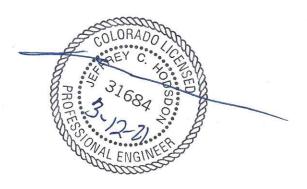


LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430


E-mail: lsc@lsctrans.com

Website: http://www.lsctrans.com

Homestead North Phase 1
Updated Traffic Impact Study
SP-20-008
(LSC #204380)
March 12, 2021

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

, the Developer, have read and v	vill comply with all commitments	made on my behalf within this report
----------------------------------	----------------------------------	--------------------------------------

Date

Homestead North Phase 1 Updated Traffic Impact Study

Mr. Jim Morley Morley-Bentley Investments, LLC 20 Boulder Crescent, 1st Floor Colorado Springs, CO 80903

MARCH 12, 2021

LSC Transportation Consultants Prepared by: Kirstin D. Ferrin, P.E. Reviewed by: Jeffrey C. Hodsdon, P.E.

LSC #204380

CONTENTS

REPORT CONTENTS	4
RECENT TRAFFIC REPORTS	5
STUDY AREA	5
Study Area Land Use	5
Sketch Plan	5
Study Area Access Plan	5
CURRENTLY PROPOSED LAND USE AND ACCESS	6
Land Use and Vehicle Access	6
Sight Distance Analysis	6
Pedestrian and Bicycle Access	6
EXISTING ROAD AND TRAFFIC CONDITIONS	7
Existing Traffic Volumes	7
BACKGROUND (BASELINE) CONDITIONS	8
TRIP GENERATION	9
TRIP DISTRIBUTION AND ASSIGNMENT	9
TOTAL TRAFFIC	g
Short-Term Total Traffic Volumes	9
2040 Total Traffic Volumes	10
LEVEL OF SERVICE ANALYSIS	10
Briargate Parkway/Vollmer Road	10
Briargate Parkway/Wheatland Drive	11
Vollmer Road/Sam Bass Drive	11
SUBDIVISION STREET CLASSIFICATIONS	11
AREA MTCP 2040 ROADWAY IMPROVEMENT PROJECTS	11
AUXILIARY TURN LANES	12
DEVIATON REQUESTS	12
TRANSPORTATION IMPROVEMENT FEE PROGRAM	12
CONCLUSIONS AND RECOMMENDATIONS	13
Trip Generation	13
Level of Service	13
Recommended Improvements	13

Enclosures:		.14
	Tables 1 and 3	
	Figures 1-13	
	TAZ Map	
	MTCP Maps	
	Traffic Count Reports	
	Level of Service Reports	

LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430

E-mail: lsc@lsctrans.com

Website: http://www.lsctrans.com

March 12, 2021

Mr. Jim Morley Morley-Bentley Investments, LLC 20 Boulder Crescent, 1st Floor Colorado Springs, CO 80903

RE: Homestead North Phase 1
Updated Traffic Impact Study
El Paso County, Colorado
LSC #204380

Dear Mr. Morley:

LSC Transportation Consultants, Inc. has prepared this updated Traffic Impact Study for Homestead North Phase 1. As shown in Figure 1, Homestead North is located east of Vollmer Road and north of the future extension of Briargate Parkway in El Paso County, Colorado. Homestead North Phase 1 is part of the Sterling Ranch Master Plan area. This report is intended as a site-specific, final plat traffic report for the currently proposed filing.

REPORT CONTENTS

The preparation of this report included the following:

- A list of previous Sterling Ranch traffic reports and traffic reports completed by LSC Transportation Consultants, Inc. for other area developments;
- A summary of the proposed land use and access plan;
- The existing roadway and traffic conditions in the site's vicinity, including the roadway widths, surface conditions, lane geometries, traffic controls, and posted speed limits;
- Existing (2020) traffic-volume data;
- Estimates of projected short-term and long-term traffic volumes;
- The projected average weekday and peak-hour vehicle trips to be generated by the proposed development;
- The assignment of the projected site-generated traffic volumes to the area roadways;
- The projected short-term and long-term total traffic volumes on the area roadways;
- The projected levels of service at the key intersections in the vicinity of the site;
- The recommended street classifications for the internal streets within the proposed development;
- The project's obligation to the County roadway improvement fee program; and
- Recommended roadway improvements

RECENT TRAFFIC REPORTS

LSC prepared a traffic impact study (TIS) for the entire Sterling Ranch development dated June 5, 2008. LSC also prepared a traffic impact analysis for the first phase of the Sterling Ranch development, dated March 16, 2015; a memorandum for Phases 1-3, dated October 2, 2017; and a traffic impact analysis for the Sterling Ranch Phase 2 Preliminary Plan, dated December 20, 2018. The following site-specific, final plat traffic reports have also been prepared:

- Branding Iron at Sterling Ranch Filing No. 1 and Homestead at Sterling Ranch Filing No. 1, dated December 19, 2017
- Sterling Ranch Filing No. 2, dated April 3, 2018
- Sterling Ranch Phase 2, dated December 20, 2018
- Copper Chase at Sterling Ranch, dated December 20, 2018
- Homestead at Sterling Ranch Filing No. 2, dated March 3, 2020
- Branding Iron at Sterling Ranch Filing No. 2, dated March 31, 2020 (revised May 6, 2020)
- Sterling Ranch Filing No. 2 and Sterling Ranch Phase 2, dated February 2, 2021

LSC prepared a TIS for the Retreat at TimberRidge, located just north of the Homestead North development, dated January 25, 2018. LSC also prepared transportation memoranda for the Retreat at TimberRidge Preliminary Plan dated June 29th, 2018 and the Retreat at TimberRidge Filing No. 1 dated April 3, 2020.

STUDY AREA

Study Area Land Use

Sketch Plan

Figure 2 shows the location of currently-proposed Homestead North Phase 1 development. These parcels were included as part of traffic analysis zone (TAZ) 21 in the 2008 master traffic impact report. Table 1 shows the land uses assumed for TAZ 21 in the 2008 report and the land uses assumed in this report. A copy of the TAZ map from the 2008 report has been attached. As shown in Table 1, the 2008 report assumed the study area would be developed with 327 single-family homes. This same area is now planned to be developed with about 224 single-family homes. This includes 147 single-family homes currently proposed in Phase 1 and 77 single-family homes assumed in future Homestead North phases.

Study Area Access Plan

The access plan for the current study area is generally consistent with the access plan shown in the master traffic report. The following summarizes the minor change:

The Sterling Ranch access to Briargate Parkway just east of Vollmer Road (Wheatland Drive)
was previously shown as a right-in/right-out-only intersection in the Sketch Plan. The south
leg is now proposed as a three-quarter-movement (left-in/right-in/right-out-only) access. A
deviation request for this access point has been submitted and approved. The north leg that
will serve Homestead North Phase 1 is still proposed to be restricted to right-in/right-out only.

These changes to the plan will result in some localized shifts in intersection turning movements shown in the master traffic study long-term traffic projections, but nothing significant requiring an update to the master study.

CURRENTLY PROPOSED LAND USE AND ACCESS

Land Use and Vehicle Access

Homestead North Phase 1 is planned to include 147 lots for single-family homes. A full-movement site access is proposed to Vollmer Road about 1,410 feet north of Briargate Parkway and 1,370 feet south of Poco Road. An additional access is proposed to Briargate Parkway about 750 feet east of Vollmer Road aligning with Wheatland Drive. In the short term, full-movement access will be allowed at this intersection, as only a half section of Briargate Parkway is planned to be constructed between Vollmer Road and Wheatland Drive. Once Briargate Parkway is widened to the full Principal Arterial cross-section, the north leg serving Homestead North will be restricted to right-in/right-out only and the south leg will be restricted to three-quarter movements (left-in/right-in/right-out only). In the future, Homestead North Phase 1 will also have access through future Homestead North phases and the Retreat at TimberRidge to Poco Road.

Sight Distance Analysis

Figure 3 shows a sight distance analysis at the future intersection to Vollmer Road. Based on a design speed of 40 miles per hour (mph) and the criteria contained in Table 2-21 of the *El Paso County Engineering Criteria Manual* (ECM), the required intersection sight distance at the future intersections is 445 feet. Based on the criteria contained in Table 2-17 of the ECM, the required stopping sight distance approaching this intersection is 305 feet. As shown in Figure 4, the future intersection analyzed will meet the criteria.

Pedestrian and Bicycle Access

There are no existing schools within two miles of the site. However, there are planned future school sites within the Sterling Ranch Master Plan area south of Briargate Parkway. There are planned sidewalks on Vollmer Road and Briargate Parkway adjacent to the site. School crossings will be needed at the intersection of Briargate Parkway/Vollmer Road. School crossings should not be allowed at the intersection of Briargate Parkway/Wheatland Drive.

EXISTING ROAD AND TRAFFIC CONDITIONS

The adjacent streets are shown in Figure 1 and are described below. Copies of the 2016 El Paso County Major Transportation Corridors Plan (MTCP), 2040 Roadway Plan, and 2016 MTCP 2060 Corridor Preservation Plan with the site location identified on each of them have been attached to this report.

Vollmer Road is currently a five-lane urban street within the City of Colorado Springs limits between Black Forest Road and Cowpoke Road; and a two-lane, rural, paved roadway north of Cowpoke Road extending to north of Hodgen Road. In the southbound direction, Vollmer Road has a posted speed limit of 45 miles per hour (mph). South of Cowpoke Road, Vollmer Road has a 40-mph posted speed limit. The *2040 El Paso County Major Transportation Corridors Plan* (MTCP) and the Sterling Ranch master traffic study show Vollmer Road as a four-lane Urban Minor Arterial adjacent to the site. Vollmer Road is planned to transition to a 2-lane Rural Minor Arterial north of Poco Road. In the interim, auxiliary turn lanes will be completed on Vollmer Road at Briargate Parkway as part of the Homestead at Sterling Ranch Filing No. 2 development.

Marksheffel Road is a Principal Arterial extending north from the City of Fountain to Woodmen Road. Marksheffel Road is planned to ultimately be widened to six lanes and extended north and west from Woodmen Road to connect to Research Parkway at Black Forest Road. Marksheffel Road is shown as a six-lane Principal Arterial through the Sterling Ranch Master Plan area on the El Paso County MTCP.

Briargate Parkway is a six-lane, Principal Arterial that extends east from I-25 to Grand Lawn Circle (about one-half mile east of Powers Boulevard). Briargate Parkway/Stapleton Road is planned ultimately to extend to Towner Drive. The section of Briargate Parkway between Vollmer Road and the first Sterling Ranch access (Wheatland Drive) is planned to be constructed in the short term as a partial cross-section with the Homestead at Sterling Ranch Filing No. 2 development.

Poco Road is an existing gravel road which extends east for about three-quarters of a mile from Lochwinnoch Lane to Vollmer Road. Poco Road is planned to be extended east of Vollmer Road as an Urban Local Road to serve the Retreat at Timber Ridge Filing No. 1 (PCD-SF-19-009).

Existing Traffic Volumes

Figure 4 shows the existing (2020) peak-hour traffic volumes at the intersections of Dines/Vollmer. The traffic volumes shown for the intersection of Dines/Vollmer were based on traffic counts conducted by LSC in May 2020. These traffic counts were conducted at a time when COVID-19 pandemic-related restrictions were in place. However, traffic counts conducted at the intersection of Black Forest Road/Vollmer Road in December 2019 (pre-pandemic) and repeated during the same week that the Dines/Vollmer counts were

Page 8

conducted indicate only minor impacts to traffic volumes on Vollmer Road due to these restrictions. The traffic count sheets are attached.

Figure 4 also shows the daily traffic volumes on Vollmer Road in the vicinity of the site. These volumes are estimates by LSC, based on the 2020 peak-hour counts and the ratio of peak-hour to daily traffic volumes from 24-hour traffic counts conducted on Vollmer Road just south of Poco Road by LSC in 2017.

BACKGROUND (BASELINE) CONDITIONS

Background traffic is the traffic estimated to be on the adjacent roadways and at adjacent intersections without the proposed development's trip generation of site-generated traffic volumes. Background traffic includes the through traffic and the traffic generated by nearby developments, but assumes zero traffic generated by Homestead North Phase 1.

Figure 5 shows the projected short-term background traffic volumes at the key area intersections. The short-term background volumes assume a half section of Briargate Parkway has been constructed between Vollmer Road and Wheatland Drive and that full-movement access is permitted at the intersection of Briargate/Wheatland. The short-term background traffic includes the existing traffic volumes (from Figure 3) plus increases in through traffic due to regional growth, plus traffic estimated to be generated by buildout of the Homestead at Sterling Ranch Filings 1 and 2, Branding Iron at Sterling Ranch Filings 1 and 2, Sterling Ranch Filing No. 2, Sterling Ranch Phase 2, and the Retreat at TimberRidge Filing No. 1 to be located generally northeast of the intersection of Vollmer Road and Poco Road.

Figure 6 shows the projected 2040 background traffic volumes at the key area intersections. 2040 background traffic volume estimates were based on 2040 volume projections in the *El Paso County Major Transportation Corridors Plan* (MTCP) and previous work completed in the area by LSC, including the *Sterling Ranch Updated Traffic Impact Analysis* by LSC (dated June 5, 2008) and the *Retreat at TimberRidge Updated Traffic Impact Analysis* by LSC (dated January 25, 2018). The 2040 background traffic volumes assume buildout of the Sterling Ranch development, including future phases of Homestead North, and buildout of the Retreat at TimberRidge. The 2040 background traffic assumes Briargate Parkway/Stapleton Road has been constructed between Black Forest Road and Towner Avenue and that the intersection of Briargate/Wheatland is restricted to a three-quarter movement (left-in/right-in/right-out only) for the south leg and right-in/right-out only for the north leg. The 2040 background traffic also assumes a connection between the intersection of Wheatland/Briargate and Poco Road through the Homestead North area.

Page 9

TRIP GENERATION

The site-generated vehicle trips were estimated using the nationally published trip-generation rates from *Trip Generation*, 10th Edition, 2017 by the Institute of Transportation Engineers (ITE). Table 1 shows the trip-generation estimates.

Homestead North Phase 1 is projected to generate about 1,388 new external vehicle-trips on the average weekday, with about half entering and half exiting the site during a 24-hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 27 vehicles would enter and 82 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between 4:15 and 6:15 p.m., about 92 vehicles would enter and 54 vehicles would exit the site.

TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated traffic volumes on the street and roadway system serving the site is one of the most important factors in determining the site's traffic impacts. The specific short-term and long-term distribution estimates are shown in Figure 7. The directional distribution estimates are based on the following factors: the location of the site with respect to the Colorado Springs metropolitan area, the planned access system for the site, the street and roadway system serving the site, the land uses proposed for the site, and the distribution of existing traffic volumes at the intersection of Dines Boulevard/Vollmer. The short-term distribution estimate assumes only the short section of Briargate Parkway between Vollmer Road and Wheatland Drive has been constructed in the vicinity of the site and the long-term distribution estimate assumes full buildout of the future roadway network in the vicinity of the site.

