturer's specifications and guidelines. Regardless of the type of product used, it is important to ensure no gaps or voids exist under the material and that all corners of the material are secured using stakes and trenching. Continuous contact between the product and the soil is necessary to avoid failure. Never use metal stakes to secure temporary erosion control products. Often wooden stakes are used to anchor RECPs; however, wood stakes may present installation and maintenance challenges and generally take a long time to biodegrade. Some local jurisdictions have had favorable experiences using biodegradable stakes.

This BMP Fact Sheet provides design details for several commonly used ECB applications, including:

ECB-1 Pipe Outlet to Drainageway

ECB-2 Small Ditch or Drainageway

ECB-3 Outside of Drainageway

Staking patterns are also provided in the design details according to these factors:

- ECB type
- Slope or channel type

For other types of RECPs including TRMs, these design details are intended to serve as general guidelines for design and installation; however, engineers should adhere to manufacturer's installation recommendations.

# **Maintenance and Removal**

Inspection of erosion control blankets and other RECPs includes:

- Check for general signs of erosion, including voids beneath the mat. If voids are apparent, fill the void with suitable soil and replace the erosion control blanket, following the appropriate staking pattern.
- Check for damaged or loose stakes and secure loose portions of the blanket.

Erosion control blankets and other RECPs that are biodegradable typically do not need to be removed after construction. If they must be removed, then an alternate soil stabilization method should be installed promptly following removal.

Turf reinforcement mats, although generally resistant to biodegradation, are typically left in place as a dense vegetated cover grows in through the mat matrix. The turf reinforcement mat provides long-term stability and helps the established vegetation resist erosive forces.





EROSION CONTROL BLANKET INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

-LOCATION OF ECB. -TYPE OF ECB (STRAW, STRAW-COCONUT, COCONUT, OR EXCELSIOR). -AREA, A, IN SQUARE YARDS OF EACH TYPE OF ECB.

2. 100% NATURAL AND BIODEGRADABLE MATERIALS ARE PREFERRED FOR RECPS, ALTHOUGH SOME JURISDICTIONS MAY ALLOW OTHER MATERIALS IN SOME APPLICATIONS.

3. IN AREAS WHERE ECBs ARE SHOWN ON THE PLANS, THE PERMITTEE SHALL PLACE TOPSOIL AND PERFORM FINAL GRADING, SURFACE PREPARATION, AND SEEDING AND MULCHING. SUBGRADE SHALL BE SMOOTH AND MOIST PRIOR TO ECB INSTALLATION AND THE ECB SHALL BE IN FULL CONTACT WITH SUBGRADE. NO GAPS OR VOIDS SHALL EXIST UNDER THE BLANKET.

4. PERIMETER ANCHOR TRENCH SHALL BE USED ALONG THE OUTSIDE PERIMETER OF ALL BLANKET AREAS.

5. JOINT ANCHOR TRENCH SHALL BE USED TO JOIN ROLLS OF ECBs TOGETHER (LONGITUDINALLY AND TRANSVERSELY) FOR ALL ECBs EXCEPT STRAW WHICH MAY USE AN OVERLAPPING JOINT.

6. INTERMEDIATE ANCHOR TRENCH SHALL BE USED AT SPACING OF ONE-HALF ROLL LENGTH FOR COCONUT AND EXCELSIOR ECBs.

7. OVERLAPPING JOINT DETAIL SHALL BE USED TO JOIN ROLLS OF ECBs TOGETHER FOR ECBs ON SLOPES.

8. MATERIAL SPECIFICATIONS OF ECBs SHALL CONFORM TO TABLE ECB-1.

9. ANY AREAS OF SEEDING AND MULCHING DISTURBED IN THE PROCESS OF INSTALLING ECBS SHALL BE RESEEDED AND MULCHED.

10. DETAILS ON DESIGN PLANS FOR MAJOR DRAINAGEWAY STABILIZATION WILL GOVERN IF DIFFERENT FROM THOSE SHOWN HERE.

| TABLE ECB-1. ECB MATERIAL SPECIFICATIONS |                    |                  |                      |                          |
|------------------------------------------|--------------------|------------------|----------------------|--------------------------|
| TYPE                                     | COCONUT<br>CONTENT | STRAW<br>CONTENT | EXCELSIOR<br>CONTENT | RECOMMENDED<br>NETTING** |
| STRAW*                                   | _                  | 100%             | _                    | DOUBLE/<br>NATURAL       |
| STRAW-<br>COCONUT                        | 30% MIN            | 70% MAX          | -                    | DOUBLE/<br>NATURAL       |
| COCONUT                                  | 100%               | -                | -                    | DOUBLE/<br>NATURAL       |
| EXCELSIOR                                | -                  | -                | 100%                 | DOUBLE/<br>NATURAL       |

\*STRAW ECBS MAY ONLY BE USED OUTSIDE OF STREAMS AND DRAINAGE CHANNEL. \*\*ALTERNATE NETTING MAY BE ACCEPTABLE IN SOME JURISDICTIONS

#### EROSION CONTROL BLANKET MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ECBs SHALL BE LEFT IN PLACE TO EVENTUALLY BIODEGRADE, UNLESS REQUESTED TO BE REMOVED BY THE LOCAL JURISDICTION.

5. ANY ECB PULLED OUT, TORN, OR OTHERWISE DAMAGED SHALL BE REPAIRED OR REINSTALLED. ANY SUBGRADE AREAS BELOW THE GEOTEXTILE THAT HAVE ERODED TO CREATED A VOID UNDER THE BLANKET, OR THAT REMAIN DEVOID OF GRASS SHALL BE REPAIRED, RESEEDED AND MULCHED AND THE ECB REINSTALLED.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO AND TOWN OF PARKER COLORADO, NOT AVAILABLE IN AUTOCAD)

Check dams are temporary grade control structures placed in drainage channels to limit the erosivity of stormwater by reducing flow velocity. Check dams are typically constructed from rock, gravel bags, sand bags, or sometimes, proprietary devices. Reinforced check dams are typically constructed from rock and wire gabion. Although the primary function of check dams is to reduce the velocity of concentrated flows, a secondary benefit is sediment trapping upstream of the structure.



**Photograph CD-1.** Rock check dams in a roadside ditch. Photo courtesy of WWE.

# Appropriate Uses

Use as a grade control for temporary drainage ditches or swales until final soil stabilization measures are established upstream and downstream. Check dams can be used on mild or moderately steep slopes. Check dams may be used under the following conditions:

- As temporary grade control facilities along waterways until final stabilization is established.
- Along permanent swales that need protection prior to installation of a non-erodible lining.
- Along temporary channels, ditches or swales that need protection where construction of a nonerodible lining is not practicable.
- Reinforced check dams should be used in areas subject to high flow velocities.

# **Design and Installation**

Place check dams at regularly spaced intervals along the drainage swale or ditch. Check dams heights should allow for pools to develop upstream of each check dam, extending to the downstream toe of the check dam immediately upstream.

When rock is used for the check dam, place rock mechanically or by hand. Do not dump rocks into the drainage channel. Where multiple check dams are used, the top of the lower dam should be at the same elevation as the toe of the upper dam.

When reinforced check dams are used, install erosion control fabric under and around the check dam to

prevent erosion on the upstream and downstream sides. Each section of the dam should be keyed in to reduce the potential for washout or undermining. A rock apron upstream and downstream of the dam may be necessary to further control erosion.

| Check Dams               |          |  |
|--------------------------|----------|--|
| Functions                |          |  |
| Erosion Control          | Yes      |  |
| Sediment Control         | Moderate |  |
| Site/Material Management | No       |  |

Design details with notes are provided for the following types of check dams:

- Rock Check Dams (CD-1)
- Reinforced Check Dams (CD-2)

Sediment control logs may also be used as check dams; however, silt fence is not appropriate for use as a check dam. Many jurisdictions also prohibit or discourage use of straw bales for this purpose.

## Maintenance and Removal

Replace missing rocks causing voids in the check dam. If gravel bags or sandbags are used, replace or repair torn or displaced bags.

Remove accumulated sediment, as needed to maintain BMP effectiveness, typically before the sediment depth upstream of the check dam is within ½ of the crest height. Remove accumulated sediment prior to mulching, seeding, or chemical soil stabilization. Removed sediment can be incorporated into the earthwork with approval from the Project Engineer, or disposed of at an alternate location in accordance with the standard specifications.

Check dams constructed in permanent swales should be removed when perennial grasses have become established, or immediately prior to installation of a non-erodible lining. All of the rock and accumulated sediment should be removed, and the area seeded and mulched, or otherwise stabilized.



CHECK DAM INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

- -LOCATION OF CHECK DAMS.
- -CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM).
- -LENGTH (L), CREST LENGTH (CL), AND DEPTH (D).

2. CHECK DAMS INDICATED ON INITIAL SWMP SHALL BE INSTALLED AFTER CONSTRUCTION FENCE, BUT PRIOR TO ANY UPSTREAM LAND DISTURBING ACTIVITIES.

3. RIPRAP UTILIZED FOR CHECK DAMS SHOULD BE OF APPROPRIATE SIZE FOR THE APPLICATION. TYPICAL TYPES OF RIPRAP USED FOR CHECK DAMS ARE TYPE M (D50 12") OR TYPE L (D50 9").

4. RIPRAP PAD SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1'.

5. THE ENDS OF THE CHECK DAM SHALL BE A MINIMUM OF 1' 6" HIGHER THAN THE CENTER OF THE CHECK DAM.

#### CHECK DAM MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF THE CHECK DAMS SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS WITHIN  $\frac{1}{2}$  OF THE HEIGHT OF THE CREST.

5. CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

6. WHEN CHECK DAMS ARE REMOVED, EXCAVATIONS SHALL BE FILLED WITH SUITABLE COMPACTED BACKFILL. DISTURBED AREA SHALL BE SEEDED AND MULCHED AND COVERED WITH GEOTEXTILE OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.



1. SEE PLAN VIEW FOR:

-LOCATIONS OF CHECK DAMS.

-CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM).

-LENGTH (L), CREST LENGTH (CL), AND DEPTH (D).

2. CHECK DAMS INDICATED ON THE SWMP SHALL BE INSTALLED PRIOR TO AN UPSTREAM LAND-DISTURBING ACTIVITIES.

3. REINFORCED CHECK DAMS, GABIONS SHALL HAVE GALVANIZED TWISTED WIRE NETTING WITH A MAXIMUM OPENING DIMENSION OF  $4\frac{1}{2}$ " AND A MINIMUM WIRE THICKNESS OF 0.10". WIRE "HOG RINGS" AT 4" SPACING OR OTHER APPROVED MEANS SHALL BE USED AT ALL GABION SEAMS AND TO SECURE THE GABION TO THE ADJACENT SECTION.

4. THE CHECK DAM SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1' 6".

5. GEOTEXTILE BLANKET SHALL BE PLACED IN THE REINFORCED CHECK DAM TRENCH EXTENDING A MINIMUM OF 1' 6" ON BOTH THE UPSTREAM AND DOWNSTREAM SIDES OF THE REINFORCED CHECK DAM.

### CD-2. REINFORCED CHECK DAM

REINFORCED CHECK DAM MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF REINFORCED CHECK DAMS SHALL BE REMOVED AS NEEDED TO MAINTAIN THE EFFECTIVENESS OF BMP, TYPICALLY WHEN THE UPSTREAM SEDIMENT DEPTH IS WITHIN ½ THE HEIGHT OF THE CREST.

5. REPAIR OR REPLACE REINFORCED CHECK DAMS WHEN THERE ARE SIGNS OF DAMAGE SUCH AS HOLES IN THE GABION OR UNDERCUTTING.

6. REINFORCED CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

7. WHEN REINFORCED CHECK DAMS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, AND COVERED WITH A GEOTEXTILE BLANKET, OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Wind erosion and dust control BMPs help to keep soil particles from entering the air as a result of land disturbing construction activities. These BMPs include a variety of practices generally focused on either graded disturbed areas or construction roadways. For graded areas, practices such as seeding and mulching, use of soil binders, site watering, or other practices that provide prompt surface cover should be used. For construction roadways, road watering and stabilized surfaces should be considered.



**Photograph DC-1.** Water truck used for dust suppression. Photo courtesy of Douglas County.

# **Appropriate Uses**

Dust control measures should be used on any site where dust poses a problem to air quality. Dust control is important to control for the health of construction workers and surrounding waterbodies.

# **Design and Installation**

The following construction BMPs can be used for dust control:

- An irrigation/sprinkler system can be used to wet the top layer of disturbed soil to help keep dry soil particles from becoming airborne.
- Seeding and mulching can be used to stabilize disturbed surfaces and reduce dust emissions.
- Protecting existing vegetation can help to slow wind velocities across the ground surface, thereby limiting the likelihood of soil particles to become airborne.
- Spray-on soil binders form a bond between soil particles keeping them grounded. Chemical treatments may require additional permitting requirements. Potential impacts to surrounding waterways and habitat must be considered prior to use.
- Placing rock on construction roadways and entrances will help keep dust to a minimum across the construction site.
- Wind fences can be installed on site to reduce wind speeds. Install fences perpendicular to the prevailing wind direction for maximum effectiveness.

