## FINAL DRAINAGE REPORT

FOR
HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2

Prepared For:<br>SR Land, LLC<br>20 Boulder Crescent, Suite 200<br>Colorado Springs, CO 80903<br>(719) 491-3024

November 2022
Project No. 25188.10

Prepared By:<br>JR Engineering, LLC<br>5475 Tech Center Drive, Suite 235<br>Colorado Springs, CO 80919<br>719-593-2593

PCD Filing No.:
SF-22-18

## ENGINEERS STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Pas County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. 32314
For and On Behalf of JR Engineering, LLC

## DEVELOPER'S STATEMENT:



I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

## SR Land, LLC

By:

Title:
Address:


## El Pas County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.
Date
County Engineer/ ECM Administrator

Conditions:

## Table of Contents

Table of Contents ..... 3
Purpose ..... 1
General Site Description ..... 1
General Location ..... 1
D escription of Property ..... 1
Floodplain statement ..... 2
Existing Drainage Conditions ..... 2
Major Basin Descriptions ..... 2
Existing Sub-basin Drainage ..... 3
Proposed / Future Drainage Conditions ..... 3
Drainage Design Criteria ..... 11
D evelopment Criteria Reference ..... 11
Hydrologic Criteria ..... 11
Hydraulic Criteria ..... 12
Drainage Facility Design ..... 13
Four Step Process to Minimize Adverse Impacts of Urbanization ..... 13
W ater Q uality ..... 14
Erosion Control Plan ..... 15
O peration \& Maintenance ..... 15
Drainage and Bridge Fees ..... 15
Construction Cost O pinion ..... 16
Summary ..... 17
References ..... 18

## APPENDIX

Appendix A - Vicinity Map, Soil Descriptions, FEMA Floodplain Map
Appendix B - Hydrologic Calculations
Appendix C - Hydraulic Calculations
Appendix D - Reference-Material
Appendix E - Drainage Maps

## Purpose

This document is intended to serve as the Final Drainage Report for Homestead North at Sterling Ranch Filing No. 2. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities. The proposed use is a permissible use within the residential service zoning criteria.

## General Site Description

## General Location

Homestead North at Sterling Ranch Filing No. 2 and the undeveloped land to the north (hereby referred to as the "site") is a proposed development Single-Family SF residential, urban (RS-6000) with a total area of approximately 36.30 acres.

The site is located in a portion of the SW $1 / 4$ of the $S W 1 / 4$ of Section 27, the East $1 / 2$ of section 28 and NE $1 / 4$ of section 33, Township 12 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located immediately east of Vollmer Road. The site is bounded by Homestead North at Sterling Ranch Filing No. 1 to the south, Vacant land and Retreat at Timber Ridge Filing 1 to the north and Sand Creek borders the site to east. Refer to the vicinity map in Appendix A for additional information.

## Description of Property

The site is currently being designed to accommodate approximately 74 single-family residential lots and (totaling approximately 36.3 platted acres). The site is comprised of variable sloping grasslands that generally slope(s) downward to the east at 3 to $7 \%$ towards Sand Creek.

Soil characteristics are comprised of Type B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

The Sand Creek borders the eastern portion of the site. Currently, JR Engineering is performing studies and plans to address Sand Creek stabilization directly adjacent to the site. This project corresponds to PCD Project Number CDR-20-004.

There are no known irrigation facilities located on the project site.

## Floodplain Statement

Based on the FEMA Firm Maps Number 08041C0535G revised December 7, 2018, the vast majority of the development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2 -percent-annual-chance (or 500-year) flood. The eastern property boundary will be platted to the center of Sand creek, placing a portion of the site within Zone AE. The area of disturbance for site grading is located outside of the delineated floodway within Zone X. The FEMA map containing the site has been presented in Appendix A. The plat for Homestead North at Sterling Ranch Filing No. 2 is anticipated to be recorded prior to a LOMR for channel improvement. It is anticipated that the floodplain improvements will result in a no-rise condition and will not adversely impact the Homestead Filing No. 2 development and surrounding developments.

## Existing Drainage Conditions

## MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major sub-basins. The site is within the respective sub-basin is shown in Appendix D.

The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located adjacent to the east portion of the site running north to south. This reach of drainage conveyance is not currently improved. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site. It is anticipated that the channel improvements will be in place prior to the development of the site. The design presented herein is coordinated with the proposed channel improvements presented in the "Sand Creek Restoration Public Improvement Plans" by JR Engineering. This project corresponds to PCD Project Number CDR-20-004.

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M\&S Civil Consultants, Inc., dated October 24, 2018 and the "Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022. The Homestead North Filing No. 2 detention facility closely follows the drainage patterns of pond B in the preliminary drainage report. The Homestead North preliminary drainage report map and WQ map is shown within Appendix E of this report.

## ExiSting Sub-BASIN Drainage

The existing/ predeveloped site consists of five basins (H1 through H5). These existing basins outfall to Sand Creek at four outfalls as shown in the Historic Drainage Map in Appendix E. One of the basins drains onto the Homestead North Filing No site and is treated in the Homestead North Filing No. 1 Full spectrum detention facility. A sub-division to the north of the site is being developed called "Retreat at Timberidge". Runoff from this sub-division will be detained and will not impact storm-water runoff on the Sterling Ranch Homestead site.
$\operatorname{Basin} \mathbf{H - 1}(\mathrm{Q} 5=1.2 \mathrm{cfs}, \mathrm{Q} 100=7.7 \mathrm{Cfs})$ is 5.36 acres, and $3 \%$ impervious of undeveloped land east of Vollmer road. This basin consists of native grass and an existing interim swale constructed during Homestead North at Sterling Ranch Fil. 1. The runoff from this basin drains into an existing interim swale constructed with Homestead North at Sterling Ranch Filing No. 1. Runoff from this basin drains directly into Sand Creek at design point 1h.

Basin H-2 $($ Q5 $=10.6 \mathrm{cfs}, ~ Q 100=70.7 \mathrm{cfs})$ is 49.40 acres, and $2 \%$ impervious of undeveloped land adjacent east of Vollmer Road; the northern boundary of this basin borders Retreat at Timber Ridge to the north. The runoff from this basin is collected in existing drainage draws; the runoff from this basin drains directly into Sand Creek at design point 2 h .

Basin H-3 (Q5 = 0.5 cfs , Q100 $=2.9 \mathrm{cfs}$ ) is 1.57 acres, $4 \%$ impervious of undeveloped land with a trail adjacent to Vollmer Road. The runoff from this basin drains to the Homestead Filing No. 1 Storm Drainage infrastructure and is treated in the Filing No. 1 pond. For additional information on the Homestead North Filing No. 1 drainage infrastructure refer to the proposed Filing No. 1 drainage map within Appendix D of this report.

Basin H-4 (Q5 = 0.6 cfs , Q100 $=3.4 \mathrm{cfs}$ ) is 1.85 acres, and $3 \%$ impervious of undeveloped land. The runoff from this Basin drains directly into Sand Creek at design point 4 h .

Basin H-5 (Q5 = 1.1 cfs , Q100 = 7.2 cfs ) is 3.97 acres, and $2 \%$ impervious of undeveloped land. The runoff from this basin drains directly in Sand Creek at design point 5 h .

## Proposed / Future Drainage Conditions

At the time when Filing No. 2 is developed, it is anticipated that Filing 3 to the north, will still remain undeveloped. However, Filing 3 is planned to be developed shortly after Filing No. 2's construction is completed. For the purposes of this report, the proposed condition map and basin analysis analyzed the Filing No. 3 tributary areas as undeveloped. These areas are represented by basins OS-1, OS-2, and OS-3 as described below and as shown on the Proposed Drainage Map included in Appendix E.

The "Ultimate" condition assumes that Filing No. 3 is fully developed and constructed. This condition has been analyzed as described below and is represented by the "Future Drainage Map" included in appendix E. Basins F1-F5 represent the fully-developed tributary areas part of Filing No. 3. All storm sewer sizing and pond sizing/water quality sizing is based off of the fully developed ultimate/future conditions.

Upon future development of Homestead North Filing No. 3, a final drainage report for Filing No. 3 will be required to confirm that the Ultimate Conditions of the Filing No. 3 tributary areas have remained consistent with the analysis included in this report.

Basin OS1 is part of the future Filing No. 3 development, but is considered undeveloped for the purposes of this analysis. Basin OS-1 is 3.83 acres in area and consists of pasture/fields. This basin sheet flows south to Perry Owens Drive at DP O.1. The basin is comprised of open space and native grass. The runoff $\left(\mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=8.0 \mathrm{cfs}\right)$ from basin OS 1 drains to design point O .1 .

Basin OS2 9.74 acres and 2\% impervious, is an offsite basin that drains to an offsite swale, as shown in section BB in Appendix D in the proposed drainage map. Runoff is diverted away from the back of residential lots on Wheatland Drive via swale BB. The basin is comprised of open space and native grass. The runoff ( $\mathrm{Q}_{5}=2.3 \mathrm{cfs}, \mathrm{Q}_{100}=15.3 \mathrm{cfs}$ ) from basin OS 2 drains to design point O .2 and is collected in an interim swale on the northern portion of the site. Runoff in the swale at design point continues east to design point O.3.

Basin OS3 21.02 acres and 2\% impervious, is an offsite basin that drains to an offsite swale that diverts offsite runoff away from the back of residential lots on Wheatland Drive. The runoff ( $\mathrm{Q}_{5}=4.6$ cfs, $\mathrm{Q}_{100}=31.0 \mathrm{cfs}$ ) from basin OS3 sheet flows south and enters swale section A-A, which carries flows east to Sand Creek at design point O .3 ( $\mathrm{Q} 5=6.8 \mathrm{cfs}, \mathrm{Q} 100=45.3 \mathrm{cfs}$ ) drains to design point O. 3 and outfalls directly into Sand Creek.

The OS basins represent the interim condition as shown on the proposed drainage map.

The basin descriptions below represent the future ultimate condition when Filing 3 is fully built out, as shown on the future drainage map in Appendix E of this report. Homestead North Filing No. 3 at Sterling Ranch is expected to begin construction while Homestead North Filing No. 2 is being built or soon after. The Homestead North Filing No. 2 drainage infrastructure has been designed to accept the tributary runoff and flows from the portion of Homestead North Filing No. 3 tributary to the site as shown in the Future drainage map within Appendix E of this report.

All design points at inlets, have a suffix of either " B " or " i " indicating how the total flow at the numbered design point will be split. A suffix of " i " indicates that a portion of the total design point flow is captured by an inlet. A suffix of $B$, indicates the portion of the total flow that is not captured at an inlet, or that "By-passes" the inlet.

Basin F1 2.08 Acres and $43 \%$ percent impervious is comprised of future residential lots, and future, walks and a residential road to be platted within Filing No. 3 i.e. Billy Clairborne Dr. The runoff $\mathrm{Q}_{5}=2.9 \mathrm{cfs}, \mathrm{Q}_{100}=7.4 \mathrm{cfs}$ ) will drain via type C El Paso County curb and gutter to Design point 1 F into the Filing No. 2 site. The curb and gutter carries flows from DP 1F to design point 1.1B.

Basin F2 1.37 Acres and $48 \%$ percent impervious is comprised of future residential lots, a walk and a residential road to be platted within Filing No. 3 i.e. Billy Clairborne Dr. The runoff ( $\mathrm{Q}_{5}=2.1 \mathrm{cfs}$, $\mathrm{Q}_{100}=5.0 \mathrm{cfs}$ ) will drain via type A El Paso County curb and gutter to Design point 2F into the Filing No. 2 site. The curb and gutter carries flows from DP 2F to design point 1.2B.

Basin F3 0.08 acres and $100 \%$ impervious is comprised of future walk, and a local roadway. The runoff from this basin $\left(\mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=0.6 \mathrm{cfs}\right)$ will drain via type A El Paso County curb and gutter to design point to design point 3 F into the filing 3 site. The runoff is carried south by the curb and gutter to design point 1.3B.

Basin F4 0.06 acres and $100 \%$ impervious is comprised of future walk, and a local roadway. The runoff from this basin $\left(\mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=0.4 \mathrm{cfs}\right)$ will drain via type A El Paso County curb and gutter to design point 4 F into the filing 3 site. The runoff is carried south and east by the curb and gutter to design point 6B.

Basin F5 0.69 acres and 2\% impervious is comprised of future open space from Homestead North at Sterling Ranch Filing No. 3. The runoff ( $\mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.2 \mathrm{cfs}$ ) will confluence with the Filing 2 runoff at design point 4B.

Basin B1.1 1.24 acres and 52\% percent impervious is comprised of single-family residential lots, a local road, Perry Owens Drive and an urban knuckle. Runoff ( $\mathrm{Q}_{5}=2.6 \mathrm{cfs}, \mathrm{Q}_{100}=5.5 \mathrm{cfs}$ ) sheet flows to Perry Owens Drive and is carried via Type C curb and gutter to a proposed 15 ft on grade type R inlet at Design point 1.1B/i.

The runoff confluences with upstream runoff from basin F1 at design point 1.1b. The total runoff at design point 1.1 B is $\left(\mathrm{Q}_{5}=5.1 \mathrm{cfs}, \mathrm{Q}_{100}=12.1 \mathrm{cfs}\right)$. The captured runoff is represented by design point $1.1 \mathrm{i}(\mathrm{Q} 5=5.1 \mathrm{cfs}$, and $\mathrm{Q} 100=10.1 \mathrm{cfs})$ and piped via $18 "$ RCP to DP 2.1. Runoff not captured by the inlet is represented by design point 1.1 b ( $\mathrm{Q} 5=0.0 \mathrm{cfs}$, and $\mathrm{Q} 100=2.0 \mathrm{cfs}$ ) continues in the curb and gutter to design point 2B.

Basin B1.2 0.42 acres and 79\% percent impervious is comprised of single-family residential lots, a local road Perry Owens Drive and an urban knuckle. The direct runoff from basin $\mathrm{B} 1.2\left(\mathrm{Q}_{5}=1.5 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=2.9 \mathrm{cfs}$ ) sheet flows to Perry Owens Drive and is carried via type C curb and gutter to a 15 , type R on grade inlet at design point 1.2B. Total flows at design point 1.2 B is $\left(\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=7.0\right.$ cfs). The captured runoff is represented by design point $1.2 \mathrm{i}\left(\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=6.8 \mathrm{cfs}\right)$. The
captured runoff is piped to design point 2.1 via an 18 " storm pipe. Runoff is by-passed in the $100-$ year event to design point 1.3B via type C El Paso County curb and gutter $\left(\mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$.

Total flow in the 18 " RCP at design point 2.1 is ( $\mathrm{Q} 5=8.2 \mathrm{cfs}, \mathrm{Q} 100=16.9 \mathrm{cfs}$ ) and is piped to design point 2.4.

Basin B1.3 0.43 acres and 50\% percent impervious is comprised of single-family residential lots and local roads, Aspen Valley Road and Perry Owens Drive. The runoff ( $\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=2.0 \mathrm{cfs}$ ) from basin B1.3 drains to design point 1.3b. The runoff is conveyed by Type A El Paso County curb and gutter in Aspen Valley Road and by type C El Paso County curb and gutter in Perry Owens Drive. Design point 1.3 b receives by pass flow from the upstream inlet at design point 1.2 i in the 100 -year event ( 0.2 cfs ). The total runoff at design point 1.3 b is ( $\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.2 \mathrm{cfs}$ ) and continues in the curb and gutter south to design point 2 B .

Basin B2 0.86 acres and $58 \%$ percent impervious is comprised of the northern portion of a local residential road Sam Bass Drive adjacent to the intersecting at Vollmer road and portions of single family residential lots. The runoff is routed via type A El Paso County Curb and gutter. Runoff ( $\mathrm{Q}_{5}=$ $2.4 \mathrm{cfs}, \mathrm{Q}_{100}=5.1 \mathrm{cfs}$ ) from basin B 2 drains to design point 2 B and confluences with bypass runoff from basin $B 1.2$ direct and $B 1.3$. The total runoff off at design point 2 b is $\left(\mathrm{Q}_{5}=2.7 \mathrm{cfs}, \mathrm{Q}_{100}=8.1 \mathrm{cfs}\right)$ and continue in the curb and gutter to design point 6B.

Basin B3 0.23 acres and $78 \%$ percent impervious is comprised of the southern portion of a local residential road Sam Bass Drive adjacent to the intersection of Vollmer road. Runoff ( $\mathrm{Q}_{5}=0.9$ cfs, $\mathrm{Q}_{100}=1.6 \mathrm{cfs}$ )from basin B3 drains to design point 3B and is routed via type A El Paso County curb and gutter. Total flows at design point 3 B are $\mathrm{Q} 5=0.9 \mathrm{cfs}$ and $\mathrm{Q} 100=1.6 \mathrm{cfs}$, and continue in the curb and gutter to design point 6B.

Basin B4 3.51 acres and 46\% percent impervious is comprised of single-family residential lots, a local residential road, Wheatland Drive and a Cul de Sac. Runoff from basin B4 ( $\mathrm{Q}_{5}=6.9 \mathrm{cfs}, \mathrm{Q}_{100}=$ 15.3 cfs ) sheet flows to the type C curb and gutter of Wheatland Drive, and continues in the curb and gutter to design point 4B at a 15 ' type $R$ on-grade inlet. The total runoff at design point $4 b$ (include basin F5 flow) is ( $\mathrm{Q}_{5}=7.1 \mathrm{cfs}, \mathrm{Q}_{100}=17.1 \mathrm{cfs}$ ). The captured runoff is represented by design point 4 i ( $\mathrm{Q}_{5}=6.9 \mathrm{cfs}, \mathrm{Q}_{100}=12.9 \mathrm{cfs}$ ). The captured runoff is piped via a 24 " storm sewer and is then piped to design point 2.3. The bypass runoff ( $\mathrm{Q}_{100}=4.2 \mathrm{cfs}$ ) continues in the drainage pan and El Paso County Type A curb and gutter, to design point 6B. There is no by-pass flow in the $5-\mathrm{yr}$ event.

Total flow in the $24 "$ RCP at design point 2.3 is 17.4 cfs and continues to design point 2.4.

Basin B5 1.11 acres and $61 \%$ percent impervious is comprised of single-family residential lots, a residential road Wheatland Drive, and a Cul de Sac. Runoff from this basin sheet flow to the El Paso County type $C$ curb and gutter and continues in the gutter to design point B 5 . Runoff ( $\mathrm{Q}_{5}=3.1 \mathrm{cfs}$,
$\mathrm{Q}_{100}=6.2 \mathrm{cfs}$ ) from basin B 5 drains to design point 5 B , a 10 ' on grade type R inlet. The captured runoff is represented by design point $5 \mathrm{i}\left(\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=5.1 \mathrm{cfs}\right)$ and is piped via 18 " RCP to design point 2.2 (same flows as DP5i). Flows in the pipe continues to design point 2.3. The bypassed runoff in the 100 year event $\left(\mathrm{Q}_{100}=1.1 \mathrm{cfs}\right)$ continues in the curb and gutter to design point 7B with runoff from basin B7. There is no by-pass flow in the 5 -yr event.

Total flow in the 24 " RCP at design point 2.3 is 17.4 cfs and continues to design point 2.4 .

Basin B6 3.61 acres and 58\% percent impervious is comprised of single-family residential lots and a local residential roads Sam Bass Drive, Aspen Valley Road, Perry Owens Drive and Wheatland Drive. Runoff ( $\left.\mathrm{Q}_{5}=9.5 \mathrm{cfs}, \mathrm{Q}_{100}=19.9 \mathrm{cfs}\right)$ sheet flows to the adjacent Type A and Type C El Paso County curb and gutter and continues to design point 6B (Total flow, Q5=10.2 cfs, Q100=26.7 cfs), an on-grade 15 ' type R inlet. Captured flows are represented by design point 6 i (Q5= 8.8 cfs , $\mathrm{Q} 100=$ 14.9 cfs ) and are piped via 18 inch RCP to design point 2.6. The uncaptured flows bypass the inlet $\left(\mathrm{Q}_{5}=1.4 \mathrm{cfs}, \mathrm{Q}_{100}=11.8 \mathrm{cfs}\right)$ and continue in the curb and gutter to a 15 ' sump inlet at design point 9B. In total, the flow at design point 6B collects flow from basins B1, B2, B3, B4, B6, F1, F2, F3, F4 and F5.

Total flow in the 36 " RCP pipe at design point 2.6 is ( $\mathrm{Q} 5=25.5 \mathrm{cfs}$ and $\mathrm{Q} 100=48.0 \mathrm{cfs}$ ) and is piped to design point 2.7.

Basin B7 1.63 acres and 56\% percent impervious, is comprised of single-family lots, local roads and a Cul de Sac Robert Allison Circle. The runoff (Q5=4.0 cfs, Q100= 8.2 cfs ) sheet flows to the type A and C El Paso County curb and gutter and is directed to a proposed 15 ' type R on grade type R inlet at design point 7B. Total flow at 7B is $(\mathrm{Q} 5=4.0 \mathrm{cfs}, \mathrm{Q} 100=9.0 \mathrm{cfs})$ and includes by-pass flows from B5. Captured flows are represented by design point 7i (Q5= $4.0 \mathrm{cfs}, \mathrm{Q} 100=8.4 \mathrm{cfs}$ ) and are piped via 24 inch RCP to design point 2.4. The flow not captured ( $\mathrm{Q} 5=0.0 \mathrm{cfs}$, and $\mathrm{Q} 100=0.6 \mathrm{cfs}$ ) by the 15 ' on grade type R inlet at design point 7 B continues in the curb and gutter design point 8 B .

Total flow in the 36 inch RCP at design point 2.4 is ( $\mathrm{Q} 5=13.3 \mathrm{cfs}$, and $\mathrm{Q} 100=25.4 \mathrm{cfs}$ ) and is piped to design point 2.5 .

Total flow in the 36 inch RCP at design point 2.5 is $\mathrm{Q} 5=18.3 \mathrm{cfs}, \mathrm{Q} 100=36.1 \mathrm{cfs}$ and is piped to design point 2.6.

Total flow in the 36 " RCP pipe at design point 2.6 is ( $\mathrm{Q} 5=25.5 \mathrm{cfs}$ and $\mathrm{Q} 100=48.0 \mathrm{cfs}$ ) and is piped to design point 2.7.

Basin B8 2.14 acres and 56\% percent impervious, is comprised of single-family lots, local road and a Cul de Sac. The runoff ( $\mathrm{Q} 5=5.1 \mathrm{cfs}, \mathrm{Q} 100=10.6 \mathrm{cfs}$ ) sheet flow to the El Paso County type A and C curb and gutter and directed to design point 8 B where it combines with by-pass flows from design
point 7B, total flow at design point $8 \mathrm{~B}(\mathrm{Q} 5=4.7 \mathrm{cfs}, \mathrm{Q} 100=10.4 \mathrm{cfs})$. Flows in in the curb and gutter at design point 8 B continue south to design point 10 B .

Basin B9 3.77 acres and $64 \%$ percent impervious, is comprised of single-family lots, and an urban knuckle, and local roads Willey Picket Drive and Wheatland Drive. Runoff ( $\mathrm{Q}_{5}=7.3 \mathrm{cfs}, \mathrm{Q}_{100}=15.7$ cfs) sheet flows to the El Paso County type A and type C curb and gutter and is directed to design point 9B, a 15 ' type R sump inlet. Design point 9 B receives by-pass runoff from the upstream ongrade inlet at design point 6 B . The total runoff collected at the sump inlet is $\left(\mathrm{Q}_{5}=7.7 \mathrm{cfs}, \mathrm{Q}_{100}=25.3\right.$ cfs). In the event the inlet clogs in the 100 -year event runoff will overflow across the curb and gutter of Wheatland Drive and spill directly into pond B. The inlet at design point 9B was sized to capture all flows up-to and including the 100 -yr storm event. Captured flows are piped in 24 inch RCP to design point 2.7 (Q5=32.3 cfs, $\mathrm{Q} 100=71.0 \mathrm{cfs}$ ). Flow in the pipe at design point 2.7 continue to design point 2.8.

Basin B10 0.22 acres and $80 \%$ percent impervious, is comprised of a portion of the southeastern side of the local road Wheatland Drive. The runoff $\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=1.6 \mathrm{cfs}\right)$ from this basin sheet flows to design point 10 b where it combines with flows from upstream design point 8 B . The total flow at the 15 ' type R sump inlet at design point 10 b is $\left(\mathrm{Q}_{5}=5.4 \mathrm{cfs}, \mathrm{Q} 100=11.7 \mathrm{cfs}\right)$. This inlet was sized to capture all flows up to and including the $100-\mathrm{yr}$ storm event. Captured flows are piped via 48 inch RCP to design point 2.8 (Q5= $36.5 \mathrm{cfs}, \mathrm{Q} 100=79.9 \mathrm{cfs}$ ). Should this inlet become clogged, flows would overtop the curb and gutter and enter Pond B.

Flows in the 48 " RCP at DP 2.8 (Q5= 36.5 cfs, $\mathrm{Q} 100=79.9 \mathrm{cfs}$ ) are piped directly into the proposed Forebay at design point 4 (total pond inflow). See below for additional basins descriptions and total flows.

Basin B11 1.67 acres and $11 \%$ percent impervious, is comprised of pond $B$. Runoff $\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=4.6 \mathrm{cfs}$ ) generated in Basin B 11 sheet flows into Pond B where it is treated for water-quality and is detained up until the 100 year-event. The UD Detention sheet for pond $B$ is shown in Appendix $C$ of this report. Total inflows to pond $B$ are combined at design point 4 , see below.

Basin B12 is 2.18 acres this basin is $36 \%$ percent impervious, and is comprised of single family walk out lots backing up to Sand Creek. The runoff ( $\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=6.0 \mathrm{cfs}$ ) sheet flows east and is captured in a grass swale and directed to a type C area inlet at design point $3.1\left(\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=\right.$ 6.0 cfs ) that captures all flows up-to and including the $100-\mathrm{yr}$ storm event. The grass swale is represented by section C-C, see the drainage map for location and appendix C for hydraulics. The runoff is then piped via 18 " RCP pipe to design point 3.2. Should the inlet become clogged at design point 12 b , flows will over-top the local depression and existing trail to the east, where they will enter Sand Creek.