When the distribution percentages (from Figure 7) are applied to the trip-generation estimates (from Table 1), the resulting site-generated traffic volumes can be determined. Figures 8 and 9 show the short-term and 2040 site-generated traffic volume estimate for Homestead North Phase 1. The short-term site-generated traffic volumes assume the intersection of Briargate/Wheatland as an interim full-movement intersection. The long-term site-generated traffic volumes assume the north leg of this intersection has been restricted to right-in/right-out only.

TOTAL TRAFFIC

Short-Term Total Traffic Volumes

Figure 10 shows the projected short-term total traffic volumes at the intersection of Briargate/Vollmer and the site access points. The short-term total traffic volumes are the sum of the short-term background traffic volumes (from Figure 5) and the short-term site-generated traffic volumes (from Figure 8).

2040 Total Traffic Volumes

Figure 11 shows the projected 2040 total traffic volumes at the intersection of Briargate/Vollmer and the site access points. The 2040 total traffic volumes are the sum of the 2040 background traffic volumes (from Figure 6) and the long-term site-generated traffic volumes (from Figure 9).

LEVEL OF SERVICE ANALYSIS

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized intersections. LOS F represents control delay of more than 50 seconds for unsignalized intersections. Table 2 shows the level of service delay ranges.

Table 2: Intersection Levels of Service Delay Ranges

	Signalized Intersections	Unsignalized Intersections
	Average Control Delay	Average Control Delay
Level of Service	(seconds per vehicle)	(seconds per vehicle) ⁽¹⁾
А	10.0 sec or less	10.0 sec or less
В	10.1-20.0 sec	10.1-15.0 sec
С	20.1-35.0 sec	15.1-25.0 sec
D	35.1-55.0 sec	25.1-35.0 sec
E	55.1-80.0 sec	35.1-50.0 sec
F	80.1 sec or more	50.1 sec or more

⁽¹⁾ For unsignalized intersections, if V/C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.

The intersection of Briargate/Vollmer and the site access points have been analyzed to determine the projected intersection levels of service for short-term and 2040 background and total traffic scenarios for the morning and afternoon peak-hour periods. The short-term analysis of the intersection of Briargate/Vollmer and the short-term and 2040 analysis of the site access points were based on the unsignalized intersection analysis procedures from the *Highway Capacity Manual, 6th Edition*. The intersection of Briargate/Vollmer was analyzed as a signalized intersection using Synchro for the 2040 analysis. Figures 5, 6, 10, and 11 show the level of service analysis results. The level of service reports are attached.

Briargate Parkway/Vollmer Road

The intersection of Briargate/Vollmer is projected to operate at a satisfactory level of service (LOS C or better) as a stop sign-controlled intersection, based on the short-term total traffic. This analysis assumes Briargate Parkway has only been extended east of Vollmer Road to Wheatland Drive. By 2040, it was assumed that Briargate Road would be extended east to Black Forest Road

and west to connect to its current terminus. It was also assumed that the intersection of Briargate/Vollmer would be signal-controlled by 2040. This intersection is projected to operate at an overall satisfactory level of service (LOS D or better) as a signalized intersection.

Briargate Parkway/Wheatland Drive

The intersection of Briargate/Wheatland is projected to operate at a LOS B or better for all movements as a full-movement stop sign-controlled intersection, based on the short-term total traffic. This analysis assumes a half section of Briargate Parkway has been constructed between Vollmer Road to Wheatland Drive. By 2040, it was assumed that the Briargate Parkway would be constructed to its full Principal Arterial cross-section and the south leg of the intersection of Briargate/Wheatland would be restricted to three-quarter movement (left-in/right-in/right-out only) and the north leg would be restricted to right-in/right-out only. Based on the 2040 total traffic volumes and lane geometry shown in Figure 11, all movements at this intersection are projected to operate at LOS D or better during the peak hours.

Vollmer Road/Sam Bass Drive

The intersection of Vollmer Road/Sam Bass Drive is projected to operate at LOS C or better for all movements during the peak hours as a stop sign-controlled intersection, based on the projected short-term and 2040 total traffic volumes.

SUBDIVISION STREET CLASSIFICATIONS

Figure 12 shows the recommended street classifications for the streets in the vicinity of the site.

AREA MTCP 2040 ROADWAY IMPROVEMENT PROJECTS

The *El Paso County 2016 Major Transportation Corridors Plan Update* identified the following 2040 roadway improvement projects within the study area:

• C13: Vollmer Road, from Marksheffel Road to Stapleton Drive [Briargate Parkway], as a Rural 4-Lane Minor Arterial. The Retreat at TimberRidge Preliminary Plan Transportation Memorandum by LSC Transportation Consultants, Inc. dated June 29th, 2018 recommends Vollmer Road be upgraded to a 4-lane Urban Minor Arterial from Marksheffel Road to Poco Road. LSC recommends a transition section between the 4-Lane Minor Arterial section south of Poco Road and the 2-lane Rural Arterial section north of Poco Road be constructed between Sam Bass Drive and Poco Road. This could be accomplished by having the second northbound through lane transition to a "trap" right-turn lane at Poco Road. The second southbound through lane could be added either by providing a southbound acceleration lane at Poco Road or having Vollmer Road flare out just south of Poco Road.

- N5 Stapleton Drive [Briargate Parkway], from Towner Road to Black Forest Road, as a 4-Lane Urban Principal Arterial.
- N12: Marksheffel Road, from Woodman Road to Research Parkway, as a 4-Lane Urban Principal Arterial.
- M11: Vollmer Road Bicycle & Primary Regional Trail, from Marksheffel Road to Shoup Road.

AUXILIARY TURN LANES

- Based on the projected short-term total traffic volumes and the criteria contained in the El Paso County Engineering Criteria Manual (ECM), a northbound right-turn deceleration lane is projected to be warranted on Vollmer Road approaching Sam Bass Drive. This lane should be 155' feet long plus a 160-foot taper.
- Based on the projected short-term and 2040 total traffic volumes and the criteria contained in the El Paso County Engineering Criteria Manual (ECM), a southbound left-turn lane is not projected to be warranted on Vollmer Road approaching Sam Bass Drive. However, left-turn lanes are included in the standard cross section for a Minor Arterial and LSC recommends this turn lane be included in the design for the Vollmer Road improvements adjacent to the site. The recommended length for this lane is 205' feet plus a 160-foot taper.
- Based on the projected 2040 total traffic volumes and the criteria contained in the *El Paso County Engineering Criteria Manual* (ECM), a westbound right-turn deceleration lane is projected to be warranted on Briargate Parkway approaching Wheatland Drive. This lane should be 235' feet long plus a 200-foot taper.

The Retreat at TimberRidge Preliminary Plan Transportation Memorandum dated June 29, 2019 identified the need for a northbound right-turn deceleration lane on Vollmer Road approaching Poco Road. The design and installation of that lane should be completed with final plat(s) for the Retreat at TimberRidge and/or future Homestead North filings.

DEVIATON REQUESTS

Deviation requests to the criteria for spacing of local reads contained in the *El Paso County Engineering Criteria Manual* (ECM) will be included with this submittal.

TRANSPORTATION IMPROVEMENT FEE PROGRAM

The applicant will be required to participate in the Countywide Transportation Improvement Fee Program. These projects will annex into the 10 mil PID, which has a per-lot upfront building permit fee of \$1,221 per dwelling unit. The total building permit fee amount for the 147 lots within Homestead North Phase 1 would be \$179,487.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

Homestead North Phase 1 is projected to generate about 1,388 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24-hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 27 vehicles would enter and 82 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between 4:15 and 6:15 p.m., about 92 vehicles would enter and 54 vehicles would exit the site.

Level of Service

- In the short term, the intersection of Briargate/Vollmer is projected to operate at a satisfactory level of service as a stop sign-controlled "T" intersection. By 2040, it was assumed that Briargate Road/Stapleton Road would be extended west to Black Forest Road and east to connect to its current terminus. It was also assumed that the intersection of Briargate/Vollmer would be signal controlled by 2040. This intersection is projected to operate at an overall satisfactory level of service (LOS D or better) as a signalized intersection.
- The proposed site access points to Vollmer Road and Briargate Parkway are projected to
 operate at a satisfactory level of service as stop sign-controlled intersections, based on the
 short-term and 2040 total traffic volumes and lane geometry shown in Figures 10 and 11.

Recommended Improvements

- A list of all roadway segment improvements in the vicinity of the site is presented in Table 3. The location of each roadway segment is identified in Figure 13.
- Please refer to the Recommended Improvements section above for auxiliary turn-lane recommendations. Figures 10 and 11 also show turn lanes as part of the intersection laneage graphics.

* * * * *

Auxiliary Turn Lanes

Please contact me if you have any questions regarding this report.

Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

Ву Jeffrey C. Hodsdon, P.E.

Principal

KDF:jas

Tables 1 and 3 Enclosures:

> Figures 1-13 TAZ Map MTCP Maps

Traffic Count Reports Level of Service Reports

Tables

Table 1
Trip Generation Estimate
Homestead North Phase 1

	Trip Generation Rates (1) Total External (1)			al Trips G	ips Generated						
	Trip Generation	Average Weekday		•		U	Average Weekday		U		ning Hour
Description	Units	Traffic	In	Out	In	Out	Traffic	ln	Out	In	Out
eneration Estimate for the Currently	Proposed Home	stead North P	hase 1								
Single-Family Detached Housing	147 DU ⁽²⁾	9.44	0.19	0.56	0.62	0.37	1,388	27	82	92	54
eneration Estimate for Future Homes	tead North Phas	ses									
Single-Family Detached Housing	77 DU	9.44	0.19	0.56	0.62	0.37	727	14	43	48	28
-	224 DU	_					2,115	41	125	140	82
eneration Estimate for TAZ 21 From t	the Sterling Ran	ch Updated Tı	affic Imp	oact Ana	lysis Jun	ie 5, 2008					
Single-Family Detached Housing	327 DU	9.57	0.19	0.56	0.64	0.37	3,129	61	184	208	122
Change in trip generation estimate	-103 DU						-1,014	-20	-59	-68	-40
	eneration Estimate for the Currently Single-Family Detached Housing eneration Estimate for Future Homes Single-Family Detached Housing eneration Estimate for TAZ 21 From the Single-Family Detached Housing	Use Description Units eneration Estimate for the Currently Proposed Home Single-Family Detached Housing 147 DU ⁽²⁾ eneration Estimate for Future Homestead North Phase Single-Family Detached Housing 77 DU 224 DU eneration Estimate for TAZ 21 From the Sterling Rane Single-Family Detached Housing 327 DU	Land Use Generation Weekday Description Units Traffic eneration Estimate for the Currently Proposed Homestead North P Single-Family Detached Housing 147 DU 9.44 eneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 224 DU eneration Estimate for TAZ 21 From the Sterling Ranch Updated Transport Single-Family Detached Housing 327 DU 9.57	Land Use Generation Weekday Peak Description Units Traffic In Single-Family Detached Housing 77 DU 9.44 0.19 eneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Single-Family Detached Housing 327 DU 9.57 0.19	Land Use Generation Weekday Peak Hour In Out eneration Estimate for the Currently Proposed Homestead North Phase 1 Single-Family Detached Housing 147 DU ⁽²⁾ 9.44 0.19 0.56 eneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 0.19 0.56 224 DU eneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Anal Single-Family Detached Housing 327 DU 9.57 0.19 0.56	Land Use Generation Weekday Peak Hour Peak Description Units Traffic In Out In eneration Estimate for the Currently Proposed Homestead North Phase 1 Single-Family Detached Housing 147 DU ⁽²⁾ 9.44 0.19 0.56 0.62 eneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 0.19 0.56 0.62 224 DU eneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Analysis June Single-Family Detached Housing 327 DU 9.57 0.19 0.56 0.64	Land Use Generation Weekday Peak Hour Peak Hour Description Units Traffic In Out In Out eneration Estimate for the Currently Proposed Homestead North Phase 1 Single-Family Detached Housing 147 DU ⁽²⁾ 9.44 0.19 0.56 0.62 0.37 eneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 0.19 0.56 0.62 0.37 224 DU eneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Analysis June 5, 2008 Single-Family Detached Housing 327 DU 9.57 0.19 0.56 0.64 0.37	Land Use Generation Peak Hour Description Units Traffic Impact Analysis June 5, 2008 Single-Family Detached Housing 327 DU 9.57 0.19 0.56 0.64 0.37 3,129	Land Use Generation Weekday Peak Hour Peak Hour Weekday Peak Hour Housekday Peak Hour Peak Hour Housekday Peak Hour Peak Hour In Out Traffic In Peneration Estimate for the Currently Proposed Homestead North Phase 1 Single-Family Detached Housing 147 DU(2) 9.44 0.19 0.56 0.62 0.37 1,388 27 eneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 0.19 0.56 0.62 0.37 727 14 224 DU 2.115 41 eneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Analysis June 5, 2008 Single-Family Detached Housing 327 DU 9.57 0.19 0.56 0.64 0.37 3,129 61	Land Use Generation Weekday Peak Hour Place In Out In Out Traffic In Out In Out Traffic In Out In Ou	Land Use Generation Weekday Peak Hour Peak Is Single-Family Detached Housing 147 DU ⁽²⁾ 9.44 0.19 0.56 0.62 0.37 1,388 27 82 92 Peneration Estimate for Future Homestead North Phases Single-Family Detached Housing 77 DU 9.44 0.19 0.56 0.62 0.37 727 14 43 48 Peneration Estimate for TAZ 21 From the Sterling Ranch Updated Traffic Impact Analysis June 5, 2008 Single-Family Detached Housing 327 DU 9.57 0.19 0.56 0.64 0.37 3,129 61 184 208

Notes:

(1) Source: "Trip Generation, 10th Edition, 2017" by the Institute of Transportation Engineers (ITE)

(2) DU = dwelling unit

Source: LSC Transportation Consultants, Inc.