# **Maintenance and Removal**

 When using an irrigation/sprinkler control system to aid in dust control, be careful not to overwater. Overwatering will cause construction vehicles to track mud off-site.
 Sediment Control

| Wind Erosion Control/<br>Dust Control |          |  |
|---------------------------------------|----------|--|
| Functions                             |          |  |
| Erosion Control                       | Yes      |  |
| Sediment Control                      | No       |  |
| Site/Material Management              | Moderate |  |

Concrete waste management involves designating and properly managing a specific area of the construction site as a concrete washout area. A concrete washout area can be created using one of several approaches designed to receive wash water from washing of tools and concrete mixer chutes, liquid concrete waste from dump trucks, mobile batch mixers, or pump trucks. Three basic approaches are available: excavation of a pit in the ground, use of an above ground storage area, or use of prefabricated haulaway concrete washout containers. Surface discharges of concrete washout water from construction sites are prohibited.



**Photograph CWA-1.** Example of concrete washout area. Note gravel tracking pad for access and sign.

# Appropriate Uses

Concrete washout areas must be designated on all sites that will generate concrete wash water or liquid concrete waste from onsite concrete mixing or concrete delivery.

Because pH is a pollutant of concern for washout activities, when unlined pits are used for concrete washout, the soil must have adequate buffering capacity to result in protection of state groundwater standards; otherwise, a liner/containment must be used. The following management practices are recommended to prevent an impact from unlined pits to groundwater:

- The use of the washout site should be temporary (less than 1 year), and
- The washout site should be not be located in an area where shallow groundwater may be present, such as near natural drainages, springs, or wetlands.

# **Design and Installation**

Concrete washout activities must be conducted in a manner that does not contribute pollutants to surface waters or stormwater runoff. Concrete washout areas may be lined or unlined excavated pits in the ground, commercially manufactured prefabricated washout containers, or aboveground holding areas constructed of berms, sandbags or straw bales with a plastic liner.

Although unlined washout areas may be used, lined pits may be required to protect groundwater under certain conditions.

Do not locate an unlined washout area within 400 feet of any natural drainage pathway or waterbody or within 1,000 feet of any wells or drinking water sources. Even for lined concrete washouts, it is advisable to locate the facility away from waterbodies and drainage paths. If site constraints make these

| <b>Concrete Washout Area</b> |     |  |  |
|------------------------------|-----|--|--|
| Functions                    |     |  |  |
| Erosion Control              | No  |  |  |
| Sediment Control             | No  |  |  |
| Site/Material Management     | Yes |  |  |

setbacks infeasible or if highly permeable soils exist in the area, then the pit must be installed with an impermeable liner (16 mil minimum thickness) or surface storage alternatives using prefabricated concrete washout devices or a lined aboveground storage area should be used.

Design details with notes are provided in Detail CWA-1 for pits and CWA-2 for aboveground storage areas. Pre-fabricated concrete washout container information can be obtained from vendors.

# **Maintenance and Removal**

A key consideration for concrete washout areas is to ensure that adequate signage is in place identifying the location of the washout area. Part of inspecting and maintaining washout areas is ensuring that adequate signage is provided and in good repair and that the washout area is being used, as opposed to washout in non-designated areas of the site.

Remove concrete waste in the washout area, as needed to maintain BMP function (typically when filled to about two-thirds of its capacity). Collect concrete waste and deliver offsite to a designated disposal location.

Upon termination of use of the washout site, accumulated solid waste, including concrete waste and any contaminated soils, must be removed from the site to prevent on-site disposal of solid waste. If the wash water is allowed to evaporate and the concrete hardens, it may be recycled.



**Photograph CWA-2.** Prefabricated concrete washout. Photo courtesy of CDOT.



**Photograph CWA-3.** Earthen concrete washout. Photo courtesy of CDOT.

# **MM-1**



### <u>CWA-1. CONCRETE WASHOUT AREA</u>

#### CWA INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

-CWA INSTALLATION LOCATION.

2. DO NOT LOCATE AN UNLINED CWA WITHIN 400' OF ANY NATURAL DRAINAGE PATHWAY OR WATERBODY. DO NOT LOCATE WITHIN 1,000' OF ANY WELLS OR DRINKING WATER SOURCES. IF SITE CONSTRAINTS MAKE THIS INFEASIBLE, OR IF HIGHLY PERMEABLE SOILS EXIST ON SITE, THE CWA MUST BE INSTALLED WITH AN IMPERMEABLE LINER (16 MIL MIN. THICKNESS) OR SURFACE STORAGE ALTERNATIVES USING PREFABRICATED CONCRETE WASHOUT DEVICES OR A LINED ABOVE GROUND STORAGE ARE SHOULD BE USED.

3. THE CWA SHALL BE INSTALLED PRIOR TO CONCRETE PLACEMENT ON SITE.

4. CWA SHALL INCLUDE A FLAT SUBSURFACE PIT THAT IS AT LEAST 8' BY 8' SLOPES LEADING OUT OF THE SUBSURFACE PIT SHALL BE 3:1 OR FLATTER. THE PIT SHALL BE AT LEAST 3' DEEP.

5. BERM SURROUNDING SIDES AND BACK OF THE CWA SHALL HAVE MINIMUM HEIGHT OF 1'.

6. VEHICLE TRACKING PAD SHALL BE SLOPED 2% TOWARDS THE CWA.

7. SIGNS SHALL BE PLACED AT THE CONSTRUCTION ENTRANCE, AT THE CWA, AND ELSEWHERE AS NECESSARY TO CLEARLY INDICATE THE LOCATION OF THE CWA TO OPERATORS OF CONCRETE TRUCKS AND PUMP RIGS.

8. USE EXCAVATED MATERIAL FOR PERIMETER BERM CONSTRUCTION.

#### CWA MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. THE CWA SHALL BE REPAIRED, CLEANED, OR ENLARGED AS NECESSARY TO MAINTAIN CAPACITY FOR CONCRETE WASTE. CONCRETE MATERIALS, ACCUMULATED IN PIT, SHALL BE REMOVED ONCE THE MATERIALS HAVE REACHED A DEPTH OF 2'.

5. CONCRETE WASHOUT WATER, WASTED PIECES OF CONCRETE AND ALL OTHER DEBRIS IN THE SUBSURFACE PIT SHALL BE TRANSPORTED FROM THE JOB SITE IN A WATER-TIGHT CONTAINER AND DISPOSED OF PROPERLY.

6. THE CWA SHALL REMAIN IN PLACE UNTIL ALL CONCRETE FOR THE PROJECT IS PLACED.

7. WHEN THE CWA IS REMOVED, COVER THE DISTURBED AREA WITH TOP SOIL, SEED AND MULCH OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND THE CITY OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD).

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Stockpile management includes measures to minimize erosion and sediment transport from soil stockpiles.

# **Appropriate Uses**

Stockpile management should be used when soils or other erodible materials are stored at the construction site. Special attention should be given to stockpiles in close proximity to natural or manmade storm systems.



**Photograph SP-1.** A topsoil stockpile that has been partially revegetated and is protected by silt fence perimeter control.

# **Design and Installation**

Locate stockpiles away from all drainage system components including storm sewer inlets. Where practical, choose stockpile locations that that will remain undisturbed for the longest period of time as the phases of construction progress. Place sediment control BMPs around the perimeter of the stockpile, such as sediment control logs, rock socks, silt fence, straw bales and sand bags. See Detail SP-1 for guidance on proper establishment of perimeter controls around a stockpile. For stockpiles in active use, provide a stabilized designated access point on the upgradient side of the stockpile.

Stabilize the stockpile surface with surface roughening, temporary seeding and mulching, erosion control blankets, or soil binders. Soils stockpiled for an extended period (typically for more than 60 days) should be seeded and mulched with a temporary grass cover once the stockpile is placed (typically within 14 days). Use of mulch only or a soil binder is acceptable if the stockpile will be in place for a more limited time period (typically 30-60 days). Timeframes for stabilization of stockpiles noted in this fact sheet are "typical" guidelines. Check permit requirements for specific federal, state, and/or local requirements that may be more prescriptive.

Stockpiles should not be placed in streets or paved areas unless no other practical alternative exists. See the Stabilized Staging Area Fact Sheet for guidance when staging in roadways is unavoidable due to space or right-of-way constraints. For paved areas, rock socks must be used for perimeter control and all inlets with the potential to receive sediment from the stockpile (even from vehicle tracking) must be protected.

# **Maintenance and Removal**

Inspect perimeter controls and inlet protection in accordance with their respective BMP Fact Sheets. Where seeding, mulch and/or soil binders are used, reseeding or reapplication of soil binder may be necessary.

When temporary removal of a perimeter BMP is necessary to access a stockpile, ensure BMPs are reinstalled in accordance with their respective design detail section.

| Stockpile Management     |     |  |  |
|--------------------------|-----|--|--|
| Functions                |     |  |  |
| Erosion Control          | Yes |  |  |
| Sediment Control         | Yes |  |  |
| Site/Material Management | Yes |  |  |

When the stockpile is no longer needed, properly dispose of excess materials and revegetate or otherwise stabilize the ground surface where the stockpile was located.



### <u>SP-1. STOCKPILE PROTECTION</u>

#### STOCKPILE PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION OF STOCKPILES. -TYPE OF STOCKPILE PROTECTION.

2. INSTALL PERIMETER CONTROLS IN ACCORDANCE WITH THEIR RESPECTIVE DESIGN DETAILS. SILT FENCE IS SHOWN IN THE STOCKPILE PROTECTION DETAILS; HOWEVER, OTHER TYPES OF PERIMETER CONTROLS INCLUDING SEDIMENT CONTROL LOGS OR ROCK SOCKS MAY BE SUITABLE IN SOME CIRCUMSTANCES. CONSIDERATIONS FOR DETERMINING THE APPROPRIATE TYPE OF PERIMETER CONTROL FOR A STOCKPILE INCLUDE WHETHER THE STOCKPILE IS LOCATED ON A PERVIOUS OR IMPERVIOUS SURFACE, THE RELATIVE HEIGHTS OF THE PERIMETER CONTROL AND STOCKPILE, THE ABILITY OF THE PERIMETER CONTROL TO CONTAIN THE STOCKPILE WITHOUT FAILING IN THE EVENT THAT MATERIAL FROM THE STOCKPILE SHIFTS OR SLUMPS AGAINST THE PERIMETER, AND OTHER FACTORS.

3. STABILIZE THE STOCKPILE SURFACE WITH SURFACE ROUGHENING, TEMPORARY SEEDING AND MULCHING, EROSION CONTROL BLANKETS, OR SOIL BINDERS. SOILS STOCKPILED FOR AN EXTENDED PERIOD (TYPICALLY FOR MORE THAN 60 DAYS) SHOULD BE SEEDED AND MULCHED WITH A TEMPORARY GRASS COVER ONCE THE STOCKPILE IS PLACED (TYPICALLY WITHIN 14 DAYS). USE OF MULCH ONLY OR A SOIL BINDER IS ACCEPTABLE IF THE STOCKPILE WILL BE IN PLACE FOR A MORE LIMITED TIME PERIOD (TYPICALLY 30-60 DAYS).

4. FOR TEMPORARY STOCKPILES ON THE INTERIOR PORTION OF A CONSTRUCTION SITE, WHERE OTHER DOWNGRADIENT CONTROLS, INCLUDING PERIMETER CONTROL, ARE IN PLACE, STOCKPILE PERIMETER CONTROLS MAY NOT BE REQUIRED.

#### STOCKPILE PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

STOCKPILE PROTECTION MAINTENANCE NOTES

4. IF PERIMETER PROTECTION MUST BE MOVED TO ACCESS SOIL STOCKPILE, REPLACE PERIMETER CONTROLS BY THE END OF THE WORKDAY.

5. STOCKPILE PERIMETER CONTROLS CAN BE REMOVED ONCE ALL THE MATERIAL FROM THE STOCKPILE HAS BEEN USED.

(DETAILS ADAPTED FROM PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.



#### MATERIALS STAGING IN ROADWAYS INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR
  - -LOCATION OF MATERIAL STAGING AREA(S).

-CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM THE LOCAL JURISDICTION.

2. FEATURE MUST BE INSTALLED PRIOR TO EXCAVATION, EARTHWORK OR DELIVERY OF MATERIALS.

3. MATERIALS MUST BE STATIONED ON THE POLY LINER. ANY INCIDENTAL MATERIALS DEPOSITED ON PAVED SECTION OR ALONG CURB LINE MUST BE CLEANED UP PROMPTLY.