Basin B13 is 0.43 acres and $54 \%$ impervious, and is comprised of single family walk out lots backing up to sand creek. The runoff $\left(\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=2.1 \mathrm{cfs}\right)$ is conveyed via a grass swale, section D-D to a type C area inlet at design point $13 \mathrm{~b}\left(\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=2.1 \mathrm{cfs}\right)$. Captured flows combine with upstream flows form design point 3.1, at design point 3.2 (18 inch RCP). Total flow in the pipe at design point 3.2 is $(\mathrm{Q} 5=2.6 \mathrm{cfs}, \mathrm{Q} 100=7.1 \mathrm{cfs})$ is piped to design point 3.3. Should the inlet become clogged, flows will overtop the local depression and the existing trail to the east, where they will enter Sand Creek.

Flows from design point 3.2 are piped via 18 inch RCP to design point 3.3 (Q5=2.8 cfs, Q100=7.7 cfs).

Basin B14 is 0.42 acres and $45 \%$ impervious and is comprised of single family walk out lots. The runoff $\left(\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=1.7 \mathrm{cfs}\right)$ is conveyed via a grass swale, section $\mathrm{F}-\mathrm{F}$ to a type C area inlet at design point $14 \mathrm{~b}\left(\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=1.7 \mathrm{cfs}\right)$. Captured flows combine with upstream flows form design point 3.2, at design point 3.3 ( 18 inch RCP ). Total flow in the pipe at design point 3.3 is $(\mathrm{Q} 5=$ 2.8 cfs , Q100 $=7.7 \mathrm{cfs}$ ) is piped to design point 4 . Should the inlet become clogged, flows will overtop the local depression and the existing trail to the west, where they will enter Sand Creek.

Flows from design point 3.3 flows enter the forebay and combine with flows from design point 2.8 and basin flows from B11 at design point 4. See below for total flows at design point 4. The total flow entering Pond $B$ is represented by design point $4(\mathrm{Q} 5=40.2 \mathrm{cfs}, \mathrm{Q} 100=91.5 \mathrm{cfs})$.

Basin C-1 is 0.92 acres and $67 \%$ percent impervious and is comprised of single family lots. The runoff $\left(\mathrm{Q}_{5}=1.8 \mathrm{cfs}, \mathrm{Q}_{100}=3.9 \mathrm{cfs}\right)$ from these lots drains to design point C .1 and is conveyed to the Homestead North Filing No. 1 full spectrum detention facility.

Basin C-2 is 1.24 acres and $52 \%$ percent impervious and is comprised of single family lots, road and concrete walk. The runoff ( $\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=5.0 \mathrm{cfs}$ ) from these lots drains design point C .2 and is conveyed to the Homestead North Filing No. 1 full spectrum detention facility.

Basin C-3 is 0.29 acres and $2 \%$ percent impervious and is comprised of a proposed park area. The runoff $\left(\mathrm{Q}_{5}=0.1 \mathrm{cfs}, \mathrm{Q}_{100}=0.6 \mathrm{cfs}\right)$ sheet flow south to the Filing No. 1 boundary at design point C. 3 and is conveyed to the Homestead North Filing No. 1 full spectrum detention facility, Pond C.

The areas tributary to Filing No. 1 (C basins), presented within this report have remained consistent with the Filing No. 1 Final Drainage Report, by JR Engineering. From the Filing No. 1 drainage report, Basins C1, C4.2, and C3.2 contribute flows to Pond C. The contributing Filing No. 1 basins have a combined area of 8.92 acres with a composite percent imperviousness of $62.5 \%$. Portions of those Filing No. 1 basins are represented within the Filing No. 2 as Basins C-1, C-2, and C-3. The contributing Filing No. 2 basins have a combined 2.45 acres with a composite percent imperviousness of $51.7 \%$. Since the percent imperviousness of the area has decreased, these areas
will be treated and detained in Pond C without issue. No design updates are necessary to Pond C as a result of the design presented in this report. Pond C was designed and sized to treat and detain these tributary basins per all applicable County criteria.

Pond B was analyzed for both the proposed and ultimate/future condition. It was determined that the pond will function as designed for both the proposed condition and the future condition without any modifications being necessary. At the time Filing No. 3 is developed, a Final Drainage Report specific to Filing No. 3 will need to confirm that the tributary basins to Pond B, and the Pond Design presented here within remains valid and consistent with this report and that no modification are necessary to Pond $B$ to ensure its functionality and compliance with criteria.

In the proposed condition Pond B will have a tributary area of 27.69 acres and a composite percent impervious of $44.4 \%$.

In the ultimate/future condition the pond has a tributary area of 28.15 acres and composite percent impervious of $49.9 \%$. See Appendix C for the applicable UD-Detention design workbook printouts.

Pond B was design with a full-spectrum design methodology, including a Water Quality Capture Volume drain time of 40 hours and an "Excess Urban Runoff Volume" (EURV) drain time of 72 hours. Additionally the pond was designed to drain or infiltrate the $97 \%$ of the $5-\mathrm{yr}$ storm in 72 hours or less and to drain or infiltrate $99 \%$ of events greater than the $5-\mathrm{yr}$ storm in 120 hours or less.

Pond B also features the following:
Stabilized maintenance access path designed to facilitate easy maintenance by the anticipated equipment to be used by the maintenance entity. This path consists of a gravel section to access the bottom of pond and outlet structure, design to meet all applicable county criteria and standards. This gravel access allows maintenance vehicles to enter the trickle channel, which was designed to be wide enough for maintenance equipment to travel to and access each forebay.

Each point of concentrated flow entering the pond has a concrete forebay to allow for settlement of sedimentation and ease of removal. Each forebay was deisgned to meet all applicable County criteria and standards. The forebays were each sized to hold a minimum volume equal to $3 \%$ of the WQCV based on their tributary basins. Each forebay notch was sized to release $2 \%$ of the undetained peak 100 -yr tributary flows. See appendix C for all applicable calculations. Each forebay releases flows directly to a concrete trickle channel which carried flows to the proposed outlet structure.

The outlet structure was design per full-spectrum design methodology, and include a micropool. Should the ponds outlet become clogged, or should the pond see flows in excess of the 100 -yr storm, an emergency overflow spillway was provided. The spillway is designed to be stable while conveying the peak, undetained $100-\mathrm{yr}$ flows. The spillway include soil rip-rap sized per MHFD Figure 12-21, and a concrete cut-off wall is included at the crest of spillway to ensure the integrity
and longevity of the structure. The spillway also has over $1^{\prime}$ of freeboard above the $100-\mathrm{yr}$ water surface elevation over the spillway's crest (while its conveying peak flows)

|  | TABLE 2.2 Pond B (Ultimate/Future) |  |  |
| :---: | :---: | :---: | :---: |
|  | Stage-ft | Volume Provided (Acre-ft) | Release Rate (cfs) |
| WQCV | 3.17 | 0.484 | 0.2 |
| EURV | 5.32 | 1.504 | 0.8 |
|  |  |  | 4.2 |
| 5 Year | 5.74 | 1.738 | 30.4 |
| 100 Year | 7.06 | 2.587 |  |

## Drainage Design Criteria

## Development Criteria Reference

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

## Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One-hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 3-1-hr Point Rainfall Data

| Storm | Rainfall (in.) |
| :---: | :---: |
| 5 -year | 1.50 |
| 100 -year | 2.52 |

## Hydraulic Criteria

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD MHFD-Detention v4.04 spreadsheet was utilized for evaluating the proposed detention and water quality pond(s). Sump and on-grade inlets were sized using UDFCD UD-Inlet v2.07. Autodesk Hydraflow express and UDFCD figure 8-22 was used to size the swales. Storm StormCAD V8i, a modeling program for stormwater drainage, was utilized to determine the hydraulic grade lines and energy grade lines for the storm sewer network. Manhole and pipe losses for the model were obtained from the Modeling Hydraulic and Energy Gradients in Storm Sewers: A Comparison of Computation Methods, by AMEC Earth \& Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2. StormCAD, Autodesk Hydraflow results, along with street and inlet capacities are presented in Appendix C.

| StormCAD Conversion Table |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathscr{0} \\ & \text { O } \\ & \text { D} \\ & 0 \\ & \infty \end{aligned}$ | Bend Angle | K coefficient Conversion |  |
|  | 0 | 0.05 |  |
|  | 22.5 | 0.1 |  |
|  | 45 | 0.4 |  |
|  | 60 | 0.64 |  |
|  | 90 | 1.32 |  |
|  | 1 Lateral K coefficient Conversion |  |  |
|  | Bend Angle | Non Surcharged | Surcharged |
|  | 45 | 0.27 | 0.47 |
|  | 60 | 0.52 | 0.9 |
|  | 90 | 1.02 | 1.77 |
|  | 2 Laterals K coefficient Conversion |  |  |
|  | 45 | 0.96 |  |
|  | 60 | 1.16 |  |
|  | 90 | 1.52 |  |

The Sand Creek improvements adjacent to the Sterling Ranch Homestead North are being designed in a separate report, The Final Design Report for Sand Creek Restoration by JR Engineering, October 2021. The general concept of the channel design is to design a low maintenance, high performance channel with a meandering bankfull channel. The design will cut in a new bankfull section offset to the east from the existing thalweg, grade up to the existing thalweg so that it can remain hydraulically connected to the new thalweg, and then extend a $1 \%$ flood terrace to the east between 80 and 120 ft . depending on shear stresses and velocities. The purpose of trying to keep the existing channel hydraulically connected to the new thalweg is to maintain as many existing wetlands as possible and satisfy the ACOE. The previous design in the Kiowa DBPS made no attempt to preserve wetlands in order to satisfy the County's design criteria, and was rejected by the ACOE. While the County's criteria are certainly a determining factor, we consider the need to satisfy the ACOE the highest priority, because without their approval JR won't be granted a 404 permit. The County review of the previous design by the Kiowa DBPS states that the maximum stable longitudinal slope of the channel is $0.17 \%$. Using this longitudinal slope will require the use of at least 10 and possibly

15 GSB drop structures. This channel slope will also ensure the destruction of more wetlands by taking the existing ones offline due to large changes in elevation. JR Engineering's intent to prove that a steeper slope can remain stable long term, thus allowing us to preserve more wetlands and appease the ACOE, a work map for the Final Design Report for Sand Creek Restoration by JR Engineering has been provided for information in Appendix D.

A design point, SC, and basin SC has been added for the creek. Flows are from the M\&S MDDP Q5 $=349.6 \mathrm{cfs}$ and $\mathrm{Q} 100=1612.2 \mathrm{cfs}$. This is for informational purposes only and on the request of the reviewer. The above referenced plans and reports supersede the analysis included in this report.

## Drainage Facility Design

## Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

The runoff from the site drains from north to south. The runoff from the future Homestead North Filing 3 site drains onto the northern portion of the site to the proposed Homestead North Filing No. 2 detention facility. The runoff is routed through the site by on-grade inlets, sump inlets, and storm sewers. The runoff captured from the on-grade inlets corresponds to a design point with an i after a number, as shown in the proposed and future drainage map in Appendix E of this Report. The street runoff is piped throughout the site at corresponding design points 2.1 through 2.8 and is treated for water quality in the full spectrum detention facility. In the eastern portion of the site adjacent to Sand Creek, the runoff is routed and captured by a swale and type C inlets. The runoff captured and routed by the type C inlets corresponds to design points 3.1 to 3.3. The runoff is then piped and treated for water quality in the full spectrum detention facility. For additional information on design points, routing, inlets, and storm sewer pipes, refer to the proposed and future drainage maps in Appendix E of this report.

Step 1 - Reducing Runoff Volumes: The Homestead North at Sterling Ranch development project consists single -family homes with open spaces and lawn areas interspersed within the development, which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 - Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The Soils and Geology study on the site showed a potentially unstable region
directly adjacent to the western bank of Sand Creek on the northeast corner of the site. At the time of final design, specifications from a Geotechnical Engineer will be implemented to ensure that the developed site is safe. Homestead North Filing No. 2 lots will discharge into Full Spectrum Detention Ponds, and outflows will be less than or equal to historic flows. Existing flows from the northwest of Vollmer road and runoff from the Vollmer Road improvements will be piped under Vollmer Road and then along the north side of Briargate Parkway and will be detained and treated for water quality directly on-site. The subdivision improvement agreement (SIA) for Sterling Ranch Filing 1 states that "bank stabilization of the Sand Creek channel shall be required prior to any replats of other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process." Additionally, "Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the $700^{\text {th }}$ single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the $800^{\text {th }}$ single family lot with the boundaries of the approved Sterling Ranch Sketch Plan."

Step 3 - Treat the WQCV: Water Quality treatment for this site is provided in three proposed full spectrum water quality detention ponds: Ponds B \& C. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for approx. 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 - Consider Need for Industrial and Commercial BMPs: There are no commercial or industrial components to this development; therefore no BMPs of this nature are required. BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The site is a residential subdivision (ie: not a high-risk site per Figure I-1 in ECM Appendix I), therefore specialized BMPs do not need to be considered. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, the full spectrum water quality and detention ponds, and permanent vegetation.

## Water Quality

For this Final drainage report the design points, pipes and inlets are discussed in the Proposed/Ultimate/Future Drainage Conditions section of this report. The corresponding design
points, pipes and basin are shown within the Proposed \& Future/Ultimate Drainage Map within Appendix E. The pond has been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual. For additional information on pond storage and outlet characteristics see the MHFD sheets within Appendix C. Upon future development of Homestead North Filing 3, the Homestead Filing No. 2 pond will need to be re-analyzed to confirm the design remains valid and functions as intended.

## Erosion Control Plan

It is the policy of the El Paso County, that a grading and erosion control plan be submitted with the drainage report. Proposed silt fence, vehicles traffic control, temporary sediment basins, seeding and mulching are proposed as erosion control measure.

## Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite.

## Drainage and Bridge Fees

The site lies within the Sand Creek Drainage Basin. An estimate of the Impervious Acres and Drainage/Bridge is presented below,
HN F2 Impervious Area Calculation

| Breakdown | Acres | \% <br> Impervious | Impervious <br> Acres |
| :---: | :---: | :---: | :---: |
| ROW | 6.13 | $100 \%$ | 6.13 |
| Lots | 15.62 | $50 \%$ | 7.81 |
| Tracts | 14.55 | $2 \%$ | 0.29 |
| Total | 36.3 |  | 14.23 |


| 2022 Drainage and Bridge Fee - Sterling Ranch Homestead North Filing 2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Impervious <br> Acres (Ac.) | Drainage Fee <br> (Per Imp. Acre) | Bridge Fee <br> $($ Per Imp. Acre) | Sterling Ranch <br> Drainage Fee | Sterling Ranch <br> Bridge Fee |
| 14.230 | $\$ 21,814$ | $\$ 8,923$ | $\$ 310,413.22$ | $\$ 126,974.29$ |

## Construction Cost Opinion

A construction cost opinion for the public storm drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Swapping of DBPS improvements for proposed improvements in Sterling Ranch has been agreed to by the Drainage Board. A map demonstrating the DBPS improvements costs are being swapped is found in Appendix D.

## Homestead North Filing No. 2 (Public Non-Reimbursable)



Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159, 164, 169, 186 and the Briargate Parkway and Sterling Ranch Bridges shown in the below table exceed the drainage and bridge fee estimate shown above.

| Sterling Ranch Deferred Drainage Fees Analysis |  |  |
| :---: | :---: | :---: |
| Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and 186 |  |  |
|  | Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015) | \$1,918,065.00 |
|  | Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213) | \$611,628.00 |
|  | Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186 | \$2,529,693.00 |
|  | Earlier Plats Deferred Drainage Fees (Branding Iron F1 \& Homestead F1) | \$219,540.55 |
|  | SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$400,855.70 |
|  | SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$214,430.47 |
|  | HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$541,225.00 |
|  | HN F2 (SF-2218) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$310,413.22 |
|  | Subtotal Deferred Drainage Fees | \$1,686,464.94 |
|  | Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186 | \$843,228.06 |
| Sterling Ranch Deferred Bridge Fees Analysis |  |  |
| Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterling Ranch Rd. |  |  |
|  | Financial Assurance Estimate Briargate Parkway Bridge from CDR 2113 | \$1,546,676.98 |
|  | Financial Assurance Estimate Sterling Ranch Road Bridge from CDR 226 | \$990,016.80 |
|  | Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges | \$2,536,693.78 |
|  | SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$87,709.60 |
|  | HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$221,388.00 |
|  | HN F2 (SF-2218) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) | \$126,974.29 |
|  | Subtotal Deferred Bridge Fees | \$436,071.89 |
|  | Unused Reimb. Costs associated with Briargate Parkway and SR Road Bridges | \$2,100,621.89 |
| Filing is not yet approved, actual fee at time of approval may be different than shown here |  |  |

A summary table will be added to the Filing No. 3 final drainage report including the actual and allowable costs for all the filings.

## SUMMARY

The proposed Homestead North at Sterling Ranch drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development's ponds are designed to release less than $90 \%$ of the predeveloped runoff study associated with the subject site. The proposed development will not adversely affect the offsite drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements.

## References

1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I \& II".
2. El Paso County ECM, 2019
3. El Paso County DCM Vol. 1 Update, 2015
4. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
5. Upper Sand Creek Detention Evaluation Study, Wilson and Company'
6. Final Drainage Report For Retreat at Timberridge Filing No. 1, Classic Consulting Engineers \& Surveyors
7. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
8. Sand Creek Channel Design Report JR Engineering, October 2021- Draft
9. Preliminary Drainage Report And MDDP Addendum For Homestead North At Sterling Ranch Preliminary Plan", prepared by JR Engineering, dated January 2022

## Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map



VICINITY MAP
HOMESTEAD NORTH AT
STERLING RANCH FILING NO. 2 JOB NO. 25188.00
02-16-2022


## MAP LEGEND

| Area of Interest (AOI) | $\square$ | C |
| :---: | :---: | :---: |
| $\square$ Area of Interest (AOI) | $\square$ | C/D |
| Soils $\square$ |  |  |
| Soil Rating Polygons $\square$ |  |  |
| $\square \mathrm{A}$ | $\square$ | Not rated or not available |
| A/D | Water Fe | ures |
|  | $\sim$ | Streams and Canals |
| B |  |  |
|  | Transpo | tion |
| B/D | H+ | Rails |
| C | - | Interstate Highways |
| C/D | - | US Routes |
| D | $\approx$ | Major Roads |
| Not rated or not available | $\cdots$ | Local Roads |
| Soil Rating Lines | Backgro |  |
| $\cdots$ A |  | Aerial Photography |
| $\cdots$ A/D |  |  |
| $\cdots$ |  |  |
| $\cdots$ B/D |  |  |
| $\cdots \mathrm{C}$ |  |  |
| $\cdots \mathrm{C} / \mathrm{D}$ |  |  |
| $\cdots$ D |  |  |
| * Not rated or not available |  |  |
| Soil Rating Points |  |  |
| $\square \quad \mathrm{A}$ |  |  |
| $\square \quad \mathrm{A} / \mathrm{D}$ |  |  |
| $\square \quad \mathrm{B}$ |  |  |
| $\square \mathrm{B} / \mathrm{D}$ |  |  |

## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 17, Sep 13, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

## Hydrologic Soil Group

| Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI |  |
| :--- | :--- | :--- | ---: | ---: | :---: |
| 71 | Pring coarse sandy <br> loam, 3 to 8 percent <br> slopes | B | 90.2 | $100.0 \%$ |  |
|  |  |  |  |  |  |
| Totals for Area of Interest |  | $\mathbf{9 0 . 2}$ | $\mathbf{1 0 0 . 0 \%}$ |  |  |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## Rating Options

Aggregation Method: Dominant Condition


## Appendix B Hydrologic Calculations

## COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Existing Conditions Homestead Fil. 2 El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ

## Checked By:

Date: 7/15/22

| Basin ID | Total Area (ac) | Streets/ Paved (100\% Impervious) |  |  |  | Residential (45\%-65\% Impervious) |  |  |  | Lawns (2\% Impervious) |  |  |  | Basins Total Weighted C Values |  | Basins Total Weighted \% Imp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area <br> (ac) | Weighted \% Imp. | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area <br> (ac) | Weighted \% Imp. | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area <br> (ac) | Weighted \% Imp. |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H-1 | 5.36 | 0.90 | 0.96 | 0.03 | 0.6\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 5.32 | 2.0\% | 0.10 | 0.36 | 2.6\% |
| H-2 | 49.40 | 0.90 | 0.96 | 0.01 | 0.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 49.39 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| H-3 | 1.57 | 0.90 | 0.96 | 0.03 | 1.7\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 1.54 | 2.0\% | 0.10 | 0.37 | 3.7\% |
| H-4 | 1.85 | 0.90 | 0.96 | 0.03 | 1.4\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 1.82 | 2.0\% | 0.10 | 0.37 | 3.4\% |
| H-5 | 3.97 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 3.97 | 2.0\% | 0.09 | 0.36 | 2.0\% |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Existing Conditions Homestead Fil. 2 Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: $\overline{7 / 15 / 22}$

| SUB-BASIN |  |  |  |  |  | INITIAL/ OVERLAND |  |  | TRAVEL TIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | $\left(\mathrm{T}_{\mathrm{i}}\right.$ ) |  |  | $\left(\mathrm{T}_{\mathrm{t}}\right.$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| $\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \hline \end{gathered}$ | $\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \hline \end{aligned}$ | Hydrologic <br> Soils Group | Impervious <br> (\%) | C5 | $\mathrm{C}_{100}$ | $\begin{gathered} \hline \mathbf{L} \\ \text { (ft) } \end{gathered}$ | $\begin{aligned} & \begin{array}{l} \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \hline \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \begin{array}{c} \mathbf{t}_{\mathbf{i}} \\ (\mathbf{m i n}) \end{array} \\ \hline \end{gathered}$ | $\begin{aligned} & \mathbf{L}_{\mathbf{t}} \\ & \mathrm{ft}) \end{aligned}$ | $\begin{gathered} \begin{array}{c} \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \hline \end{array} \\ \hline \end{gathered}$ | K | $\begin{aligned} & \hline \text { VEL. } \\ & (\mathrm{ft} / \mathrm{s}) \\ & \hline \hline \end{aligned}$ | $\begin{gathered} \hline \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \\ \hline \end{gathered}$ | COMP. $\mathrm{t}_{\mathrm{c}}$ <br> (min) | TOTAL LENGTH (ft) | $\begin{array}{\|c\|} \hline \text { Urbanized }_{\mathbf{t}} \\ (\min ) \end{array}$ | $\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\mathbf{m i n}) \\ \hline \hline \end{gathered}$ |
| H-1 | 5.36 | B | 3\% | 0.10 | 0.36 | 300 | 1.0\% | 31.4 | 685 | 2.9\% | 7.0 | 3.2 | 3.6 | 35.0 | 985.0 | 32.7 | 32.7 |
| H-2 | 49.40 | B | 2\% | 0.09 | 0.36 | 130 | 1.0\% | 20.8 | 2216 | 2.5\% | 7.0 | 3.2 | 11.5 | 32.3 | 2346.0 | 50.9 | 32.3 |
| H-3 | 1.57 | B | 4\% | 0.10 | 0.37 | 130 | 1.0\% | 20.5 | 88 | 5.6\% | 7.0 | 3.2 | 0.5 | 21.0 | 218.0 | 26.0 | 21.0 |
| H-4 | 1.85 | B | 3\% | 0.10 | 0.37 | 130 | 1.0\% | 20.6 | 127 | 3.1\% | 7.0 | 3.2 | 0.7 | 21.2 | 257.0 | 26.7 | 21.2 |
| H-5 | 3.97 | B | 2\% | 0.09 | 0.36 | 130 | 1.0\% | 20.8 | 95 | 5.6\% | 7.0 | 3.2 | 0.5 | 21.3 | 225.0 | 26.4 | 21.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

NOTES:


Use a minimum $t_{c}$ value of 5 minutes for urbanized areas and a minimum $t_{c}$ value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF-3

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)
Project Name: Homestead North
Project No.: 25188.00
Subdivision: Existing Conditions Homestead Fil. 2
Calculated By: AR
Checked By:
Date: 7/15/22

| STREET | $\begin{aligned} & \text { 느 } \\ & 0 \\ & 0 \\ & .0 \\ & .0 \\ & 0 \\ & \hline \end{aligned}$ | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/ SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \hline 0 \end{aligned}$ |  |  |  |  | 듣 | $\begin{aligned} & \frac{\pi}{U} \\ & 0 \\ & \hline \end{aligned}$ |  | $$ | $\stackrel{\Im}{5}$ | $\frac{{ }_{0}^{n}}{む}$ |  | $\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{4} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\underbrace{\frac{0}{2}}_{\text {© }}$ |  | $\stackrel{\circ}{\circ}$ 0 0 0 |  | $\begin{aligned} & \Psi \\ & \pm \\ & \frac{5}{0} \\ & \frac{1}{9} \end{aligned}$ | $\begin{aligned} & \frac{0}{2} \\ & \frac{2}{2} \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & > \end{aligned}$ |  | REM ARKS |
|  | 1h | H-1 | 5.36 | 0.10 | 32.7 | 0.51 | 2.35 | 1.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2h | H-2 | 49.40 | 0.09 | 32.3 | 4.46 | 2.37 | 10.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3h | H-3 | 1.57 | 0.10 | 21.0 | 0.16 | 3.02 | 0.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4h | H-4 | 1.85 | 0.10 | 21.2 | 0.19 | 3.00 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5h | H-5 | 3.97 | 0.09 | 21.3 | 0.36 | 3.00 | 1.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Notes:
Street and Pipe C*A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Existing Conditions Homestead Fil. 2
Location: El Paso County
Design Storm: $100-\mathrm{Year}$
Project Name: Homestead North
Project No.: 25188.00
Calculated By: $\frac{251}{}$
Checked By:
Date: 7/15/22

| Description |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/ SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & Q \\ & \stackrel{C}{\bar{V}} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { U} \\ & \text { © } \\ & \text { d } \\ & \text { ¢ } \end{aligned}$ | $\begin{aligned} & \stackrel{4}{0} \\ & 8 \\ & 4 \\ & 4 \\ & 0 \\ & \frac{1}{2} \\ & \hline \end{aligned}$ |  |  | $\underset{\substack{\text { E }}}{\text { n}}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $$ | 苞 | $\underset{\substack{\text { I}}}{ }$ | $\begin{aligned} & \text { no } \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \underset{U}{0} \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { o} \\ & \frac{8}{8} \\ & 0 \\ & 0 \\ & \hline \hline \end{aligned}$ |  |  |  |  | $\begin{aligned} & \mathbb{E} \\ & \mathbb{E} \\ & \mathbb{O} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{\pi}{2} \\ & 4 \\ & \lambda \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$ | $\xrightarrow[\text { ¢ }]{\substack{\text { ¢ } \\ \text { ¢ }}}$ | REM ARKS |
|  | 1 h | H-1 | 5.36 | 0.36 | 32.7 | 1.95 | 3.95 | 7.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2h | H-2 | 49.40 | 0.36 | 32.3 | 17.79 | 3.98 | 70.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 h | H-3 | 1.57 | 0.37 | 21.0 | 0.58 | 5.07 | 2.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4h | H-4 | 1.85 | 0.37 | 21.2 | 0.68 | 5.04 | 3.4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 h | H-5 | 3.97 | 0.36 | 21.3 | 1.43 | 5.03 | 7.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Notes.
Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

## COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:
Location:

Homestead Fil. 2 - Proposed Conditions El Paso County

Project Name: Homestead North
Project No.: 25188.10
Calculated By: AR
Checked By:
Date: $\overline{11 / 10 / 22}$
OS basins only valid for proposed condition, used for interim swale calculations sections AA and BB only.