Jul-20

		Table 3				
		(page 1 of 3)				
		Homestead North				
Segment ID ⁽¹⁾	Improvement Description	Roadway Segment Improve	Design ADT (vpd)	Projected Short-Term ADT (vph)	Projected 2040 ADT (vpd)	Responsibility
		Adjacent Roadway Improv	vements			
V4	Improve Vollmer Road from Sterling Ranch boundary south of Dines Boulevard to Briargate Parkway to a standard 4-Lane Urban Minor Arterial Cross Section ⁽²⁾	Short-Term Future (With Homestead North)	20,000	8,110	17,480	Sterling Ranch (With Homestead North)
V5	Improve Vollmer Road from Briargate Parkway to Sam Bass Drive to a standard 4- Lane Urban Minor Arterial Cross Section ⁽²⁾	Short-Term Future (With Homestead North)	20,000	7,145	11,805	Sterling Ranch (With Homestead North)
MG	Widen the east side of Vollmer Road in the vicinity of Poco Road to the rural standard (32' wide interim total including 8' of pavement and 2' gravel shoulder)	Short-Term Future (With Retreat at TimberRidge Fil 1)	10,000	7,010	10,580	Retreat at TimberRidge Fil 1
V6	Improve Vollmer Road between Sam Bass Drive and Poco Road to a 4-lane Urban Minor Arterial but with necessary lane transitions, redirect tapers, etc. south of Poco to adequately transition between the 4-Lane Urban Minor Arterial Cross Section and the 2-Lane Rural Arterial Cross Section north of Poco Road	Short-Term Future (With Homestead North)	20,000			Sterling Ranch (With Homestead North)
D1	Construct the south half section of Briargate Pkwy (4-Lane Principal Arterial) between Vollmer Road and Wheatland Dr	Short-Term Future (With Homestead at Sterling Ranch Fil 2)	20,000		25.450	Sterling Ranch
B1 🛑	Construct the north half section of Briargate Pkwy (4-Lane Principal Arterial) between Vollmer Road and Wheatland Dr	Long-Term Future	40,000	1,190	36,150	Sterling Ranch
lotes:						L
(1) See	Figure 23—— 13?					
	quate transition/redirect tapers would be needed between the various cross sections dway with a design speed of 40 mile per hour is 20:1	on Vollmer Road. Based on the	riteria contained in Table	e 2-29 of the <i>El Paso Engineering</i>	g Criteria Manual an ap	propriate taper ratio for a
(3) Sour	rce: Table 20 Road Impact Fee Study Updated November 16, 2016					
(4) Sour	rce: The Ranch Sketch Plan Master Traffic Impact Study by LSC Transportation Consult	ants, Inc. July 9, 2019 PCD File N	o. SKP-18-006			

Source: LSC Transportation Consultants, Inc. (March 2021)

		Table 3				
		(page 2 of 3) Homestead Nort	·h			
		Roadway Segment Impro				
Segment ID ⁽¹⁾	Improvement Description	Timing Other Area Roadway Imp	Design ADT (vpd)	Projected Short-Term ADT (vph)	Projected 2040 ADT (vpd)	Responsibility
		Uther Area Roadway imp	rovements			
V1 orthbound	Consideration of restriping the 38' of pavement for two 11' southbound lanes (remove the bike lane but add sharro markings), a 12' northbound lane and a 4'	To be evaluated with the first development within	5,500 (Directional northbound)	4,670 (Directional northbound)	7,840 (Directional northbound)	Sterling Ranch
V1 outhbound	outside paved shoulder along the east edge ⁽²⁾ in City of Colorado Springs	Sterling Ranch Phase 2	10,000 (Directional southbound)	4,670 (Directional southbound)	7,840 (Directional southbound)	
V1 •	Improve Vollmer Road from Dry Needle Place to Marksheffel Road to a standard 4- Lane Urban Minor Arterial Cross Section (Add a second northbound through lane and painted center median) (2)	Long-Term Future	20,000	9,335	15,680	Sterling Ranch or Others
V2	South of Improve Vollmer Road from Marksheffel Road to Lochwinnoch Lane to a standard 4- Lane Urban Minor Arterial Cross Section (2)	Short-Term Future (With Sterling Ranch Fil No. 2 Or Sterling Ranch Phase 2)	20,000 (Note: Existing Capacity 8,000 ⁽³⁾)	9,490	18,800	Sterling Ranch
• V3	Improve Vollmer Road from Lochwinnoch Lane to Sterling Ranch boundary to provide 36' of pavement (existing pavement approx. 23.38') and stripe for one through lane and plus a 6' paved, striped outside shoulder in each direction ⁽²⁾	Short-Term Future (With Homestead North)	11,000 (Note: Existing Capacity 8,000)	8,855	18,735	Sterling Ranch
	Improve Vollmer Road from Lochwinnoch Lane to Sterling Ranch boundary south of Dines Boulevard to a standard 4-Lane Urban Minor Arterial Cross Section ⁽²⁾	Long-Term Future	20,000	8,040	17,735	Sterling Ranch or Others
V7	Improve Vollmer Road from Poco Road to Shoup Road to a Rural 2-Lane Arterial Cross Section ⁽²⁾	Long-Term Future	10,000	7,010	9,430	El Paso County Project ID U-12
lotes:			•	•		·
with	uate transition/redirect tapers would be needed between the various cross sections or a design speed of 40 mile per hour is 20:1	Vollmer Road. Based on the c	riteria contained in Table 2-29	9 of the <i>El Paso Engineering Cı</i>	riteria Manual an appro	priate taper ratio for a roadwa
	te: Table 20 Road Impact Fee Study Updated November 16, 2016	to Inc. July 0, 2010 DCD 5:1- N-	S CVD 10 006			
	te: The Ranch Sketch Plan Master Traffic Impact Study by LSC Transportation Consultan ransportation Consultants, Inc. (March 2021)	its, inc. July 9, 2019 PCD FIIE NO	J. JVL-10-000			
				St	erling Ranch if	

Intermediate?

Sterling Ranch if necessary prior to construction by others

		(page 3 of 3)						
		Homestead North						
Roadway Segment Improvements								
Segment ID ⁽¹⁾	Improvement Description	Timing	Design ADT (vpd)	Projected Short-Term ADT (vph)	Projected 2040 ADT (vpd)	Responsibility		
SR1	Construct Sterling Ranch Road as an Urban Non-Residential Collector from Marksheffel Road to Dines Boulevard	With Sterling Ranch Fil No. 2 Or Sterling Ranch Phase 2	20,000	5,410	12,785	Sterling Ranch		
SR2	Construct Sterling Ranch Road as an Urban Non-Residential Collector from Dines Boulevard to Briargate Parkway	Long-Term Future	20,000	0	10,175	Sterling Ranch		
M1 •	Construct Marksheffel Road as an Urban Principal Arterial to City of Colorado Springs standards in 107' of right-of-way between Vollmer Road and Sterling Ranch Road	With Sterling Ranch Fil No. 2 Or Sterling Ranch Phase 2	40,000	4,035	24,185	Sterling Ranch		
M2 •	Construct Marksheffel Road as an Urban Principal Arterial to City of Colorado Springs standards in 107' of right-of-way between Sterling Ranch Road and the south boundary of the Sterling Ranch Master Plan Area	Intermediate Term (Required with Improvement 5)	40,000	5,085	26,710	Sterling Ranch		
M3 (Construct Marksheffel Road between the south boundary of the Sterling Ranch Master Plan Area and Woodmen Road in City of Colorado Springs	Intermediate Term	40,000	5,085	26,710	Others		
M4 🛑	Construct Marksheffel Road between Black Forest Road and Vollmer Road	Long-Term Future	40,000	0	25,515	Others		
B2-B3	Construct Briargate Pkwy as a 4-Lane Principal Arterial between Wheatland Dr and Banning Lewis Parkway	Long-Term Future	40,000	0	37,840	Sterling Ranch		
B4 🛑	Construct Briargate Pkwy as a 4-Lane Principal Arterial between Banning Lewis Parkway and Meridian Road Stapleton Road	Long-Term Future	40,000	0	34,375 ⁽⁴⁾	Others		
В5	Construct Briargate Pkwy as a 4-Lane Principal Arterial between its current terminus and Black Forest Road and between Black Forest Road and Vollmer Road	Long-Term Future	40,000	0	33,160	Others		
	Construct Banning Lewis Parkway as a 4-Lane Principal Arterial between the south Sterling Ranch boundary and Briargate Pkwy	Long-Term Future	40,000	0		Sterling Ranch w/ cost recovery		
	Construct Banning Lewis Parkway as a 4-Lane Principal Arterial between Woodmen Road and the south Sterling Ranch boundary in City of Colorado Springs	Long-Term Future	40,000	0		Others		
	Widen Woodmen Road from 4-lane to 6-lane section from Powers Boulevard to US 24	Long-Term Future				Woodmen Road Metro District/ Others		
	Widen Black Forest Road from 2-lane to 6-lane section from Woodmen Road to Baker					Woodmen Heights District/		

Table 3

Notes:

- (1) See Figure 23
- (2) Adequate transition/redirect tapers would be needed between the various cross sections on Vollmer Road. Based on the criteria contained in Table 2-29 of the El Paso Engineering Criteria Manual an appropriate taper ratio for a roadway with a design speed of 40 mile per hour is 20:1

Wolf Ranch/

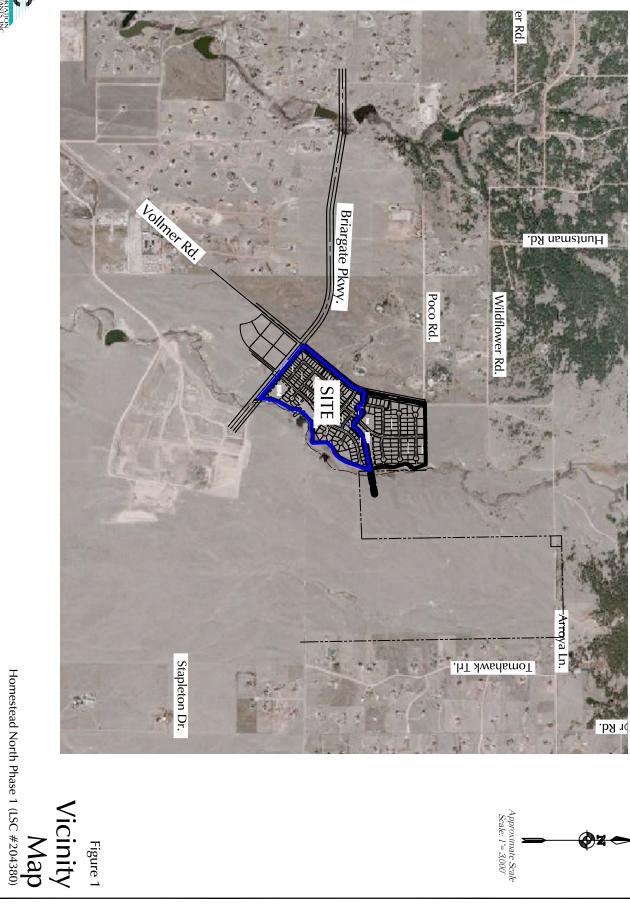
Other Adjacent Properties

Long-Term Future

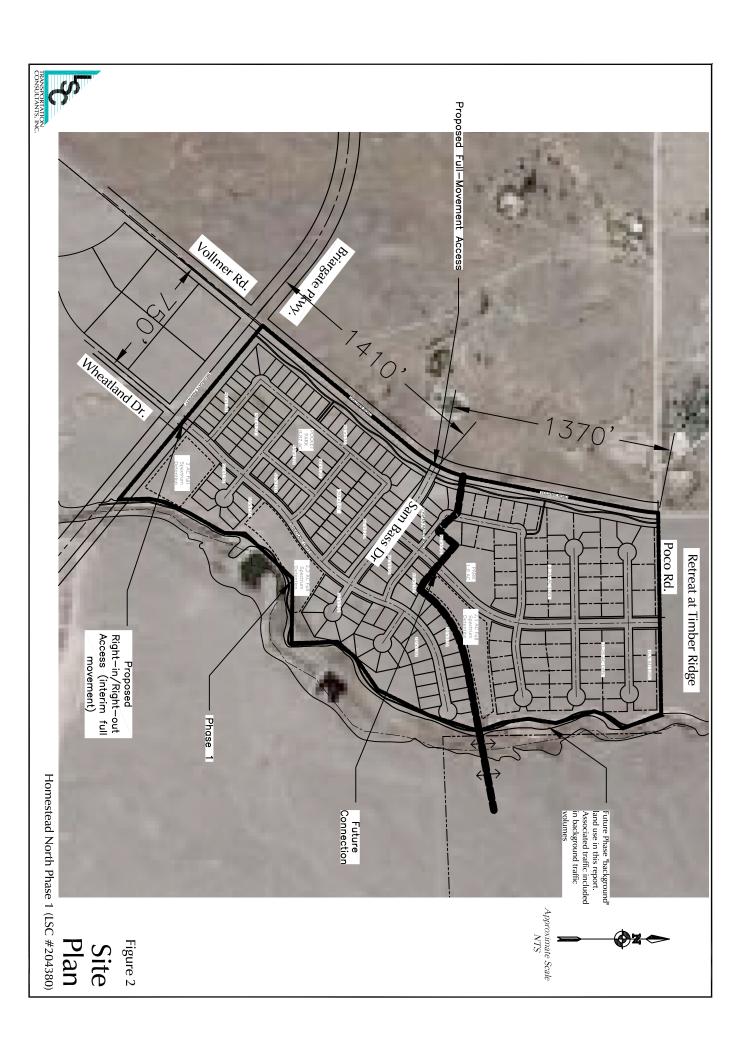
(3) Source: Table 20 Road Impact Fee Study Updated November 16, 2016

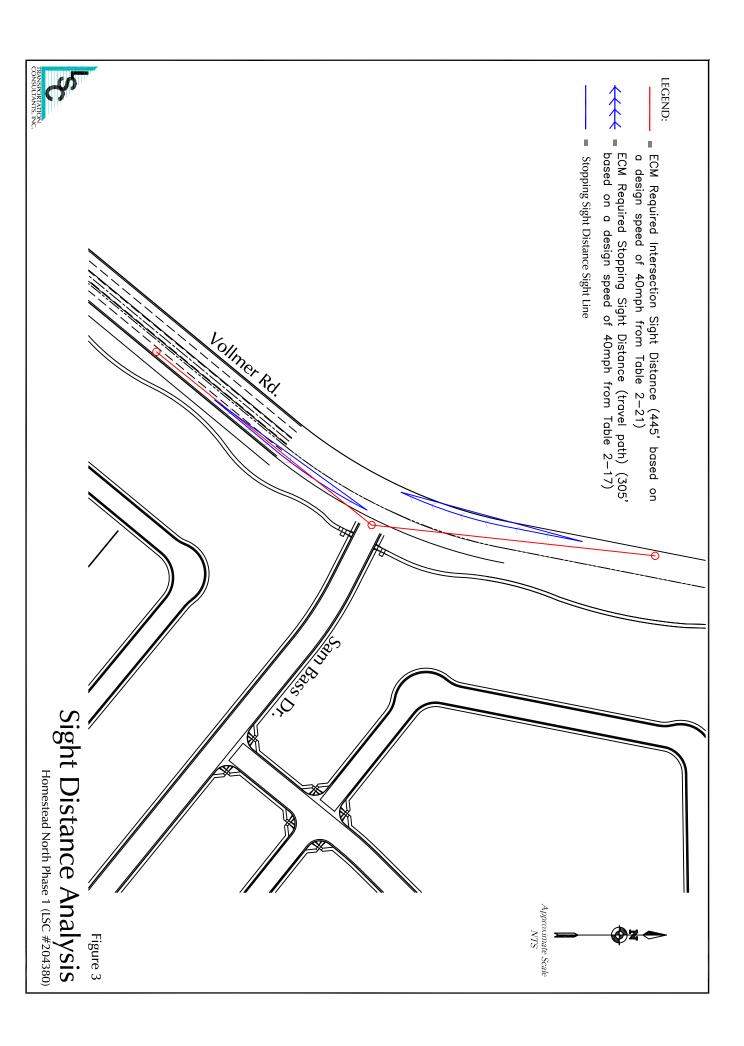
Road in City of Colorado Springs

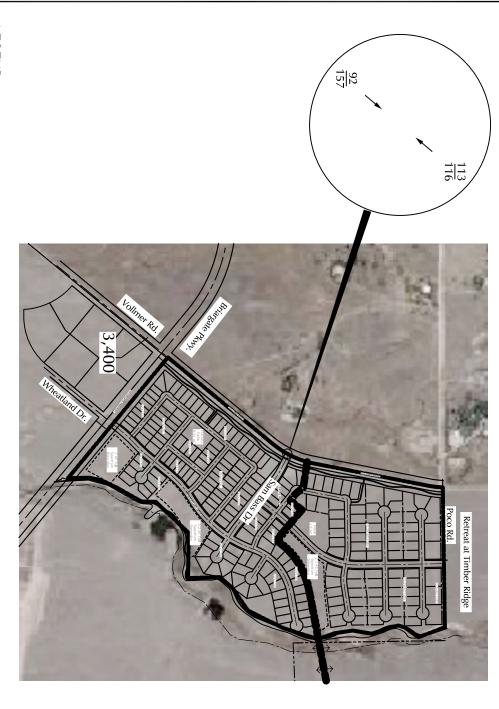
(4) Source: The Ranch Sketch Plan Master Traffic Impact Study by LSC Transportation Consultants, Inc. July 9, 2019 PCD File No. SKP-18-006