4. POLY LINER AND TARP COVER SHOULD BE OF SIGNIFICANT THICKNESS TO PREVENT DAMAGE OR LOSS OF INTEGRITY.

5. SAND BAGS MAY BE SUBSTITUTED TO ANCHOR THE COVER TARP OR PROVIDE BERMING UNDER THE BASE LINER.

6. FEATURE IS NOT INTENDED FOR USE WITH WET MATERIAL THAT WILL BE DRAINING AND/OR SPREADING OUT ON THE POLY LINER OR FOR DEMOLITION MATERIALS.

7. THIS FEATURE CAN BE USED FOR:

-UTILITY REPAIRS.

-WHEN OTHER STAGING LOCATIONS AND OPTIONS ARE LIMITED.

-OTHER LIMITED APPLICATION AND SHORT DURATION STAGING.
MATERIALS STAGING IN ROADWAY MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE  $\mathsf{BMPs}$  HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. INSPECT PVC PIPE ALONG CURB LINE FOR CLOGGING AND DEBRIS. REMOVE OBSTRUCTIONS PROMPTLY.

5. CLEAN MATERIAL FROM PAVED SURFACES BY SWEEPING OR VACUUMING.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM AURORA, COLORADO)

Implement construction site good housekeeping practices to prevent pollution associated with solid, liquid and hazardous construction-related materials and wastes. Stormwater Management Plans (SWMPs) should clearly specify BMPs including these good housekeeping practices:

- Provide for waste management.
- Establish proper building material staging areas.
- Designate paint and concrete washout areas.
- Establish proper equipment/vehicle fueling and maintenance practices.
- Control equipment/vehicle washing and allowable nonstormwater discharges.
- Develop a spill prevention and response plan.

Acknowledgement: This Fact Sheet is based directly on EPA guidance provided in *Developing Your Stormwater Pollution Prevent Plan* (EPA 2007).

## **Appropriate Uses**



**Photographs GH-1 and GH-2.** Proper materials storage and secondary containment for fuel tanks are important good housekeeping practices. Photos courtesy of CDOT and City of Aurora.

Good housekeeping practices are necessary at all construction sites.

## **Design and Installation**

The following principles and actions should be addressed in SWMPs:

Provide for Waste Management. Implement management procedures and practices to prevent or reduce the exposure and transport of pollutants in stormwater from solid, liquid and sanitary wastes that will be generated at the site. Practices such as trash disposal, recycling, proper material handling, and cleanup measures can reduce the potential for stormwater runoff to pick up construction site wastes and discharge them to surface waters. Implement a comprehensive set of waste-management practices for hazardous or toxic materials, such as paints, solvents, petroleum products, pesticides, wood preservatives, acids, roofing tar, and other materials. Practices should include storage, handling, inventory, and cleanup procedures, in case of spills. Specific practices that should be considered include:

### Solid or Construction Waste

• Designate trash and bulk waste-collection areas onsite.

| Good Housekeeping        |     |  |  |
|--------------------------|-----|--|--|
| Functions                |     |  |  |
| Erosion Control          | No  |  |  |
| Sediment Control         | No  |  |  |
| Site/Material Management | Yes |  |  |

- o Recycle materials whenever possible (e.g., paper, wood, concrete, oil).
- o Segregate and provide proper disposal options for hazardous material wastes.
- Clean up litter and debris from the construction site daily.
- Locate waste-collection areas away from streets, gutters, watercourses, and storm drains. Waste-collection areas (dumpsters, and such) are often best located near construction site entrances to minimize traffic on disturbed soils. Consider secondary containment around waste collection areas to minimize the likelihood of contaminated discharges.
- o Empty waste containers before they are full and overflowing.

### Sanitary and Septic Waste

- o Provide convenient, well-maintained, and properly located toilet facilities on-site.
- Locate toilet facilities away from storm drain inlets and waterways to prevent accidental spills and contamination of stormwater.
- o Maintain clean restroom facilities and empty portable toilets regularly.
- Where possible, provide secondary containment pans under portable toilets.
- o Provide tie-downs or stake-downs for portable toilets.
- o Educate employees, subcontractors, and suppliers on locations of facilities.
- Treat or dispose of sanitary and septic waste in accordance with state or local regulations. Do not discharge or bury wastewater at the construction site.
- o Inspect facilities for leaks. If found, repair or replace immediately.
- Special care is necessary during maintenance (pump out) to ensure that waste and/or biocide are not spilled on the ground.

### **Hazardous Materials and Wastes**

- Develop and implement employee and subcontractor education, as needed, on hazardous and toxic waste handling, storage, disposal, and cleanup.
- Designate hazardous waste-collection areas on-site.
- Place all hazardous and toxic material wastes in secondary containment.



**Photograph GH-3.** Locate portable toilet facilities on level surfaces away from waterways and storm drains. Photo courtesy of WWE.

- Hazardous waste containers should be inspected to ensure that all containers are labeled properly and that no leaks are present.
- Establish Proper Building Material Handling and Staging Areas. The SWMP should include comprehensive handling and management procedures for building materials, especially those that are hazardous or toxic. Paints, solvents, pesticides, fuels and oils, other hazardous materials or building materials that have the potential to contaminate stormwater should be stored indoors or under cover whenever possible or in areas with secondary containment. Secondary containment measures prevent a spill from spreading across the site and may include dikes, berms, curbing, or other containment methods. Secondary containment techniques should also ensure the protection of groundwater. Designate staging areas for activities such as fueling vehicles, mixing paints, plaster, mortar, and other potential pollutants. Designated staging areas enable easier monitoring of the use of materials and clean up of spills. Training employees and subcontractors is essential to the success of this pollution prevention principle. Consider the following specific materials handling and staging practices:
  - Train employees and subcontractors in proper handling and storage practices.
  - Clearly designate site areas for staging and storage with signs and on construction drawings. Staging areas should be located in areas central to the construction site. Segment the staging area into sub-areas designated for vehicles, equipment, or stockpiles. Construction entrances and exits should be clearly marked so that delivery vehicles enter/exit through stabilized areas with vehicle tracking controls (See Vehicle Tracking Control Fact Sheet).
  - Provide storage in accordance with Spill Protection, Control and Countermeasures (SPCC) requirements and plans and provide cover and impermeable perimeter control, as necessary, for hazardous materials and contaminated soils that must be stored on site.
  - Ensure that storage containers are regularly inspected for leaks, corrosion, support or foundation failure, or other signs of deterioration and tested for soundness.
  - Reuse and recycle construction materials when possible.
- Designate Concrete Washout Areas. Concrete contractors should be encouraged to use the washout facilities at their own plants or dispatch facilities when feasible; however, concrete washout commonly occurs on construction sites. If it is necessary to provide for concrete washout areas onsite, designate specific washout areas and design facilities to handle anticipated washout water. Washout areas should also be provided for paint and stucco operations. Because washout areas can be a source of pollutants from leaks or spills, care must be taken with regard to their placement and proper use. See the Concrete Washout Area Fact Sheet for detailed guidance.

Both self-constructed and prefabricated washout containers can fill up quickly when concrete, paint, and stucco work are occurring on large portions of the site. Be sure to check for evidence that contractors are using the washout areas and not dumping materials onto the ground or into drainage facilities. If the washout areas are not being used regularly, consider posting additional signage, relocating the facilities to more convenient locations, or providing training to workers and contractors.

When concrete, paint, or stucco is part of the construction process, consider these practices which will help prevent contamination of stormwater. Include the locations of these areas and the maintenance and inspection procedures in the SWMP.

- Do not washout concrete trucks or equipment into storm drains, streets, gutters, uncontained areas, or streams. Only use designated washout areas.
- Establish washout areas and advertise their locations with signs. Ensure that signage remains in good repair.
- Provide adequate containment for the amount of wash water that will be used.
- Inspect washout structures daily to detect leaks or tears and to identify when materials need to be removed.
- Dispose of materials properly. The preferred method is to allow the water to evaporate and to recycle the hardened concrete. Full service companies may provide dewatering services and should dispose of wastewater properly. Concrete wash water can be highly polluted. It should not be discharged to any surface water, storm sewer system, or allowed to infiltrate into the ground in the vicinity of waterbodies. Washwater should not be discharged to a sanitary sewer system without first receiving written permission from the system operator.
- Establish Proper Equipment/Vehicle Fueling and Maintenance Practices. Create a clearly designated on-site fueling and maintenance area that is clean and dry. The on-site fueling area should have a spill kit, and staff should know how to use it. If possible, conduct vehicle fueling and maintenance activities in a covered area. Consider the following practices to help prevent the discharge of pollutants to stormwater from equipment/vehicle fueling and maintenance. Include the locations of designated fueling and maintenance areas and inspection and maintenance procedures in the SWMP.
  - Train employees and subcontractors in proper fueling procedures (stay with vehicles during fueling, proper use of pumps, emergency shutoff valves, etc.).
  - Inspect on-site vehicles and equipment regularly for leaks, equipment damage, and other service problems.
  - Clearly designate vehicle/equipment service areas away from drainage facilities and watercourses to prevent stormwater run-on and runoff.
  - Use drip pans, drip cloths, or absorbent pads when replacing spent fluids.
  - Collect all spent fluids, store in appropriate labeled containers in the proper storage areas, and recycle fluids whenever possible.
- Control Equipment/Vehicle Washing and Allowable Non-Stormwater Discharges. Implement
  practices to prevent contamination of surface and groundwater from equipment and vehicle wash
  water. Representative practices include:
  - Educate employees and subcontractors on proper washing procedures.
  - o Use off-site washing facilities, when available.
  - Clearly mark the washing areas and inform workers that all washing must occur in this area.
  - Contain wash water and treat it using BMPs. Infiltrate washwater when possible, but maintain separation from drainage paths and waterbodies.

- Use high-pressure water spray at vehicle washing facilities without detergents. Water alone can remove most dirt adequately.
- o Do not conduct other activities, such as vehicle repairs, in the wash area.
- Include the location of the washing facilities and the inspection and maintenance procedures in the SWMP.
- Develop a Spill Prevention and Response Plan. Spill prevention and response procedures must be identified in the SWMP. Representative procedures include identifying ways to reduce the chance of spills, stop the source of spills, contain and clean up spills, dispose of materials contaminated by spills, and train personnel responsible for spill prevention and response. The plan should also specify material handling procedures and storage requirements and ensure that clear and concise spill cleanup procedures are provided and posted for areas in which spills may potentially occur. When developing a spill prevention plan, include the following:
  - Note the locations of chemical storage areas, storm drains, tributary drainage areas, surface waterbodies on or near the site, and measures to stop spills from leaving the site.
  - Provide proper handling and safety procedures for each type of waste. Keep Material Safety Data Sheets (MSDSs) for chemical used on site with the SWMP.
  - Establish an education program for employees and subcontractors on the potential hazards to humans and the environment from spills and leaks.
  - Specify how to notify appropriate authorities, such as police and fire departments, hospitals, or municipal sewage treatment facilities to request assistance. Emergency procedures and contact numbers should be provided in the SWMP and posted at storage locations.
  - Describe the procedures, equipment and materials for immediate cleanup of spills and proper disposal.
  - Identify personnel responsible for implementing the plan in the event of a spill. Update the spill prevention plan and clean up materials as changes occur to the types of chemicals stored and used at the facility.

### Spill Prevention, Control, and Countermeasure (SPCC) Plan

Construction sites may be subject to 40 CFR Part 112 regulations that require the preparation and implementation of a SPCC Plan to prevent oil spills from aboveground and underground storage tanks. The facility is subject to this rule if it is a non-transportation-related facility that:

- Has a total storage capacity greater than 1,320 gallons or a completely buried storage capacity greater than 42,000 gallons.
- Could reasonably be expected to discharge oil in quantities that may be harmful to navigable waters
  of the United States and adjoining shorelines.

Furthermore, if the facility is subject to 40 CFR Part 112, the SWMP should reference the SPCC Plan. To find out more about SPCC Plans, see EPA's website on SPPC at <u>www.epa.gov/oilspill/spcc.htm</u>.

### **Reporting Oil Spills**

In the event of an oil spill, contact the National Response Center toll free at 1-800-424- 8802 for assistance, or for more details, visit their website: <u>www.nrc.uscg.mil</u>.

### Maintenance and Removal

Effective implementation of good housekeeping practices is dependent on clear designation of personnel responsible for supervising and implementing good housekeeping programs, such as site cleanup and disposal of trash and debris, hazardous material management and disposal, vehicle and equipment maintenance, and other practices. Emergency response "drills" may aid in emergency preparedness.

Checklists may be helpful in good housekeeping efforts.

Staging and storage areas require permanent stabilization when the areas are no longer being used for construction-related activities.

Construction-related materials, debris and waste must be removed from the construction site once construction is complete.