DRAINAGE - FEE CALCULATION

## Subdivision: <br> Location:

Homestead Fil. 2 - Proposed Conditions El Paso County $\qquad$ Project Name: Homestead North

Project No.: 25188.10
Calculated By: AP
Checked By:
Date: $\overline{7 / 15 / 22}$

| Basin ID | Total Area (ac) | New -Streets/ Paved ( $100 \%$ Impervious) |  |  |  | New -Residential (45\%-65\% Impervious) |  |  |  | New - Lawns (2\% Impervious) |  |  |  | Basins Total Weighted C Values |  | Basins Total Weighted \% Imp. | Imperv. Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | Weighted \% Imp. | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | Weighted \% Imp. | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area <br> (ac) | $\begin{array}{\|l\|} \hline \text { Weighted } \\ \text { \%Imp. } \end{array}$ |  |  |  |  |
| Platted Filing No. 2 Area | 36.3 | 0.90 | 0.96 | 5.16 | 14.2\% | 0.45 | 0.59 | 15.52 | 21.4\% | 0.09 | 0.36 | 9.18 | 0.5\% | 0.34 | 0.48 | 36.1\% | 13.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

STANDARD FORM SF-2
TIME OF CONCENTRATION

Subdivision: Homestead Fil. 2 - Proposed Conditions Location: El Paso County

Project Name: Homestead North
Project No.: 25188.10
Calculated By: AR
Checked By:
Date: $\overline{11 / 10 / 22}$
TRAVELTIME

|  |  |  | tc CHECK |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (URBANIZED BASINS) |  |  |  |
|  | $\begin{gathered} \mathbf{t}_{\mathrm{t}} \\ (\min ) \end{gathered}$ | $\begin{array}{c\|} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{array}$ | TOTAL LENGTH (ft) | $\begin{array}{\|c\|} \hline \text { Urbanized } \mathbf{t}_{\mathrm{c}} \\ (\mathrm{~min}) \end{array}$ | $\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min ) \\ \hline \end{gathered}$ |
|  |  |  |  |  |  |
| 8 | 3.3 | 15.5 | 443 | 28.2 | 15.5 |
| 3 | 8.9 | 27.7 | 910 | 32.4 | 27.7 |
| 1 | 13.8 | 30.9 | 1104 | 36.0 | 30.9 |
| 5 | 2.9 | 11.4 | 710 | 20.6 | 11.4 |
| 2 | 0.3 | 7.9 | 160 | 17.7 | 7.9 |
| 8 | 1.6 | 8.0 | 320 | 20.0 | 8.0 |
| 7 | 1.7 | 4.1 | 378 | 18.2 | 5.0 |
| 9 | 1.6 | 3.2 | 370 | 14.3 | 5.0 |
| 5 | 4.5 | 9.1 | 705 | 24.0 | 9.1 |
| 5 | 3.1 | 6.8 | 485 | 19.1 | 6.8 |
| 5 | 4.1 | 6.5 | 865 | 20.9 | 6.5 |
| 4 | 2.1 | 7.8 | 365 | 19.0 | 7.8 |
| 0 | 2.4 | 8.1 | 330 | 19.4 | 8.1 |
| 4 | 2.9 | 11.6 | 700 | 18.5 | 11.6 |
| 1.4 | 2.4 | 4.1 | 210 | 14.9 | 5.0 |
| . 4 | 2.4 | 9.9 | 230 | 28.5 | 9.9 |
| 8 | 10.2 | 16.6 | 530 | 24.8 | 16.6 |
| 0 | 2.4 | 5.0 | 174 | 17.9 | 5.0 |
| 0 | 3.4 | 6.2 | 230 | 20.0 | 6.2 |
| 2 | 1.1 | 10.1 | 180 | 15.1 | 10.1 |
| . 9 | 3.9 | 9.3 | 932 | 21.9 | 9.3 |
| . 0 | 1.4 | 15.9 | 185 | 26.7 | 15.9 |
|  |  |  |  |  |  |

NOTES:

$$
\begin{aligned}
& t_{c}=t_{i}+t_{t} \\
& = \\
& t_{c}=\text { computed time of concentration (minutes) } \\
& t_{t}=\text { overland (nitial) flow time (minutes) } \\
& t_{t}=\text { channelized flow time (minutes). } \\
& t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}
\end{aligned}
$$

Where:

Where:
$t_{t}=$ channclized flow time (travel time, min)
$L_{t}=$ waterway length (ft)
$S_{0}=$ waterway slope $($ (tfft $)$



Equation 6-2 $\quad t_{i}=\frac{0.395\left(1.1-C_{c}\right) \sqrt{L_{i}}}{S^{633}}$
Where
$t_{t}=$ overland ( (initial) flow time (minutes) (from Table $6-4$ )
$C=$ sund

Equation $6.4 \quad t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than $t_{c}$ from Equation $6-1$
$L_{t}=$ length of channelized flow path


Table $6-2$. NRCS Conveyance factors, K


STANDARD FORM SF-3

## STORM DRAINAGE SYSTEM DESIGN

(RATIONALM ETHOD PROCEDURE)

Subdivision: Homestead Fil. 2 - Proposed Conditions
Location: EIPaso County
Design Storm: 5 -Year

Project Name: Homestead North
Project No.: 25188.10
Calculated By:

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTALRUNOFF |  |  |  | STREET/SWALE |  |  | PIPE |  |  |  | TRAVELTIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  | $\begin{aligned} & \text { Q } \\ & \stackrel{c}{6} \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \frac{8}{8} \\ & \frac{8}{4} \end{aligned}$ |  | $\underset{\sim}{\text { g }}$ | $\begin{aligned} & \frac{y}{8} \\ & \frac{1}{4} \\ & \hline \end{aligned}$ | $\stackrel{\overparen{E}}{\stackrel{\nwarrow}{E}}$ | $\begin{aligned} & \text { 券 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \underline{c} \\ & \underset{y}{\underline{y}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \bar{\delta} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{\mathrm{x}}{0} \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \bar{\delta} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\pi}{8} \\ & \frac{8}{8} \\ & 0_{0}^{2} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \underset{U}{U} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{2} \\ & \frac{2}{2} \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$ | $\hat{\bar{c}}$ | REM ARKS |
|  | 0.2 | OS2 | 9.74 | 0.09 | 27.7 | 0.88 | 2.60 | 2.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Sect. BB <br> Offsite undeveloped runoff. Drains to Sand Creek within interim swale |
|  | 0.3 | OS3 | 21.02 | 0.09 | 30.9 | 1.89 | 2.44 | 4.6 | 30.9 | 2.77 | 2.44 | 6.8 |  |  |  |  |  |  |  |  |  |  | Sect. AA <br> Offsite undeveloped runoff. Drains to Sand Creek within interim swale |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.1b | B1. 1 | 1.24 | 0.51 | 11.4 | 0.63 | 3.94 | 2.5 |  |  |  |  | 0.00 | 0 | 2.6 |  |  |  |  | 210 | 3.2 | 1.1 | On-grade Type R Inlet, Bypass to DP 2B Tributary basins B1.1 and OS1 |
|  | 1.11 |  |  |  |  |  |  |  | 11.4 | 0.63 | 3.94 | 2.5 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R -Inlet DP 1.16 piped to DP2.1 |
|  | 0.1 | OS1 | 3.83 | 0.09 | 15.5 | 0.34 | 3.47 | 1.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff from basin OS1 sheet flows onto Perry Owens Drive |
|  | 1.2 b | B1.2 | 0.38 | 0.50 | 7.9 | 0.19 | 4.48 | 0.9 | 15.5 | 0.53 | 3.47 | 1.8 | 0.00 | 0.00 | 2.6 |  |  |  |  | 235 | 3.2 | 1.2 | On-grade Type R Inlet, Bypass to DP 1.3B Tributary basins B1.2 and OS1 |
|  | 1.21 |  |  |  |  |  |  |  | 15.5 | 0.53 | 3.47 | 1.8 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 1.2b |
|  | 2.1 |  |  |  |  |  |  |  | 15.5 | 1.16 | 3.47 | 4.0 |  |  |  | 4.0 |  | 2.0 | 24 | 487 | 2.8 | 2.9 | Piped runoff to DP 2.4 Tributary Basins B1.1 OS1 and B1.2 |
|  | 1.36 | B1. 3 | 0.45 | 0.47 | 8.0 | 0.21 | 4.46 | 0.9 | 8.0 | 0.21 | 4.46 | 0.9 |  |  |  |  |  |  |  |  |  |  | Street flow Indudes by-pass flow from DP 1.2b and direct runoff from basin B1.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 b | B2 | 0.86 | 0.55 | 5.0 | 0.47 | 5.17 | 2.4 | 8.0 | 0.68 | 4.46 | 3.0 |  |  |  |  |  |  |  |  |  |  | Street flow from Sam Bass Drive and Aspen Valley Drive Recives bypass flow from 1.1b,1.2b and direct runoff from basin B1. 3 and B2, continues in C\&g to DP- 6b |
|  | 3b | B3 | 0.23 | 0.72 | 5.0 | 0.17 | 5.17 | 0.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Street flow from Sam Bass Drive |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 b | B4 | 3.51 | 0.46 | 9.1 | 1.61 | 4.27 | 6.9 |  |  |  |  | 0.0 | 0 | 2.5 |  |  |  |  | 340 | 3.2 | 1.8 | Type R Inlet, Bypass to DP 6B |
|  | $4 i$ |  |  |  |  |  |  |  | 9.1 | 1.61 | 4.27 | 6.9 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R -Inlet from DP 4b, Piped to DP2.3 |
|  | 6 b | B6 | 3.61 | 0.55 | 6.5 | 2.00 | 4.77 | 9.5 | 8.0 | 2.85 | 4.46 | 12.7 | 5.2 | 1.167 | 2.5 |  |  |  |  | 95 | 3.2 | 0.5 | Recives by-pass flows from Basins (B1.1, B1.2 and B4 ), Direct Runoff from B1.3,B2,B3, and B6 Runoff bypassed to sump inlet at DP 9B |
|  | 61 |  |  |  |  |  |  |  | 8.0 | 1.68 | 4.46 | 7.5 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet DP 6 i |
|  | 9 b | B9 | 3.77 | 0.50 | 11.6 | 1.87 | 3.91 | 7.3 | 11.6 | 3.04 | 3.91 | 11.9 |  |  |  |  |  |  |  |  |  |  | Sump inlet Recives by-pass flows from (B1.1, B1.2 and B4 ) Direct Runoff from $\mathrm{B} 1.3, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 6$ and B 9 |
|  | 5 b | B5 | 1.11 | 0.58 | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  | 0.0 | 0 | 1.5 |  |  |  |  | 240 | 2.4 | 1.6 |  |
|  | 51 |  |  |  |  |  |  |  | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  |  |  |  |  |  |  | On-grade Type R Inlet, Bypass to DP 7b Tributary basins B5 |
|  | 2.2 |  |  |  |  |  |  |  | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  |  | 2.0 | 18 | 240 | 2.8 | 1.4 | Piped runoff to DP-2.3 Tributary basins B5 |
|  | 7 b | B7 | 1.63 | 0.54 | 7.8 | 0.88 | 4.50 | 4.0 | 7.8 | 0.88 | 4.50 | 4.0 | 0.0 | 0 | 1.6 |  |  |  |  | 340 | 2.5 | 2.2 | On-grade Type R Inlet, Bypass to DP 8B |
|  | 71 |  |  |  |  |  |  |  | 7.8 | 0.88 | 4.50 | 4.0 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 1.2b |
|  | 2.3 |  |  |  |  |  |  |  | 9.1 | 2.26 | 4.27 | 9.6 |  |  |  |  |  | 2.0 | 24 | 50 | 2.8 | 0.3 | Piped runoff <br> Tributary basins B5, and B4 |
|  | 2.4 |  |  |  |  |  |  |  | 9.4 | 3.14 | 4.22 | 13.3 |  |  |  |  |  | 2.0 | 24 | 10 | 2.8 |  | Piped runoff <br> Tributary Basins B4,B5 and B7 |

STANDARD FORM SF－3

## ORM DRAINAGE SYSTEM DESIGN

（RATIONALM ETHOD PROCEDURE）

Subdivision：Homestead Fil． 2 －Proposed Conditions
Location：EIPaso County
Design Storm：5－Year

Project Name：Homestead North
Project No．： 25188.10
Calculated By：
Calculated By：AR
cked By：
Date： $11 / 10 / 22$

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTALRUNOFF |  |  |  | STREET／SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | $\begin{array}{r} \text { 言 } \\ \text { D } \\ \text { 哥 } \\ \hline \hline \end{array}$ | $\begin{aligned} & \text { 号 } \\ & \text { 苟 } \\ & \hline \end{aligned}$ | $\begin{array}{r} \text { 导 } \\ \text { 若 } \\ \hline \hline \end{array}$ |  |  |  | $\stackrel{\widetilde{E}}{\stackrel{T}{E}}$ | $\begin{aligned} & \hat{\pi} \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{array}{\|c} \underline{\tilde{c}} \\ \hline \\ \hline \end{array}$ | $\begin{aligned} & \overline{0} \\ & \substack{6 \\ \hline \\ \hline \\ \hline} \end{aligned}$ | $\underset{\substack{\text { 들 }}}{ }$ | $\begin{aligned} & \hat{y} \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \overline{0} \\ & \substack{6 \\ \hline \\ \hline \\ \hline \\ \hline} \end{aligned}$ | $\begin{array}{\|l} \circ \\ \stackrel{0}{0} \\ 0 \\ 0 \\ \hline 0 \\ \hline \hline \end{array}$ | $\begin{aligned} & \text { 亚 } \\ & \frac{8}{8} \frac{8}{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 苞 } \\ & \text { U } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 厄 } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ |  |  |  |  | REM ARKS |
|  | 2.5 |  |  |  |  |  |  |  | 18.4 | 4.30 | 3.21 | 13.8 |  |  |  |  |  | 2.0 | 36 | 380 | 2.8 | 2.2 | Piped runoff to DP 2.6 <br> Tributary Basins B1．1，B1．2，B4，B5 and B7 |
|  | 8b | B8 | 2.14 | 0.54 | 8.1 | 1.15 | 4.45 | 5.1 | 10.1 | 1.15 | 4.12 | 4.7 | 4.7 |  | 0.9 |  |  |  |  | 125 | 1.9 | 1.1 | Street Flow，Recives bypass flow from DP 7B |
|  | 2.6 |  |  |  |  |  |  |  | 21.0 | 5.98 | 3.02 | 18.1 |  |  |  |  |  | 2.0 | 36 | 100 | 5.5 | 0.3 | Piped runoff <br> Tributary Basins B1．1，B1．2，B3，B4，B5，B6，and B7 |
|  | 2.7 |  |  |  |  |  |  |  | 21.0 | 9.02 | 3.02 | 27.2 |  |  |  |  |  | 2.0 | 36 | 3 | 5.5 | 0.0 | Piped runoff Tributary Basins $\mathrm{B} 1.1, \mathrm{~B} 1.2, \mathrm{~B}, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{B7}, \mathrm{~B} 8$ ，and $\mathrm{B9}$ |
|  | 10b | B10 | 0.22 | 0.73 | 5.0 | 0.16 | 5.17 | 0.8 | 10.1 | 1.31 | 4.12 | 5.4 |  |  |  |  |  |  |  |  |  |  | Sump inlet revices by－pass flow from 7b and runoff from 5b，8b，and 10b |
|  | 2.8 |  |  |  |  |  |  |  | 21.0 | 10.33 | 3.02 | 31.2 |  |  |  |  |  | 2.0 | 48 | 50 | 5.5 | 0.2 | Piped runoff in to forebay Tributary Basins $\mathrm{B} 1.1, \mathrm{~B} 1.2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7$ ，and $\mathrm{B9}$ |
|  | 11b | B11 | 1.67 | 0.14 | 9.9 | 0.24 | 4.15 | 1.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12b | B12 | 2.18 | 0.29 | 16.6 | 0.62 | 3.37 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 12b |
|  | 3.1 |  |  |  |  |  |  |  | 16.6 | 0.62 | 3.37 | 2.1 |  |  |  |  |  | 2.8 | 18 | 220 | 3.3 | 1.1 | Runoff from Basin B12 drains to type C inlet |
|  | 13b | B13 | 0.43 | 0.39 | 5.0 | 0.17 | 5.16 | 0.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 13b |
|  | 3.2 |  |  |  |  |  |  |  | 17.7 | 0.79 | 3.28 | 2.6 |  |  |  |  |  | 0.9 | 18 | 346 | 1.9 | 3.0 | Runoff from Basin B13 drains to type C inlet in confluence with runoff from basin B12 |
|  | 14b | B14 | 0.42 | 0.33 | 6.2 | 0.14 | 4.85 | 0.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B14 drains directly into pond B |
|  | 3.3 |  |  |  |  |  |  |  | 20.7 | 0.93 | 3.04 | 2.8 |  |  |  |  |  |  | 18 |  |  |  | Runoff from DP 3．2 Outfall into Forebay at DP 3.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  | 21.0 | 11.26 | 3.02 | 34.0 |  |  |  |  |  |  |  |  |  |  | Flow confluences into Pond B．All of Basin B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C． 1 | C－1 | 0.92 | 0.48 | 10.1 | 0.44 | 4.12 | 1.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．1．Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C－1 |
|  | C． 2 | C－2 | 1.24 | 0.40 | 9.3 | 0.50 | 4.23 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．2．Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C－2 |
|  | C． 3 | C－3 | 0.29 | 0.09 | 15.9 | 0.03 | 3.43 | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．1．Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C－1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Notes：
Street and Pipe C＊A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment＇s intensity value．
All pipes are RCP unless otherwise noted
Pipe size shown in table column

## STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIG
(RATIONAL M ETHOD PROCEDURE)
Subdivision: Homestead Fil. 2 - Proposed Conditio
Project Name: $\frac{\text { Homestead North }}{\text { Project }}$ Location: El Paso Co

Project No.: 25188.10
Project No.:
Calculated By:
Checked By:
Date:
$11 / 10 / 22$

| Description | $\begin{aligned} & \frac{匕}{0} \\ & 0 \\ & 0 \\ & \frac{5}{y} \\ & \hline 8 \\ & \hline \hline \end{aligned}$ | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/SWALE |  |  | PIPE |  |  |  | TRAVELTIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Q } \\ & \frac{\ddots}{6} \\ & \hline 8 \end{aligned}$ | $$ |  | $\stackrel{\hat{\varepsilon}}{\underline{\xi}}$ | $\begin{array}{r} \tilde{0} \\ \underset{t}{t} \\ \hline \end{array}$ | $\stackrel{\overparen{E}}{\underline{E}}$ | $\stackrel{\substack{\hat{e} \\ 0 \\ \hline}}{ }$ | $\begin{array}{r} \text { 气 } \\ \underline{y} \\ \hline \end{array}$ | $\begin{aligned} & \text { O} \\ & \underset{U}{t} \end{aligned}$ | $\begin{aligned} & \text { E. } \\ & \stackrel{y}{s} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{6} \\ & \hline 0 \end{aligned}$ |  | $\begin{aligned} & \tilde{0} \\ & \underset{\sim}{6} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \frac{\pi}{6} \\ & \frac{8}{2} \\ & \frac{8}{0^{2}} \end{aligned}$ | $\begin{aligned} & \text { Øon } \\ & \underset{U}{4} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \bar{y} \\ & \frac{4}{6} \\ & \stackrel{y}{0} \\ & \tilde{y} \\ & 0 \\ & \frac{0}{0} \end{aligned}$ | $\begin{aligned} & \mathbb{E} \\ & \text { E } \\ & \text { E } \\ & \hline \mathbb{I} \end{aligned}$ |  | $\begin{gathered} \hat{\mathrm{E}} \\ \underset{y}{\xi} \\ \hline \end{gathered}$ | REM ARKS |
|  | 0.2 | OS2 | 9.74 | 0.36 | 27.7 | 3.51 | 4.37 | 15.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Sect. BB Offsite undeveloped runoff. Drains to Sand Creek within interim swale |
|  | 0.3 | OS3 | 21.02 | 0.36 | 30.9 | 7.57 | 4.09 | 31.0 | 30.9 | 11.08 | 4.09 | 45.3 |  |  |  |  |  |  |  |  |  |  | Sect. AA <br> Offsite undeveloped runoff. Drains to Sand Creek within interim swale |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1.1b | B1. 1 | 1.24 | 0.64 | 11.4 | 0.80 | 6.61 | 5.3 |  |  |  |  | 0.00 | 0.00 | 2.6 |  |  |  |  | 210 | 3.2 | 1.1 | On-grade Type R Inlet, Bypass to DP 2B Tributary basins B1.1 and OS1 |
|  | 1.17 |  |  |  |  |  |  |  | 11.4 | 0.80 | 6.61 | 5.3 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet DP 1.1b piped to DP2.1 |
|  | 0.1 | OS1 | 3.83 | 0.36 | 15.5 | 1.38 | 5.82 | 8.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff from basin OS1 sheet flows onto Perry Owens Drive |
|  | 1.2 b | B1.2 | 0.38 | 0.64 | 7.9 | 0.24 | 7.53 | 1.8 | 15.5 | 1.62 | 5.82 | 9.43 | 0.70 | 0.12 | 2.6 |  |  |  |  | 235 | 3.2 | 1.2 | On-grade Type R Inlet, Bypass to DP 1.3B |
|  | 1.21 |  |  |  |  |  |  |  | 15.5 | 1.50 | 5.82 | 8.7 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 1.2b |
|  | 2.1 |  |  |  |  |  |  |  | 15.5 | 2.30 | 5.82 | 13.4 |  |  |  | 13.4 |  | 2.0 | 24 | 487 | 2.8 | 2.9 | Piped runoff to DP 2.4 Tributary Basins B1.1 OS1 and B1.2 |
|  | 1.36 | B1. 3 | 0.45 | 0.62 | 8.0 | 0.28 | 7.48 | 2.1 | 16.8 | 0.40 | 5.63 | 2.3 |  |  |  |  |  |  |  |  |  |  | Street flow Indudes by-pass flow from DP 1.2b and direct runoff from basin B1.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 b | B2 | 0.86 | 0.69 | 5.0 | 0.59 | 8.68 | 5.1 | 16.8 | 0.99 | 5.63 | 5.58 |  |  |  |  |  |  |  |  |  |  | Street flow from Sam Bass Drive and Aspen Valley Drive Recives bypass flow from 1.1b,1.2b and direct runoff from basin B1.3 and B2, continues in C\&g to DP- 6b |
|  | 3b | B3 | 0.23 | 0.83 | 5.0 | 0.19 | 8.68 | 1.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Street flow from Sam Bass Drive |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 b | B4 | 3.51 | 0.61 | 9.1 | 2.13 | 7.17 | 15.3 |  |  |  |  | 3.5 | 0.49 | 2.5 |  |  |  |  | 340 | 3.2 | 1.8 | Type R Inlet, Bypass to DP 6B |
|  | $4 i$ |  |  |  |  |  |  |  | 9.1 | 1.64 | 7.17 | 11.8 |  |  |  |  |  |  |  |  |  |  | Captured runott trom on-grade type R-Inlet trom DP 4b, Piped to DP2.3 |
|  | 6 b | B6 | 3.61 | 0.69 | 6.5 | 2.48 | 8.01 | 19.9 | 16.8 | 4.15 | 5.63 | 23.36 | 13.3 | 2.36 | 2.5 |  |  |  |  | 95 | 3.2 | 0.5 | Recives by-pass flows from Basins (B1.1, B1.2 and B4), Direct Runoff from B1.3,B2,B3, and B6 Runoff bypassed to sump inlet at DP $9 B$ |
|  | 6 i |  |  |  |  |  |  |  | 16.8 | 1.79 | 5.63 | 10.06 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet DP 6 i |
|  | 9b | B9 | 3.77 | 0.64 | 11.6 | 2.40 | 6.56 | 15.7 | 17.3 | 4.76 | 5.56 | 26.46 |  |  |  |  |  |  |  |  |  |  | Sump inlet Recives by-pass flows from (B1.1, B1.2 and B4) Direct Runoff from B1.3, $\mathrm{B} 2, \mathrm{B3}, \mathrm{~B} 6$ and $\mathrm{B9}$ |
|  | 5b | B5 | 1.11 | 0.70 | 6.8 | 0.78 | 7.90 | 6.2 |  |  |  |  | 1.2 | 0.15 | 1.5 |  |  |  |  | 240 | 2.4 | 1.6 |  |
|  | 5 i |  |  |  |  |  |  |  | 6.8 | 0.63 | 7.90 | 5.0 |  |  |  |  |  |  |  |  |  |  | On-grade Type R Inlet, Bypass to DP 7b Tributary basins B5 |
|  | 2.2 |  |  |  |  |  |  |  | 6.8 | 0.63 | 7.90 | 5.0 |  |  |  |  |  | 2.0 | 18 | 240 | 2.8 | 1.4 | Piped runoff to DP-2.3 Tributary basins B5 |
|  | 7 b | B7 | 1.63 | 0.67 | 7.8 | 1.09 | 7.55 | 8.2 | 8.5 | 1.24 | 7.36 | 9.1 | 1.4 | 0.19 | 1.6 |  |  |  |  | 340 | 2.5 | 2.2 | On-grade Type R Inlet, Bypass to DP 8B |
|  | 7 i |  |  |  |  |  |  |  | 8.5 | 1.05 | 7.36 | 7.7 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 1.2b |
|  | 2.3 |  |  |  |  |  |  |  | 9.1 | 2.27 | 7.17 | 16.3 |  |  |  |  |  | 2.0 |  | 50 | 2.8 | 0.3 | Piped runoff Tributary basins B5, and B4 |
|  | 2.4 |  |  |  |  |  |  |  | 9.4 | 3.32 | 7.09 | 23.5 |  |  |  |  |  | 2.0 | 24 | 10 | 2.8 |  | Piped runoff Tributary Basins B4,B5 and B7 |