Widen Black Forest Road from 2-lane to 6-lane section from Woodmen Road to Baker

Source: LSC Transportation Consultants, Inc. (March 2021)


Figures

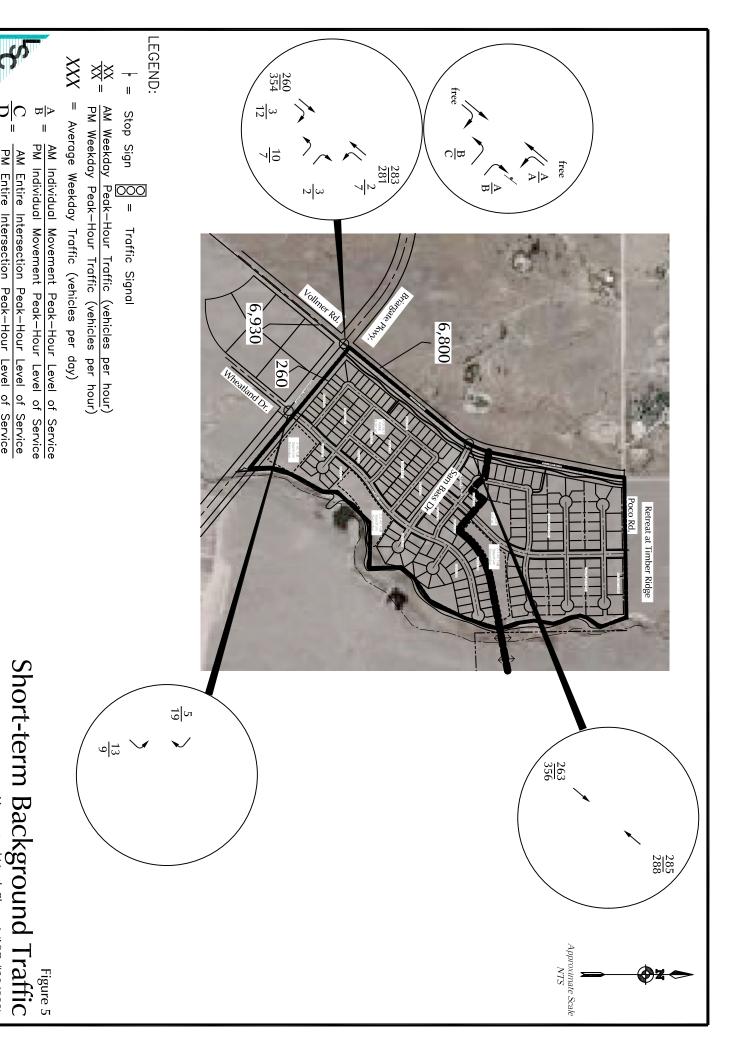




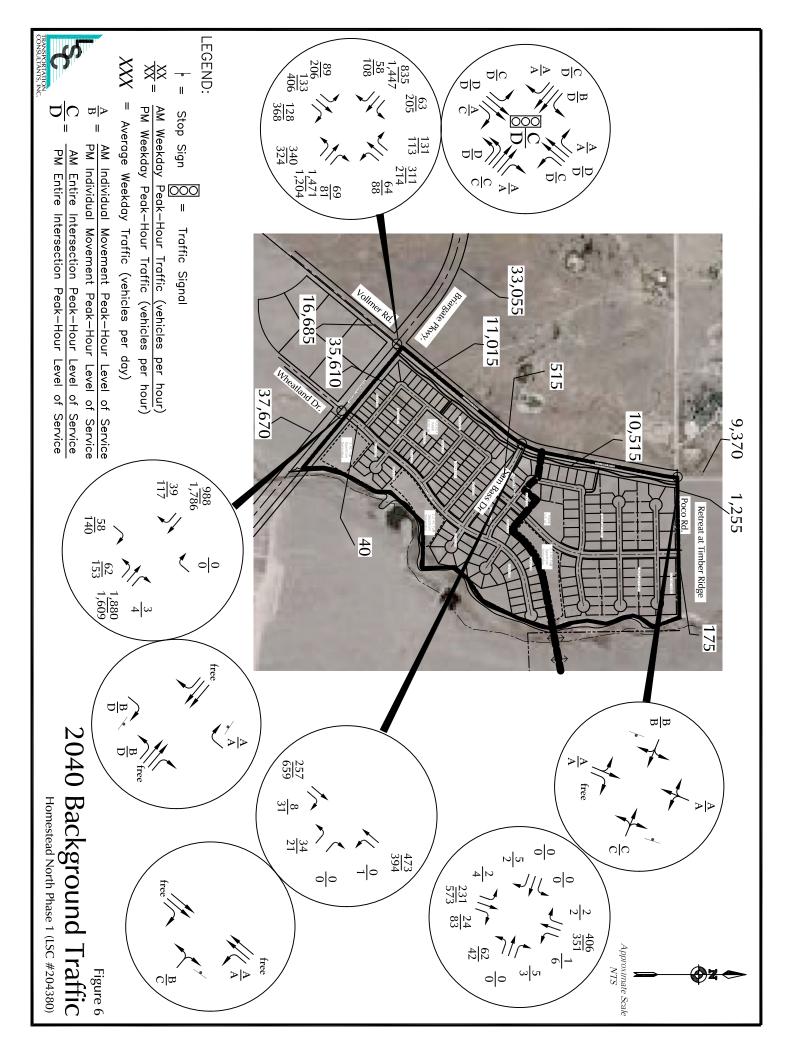
Approximate Scale Scale: I"= 3,000'

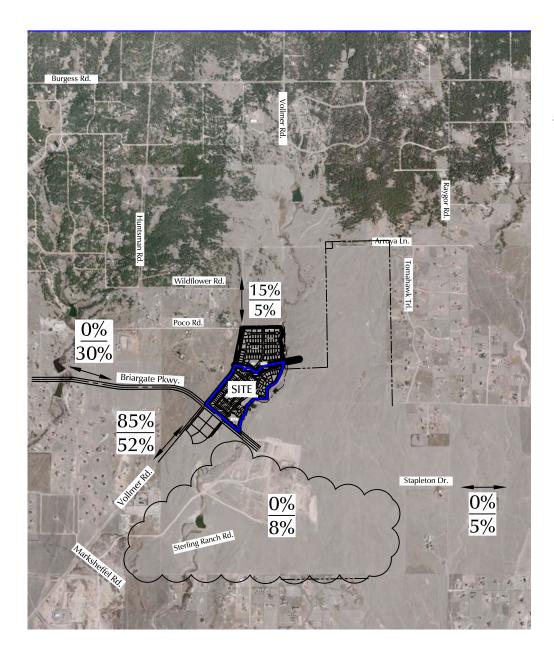
LEGEND:

AM Weekday Peak—Hour Traffic (vehicles per hour) Based on counts by LSC May 2020 PM Weekday Peak—Hour Traffic (vehicles per hour)


= Average Weekday Traffic (vehicles per day) Estimate by LSC

Note: Counts may be impacted by restrictions due to the COVID—19 pandemic.

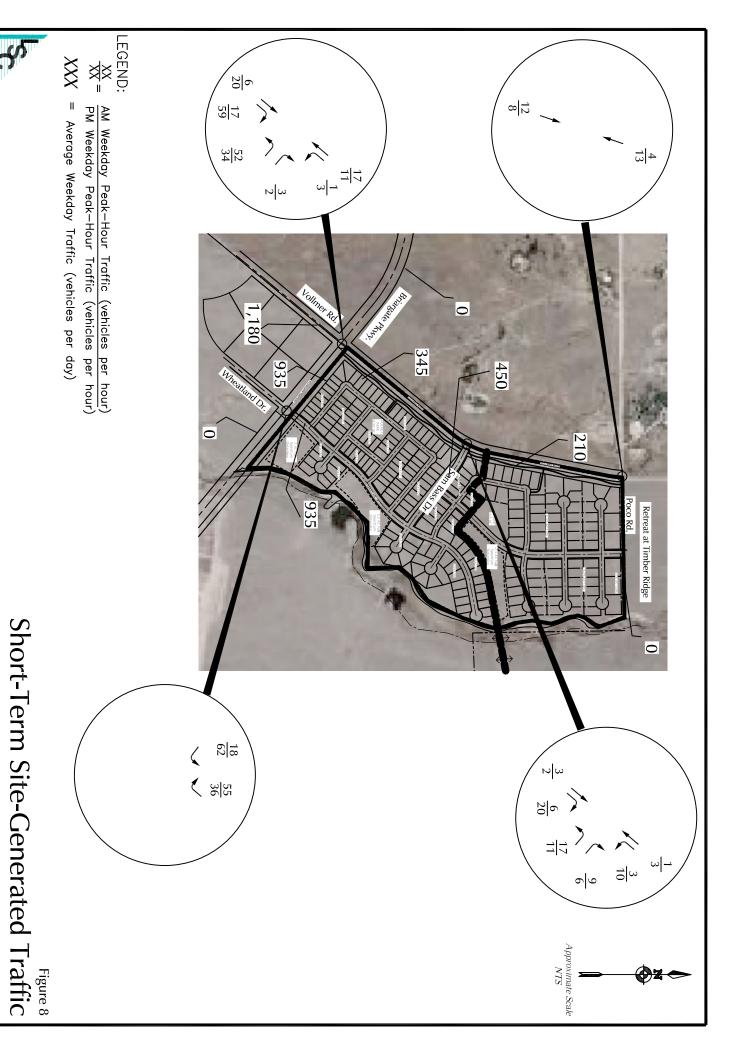

Approximate Scale


Figure 4

Existing Traffic

AM Entire Intersection Peak—Hour Level of Service PM Entire Intersection Peak—Hour Level of Service

LEGEND:


 $\frac{XX\%}{XX\%}$

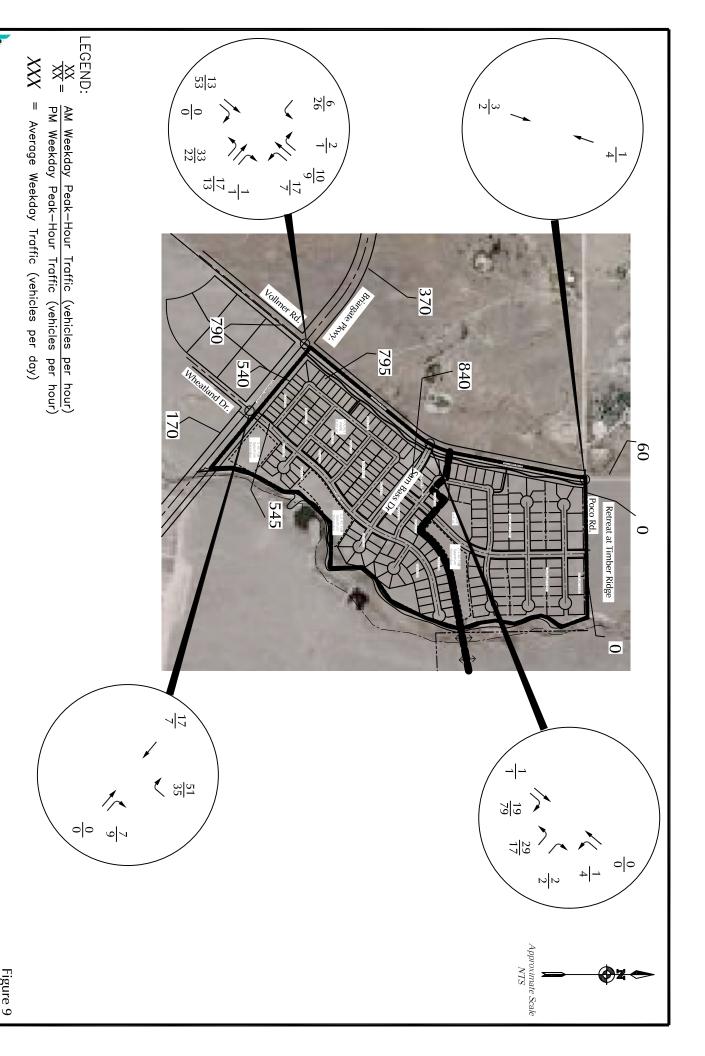
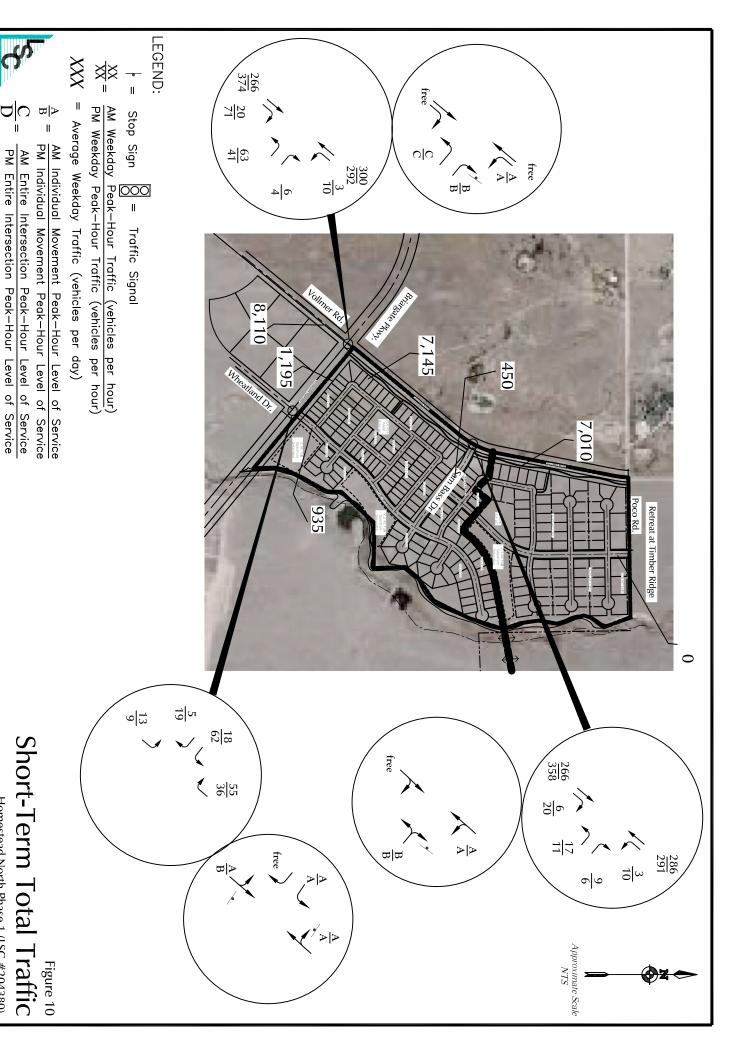
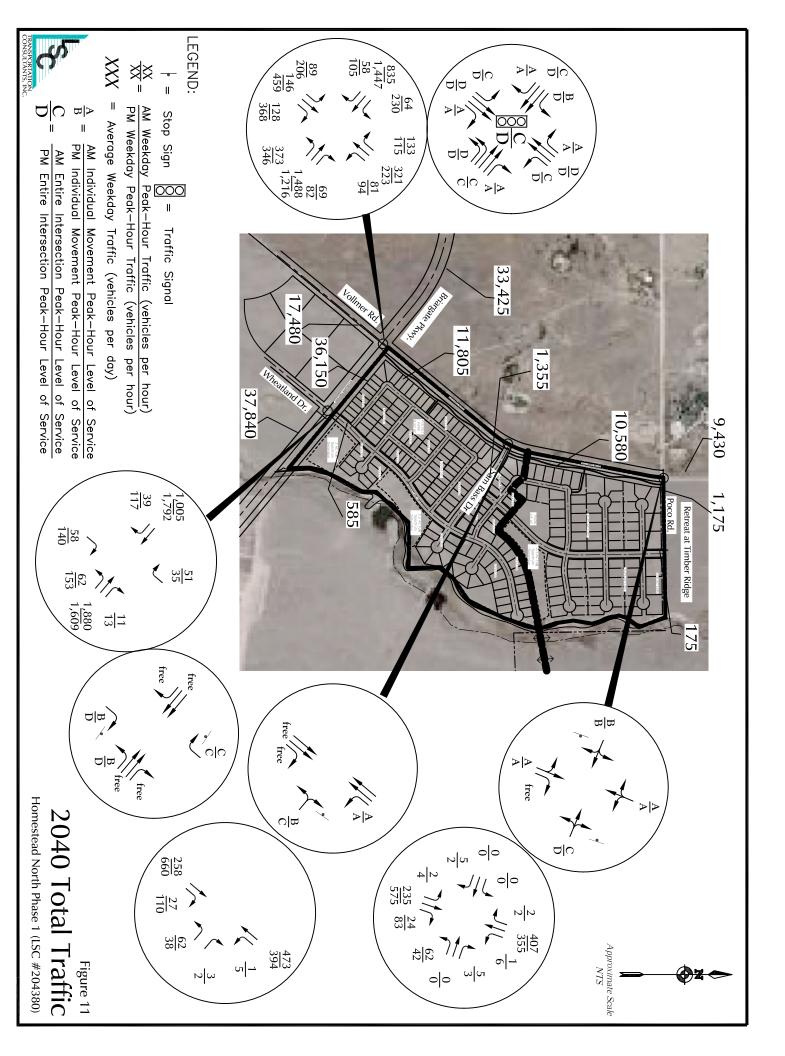
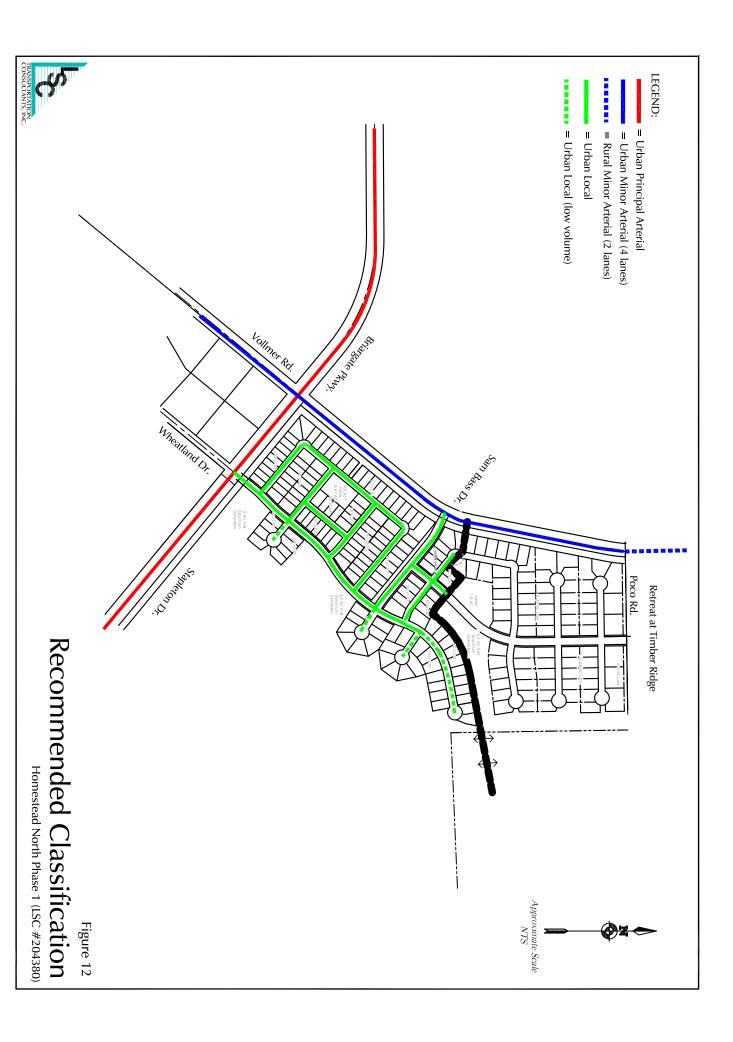

Short—Term Percent Directional Distribution
Long—Term Percent Directional Distribution

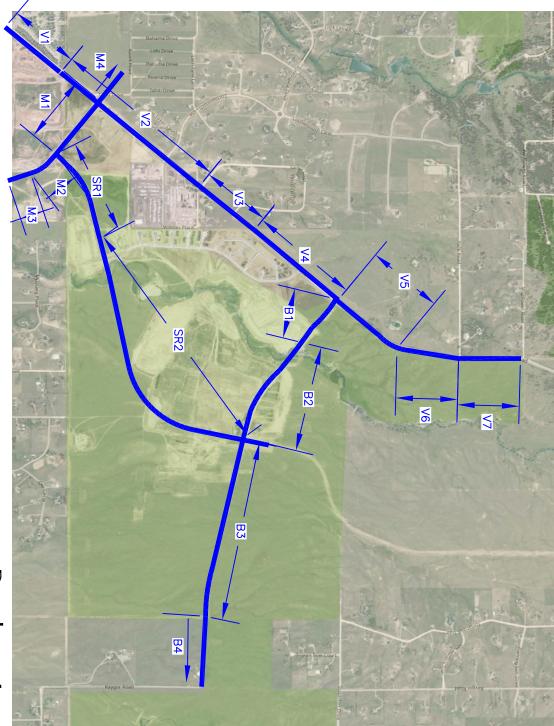
Figure 7



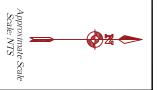




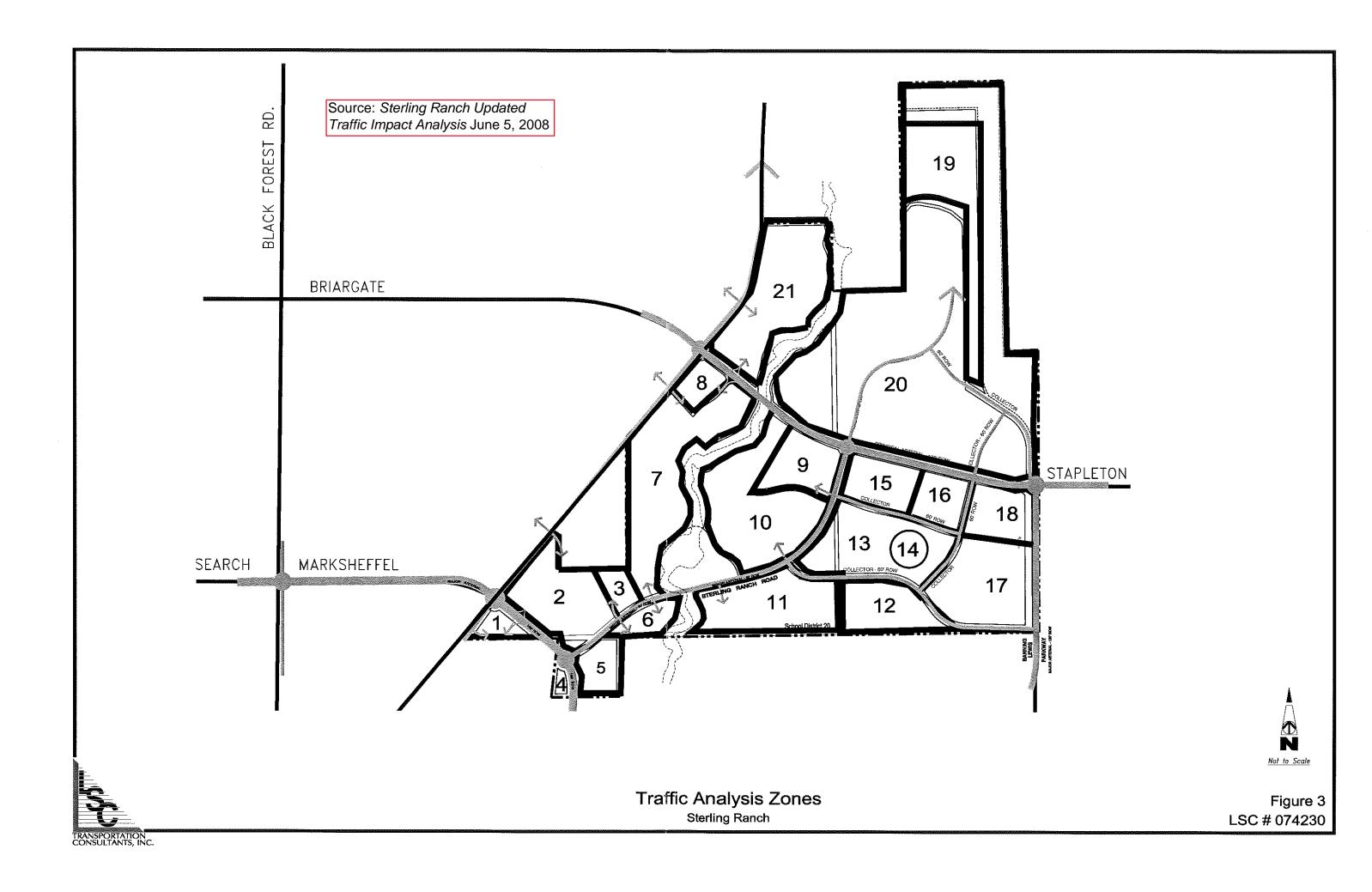
Tenneportation Conscittants, INC.



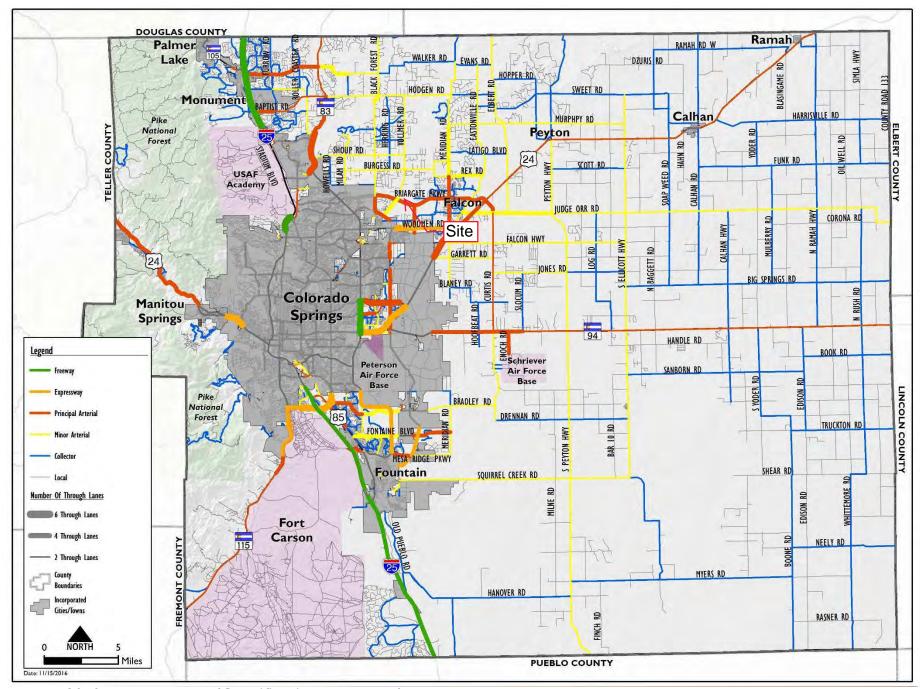
improvements for each segment.

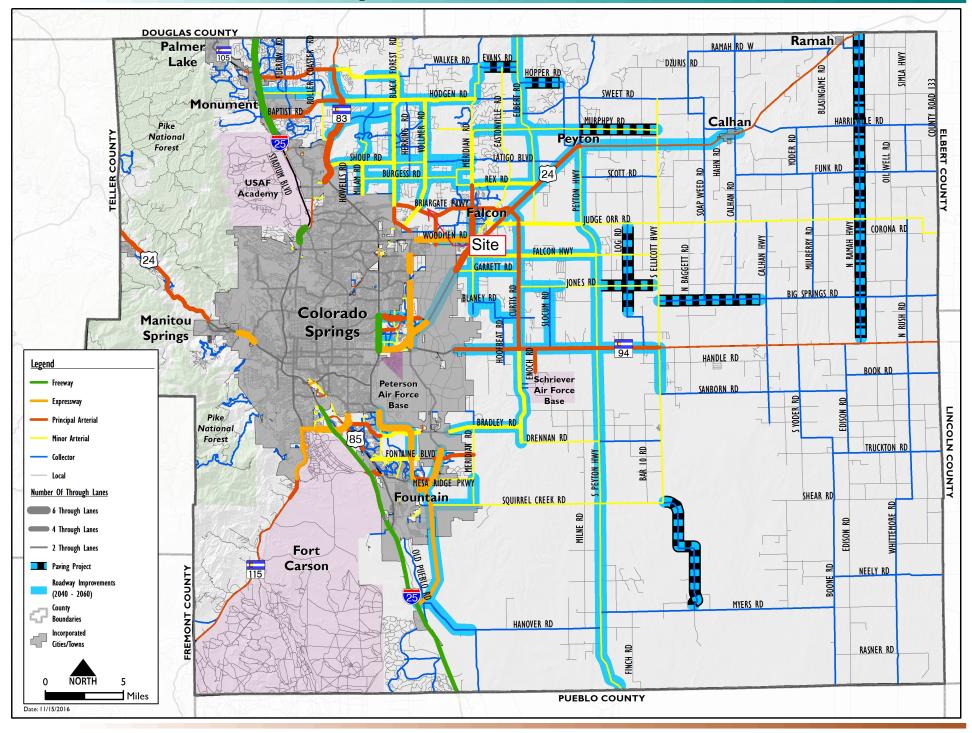

*See Table 4 for recommended roadway sgement

Roadway Improvement
Segments*
Homestead North Phase 1 (LSC #204380)


Figure 13

(See Sterling Ranch Filing 2 Fig. 23 redlines.)