### **Design Details**

See the following Fact Sheets for related Design Details:

MM-1 Concrete Washout Area

MM-2 Stockpile Management

SM-4 Vehicle Tracking Control

Design details are not necessary for other good housekeeping practices; however, be sure to designate where specific practices will occur on the appropriate construction drawings.

A silt fence is a woven geotextile fabric attached to wooden posts and trenched into the ground. It is designed as a sediment barrier to intercept sheet flow runoff from disturbed areas.

## **Appropriate Uses**

A silt fence can be used where runoff is conveyed from a disturbed area as sheet flow. Silt fence is not designed to receive concentrated flow or to be used as a filter fabric. Typical uses include:

- Down slope of a disturbed area to accept sheet flow.
- Along the perimeter of a receiving water such as a stream, pond or wetland.



**Photograph SF-1.** Silt fence creates a sediment barrier, forcing sheet flow runoff to evaporate or infiltrate.

• At the perimeter of a construction site.

## **Design and Installation**

Silt fence should be installed along the contour of slopes so that it intercepts sheet flow. The maximum recommended tributary drainage area per 100 lineal feet of silt fence, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to silt fence installed along the contour. Silt fence installed for other uses, such as perimeter control, should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the silt fence.

See Detail SF-1 for proper silt fence installation, which involves proper trenching, staking, securing the fabric to the stakes, and backfilling the silt fence. Properly installed silt fence should not be easily pulled out by hand and there should be no gaps between the ground and the fabric.

Silt fence must meet the minimum allowable strength requirements, depth of installation requirement, and

other specifications in the design details. Improper installation of silt fence is a common reason for silt fence failure; however, when properly installed and used for the appropriate purposes, it can be highly effective.

| Silt Fence               |     |
|--------------------------|-----|
| Functions                |     |
| Erosion Control          | No  |
| Sediment Control         | Yes |
| Site/Material Management | No  |

### **Maintenance and Removal**

Inspection of silt fence includes observing the material for tears or holes and checking for slumping fence and undercut areas bypassing flows. Repair of silt fence typically involves replacing the damaged section with a new section. Sediment accumulated behind silt fence should be removed, as needed to maintain BMP effectiveness, typically before it reaches a depth of 6 inches.

Silt fence may be removed when the upstream area has reached final stabilization.



**Photograph SF-2.** When silt fence is not installed along the contour, a "J-hook" installation may be appropriate to ensure that the BMP does not create concentrated flow parallel to the silt fence. Photo courtesy of Tom Gore.



SF-1. SILT FENCE

#### SILT FENCE INSTALLATION NOTES

1. SILT FENCE MUST BE PLACED AWAY FROM THE TOE OF THE SLOPE TO ALLOW FOR WATER PONDING. SILT FENCE AT THE TOE OF A SLOPE SHOULD BE INSTALLED IN A FLAT LOCATION AT LEAST SEVERAL FEET (2–5 FT) FROM THE TOE OF THE SLOPE TO ALLOW ROOM FOR PONDING AND DEPOSITION.

2. A UNIFORM 6" X 4" ANCHOR TRENCH SHALL BE EXCAVATED USING TRENCHER OR SILT FENCE INSTALLATION DEVICE. NO ROAD GRADERS, BACKHOES, OR SIMILAR EQUIPMENT SHALL BE USED.

3. COMPACT ANCHOR TRENCH BY HAND WITH A "JUMPING JACK" OR BY WHEEL ROLLING. COMPACTION SHALL BE SUCH THAT SILT FENCE RESISTS BEING PULLED OUT OF ANCHOR TRENCH BY HAND.

4. SILT FENCE SHALL BE PULLED TIGHT AS IT IS ANCHORED TO THE STAKES. THERE SHOULD BE NO NOTICEABLE SAG BETWEEN STAKES AFTER IT HAS BEEN ANCHORED TO THE STAKES.

5. SILT FENCE FABRIC SHALL BE ANCHORED TO THE STAKES USING 1" HEAVY DUTY STAPLES OR NAILS WITH 1" HEADS. STAPLES AND NAILS SHOULD BE PLACED 3" ALONG THE FABRIC DOWN THE STAKE.

6. AT THE END OF A RUN OF SILT FENCE ALONG A CONTOUR, THE SILT FENCE SHOULD BE TURNED PERPENDICULAR TO THE CONTOUR TO CREATE A "J-HOOK." THE "J-HOOK" EXTENDING PERPENDICULAR TO THE CONTOUR SHOULD BE OF SUFFICIENT LENGTH TO KEEP RUNOFF FROM FLOWING AROUND THE END OF THE SILT FENCE (TYPICALLY 10' - 20').

7. SILT FENCE SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

#### SILT FENCE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE  $\mathsf{BMPs}$  have failed, Repair or Replacement should be initiated upon discovery of the failure.

4. SEDIMENT ACCUMULATED UPSTREAM OF THE SILT FENCE SHALL BE REMOVED AS NEEDED TO MAINTAIN THE FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY 6".

5. REPAIR OR REPLACE SILT FENCE WHEN THERE ARE SIGNS OF WEAR, SUCH AS SAGGING, TEARING, OR COLLAPSE.

6. SILT FENCE IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION, OR IS REPLACED BY AN EQUIVALENT PERIMETER SEDIMENT CONTROL BMP.

7. WHEN SILT FENCE IS REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

A sediment control log is a linear roll made of natural materials such as straw, coconut fiber, or compost. The most common type of sediment control log has straw filling and is often referred to as a "straw wattle." All sediment control logs are used as a sediment barrier to intercept sheet flow runoff from disturbed areas.

## **Appropriate Uses**

Sediment control logs can be used in the following applications to trap sediment:

- As perimeter control for stockpiles and the site.
- As part of inlet protection designs.
- As check dams in small drainage ditches. (Sediment control logs are not intended for use in channels with high flow velocities.)
- On disturbed slopes to shorten flow lengths (as an erosion control).



**Photographs SCL-1 and SCL-2.** Sediment control logs used as 1) a perimeter control around a soil stockpile; and, 2) as a "J-hook" perimeter control at the corner of a construction site.

• As part of multi-layered perimeter control along a receiving water such as a stream, pond or wetland.

Sediment control logs work well in combination with other layers of erosion and sediment controls.

## **Design and Installation**

Sediment control logs should be installed along the contour to avoid concentrating flows. The maximum allowable tributary drainage area per 100 lineal feet of sediment control log, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to sediment control logs installed along the contour. When installed for other uses, such as

perimeter control, it should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the BMP.

| Sediment Control Log     |          |  |
|--------------------------|----------|--|
| Functions                |          |  |
| Erosion Control          | Moderate |  |
| Sediment Control         | Yes      |  |
| Site/Material Management | No       |  |

Although sediment control logs initially allow runoff to flow through the BMP, they can quickly become a barrier and should be installed as if they are impermeable.

Design details and notes for sediment control logs are provided in the following details. Sediment logs must be properly installed per the detail to prevent undercutting, bypassing and displacement. When installed on slopes, sediment control logs should be installed along the contours (i.e., perpendicular to flow).

Improper installation can lead to poor performance. Be sure that sediment control logs are properly trenched (if lighter than 8 lb/foot), anchored and tightly jointed.

### **Maintenance and Removal**

Be aware that sediment control logs will eventually degrade. Remove accumulated sediment before the depth is one-half the height of the sediment log and repair damage to the sediment log, typically by replacing the damaged section.

Once the upstream area is stabilized, remove and properly dispose of the logs. Areas disturbed beneath the logs may need to be seeded and mulched. Sediment control logs that are biodegradable may occasionally be left in place (e.g., when logs are used in conjunction with erosion control blankets as permanent slope breaks). However, removal of sediment control logs after final stabilization is typically appropriate when used in perimeter control, inlet protection and check dam applications. Compost from compost sediment control logs may be spread over the area and seeded as long as this does not cover newly established vegetation.





### SCL-2. COMPOST SEDIMENT CONTROL LOG (WEIGHTED)



SEDIMENT CONTROL LOG INSTALLATION NOTES

1. SEE PLAN VIEW FOR LOCATION AND LENGTH OF SEDIMENT CONTROL LOGS.

2. SEDIMENT CONTROL LOGS THAT ACT AS A PERIMETER CONTROL SHALL BE INSTALLED PRIOR TO ANY UPGRADIENT LAND-DISTURBING ACTIVITIES.

 SEDIMENT CONTROL LOGS SHALL CONSIST OF STRAW, COMPOST, EXCELSIOR OR COCONUT FIBER, AND SHALL BE FREE OF ANY NOXIOUS WEED SEEDS OR DEFECTS INCLUDING RIPS, HOLES AND OBVIOUS WEAR.

4. SEDIMENT CONTROL LOGS MAY BE USED AS SMALL CHECK DAMS IN DITCHES AND SWALES. HOWEVER, THEY SHOULD NOT BE USED IN PERENNIAL STREAMS.

5. IT IS RECOMMENDED THAT SEDIMENT CONTROL LOGS BE TRENCHED INTO THE GROUND TO A DEPTH OF APPROXIMATELY 3/3 OF THE DIAMETER OF THE LOG. IF TRENCHING TO THIS DEPTH IS NOT FEASIBLE AND/OR DESIRABLE (SHORT TERM INSTALLATION WITH DESIRE NOT TO DAMAGE LANDSCAPE) A LESSER TRENCHING DEPTH MAY BE ACCEPTABLE WITH MORE ROBUST STAKING. COMPOST LOGS THAT ARE 8 LB/FT DO NOT NEED TO BE TRENCHED.

6. THE UPHILL SIDE OF THE SEDIMENT CONTROL LOG SHALL BE BACKFILLED WITH SOIL OR FILTER MATERIAL THAT IS FREE OF ROCKS AND DEBRIS. THE SOIL SHALL BE TIGHTLY COMPACTED INTO THE SHAPE OF A RIGHT TRIANGLE USING A SHOVEL OR WEIGHTED LAWN ROLLER OR BLOWN IN PLACE.

7. FOLLOW MANUFACTURERS' GUIDANCE FOR STAKING. IF MANUFACTURERS' INSTRUCTIONS DO NOT SPECIFY SPACING, STAKES SHALL BE PLACED ON 4' CENTERS AND EMBEDDED A MINIMUM OF 6" INTO THE GROUND. 3" OF THE STAKE SHALL PROTRUDE FROM THE TOP OF THE LOG. STAKES THAT ARE BROKEN PRIOR TO INSTALLATION SHALL BE REPLACED. COMPOST LOGS SHOULD BE STAKED 10' ON CENTER.

#### SEDIMENT CONTROL LOG MAINTENANCE NOTES

 INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF SEDIMENT CONTROL LOG SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY ½ OF THE HEIGHT OF THE SEDIMENT CONTROL LOG.

5. SEDIMENT CONTROL LOG SHALL BE REMOVED AT THE END OF CONSTRUCTION.COMPOST FROM COMPOST LOGS MAY BE LEFT IN PLACE AS LONG AS BAGS ARE REMOVED AND THE AREA SEEDED. IF DISTURBED AREAS EXIST AFTER REMOVAL, THEY SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, JEFFERSON COUNTY, COLORADO, DOUGLAS COUNTY, COLORADO, AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

A rock sock is constructed of gravel that has been wrapped by wire mesh or a geotextile to form an elongated cylindrical filter. Rock socks are typically used either as a perimeter control or as part of inlet protection. When placed at angles in the curb line, rock socks are typically referred to as curb socks. Rock socks are intended to trap sediment from stormwater runoff that flows onto roadways as a result of construction activities.



## **Appropriate Uses**

Rock socks can be used at the perimeter of a disturbed area to control localized sediment loading. A benefit of rock

**Photograph RS-1.** Rock socks placed at regular intervals in a curb line can help reduce sediment loading to storm sewer inlets. Rock socks can also be used as perimeter controls.

socks as opposed to other perimeter controls is that they do not have to be trenched or staked into the ground; therefore, they are often used on roadway construction projects where paved surfaces are present.

Use rock socks in inlet protection applications when the construction of a roadway is substantially complete and the roadway has been directly connected to a receiving storm system.

## **Design and Installation**

When rock socks are used as perimeter controls, the maximum recommended tributary drainage area per 100 lineal feet of rock socks is approximately 0.25 acres with disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. A rock sock design detail and notes are provided in Detail RS-1. Also see the Inlet Protection Fact Sheet for design and installation guidance when rock socks are used for inlet protection and in the curb line.

When placed in the gutter adjacent to a curb, rock socks should protrude no more than two feet from the curb in order for traffic to pass safely. If located in a high traffic area, place construction markers to alert drivers and street maintenance workers of their presence.

### **Maintenance and Removal**

Rock socks are susceptible to displacement and breaking due to vehicle traffic. Inspect rock socks for damage and repair or replace as necessary. Remove sediment by sweeping or vacuuming as needed to

maintain the functionality of the BMP, typically when sediment has accumulated behind the rock sock to one-half of the sock's height.