## STANDARD FORM SF－3

 STORM DRAINAGE SYSTEM DESIG（RATIONAL M ETHOD PROCEDURE）

Subdivision：Homestead Fil． 2 －Proposed Conditions
Project Name：$\frac{H 0 m e s t e a d ~ N o r t h ~}{25108}$ Location：ETPaso Cou

Project No．： 25188.10
Calculated By： Calculated By：
hecked By：
Date： $11 / 10 / 22$

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET／SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  | $\begin{array}{\|l} 0 \\ \text { 旨 } \\ 0 \\ \hline \end{array}$ | $$ |  | $\underset{\sim}{\underline{\varepsilon}}$ |  | $\stackrel{\substack{\tilde{E}}}{\underline{E}}$ | $\begin{aligned} & \text { 忽 } \\ & \hline \hline \end{aligned}$ | $\begin{array}{r} \hat{c} \\ \underline{\xi} \\ \hline \end{array}$ |  | $\begin{aligned} & \text { E. } \\ & \stackrel{y}{c} \end{aligned}$ | $\begin{array}{r} \stackrel{\pi}{6} \\ \underline{0} \\ \hline \end{array}$ |  |  | $\begin{aligned} & \text { 巳} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \frac{\sqrt{3}}{8} \\ & \frac{8}{0_{2}^{2}} \end{aligned}$ | $\begin{aligned} & \frac{\tilde{0}}{\substack{2}} \\ & \underline{E} \end{aligned}$ | $\begin{aligned} & \text { 巳 } \\ & \stackrel{0}{0} \\ & \frac{0}{0} \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{2} \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$ | 䂞 | REM ARKS |
|  | 2.5 |  |  |  |  |  |  |  | 18.4 | 5.62 | 5.39 | 30.3 |  |  |  |  |  | 2.0 | 36 | 380 | 2.8 | 2.2 | Piped runoff to DP 2．6 Tributary Basins B1．1，B1．2，B4，B5 and B7 |
|  | 8 b | B8 | 2.14 | 0.66 | 8.1 | 1.42 | 7.47 | 10.6 | 10.1 | 1.61 | 6.92 | 11.1 | 11.1 |  | 0.9 |  |  |  |  | 125 | 1.9 | 1.1 | Street Flow，Recives bypass flow from DP 7B |
|  | 2.6 |  |  |  |  |  |  |  | 20.7 | 7.41 | 5.10 | 37.8 |  |  |  |  |  | 2.0 | 36 | 100 | 5.5 | 0.3 | Piped runoff Tributary Basins B1，1，B1 2，B3，B4，B5，B6 and B7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Piped runoff |
|  | 2.7 |  |  |  |  |  |  |  | 21.0 | 12.17 | 5.07 | 61.7 |  |  |  |  |  | 2.0 | 36 | 3 | 5.5 | 0.0 | Tributary Basins B1．1，B1．2， $33, \mathrm{B4}, \mathrm{B5}, \mathrm{B6}, \mathrm{B7}, \mathrm{B8}$ ，and B9 |
|  | 10b | B10 | 0.22 | 0.83 | 5.0 | 0.19 | 8.68 | 1.6 | 10.1 | 1.80 | 6.92 | 12.5 |  |  |  |  |  |  |  |  |  |  | Sump inlet revices by－pass flow from 7 b and runoff from $5 \mathrm{~b}, 8 \mathrm{~b}$ ，and 10 b |
|  | 2.8 |  |  |  |  |  |  |  | 21.0 | 13.97 | 5.07 | 70.8 |  |  |  |  |  | 2.0 | 48 | 50 | 5.5 | 0.2 | Piped runott in to torebay Tributary Basins B1．1，B1．2，B3，B4，B5，B6，B7，and B9 |
|  | 11b | B11 | 1.67 | 0.39 | 9.9 | 0.66 | 6.96 | 4.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12b | B12 | 2.18 | 0.49 | 16.6 | 1.06 | 5.66 | 6.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 12b |
|  | 3.1 |  |  |  |  |  |  |  | 16.6 | 1.06 | 5.66 | 6.0 |  |  |  |  |  | 2.8 | 18 | 220 | 3.3 | 1.1 | Runoff from Basin B12 drains to type C inlet |
|  | 13b | B13 | 0.43 | 0.55 | 5.0 | 0.24 | 8.66 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 13b |
|  | 3.2 |  |  |  |  |  |  |  | 17.7 | 1.30 | 5.50 | 7.1 |  |  |  |  |  | 0.9 | 18 | 346 | 1.9 | 3.0 | Runoff from Basin B13 drains to type C inlet in confluence with runoff from basin B12 |
|  | 14b | B14 | 0.42 | 0.52 | 6.2 | 0.21 | 8.14 | 1.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B14 drains directly into pond B |
|  | 3.3 |  |  |  |  |  |  |  | 20.7 | 1.51 | 5.10 | 7.7 |  |  |  |  |  |  | 18 |  |  |  | Runoff from DP 3．2 Outfalls into Forebay at DP 3.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  | 21.0 | 15.48 | 5.07 | 78.4 |  |  |  |  |  |  |  |  |  |  | Flow confluences into Pond B．All of Basin B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C． 1 | C－1 | 0.92 | 0.61 | 10.1 | 0.57 | 6.92 | 3.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．1．Runoff treated in Homestead North Fliing 1 Pond C Tributary Basin C－1 |
|  | C． 2 | C－2 | 1.24 | 0.57 | 9.3 | 0.71 | 7.10 | 5.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．2．Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C－2 |
|  | C． 3 | C－3 | 0.29 | 0.36 | 15.9 | 0.10 | 5.76 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C．1．Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C－1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^0]COM POSITE \% IMPERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:
Location:

Homestead Fil. 2 - Future Conditions El Paso County

Project Name: Homestead North
Project No.: 25188.10
Calculated By:
Checked By:
Date: $\overline{11 / 10 / 22}$ lations except swale sections AA and BB.

| Basin ID | Total Area (ac) | Streets/ Paved ( $\mathbf{1 0 0 \%}$ Impervious) |  |  |  | Residential (40\%-65\% Impervious) |  |  |  | Lawns (2\% Impervious) |  |  |  | Basins Total Weighted C Values |  | Basins Total Weighted \% Imp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \end{gathered}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B1.1 | 1.24 | 0.90 | 0.96 | 0.25 | 20.1\% | 0.45 | 0.59 | 0.89 | 32.2\% | 0.09 | 0.36 | 0.10 | 0.2\% | 0.51 | 0.64 | 52.4\% |
| B1.2 | 0.42 | 0.90 | 0.96 | 0.26 | 61.3\% | 0.45 | 0.59 | 0.16 | 17.4\% | 0.09 | 0.36 | 0.00 | 0.0\% | 0.73 | 0.82 | 78.7\% |
| B1.3 | 0.43 | 0.90 | 0.96 | 0.13 | 29.7\% | 0.45 | 0.59 | 0.19 | 19.7\% | 0.09 | 0.36 | 0.11 | 0.5\% | 0.49 | 0.64 | 49.9\% |
| B2 | 0.86 | 0.90 | 0.96 | 0.33 | 38.6\% | 0.45 | 0.59 | 0.35 | 18.5\% | 0.09 | 0.36 | 0.17 | 0.4\% | 0.55 | 0.69 | 57.5\% |
| B3 | 0.23 | 0.90 | 0.96 | 0.18 | 77.6\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.05 | 0.4\% | 0.72 | 0.83 | 78.1\% |
| B4 | 3.51 | 0.90 | 0.96 | 0.45 | 12.9\% | 0.45 | 0.59 | 2.58 | 33.1\% | 0.09 | 0.36 | 0.48 | 0.3\% | 0.46 | 0.61 | 46.3\% |
| B5 | 1.11 | 0.90 | 0.96 | 0.35 | 31.7\% | 0.45 | 0.59 | 0.73 | 29.5\% | 0.09 | 0.36 | 0.03 | 0.1\% | 0.58 | 0.70 | 61.2\% |
| B6 | 3.61 | 0.90 | 0.96 | 1.25 | 34.7\% | 0.45 | 0.59 | 1.85 | 23.0\% | 0.09 | 0.36 | 0.51 | 0.3\% | 0.55 | 0.69 | 58.0\% |
| B7 | 1.63 | 0.90 | 0.96 | 0.43 | 26.6\% | 0.45 | 0.59 | 1.07 | 29.4\% | 0.09 | 0.36 | 0.13 | 0.2\% | 0.54 | 0.67 | 56.2\% |
| B8 | 2.14 | 0.90 | 0.96 | 0.50 | 23.3\% | 0.45 | 0.59 | 1.53 | 32.2\% | 0.09 | 0.36 | 0.11 | 0.1\% | 0.54 | 0.66 | 55.6\% |
| B9 | 3.77 | 0.90 | 0.96 | 0.80 | 21.2\% | 0.45 | 0.59 | 2.44 | 42.1\% | 0.09 | 0.36 | 0.53 | 0.3\% | 0.50 | 0.64 | 63.6\% |
| B10 | 0.22 | 0.90 | 0.96 | 0.18 | 79.1\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.05 | 0.4\% | 0.73 | 0.83 | 79.5\% |
| B11 | 1.67 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.25 | 9.7\% | 0.09 | 0.36 | 1.42 | 1.7\% | 0.14 | 0.39 | 11.4\% |
| B12 | 2.18 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 1.19 | 35.5\% | 0.09 | 0.36 | 0.99 | 0.9\% | 0.29 | 0.49 | 36.4\% |
| B13 | 0.43 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.35 | 53.4\% | 0.09 | 0.36 | 0.08 | 0.4\% | 0.39 | 0.55 | 53.8\% |
| B14 | 0.42 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.28 | 43.9\% | 0.09 | 0.36 | 0.14 | 0.6\% | 0.33 | 0.52 | 44.5\% |
| F1 | 2.08 | 0.90 | 0.96 | 0.32 | 15.6\% | 0.30 | 0.50 | 1.42 | 27.2\% | 0.09 | 0.36 | 0.34 | 0.3\% | 0.36 | 0.55 | 43.1\% |
| F2 | 1.37 | 0.90 | 0.96 | 0.21 | 15.4\% | 0.30 | 0.50 | 1.11 | 32.3\% | 0.09 | 0.36 | 0.05 | 0.1\% | 0.38 | 0.57 | 47.8\% |
| F3 | 0.08 | 0.90 | 0.96 | 0.08 | 100.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.00 | 0.0\% | 0.90 | 0.96 | 100.0\% |
| F4 | 0.06 | 0.90 | 0.96 | 0.06 | 100.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.00 | 0.0\% | 0.90 | 0.96 | 100.0\% |
| F5 | 0.69 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.69 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| Pond B | 28.15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.9\% |
| C-1 | 0.92 | 0.90 | 0.96 | 0.06 | 6.6\% | 0.45 | 0.59 | 0.86 | 60.2\% | 0.09 | 0.36 | 0.01 | 0.0\% | 0.48 | 0.61 | 66.8\% |
| C-2 | 1.24 | 0.90 | 0.96 | 0.13 | 10.8\% | 0.45 | 0.59 | 0.78 | 40.8\% | 0.09 | 0.36 | 0.33 | 0.5\% | 0.40 | 0.57 | 52.1\% |
| C-3 | 0.29 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 0.29 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| SC | 10.09 | 0.90 | 0.96 | 0.00 | 0.0\% | 0.45 | 0.59 | 0.00 | 0.0\% | 0.09 | 0.36 | 10.09 | 2.0\% | 0.09 | 0.36 | 2.0\% |

## STANDARD FORM SF-2

 TIME OF CONCENTRATIONsubdivision: Homestead Fil. 2 - Future Conditions Location: El Paso County

Project Name: Homestead North
Project No.: $\frac{\text { Homestead }}{25188.10}$
Proulated By: $\frac{\text { ARJ }}{}$
Checked By:
Date: $\overline{11 / 10 / 2}$
Dat
TRAVELTIME $\quad$ tc CHECK

| SUB-BASIN |  |  |  |  |  | INITIAL OVERLAND |  |  | TRAVELTIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | ( $\mathrm{T}_{\text {) }}$ |  |  | ( $\mathrm{t}_{\mathrm{t}}$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| $\begin{aligned} & \text { BASIN } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$ | Hydrologic Soils Group | $\begin{array}{\|c\|} \hline \text { Impervious } \\ \text { (\%) } \end{array}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | $\begin{aligned} & \overline{\mathbf{L}} \\ & (\mathrm{ft}) \end{aligned}$ | So <br> (\%) | $\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min ) \\ \hline \end{gathered}$ | $\begin{aligned} & \mathbf{L}_{\mathrm{t}} \\ & \text { (ft) } \end{aligned}$ | $\begin{aligned} & \hline \mathbf{S}_{\mathbf{t}} \\ & (\%) \end{aligned}$ | K | $\begin{aligned} & \mathrm{VEL} . \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$ | $\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min ) \\ \hline \end{gathered}$ | COMP. $\mathrm{t}_{\mathrm{c}}$ <br> (min) | $\begin{array}{c\|} \hline \text { TOTAL } \\ \text { LENGTH }(\mathrm{ft}) \\ \hline \end{array}$ | $\begin{gathered} \text { Urbanized }^{\prime} \mathbf{t}_{\boldsymbol{c}} \\ (\min ) \end{gathered}$ | $\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min ) \end{gathered}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B1.1 | 1.24 | B | 52\% | 0.51 | 0.64 | 100 | 2.0\% | 8.5 | 300 | 2.1\% | 20.0 | 2.9 | 1.7 | 10.2 | 400 | 19.2 | 10.2 |
| B1.2 | 0.42 | B | 79\% | 0.73 | 0.82 | 100 | 3.0\% | 4.7 | 60 | 2.5\% | 20.0 | 3.2 | 0.3 | 5.0 | 160 | 12.9 | 5.0 |
| B1.3 | 0.43 | B | 50\% | 0.49 | 0.64 | 50 | 2.0\% | 6.2 | 270 | 2.0\% | 20.0 | 2.8 | 1.6 | 7.8 | 320 | 19.5 | 7.8 |
| B2 | 0.86 | B | 58\% | 0.55 | 0.69 | 9.5 | 2.0\% | 2.4 | 368 | 3.4\% | 20.0 | 3.7 | 1.7 | 4.1 | 378 | 18.2 | 5.0 |
| B3 | 0.23 | B | 78\% | 0.72 | 0.83 | 9.5 | 2.0\% | 1.7 | 360 | 3.7\% | 20.0 | 3.9 | 1.6 | 3.2 | 370 | 14.3 | 5.0 |
| B4 | 3.51 | B | 46\% | 0.46 | 0.61 | 25 | 2.0\% | 4.6 | 680 | 1.6\% | 20.0 | 2.5 | 4.5 | 9.1 | 705 | 24.0 | 9.1 |
| B5 | 1.11 | B | 61\% | 0.58 | 0.70 | 25 | 2.0\% | 3.7 | 460 | 1.5\% | 20.0 | 2.5 | 3.1 | 6.8 | 485 | 19.1 | 6.8 |
| B6 | 3.61 | B | 58\% | 0.55 | 0.69 | 9.5 | 2.0\% | 2.4 | 855 | 3.0\% | 20.0 | 3.5 | 4.1 | 6.5 | 865 | 20.9 | 6.5 |
| B7 | 1.63 | B | 56\% | 0.54 | 0.67 | 50 | 2.0\% | 5.7 | 315 | 1.5\% | 20.0 | 2.4 | 2.1 | 7.8 | 365 | 19.0 | 7.8 |
| B8 | 2.14 | B | 56\% | 0.54 | 0.66 | 50 | 2.0\% | 5.7 | 280 | 1.0\% | 20.0 | 2.0 | 2.4 | 8.1 | 330 | 19.4 | 8.1 |
| B9 | 3.77 | B | 64\% | 0.50 | 0.64 | 100 | 2.0\% | 8.7 | 600 | 2.9\% | 20.0 | 3.4 | 2.9 | 11.6 | 700 | 18.5 | 11.6 |
| B10 | 0.22 | B | 80\% | 0.73 | 0.83 | 9.5 | 2.0\% | 1.6 | 200 | 0.5\% | 20.0 | 1.4 | 2.4 | 4.1 | 210 | 14.9 | 5.0 |
| B11 | 1.67 | B | 11\% | 0.14 | 0.39 | 30 | 2.0\% | 7.5 | 200 | 0.5\% | 20.0 | 1.4 | 2.4 | 9.9 | 230 | 28.5 | 9.9 |
| B12 | 2.18 | B | 36\% | 0.29 | 0.49 | 30 | 2.0\% | 6.4 | 500 | 1.4\% | 7.0 | 0.8 | 10.2 | 16.6 | 530 | 24.8 | 16.6 |
| B13 | 0.43 | B | 54\% | 0.39 | 0.55 | 30 | 20.0\% | 2.6 | 144 | 2.0\% | 7.0 | 1.0 | 2.4 | 5.0 | 174 | 17.9 | 5.0 |
| B14 | 0.42 | B | 45\% | 0.33 | 0.52 | 30 | 20.0\% | 2.8 | 200 | 2.0\% | 7.0 | 1.0 | 3.4 | 6.2 | 230 | 20.0 | 6.2 |
| C-1 | 0.92 | B | 67\% | 0.48 | 0.61 | 100 | 2.0\% | 9.0 | 80 | 3.0\% | 7.0 | 1.2 | 1.1 | 10.1 | 180 | 15.1 | 10.1 |
| C-2 | 1.24 | B | 52\% | 0.40 | 0.57 | 30 | 2.0\% | 5.5 | 902 | 3.8\% | 20.0 | 3.9 | 3.9 | 9.3 | 932 | 21.9 | 9.3 |
| C-3 | 0.29 | B | 2\% | 0.09 | 0.36 | 100 | 2.0\% | 14.5 | 85 | 2.0\% | 7.0 | 1.0 | 1.4 | 15.9 | 185 | 26.7 | 15.9 |
| F1 | 2.08 | B | 43\% | 0.36 | 0.55 | 100 | 2.0\% | 10.6 | 340 | 3.8\% | 20.0 | 3.9 | 1.5 | 12.1 | 440 | 20.6 | 12.1 |
| F2 | 1.37 | B | 48\% | 0.38 | 0.57 | 100 | 2.0\% | 10.3 | 340 | 3.8\% | 20.0 | 3.9 | 1.5 | 11.7 | 440 | 19.7 | 11.7 |
| F3 | 0.08 | B | 100\% | 0.90 | 0.96 | 5 | 2.0\% | 0.6 | 87 | 0.9\% | 20.0 | 1.9 | 0.8 | 1.4 | 92 | 9.7 | 5.0 |
| F4 | 0.06 | B | 100\% | 0.90 | 0.96 | 5 | 2.0\% | 0.6 | 87 | 0.9\% | 20.0 | 1.9 | 0.8 | 1.4 | 92 | 9.7 | 5.0 |
| F5 | 0.69 | B | 2\% | 0.09 | 0.36 | 10 | 4.0\% | 3.6 | 40 | 8.0\% | 7.0 | 2.0 | 0.3 | 4.0 | 50 | 25.9 | 5.0 |
| SC | 10.09 | B | 2\% | 0.09 | 0.36 | - | - | - |  | - | - | $\cdots$ | - |  | - |  | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

NOTES:
Where:
$\qquad$
$=$ oveclad ( fieitia) fox tium (minutes)
$t=$ channelized fow wime ( ninutes).
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where:
$=$ clameneized fow time (tavel ime, mini)
watcruy slopec (tfit


Equation 6.2

## $t_{i}=\frac{0.395\left(1.1-c_{i}\right) \sqrt{L}}{s_{e}^{83}}$

Where:


Equation $6.4 \quad t=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S}}$
Where:




STORM CAD AND HYDRAULC CALULATIONS WERE

## ORM DRAINAGE SYSTEM DESIGN

（RATIONAL M ETHOD PROCEDURE）

Subdivision：Homestead Fil． 2 －Future Conditions
Project Name：Homestead North
Project No．： $\begin{aligned} & 25188 . \\ & \text { Calculated By：}\end{aligned}$ ARJ
Location：El Paso County
esign Storm： 5 －Year
Checked By：
Date：
$11 / 10 / 22$

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET／SWALE |  |  | PIPE |  |  |  | TRAVELTIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  | $\begin{array}{\|l} \frac{0}{1} \\ \text { 気 } \\ \hline \end{array}$ | $\begin{aligned} & \text { 导 } \\ & \text { 菏 } \\ & \hline \end{aligned}$ |  | $\underset{\substack{\text { ç } \\ \hline}}{ }$ | $$ | $\stackrel{\overparen{E}}{\stackrel{\nwarrow}{E}}$ | $\begin{array}{r} \stackrel{\pi}{0} \\ 0 \\ \hline \end{array}$ | $\begin{aligned} & \text { 둘 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{\tilde{\theta}}{\substack{4 \\ t}} \\ & \hline \end{aligned}$ | $\underset{\substack{\text { 들 }}}{ }$ | $\begin{aligned} & \hat{\pi} \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{\tilde{0}}{4} \\ & t \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \frac{\pi}{6} \\ & \frac{8}{8} \\ & 0_{0}^{2} \end{aligned}$ | $\begin{aligned} & \text { 苞 } \\ & \underset{U}{t} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ó } \\ & \text { ö } \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$ |  | $\begin{array}{\|l\|l} \mathbb{E} \\ \text { E } \\ \text { g } \\ \hline \end{array}$ | $\begin{aligned} & \frac{0}{2} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$ | $\frac{\bar{\varepsilon}}{\underline{\xi}}$ | REM ARKS |
|  | 1 F | F1 | 2.08 | 0.36 | 12.1 | 0.75 | 3.84 | 2.9 |  |  |  |  | 2.9 | 2.08 | 3 |  |  |  |  | 240 | 3.5 | 1.2 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Captured at on grade type R inlet at DP1．1B |
|  | 1.16 | B1． 1 | 1.24 | 0.51 | 10.2 | 0.63 | 4.10 | 2.6 | 13.3 | 1.38 | 3.71 | 5.1 | 0.0 | 0.00 | 2.6 |  |  |  |  | 210 | 3.2 | 1.1 | Tributary basins B1．1 and F1 |
|  | 1.11 |  |  |  |  |  |  |  | 13.3 | 1.38 | 3.71 | 5.1 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on－grade type R－Inlet DP 1．1b piped to DP2．1 |
|  | 2 F | F2 | 1.37 | 0.38 | 11.7 | 0.53 | 3.89 | 2.1 |  |  |  |  | 2.1 | 0.38 | 3 |  |  |  |  | 240 | 3.5 | 1.2 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Captured at on grade type R inlet at DP1．2B |
|  | 1.2 b | B1． 2 | 0.42 | 0.73 | 5.0 | 0.30 | 5.16 | 1.5 | 12.9 | 0.83 | 3.75 | 3.1 | 0.0 | 0.00 | 2.2 |  |  |  |  | 60 | 3.0 | 0.3 | On－grade Type R Inlet，Bypass to DP 1．3B Tributary basins B1．2 and F2．Drains to DP 2B |
|  | 1.21 |  |  |  |  |  |  |  | 13.3 | 0.83 | 3.71 | 3.1 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on－grade type R－Inlet from DP 1．2b |
|  | 2.1 |  |  |  |  |  |  |  | 13.3 | 2.21 | 3.71 | 8.2 |  |  |  | 8.2 |  | 2.0 | 24 | 487 | 2.8 | 2.9 | Piped runoff to DP 2.4 <br> Tributary Basins B1．1 and B1．2＋（F1，F2） |
|  | 3 F | F3 | 0.08 | 0.90 | 5.0 | 0.07 | 5.17 | 0.4 |  |  |  |  | 0.4 | 0.90 | 3 |  |  |  |  | 150 | 3.5 | 0.7 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Runoff drains from street to residential area to design point 3F．Drains to design point 1．3B |
|  | 1.3 b | B1． 3 | 0.43 | 0.49 | 7.8 | 0.21 | 4.50 | 0.9 | 13.2 | 0.28 | 3.71 | 1.0 | 1.0 | 0.49 | 2.3 |  |  |  |  | 160 | 3.0 | 0.9 | Street flow Indudes by－pass flow from DP 1．2b and direct runoff from basin B1．3 and runoff from Basin F3 |
|  | 2 b | B2 | 0.86 | 0.55 | 5.0 | 0.47 | 5.17 | 2.4 | 14.1 | 0.75 | 3.61 | 2.7 | 2.7 | 0.75 | 4.6 |  |  |  |  | 480 | 4.3 | 1.9 | Street flow from Sam Bass Drive and Aspen Valley Drive Recives bypass flow from 1．1b，1．2b and direct runoff from basin B1． 3 and B2，continues in C\＆g to DP－6b |
|  | 3b | B3 | 0.23 | 0.72 | 5.0 | 0.17 | 5.17 | 0.9 |  |  |  |  | 0.9 | 0.72 | 4.6 |  |  |  |  | 430 | 4.3 | 1.7 | Street flow from Sam Bass Drive．Runoff drains to design point 6 B via C \＆ G |
|  |  | F5 | 0.69 | 0.09 | 5.0 | 0.06 | 5.17 | 0.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff drains across future grass open space to DP 4B |
|  | 4 b | B4 | 3.51 | 0.46 | 9.1 | 1.61 | 4.27 | 6.9 | 9.1 | 1.67 | 4.27 | 7.1 | 0.0 | 0.00 | 2.5 |  |  |  |  | 340 | 3.2 | 1.8 | Type R Inlet，Bypass to DP 6B |
|  | $4 i$ |  |  |  |  |  |  |  | 9.1 | 1.61 | 4.27 | 6.9 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on－grade type R－Inlet from DP 4b，Piped to DP2． 3 |
|  | 4F | F4 | 0.06 | 0.90 | 5.0 | 0.05 | 5.17 | 0.3 |  |  |  |  | 0.3 | 0.90 | 5 |  |  |  |  | 750 | 4.5 | 2.8 | Future runoff from Homestead North at Sterling Ranch Filing 3 Residential Area Runoff drains from street to residential area to design point 6 b |
|  | 6 b | B6 | 3.61 | 0.55 | 6.5 | 2.00 | 4.77 | 9.5 | 16.0 | 2.97 | 3.43 | 10.2 | 1.4 | 0.409 | 2.5 |  |  |  |  | 95 | 3.2 | 0.5 | Recives by－pass flows from Basins（B1．1，B1．2 and B4，F1，F2 ），Direct Runoff from B1．3，B2，B3，and B6 Runoff bypassed to sump inlet at DP 9B |
|  | 61 |  |  |  |  |  |  |  | 16.0 | 2.56 | 3.43 | 8.8 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on－grade type R－Inlet DP 6 i |
|  | 9 b | B9 | 3.77 | 0.50 | 11.6 | 1.87 | 3.91 | 7.3 | 16.5 | 2.28 | 3.38 | 7.7 |  |  |  |  |  |  |  |  |  |  | Sump inlet Recives by－pass flows from（B1．1，B1．2 and B4 ） Direct Runoff from $\mathrm{B} 1.3, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 6$ and $\mathrm{B9}$ |
|  | 5b | B5 | 1.11 | 0.58 | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  | 0.0 | 0 | 1.5 |  |  |  |  | 240 | 2.4 | 1.6 | Runoff drains to on grade type R inlet at DP 5b By－pass runoff drains to DP 7B |
|  | 51 |  |  |  |  |  |  |  | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  |  |  |  |  |  |  | On－grade Type R Inlet，Bypass to DP 7b Tributary basins B5 |
|  | 2.2 |  |  |  |  |  |  |  | 6.8 | 0.65 | 4.70 | 3.1 |  |  |  |  |  | 2.0 | 18 | 240 | 2.8 | 1.4 | Piped runoff to DP－2．3 Tributary basins B5 |
|  | 7b | B7 | 1.63 | 0.54 | 7.8 | 0.88 | 4.50 | 4.0 | 7.8 | 0.88 | 4.50 | 4.0 | 0.0 | 0 | 1.6 |  |  |  |  | 340 | 2.5 | 2.2 | On－grade Type R Inlet，Bypass to DP 8B |
|  | 71 |  |  |  |  |  |  |  | 7.8 | 0.88 | 4.50 | 4.0 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on－grade type R－Inlet from DP 7b． No by－pass runoff recived in the 5 year event |
|  | 2.3 |  |  |  |  |  |  |  | 9.1 | 2.26 | 4.27 | 9.6 |  |  |  |  |  | 2.0 | 24 | 50 | 2.8 |  | Piped runoff <br> Tributary basins $\mathrm{B5} 5 \mathrm{~B} 4$ ，and $\mathrm{F5}$ |