TAZ Map


MTCP Maps

Map 14: 2040 Roadway Plan (Classification and Lanes)

Traffic Counts

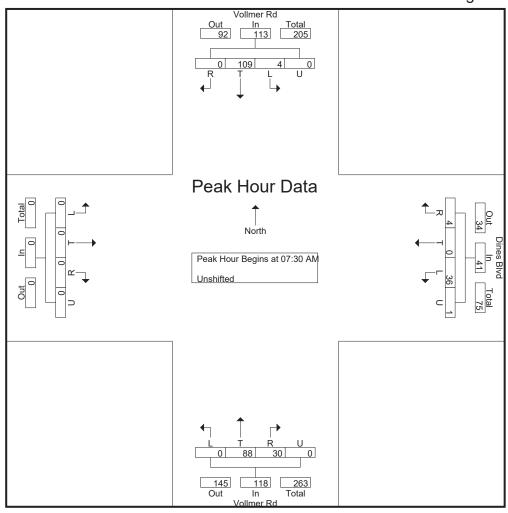
545 E Pikes Peak Ave, Suite 210 Colorado Springs, CO 80905 719-633-2868

File Name: Vollmer Rd - Dines Blvd AM

Site Code : 00204380 Start Date : 5/27/2020

Page No : 1

Groups Printed-Unshifted


		\	/ollmer	Rd			D	ines Bl	vd			V	ollmer	Rd							
		S	outhbou	und			V	/estbou	ınd			N	orthbou	und				Eastbou	nd		
Start Time	L	т	R	U	App. Total	L	Т	R	U	App. Total	L	Т	R	U	App. Total	L	т	R	U	App. Total	Int. Total
06:30 AM	1	30	0	0	31	2	0	1	0	3	0	4	3	0	7	0	0	0	0	0	41
06:45 AM	1	28	0	0	29	3	0	2	0	5	0	11	2	0	13	0	0	0	0	0	47
Total	2	58	0	0	60	5	0	3	0	8	0	15	5	0	20	0	0	0	0	0	88
07:00 AM	1	24	0	0	25	8	0	3	0	11	0	19	3	0	22	0	0	0	0	0	58
07:15 AM	1	29	0	0	30	4	0	0	0	4	0	26	5	0	31	0	0	0	0	0	65
07:30 AM	0	27	0	0	27	9	0	1	0	10	0	21	8	0	29	0	0	0	0	0	66
07:45 AM	0	33	0	0	33	8	0	3	1	12	0	21	6	0	27	0	0	0	0	0	72
Total	2	113	0	0	115	29	0	7	1	37	0	87	22	0	109	0	0	0	0	0	261
08:00 AM	1	25	0	0	26	7	0	0	0	7	0	23	6	0	29	0	0	0	0	0	62
08:15 AM	3	24	0	0	27	12	0	0	0	12	0	23	10	0	33	0	0	0	0	0	72
Grand Total	8	220	0	0	228	53	0	10	1	64	0	148	43	0	191	0	0	0	0	0	483
Apprch %	3.5	96.5	0	0		82.8	0	15.6	1.6		0	77.5	22.5	0		0	0	0	0		
Total %	17	45.5	0	0	47.2	11	0	2.1	0.2	13.3	0	30.6	8.9	0	39.5	0	0	0	0	0	

545 E Pikes Peak Ave, Suite 210 Colorado Springs, CO 80905 719-633-2868

File Name: Vollmer Rd - Dines Blvd AM

Site Code : 00204380 Start Date : 5/27/2020

Page No : 3

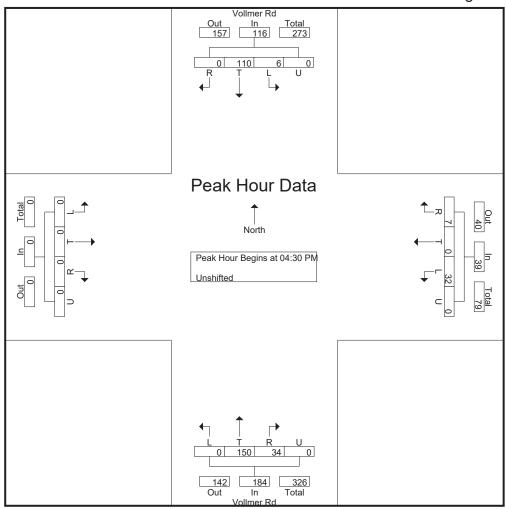
545 E Pikes Peak Ave, Suite 210 Colorado Springs, CO 80905 719-633-2868

File Name: Vollmer Rd - Dines Blvd PM

Site Code : 00204380 Start Date : 5/27/2020

Page No : 1

Groups Printed-Unshifted


		V	ollmer l	Rd								V	ollmer	Rd							
		S	outhbou	ınd			W	estbou	ınd			No	orthbou	und			E	Eastbou	nd		
Start Time	L	Т	R	U	App. Total	L	т	R	U	App. Total	L	Т	R	U	App. Total	L	т	R	U	App. Total	Int. Total
04:00 PM	0	21	0	0	21	6	0	0	0	6	0	39	8	0	47	0	0	0	0	0	74
04:15 PM	1	29	0	0	30	9	0	1	1	11	0	30	9	0	39	0	0	0	0	0	80
04:30 PM	3	28	0	0	31	8	0	3	0	11	0	50	11	0	61	0	0	0	0	0	103
04:45 PM	0	23	0	0	23	4	0	0	0	4	0	35	12	0	47	0	0	0	0	0	74
Total	4	101	0	0	105	27	0	4	1	32	0	154	40	0	194	0	0	0	0	0	331
05:00 PM	2	26	0	0	28	13	0	0	0	13	0	31	4	0	35	0	0	0	0	0	76
05:15 PM	1	33	0	0	34	7	0	4	0	11	0	34	7	0	41	0	0	0	0	0	86
05:30 PM	1	20	0	0	21	7	0	2	0	9	0	43	13	0	56	0	0	0	0	0	86
05:45 PM	0	13	0	0	13	2	0	2	0	4	0	33	8	0	41	0	0	0	0	0	58
Total	4	92	0	0	96	29	0	8	0	37	0	141	32	0	173	0	0	0	0	0	306
Grand Total	8	193	0	0	201	56	0	12	1	69	0	295	72	0	367	0	0	0	0	0	637
Apprch %	4	96	0	0		81.2	0	17.4	1.4		0	80.4	19.6	0		0	0	0	0		
Total %	1.3	30.3	0	0	31.6	8.8	0	1.9	0.2	10.8	0	46.3	11.3	0	57.6	0	0	0	0	0	

545 E Pikes Peak Ave, Suite 210 Colorado Springs, CO 80905 719-633-2868

File Name: Vollmer Rd - Dines Blvd PM

Site Code : 00204380 Start Date : 5/27/2020

Page No : 3

Levels of Service

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX	NDT	TIDIX	JDL Š	<u>361</u>
Traffic Vol, veh/h	10	3	260	3	2	283
Future Vol, veh/h	10	3	260	3	2	283
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	None
Storage Length	_	235	_	235	385	-
Veh in Median Storage		200	0	200	-	0
Grade, %	0	<u>-</u>	0	_	_	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	12	4	306	4	2	333
MINITE FIOW	IZ	4	300	4	Z	333
Major/Minor	Minor1	N	Major1	ı	Major2	
Conflicting Flow All	643	306	0	0	310	0
Stage 1	306	_	-	-	-	-
Stage 2	337	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	-	-	2.218	_
Pot Cap-1 Maneuver	438	734	-	-	1250	-
Stage 1	747	-	_	_	-	_
Stage 2	723	_	_	_	_	_
Platoon blocked, %	120		_	_		_
Mov Cap-1 Maneuver	437	734	_	_	1250	_
Mov Cap-2 Maneuver	437	- 104	_	_	1200	_
Stage 1	747	_			_	
Stage 2	722	_	-	-	_	_
Staye 2	122	-	-	_	_	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		0.1	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1V	VRI n2	SBL
Capacity (veh/h)	ıı	-	-			1250
HCM Lane V/C Ratio				0.027		
		-	-	13.5	9.9	7.9
HCM Control Delay (s) HCM Lane LOS		-	-	13.5 B	9.9 A	7.9 A
HCM 95th %tile Q(veh	\	-	-	0.1	0	0
HOM SOM WHILE CALACH)	_	-	U. I	U	U

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	↑	7	ሻ	<u> </u>
Traffic Vol, veh/h	7	2	354	12	7	281
Future Vol, veh/h	7	2	354	12	7	281
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-		-	None
Storage Length	_	235	_	235	385	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	2	416	14	8	331
WWW.CT IOW		_	110		J	001
		_		_		
	Minor1		Major1		Major2	
Conflicting Flow All	763	416	0	0	430	0
Stage 1	416	-	-	-	-	-
Stage 2	347	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	372	637	-	-	1129	-
Stage 1	666	-	-	-	-	-
Stage 2	716	_	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	369	637	-	-	1129	-
Mov Cap-2 Maneuver	369	_	-	_	-	-
Stage 1	666	_	_	_	_	_
Stage 2	711	_	_	_	_	_
olago 2	,					
Approach	WB		NB		SB	
HCM Control Delay, s	14		0		0.2	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1V	VRI n2	SBL
Capacity (veh/h)			-	369	637	1129
HCM Lane V/C Ratio		-		0.022		
		-		15	10.7	8.2
HCM Control Delay (s) HCM Lane LOS		=	-	15 C	10.7 B	6.2 A
	١	-	-	0.1	0	
HCM 95th %tile Q(veh))	-	-	U. I	U	0

	۶	→	•	•	←	•	4	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† †	7	1,1	† †	7	7	^	7	7	^	7
Traffic Volume (vph)	63	835	58	340	1471	69	89	133	128	64	311	131
Future Volume (vph)	63	835	58	340	1471	69	89	133	128	64	311	131
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	10.0	53.0	53.0	22.0	65.0	65.0	15.0	30.0	30.0	15.0	30.0	30.0
Total Split (%)	8.3%	44.2%	44.2%	18.3%	54.2%	54.2%	12.5%	25.0%	25.0%	12.5%	25.0%	25.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	None	None	None	None	None
Act Effct Green (s)	44.3	38.9	38.9	15.4	52.4	52.4	22.7	15.9	15.9	22.0	15.5	15.5
Actuated g/C Ratio	0.46	0.40	0.40	0.16	0.54	0.54	0.24	0.16	0.16	0.23	0.16	0.16
v/c Ratio	0.38	0.62	0.08	0.65	0.80	0.08	0.35	0.24	0.35	0.20	0.57	0.36
Control Delay	17.7	25.7	0.2	48.0	24.2	1.1	32.9	40.6	7.4	30.4	45.0	7.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.7	25.7	0.2	48.0	24.2	1.1	32.9	40.6	7.4	30.4	45.0	7.9
LOS	В	С	Α	D	С	Α	С	D	Α	С	D	Α
Approach Delay		23.6			27.6			26.5			33.5	_
Approach LOS		С			С			С			С	

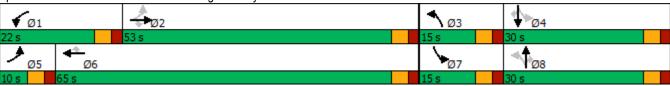
Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 96.5

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Intersection Capacity Utilization 75.0%

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 27.3

Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Vollmer Rd & Briargate Pkwy

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4	7		4	
Traffic Vol, veh/h	0	0	5	62	0	5	2	231	24	1	406	2
Future Vol, veh/h	0	0	5	62	0	5	2	231	24	1	406	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	<u>-</u>	None	-	-	None	-	-	None	_	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	_	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	5	65	0	5	2	243	25	1	427	2
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	692	702	428	680	678	243	429	0	0	268	0	0
Stage 1	430	430	-	247	247	-	-	-	-	-	-	-
Stage 2	262	272	-	433	431	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	358	362	627	365	374	796	1130	-	-	1296	-	-
Stage 1	603	583	-	757	702	-	-	-	-	-	-	-
Stage 2	743	685	-	601	583	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	355	361	627	361	373	796	1130	-	-	1296	-	-
Mov Cap-2 Maneuver	355	361	-	361	373	-	-	-	-	-	-	-
Stage 1	602	582	-	755	701	-	-	-	-	-	-	-
Stage 2	737	684	-	595	582	-	-	-	-	-	-	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.8			16.8			0.1			0		
HCM LOS	В			С								
Minor Lane/Major Mvn	nt _	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1130	-	-	627	376	1296	-	-			
HCM Lane V/C Ratio		0.002	-	-	0.008			-	-			
HCM Control Delay (s)		8.2	0	-	10.8	16.8	7.8	0	-			
HCM Lane LOS		Α	A	-	В	С	A	A	-			
HCM 95th %tile Q(veh)	0	-	-	0	0.7	0	-	-			
	,											

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		^	7	ሻ	† †
Traffic Vol, veh/h	34	0	257	8	0	473
Future Vol, veh/h	34	0	257	8	0	473
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-		-	None
Storage Length	0	-	_	155	205	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	0	271	8	0	498
NA=:==/NA:===	\ 1 : 1		1-11		4-:0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	520	136	0	0	279	0
Stage 1	271	-	-	-	-	-
Stage 2	249		-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	486	888	-	-	1281	-
Stage 1	750	-	-	-	-	-
Stage 2	769	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	486	888	-	-	1281	-
Mov Cap-2 Maneuver	486	-	-	-	-	-
Stage 1	750	-	-	-	-	-
Stage 2	769	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13		0		0	
HCM LOS	В		U		U	
TIOW LOS	D					
Minor Lane/Major Mvm	<u>it</u>	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	486	1281	-
HCM Lane V/C Ratio		-	-	0.074	-	-
HCM Control Delay (s)		-	-	13	0	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh)		-	-	0.2	0	-