Once upstream stabilization is complete, rock socks and accumulated sediment should be removed and properly disposed.

| Rock Sock                |     |  |
|--------------------------|-----|--|
| Functions                |     |  |
| Erosion Control          | No  |  |
| Sediment Control         | Yes |  |
| Site/Material Management | No  |  |



4. WIRE MESH SHALL BE SECURED USING "HOG RINGS" OR WIRE TIES AT 6" CENTERS ALONG ALL JOINTS AND AT 2" CENTERS ON ENDS OF SOCKS.

5. SOME MUNICIPALITIES MAY ALLOW THE USE OF FILTER FABRIC AS AN ALTERNATIVE TO WIRE MESH FOR THE ROCK ENCLOSURE.

### RS-1. ROCK SOCK PERIMETER CONTROL

#### ROCK SOCK MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE  $\mathsf{BMPs}$  HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SOCKS SHALL BE REPLACED IF THEY BECOME HEAVILY SOILED, OR DAMAGED BEYOND REPAIR.

5. SEDIMENT ACCUMULATED UPSTREAM OF ROCK SOCKS SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY ½ OF THE HEIGHT OF THE ROCK SOCK.

6. ROCK SOCKS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

7. WHEN ROCK SOCKS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

NOTE: THE DETAILS INCLUDED WITH THIS FACT SHEET SHOW COMMONLY USED, CONVENTIONAL METHODS OF ROCK SOCK INSTALLATION IN THE DENVER METROPOLITAN AREA. THERE ARE MANY OTHER SIMILAR PROPRIETARY PRODUCTS ON THE MARKET. UDFCD NEITHER NDORSES NOR DISCOURAGES USE OF PROPRIETARY PROTECTION PRODUCTS; HOWEVER, IN THE EVENT PROPRIETARY METHODS ARE USED, THE APPROPRIATE DETAIL FROM THE MANUFACTURER MUST BE INCLUDED IN THE SWMP AND THE BMP MUST BE INSTALLED AND MAINTAINED AS SHOWN IN THE MANUFACTURER'S DETAILS.

Inlet protection consists of permeable barriers installed around an inlet to filter runoff and remove sediment prior to entering a storm drain inlet. Inlet protection can be constructed from rock socks, sediment control logs, silt fence, block and rock socks, or other materials approved by the local jurisdiction. Area inlets can also be protected by over-excavating around the inlet to form a sediment trap.

## **Appropriate Uses**

Install protection at storm sewer inlets that are operable during construction. Consider the potential for tracked-out



Photograph IP-1. Inlet protection for a curb opening inlet.

sediment or temporary stockpile areas to contribute sediment to inlets when determining which inlets must be protected. This may include inlets in the general proximity of the construction area, not limited to downgradient inlets. Inlet protection is <u>not</u> a stand-alone BMP and should be used in conjunction with other upgradient BMPs.

### **Design and Installation**

To function effectively, inlet protection measures must be installed to ensure that flows do not bypass the inlet protection and enter the storm drain without treatment. However, designs must also enable the inlet to function without completely blocking flows into the inlet in a manner that causes localized flooding. When selecting the type of inlet protection, consider factors such as type of inlet (e.g., curb or area, sump or on-grade conditions), traffic, anticipated flows, ability to secure the BMP properly, safety and other site-specific conditions. For example, block and rock socks will be better suited to a curb and gutter along a roadway, as opposed to silt fence or sediment control logs, which cannot be properly secured in a curb and gutter setting, but are effective area inlet protection measures.

Several inlet protection designs are provided in the Design Details. Additionally, a variety of proprietary products are available for inlet protection that may be approved for use by local governments. If proprietary products are used, design details and installation procedures from the manufacturer must be followed. Regardless of the type of inlet protection selected, inlet protection is most effective when combined with other BMPs such as curb socks and check dams. Inlet protection is often the last barrier before runoff enters the storm sewer or receiving water.

Design details with notes are provided for these forms of inlet protection:

- IP-1. Block and Rock Sock Inlet Protection for Sump or On-grade Inlets
- IP-2. Curb (Rock) Socks Upstream of Inlet Protection, On-grade Inlets

| Inlet Protection<br>(various forms) |     |  |  |
|-------------------------------------|-----|--|--|
| Functions                           |     |  |  |
| Erosion Control                     | No  |  |  |
| Sediment Control                    | Yes |  |  |
| Site/Material Management            | No  |  |  |

IP-3. Rock Sock Inlet Protection for Sump/Area Inlet

IP-4. Silt Fence Inlet Protection for Sump/Area Inlet

- IP-5. Over-excavation Inlet Protection
- IP-6. Straw Bale Inlet Protection for Sump/Area Inlet
- CIP-1. Culvert Inlet Protection

Propriety inlet protection devices should be installed in accordance with manufacturer specifications.

More information is provided below on selecting inlet protection for sump and on-grade locations.

### **Inlets Located in a Sump**

When applying inlet protection in sump conditions, it is important that the inlet continue to function during larger runoff events. For curb inlets, the maximum height of the protective barrier should be lower than the top of the curb opening to allow overflow into the inlet during larger storms without excessive localized flooding. If the inlet protection height is greater than the curb elevation, particularly if the filter becomes clogged with sediment, runoff will not enter the inlet and may bypass it, possibly causing localized flooding, public safety issues, and downstream erosion and damage from bypassed flows.

Area inlets located in a sump setting can be protected through the use of silt fence, concrete block and rock socks (on paved surfaces), sediment control logs/straw wattles embedded in the adjacent soil and stacked around the area inlet (on pervious surfaces), over-excavation around the inlet, and proprietary products providing equivalent functions.

### **Inlets Located on a Slope**

For curb and gutter inlets on paved sloping streets, block and rock sock inlet protection is recommended in conjunction with curb socks in the gutter leading to the inlet. For inlets located along unpaved roads, also see the Check Dam Fact Sheet.

### **Maintenance and Removal**

Inspect inlet protection frequently. Inspection and maintenance guidance includes:

- Inspect for tears that can result in sediment directly entering the inlet, as well as result in the contents of the BMP (e.g., gravel) washing into the inlet.
- Check for improper installation resulting in untreated flows bypassing the BMP and directly entering the inlet or bypassing to an unprotected downstream inlet. For example, silt fence that has not been properly trenched around the inlet can result in flows under the silt fence and directly into the inlet.
- Look for displaced BMPs that are no longer protecting the inlet. Displacement may occur following larger storm events that wash away or reposition the inlet protection. Traffic or equipment may also crush or displace the BMP.
- Monitor sediment accumulation upgradient of the inlet protection.

- Remove sediment accumulation from the area upstream of the inlet protection, as needed to maintain BMP effectiveness, typically when it reaches no more than half the storage capacity of the inlet protection. For silt fence, remove sediment when it accumulates to a depth of no more than 6 inches. Remove sediment accumulation from the area upstream of the inlet protection as needed to maintain the functionality of the BMP.
- Propriety inlet protection devices should be inspected and maintained in accordance with manufacturer specifications. If proprietary inlet insert devices are used, sediment should be removed in a timely manner to prevent devices from breaking and spilling sediment into the storm drain.

Inlet protection must be removed and properly disposed of when the drainage area for the inlet has reached final stabilization.



#### BLOCK AND CURB SOCK INLET PROTECTION INSTALLATION NOTES

1. SEE ROCK SOCK DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. CONCRETE "CINDER" BLOCKS SHALL BE LAID ON THEIR SIDES AROUND THE INLET IN A SINGLE ROW, ABUTTING ONE ANOTHER WITH THE OPEN END FACING AWAY FROM THE CURB.

3. GRAVEL BAGS SHALL BE PLACED AROUND CONCRETE BLOCKS, CLOSELY ABUTTING ONE ANOTHER AND JOINTED TOGETHER IN ACCORDANCE WITH ROCK SOCK DESIGN DETAIL.



#### CURB ROCK SOCK INLET PROTECTION INSTALLATION NOTES

1. SEE ROCK SOCK DESIGN DETAIL INSTALLATION REQUIREMENTS.

2. PLACEMENT OF THE SOCK SHALL BE APPROXIMATELY 30 DEGREES FROM PERPENDICULAR IN THE OPPOSITE DIRECTION OF FLOW.

- 3. SOCKS ARE TO BE FLUSH WITH THE CURB AND SPACED A MINIMUM OF 5 FEET APART.
- 4. AT LEAST TWO CURB SOCKS IN SERIES ARE REQUIRED UPSTREAM OF ON-GRADE INLETS.



### IP-3. ROCK SOCK SUMP/AREA INLET PROTECTION

ROCK SOCK SUMP/AREA INLET PROTECTION INSTALLATION NOTES 1. SEE ROCK SOCK DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. STRAW WATTLES/SEDIMENT CONTROL LOGS MAY BE USED IN PLACE OF ROCK SOCKS FOR INLETS IN PERVIOUS AREAS. INSTALL PER SEDIMENT CONTROL LOG DETAIL.





IP-4. SILT FENCE FOR SUMP INLET PROTECTION

#### SILT FENCE INLET PROTECTION INSTALLATION NOTES

1. SEE SILT FENCE DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. POSTS SHALL BE PLACED AT EACH CORNER OF THE INLET AND AROUND THE EDGES AT A MAXIMUM SPACING OF 3 FEET.

3. STRAW WATTLES/SEDIMENT CONTROL LOGS MAY BE USED IN PLACE OF SILT FENCE FOR INLETS IN PERVIOUS AREAS. INSTALL PER SEDIMENT CONTROL LOG DETAIL.





OVEREXCAVATION INLET PROTECTION INSTALLATION NOTES

1. THIS FORM OF INLET PROTECTION IS PRIMARILY APPLICABLE FOR SITES THAT HAVE NOT YET REACHED FINAL GRADE AND SHOULD BE USED ONLY FOR INLETS WITH A RELATIVELY SMALL CONTRIBUTING DRAINAGE AREA.

2. WHEN USING FOR CONCENTRATED FLOWS, SHAPE BASIN IN 2:1 RATIO WITH LENGTH ORIENTED TOWARDS DIRECTION OF FLOW.

3. SEDIMENT MUST BE PERIODICALLY REMOVED FROM THE OVEREXCAVATED AREA.



### IP-6. STRAW BALE FOR SUMP INLET PROTECTION

#### STRAW BALE BARRIER INLET PROTECTION INSTALLATION NOTES

1. SEE STRAW BALE DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. BALES SHALL BE PLACED IN A SINGLE ROW AROUND THE INLET WITH ENDS OF BALES TIGHTLY ABUTTING ONE ANOTHER.



#### CULVERT INLET PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR

-LOCATION OF CULVERT INLET PROTECTION.

2. SEE ROCK SOCK DESIGN DETAIL FOR ROCK GRADATION REQUIREMENTS AND JOINTING DETAIL.

#### CULVERT INLET PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF THE CULVERT SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS  $\frac{1}{2}$  THE HEIGHT OF THE ROCK SOCK.

5. CULVERT INLET PROTECTION SHALL REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

GENERAL INLET PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION OF INLET PROTECTION. -TYPE OF INLET PROTECTION (IP.1, IP.2, IP.3, IP.4, IP.5, IP.6)

2. INLET PROTECTION SHALL BE INSTALLED PROMPTLY AFTER INLET CONSTRUCTION OR PAVING IS COMPLETE (TYPICALLY WITHIN 48 HOURS). IF A RAINFALL/RUNOFF EVENT IS FORECAST, INSTALL INLET PROTECTION PRIOR TO ONSET OF EVENT.

3. MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

#### INLET PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF INLET PROTECTION SHALL BE REMOVED AS NECESSARY TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN STORAGE VOLUME REACHES 50% OF CAPACITY, A DEPTH OF 6" WHEN SILT FENCE IS USED, OR ¼ OF THE HEIGHT FOR STRAW BALES.

5. INLET PROTECTION IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED, UNLESS THE LOCAL JURISDICTION APPROVES EARLIER REMOVAL OF INLET PROTECTION IN STREETS.

6. WHEN INLET PROTECTION AT AREA INLETS IS REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

NOTE: THE DETAILS INCLUDED WITH THIS FACT SHEET SHOW COMMONLY USED, CONVENTIONAL METHODS OF INLET PROTECTION IN THE DENVER METROPOLITAN AREA. THERE ARE MANY PROPRIETARY INLET PROTECTION METHODS ON THE MARKET. UDFCD NEITHER ENDORSES NOR DISCOURAGES USE OF PROPRIETARY INLET PROTECTION; HOWEVER, IN THE EVENT PROPRIETARY METHODS ARE USED, THE APPROPRIATE DETAIL FROM THE MANUFACTURER MUST BE INCLUDED IN THE SWMP AND THE BMP MUST BE INSTALLED AND MAINTAINED AS SHOWN IN THE MANUFACTURER'S DETAILS.