STORM CAD AND HYDRAULIC CALULATIONS WERE MODELED IN THE FUTURE DEVELOPED CONDITION DUE

Subdivision: Homestead Fil. 2 - Future Conditions Location: ElPaso County
Design Storm: 5 -Year

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)
Project Name: Homestead North
Project No.: 25188.10
calculated By:
Checked
cked By:
Date: $11 / 10 / 22$

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/SWALE |  |  | PIPE |  |  |  | TRAVELTIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  | $\begin{aligned} & \stackrel{y}{8} \\ & \text { 若 } \\ & \hline \end{aligned}$ |  | $\overline{\underline{\xi}}$ | $\begin{aligned} & \frac{y}{4} \\ & \frac{1}{4} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { E. } \\ & \stackrel{y}{s} \end{aligned}$ | $\begin{aligned} & \hat{\pi} \\ & 0 \\ & \hline \end{aligned}$ |  |  |  | $\begin{array}{r} \widehat{\pi} \\ 0 \\ \hline 0 \end{array}$ |  | $\begin{aligned} & \frac{\tilde{0}}{4} \\ & t \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{\tilde{y}}{8} \\ & \frac{8}{8} \\ & 0^{\frac{8}{2}} \end{aligned}$ | $\begin{aligned} & \text { ơ } \\ & \text { t } \\ & \hline \end{aligned}$ | $\begin{array}{\|l} \stackrel{\circ}{\circ} \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ \hline \end{array}$ |  |  | $\begin{aligned} & \text { 苞 } \\ & 0 \\ & 0.0 \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$ |  | REM ARKS |
|  | 2.4 |  |  |  |  |  |  |  | 9.4 | 3.14 | 4.22 | 13.3 |  |  |  |  |  | 2.0 | 36 | 10 | 2.8 | 0.1 | Piped runoff <br> Tributary Basins B4,B5, B7, and F5 |
|  | 2.5 |  |  |  |  |  |  |  | 16.1 | 5.35 | 3.41 | 18.3 |  |  |  |  |  | 2.0 | 36 | 380 | 2.8 | 2.2 | Piped runoff to DP 2.6. Runoff confluenced w/ upstream lateral at DP 2.1 <br> Tributary Basins B1.1, B1.2, B4, B5, B7,F1, F2 and F5 |
|  | 8 b | B8 | 2.14 | 0.54 | 8.1 | 1.15 | 4.45 | 5.1 | 10.1 | 1.15 | 4.12 | 4.7 | 4.7 |  | 0.9 |  |  |  |  | 125 | 1.8 | 1.1 | Street Flow, Recives bypass flow from DP 7B. Goes to DP 10B |
|  | 2.6 |  |  |  |  |  |  |  | 18.4 | 7.91 | 3.22 | 25.5 |  |  |  |  |  | 2.0 | 36 | 100 | 2.8 | 0.6 | Piped runoff <br> Tributary Basins B1.1, B1.2,B3, B4, B5, B6, and B7+(F1,F2,F3,F4 and F5) |
|  | 2.7 |  |  |  |  |  |  |  | 19.0 | 10.19 | 3.17 | 32.3 |  |  |  |  |  | 2.0 | 36 | 3 | 5.5 | 0.0 | Piped runoff Tributary Basins $\mathrm{B} 1.1, \mathrm{~B} 1.2, \mathrm{B3}, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7, \mathrm{~B} 8$, and $\mathrm{B9}+(\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~F} 3, \mathrm{~F} 4$ and F 5$)$ |
|  | 10b | B10 | 0.22 | 0.73 | 5.0 | 0.16 | 5.17 | 0.8 | 10.1 | 1.31 | 4.12 | 5.4 |  |  |  |  |  |  |  |  |  |  | Sump inlet revices by-pass flow from 7 b and runoff from $55,8 \mathrm{~b}$, and 10b |
|  | 2.8 |  |  |  |  |  |  |  | 19.0 | 11.50 | 3.17 | 36.5 |  |  |  |  |  | 2.0 | 48 | 50 | 5.5 | 0.2 | Piped runoff in to forebay Tributary Basins B1.1, B1.2,B3, B4, B5,B6,B7, and B9+(F1,F2,F3,F4 and F5) |
|  | 11b | B11 | 1.67 | 0.14 | 9.9 | 0.24 | 4.15 | 1.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12b | B12 | 2.18 | 0.29 | 16.6 | 0.62 | 3.37 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 12b, a type c area inlet. |
|  | 3.1 |  |  |  |  |  |  |  | 16.6 | 0.62 | 3.37 | 2.1 |  |  |  |  |  | 2.8 | 18 | 220 | 3.3 | 1.1 | Runoff from Basin B12 drains to type C inlet, piped to DP 3.2 |
|  | 13b | B13 | 0.43 | 0.39 | 5.0 | 0.17 | 5.16 | 0.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 13b |
|  | 3.2 |  |  |  |  |  |  |  | 17.7 | 0.79 | 3.28 | 2.6 |  |  |  |  |  | 0.9 | 18 | 346 | 1.9 | 3.0 | Runoff from Basin B13 drains to type C inlet in confluence with runoff from basin B12/DP 3.1 |
|  | 14b | B14 | 0.42 | 0.33 | 6.2 | 0.14 | 4.85 | 0.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B14 drains directly into pond B |
|  | 3.3 |  |  |  |  |  |  |  | 20.7 | 0.93 | 3.04 | 2.8 |  |  |  |  |  |  | 18 |  |  |  | Runoff from DP 3.2. Outfalls into Forebay at DP 3.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  | 19.0 | 12.67 | 3.17 | 40.2 |  |  |  |  |  |  |  |  |  |  | Flow confluences into Pond B. All of Basin B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C. 1 | C-1 | 0.92 | 0.48 | 10.1 | 0.44 | 4.12 | 1.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C.1. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-1 |
|  | C. 2 | C-2 | 1.24 | 0.40 | 9.3 | 0.50 | 4.23 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C.2. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-2 |
|  | C. 3 | C-3 | 0.29 | 0.09 | 15.9 | 0.03 | 3.43 | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C.3. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-3 |
|  | SC | SC | 10.09 | 0.09 | . | . | - | 360 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Sand Creek portion of the site. Flows used the M\&S MDDP which will be existing at the time of channel development. |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.
All pipes are RCP unless otherwise noted.
Pipe size shown in table column.
Values in RED indicate they are from M \&S MDDP to be existing at the time of channel development.

Subdivision: Homestead Fil. 2-Future Conditions


Project Name:
Project No.:
25188 estead North

| Description |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  | REM ARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 0 \\ & \frac{1}{y y} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{8}{8} \\ & \frac{8}{2} \end{aligned}$ |  | $\underset{\leftrightarrows}{\underline{\xi}}$ | $\begin{aligned} & \frac{8}{6} \\ & \underset{i}{4} \\ & \hline \end{aligned}$ |  | $\frac{\tilde{\theta}}{0}$ | $\begin{gathered} \hat{c} \\ \underset{y}{\xi} \\ \hline \end{gathered}$ |  | $\stackrel{T}{\frac{T}{5}}$ | $\begin{aligned} & \frac{\pi}{8} \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \frac{\gamma}{6} \\ & \underset{U}{2} \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ |  | $\begin{array}{r} \tilde{\gamma} \\ \underset{\sim}{4} \\ \hline \end{array}$ | $\begin{array}{r} \text { ó } \\ \text { on } \\ \frac{0}{\square} \\ \hline \hline \end{array}$ |  | $\mathbb{E}$ <br> 5 <br> 5 | $\begin{aligned} & \widehat{8} \\ & \frac{8}{2} \\ & 0 \\ & 0 \\ & \hline \frac{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{array}{\|c} \substack{\hat{y} \\ \underline{y} \\ \hline} \\ \hline \end{array}$ |  |
|  | 1 F | F1 | 2.08 | 0.55 | 12.1 | 1.14 | 6.45 | 7.4 |  |  |  |  | 7.4 | 2.08 | 3 |  |  |  |  | 240 | 3.5 | 1.2 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Captured at on-grade type R inlets at DP1.1B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | On-grade Type R Inlet, Bypass to DP 2B |
|  | 1.16 | B1. 1 | 1.24 | 0.64 | 10.2 | 0.80 | 6.89 | 5.5 | 13.3 | 1.94 | 6.22 | 12.1 | 2.0 | 0.32 | 2.6 |  |  |  |  | 210 | 3.2 | 1.1 | Tributary basins B1.1 and F1 |
|  | 1.11 |  |  |  |  |  |  |  | 13.3 | 1.62 | 6.22 | 10.1 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet DP 1.1b piped to DP2.1 |
|  | 2 F | F2 | 1.37 | 0.57 | 11.7 | 0.77 | 6.53 | 5.0 |  |  |  |  | 5.0 | 0.57 | 3 |  |  |  |  | 240 | 3.5 | 1.2 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Captured at on-gade inlets at DP1.2B |
|  | 1.2 b | B1.2 | 0.42 | 0.82 | 5.0 | 0.34 | 8.67 | 2.9 | 12.9 | 1.11 | 6.29 | 7.0 | 0.1 | 0.02 | 2.2 |  |  |  |  | 60 | 3.0 | 0.3 | On-grade Type R Inlet, Bypass to DP 1.3B Tributary basins B1.2 and F2. Drains to DP 1.3B |
|  | 1.21 |  |  |  |  |  |  |  | 13.3 | 1.09 | 6.22 | 6.8 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 1.2b |
|  | 2.1 |  |  |  |  |  |  |  | 13.3 | 2.71 | 6.22 | 16.9 |  |  |  | 16.9 |  | 2.0 | 24 | 487 | 2.8 | 2.9 | Piped runoff to DP 2.4 <br> Tributary Basins B1.1 and B1.2 +(F1.F2) |
|  | 3 F | F3 | 0.08 | 0.96 | 5.0 | 0.07 | 8.68 | 0.6 |  |  |  |  | 0.6 | 0.96 | 3 |  |  |  |  | 150 | 3.5 | 0.7 | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Runoff drains from street to residential area to design point 3F. Drains to design point 1.3B |
|  | 1.36 | B1. 3 | 0.43 | 0.64 | 7.8 | 0.27 | 7.55 | 2.0 | 13.2 | 0.36 | 6.23 | 2.2 | 2.2 | 0.64 | 2.3 |  |  |  |  | 160 | 3.0 | 0.9 | Street flow Indudes by-pass flow from DP 1.2b and direct runoff from basin B1.3 and runoff from Basin F3. Drains to DP 2 b |
|  | 2 b | B2 | 0.86 | 0.69 | 5.0 | 0.59 | 8.68 | 5.1 | 14.1 | 1.34 | 6.06 | 8.1 | 8.1 | 1.34 | 4.6 |  |  |  |  | 480 | 4.3 | 1.9 | Street flow from Sam Bass Drive and Aspen Valley Drive <br> Recives bypass flow from 1.1b,1.2b and direct runoff from basin B1.3 and B2, continues in C\&g to DP-6b |
|  | 3b | B3 | 0.23 | 0.83 | 5.0 | 0.19 | 8.68 | 1.6 |  |  |  |  | 1.6 | 0.83 | 4.6 |  |  |  |  | 430 | 4.3 | 1.7 | Street flow from Sam Bass Drive. Runoff drains to design point 6B via C \& G |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | F5 | 0.69 | 0.36 | 5.0 | 0.25 | 8.68 | 2.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Future runoff from Homestead North at Sterling Ranch Filing 3 residential lots Runoff drains across future grass open space to DP 4B |
|  | 4 b | B4 | 3.51 | 0.61 | 9.1 | 2.13 | 7.17 | 15.3 | 9.1 | 2.38 | 7.17 | 17.1 | 4.2 | 0.59 | 2.5 |  |  |  |  | 340 | 3.2 | 1.8 | Type R Inlet, Bypass to DP 6 B |
|  | $4 i$ |  |  |  |  |  |  |  | 9.1 | 1.79 | 7.17 | 12.9 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R -Inlet from DP 4b, Piped to DP2. 3 |
|  | 4 F | F4 | 0.06 | 0.96 | 5.0 | 0.05 | 8.68 | 0.4 |  |  |  |  | 0.4 | 0.96 | 5 |  |  |  |  | 750 | 4.5 | 2.8 | Future runoff from Filing 3 Residential Area Runoff drains from street to residential area |
|  | 6 b | B6 | 3.61 | 0.69 | 6.5 | 2.48 | 8.01 | 19.9 | 16.0 | 4.64 | 5.75 | 26.7 | 11.8 | 2.05 | 2.5 |  |  |  |  | 95 | 3.2 | 0.5 | Recives by-pass flows from Basins (B1.1, B1.2 and B4 + F1, F2), Direct Runoff from B1.3,B2, B3, and B6, 4F Runoff bypassed to sump inlet at DP $9 B$ |
|  | 61 |  |  |  |  |  |  |  | 16.0 | 2.59 | 5.75 | 14.9 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R -Inlet DP 6i, piped to DP 2.6. |
|  | 9 b | B9 | 3.77 | 0.64 | 11.6 | 2.40 | 6.56 | 15.7 | 16.5 | 4.45 | 5.67 | 25.3 |  |  |  |  |  |  |  |  |  |  | Sump inlet Recives by-pass flows from (B1.1, B1.2 and B4) Direct Runoff from $\mathrm{B} 1.3, \mathrm{~B} 2, \mathrm{B3}, \mathrm{~B} 6$ and $\mathrm{B9}$ |
|  | 5b | B5 | 1.11 | 0.70 | 6.8 | 0.78 | 7.90 | 6.2 |  |  |  |  | 1.1 | 0.14 | 1.5 |  |  |  |  | 240 | 2.4 | 1.6 | Runoff drains to on grade type R inlet at DP 5b |
|  | $5 i$ |  |  |  |  |  |  |  | 6.8 | 0.64 | 7.90 | 5.1 |  |  |  |  |  |  |  |  |  |  | On-grade Type R Inlet, Bypass to DP 7b Tributary basins B5 |
|  | 2.2 |  |  |  |  |  |  |  | 6.8 | 0.64 | 7.90 | 5.1 |  |  |  |  |  | 2.0 | 18 | 240 | 2.8 | 1.4 | Piped runoff to DP-2.3 Tributary basins B5 |
|  | 7 b | B7 | 1.63 | 0.67 | 7.8 | 1.09 | 7.55 | 8.2 | 8.5 | 1.23 | 7.36 | 9.0 | 0.6 | 0.08 | 1.6 |  |  |  |  | 340 | 2.5 | 2.2 | On-grade Type R Inlet, Bypass to DP 8B |
|  | 7 i |  |  |  |  |  |  |  | 8.5 | 1.15 | 7.36 | 8.4 |  |  |  |  |  |  |  |  |  |  | Captured runoff from on-grade type R-Inlet from DP 7b |
|  | 2.3 |  |  |  |  |  |  |  | 9.1 | 2.43 | 7.17 | 17.4 |  |  |  |  |  | 2.0 | 24 | 50 | 2.8 | 0.3 | Piped runoff <br> Tributary basins $\mathrm{B5}, \mathrm{B4}$, and $\mathrm{F5}$ |
|  | 2.4 |  |  |  |  |  |  |  | 9.4 | 3.58 | 7.09 | 25.4 |  |  |  |  |  | 2.0 | 36 | 10 | 2.8 | 0.1 | Piped runoff Tributary Basins $\mathrm{B4}, \mathrm{B5}, \mathrm{B7}$, and $\mathrm{F5}$ |
|  | 2.5 |  |  |  |  |  |  |  | 16.1 | 6.29 | 5.73 | 36.1 |  |  |  |  |  | 2.0 | 36 | 380 | 2.8 | 2.2 | Piped runoff to DP 2.6. Runoff confluenced w/ upstream lateral at DP 2.1 Tributary Basins B1.1, B1.2, $\mathrm{B}, \mathrm{B5}, \mathrm{B7}, \mathrm{~F} 1, \mathrm{~F}$ and F5 |
|  | 8 b | B8 | 2.14 | 0.66 | 8.1 | 1.42 | 7.47 | 10.6 | 10.1 | 1.50 | 6.92 | 10.4 | 10.4 |  | 0.9 |  |  |  |  | 125 | 1.8 | 1.1 | Street Flow, Recives bypass flow from DP 7B. Goes to DP 10B |

## STANDARD FORM SF-3

Subdivision: Homestead Fil. 2 - Future Conditions
Location:
Design Storm: 100 -Year

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET/SWALE |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  | $\begin{aligned} & \frac{0}{\frac{1}{6}} \\ & .8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{8}{8} \\ & 8 \\ & \hline \end{aligned}$ |  |  |  | $\underset{-\frac{T}{5}}{\substack{5}}$ | $\begin{aligned} & \hat{\pi} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hat{y} \\ & \underline{y} \\ & \hline \end{aligned}$ |  |  | $\stackrel{\pi}{0}$ |  | $\begin{aligned} & \text { 苞 } \\ & \underset{U}{2} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{\pi}{8} \\ & \frac{8}{8} \\ & 0_{0}^{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{\tilde{\theta}}{\substack{4 \\ t}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{0}{0} \\ & \frac{\square}{0} \end{aligned}$ |  |  | $\begin{aligned} & \frac{08}{2} \\ & 0 \\ & 0 . \\ & 0 \\ & \hline \frac{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \hat{\tau} \\ & \stackrel{y}{\xi} \\ & \hline \end{aligned}$ | REM ARKS |
|  | 2.6 |  |  |  |  |  |  |  | 18.4 | 8.89 | 5.40 | 48.0 |  |  |  |  |  | 2.0 | 36 | 100 | 2.8 | 0.6 | Piped runoff <br> Tributary Basins B1.1, B1.2,B3, B4, B5,B6, and B7+(F1,F2,F3,F4 and F5) |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Piped runoff |
|  | 2.7 |  |  |  |  |  |  |  | 19.0 | 13.34 | 5.32 | 71.0 |  |  |  |  |  | 2.0 | 36 | 3 | 2.8 | 0.0 |  |
|  | 10b | B10 | 0.22 | 0.83 | 5.0 | 0.19 | 8.68 | 1.6 | 10.1 | 1.69 | 6.92 | 11.7 |  |  |  |  |  |  |  |  |  |  | Sump inlet revices by-pass flow from 7 b and runoff from 5b, 8 b , and 10b |
|  | 2.8 |  |  |  |  |  |  |  | 19.0 | 15.03 | 5.32 | 79.9 |  |  |  |  |  | 2.0 | 48 | 50 | 5.5 | 0.2 | Piped runoff in to forebay <br> Tributary Basins B1.1, B1.2, B3, B4, B5,B6,B7, and B9+(F1,F2,F3,F4 and F5) |
|  | 11b | B11 | 1.67 | 0.39 | 9.9 | 0.66 | 6.96 | 4.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12b | B12 | 2.18 | 0.49 | 16.6 | 1.06 | 5.66 | 6.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 12b, atype c area inlet. |
|  | 3.1 |  |  |  |  |  |  |  | 16.6 | 1.06 | 5.66 | 6.0 |  |  |  |  |  | 2.8 | 18 | 220 | 3.3 | 1.1 | Runoff from Basin B12 drains to type C inlet |
|  | 13b | B13 | 0.43 | 0.55 | 5.0 | 0.24 | 8.66 | 2.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from back of yard lots drains in swale to design point 13b |
|  | 3.2 |  |  |  |  |  |  |  | 17.7 | 1.30 | 5.50 | 7.1 |  |  |  |  |  | 0.9 | 18 | 346 | 1.9 | 3.0 | Runoff from Basin B13 drains to type C inlet in confluence with runoff from basin B12 |
|  | 14b | B14 | 0.42 | 0.52 | 6.2 | 0.21 | 8.14 | 1.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B14 drains directly into pond B |
|  | 3.3 |  |  |  |  |  |  |  | 20.7 | 1.51 | 5.10 | 7.7 |  |  |  |  |  |  | 18 |  |  |  | Runoff from DP 3.2. Outfalls into Forebay at DP 3.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  | 19.0 | 17.20 | 5.32 | 91.5 |  |  |  |  |  |  |  |  |  |  | Flow confluences into Pond B. All of Basin B |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C. 1 | C-1 | 0.92 | 0.61 | 10.1 | 0.57 | 6.92 | 3.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C.1. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-1 |
|  | C. 2 | C-2 | 1.24 | 0.57 | 9.3 | 0.71 | 7.10 | 5.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C .2. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-2 |
|  | C. 3 | C.3 | 0.29 | 0.36 | 15.9 | 0.10 | 5.76 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Offsite runoff to design point C.3. Runoff treated in Homestead North Filing 1 Pond C Tributary Basin C-3 |
|  | SC | SC | 10.09 | 0.36 | . | . | . | 1780 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Sand Creek portion of the site. <br> Flows used the M\&S MDDP which will be existing at the time of channel development. |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Street and Pipe $\propto^{*}$ A values are determined by $Q / i$
Pipe size shown uniess otherwise noted
Pipe size shown in table column.
Values in RED indicate they are from M\&S M DDP to be existing at the time of channel development.

## Appendix C Hydraulic Calculations



Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1
(Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)

## Channel Report

## Swale Section AA - DP 0.3

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

## Calculations

Compute by:
Known Q (cfs)
$=2.00$
$=5.00,5.00$
$=2.50$
= 1.00
$=1.00$
$=0.035$

Known Q
$=46.00$

Interim/Proposed condition only, will be removed upon Filing 3 Development

Highlighted

| Depth $(\mathrm{ft})$ | $=1.42$ |
| :--- | :--- |
| Q (cfs) | $=46.00$ |
| Area (sqft) | $=12.92$ |
| Velocity (ft/s) | $=3.56$ |
| Wetted Perim $(\mathrm{ft})$ | $=16.48$ |
| Crit Depth, Yc $(\mathrm{ft})$ | $=1.22$ |
| Top Width $(\mathrm{ft})$ | $=16.20$ |
| EGL (ft) | $=1.62$ |



## Channel Report

## Swale Section BB - DP 0.2

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

## Calculations

Compute by:
Known Q (cfs)
$=2.00$
$=5.00,5.00$
$=2.00$
$=1.00$
$=1.00$
$=0.035$

Known Q
$=16.00$

Interim/Proposed condition only, will be removed upon Filing 3 Development

Highlighted
Depth (ft) $\quad=0.90$
Q (cfs) $=16.00$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.74$
Top Width (ft)
$=11.00$
EGL (ft) $=1.02$


Reach (ft)

## Channel Report

## Swale Section CC - DP 12b

## Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

## Calculations

Compute by:
Known Q (cfs)
$=4.00$
$=4.00,4.00$
= 1.50
$=1.00$
$=1.44$
$=0.035$

See inlet section for shear stress checks/ calcs in this swale.

Highlighted
Depth (ft)
$=0.44$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=6.000$
$=2.53$
$=2.37$
$=7.63$
$=0.37$
$=7.52$
$=0.53$

Elev (ft)

## Section

Depth (ft)


Reach (ft)

## Swale Sect. DD- DP13B

## Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

## Calculations

Compute by:
Known Q (cfs)
$=2.00$
$=4.00,4.00$
$=0.50$
$=1.00$
$=2.31$
$=0.035$

Known Q
$=2.10$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $=0.27$
Top Width (ft) $\quad=4.40$
$\mathrm{EGL}(\mathrm{ft}) \quad=0.37$
$=0.30$
$=2.100$
$=0.96$
= 2.19
$=4.47$

$$
=4.40
$$

$$
=0.37
$$

See inlet section for shear stress checks/ calcs in this swale.