Interception												
Intersection Int Delay, s/veh	0.5											
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7			7			7			7
Traffic Vol, veh/h	0	988	39	62	1880	3	0	0	58	0	0	0
Future Vol, veh/h	0	988	39	62	1880	3	0	0	58	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	155	100	-	155	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1040	41	65	1979	3	0	0	61	0	0	0
Major/Minor Ma	ajor1		N	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	<u> </u>	0	0	1081	0	0	-	_	520	-	_	990
Stage 1	_	-	-	1001	-	-	_	_	520	_	_	-
Stage 2	_	_		_	_	_	_	_		_	_	_
Critical Hdwy	_			4.14	_	_	_	_	6.94	_	_	6.94
Critical Hdwy Stg 1	_	_		T. 1 T	_		_	_	0.04	_	_	0.34
Critical Hdwy Stg 2	_			_	_	_	_	_		_	_	
Follow-up Hdwy	_	_	_	2.22	_	<u>-</u>	_	_	3.32	_	_	3.32
Pot Cap-1 Maneuver	0	_	_	641	_	_	0	0	501	0	0	245
Stage 1	0	_	_	-	_	<u>-</u>	0	0	-	0	0	
Stage 2	0	_	_	_	_	_	0	0	_	0	0	_
Platoon blocked, %	U	_	_		_	<u>-</u>		U			J	
Mov Cap-1 Maneuver	_		_	641	_	_	_	_	501	_	_	245
Mov Cap-1 Maneuver	_	_	_	-	_	_	_	_	-	_	_	
Stage 1	_	_	_	_	_	_	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_	_	_	_	_	_	_
Clago Z												
Approach	ED			WD			ND			CD		
Approach	EB			WB			NB 12.2			SB		
HCM LOS	0			0.4			13.2			0		
HCM LOS							В			Α		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		501	-	-	641	-	-	-				
HCM Lane V/C Ratio		0.122	-	-	0.102	-	-	-				
HCM Control Delay (s)		13.2	-	-	11.3	-	-	0				
HCM Lane LOS		В	-	-	В	-	-	Α				
HCM 95th %tile Q(veh)		0.4	-	-	0.3	-	-	-				

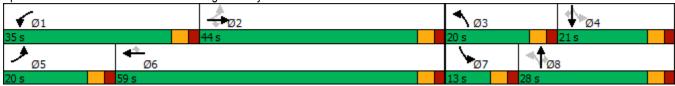
	ᄼ	→	•	•	←	•	4	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† †	7	1,1	† †	7	7	^	7	7	^	7
Traffic Volume (vph)	205	1447	108	324	1204	81	206	406	368	88	214	113
Future Volume (vph)	205	1447	108	324	1204	81	206	406	368	88	214	113
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	20.0	44.0	44.0	35.0	59.0	59.0	20.0	28.0	28.0	13.0	21.0	21.0
Total Split (%)	16.7%	36.7%	36.7%	29.2%	49.2%	49.2%	16.7%	23.3%	23.3%	10.8%	17.5%	17.5%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	None
Act Effct Green (s)	63.9	50.7	50.7	16.7	54.2	54.2	32.0	21.8	21.8	20.7	13.0	13.0
Actuated g/C Ratio	0.56	0.44	0.44	0.15	0.47	0.47	0.28	0.19	0.19	0.18	0.11	0.11
v/c Ratio	0.76	0.94	0.14	0.68	0.76	0.10	0.66	0.61	0.63	0.41	0.56	0.33
Control Delay	40.9	44.6	0.4	53.9	29.3	0.2	44.5	47.9	9.2	37.9	54.0	2.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.9	44.6	0.4	53.9	29.3	0.2	44.5	47.9	9.2	37.9	54.0	2.5
LOS	D	D	Α	D	С	Α	D	D	Α	D	D	Α
Approach Delay		41.4			32.8			32.5			36.6	
Approach LOS		D			С			С			D	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 114.4

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.94
Intersection Signal Delay: 36.2
Intersection Capacity Utilization 83.2%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Vollmer Rd & Briargate Pkwy

Intersection												
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ર્ન	7		4	
Traffic Vol, veh/h	0	0	2	42	0	3	4	573	83	6	351	2
Future Vol, veh/h	0	0	2	42	0	3	4	573	83	6	351	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	·-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	2	44	0	3	4	603	87	6	369	2
Major/Minor	Minor2			Minor1			Major1		<u> </u>	Major2		
Conflicting Flow All	1038	1080	370	994	994	603	371	0	0	690	0	0
Stage 1	382	382	-	611	611	-	-	-	-	-	-	-
Stage 2	656	698	-	383	383	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	209	218	676	224	245	499	1188	-	-	905	-	-
Stage 1	640	613	-	481	484	-	-	-	-	-	-	-
Stage 2	454	442	-	640	612	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	205	215	676	221	242	499	1188	-	-	905	-	-
Mov Cap-2 Maneuver	205	215	-	221	242	-	-	-	-	-	-	-
Stage 1	636	608	-	478	481	-	-	-	-	-	-	-
Stage 2	448	439	-	633	607	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.3			24.7			0			0.2		
HCM LOS	В			С								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1188	-	-	676	230	905	-	-			
HCM Lane V/C Ratio		0.004	-	-	0.003	0.206	0.007	-	-			
HCM Control Delay (s)		8	0	-	10.3	24.7	9	0	-			
HCM Lane LOS		Α	Α	-	В	С	Α	Α	-			
HCM 95th %tile Q(veh)	0	-	-	0	0.8	0	-	-			
,												

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		^	7	*	^
Traffic Vol, veh/h	21	0	660	31	1	394
Future Vol, veh/h	21	0	660	31	1	394
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	155	205	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	-	0	_	_	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	0	695	33	1	415
					•	
		_				
	Minor1		Major1		Major2	
Conflicting Flow All	905	348	0	0	728	0
Stage 1	695	-	-	-	-	-
Stage 2	210		-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	276	648	-	-	871	-
Stage 1	456	-	-	-	-	-
Stage 2	805	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	276	648	-	-	871	-
Mov Cap-2 Maneuver	276	-	-	-	-	-
Stage 1	456	-	-	-	-	-
Stage 2	804	-	-	-	-	-
, and the second						
Annragah	WD		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	19.2		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	276	871	-
HCM Lane V/C Ratio		_	-		0.001	-
HCM Control Delay (s)		-	-	19.2	9.1	-
HCM Lane LOS		-	-	С	Α	-
HCM 95th %tile Q(veh))	-	-	0.3	0	-

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^	7			7			7
Traffic Vol, veh/h	0	1786	117	153	1609	4	0	0	140	0	0	0
Future Vol, veh/h	0	1786	117	153	1609	4	0	0	140	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	155	100	-	155	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1880	123	161	1694	4	0	0	147	0	0	0
Major/Minor M	1ajor1		1	Major2		1	Minor1		<u> </u>	/linor2		
Conflicting Flow All	_	0	0	2003	0	0	-	-	940	-	-	847
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	4.14	-	-	-	-	6.94	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	2.22	-	-	-	-	3.32	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	282	-	-	0	0	265	0	0	305
Stage 1	0	-	-	-	-	-	0	0	-	0	0	-
Stage 2	0	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	282	-	-	-	-	265	-	-	305
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
,												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			2.9			34.4			0		
HCM LOS							D			A		
Minor Lane/Major Mvmt	: 1	NBLn1	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		265	-	-	282	-	-	-				
HCM Lane V/C Ratio		0.556	-	-	0.571	-	_	-				
HCM Control Delay (s)		34.4	-	-	33.5	-	_	0				
HCM Lane LOS		D	-	-	D	-	-	Ā				
HCM 95th %tile Q(veh)		3.1	-	-	3.3	-	-	-				

Intersection												
Int Delay, s/veh	7.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.			ર્ન			4			4	
Traffic Vol, veh/h	18	0	5	0	0	0	13	0	0	0	0	55
Future Vol, veh/h	18	0	5	0	0	0	13	0	0	0	0	55
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	0	6	0	0	0	15	0	0	0	0	65
Major/Minor N	Major1		1	Major2			Minor1			Minor2		
Conflicting Flow All	1	0	0	6	0	0	79	46	3	46	49	1
Stage 1	-	-	-	-	-	-	45	45	-	1	1	-
Stage 2	-	-	-	-	-	-	34	1	-	45	48	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1622	-	-	1615	-	0	910	846	1081	955	843	1084
Stage 1	-	-	-	-	-	0	969	857	-	1022	895	-
Stage 2	-	-	-	-	-	0	982	895	-	969	855	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	1622	-	-	1615	-	-	847	835	1081	945	832	1084
Mov Cap-2 Maneuver	-	-	-	-	-	-	847	835	-	945	832	-
Stage 1	-	-	-	-	-	-	956	846	-	1009	895	-
Stage 2	-	-	-	-	-	-	923	895	-	956	844	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	5.7			0			9.3			8.5		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	it N	NBLn1	EBL	EBT	EBR	WBL	WBT:	SBLn1				
Capacity (veh/h)		847	1622	-	-	1615	_	1084				
HCM Lane V/C Ratio		0.018		-	-	_	-	0.06				
HCM Control Delay (s)		9.3	7.2	-	-	0	_	8.5				
HCM Lane LOS		Α	Α	-	-	A	-	Α				
HCM 95th %tile Q(veh)		0.1	0	-	-	0	_	0.2				

Short-Term Total Traffic Synchro 10 Report
AM Peak Hour Page 1

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	↑	7	ሻ	<u> </u>
Traffic Vol, veh/h	63	6	266	20	3	300
Future Vol, veh/h	63	6	266	20	3	300
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-		-	None
Storage Length	_	235	_	235	385	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	<u>-</u>	0	_	_	0
Peak Hour Factor	85	85	85	85	85	85
	2	2	2	2	2	2
Heavy Vehicles, %	74	7	313	24	4	
Mvmt Flow	74	1	313	24	4	353
Major/Minor I	Minor1	N	//ajor1	ı	Major2	
Conflicting Flow All	674	313	0	0	337	0
Stage 1	313	-	-	-	-	-
Stage 2	361	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	-	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3 318	_	_	2.218	_
Pot Cap-1 Maneuver	420	727	_	_	1222	_
Stage 1	741	-	_	_	-	_
Stage 2	705	_	_	_	_	_
Platoon blocked, %	700		_	_		_
Mov Cap-1 Maneuver	419	727	_		1222	_
Mov Cap-1 Maneuver	419	- 121	_	-	1222	-
•	741		-	_		-
Stage 1		-	-	-	-	-
Stage 2	703	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.9		0		0.1	
HCM LOS	В					
NA: 1 (NA : NA	,	NDT	NDDV	MDI AM	VDI O	ODI
Minor Lane/Major Mvm	nt	NBT	NRKA	VBLn1V		SBL
Capacity (veh/h)		-	-	419	727	1222
HCM Lane V/C Ratio		-	-	0.177		0.003
HCM Control Delay (s)		-	-	15.4	10	8
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)		-	-	0.6	0	0

Short-Term Total Traffic Synchro 10 Report AM Peak Hour Page 2

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	וטייי	1 301	וטוז	ODL	- 6 1
Traffic Vol, veh/h	17	9	266	6	3	286
Future Vol, veh/h	17	9	266	6	3	286
	0	0	200	0	0	200
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	11	313	7	4	336
Major/Minor	Minor1	N	Major1	N	Major2	
Conflicting Flow All	661	317	0	0	320	0
	317			U	320	
Stage 1		-	-	-	-	-
Stage 2	344	-	-	-	4.40	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-		-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	427	724	-	-	1240	-
Stage 1	738	-	-	-	-	-
Stage 2	718	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	425	724	-	-	1240	-
Mov Cap-2 Maneuver	425	-	-	-	-	-
Stage 1	738	-	-	-	-	-
Stage 2	715	_	_	_	_	_
	\ 					
Approach	WB		NB		SB	
HCM Control Delay, s	12.7		0		0.1	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NRDV	VBLn1	SBL	SBT
	IL.					
Capacity (veh/h)		-	-		1240	-
HCM Lane V/C Ratio		-		0.062		-
HCM Control Delay (s)		-	-		7.9	0
HCM Lane LOS	,	-	-	В	A	Α
HCM 95th %tile Q(veh)	-	-	0.2	0	-

Short-Term Total Traffic Synchro 10 Report AM Peak Hour Page 3

Intersection												
Int Delay, s/veh	6.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.			ર્ન			4			4	
Traffic Vol, veh/h	62	0	19	0	0	0	9	0	0	0	0	36
Future Vol, veh/h	62	0	19	0	0	0	9	0	0	0	0	36
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	0	22	0	0	0	11	0	0	0	0	42
Major/Minor N	Major1		ا	Major2		ا	Minor1		ا	Minor2		
Conflicting Flow All	1	0	0	22	0	0	179	158	11	158	169	1
Stage 1	-	-	-	-	-	-	157	157	-	1	1	-
Stage 2	-	-	-	-	-	-	22	1	-	157	168	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1622	-	-	1593	-	0	783	734	1070	808	724	1084
Stage 1	-	-	-	-	-	0	845	768	-	1022	895	-
Stage 2	-	-	-	-	-	0	996	895	-	845	759	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	1622	-	-	1593	-	-	727	701	1070	781	691	1084
Mov Cap-2 Maneuver	-	-	-	-	-	-	727	701	-	781	691	-
Stage 1	-	-	-	-	-	-	807	733	-	976	895	-
Stage 2	-	-	-	-	-	-	957	895	-	807	725	-
_												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	5.6			0			10			8.5		
HCM LOS							В			Α		
Minor Lane/Major Mvm	it N	NBLn1	EBL	EBT	EBR	WBL	WBT	SBLn1				
Capacity (veh/h)		727	1622	-	_	1593	_					
HCM Lane V/C Ratio		0.015		-	-	-		0.039				
HCM Control Delay (s)		10	7.3	-	_	0	_	8.5				
HCM Lane LOS		В	A	_	_	Ā	_	A				
HCM 95th %tile Q(veh)		0	0.1	-	_	0	_	0.1				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												

Intersection							
Int Delay, s/veh	1.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	WDL 1	VVDK	IND I	INDIK	SDL Š	<u>361</u>	
Traffic Vol, veh/h	41	r 4	T 374	71	10	T 292	
Future Vol, veh/h	41	4	374	71	10	292	
		0	0	0	0	292	
Conflicting Peds, #/hr Sign Control		Stop	Free	Free	Free	Free	
RT Channelized	Stop -			None	riee -		
	-	235	-	235	385	NOHE -	
Storage Length		235	0	235	300	0	
Veh in Median Storag							
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	85	85	85	85	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	48	5	440	84	12	344	
Major/Minor	Minor1	N	Major1	1	Major2		
Conflicting Flow All	808	440	0	0	524	0	
Stage 1	440	-	-	_	-	-	
Stage 2	368	_	_	-	_	-	
Critical Hdwy	6.42	6.22	_	_	4.12	_	
Critical Hdwy Stg 1	5.42	-	_	_	-	-	
Critical Hdwy Stg 2	5.42	_	-	-	_	_	
Follow-up Hdwy	3.518		_	_	2.218	_	
Pot Cap-1 Maneuver		617	_	_	1043	_	
Stage 1	649	-	_	_	-	_	
Stage 2	700	_	_	_	_	_	
Platoon blocked, %	700	_	_	_	_		
Mov Cap-1 Maneuver	r 346	617			1043	-	
Mov Cap-1 Maneuver		-	-	_	1043	_	
•					-	_	
Stage 1	649	-	_	-	-	-	
Stage 2	692	-			-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	s 16.5		0		0.3		
HCM LOS	С						
Minor Long/Major Ma	no t	NDT	NDDV	VDL 4V	MDL O	CDI	Į
Minor Lane/Major Mv	mt	NBT		VBLn1V		SBL	
Capacity (veh/h)		-	-	• • •		1043	
HCM Lane V/C Ratio		-			0.008		
HCM Control Delay (s	3)	-	-		10.9	8.5	
110141 100				,,	1)	Λ	
HCM Lane LOS HCM 95th %tile Q(ve)		-	-	0.5	B 0	A 0	