NOTE: SOME MUNICIPALITIES DISCOURAGE OR PROHIBIT THE USE OF STRAW BALES FOR INLET PROTECTION. CHECK WITH LOCAL JURISDICTION TO DETERMINE IF STRAW BALE INLET PROTECTION IS ACCEPTABLE.

# **Construction Phasing/Sequencing (CP)**

## Description

Effective construction site management to minimize erosion and sediment transport includes attention to construction phasing, scheduling, and sequencing of land disturbing activities. On most construction projects, erosion and sediment controls will need to be adjusted as the project progresses and should be documented in the SWMP.

Construction phasing refers to disturbing only part of a site at a time to limit the potential for erosion from dormant parts of a site. Grading activities and construction are completed and soils are effectively stabilized on one part of a site before grading and



**Photograph CP-1.** Construction phasing to avoid disturbing the entire area at one time. Photo courtesy of WWE.

construction begins on another portion of the site.

Construction sequencing or scheduling refers to a specified work schedule that coordinates the timing of land disturbing activities and the installation of erosion and sediment control practices.

## **Appropriate Uses**

All construction projects can benefit from upfront planning to phase and sequence construction activities to minimize the extent and duration of disturbance. Larger projects and linear construction projects may benefit most from construction sequencing or phasing, but even small projects can benefit from construction sequencing that minimizes the duration of disturbance.

Typically, erosion and sediment controls needed at a site will change as a site progresses through the major phases of construction. Erosion and sediment control practices corresponding to each phase of construction must be documented in the SWMP.

## **Design and Installation**

BMPs appropriate to the major phases of development should be identified on construction drawings. In some cases, it will be necessary to provide several drawings showing construction-phase BMPs placed according to stages of development (e.g., clearing and grading, utility installation, active construction, final stabilization). Some municipalities in the Denver area set maximum sizes for disturbed area associated with phases of a construction project. Additionally, requirements for phased construction drawings vary among local governments within the UDFCD boundary. Some local governments require

separate erosion and sediment control drawings for initial BMPs, interim conditions (in active construction), and final stabilization.

| <b>Construction Scheduling</b> |          |  |  |
|--------------------------------|----------|--|--|
| Functions                      |          |  |  |
| Erosion Control                | Moderate |  |  |
| Sediment Control               | Moderate |  |  |
| Site/Material Management       | Yes      |  |  |

Typical construction phasing BMPs include:

- Limit the amount of disturbed area at any given time on a site to the extent practical. For example, a 100-acre subdivision might be constructed in five phases of 20 acres each.
- If there is carryover of stockpiled material from one phase to the next, position carryover material in a location easily accessible for the pending phase that will not require disturbance of stabilized areas to access the stockpile. Particularly with regard to efforts to balance cut and fill at a site, careful planning for location of stockpiles is important.

Typical construction sequencing BMPs include:

- Sequence construction activities to minimize duration of soil disturbance and exposure. For example, when multiple utilities will occupy the same trench, schedule installation so that the trench does not have to be closed and opened multiple times.
- Schedule site stabilization activities (e.g., landscaping, seeding and mulching, installation of erosion control blankets) as soon as feasible following grading.
- Install initial erosion and sediment control practices before construction begins. Promptly install additional BMPs for inlet protection, stabilization, etc., as construction activities are completed.

Table CP-1 provides typical sequencing of construction activities and associated BMPs.

### Maintenance and Removal

When the construction schedule is altered, erosion and sediment control measures in the SWMP and construction drawings should be appropriately adjusted to reflect actual "on the ground" conditions at the construction site. Be aware that changes in construction schedules can have significant implications for site stabilization, particularly with regard to establishment of vegetative cover.

| Project<br>Phase            | BMPs                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>Install sediment controls downgradient of access point (on paved streets this may consist<br/>of inlet protection).</li> </ul>                                                                                                                                                                                                                                                   |
| Dee                         | • Establish vehicle tracking control at entrances to paved streets. Fence as needed.                                                                                                                                                                                                                                                                                                      |
| disturbance,<br>Site Access | <ul> <li>Use construction fencing to define the boundaries of the project and limit access to areas of<br/>the site that are not to be disturbed.</li> </ul>                                                                                                                                                                                                                              |
|                             | Note: it may be necessary to protect inlets in the general vicinity of the site, even if not downgradient, if there is a possibility that sediment tracked from the site could contribute to the inlets.                                                                                                                                                                                  |
|                             | <ul> <li>Install perimeter controls as needed on downgradient perimeter of site (silt fence, wattles, etc).</li> </ul>                                                                                                                                                                                                                                                                    |
|                             | <ul> <li>Limit disturbance to those areas planned for disturbance and protect undisturbed areas<br/>within the site (construction fence, flagging, etc).</li> </ul>                                                                                                                                                                                                                       |
|                             | • Preserve vegetative buffer at site perimeter.                                                                                                                                                                                                                                                                                                                                           |
|                             | <ul> <li>Create stabilized staging area.</li> </ul>                                                                                                                                                                                                                                                                                                                                       |
|                             | <ul> <li>Locate portable toilets on flat surfaces away from drainage paths. Stake in areas<br/>susceptible to high winds.</li> </ul>                                                                                                                                                                                                                                                      |
|                             | <ul> <li>Construct concrete washout area and provide signage.</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| Site Clearing               | <ul> <li>Establish waste disposal areas.</li> </ul>                                                                                                                                                                                                                                                                                                                                       |
| and Grubbing                | <ul> <li>Install sediment basins.</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
|                             | • Create dirt perimeter berms and/or brush barriers during grubbing and clearing.                                                                                                                                                                                                                                                                                                         |
|                             | <ul> <li>Separate and stockpile topsoil, leave roughened and/or cover.</li> </ul>                                                                                                                                                                                                                                                                                                         |
|                             | <ul> <li>Protect stockpiles with perimeter control BMPs. Stockpiles should be located away from<br/>drainage paths and should be accessed from the upgradient side so that perimeter controls<br/>can remain in place on the downgradient side. Use erosion control blankets, temporary<br/>seeding, and/or mulch for stockpiles that will be inactive for an extended period.</li> </ul> |
|                             | <ul> <li>Leave disturbed area of site in a roughened condition to limit erosion. Consider temporary revegetation for areas of the site that have been disturbed but that will be inactive for an extended period.</li> </ul>                                                                                                                                                              |
|                             | • Water to minimize dust but not to the point that watering creates runoff.                                                                                                                                                                                                                                                                                                               |

### Table CP-1. Typical Phased BMP Installation for Construction Projects

| Project<br>Phase                                       | BMPs                                                                                                                    |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                        | In Addition to the Above BMPs:                                                                                          |  |  |
|                                                        | • Close trench as soon as possible (generally at the end of the day).                                                   |  |  |
| Utility And                                            | • Use rough-cut street control or apply road base for streets that will not be promptly paved.                          |  |  |
| Infrastructure<br>Installation                         | <ul> <li>Provide inlet protection as streets are paved and inlets are constructed.</li> </ul>                           |  |  |
|                                                        | <ul> <li>Protect and repair BMPs, as necessary.</li> </ul>                                                              |  |  |
| <ul> <li>Perform street sweeping as needed.</li> </ul> |                                                                                                                         |  |  |
|                                                        | In Addition to the Above BMPs:                                                                                          |  |  |
| Duilding                                               | <ul> <li>Implement materials management and good housekeeping practices for home building activities.</li> </ul>        |  |  |
| Construction                                           | <ul> <li>Use perimeter controls for temporary stockpiles from foundation excavations.</li> </ul>                        |  |  |
|                                                        | <ul> <li>For lots adjacent to streets, lot-line perimeter controls may be necessary at the back of<br/>curb.</li> </ul> |  |  |
|                                                        | In Addition to the Above BMPs:                                                                                          |  |  |
| Final Grading                                          | <ul> <li>Remove excess or waste materials.</li> </ul>                                                                   |  |  |
|                                                        | <ul> <li>Remove stored materials.</li> </ul>                                                                            |  |  |
|                                                        | In Addition to the Above BMPs:                                                                                          |  |  |
| Final                                                  | • Seed and mulch/tackify.                                                                                               |  |  |
| Stabilization                                          | <ul> <li>Seed and install blankets on steep slopes.</li> </ul>                                                          |  |  |
|                                                        | <ul> <li>Remove all temporary BMPs when site has reached final stabilization.</li> </ul>                                |  |  |

Protection of existing vegetation on a construction site can be accomplished through installation of a construction fence around the area requiring protection. In cases where upgradient areas are disturbed, it may also be necessary to install perimeter controls to minimize sediment loading to sensitive areas such as wetlands. Existing vegetation may be designated for protection to maintain a stable surface cover as part of construction phasing, or vegetation may be protected in areas designated to remain in natural condition under post-development conditions (e.g., wetlands, mature trees, riparian areas, open space).



**Photograph PV-1.** Protection of existing vegetation and a sensitive area. Photo courtesy of CDOT.

## Appropriate Uses

Existing vegetation should be preserved for the maximum practical duration on a construction site through the use of effective construction phasing. Preserving vegetation helps to minimize erosion and can reduce revegetation costs following construction.

Protection of wetland areas is required under the Clean Water Act, unless a permit has been obtained from the U.S. Army Corps of Engineers (USACE) allowing impacts in limited areas.

If trees are to be protected as part of post-development landscaping, care must be taken to avoid several types of damage, some of which may not be apparent at the time of injury. Potential sources of injury include soil compaction during grading or due to construction traffic, direct equipment-related injury such as bark removal, branch breakage, surface grading and trenching, and soil cut and fill. In order to minimize injuries that may lead to immediate or later death of the tree, tree protection zones should be developed during site design, implemented at the beginning of a construction project, as well as continued during active construction.

## **Design and Installation**

### General

Once an area has been designated as a preservation area, there should be no construction activity allowed within a set distance of the area. Clearly mark the area with construction fencing. Do not allow

stockpiles, equipment, trailers or parking within the protected area. Guidelines to protect various types of existing vegetation follow.

| Protection of Existing Vegetation |          |  |
|-----------------------------------|----------|--|
| Functions                         |          |  |
| Erosion Control                   | Yes      |  |
| Sediment Control                  | Moderate |  |
| Site/Material Management          | Yes      |  |

### **Surface Cover During Phased Construction**

Install construction fencing or other perimeter controls around areas to be protected from clearing and grading as part of construction phasing.

Maintaining surface cover on steep slopes for the maximum practical duration during construction is recommended.

### **Open Space Preservation**

Where natural open space areas will be preserved as part of a development, it is important to install construction fencing around these areas to protect them from compaction. This is particularly important when areas with soils with high infiltration rates are preserved as part of LID designs. Preserved open space areas should not be used for staging and equipment storage.

### Wetlands and Riparian Areas

Install a construction fence around the perimeter of the wetland or riparian (streamside vegetation) area to prevent access by equipment. In areas downgradient of disturbed areas, install a perimeter control such as silt fence, sediment control logs, or similar measure to minimize sediment loading to the wetland.

### **Tree Protection**<sup>1</sup>

Before beginning construction operations, establish a tree protection zone around trees to be
preserved by installing construction fences. Allow enough space from the trunk to protect the root
zone from soil compaction and mechanical damage, and the branches from mechanical damage (see
Table PV-1). If low branches will be kept, place the fence outside of the drip line. Where this is not
possible, place fencing as far away from the trunk as possible. In order to maintain a healthy tree, be
aware that about 60 percent of the tree's root zone extends beyond the drip line.

# Table PV-1 Guidelines for Determining the Tree Protection Zone Mathema and Clarks 100% as sized in Crear CO and WWE 20

(Source: Matheny and Clark, 1998; as cited in GreenCO and WWE 2008)

|                                                                                                                                                                            | Distance from Trunk (ft) per inch of DBH |        |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|-------------|
| Species Tolerance to Damage                                                                                                                                                | Young                                    | Mature | Over mature |
| Good                                                                                                                                                                       | 0.5'                                     | 0.75'  | 1.0'        |
| Moderate                                                                                                                                                                   | 0.75'                                    | 1.0'   | 1.25'       |
| Poor                                                                                                                                                                       | 1.0'                                     | 1.25'  | 1.5'        |
| Notes: DBH = diameter at breast height (4.5 ft above grade); Young = $<20\%$ of life expectancy; Mature = 20%-80% of life expectancy; Over mature =>80% of life expectancy |                                          |        |             |

• Most tree roots grow within the top 12 to 18 inches of soil. Grade changes within the tree protection zone should be avoided where possible because seemingly minor grade changes can either smother

<sup>&</sup>lt;sup>1</sup> Tree Protection guidelines adapted from GreenCO and WWE (2008). *Green Industry Best Management Practices (BMPs) for the Conservation and Protection of Water Resources in Colorado: Moving Toward Sustainability, Third Release.* See www.greenco.org for more detailed guidance on tree preservation.

roots (in fill situations) or damage roots (in cut situations). Consider small walls where needed to avoid grade changes in the tree protection zone.