Depth (ft)


Reach (ft)

## Swale Section FF - DP 14b

## Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

## Calculations

Compute by:
Known Q (cfs)
$=4.00$
$=4.00,4.00$
= 1.25
$=1.00$
$=1.00$
$=0.035$

Known Q
$=1.70$

Highlighted
Depth (ft)
$=0.24$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.700$
$=1.19$
$=1.43$
$=5.98$
$=0.17$
$=5.92$
$=0.27$

Elev (ft)

## Section

Depth (ft)


Reach (ft)

## Version 4.05 Released March 2017

| INLET NAME | Inlet DP 1.1B | Inlet DP 1.2B | Inlet DP 4b |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade | On Grade |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  | 3.1 |  |
| :--- | :--- | :--- | :--- |
| Minor $Q_{\text {Known }}(\mathrm{cfs})$ | 5.1 | 7.1 |  |
| Major $Q_{\text {Known }}(\mathrm{cfs})$ | 12.1 | 7.0 |  |

Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| :--- | :---: | :---: | :---: |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | 0.0 |  |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | 0.0 |  |

Watershed Characteristics

| Subcatchment Area (acres) |  |  |  |
| :--- | :--- | :--- | :--- |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |

## Watershed Profile

| Overland Slope (ft/ft) |  |  |  |
| :--- | :--- | :--- | :--- |
| Overland Length (ft) |  |  |  |
| Channel Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |  |
| Channel Length $(\mathrm{ft})$ |  |  |  |

## Minor Storm Rainfall Input

| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |  |
| :---: | :---: | :---: | :---: |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |  |

Major Storm Rainfall Input

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| Design Storm Return Period, $T_{r}$ (years) |  |  |  |
| One-Hour Precipitation, $P_{1}$ (inches) |  |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{5 . 1}$ | $\mathbf{3 . 1}$ | $\mathbf{7 . 0}$ |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{1 2 . 1}$ | $\mathbf{7 . 1}$ |  |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | $\mathbf{1 7 . 1}$ |  |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 2.0 | 0.0 |  |


| INLET NAME | Inlet DP 9b | Inlet DP 7b | Inlet DP 10b |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET | STREET |
| Hydraulic Condition | In Sump | On Grade | In Sump |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {known }}$ (cfs) | 7.7 | 4.0 | 5.4 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 25.3 | 9.0 | 11.7 |

Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from: | User-Defined | No Bypass Flow Received | No Bypass Flow Received |
| :--- | :---: | :---: | :---: |
| Minor Bypass Flow Received, $Q_{b}(c f s)$ |  | 0.0 | 0.0 |
| Major Bypass Flow Received, $Q_{b}(c f s)$ |  | 0.0 | 0 |

Watershed Characteristics

| Subcatchment Area (acres) |  |  |  |
| :--- | :--- | :--- | :--- |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |

Watershed Profile

| Overland Slope (ft/ft) |  |  |  |
| :--- | :--- | :--- | :--- |
| Overland Length (ft) |  |  |  |
| Channel Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |  |
| Channel Length $(\mathrm{ft})$ |  |  |  |

Minor Storm Rainfall Input

| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |
|  |  |  |
| Major Storm Rainfall Input |  |  |
| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | 7.7 | 4.0 |  |
| :--- | :---: | :---: | :---: |
| Major Total Design Peak Flow, Q (cfs) | 25.3 | 9.0 |  |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | $\mathbf{5 . 4}$ |  |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | $\mathrm{N} / \mathrm{A}$ | $\mathbf{0 . 0}$ |  |

## Version 4.05 Released March 2017

## INLET MANAGEMENT

| INLET NAME | Inlet DP 6B | Inlet DP5B |
| :--- | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN |
| Inlet Application (Street or Area) | STREET | STREET |
| Hydraulic Condition | On Grade | On Grade |
| Inlet Type | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |
| :--- | :--- | :--- |
| Minor Q ${ }_{\text {Known }}$ (cfs) | 10.2 | 3.1 |
| Major $Q_{\text {Known }}$ (ffs) | 26.7 | 6.2 |

Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received |
| :--- | :---: | :---: |
| Minor Bypass Flow Received, $Q_{b}$ (cfs) | 0.0 | 0.0 |
| Major Bypass Flow Received, $Q_{b}$ (cfs) | 0.0 | 0.0 |


| Watershed Characteristics  <br> Subcatchment Area (acres)  <br> Percent Impervious  <br> NRCS Soil Type  |
| :--- | :--- | :--- |

Watershed Profile

| Overland Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |
| :--- | :--- | :--- |
| Overland Length $(\mathrm{tt})$ |  |  |
| Channel Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |
| Channel Length $(\mathrm{ft})$ |  |  |

Minor Storm Rainfall Input

| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |
| :--- | :--- | :--- |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |

Major Storm Rainfall Input

| Design Storm Return Period, $\mathrm{T}_{\mathrm{r}}$ (years) |  |  |
| :--- | :--- | :--- |
| One-Hour Precipitation, $\mathrm{P}_{1}$ (inches) |  |  |

## CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{1 0 . 2}$ | $\mathbf{3 . 1}$ |
| :--- | :---: | :---: |
| Major Total Design Peak Flow, $\mathbf{Q}$ (cfs) | $\mathbf{2 6 . 7}$ | $\mathbf{6 . 2}$ |
| Minor Flow Bypassed Downstream, $Q_{\mathrm{b}}($ cfs $)$ | 1.3 | 0.0 |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 11.8 | 1.1 |

## MHFD-Inlet, Version 5.01 (April 2021)

INLET MANAGEMENT

| INLET NAME | Inlet 12b | Inlet 13b | Inlet 14b |
| :--- | :---: | :---: | :---: |
| Site Type (Urban or Rural) | URBAN | URBAN | URBAN |
| Inlet Application (Street or Area) | AREA | AREA | AREA |
| Hydraulic Condition | Swale | Swale |  |
| Inlet Type | CDOT Type C | CDOT Type C |  |

## USER-DEFINED INPUT

| User-Defined Design Flows |  |  |  |
| :---: | :---: | :---: | :---: |
| Minor $\mathrm{Q}_{\text {Known }}$ (cfs) | 2.1 | 0.9 | 0.7 |
| Major $\mathrm{Q}_{\text {Known }}$ (cfs) | 6.0 | 2.1 | 1.7 |
| Bypass (Carry-Over) Flow from Upstream |  |  |  |
| Receive Bypass Flow from: | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |
| Major Bypass Flow Received, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.0 | 0.0 | 0.0 |

Watershed Characteristics

| Subcatchment Area (acres) |  |  |  |
| :--- | :--- | :--- | :--- |
| Percent Impervious |  |  |  |
| NRCS Soil Type |  |  |  |

Watershed Profile

| Overland Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |  |
| :--- | :--- | :--- | :--- |
| Overland Length $(\mathrm{ft})$ |  |  |  |
| Channel Slope $(\mathrm{ft} / \mathrm{ft})$ |  |  |  |
| Channel Length $(\mathrm{ft})$ |  |  |  |



CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs) | $\mathbf{2 . 1}$ | $\mathbf{0 . 9}$ |  |
| :--- | :--- | :--- | :--- |
| Major Total Design Peak Flow, Q (cfs) | $\mathbf{6 . 0}$ | $\mathbf{2 . 1}$ | $\mathbf{0 . 7}$ |
| Minor Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}(\mathrm{cfs})$ | 0.0 | $\mathbf{1}$ |  |
| Major Flow Bypassed Downstream, $\mathrm{Q}_{\mathrm{b}}$ (cfs) | 0.7 | 0.0 |  |

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


| Design Information (Input) |  | MINOR MAJOR |  |  | inches |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Opening |  | Type $=$ | CDOT Type R Curb Opening |  |  |
| Local Depression (additional to continuous gutter depression 'a') |  | $\mathrm{a}_{\text {LOcal }}=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) |  | No = | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) |  | $\mathrm{L}_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) |  | $\mathrm{W}_{0}=$ | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) |  | $\mathrm{C}_{+} \mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) |  | $\mathrm{Cr}_{+}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' |  |  | MINOR | MAJOR |  |
| Design Discharge for Half of Street (from Sheet Inlet Management) |  | $\mathrm{Q}_{0}=$ | 3.1 | 7.0 | cfs |
| Water Spread Width |  | T = | 8.6 | 11.9 | ft |
| Water Depth at Flowline (outside of local depression) |  | d $=$ | 2.9 | 3.7 | nches |
| Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$ ) |  | $\mathrm{d}_{\text {crown }}=$ | 0.0 | 0.0 | inches |
| Ratio of Gutter Flow to Design Flow |  | $\mathrm{E}_{0}=$ | 0.408 | 0.292 |  |
| Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{x}}$ |  | $\mathrm{Q}_{\mathrm{x}}=$ | 1.8 | 5.0 | cfs |
| Discharge within the Gutter Section W |  | $Q_{w}=$ | 1.3 | 2.0 | cfs |
| Discharge Behind the Curb Face |  | $\mathrm{Q}_{\text {васк }}=$ | 0.0 | 0.0 | cfs |
| Flow Area within the Gutter Section W |  | $\mathrm{A}_{\mathrm{w}}=$ | 0.23 | 0.31 | sq ft |
| Velocity within the Gutter Section W |  | $\mathrm{V}_{\mathrm{w}}=$ | 5.5 | 6.7 | fps |
| Water Depth for Design Condition |  | $\mathrm{d}_{\text {LOCAL }}=$ | 5.9 | 6.7 | inches |
| Grate Analysis (Calculated) |  |  | MINOR | MAJOR |  |
| Total Length of Inlet Grate Opening |  | $\mathrm{L}=$ | N/A | N/A | ft |
| Ratio of Grate Flow to Design Flow |  | $\mathrm{E}_{0 \text {-GRATE }}=$ | N/A | N/A |  |
| Under No-Clogging Condition |  |  | MINOR | MAJOR |  |
| Minimum Velocity Where Grate Splash-Over Begins |  | $\mathrm{V}_{\mathrm{o}}=$ | N/A | N/A | ps |
| Interception Rate of Frontal Flow |  | $\mathrm{R}_{\mathrm{f}}=$ | N/A | N/A |  |
| Interception Rate of Side Flow |  | $\mathrm{R}_{\mathrm{x}}=$ | N/A | N/A |  |
| Interception Capacity |  | $\mathrm{Q}_{\mathrm{i}}=$ | N/A | N/A | cfs |
| Under Clogging Condition |  |  | MINOR | MAJOR |  |
| Clogging Coefficient for Multiple-unit Grate Inlet |  | GrateCoef $=$ | N/A | N/A |  |
| Clogging Factor for Multiple-unit Grate Inlet |  | GrateClog = | N/A | N/A |  |
| Effective (unclogged) Length of Multiple-unit Grate Inlet |  | $L_{\text {e }}=$ | N/A | N/A | ft |
| Minimum Velocity Where Grate Splash-Over Begins |  | $\mathrm{V}_{\mathrm{o}}=$ | N/A | N/A | fps |
| Interception Rate of Frontal Flow |  | $\mathrm{R}_{\mathrm{f}}=$ | N/A | N/A |  |
| Interception Rate of Side Flow |  | $\mathrm{R}_{\mathrm{x}}=$ | N/A | N/A |  |
| Actual Interception Capacity |  | $\mathrm{Q}_{\mathrm{a}}=$ | N/A | N/A | cfs |
| Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\mathbf{a}}$ (to be applied to curb opening or next d/s inlet) |  | $Q_{b}=$ | N/A | N/A | cfs |
| Curb or Slotted Inlet Opening Analysis (Calculated) |  |  | MINOR | MAJOR |  |
| Equivalent Slope $\mathrm{S}_{\mathrm{e}}$ (based on grate carry-over) |  | $\mathrm{S}_{\mathrm{e}}=$ | 0.133 | 0.101 | $\mathrm{ft/ft}$ |
| Required Length $\mathrm{L}_{T}$ to Have 100\% Interception |  | $L_{T}=$ | 9.37 | 16.10 | ft |
| Under No-Clogging Condition |  |  | MINOR | MAJOR |  |
| Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{T}$ ) |  | L= | 9.37 | 15.00 | ft |
| Interception Capacity |  | $\mathrm{Q}_{\mathrm{i}}=$ | 3.1 | 6.9 | cfs |
| Under Clogging Condition |  |  | MINOR | MAJOR |  |
| Clogging Coefficient |  | CurbCoef $=$ | 1.31 | 1.31 |  |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet |  | CurbClog = | 0.04 | 0.04 |  |
| Effective (Unclogged) Length |  | $L_{\text {e }}=$ | 13.03 | 13.03 | ft |
| Actual Interception Capacity |  | $\mathrm{Q}_{\mathrm{a}}=$ | 3.1 | 6.9 | cfs |
| Carry-Over Flow $=\mathrm{Q}_{\text {blGAate }}$ - $\mathrm{Q}_{\mathrm{a}}$ |  | $Q_{b}=$ | 0.0 | 0.1 | cfs |
| Summary |  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity |  | $\mathrm{Q}=$ | 3.1 | 6.9 | cts |
| Total Inlet Carry-Over Flow (flow bypassing inlet) |  | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.1 | cts |
| Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$ |  | C\% = | 100 | 98 | \% |

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Version 4.05 Released March 2017


## INLET IN A SUMP OR SAG LOCATION

## Version 4.05 Released March 2017



| Design Information (Input) $\quad$ CDOT Type R Curb Openin |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Open | Type $=$ | CDOT Ty | Opening |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {Iocal }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 7.2 | 12.0 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}$ = | N/A | N/A | eet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {raio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {ver }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\text {f }}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{Co}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $d_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.43 | 0.83 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.68 | 1.00 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF ${ }_{\text {curb }}=$ | 0.85 | 1.00 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathrm{Q}_{\mathrm{a}}=$ | 15.6 | 39.1 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $Q_{\text {peak Required }}=$ | 7.7 | 25.3 | cfs |

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Version 4.05 Released March 2017


## INLET IN A SUMP OR SAG LOCATION

## Version 4.05 Released March 2017



| Design Information (Input) $\quad$ CDOT Type R Curb Openin |  | MINOR | MAJOR |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type R Curb Open | Type $=$ | CDOT Ty | Opening |  |
| Local Depression (additional to continuous gutter depression 'a' from above) | $\mathrm{a}_{\text {Iocal }}=$ | 3.00 | 3.00 | inches |
| Number of Unit Inlets (Grate or Curb Opening) | No = | 1 | 1 |  |
| Water Depth at Flowline (outside of local depression) | Ponding Depth $=$ | 5.4 | 7.5 | inches |
| Grate Information |  | MINOR | MAJOR | $\checkmark$ Override Depths |
| Length of a Unit Grate | $\mathrm{L}_{0}(\mathrm{G})=$ | N/A | N/A | feet |
| Width of a Unit Grate | $\mathrm{W}_{0}$ = | N/A | N/A | eet |
| Area Opening Ratio for a Grate (typical values 0.15-0.90) | $\mathrm{A}_{\text {raio }}=$ | N/A | N/A |  |
| Clogging Factor for a Single Grate (typical value 0.50-0.70) | $\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Weir Coefficient (typical value 2.15-3.60) | $\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$ | N/A | N/A |  |
| Grate Orifice Coefficient (typical value 0.60-0.80) | $\mathrm{C}_{0}(\mathrm{G})=$ | N/A | N/A |  |
| Curb Opening Information |  | MINOR | MAJOR |  |
| Length of a Unit Curb Opening | $\mathrm{L}_{0}(\mathrm{C})=$ | 15.00 | 15.00 | feet |
| Height of Vertical Curb Opening in Inches | $\mathrm{H}_{\text {ver }}=$ | 6.00 | 6.00 | inches |
| Height of Curb Orifice Throat in Inches | $\mathrm{H}_{\text {trroat }}=$ | 6.00 | 6.00 | inches |
| Angle of Throat (see USDCM Figure ST-5) | Theta $=$ | 63.40 | 63.40 | degrees |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | $\mathrm{W}_{\mathrm{p}}=$ | 2.00 | 2.00 | feet |
| Clogging Factor for a Single Curb Opening (typical value 0.10) | $\mathrm{C}_{\text {f }}(\mathrm{C})=$ | 0.10 | 0.10 |  |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) | $\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$ | 3.60 | 3.60 |  |
| Curb Opening Orifice Coefficient (typical value 0.60-0.70) | $\mathrm{Co}_{0}(\mathrm{C})=$ | 0.67 | 0.67 |  |
| Low Head Performance Reduction (Calculated) |  | MINOR | MAJOR |  |
| Depth for Grate Midwidth | $d_{\text {Grate }}=$ | N/A | N/A | ft |
| Depth for Curb Opening Weir Equation | $\mathrm{d}_{\text {curb }}=$ | 0.28 | 0.46 | ft |
| Combination Inlet Performance Reduction Factor for Long Inlets | $\mathrm{RF}_{\text {Combination }}=$ | 0.51 | 0.71 |  |
| Curb Opening Performance Reduction Factor for Long Inlets | RF ${ }_{\text {curb }}=$ | 0.75 | 0.87 |  |
| Grated Inlet Performance Reduction Factor for Long Inlets | $R F_{\text {Grate }}=$ | N/A | N/A |  |
|  |  | MINOR | MAJOR |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathrm{Q}_{\mathrm{a}}=$ | 7.2 | 17.3 | cfs |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) | $Q_{\text {peak Required }}=$ | 5.4 | 11.7 | cfs |

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


| Design Information (Input) | MINOR MAJOR |  |  | inches |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet ${ }^{\text {a }}$ (ype $=$ CDOT Type R Curb Opening |  |  |  |  |
| Local Depression (additional to continuous gutter depression 'a') | a $\$ ¢Cal $=$ | 3.0 | 3.0 |  |
| Total Number of Units in the Inlet (Grate or Curb Opening) | No $=$ | 1 | 1 |  |
| Length of a Single Unit Inlet (Grate or Curb Opening) | $L_{0}=$ | 15.00 | 15.00 | ft |
| Width of a Unit Grate (cannot be greater than W, Gutter Width) | $\mathrm{w}_{0}$ = | N/A | N/A | ft |
| Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ ) | $\mathrm{C}_{\mathrm{r}} \mathrm{G}=$ | N/A | N/A |  |
| Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ ) | $\mathrm{Cr}_{+}-\mathrm{C}=$ | 0.10 | 0.10 |  |
| Street Hydraulics: OK - Q < Allowable Street Capacity' | MINOR MAJOR |  |  | cfs <br> ft <br> inches <br> inches |
| Design Discharge for Half of Street (from Sheet Inlet Management) | $\mathrm{Q}_{0}=$ | 10.2 | 26.7 |  |
| Water Spread Width | T = | 12.8 | 16.2 |  |
| Water Depth at Flowline (outside of local depression) | d $=$ | 4.6 | 6.1 |  |
| Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$ ) | $\mathrm{d}_{\text {crown }}=$ | 0.0 | 0.7 |  |
| Ratio of Gutter Flow to Design Flow | $\mathrm{E}_{0}=$ | 0.465 | 0.315 | cfs |
| Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{x}}$ | $\mathrm{Q}_{\mathrm{x}}=$ | 5.5 | 18.3 |  |
| Discharge within the Gutter Section W | $\mathrm{Q}_{w}=$ | 4.7 | 8.4 | cfs |
| Discharge Behind the Curb Face | $\mathrm{Q}_{\text {BACK }}=$ | 0.0 | 0.0 | cfs |
| Flow Area within the Gutter Section W | $\mathrm{A}_{\mathrm{w}}=$ | 0.60 | 0.84 |  |
| Velocity within the Gutter Section W | $\mathrm{V}_{\mathrm{w}}=$ | 8.0 | 10.0 | fps |
| Water Depth for Design Condition | $\mathrm{d}_{\text {LOCAL }}=$ | 7.6 | 9.1 | inches |
| Grate Analysis (Calculated) | MINOR |  | MAJOR |  |
| Total Length of Inlet Grate Opening | $\mathrm{L}=$ | N/A | N/A |  |
| Ratio of Grate Flow to Design Flow | $\mathrm{E}_{\text {o.grate }}=$ | N/A | N/A |  |
| Under No-Clogging Condition |  | MINOR | MAJOR | fps |
| Minimum Velocity Where Grate Splash-Over Begins | $\mathrm{V}_{\mathrm{o}}=$ | N/A | N/A |  |
| Interception Rate of Frontal Flow | $\mathrm{R}_{\mathrm{f}}=$ | N/A | N/A | cfs |
| Interception Rate of Side Flow | $\mathrm{R}_{\mathrm{x}}=$ | N/A | N/A |  |
| Interception Capacity | $\mathrm{Q}_{\mathrm{i}}=$ | N/A | N/A |  |
| Under Clogging Condition |  | MINOR | MAJOR | fps |
| Clogging Coefficient for Multiple-unit Grate Inlet | GrateCoef = | N/A | N/A |  |
| Clogging Factor for Multiple-unit Grate Inlet | GrateClog = | N/A | N/A |  |
| Effective (unclogged) Length of Multiple-unit Grate Inlet | $L_{\text {e }}=$ | N/A | N/A |  |
| Minimum Velocity Where Grate Splash-Over Begins | $\mathrm{V}_{\mathrm{o}}=$ | N/A | N/A |  |
| Interception Rate of Frontal Flow | $\mathrm{R}_{\mathrm{f}}=$ | N/A | N/A | cfs |
| Interception Rate of Side Flow | $\mathrm{R}_{\mathrm{x}}=$ | N/A | N/A |  |
| Actual Interception Capacity | $\mathrm{Q}_{\mathrm{a}}=$ | N/A | N/A |  |
| Carry-Over Flow $=\mathbf{Q}_{0}-\mathbf{Q}_{\mathbf{a}}$ (to be applied to curb opening or next d/s inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | N/A | N/A | cfs |
| Curb or Slotted Inlet Opening Analysis (Calculated) |  | MINOR | MAJOR | $\mathrm{ft/f}$ |
| Equivalent Slope $\mathrm{S}_{\mathrm{e}}$ (based on grate carry-over) | $\mathrm{S}_{\mathrm{e}}=$ | 0.107 | 0.079 |  |
| Required Length $L_{T}$ to Have 100\% Interception | $L_{T}=$ | 21.13 | 39.70 |  |
| Under No-Clogging Condition |  | MINOR | MAJOR | ft |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L , $\mathrm{L}_{\mathrm{T}}$ ) | $\mathrm{L}=$ | 15.00 | 15.00 |  |
| Interception Capacity | $\mathrm{Q}_{\mathrm{i}}=$ | 9.1 | 15.3 | cfs |
| Under Clogging Condition |  | MINOR | MAJOR |  |
| Clogging Coeefficient | CurbCoet $=$ | 1.31 | 1.31 | ft |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet | CurbClog = | 0.04 | 0.04 |  |
| Effective (Unclogged) Length | $\mathrm{L}_{\mathrm{e}}=$ | 13.03 | 13.03 |  |
| Actual Interception Capacity | $\mathrm{Q}_{\mathrm{a}}=$ | 8.9 | 14.9 | cfs |
| Carry-Over Flow $=\mathrm{Q}_{\text {b(GRate }} \mathrm{Q}^{\text {a }}$ a | $Q_{b}=$ | 1.3 | 11.8 | cfs |
| Summary | MINOR MAJOR |  |  | cfs |
| Total Inlet Interception Capacity | $Q=$ | 8.9 | 14.9 |  |
| Total Inlet Carry-Over Flow (flow bypassing inlet) | $\mathrm{Q}_{\mathrm{b}}=$ | 1.3 | 11.8 | cfs |
| Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$ | C\% = | 88 | 56 | \% |

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Inlet 12b


| Analysis of Trapezoidal Grass-Lined Channel Using SCS Method |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NRCS Vegetal Retardance (A, B, C, D, or E) A, B, C, D, or E |  |  |  |  |
| Manning's n (Leave cell D16 blank to manually enter an n value) |  | 0.035 | $\mathrm{ft} / \mathrm{ft}$ |  |
| Channel Invert Slope $\quad$ So |  | 0.0140 |  |  |
| Bottom Width | B $=$ | 4.00 | ft |  |
| Left Side Slope | Z1 = | 4.00 | $\mathrm{ft} / \mathrm{ft}$ |  |
| Right Side Sloe | Z2 = | 4.00 | $\mathrm{ft} / \mathrm{ft}$ |  |
| Check one of the following soil types: $\quad$ Choose One |  |  |  |  |
| Soil Type: $\quad$ Max. Velocity ( $\mathrm{V}_{\text {max }}$ ) Max Froude No. ( $\mathrm{F}_{\text {max }}$ ) |  | C Non-Cohesive |  |  |
| Non-Cohesive $\quad 5.0 \mathrm{fps} 0.60$ |  | ¢ Cohesive |  |  |
| Cohesive $\quad 7.0 \mathrm{fps} 0.80$ |  | $\bigcirc$ Paved |  |  |
| Paved N/A N/A |  |  |  |  |
|  |  | Minor Storm | Major Storm |  |
| Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm | $\mathrm{T}_{\text {MAX }}=$ | 6.00 | 8.00 | ft |
|  | $\mathrm{d}_{\text {MAX }}=$ | 0.50 | 0.50 |  |
| Allowable Channel Capacity Based On Channel Geometry |  | Minor Storm Major Storm |  | $\begin{aligned} & \text { cfs } \\ & \text { ft } \end{aligned}$ |
| MINOR STORM Allowable Capacity is based on Top Width Criterion MAJ OR STORM Allowable Capacity is based on Depth Criterion | $\mathbf{Q a l l o w ~}=$ | 2.2 | 7.8 |  |
|  | $\mathbf{d}_{\text {allow }}=$ | 0.25 | 0.50 |  |
| Water Depth in Channel Based On Design Peak Flow |  |  |  |  |
| Design Peak Flow | $\mathbf{Q}_{\mathrm{o}}=$ | 2.1 | 6.0 | cfs |
| Water Depth | d $=$ | 0.24 | 0.44 | ft |
| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' |  |  |  |  |

MHFD-Inlet, Version 5.01 (April 2021)

## AREA INLET IN A SWALE

Inlet 12b

| Inlet Design Information (Input) | Inlet Type = | CDOT Type C |  | degrees |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet CDOT Type C |  |  |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta=$ | 0.00 |  |
| Width of Grate |  | W = | 3.00 |  |
|  |  | $\mathrm{L}=$ | 3.00 | ft |
| Length of GrateOpen Area Ratio |  | $A_{\text {Ratio }}=$ | 0.70 |  |
| Height of Inclined Grate |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
| Clogging Factor |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
| Orifice Coefficient <br> Weir Coefficient |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJ OR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | d | 0.24 | 0.44 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathrm{a}}=$ | 2.2 | 5.3 | cfs |
| Bypassed Flow | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.7 | cfs |
| Capture Percentage $=$ Qa/Qo | C\% = | 100 | 88 | \% |



| Analysis of Trapezoidal Grass-Lined Channel Using SCS Method |  |
| :--- | :--- |
| NRCS Vegetal Retardance (A, B, C, D, or E) |  |
| Manning's n (Leave cell D16 blank to manually enter an n value) |  |
| Channel Invert Slope |  |
| Bottom Width |  |
| Left Side Slope |  |
| Right Side Sloe | Check one of the following soil types: |
| Soil Type: | Max. Velocity $\left(\mathrm{V}_{\text {max }}\right)$ |
| Non-Cohesive | 5.0 fps |
| Cohesive | 7.0 fps |
| Paved | N/A |

Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm


| Allowable Channel Capacity Based On Channel Geometry |  | Minor Storm | Major Storm |
| :---: | :---: | :---: | :---: |
| MINOR STORM Allowable Capacity is based on Top Width Criterion | $\mathbf{Q a l l o w}^{\text {a }}$ | 2.6 | 9.3 |
| MAJ OR STORM Allowable Capacity is based on Depth Criterion | $\mathbf{d}_{\text {allow }}=$ | 0.25 | 0.50 |
| Water Depth in Channel Based On Design Peak Flow |  |  |  |
| Design Peak Flow | $\mathbf{Q}_{\mathbf{0}}=$ | 0.9 | 2.1 |
| Water Depth | d $=$ | 0.14 | 0.22 |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management'

MHFD-Inlet, Version 5.01 (April 2021)

## AREA INLET IN A SWALE

inlet 13b

| Inlet Design Information (Input) | Inlet Type = |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet $\quad$ CDOT Type C |  | CDOT Type C |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta$ | 0.00 | degrees |
| Width of Grate |  | W = | 3.00 | ft |
| Length of Grate |  | L | 3.00 | ft |
| Open Area Ratio |  | $\mathrm{A}_{\text {Ratio }}=$ | 0.70 |  |
| Height of Inclined Grate |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
| Clogging Factor |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
| Orifice Coefficient <br> Weir Coefficient |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJ OR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) |  | 0.14 | 0.22 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathrm{Q}_{\mathrm{a}}=$ | 0.9 | 1.9 | cfs |
| Bypassed Flow | $\mathrm{Q}_{\mathrm{b}}=$ | 0.0 | 0.2 | cfs |
| Capture Percentage = Qa/Qo | C\% = | 100 | 91 | \% |

Inlet 14b


| Analysis of Trapezoidal Grass-Lined Channel Using SCS Method |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NRCS Vegetal Retardance (A, B, C, D, or E) | $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, or $\mathrm{E}=$ |  | $\mathrm{ft} / \mathrm{ft}$ |  |
| Manning's n (Leave cell D16 blank to manually enter an n value) | n | 0.035 |  |  |
| Channel Invert Slope | $\mathrm{S}_{0}=$ | 0.0070 |  |  |
| Bottom Width | $B=$ | 4.00 |  |  |
| Left Side Slope | Z1 = | 4.00 |  |  |
| Right Side Sloe | Z2 = | 4.00 |  |  |
| Check one of the following soil types: | $\left[\begin{array}{l}\text { Choose One: } \\ \text { ( }\end{array}\right.$ |  |  |  |
| Soil Type: $\quad$ Max. Velocity ( $\mathrm{V}_{\text {Max }}$ ) Max Froude No. ( $\mathrm{F}_{\text {max }}$ ) |  |  |  |  |
| Non-Cohesive $\quad 5.0 \mathrm{fps} 0.60$ |  | Cohesive |  |  |
| Cohesive $\quad 7.0 \mathrm{fps} 0.80$ |  | $\bigcirc$ Paved |  |  |
| Paved N/A N/A |  |  |  |  |
|  |  | Minor Storm | Major Storm |  |
| Maximum Allowable Top Width of Channel for Minor \& Major Storm Maximum Allowable Water Depth in Channel for Minor \& Major Storm | $\mathrm{T}_{\text {MAX }}=$ | 6.00 | 8.00 | $\begin{aligned} & f \mathrm{ft} \\ & -\mathrm{ft} \end{aligned}$ |
|  | $\mathbf{d}_{\text {MAX }}=$ | 0.50 | 0.50 |  |
| Allowable Channel Capacity Based On Channel Geometry |  | Minor Storm | Major Storm | $\begin{aligned} & \text { cfs } \\ & \text { ft } \end{aligned}$ |
| MINOR STORM Allowable Capacity is based on Top Width Criterion | $\mathbf{Q a l l o w}^{\text {a }}$ | 1.6 | 5.5 |  |
| MAJ OR STORM Allowable Capacity is based on Depth Criterion | $\mathbf{d a l l o w ~}^{\text {a }}$ | 0.25 | 0.50 |  |
| Water Depth in Channel Based On Design Peak Flow |  |  |  |  |
| Design Peak Flow | $\begin{aligned} \mathbf{Q}_{\mathbf{0}} & =[ \\ \mathbf{d} & =[ \end{aligned}$ | 0.7 | 1.7 | $\mathrm{fts}_{\mathrm{ft}}^{\mathrm{cfs}}$ |
| Water Depth |  | 0.16 | 0.26 |  |
| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' |  |  |  |  |

MHFD-Inlet, Version 5.01 (April 2021)

## AREA INLET IN A SWALE

Inlet 14b

| Inlet Design Information (Input) | Inlet Type = |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Type of Inlet $\quad$ CDOT Type C |  | CDOT Type C |  |  |
| Angle of Inclined Grate (must be <= 30 degrees) |  | $\theta$ | 0.00 | degrees |
| Width of Grate |  | W = | 3.00 | ft |
| Length of Grate |  | L | 3.00 | ft |
| Open Area Ratio |  | $\mathrm{A}_{\text {Ratio }}=$ | 0.70 |  |
| Height of Inclined Grate |  | $\mathrm{H}_{\mathrm{B}}=$ | 0.00 | ft |
| Clogging Factor |  | $\mathrm{C}_{\mathrm{f}}=$ | 0.50 |  |
| Grate Discharge Coefficient |  | $\mathrm{C}_{\mathrm{d}}=$ | 0.96 |  |
| Orifice Coefficient <br> Weir Coefficient |  | $\mathrm{C}_{0}=$ | 0.64 |  |
|  |  | $\mathrm{C}_{\mathrm{w}}=$ | 2.05 |  |
|  |  | MINOR | MAJ OR |  |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) |  | 0.16 | 0.26 |  |
| Total Inlet Interception Capacity (assumes clogged condition) | $\mathbf{Q}_{\mathbf{a}}=$ | 1.2 | 2.5 | cfs |
| Bypassed Flow | $\mathbf{Q}_{\mathrm{b}}=$ | 0.0 | 0.0 | cfs |
| Capture Percentage = Qa/Qo | C\% = | 100 | 100 | \% |

# Froude Number Calculation’s 

## Homestead North F2

## Froude Number Equation:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\qquad F=\frac{v}{\left(g h_{m}\right)^{1 / 2}} \\
\text { Where: } \quad \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\mathrm{h}_{\mathrm{m}}=\text { acceleration of gravity }\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)
\end{array} \\
&
\end{aligned}
$$

## Hydraulic Mean Depth Equation:

$$
h_{m}=\frac{A}{T}
$$

Where:
$\mathrm{A}=$ cross sectional area of filled flow in channel ( $\mathrm{ft}^{2}$ )
$\mathrm{T}=$ width of channel open to surface ( ft )

## Inlet 12B Calculations:

Parameters: $\mathrm{A}=2.53 \mathrm{ft}^{2}, \quad \mathrm{~T}=7.52 \mathrm{ft}, \quad \mathrm{v}=2.37 \mathrm{ft} / \mathrm{s}$
There for:

$$
\begin{gathered}
h_{m}=\frac{2.53}{7.52}=0.34 \mathrm{ft} \\
\mathrm{Fr}=\frac{2.37}{(32.2 * 0.34)^{1 / 2}}=0.72
\end{gathered}
$$

For cohesive soils maximum Froude Number is 0.80 .

## Inlet 13B Calculations:

Parameters: $\mathrm{A}=1.07 \mathrm{ft}^{2}$, $\mathrm{T}=5.76 \mathrm{ft}, \quad \mathrm{v}=1.96 \mathrm{ft} / \mathrm{s}$
There for:

$$
\begin{gathered}
h_{m}=\frac{1.07}{5.76}=0.19 \mathrm{ft} \\
\mathrm{Fr}=\frac{1.96}{(32.2 * 0.19)^{1 / 2}}=0.79
\end{gathered}
$$

For cohesive soils maximum Froude Number is 0.80 .

## Inlet 14B Calculations:

Parameters: $\mathrm{A}=1.37 \mathrm{ft}^{2}, \mathrm{~T}=6.16 \mathrm{ft}, \mathrm{v}=1.24 \mathrm{ft} / \mathrm{s}$
There for:

$$
\begin{gathered}
h_{m}=\frac{1.37}{6.16}=0.22 \mathrm{ft} \\
\mathrm{Fr}=\frac{1.24}{(32.2 * 0.22)^{1 / 2}}=0.47
\end{gathered}
$$

For cohesive soils maximum Froude Number is 0.80 .


STORMCAD MAP HOMESTEAD NORTH FILING 2 JOB NO. 25188.10
11/11/2022
SHEET 1 OF 1

J•R Engineering A Westrian Company










| Homestead North Filing No. 2: 5- year Model Results |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Upstream Structure | Label | Flow (cfs) | Capacity (Full Flow) (cfs) | Diameter (in) | Length (User Defined) (ft) | Slope (Calculated) $(\mathrm{ft} / \mathrm{ft})$ | Velocity (ft/s) | Invert <br> (Start) <br> (ft) | Invert <br> (Stop) <br> (ft) | Elevation Ground (Start) <br> (ft) | Elevation Ground (Stop) <br> (ft) | $\begin{aligned} & \mathrm{HGL} \\ & (\mathrm{In}) \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { HGL } \\ \text { (Out) } \\ \text { (ft) } \\ \hline \end{gathered}$ | Energy Grade Line (In) <br> (ft) | Energy Grade Line (Out) <br> (ft) | Upstream Structure Headloss Coefficient | Manning's $\mathrm{n}$ |
| DP01A-03 | DP01A-02 | 4.2 | 15.96 | 24 | 110.5 | 0.005 | 4.28 | 7,125.60 | 7,125.05 | 7,134.34 | 7,128.56 | 7,126.32 | 7,125.75 | 7,126.58 | 7,126.04 | 0.1 | 0.013 |
| DP02A-03 | DP02A-02 | 36.5 | 120.08 | 48 | 58.7 | 0.007 | 8.38 | 7,128.68 | 7,128.27 | 7,139.24 | 7,134.11 | 7,131.32 | 7,131.34 | 7,131.59 | 7,131.53 | 0.1 | 0.013 |
| DP02A-05 | DP02A-04 | 32.3 | 87.71 | 36 | 7.5 | 0.017 | 11.47 | 7,129.81 | 7,129.68 | 7,139.12 | 7,139.24 | 7,131.65 | 7,131.28 | 7,132.43 | 7,132.39 | 1.35 | 0.013 |
| DP02A-07 | DP02A-06 | 25.5 | 93.96 | 36 | 105.3 | 0.02 | 11.3 | 7,132.92 | 7,130.83 | 7,140.83 | 7,139.12 | 7,134.55 | 7,132.71 | 7,135.21 | 7,133.17 | 1.35 | 0.013 |
| DP02A-09 | DP02A-08 | 18.3 | 111.06 | 36 | 277.9 | 0.028 | 11.61 | 7,141.63 | 7,133.92 | 7,147.65 | 7,140.83 | 7,143.00 | 7,135.44 | 7,143.53 | 7,135.84 | 1.35 | 0.013 |
| DP02A-11 | DP02A-10 | 13.3 | 114.51 | 36 | 24.4 | 0.029 | 10.82 | 7,142.45 | 7,141.73 | 7,148.56 | 7,147.65 | 7,143.61 | 7,143.71 | 7,144.04 | 7,143.82 | 1.35 | 0.013 |
| DP02A-13 | DP02A-12 | 9.6 | 40.92 | 24 | 52 | 0.033 | 10.64 | 7,145.15 | 7,143.45 | 7,150.25 | 7,148.56 | 7,146.26 | 7,144.14 | 7,146.71 | 7,145.70 | 1.35 | 0.013 |
| DP02A-15 | DP02A-14 | 3.1 | 13.73 | 18 | 198.4 | 0.017 | 6.28 | 7,149.04 | 7,145.65 | 7,153.69 | 7,150.25 | 7,149.71 | 7,146.87 | 7,149.97 | 7,146.93 | 1.35 | 0.013 |
| DP02A-17 | DP02A-16 | 3.1 | 14.85 | 18 | 8.5 | 0.02 | 6.64 | 7,149.51 | 7,149.34 | 7,153.99 | 7,153.69 | 7,150.18 | 7,150.06 | 7,150.44 | 7,150.28 | 0.1 | 0.013 |
| DP03A-02 | DP03A-01 | 7.7 | 38.82 | 24 | 28.9 | 0.029 | 9.62 | 7,131.68 | 7,130.83 | 7,139.24 | 7,139.12 | 7,132.67 | 7,132.71 | 7,133.05 | 7,132.81 | 0.1 | 0.013 |
| DP04A-01 | DP04A-01 | 8.8 | 22.51 | 24 | 27.3 | 0.01 | 6.72 | 7,134.19 | 7,133.92 | 7,141.03 | 7,140.83 | 7,135.35 | 7,135.44 | 7,135.69 | 7,135.62 | 0.1 | 0.013 |
| DP05A-02 | DP05A-01 | 8.2 | 12.72 | 18 | 87.3 | 0.015 | 7.65 | 7,144.41 | 7,143.13 | 7,149.07 | 7,147.65 | 7,145.52 | 7,144.01 | 7,146.05 | 7,144.92 | 0.11 | 0.013 |
| DP05A-04 | DP05A-03 | 8.2 | 21.35 | 18 | 70.2 | 0.041 | 11.29 | 7,147.41 | 7,144.51 | 7,152.13 | 7,149.07 | 7,148.52 | 7,145.16 | 7,149.05 | 7,147.07 | 0.11 | 0.013 |
| DP05A-06 | DP05A-05 | 8.2 | 20.32 | 18 | 326.1 | 0.037 | 10.88 | 7,159.71 | 7,147.51 | 7,164.53 | 7,152.13 | 7,160.82 | 7,148.17 | 7,161.35 | 7,150.01 | 1.08 | 0.013 |
| DP05A-08 | DP05A-07 | 3.1 | 11.22 | 18 | 28.9 | 0.011 | 5.42 | 7,160.34 | 7,160.01 | 7,164.86 | 7,164.53 | 7,161.39 | 7,161.39 | 7,161.47 | 7,161.45 | 0.1 | 0.013 |
| DP06A-02 | DP06A-01 | 5.1 | 20.31 | 18 | 9.9 | 0.037 | 9.56 | 7,160.38 | 7,160.01 | 7,164.86 | 7,164.53 | 7,161.25 | 7,161.39 | 7,161.61 | 7,161.53 | 0.1 | 0.013 |
| DP07A-02 | DP07A-01 | 4 | 23.14 | 24 | 8.6 | 0.01 | 5.52 | 7,143.54 | 7,143.45 | 7,148.53 | 7,148.56 | 7,144.24 | 7,144.19 | 7,144.50 | 7,144.41 | 0.1 | 0.013 |
| DP08A-02 | DP08A-01 | 6.9 | 22.62 | 24 | 27.4 | 0.01 | 6.33 | 7,145.73 | 7,145.45 | 7,150.37 | 7,150.25 | 7,146.80 | 7,146.87 | 7,147.05 | 7,147.00 | 0.1 | 0.013 |
| DP09A-03 | DP09A-02 | 2.8 | 8.48 | 18 | 42.3 | 0.007 | 1.58 | 7,128.81 | 7,128.53 | 7,135.96 | 7,130.24 | 7,131.37 | 7,131.34 | 7,131.41 | 7,131.38 | 0.1 | 0.013 |
| DP09A-05 | DP09A-04 | 2.6 | 9.87 | 18 | 103.6 | 0.009 | 1.47 | 7,129.82 | 7,128.91 | 7,136.68 | 7,135.96 | 7,131.44 | 7,131.37 | 7,131.47 | 7,131.41 | 0.4 | 0.013 |
| DP09A-07 | DP09A-06 | 2.6 | 9.88 | 18 | 184.5 | 0.009 | 4.71 | 7,131.45 | 7,129.82 | 7,135.95 | 7,136.68 | 7,132.07 | 7,131.45 | 7,132.29 | 7,131.48 | 0.4 | 0.013 |
| DP09A-09 | DP09A-08 | 2.1 | 17.44 | 18 | 187.4 | 0.028 | 6.67 | 7,136.92 | 7,131.75 | 7,142.29 | 7,135.95 | 7,137.47 | 7,132.11 | 7,137.67 | 7,132.80 | 0.4 | 0.013 |
| DP09A-11 | DP09A-10 | 2.1 | 17.45 | 18 | 34.1 | 0.028 | 6.67 | 7,137.86 | 7,136.92 | 7,144.14 | 7,142.29 | 7,138.41 | 7,137.55 | 7,138.61 | 7,137.69 | 0.1 | 0.013 |











| Homestead North Filing No. 2: 100- year Model Results |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Upstream Structure | Label | Flow (cfs) | Capacity (Full Flow) (cfs) | Diameter (in) | Length (User Defined) (ft) |  | Velocity (ft/s) | Invert (Start) <br> (ft) | Invert (Stop) <br> (ft) | Elevation Ground (Start) <br> (ft) | Elevation Ground (Stop) <br> (ft) | $\begin{aligned} & \hline \text { HGL } \\ & (\mathrm{In}) \\ & (\mathrm{ft}) \end{aligned}$ | $\begin{gathered} \text { HGL } \\ \text { (Out) } \\ \text { (ft) } \end{gathered}$ | Energy Grade Line (In) <br> (ft) | Energy Grade Line (Out) (ft) | Upstream Structure Headloss Coefficient | $\left\lvert\, \begin{gathered} \text { Manning's } \\ \mathrm{n} \end{gathered}\right.$ |
| DP01A-03 | DP01A-02 | 30.4 | 16.0 | 24 | 110.5 | 0.005 | 9.68 | 7,125.60 | 7,125.05 | 7,134.34 | 7,128.56 | 7,128.99 | 7,126.92 | 7,130.45 | 7,128.46 | 0.1 | 0.013 |
| DP02A-03 | DP02A-02 | 79.9 | 120.1 | 48 | 58.7 | 0.007 | 6.36 | 7,128.68 | 7,128.27 | 7,139.24 | 7,134.11 | 7,132.84 | 7,132.66 | 7,133.47 | 7,133.29 | 0.1 | 0.013 |
| DP02A-05 | DP02A-04 | 71.0 | 87.7 | 36 | 7.5 | 0.017 | 10.04 | 7,129.81 | 7,129.68 | 7,139.12 | 7,139.24 | 7,132.99 | 7,132.90 | 7,134.56 | 7,134.47 | 1.35 | 0.013 |
| DP02A-07 | DP02A-06 | 48.0 | 94.0 | 36 | 105.3 | 0.02 | 13.36 | 7,132.92 | 7,130.83 | 7,140.83 | 7,139.12 | 7,135.51 | 7,135.11 | 7,136.36 | 7,135.82 | 1.35 | 0.013 |
| DP02A-09 | DP02A-08 | 36.1 | 111.1 | 36 | 277.9 | 0.028 | 14.04 | 7,141.63 | 7,133.92 | 7,147.65 | 7,140.83 | 7,143.58 | 7,136.66 | 7,144.44 | 7,137.10 | 1.35 | 0.013 |
| DP02A-11 | DP02A-10 | 25.4 | 114.5 | 36 | 24.4 | 0.029 | 13.02 | 7,142.45 | 7,141.73 | 7,148.56 | 7,147.65 | 7,144.64 | 7,144.73 | 7,144.97 | 7,144.94 | 1.35 | 0.013 |
| DP02A-13 | DP02A-12 | 17.4 | 40.9 | 24 | 52 | 0.033 | 12.5 | 7,145.15 | 7,143.45 | 7,150.25 | 7,148.56 | 7,146.66 | 7,145.08 | 7,147.39 | 7,145.71 | 1.35 | 0.013 |
| DP02A-15 | DP02A-14 | 5.1 | 13.7 | 18 | 198.4 | 0.017 | 7.19 | 7,149.04 | 7,145.65 | 7,153.69 | 7,150.25 | 7,149.91 | 7,147.65 | 7,150.27 | 7,147.78 | 1.35 | 0.013 |
| DP02A-17 | DP02A-16 | 5.1 | 14.9 | 18 | 8.5 | 0.02 | 7.62 | 7,149.51 | 7,149.34 | 7,153.99 | 7,153.69 | 7,150.38 | 7,150.40 | 7,150.74 | 7,150.63 | 0.1 | 0.013 |
| DP03A-02 | DP03A-01 | 25.3 | 38.8 | 24 | 28.9 | 0.029 | 8.05 | 7,131.68 | 7,130.83 | 7,139.24 | 7,139.12 | 7,135.47 | 7,135.11 | 7,136.48 | 7,136.11 | 0.1 | 0.013 |
| DP04A-01 | DP04A-01 | 14.9 | 22.5 | 24 | 27.3 | 0.01 | 4.74 | 7,134.19 | 7,133.92 | 7,141.03 | 7,140.83 | 7,136.78 | 7,136.66 | 7,137.13 | 7,137.01 | 0.1 | 0.013 |
| DP05A-02 | DP05A-01 | 16.9 | 12.7 | 18 | 87.3 | 0.015 | 9.56 | 7,144.41 | 7,143.13 | 7,149.07 | 7,147.65 | 7,146.99 | 7,144.73 | 7,148.42 | 7,146.16 | 0.11 | 0.013 |
| DP05A-04 | DP05A-03 | 16.9 | 21.4 | 18 | 70.2 | 0.041 | 9.56 | 7,147.41 | 7,144.51 | 7,152.13 | 7,149.07 | 7,148.97 | 7,147.15 | 7,150.39 | 7,148.57 | 0.11 | 0.013 |
| DP05A-06 | DP05A-05 | 16.9 | 20.3 | 18 | 326.1 | 0.037 | 12.86 | 7,159.71 | 7,147.51 | 7,164.53 | 7,152.13 | 7,161.15 | 7,149.12 | 7,162.61 | 7,150.55 | 1.08 | 0.013 |
| DP05A-08 | DP05A-07 | 6.8 | 11.2 | 18 | 28.9 | 0.011 | 3.85 | 7,160.34 | 7,160.01 | 7,164.86 | 7,164.53 | 7,162.85 | 7,162.73 | 7,163.08 | 7,162.96 | 0.1 | 0.013 |
| DP06A-02 | DP06A-01 | 10.1 | 20.3 | 18 | 9.9 | 0.037 | 5.72 | 7,160.38 | 7,160.01 | 7,164.86 | 7,164.53 | 7,162.82 | 7,162.73 | 7,163.33 | 7,163.23 | 0.1 | 0.013 |
| DP07A-02 | DP07A-01 | 8.4 | 23.1 | 24 | 8.6 | 0.01 | 6.78 | 7,143.54 | 7,143.45 | 7,148.53 | 7,148.56 | 7,145.08 | 7,145.08 | 7,145.24 | 7,145.23 | 0.1 | 0.013 |
| DP08A-02 | DP08A-01 | 12.9 | 22.6 | 24 | 27.4 | 0.01 | 4.11 | 7,145.73 | 7,145.45 | 7,150.37 | 7,150.25 | 7,147.74 | 7,147.65 | 7,148.00 | 7,147.91 | 0.1 | 0.013 |
| DP09A-03 | DP09A-02 | 7.7 | 8.5 | 18 | 42.3 | 0.007 | 4.36 | 7,128.81 | 7,128.53 | 7,135.96 | 7,130.24 | 7,132.89 | 7,132.66 | 7,133.18 | 7,132.96 | 0.1 | 0.013 |
| DP09A-05 | DP09A-04 | 7.4 | 9.9 | 18 | 103.6 | 0.009 | 4.19 | 7,129.82 | 7,128.91 | 7,136.68 | 7,135.96 | 7,133.43 | 7,132.92 | 7,133.70 | 7,133.19 | 0.4 | 0.013 |
| DP09A-07 | DP09A-06 | 7.4 | 9.9 | 18 | 184.5 | 0.009 | 4.19 | 7,131.45 | 7,129.82 | 7,135.95 | 7,136.68 | 7,134.46 | 7,133.54 | 7,134.73 | 7,133.81 | 0.4 | 0.013 |
| DP09A-09 | DP09A-08 | 6.0 | 17.4 | 18 | 187.4 | 0.028 | 8.95 | 7,136.92 | 7,131.75 | 7,142.29 | 7,135.95 | 7,137.87 | 7,134.56 | 7,138.27 | 7,134.74 | 0.4 | 0.013 |
| DP09A-11 | DP09A-10 | 6.0 | 17.5 | 18 | 34.1 | 0.028 | 8.96 | 7,137.86 | 7,136.92 | 7,144.14 | 7,142.29 | 7,138.81 | 7,138.03 | 7,139.22 | 7,138.32 | 0.1 | 0.013 |



Note: Forebay calculations represent the fully built condition

## Channel Report

## West - Forebay Slot

## Rectangular

| Bottom Width (ft) | $=0.66$ |
| :--- | :--- |
| Total Depth (ft) | $=1.25$ |
|  | $=7127.42$ |
| Invert Elev (ft) | $=0.30$ |
| Slope (\%) | $=0.013$ |
| N-Value |  |
|  |  |
| Calculations | Known Q |
| Compute by: | $=1.34$ |

Highlighted

| Depth (ft) | $=0.85$ |
| :--- | :--- |
| Q (cfs) | $=1.340$ |
| Area (sqft) | $=0.56$ |
| Velocity (ft/s) | $=2.39$ |
| Wetted Perim (ft) | $=2.36$ |
| Crit Depth, Yc (ft) | $=0.51$ |
| Top Width (ft) | $=0.66$ |
| EGL (ft) | $=0.94$ |

Elev (ft)
Section
Depth (ft)


## Weir Report

## East Forebay Release_Pond B

## Rectangular Weir

Crest
Total Depth (ft)

$$
\begin{aligned}
& =\text { Sharp } \\
& =0.33 \\
& =1.25
\end{aligned}
$$

Calculations
Weir Coeff. Cw
Compute by:
Known Q (cfs)
$=3.33$
Known Q
$=0.17$

Depth (ft)
East Forebay Release_Pond B
Depth (ft)