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ.			4
Traffic Vol, veh/h	11	6	358	20	10	291
Future Vol, veh/h	11	6	358	20	10	291
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-	None	-	
Storage Length	0	_	-	-	_	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	7	421	24	12	342
mining i low	.0					012
	Minor1		Major1		Major2	
Conflicting Flow All	799	433	0	0	445	0
Stage 1	433	-	-	-	-	-
Stage 2	366	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		-	-	2.218	-
Pot Cap-1 Maneuver	355	623	-	-	1115	-
Stage 1	654	-	-	-	-	-
Stage 2	702	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	350	623	-	-	1115	-
Mov Cap-2 Maneuver	350	-	-	-	-	-
Stage 1	654	_	-	-	-	-
Stage 2	693	-	-	-	-	-
Ŭ						
A	WD		ND		OD.	
Approach	WB		NB		SB	
HCM Control Delay, s	14.1		0		0.3	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	414	1115	-
HCM Lane V/C Ratio		_	-	0.048		-
HCM Control Delay (s)		-	-		8.3	0
HCM Lane LOS		-	-	В	Α	A
HCM 95th %tile Q(veh)	-	-	0.2	0	-
	,					

Short-Term Total Traffic Synchro 10 Report PM Peak Hour Page 3

	•	→	•	•	←	•	1	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ř	† †	7	1,1	^	7	ħ	^	7	ň	† †	7
Traffic Volume (vph)	69	835	58	373	1488	69	89	146	128	81	321	133
Future Volume (vph)	69	835	58	373	1488	69	89	146	128	81	321	133
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	10.0	53.0	53.0	22.0	65.0	65.0	15.0	30.0	30.0	15.0	30.0	30.0
Total Split (%)	8.3%	44.2%	44.2%	18.3%	54.2%	54.2%	12.5%	25.0%	25.0%	12.5%	25.0%	25.0%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	None	None	None	None	None
Act Effct Green (s)	44.8	39.4	39.4	16.1	53.7	53.7	22.9	16.0	16.0	22.7	16.0	16.0
Actuated g/C Ratio	0.46	0.40	0.40	0.16	0.55	0.55	0.23	0.16	0.16	0.23	0.16	0.16
v/c Ratio	0.43	0.62	0.08	0.70	0.81	0.08	0.35	0.27	0.35	0.26	0.59	0.36
Control Delay	20.0	26.1	0.2	49.9	24.6	1.2	33.3	41.2	7.4	31.4	45.6	8.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.0	26.1	0.2	49.9	24.6	1.2	33.3	41.2	7.4	31.4	45.6	8.1
LOS	В	С	Α	D	С	Α	С	D	Α	С	D	Α
Approach Delay		24.1			28.6			27.3			34.1	
Approach LOS		С			С			С			С	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 98.2

Natural Cycle: 70


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.81 Intersection Signal Delay: 28.1 Intersection Capacity Utilization 75.8%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Vollmer Rd & Briargate Pkwy

2040 Total Traffic Synchro 10 Report
AM Peak Hour Page 1

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	7		4	
Traffic Vol, veh/h	0	0	5	62	0	5	2	235	24	1	407	2
Future Vol, veh/h	0	0	5	62	0	5	2	235	24	1	407	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	5	65	0	5	2	247	25	1	428	2
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	697	707	429	685	683	247	430	0	0	272	0	0
Stage 1	431	431	-	251	251		-	-	-		-	-
Stage 2	266	276	-	434	432	_	-	_	_	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	-	4.12	-	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		-	_	-	_	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518		3.318			3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	356	360	626	362	372	792	1129	-	-	1291	-	-
Stage 1	603	583	-	753	699	-	-	-	-	-	-	-
Stage 2	739	682	-	600	582	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	353	359	626	358	371	792	1129	-	-	1291	-	-
Mov Cap-2 Maneuver	353	359	-	358	371	-	-	-	-	-	-	-
Stage 1	602	582	-	751	698	-	-	-	-	-	-	-
Stage 2	733	681	-	594	581	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.8			16.9			0.1			0		
HCM LOS	В			C			7 . 1					
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1129	_	_	626	373	1291	_	_			
HCM Lane V/C Ratio		0.002	-	_		0.189		_	_			
HCM Control Delay (s)		8.2	0	_	10.8	16.9	7.8	0	_			
HCM Lane LOS		A	A	_	В	C	A	A	_			
HCM 95th %tile Q(veh)	0	-	-	0	0.7	0	-	-			
/	,											

2040 Total Traffic Synchro 10 Report AM Peak Hour Page 2

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥#		^	7	ሻ	^
Traffic Vol, veh/h	62	3	258	27	1	473
Future Vol, veh/h	62	3	258	27	1	473
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	155	205	-
Veh in Median Storage,		_	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	65	3	272	28	1	498
INIVITIL FIOW	05	3	212	20	ı	490
Major/Minor N	/linor1	N	Major1	ľ	Major2	
Conflicting Flow All	523	136	0	0	300	0
Stage 1	272	-	-	-	-	-
Stage 2	251	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	_	-	-	-	_
Critical Hdwy Stg 2	5.84	-	_	-	_	-
Follow-up Hdwy	3.52	3.32	_	_	2.22	-
Pot Cap-1 Maneuver	484	888	_	_	1258	_
Stage 1	749	-	_	_	-	_
Stage 2	768	_	_	_	_	_
Platoon blocked, %	700		_	_		_
Mov Cap-1 Maneuver	484	888	_	_	1258	_
Mov Cap-2 Maneuver	484	-	_	_	1200	_
Stage 1	749	_	-	_	_	_
•	767	-	_	-	_	-
Stage 2	101	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.5		0		0	
HCM LOS	В					
Mineral and /Marin Ma		NDT	MDDV	MDL 4	ODI	OPT
Minor Lane/Major Mvmt	ι	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	494	1258	-
HCM Lane V/C Ratio		-	-	0.139		-
HCM Control Delay (s)		-	-		7.9	-
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	B 0.5	A 0	-

2040 Total Traffic Synchro 10 Report AM Peak Hour Page 3

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^	7			7			7
Traffic Vol, veh/h	0	1005	39	62	1880	11	0	0	58	0	0	51
Future Vol, veh/h	0	1005	39	62	1880	11	0	0	58	0	0	51
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	155	100	-	155	-	-	0	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1058	41	65	1979	12	0	0	61	0	0	54
Major/Minor M	1ajor1		ľ	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	-	0	0	1099	0	0	-	-	529	-	-	990
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	4.14	-	-	-	-	6.94	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	2.22	-	-	-	-	3.32	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	631	-	-	0	0	494	0	0	245
Stage 1	0	-	-	-	-	-	0	0	-	0	0	-
Stage 2	0	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	631	-	-	-	-	494	-	-	245
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.4			13.3			23.8		
HCM LOS							В			С		
Minor Lane/Major Mvmt	: N	NBLn1	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		494	-	-	631	-	-	245				
HCM Lane V/C Ratio		0.124	-	-	0.103	-	-	0.219				
HCM Control Delay (s)		13.3	-	-		-	-	23.8				
HCM Lane LOS		В	-	-	В	-	-	С				
HCM 95th %tile Q(veh)		0.4	-	-	0.3	-	-	0.8				

2040 Total Traffic Synchro 10 Report AM Peak Hour Page 4

1: Vollmer Rd & Briargate Pkwy

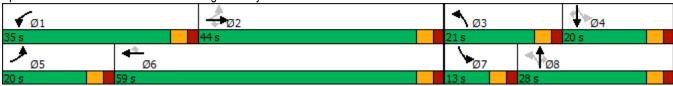
	•	→	•	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	77	^	7	7	^	7	7	^	7
Traffic Volume (vph)	230	1447	108	346	1216	82	206	459	368	94	223	115
Future Volume (vph)	230	1447	108	346	1216	82	206	459	368	94	223	115
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	20.0	44.0	44.0	35.0	59.0	59.0	21.0	28.0	28.0	13.0	20.0	20.0
Total Split (%)	16.7%	36.7%	36.7%	29.2%	49.2%	49.2%	17.5%	23.3%	23.3%	10.8%	16.7%	16.7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag									
Lead-Lag Optimize?	Yes	Yes	Yes									
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	None
Act Effct Green (s)	64.8	50.6	50.6	17.7	54.1	54.1	33.4	20.8	20.8	21.7	13.9	13.9
Actuated g/C Ratio	0.55	0.43	0.43	0.15	0.46	0.46	0.29	0.18	0.18	0.19	0.12	0.12
v/c Ratio	0.84	0.96	0.14	0.70	0.78	0.11	0.66	0.74	0.65	0.50	0.56	0.33
Control Delay	53.2	49.5	0.4	54.8	31.3	0.3	44.2	53.5	9.7	41.7	54.5	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	53.2	49.5	0.4	54.8	31.3	0.3	44.2	53.5	9.7	41.7	54.5	2.4
LOS	D	D	Α	D	C	Α	D	D	Α	D	D	Α
Approach Delay		47.0			34.7			35.8			37.9	
Approach LOS		D			С			D			D	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 116.9

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.96
Intersection Signal Delay: 39.6
Intersection Capacity Utilization 84.4%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Vollmer Rd & Briargate Pkwy

2040 Total Traffic Synchro 10 Report PM Peak Hour Page 1

Intersection												
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	7		4	
Traffic Vol, veh/h	0	0	2	42	0	3	4	575	83	6	355	2
Future Vol, veh/h	0	0	2	42	0	3	4	575	83	6	355	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	<u>-</u>	None	_	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	2	44	0	3	4	605	87	6	374	2
Major/Minor	Minor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1045	1087	375	1001	1001	605	376	0	0	692	0	0
Stage 1	387	387	-	613	613	-	-	-	_	-	-	-
Stage 2	658	700	-	388	388	_	_	_	_	_	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	_	-	_	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	207	216	671	222	243	498	1182	-	-	903	-	-
Stage 1	637	610	-	480	483	-	-	-	-	-	-	-
Stage 2	453	441	-	636	609	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	203	213	671	219	240	498	1182	-	-	903	-	-
Mov Cap-2 Maneuver	203	213	-	219	240	-	-	-	-	-	-	-
Stage 1	633	605	-	477	480	-	-	-	-	-	-	-
Stage 2	447	438	-	629	604	-	-	-	-	-	-	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.4			25			0			0.1		
HCM LOS	В			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1182	-	-	671	227	903	-	-			
HCM Lane V/C Ratio		0.004	-	_		0.209		_	_			
HCM Control Delay (s)		8.1	0	_	10.4	25	9	0	-			
HCM Lane LOS		Α	A	_	В	D	A	A	_			
HCM 95th %tile Q(veh)	0	-	-	0	0.8	0	-	-			
	,											

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	וטייי	<u>↑</u>	NDK	SBL Š	↑ ↑
Traffic Vol, veh/h	T 38	2	TT 660	110	1 5	TT 394
Future Vol, veh/h	38	2	660	110	5	394
Conflicting Peds, #/hr	0	0	000	0	0	394
Sign Control		Stop	Free	Free	Free	Free
RT Channelized	Stop -	None		None		None
		None -	-	None 155	205	ivone -
Storage Length	0 # 0		0	155	205	0
Veh in Median Storage		-				
Grade, %	0	- 0E	0	- 0 <i>E</i>	- 05	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	2	695	116	5	415
Major/Minor I	Minor1	N	Major1	N	Major2	
Conflicting Flow All	913	348	0	0	811	0
Stage 1	695	-	-	-	-	-
Stage 2	218	_	_	_	_	_
Critical Hdwy	6.84	6.94			4.14	_
Critical Hdwy Stg 1	5.84	0.34	_		4.14	_
Critical Hdwy Stg 1	5.84	_			_	-
Follow-up Hdwy	3.52	3.32	_	_	2.22	-
Pot Cap-1 Maneuver	273	648	-	<u>-</u>	811	
Stage 1	456	040	-	-	011	-
			-	-	-	-
Stage 2	797	-	-	-	-	-
Platoon blocked, %	074	040	-	-	044	-
Mov Cap-1 Maneuver	271	648	-	-	811	-
Mov Cap-2 Maneuver	271	-	-	-	-	-
Stage 1	456	-	-	-	-	-
Stage 2	792	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.2		0		0.1	
	_		U		U. I	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-		811	-
HCM Lane V/C Ratio		_	_	0.151		-
HCM Control Delay (s)		_	_		9.5	-
HCM Lane LOS		_	_	С	A	-
HCM 95th %tile Q(veh))	-	_	0.5	0	-
4(100)						

2040 Total Traffic Synchro 10 Report PM Peak Hour Page 3

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	*	^	7			1			7
Traffic Vol, veh/h	0	1792	117	153	1609	13	0	0	140	0	0	35
Future Vol, veh/h	0	1792	117	153	1609	13	0	0	140	0	0	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	-	-	None	_	_	None	_	_	None
Storage Length	_	_	155	100	_	155	_	_	0	-	_	0
Veh in Median Storage,	# -	0	_	-	0	_	_	0	_	-	0	-
Grade, %	_	0	_	_	0	_	_	0	-	-	0	_
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1886	123	161	1694	14	0	0	147	0	0	37
Major/Minor M	lajor1		1	Major2		<u> </u>	Minor1		N	/linor2		
Conflicting Flow All	_	0	0	2009	0	0	-	_	943	-	_	847
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	4.14	-	-	-	-	6.94	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	_	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	2.22	-	-	-	-	3.32	-	-	3.32
Pot Cap-1 Maneuver	0	-	-	281	-	-	0	0	264	0	0	305
Stage 1	0	-	-	-	-	-	0	0	-	0	0	-
Stage 2	0	-	-	-	-	-	0	0	-	0	0	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	281	-	-	-	-	264	-	-	305
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			2.9			34.6			18.4		
HCM LOS							D			С		
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT	WBR					
Capacity (veh/h)		264	-	-	281	-	-	305				
HCM Lane V/C Ratio		0.558	-	-	0.573	-	-	0.121				
HCM Control Delay (s)		34.6	-	-	33.7	-	-	18.4				
HCM Lane LOS		D	-	-	D	-	-	С				
HCM 95th %tile Q(veh)		3.1	-	-	3.3	-	-	0.4				

2040 Total Traffic Synchro 10 Report PM Peak Hour Page 4