- Place and maintain a layer of mulch 4 to 6-inch thick from the tree trunk to the fencing, keeping a 6-inch space between the mulch and the trunk. Mulch helps to preserve moisture and decrease soil compaction if construction traffic is unavoidable. When planting operations are completed, the mulch may be reused throughout planting areas.
- Limit access, if needed at all, and appoint one route as the main entrance and exit to the tree
  protection zone. Within the tree protection zone, do not allow any equipment to be stored, chemicals
  to be dumped, or construction activities to take place except fine grading, irrigation system
  installation, and planting operations. These activities should be conducted in consultation with a
  landscaping professional, following Green Industry BMPs.
- Be aware that soil compaction can cause extreme damage to tree health that may appear gradually over a period of years. Soil compaction is easier to prevent than repair.

### **Maintenance and Removal**

Repair or replace damaged or displaced fencing or other protective barriers around the vegetated area.

If damage occurs to a tree, consult an arborist for guidance on how to care for the tree. If a tree in a designated preservation area is damaged beyond repair, remove and replace with a 2-inch diameter tree of the same or similar species.

Construction equipment must not enter a wetland area, except as permitted by the U.S. Army Corps of Engineers (USACE). Inadvertent placement of fill in a wetland is a 404 permit violation and will require notification of the USACE.

If damage to vegetation occurs in a protected area, reseed the area with the same or similar species, following the recommendations in the USDCM *Revegetation* chapter.

A construction fence restricts site access to designated entrances and exits, delineates construction site boundaries, and keeps construction out of sensitive areas such as natural areas to be preserved as open space, wetlands and riparian areas.

## Appropriate Uses

A construction fence can be used to delineate the site perimeter and locations within the site where access is restricted to protect natural resources such as wetlands, waterbodies, trees, and other natural areas of the site that should not be disturbed.



**Photograph CF-1.** A construction fence helps delineate areas where existing vegetation is being protected. Photo courtesy of Douglas County.

If natural resource protection is an objective, then the construction fencing should be used in combination with other perimeter control BMPs such as silt fence, sediment control logs or similar measures.

### **Design and Installation**

Construction fencing may be chain link or plastic mesh and should be installed following manufacturer's recommendations. See Detail CF-1 for typical installations.

Do not place construction fencing in areas within work limits of machinery.

### **Maintenance and Removal**

- Inspect fences for damage; repair or replace as necessary.
- Fencing should be tight and any areas with slumping or fallen posts should be reinstalled.
- Fencing should be removed once construction is complete.

| <b>Construction Fence</b> |     |  |
|---------------------------|-----|--|
| Functions                 |     |  |
| Erosion Control           | No  |  |
| Sediment Control          | No  |  |
| Site/Material Management  | Yes |  |


CONSTRUCTION FENCE INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

-LOCATION OF CONSTRUCTION FENCE.

2. CONSTRUCTION FENCE SHOWN SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

3. CONSTRUCTION FENCE SHALL BE COMPOSED OF ORANGE, CONTRACTOR-GRADE MATERIAL THAT IS AT LEAST 4' HIGH. METAL POSTS SHOULD HAVE A PLASTIC CAP FOR SAFETY.

4. STUDDED STEEL TEE POSTS SHALL BE UTILIZED TO SUPPORT THE CONSTRUCTION FENCE. MAXIMUM SPACING FOR STEEL TEE POSTS SHALL BE 10'.

5. CONSTRUCTION FENCE SHALL BE SECURELY FASTENED TO THE TOP, MIDDLE, AND BOTTOM OF EACH POST.

#### CONSTRUCTION FENCE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. CONSTRUCTION FENCE SHALL BE REPAIRED OR REPLACED WHEN THERE ARE SIGNS OF DAMAGE SUCH AS RIPS OR SAGS. CONSTRUCTION FENCE IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

5. WHEN CONSTRUCTION FENCES ARE REMOVED, ALL DISTURBED AREAS ASSOCIATED WITH THE INSTALLATION, MAINTENANCE, AND/OR REMOVAL OF THE FENCE SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

# Description

Vehicle tracking controls provide stabilized construction site access where vehicles exit the site onto paved public roads. An effective vehicle tracking control helps remove sediment (mud or dirt) from vehicles, reducing tracking onto the paved surface.

# Appropriate Uses

Implement a stabilized construction entrance or vehicle tracking control where frequent heavy vehicle traffic exits the construction site onto a paved roadway. An effective vehicle tracking control is particularly important during the following conditions:



**Photograph VTC-1.** A vehicle tracking control pad constructed with properly sized rock reduces off-site sediment tracking.

- Wet weather periods when mud is easily tracked off site.
- During dry weather periods where dust is a concern.
- When poorly drained, clayey soils are present on site.

Although wheel washes are not required in designs of vehicle tracking controls, they may be needed at particularly muddy sites.

## Design and Installation

Construct the vehicle tracking control on a level surface. Where feasible, grade the tracking control towards the construction site to reduce off-site runoff. Place signage, as needed, to direct construction vehicles to the designated exit through the vehicle tracking control. There are several different types of stabilized construction entrances including:

**VTC-1.** Aggregate Vehicle Tracking Control. This is a coarse-aggregate surfaced pad underlain by a geotextile. This is the most common vehicle tracking control, and when properly maintained can be effective at removing sediment from vehicle tires.

**VTC-2.** Vehicle Tracking Control with Construction Mat or Turf Reinforcement Mat. This type of control may be appropriate for site access at very small construction sites with low traffic volume over vegetated areas. Although this application does not typically remove sediment from vehicles, it helps protect existing vegetation and provides a stabilized entrance.

| Vehicle Tracking Control |          |  |  |
|--------------------------|----------|--|--|
| Functions                |          |  |  |
| Erosion Control          | Moderate |  |  |
| Sediment Control         | Yes      |  |  |
| Site/Material Management | Yes      |  |  |

**VTC-3. Stabilized Construction Entrance/Exit with Wheel Wash**. This is an aggregate pad, similar to VTC-1, but includes equipment for tire washing. The wheel wash equipment may be as simple as hand-held power washing equipment to more advance proprietary systems. When a wheel wash is provided, it is important to direct wash water to a sediment trap prior to discharge from the site.

Vehicle tracking controls are sometimes installed in combination with a sediment trap to treat runoff.

### Maintenance and Removal

Inspect the area for degradation and replace aggregate or material used for a stabilized entrance/exit as needed. If the area becomes clogged and ponds water, remove and dispose of excess sediment or replace material with a fresh layer of aggregate as necessary.

With aggregate vehicle tracking controls, ensure rock and debris from this area do not enter the public right-of-way.

Remove sediment that is tracked onto the public right of way daily or more frequently as needed. Excess sediment in the roadway indicates that the stabilized construction entrance needs maintenance.

Ensure that drainage ditches at the entrance/exit area remain clear.



**Photograph VTC-2.** A vehicle tracking control pad with wheel wash facility. Photo courtesy of Tom Gore.

A stabilized entrance should be removed only when there is no longer the potential for vehicle tracking to occur. This is typically after the site has been stabilized.

When wheel wash equipment is used, be sure that the wash water is discharged to a sediment trap prior to discharge. Also inspect channels conveying the water from the wash area to the sediment trap and stabilize areas that may be eroding.

When a construction entrance/exit is removed, excess sediment from the aggregate should be removed and disposed of appropriately. The entrance should be promptly stabilized with a permanent surface following removal, typically by paving.



### VTC-1. AGGREGATE VEHICLE TRACKING CONTROL





### VTC-2. AGGREGATE VEHICLE TRACKING CONTROL WITH WASH RACK



STABILIZED CONSTRUCTION ENTRANCE/EXIT INSTALLATION NOTES

1. SEE PLAN VIEW FOR

-LOCATION OF CONSTRUCTION ENTRANCE(S)/EXIT(S).

-TYPE OF CONSTRUCTION ENTRANCE(S)/EXITS(S) (WITH/WITHOUT WHEEL WASH, CONSTRUCTION MAT OR TRM).

2. CONSTRUCTION MAT OR TRM STABILIZED CONSTRUCTION ENTRANCES ARE ONLY TO BE USED ON SHORT DURATION PROJECTS (TYPICALLY RANGING FROM A WEEK TO A MONTH) WHERE THERE WILL BE LIMITED VEHICULAR ACCESS.

3. A STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE LOCATED AT ALL ACCESS POINTS WHERE VEHICLES ACCESS THE CONSTRUCTION SITE FROM PAVED RIGHT-OF-WAYS.

4. STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

5. A NON-WOVEN GEOTEXTILE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT PRIOR TO THE PLACEMENT OF ROCK.

6. UNLESS OTHERWISE SPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.

STABILIZED CONSTRUCTION ENTRANCE/EXIT MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SHALL BE REAPPLIED OR REGRADED AS NECESSARY TO THE STABILIZED ENTRANCE/EXIT TO MAINTAIN A CONSISTENT DEPTH.

5. SEDIMENT TRACKED ONTO PAVED ROADS IS TO BE REMOVED THROUGHOUT THE DAY AND AT THE END OF THE DAY BY SHOVELING OR SWEEPING. SEDIMENT MAY NOT BE WASHED DOWN STORM SEWER DRAINS.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM CITY OF BROOMFIELD, COLORADO, NOT AVAILABLE IN AUTOCAD)

## Description

A stabilized construction roadway is a temporary method to control sediment runoff, vehicle tracking, and dust from roads during construction activities.

# **Appropriate Uses**

Use on high traffic construction roads to minimize dust and erosion.

Stabilized construction roadways are used instead of rough-cut street controls on roadways with frequent construction traffic.



Photograph SCR-1. Stabilized construction roadway.

## **Design and Installation**

Stabilized construction roadways typically involve two key components: 1) stabilizing the road surface with an aggregate base course of 3-inch-diameter granular material and 2) stabilizing roadside ditches, if applicable. Early application of road base is generally suitable where a layer of coarse aggregate is specified for final road construction.

### Maintenance and Removal

Apply additional gravel as necessary to ensure roadway integrity.

Inspect drainage ditches along the roadway for erosion and stabilize, as needed, through the use of check dams or rolled erosion control products.

Gravel may be removed once the road is ready to be paved. Prior to paving, the road should be inspected for grade changes and damage. Regrade and repair as necessary.

| Stabilized Construction Roadway |          |  |  |
|---------------------------------|----------|--|--|
| Functions                       |          |  |  |
| Erosion Control                 | Yes      |  |  |
| Sediment Control                | Moderate |  |  |
| Site/Material Management        | Yes      |  |  |

## Description

A stabilized staging area is a clearly designated area where construction equipment and vehicles, stockpiles, waste bins, and other construction-related materials are stored. The contractor office trailer may also be located in this area. Depending on the size of the construction site, more than one staging area may be necessary.

## **Appropriate Uses**

Most construction sites will require a staging area, which should be clearly designated in SWMP drawings. The layout of the staging area may vary depending on



**Photograph SSA-1**. Example of a staging area with a gravel surface to prevent mud tracking and reduce runoff. Photo courtesy of Douglas County.

the type of construction activity. Staging areas located in roadways due to space constraints require special measures to avoid materials being washed into storm inlets.

## **Design and Installation**

Stabilized staging areas should be completed prior to other construction activities beginning on the site. Major components of a stabilized staging area include:

- Appropriate space to contain storage and provide for loading/unloading operations, as well as parking if necessary.
- A stabilized surface, either paved or covered, with 3-inch diameter aggregate or larger.
- Perimeter controls such as silt fence, sediment control logs, or other measures.
- Construction fencing to prevent unauthorized access to construction materials.
- Provisions for Good Housekeeping practices related to materials storage and disposal, as described in the Good Housekeeping BMP Fact Sheet.
- A stabilized construction entrance/exit, as described in the Vehicle Tracking Control BMP Fact Sheet, to accommodate traffic associated with material delivery and waste disposal vehicles.

Over-sizing the stabilized staging area may result in disturbance of existing vegetation in excess of that required for the project. This increases costs, as well as

required for the project. This increases costs, as wen as requirements for long-term stabilization following the construction period. When designing the stabilized staging area, minimize the area of disturbance to the extent practical.

| Stabilized Staging Area |          |  |  |  |
|-------------------------|----------|--|--|--|
| Functions               |          |  |  |  |
| Erosion Control         | Yes      |  |  |  |
| Sediment Control        | Moderate |  |  |  |
| Site/Material           | Yes      |  |  |  |

### **Minimizing Long-Term Stabilization Requirements**

- Utilize off-site parking and restrict vehicle access to the site.
- Use construction mats in lieu of rock when staging is provided in an area that will not be disturbed otherwise.
- Consider use of a bermed contained area for materials and equipment that do not require a stabilized surface.
- Consider phasing of staging areas to avoid disturbance in an area that will not be otherwise disturbed.

See Detail SSA-1 for a typical stabilized staging area and SSA-2 for a stabilized staging area when materials staging in roadways is required.

### **Maintenance and Removal**

Maintenance of stabilized staging areas includes maintaining a stable surface cover of gravel, repairing perimeter controls, and following good housekeeping practices.

When construction is complete, debris, unused stockpiles and materials should be recycled or properly disposed. In some cases, this will require disposal of contaminated soil from equipment leaks in an appropriate landfill. Staging areas should then be permanently stabilized with vegetation or other surface cover planned for the development.



#### STABILIZED STAGING AREA INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR
  - -LOCATION OF STAGING AREA(S).

-CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM THE LOCAL JURISDICTION.

2. STABILIZED STAGING AREA SHOULD BE APPROPRIATE FOR THE NEEDS OF THE SITE. OVERSIZING RESULTS IN A LARGER AREA TO STABILIZE FOLLOWING CONSTRUCTION.

3. STAGING AREA SHALL BE STABILIZED PRIOR TO OTHER OPERATIONS ON THE SITE.

4. THE STABILIZED STAGING AREA SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL.

5. UNLESS OTHERWISE SPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.

6. ADDITIONAL PERIMETER BMPs MAY BE REQUIRED INCLUDING BUT NOT LIMITED TO SILT FENCE AND CONSTRUCTION FENCING.

#### STABILIZED STAGING AREA MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SHALL BE REAPPLIED OR REGRADED AS NECESSARY IF RUTTING OCCURS OR UNDERLYING SUBGRADE BECOMES EXPOSED.

STABILIZED STAGING AREA MAINTENANCE NOTES

5. STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY TO CONTAIN PARKING, STORAGE, AND UNLOADING/LOADING OPERATIONS.

6. THE STABILIZED STAGING AREA SHALL BE REMOVED AT THE END OF CONSTRUCTION. THE GRANULAR MATERIAL SHALL BE REMOVED OR, IF APPROVED BY THE LOCAL JURISDICTION, USED ON SITE, AND THE AREA COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY LOCAL JURISDICTION.

NOTE: MANY MUNICIPALITIES PROHIBIT THE USE OF RECYCLED CONCRETE AS GRANULAR MATERIAL FOR STABILIZED STAGING AREAS DUE TO DIFFICULTIES WITH RE-ESTABLISHMENT OF VEGETATION IN AREAS WHERE RECYCLED CONCRETE WAS PLACED.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

## Description

Street sweeping and vacuuming remove sediment that has been tracked onto roadways to reduce sediment transport into storm drain systems or a surface waterway.

# **Appropriate Uses**

Use this practice at construction sites where vehicles may track sediment offsite onto paved roadways.

## **Design and Installation**

Street sweeping or vacuuming should be conducted when there is noticeable



**Photograph SS-1.** A street sweeper removes sediment and potential pollutants along the curb line at a construction site. Photo courtesy of Tom Gore.

sediment accumulation on roadways adjacent to the construction site. Typically, this will be concentrated at the entrance/exit to the construction site. Well-maintained stabilized construction entrances, vehicle tracking controls and tire wash facilities can help reduce the necessary frequency of street sweeping and vacuuming.

On smaller construction sites, street sweeping can be conducted manually using a shovel and broom. Never wash accumulated sediment on roadways into storm drains.

## **Maintenance and Removal**

- Inspect paved roads around the perimeter of the construction site on a daily basis and more frequently, as needed. Remove accumulated sediment, as needed.
- Following street sweeping, check inlet protection that may have been displaced during street sweeping.
- Inspect area to be swept for materials that may be hazardous prior to beginning sweeping operations.

| Street Sweeping/ Vacuuming |     |  |  |  |
|----------------------------|-----|--|--|--|
| Functions                  |     |  |  |  |
| Erosion Control            | No  |  |  |  |
| Sediment Control           | Yes |  |  |  |
| Site/Material Management   | Yes |  |  |  |

**GENERAL PERMIT APPLICATION** 

### **OPERATION AND MAINTENANCE INSPECTION FORM**

The following inspection forms are to be used at each bi-monthly stormwater management system inspection and after any precipitation or snowmelt event that causes surface runoff. As a result of these inspections, the SWMP may need to be revised. The inspection records and revised SWMP shall be made available to the division upon request. If the construction activity lasts more than 12 months, a copy of the inspection records and revised SWMP shall be sent to the division by May 1 of each year covering April 1 to March 31.

# CONSTRUCTION STORMWATER SITE INSPECTION REPORT

| Facility Name                                                                                |  | Permittee          |  |  |    |
|----------------------------------------------------------------------------------------------|--|--------------------|--|--|----|
| Date of Inspection                                                                           |  | Weather Conditions |  |  |    |
| Permit Certification #                                                                       |  | Disturbed Acreage  |  |  |    |
| Phase of Construction                                                                        |  | Inspector Title    |  |  |    |
| Inspector Name                                                                               |  |                    |  |  |    |
| Is the above inspector a qualified stormwater manager?                                       |  |                    |  |  | NO |
| (permittee is responsible for ensuring that the inspector is a qualified stormwater manager) |  |                    |  |  |    |

### **INSPECTION FREQUENCY**

| Check the box that describes the minimum inspection frequency utilized when conducting each inspection                                                                                        |        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| At least one inspection every 7 calendar days                                                                                                                                                 |        |  |  |  |
| At least one inspection every 14 calendar days, with post-storm event inspections conducted within 24 hours after the end of any precipitation or snowmelt event that causes surface erosions |        |  |  |  |
| <ul> <li>This is this a post-storm event inspection. Event Date:</li> </ul>                                                                                                                   |        |  |  |  |
| Reduced inspection frequency - Include site conditions that warrant reduced inspection frequency                                                                                              |        |  |  |  |
| <ul> <li>Post-storm inspections at temporarily idle sites</li> </ul>                                                                                                                          |        |  |  |  |
| <ul> <li>Inspections at completed sites/area</li> </ul>                                                                                                                                       |        |  |  |  |
| Winter conditions exclusion                                                                                                                                                                   |        |  |  |  |
| Have there been any deviations from the minimum inspection schedule?                                                                                                                          | YES NO |  |  |  |
| If yes, describe below.                                                                                                                                                                       |        |  |  |  |
|                                                                                                                                                                                               |        |  |  |  |

### **INSPECTION REQUIREMENTS\***

 Visually verify all implemented control measures are in effective operational condition and are working as designed in the specifications

ii. Determine if there are new potential sources of pollutants

iii. Assess the adequacy of control measures at the site to identify areas requiring new or modified control measures to minimize pollutant discharges

iv. Identify all areas of non-compliance with the permit requirements, and if necessary, implement corrective action \*Use the attached **Control Measures Requiring Routine Maintenance** and **Inadequate Control Measures Requiring** 

**Corrective Action** forms to document results of this assessment that trigger either maintenance or corrective actions

### AREAS TO BE INSPECTED

Is there evidence of, or the potential for, pollutants leaving the construction site boundaries, entering the stormwater drainage system or discharging to state waters at the following locations?

|                                                                   | NO | YES | If "YES" describe discharge or potential for discharge below.<br>Document related maintenance, inadequate control measures<br>and corrective actions <b>Inadequate Control Measures</b><br><b>Requiring Corrective Action</b> form |
|-------------------------------------------------------------------|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction site perimeter                                       |    |     |                                                                                                                                                                                                                                    |
| All disturbed areas                                               |    |     |                                                                                                                                                                                                                                    |
| Designated haul routes                                            |    |     |                                                                                                                                                                                                                                    |
| Material and waste storage areas exposed to precipitation         |    |     |                                                                                                                                                                                                                                    |
| Locations where stormwater has the potential to discharge offsite |    |     |                                                                                                                                                                                                                                    |
| Locations where vehicles exit the site                            |    |     |                                                                                                                                                                                                                                    |
| Other:                                                            |    |     |                                                                                                                                                                                                                                    |

### CONTROL MEASURES REQUIRING ROUTINE MAINTENANCE

Definition: Any control measure that is still operating in accordance with its design and the requirements of the permit, but requires maintenance to prevent a breach of the control measure. These items are not subject to the corrective action requirements as specified in Part I.B.1.c of the permit.

| Are there control measures requiring maintenance? | NO | YES |                         |
|---------------------------------------------------|----|-----|-------------------------|
|                                                   |    |     | If "YES" document below |

| Date<br>Observed | Location | Control Measure | Maintenance Required | Date<br>Completed |
|------------------|----------|-----------------|----------------------|-------------------|
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |
|                  |          |                 |                      |                   |

### INADEQUATE CONTROL MEASURES REQUIRING CORRECTIVE ACTION

Definition: Any control measure that is not designed or implemented in accordance with the requirements of the permit and/or any control measure that is not implemented to operate in accordance with its design. This includes control measures that have not been implemented for pollutant sources. If it is infeasible to install or repair the control measure immediately after discovering the deficiency the reason must be documented and a schedule included to return the control measure to effective operating condition as possible.

| Are there inadequate control measures requiring corrective action? | NO | YES |                         |
|--------------------------------------------------------------------|----|-----|-------------------------|
|                                                                    |    |     | If "YES" document below |

| Are there additional control measures needed that were not in place at the time of inspection? | NO | YES |                         |
|------------------------------------------------------------------------------------------------|----|-----|-------------------------|
| Are there additional control measures needed that were not in place at the time of inspection: |    |     | If "YES" document below |

| Date<br>Discovered | Location | Description of Inadequate<br>Control Measure | Description of Corrective Action | Was deficiency corrected when<br>discovered? YES/NO<br>if "NO" provide reason and schedule to correct | Date<br>Corrected |
|--------------------|----------|----------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |
|                    |          |                                              |                                  |                                                                                                       |                   |

### **REPORTING REQUIREMENTS**

The permittee shall report the following circumstances orally within twenty-four (24) hours from the time the permittee becomes aware of the circumstances, and shall mail to the division a written report containing the information requested within five (5) working days after becoming aware of the following circumstances. The division may waive the written report required if the oral report has been received within 24 hours.

| All Noncompliance Requiring 24-Hour Notification per Part II.L.6 of the Permit                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| a. Endangerment to Health or the Environment                                                                                                       |
| Circumstances leading to any noncompliance which may endanger health or the environment regardless of the cause of the incident (See Part II.L.6.a |
| of the Permit)                                                                                                                                     |
| This category would primarily result from the discharge of pollutants in violation of the permit                                                   |
|                                                                                                                                                    |
| b. Numeric Effluent Limit Violations                                                                                                               |
| <ul> <li>Circumstances leading to any unanticipated bypass which exceeds any effluent limitations (See Part II.L.6.b of the Permit)</li> </ul>     |
| <ul> <li>Circumstances leading to any upset which causes an exceedance of any effluent limitation (See Part II.L.6.c of the Permit)</li> </ul>     |
| • Daily maximum violations (See Part II.I. 6.d of the Permit)                                                                                      |
| Numeric effluent limits are very uncommon in certifications under the COR400000 general permit. This category of noncompliance only applies if     |
| Numerie errident minits are very uncommon in certifications under the convocood general permit. This category of honcomphance only appres in       |

numeric effluent limits are included in a permit certification.

| Has there been an incider | it of noncompliance requiring 2 | 24-hour notification? |
|---------------------------|---------------------------------|-----------------------|
|                           |                                 |                       |

| NO | YES |                         |
|----|-----|-------------------------|
|    |     | If "YES" document below |

| Date and<br>Time of<br>Incident | Location | Description of<br>Noncompliance | Description of Corrective Action | Date and Time of<br>24 Hour Oral<br>Notification | Date of 5 Day Written<br>Notification * |
|---------------------------------|----------|---------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------------|
|                                 |          |                                 |                                  |                                                  |                                         |
|                                 |          |                                 |                                  |                                                  |                                         |
|                                 |          |                                 |                                  |                                                  |                                         |
|                                 |          |                                 |                                  |                                                  |                                         |

\*Attach copy of 5 day written notification to report. Indicate if written notification was waived, including the name of the division personnel who granted waiver.

After adequate corrective action(s) and maintenance have been taken, or where a report does not identify any incidents requiring corrective action or maintenance, the individual(s) designated as the Qualified Stormwater Manager, shall sign and certify the below statement:

"I verify that, to the best of my knowledge and belief, all corrective action and maintenance items identified during the inspection are complete, and the site is currently in compliance with the permit."

| Name of Qualified Stormwater Manager      | Title of Qualified Stormwater Manager |
|-------------------------------------------|---------------------------------------|
| Signature of Qualified Stormwater Manager | <br>Date                              |
| Notes/Comments                            |                                       |

**OPERATION AND MAINTENANCE INSPECTION RECORD**