Channel Report

## Pond B Trickle Channel

## Rectangular

| Bottom Width (ft) | $=6.00$ |
| :--- | :--- |
| Total Depth (ft) | $=0.50$ |
|  |  |
| Invert Elev (ft) | $=1.00$ |
| Slope (\%) | $=0.50$ |
| N-Value | $=0.013$ |

## Calculations

Compute by:
Known Q (cfs)

Known Q
$=1.50$

## Highlighted

| Depth (ft) | $=0.13$ |
| :--- | :--- |
| Q (cfs) | $=1.500$ |
| Area (sqft) | $=0.78$ |
| Velocity (ft/s) | $=1.92$ |
| Wetted Perim (ft) | $=6.26$ |
| Crit Depth, Yc (ft) | $=0.13$ |
| Top Width (ft) | $=6.00$ |
| EGL (ft) | $=0.19$ |

Elev (ft)
Section
Depth (ft)



Optional User Override




| $\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=[]}$ | The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 4.00 |
| CUHP Runoff Volume (acre-ft) = | 0.442 | 1.302 | 1.255 | 1.836 | 2.352 | 3.073 | 3.644 | 4.379 | 7.939 |
| Inflow Hydrograph Volume (acre-ft) = | N/A | N/A | 1.255 | 1.836 | 2.352 | 3.073 | 3.644 | 4.379 | 7.939 |
| CUHP Predevelopment Peak Q (cfs) = | N/A | N/A | 3.0 | 8.2 | 12.5 | 22.4 | 28.1 | 36.0 | 70.5 |
| OPTIONAL Override Predevelopment Peak Q (cfs) $=$ | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A | N/A | 0.11 | 0.30 | 0.45 | 0.81 | 1.02 | 1.30 | 2.55 |
| Peak Inflow Q (cfs) $=$ | N/A | N/A | 18.7 | 28.3 | 35.4 | 47.4 | 56.3 | 67.3 | 119.7 |
| Peak Outflow Q (cfs) $=$ | 0.2 | 0.7 | 0.7 | 1.6 | 9.0 | 22.1 | 28.3 | 29.8 | 98.1 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.2 | 0.7 | 1.0 | 1.0 | 0.8 | 1.4 |
| Structure Controlling Flow = | Plate | Plate | Plate | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Outlet Plate 1 | Spillway |
| Max Velocity through Grate 1 (fps) = | N/A | N/A | N/A | 0.0 | 0.5 | 1.2 | 1.6 | 1.6 | 1.8 |
| Max Velocity through Grate 2 (fps) $=$ | N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 38 | 66 | 66 | 71 | 69 | 66 | 65 | 63 | 54 |
| Time to Drain 99\% of Inflow Volume (hours) = | 40 | 70 | 70 | 77 | 76 | 75 | 74 | 73 | 68 |
| Maximum Ponding Depth (ft) = | 3.07 | 4.95 | 4.68 | 5.65 | 5.85 | 6.07 | 6.25 | 6.81 | 7.64 |
| Area at Maximum Ponding Depth (acres) $=$ | 0.38 | 0.53 | 0.51 | 0.58 | 0.60 | 0.61 | 0.63 | 0.67 | 0.74 |
| Maximum Volume Stored (acre-ft) = | 0.445 | 1.304 | 1.165 | 1.685 | 1.809 | 1.942 | 2.047 | 2.417 | 2.996 |




DRAIN TIME [hr]


Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|  | SOURCE | CUHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.02 | 1.35 |
|  | 0:15:00 | 0.00 | 0.00 | 1.56 | 2.56 | 3.17 | 2.13 | 2.67 | 2.60 | 5.41 |
|  | 0:20:00 | 0.00 | 0.00 | 5.63 | 7.46 | 9.36 | 5.56 | 6.49 | 6.94 | 13.86 |
|  | 0:25:00 | 0.00 | 0.00 | 13.61 | 20.88 | 27.68 | 13.40 | 15.94 | 17.90 | 42.45 |
|  | 0:30:00 | 0.00 | 0.00 | 18.74 | 28.32 | 35.41 | 38.74 | 46.60 | 53.06 | 98.82 |
|  | 0:35:00 | 0.00 | 0.00 | 18.24 | 26.90 | 33.22 | 47.40 | 56.32 | 67.31 | 119.75 |
|  | 0:40:00 | 0.00 | 0.00 | 16.49 | 23.82 | 29.49 | 46.91 | 55.38 | 66.10 | 116.43 |
|  | 0:45:00 | 0.00 | 0.00 | 14.22 | 20.74 | 26.12 | 42.52 | 50.15 | 61.47 | 107.92 |
|  | 0:50:00 | 0.00 | 0.00 | 12.28 | 18.25 | 22.76 | 38.74 | 45.69 | 55.91 | 98.24 |
|  | 0:55:00 | 0.00 | 0.00 | 10.66 | 15.77 | 19.78 | 33.65 | 39.79 | 49.78 | 87.53 |
|  | 1:00:00 | 0.00 | 0.00 | 9.26 | 13.52 | 17.19 | 28.90 | 34.24 | 44.19 | 77.77 |
|  | 1:05:00 | 0.00 | 0.00 | 8.28 | 12.02 | 15.59 | 24.85 | 29.55 | 39.37 | 69.87 |
|  | 1:10:00 | 0.00 | 0.00 | 7.29 | 11.01 | 14.49 | 21.36 | 25.49 | 33.22 | 59.77 |
|  | 1:15:00 | 0.00 | 0.00 | 6.42 | 9.86 | 13.48 | 18.52 | 22.16 | 28.04 | 51.17 |
|  | 1:20:00 | 0.00 | 0.00 | 5.65 | 8.60 | 11.89 | 15.74 | 18.80 | 23.07 | 42.03 |
|  | 1:25:00 | 0.00 | 0.00 | 4.91 | 7.38 | 9.95 | 13.18 | 15.71 | 18.67 | 33.87 |
|  | 1:30:00 | 0.00 | 0.00 | 4.20 | 6.28 | 8.19 | 10.69 | 12.69 | 14.81 | 26.74 |
|  | 1:35:00 | 0.00 | 0.00 | 3.60 | 5.33 | 6.71 | 8.38 | 9.90 | 11.32 | 20.41 |
|  | 1:40:00 | 0.00 | 0.00 | 3.19 | 4.47 | 5.79 | 6.43 | 7.54 | 8.39 | 15.45 |
|  | 1:45:00 | 0.00 | 0.00 | 3.00 | 3.94 | 5.26 | 5.27 | 6.19 | 6.70 | 12.54 |
|  | 1:50:00 | 0.00 | 0.00 | 2.90 | 3.59 | 4.90 | 4.56 | 5.34 | 5.62 | 10.62 |
|  | 1:55:00 | 0.00 | 0.00 | 2.59 | 3.34 | 4.55 | 4.11 | 4.79 | 4.88 | 9.29 |
|  | 2:00:00 | 0.00 | 0.00 | 2.30 | 3.07 | 4.12 | 3.79 | 4.40 | 4.34 | 8.32 |
|  | 2:05:00 | 0.00 | 0.00 | 1.82 | 2.43 | 3.24 | 2.97 | 3.43 | 3.29 | 6.31 |
|  | 2:10:00 | 0.00 | 0.00 | 1.40 | 1.86 | 2.47 | 2.23 | 2.58 | 2.39 | 4.59 |
|  | 2:15:00 | 0.00 | 0.00 | 1.08 | 1.42 | 1.87 | 1.68 | 1.93 | 1.75 | 3.36 |
|  | 2:20:00 | 0.00 | 0.00 | 0.83 | 1.08 | 1.40 | 1.27 | 1.45 | 1.32 | 2.52 |
|  | 2:25:00 | 0.00 | 0.00 | 0.63 | 0.81 | 1.04 | 0.95 | 1.08 | 0.99 | 1.87 |
|  | 2:30:00 | 0.00 | 0.00 | 0.48 | 0.60 | 0.77 | 0.70 | 0.80 | 0.74 | 1.40 |
|  | 2:35:00 | 0.00 | 0.00 | 0.35 | 0.43 | 0.57 | 0.51 | 0.58 | 0.55 | 1.03 |
|  | 2:40:00 | 0.00 | 0.00 | 0.26 | 0.32 | 0.42 | 0.39 | 0.44 | 0.41 | 0.77 |
|  | 2:45:00 | 0.00 | 0.00 | 0.18 | 0.22 | 0.30 | 0.28 | 0.31 | 0.29 | 0.55 |
|  | 2:50:00 | 0.00 | 0.00 | 0.12 | 0.15 | 0.19 | 0.19 | 0.21 | 0.20 | 0.36 |
|  | 2:55:00 | 0.00 | 0.00 | 0.07 | 0.09 | 0.11 | 0.11 | 0.13 | 0.12 | 0.22 |
|  | 3:00:00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.06 | 0.06 | 0.07 | 0.06 | 0.11 |
|  | 3:05:00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 |
|  | 3:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## DETENTION BASIN OUTLET STRUCTURE DESIGN

Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.



Optional User Override



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: $\mathbf{2 5 1 8 8 . 1 0}$ Homestead North Filing No. 2 Basin ID: POND B (Ultimate/Future)

|  |  |  | Estimated <br> Stage (ft) | Estimated Volume (ac-ft) | Outlet Type |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lume $\mathrm{E}_{\text {euri }}$ wack |  | Zone 1 (WQCV) | 3.17 | 0.483 | Orifice Plate |  |  |
| - |  | YEAR Zone 2 (EURV) | 5.32 | 1.018 | Orifice Plate |  |  |
| PERMANENT- ORIFICES |  | ne 3 (100-year) | 7.12 | 1.128 | Weir\&Pipe (Restrict) |  |  |
| Pool Example Zone Configuration (Retention Pond) |  |  | Total (all zones) | 2.629 | Calculated Parameters for Under |  |  |
| User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) |  |  |  |  |  | Calculated Parameters for Under |  |
| Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$ |  | ft (distance below the filtration media surface) inches |  | $\begin{array}{r} \text { Underdrain Orifice Area }= \\ \text { Underdrain Orifice Centroid }= \end{array}$ |  |  | $\begin{aligned} & -\mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$ |
| User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) |  |  |  |  |  |  |  |
| Invert of Lowest Orifice $=$ <br> Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing $=$ Orifice Plate: Orifice Area per Row $=$ | 0.00 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches <br> inches |  | $\begin{aligned} \text { WQ Orifice Area per Row } & = \\ \text { Elliptical Half-Width } & = \\ \text { Elliptical Slot Centroid } & = \end{aligned}$ |  | N/A | $\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \\ & \text { feet } \\ & \mathrm{ft}^{2} \end{aligned}$ |
|  | 5.28 |  |  | N/A |  |
|  | N/A |  |  | N/A |  |
|  | N/A |  |  |  | tical Slot Area $=$ | N/A |  |



| User Input: Vertical Orifice (Circular or Rectanqular) |  |  |  | Vertical Orifice Area $=$ | Calculated Parameters for Vertical Orifice |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not Selected | Not Selected |  |  | Not Selected | Not Selected | $\begin{aligned} & \mathrm{ft}^{2} \\ & \mathrm{f} \text { feet } \end{aligned}$ |
| Invert of Vertical Orifice $=$ | N/A | N/A | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches |  | N/A | N/A |  |
| Depth at top of Zone using Vertical Orifice $=$ | N/A | N/A |  | Vertical Orifice Centroid $=$ | N/A | N/A |  |
| Vertical Orifice Diameter = | N/A | N/A |  |  |  |  |  |


| User Input: Overflow Weir (Dropbox with Flat | oped | Pipe 0 | lar/Trapezoidal Weir (and No Outlet Pipe) | Calculated Parameters for Overflow Weir |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Zone 3 Weir | Not Selected | ft (relative to basin bottom at Stage $=0$ flyeight of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ | Zone 3 Weir | Not Selected | feet |
| Overflow Weir Front Edge Height, $\mathrm{Ho}=$ | 5.60 | N/A |  | 5.60 | N/A |  |
| Overflow Weir Front Edge Length = | 5.00 | N/A | feet Overflow Weir Slope Length = | 5.00 | N/A | feet |
| Overflow Weir Grate Slope = | 0.00 | N/A | $\mathrm{H}: \mathrm{V} \quad$ Grate Open Area / 100-yr Orifice Area $=$ | 6.88 | N/A |  |
| Horiz. Length of Weir Sides = | 5.00 | N/A | feet Overflow Grate Open Area w/o Debris = | 17.40 | N/A | $\mathrm{ft}^{2}$ |
| Overflow Grate Type = | Type C Grate | N/A | Overflow Grate Open Area w/ Debris = | 17.40 | N/A | $\mathrm{ft}^{2}$ |


| User Input: Outlet Pipe w/ Flow Restriction | te (Circular Orific | Plate | qular Orifice) | Calculated Parameters | for Outlet Pipe | Flow Restric | Plate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | One 3 Restricto | Not Selected |  |  | Zone 3 Restrictor | Not Selected |  |
| Depth to Invert of Outlet Pipe $=$ | 0.00 | N/A | ft (distance below basin bottom at Stage $=0 \mathrm{ft}$ ) | Outlet Orifice Area $=$ | 2.53 | N/A | $\mathrm{t}^{2}$ |
| Outlet Pipe Diameter $=$ | 24.00 | N/A | inches | Outlet Orifice Centroid $=$ | 0.83 | N/A |  |
| Restrictor Plate Height Above Pipe Invert $=$ | 18.00 |  | inches Half-Central Angle of | Restrictor Plate on Pipe $=$ | 2.09 | N/A | adians |


| Spillway Invert Stage= | 7.20 | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) |
| :---: | :---: | :---: |
| Spillway Crest Length = | 75.00 | feet |
| Spillway End Slopes = | 4.00 | $\mathrm{H}: \mathrm{V}$ |
| Freeboard above Max Water Surface = | 1.00 | feet |


|  | Calculated Parameters for Spillway |  |
| ---: | :--- | :--- |
| Spillway Design Flow Depth | $=0.47$ | feet |
| Stage at Top of Freeboard | $=$ | 8.67 |
| feet |  |  |
| Basin Area at Top of Freeboard | $=0.82$ | acres |
| Basin Volume at Top of Freeboard | $=3.81$ | acre-ft |


| $\begin{gathered} \hline \frac{7}{\text { Routed Hydrograph Results }} \\ \text { Design Storm Return Period }= \\ \hline \end{gathered}$ | The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) $=$ | N/A | N/A | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 4.00 |
| CUHP Runoff Volume (acre-ft) $=$ | 0.483 | 1.501 | 1.424 | 2.035 | 2.572 | 3.294 | 3.879 | 4.620 | 8.248 |
| Inflow Hydrograph Volume (acre-ft) $=$ | N/A | N/A | 1.424 | 2.035 | 2.572 | 3.294 | 3.879 | 4.620 | 8.248 |
| CUHP Predevelopment Peak Q (cfs) = | N/A | N/A | 3.0 | 8.4 | 12.8 | 22.9 | 28.7 | 36.8 | 72.1 |
| OPTIONAL Override Predevelopment Peak Q (cfs) = | N/A | N/A |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A | N/A | 0.11 | 0.30 | 0.46 | 0.81 | 1.02 | 1.31 | 2.56 |
| Peak Inflow Q (cfs) = | N/A | N/A | 22.7 | 33.2 | 40.9 | 53.7 | 63.3 | 75.4 | 132.0 |
| Peak Outflow Q (cfs) $=$ | 0.2 | 0.8 | 0.7 | 4.2 | 12.2 | 26.3 | 28.7 | 30.4 | 109.2 |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 0.5 | 1.0 | 1.1 | 1.0 | 0.8 | 1.5 |
| Structure Controlling Flow = | Plate | Plate | Plate | Overflow Weir 1 | Overflow Weir 1 | Overflow Weir 1 | Outlet Plate 1 | Outlet Plate 1 | Spillway |
| Max Velocity through Grate 1 (fps) $=$ | N/A | N/A | N/A | 0.2 | 0.6 | 1.5 | 1.6 | 1.7 | 1.8 |
| Max Velocity through Grate 2 (fps) = | N/A |
| Time to Drain $97 \%$ of Inflow Volume (hours) $=$ | 41 | 68 | 68 | 70 | 68 | 66 | 64 | 62 | 53 |
| Time to Drain $99 \%$ of Inflow Volume (hours) $=$ | 42 | 72 | 72 | 77 | 76 | 75 | 74 | 73 | 68 |
| Maximum Ponding Depth (ft) = | 3.17 | 5.32 | 4.98 | 5.74 | 5.91 | 6.14 | 6.41 | 7.06 | 7.68 |
| Area at Maximum Ponding Depth (acres) $=$ | 0.39 | 0.55 | 0.53 | 0.59 | 0.60 | 0.62 | 0.64 | 0.69 | 0.74 |
| Maximum Volume Stored (acre-ft) $=$ | 0.484 | 1.504 | 1.320 | 1.738 | 1.845 | 1.978 | 2.148 | 2.587 | 3.033 |



Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|  | SOURCE | CUHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.02 | 1.77 |
|  | 0:15:00 | 0.00 | 0.00 | 2.05 | 3.36 | 4.16 | 2.80 | 3.50 | 3.41 | 7.02 |
|  | 0:20:00 | 0.00 | 0.00 | 7.35 | 9.71 | 11.99 | 7.21 | 8.40 | 9.00 | 17.44 |
|  | 0:25:00 | 0.00 | 0.00 | 17.16 | 25.50 | 33.12 | 16.85 | 19.92 | 22.15 | 49.46 |
|  | 0:30:00 | 0.00 | 0.00 | 22.66 | 33.16 | 40.85 | 45.21 | 53.93 | 61.07 | 111.34 |
|  | 0:35:00 | 0.00 | 0.00 | 21.48 | 30.73 | 37.45 | 53.67 | 63.32 | 75.37 | 132.01 |
|  | 0:40:00 | 0.00 | 0.00 | 19.02 | 26.61 | 32.49 | 51.97 | 60.96 | 72.46 | 125.70 |
|  | 0:45:00 | 0.00 | 0.00 | 16.11 | 22.85 | 28.41 | 45.99 | 53.90 | 65.89 | 114.21 |
|  | 0:50:00 | 0.00 | 0.00 | 13.67 | 19.83 | 24.34 | 41.51 | 48.66 | 59.27 | 102.64 |
|  | 0:55:00 | 0.00 | 0.00 | 11.65 | 16.78 | 20.75 | 35.30 | 41.45 | 51.76 | 89.63 |
|  | 1:00:00 | 0.00 | 0.00 | 10.17 | 14.54 | 18.32 | 29.72 | 34.96 | 45.09 | 78.49 |
|  | 1:05:00 | 0.00 | 0.00 | 9.16 | 13.03 | 16.69 | 25.88 | 30.57 | 40.62 | 71.10 |
|  | 1:10:00 | 0.00 | 0.00 | 7.94 | 11.79 | 15.30 | 22.09 | 26.16 | 33.92 | 60.04 |
|  | 1:15:00 | 0.00 | 0.00 | 6.80 | 10.28 | 13.93 | 18.82 | 22.33 | 27.97 | 50.15 |
|  | 1:20:00 | 0.00 | 0.00 | 5.75 | 8.62 | 11.90 | 15.44 | 18.30 | 22.14 | 39.62 |
|  | 1:25:00 | 0.00 | 0.00 | 4.82 | 7.17 | 9.60 | 12.47 | 14.74 | 17.09 | 30.42 |
|  | 1:30:00 | 0.00 | 0.00 | 4.09 | 6.08 | 7.83 | 9.58 | 11.27 | 12.74 | 22.74 |
|  | 1:35:00 | 0.00 | 0.00 | 3.69 | 5.48 | 6.82 | 7.38 | 8.66 | 9.52 | 17.31 |
|  | 1:40:00 | 0.00 | 0.00 | 3.51 | 4.85 | 6.20 | 6.11 | 7.15 | 7.64 | 14.05 |
|  | 1:45:00 | 0.00 | 0.00 | 3.41 | 4.36 | 5.75 | 5.32 | 6.19 | 6.43 | 11.88 |
|  | 1:50:00 | 0.00 | 0.00 | 3.35 | 4.02 | 5.44 | 4.79 | 5.55 | 5.59 | 10.38 |
|  | 1:55:00 | 0.00 | 0.00 | 2.96 | 3.75 | 5.09 | 4.43 | 5.11 | 5.00 | 9.31 |
|  | 2:00:00 | 0.00 | 0.00 | 2.61 | 3.46 | 4.58 | 4.20 | 4.82 | 4.58 | 8.53 |
|  | 2:05:00 | 0.00 | 0.00 | 2.01 | 2.66 | 3.50 | 3.22 | 3.68 | 3.42 | 6.36 |
|  | 2:10:00 | 0.00 | 0.00 | 1.51 | 1.98 | 2.58 | 2.36 | 2.70 | 2.48 | 4.60 |
|  | 2:15:00 | 0.00 | 0.00 | 1.13 | 1.47 | 1.90 | 1.75 | 1.99 | 1.84 | 3.38 |
|  | 2:20:00 | 0.00 | 0.00 | 0.84 | 1.09 | 1.39 | 1.29 | 1.47 | 1.37 | 2.51 |
|  | 2:25:00 | 0.00 | 0.00 | 0.62 | 0.78 | 1.01 | 0.94 | 1.06 | 1.00 | 1.83 |
|  | 2:30:00 | 0.00 | 0.00 | 0.44 | 0.55 | 0.73 | 0.67 | 0.76 | 0.72 | 1.31 |
|  | 2:35:00 | 0.00 | 0.00 | 0.31 | 0.39 | 0.52 | 0.49 | 0.55 | 0.52 | 0.95 |
|  | 2:40:00 | 0.00 | 0.00 | 0.21 | 0.27 | 0.36 | 0.34 | 0.39 | 0.36 | 0.66 |
|  | 2:45:00 | 0.00 | 0.00 | 0.13 | 0.17 | 0.22 | 0.22 | 0.25 | 0.24 | 0.42 |
|  | 2:50:00 | 0.00 | 0.00 | 0.07 | 0.10 | 0.12 | 0.13 | 0.14 | 0.13 | 0.24 |
|  | 2:55:00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.05 | 0.06 | 0.07 | 0.06 | 0.11 |
|  | 3:00:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 |
|  | 3:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 3:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## DETENTION BASIN OUTLET STRUCTURE DESIGN

Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


## POND B SPILLWAY RIPRAP CALCULATION



EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) Q100 $=75.4 \mathrm{cfs}$, Length $=75 \mathrm{ft}$ 75.4 / $75=1.00$

## PIPE OUTFALL RIPRAP SIZING CALCULATIONS

| Subdivision: | $\begin{aligned} & \text { Homestead Fil. } 2 \text { - Future Conditions } \\ & \frac{\text { El Paso County }}{} \end{aligned}$ |  | Project Nam Project No Calculated B Checked By Dat | Homestead North <br> $\frac{25188.10}{\text { ARJ }}$ <br> $9 / 13 / 22$ |
| :---: | :---: | :---: | :---: | :---: |
|  | STORM DRAIN SYSTEM |  |  | Notes |
|  | Pond B - Outfall | DESIGN POINT | DESIGN POINT |  |
| $\mathrm{Q}_{100}$ (cfs): | 31.0 |  |  | Flows are the greater of proposed vs. future |
| Conduit | Pipe |  |  |  |
| $D_{c}$, Pipe Diameter (in): | 24 |  |  |  |
| W, Box Width (ft): | N/A |  |  |  |
| $H$, Box Height (ft): | N/A |  |  |  |
| $Y_{t}$, Tailwater Depth (ft): | 0.80 |  |  | If unknown, use $Y_{t} / D_{c}($ or $H)=0.4$ |
| $Y_{t} / D c$ or $Y_{t} / H$ | 0.40 |  |  |  |
| $\mathrm{Q} / \mathrm{D}^{2.5}$ or $\mathrm{Q} /\left(\mathrm{WH}^{3 / 2}\right)$ | 5.48 |  |  |  |
| Supercritical? | No |  |  |  |
| $Y_{n}$, Normal Depth (ft) [Supercritical]: | 0.00 |  |  |  |
| $D_{a}, H_{a}$ (in) [Supercritical]: | N/A |  |  | $D_{a}=\left(D_{c}+Y_{n}\right) / 2$ |
| Riprap $d_{50}$ (in) [Supercritical]: | N/A |  |  |  |
| Riprap $d_{50}$ (in) [Subcritical]: | 9.08 |  |  |  |
| Required Riprap Size: | M |  |  | Fig. 9-38 or Fig. 9-36 |
| $d_{50}$ (in): | 12 |  |  |  |
| Expansion Factor, $1 /(2 \tan \theta)$ : | 2.10 |  |  | Read from Fig. 9-35 or 9-36 |
| $\theta$ : | 0.23 |  |  |  |
| Erosive Soils? | No |  |  |  |
| Area of Flow, $A_{t}\left(\mathrm{ft}^{2}\right)$ : | 4.43 |  |  | $A_{t}=Q / V$ |
| Length of Protection, $L_{p}(\mathrm{ft})$ : | 7.4 |  |  | $\mathrm{L}=(1 /(2 \tan \theta))(\mathrm{At} / \mathrm{Yt}-\mathrm{D})$ |
| Min Length ( ft ) | 6.0 |  |  | Min L=3D or 3H |
| Max Length (ft) | 20.0 |  |  | Max L=10D or 10H |
| Min Bottom Width, $T$ ( ft ): | 5.5 |  |  | $\mathrm{T}=2^{*}\left(\mathrm{~L}_{\mathrm{p}}{ }^{*} \tan \theta\right)+\mathrm{W}$ |
| Design Length (ft) | 8.0 |  |  |  |
| Design Width (ft) | 5.5 |  |  |  |
| Riprap Depth (in) | 24 |  |  | Depth $=2\left(\mathrm{~d}_{50}\right)$ |
| Type II Bedding Depth (in)* | 6 |  |  | *Not used if Soil Riprap |
| Cutoff Wall | No |  |  |  |
| Cutoff Wall Depth (ft) |  |  |  | Depth of Riprap and Base |
| Cutoff Wall Width (ft) |  |  |  |  |

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).


Figure 9-35. Expansion factor for circular conduits


Figure 9-36. Expansion factor for rectangular conduits

## Culvert Report

$\qquad$
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

## Pond Outfall

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

## Embankment

Top Elevation ( ft )
Top Width (ft)
Crest Width (ft)
$=7125.04$
= 110.48
$=0.50$
= 7125.59
= 24.0
= Circular
$=24.0$
= 1
$=0.013$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=7135.00$
$=10.00$
$=20.00$

## Calculations

Qmin (cfs)
Qmax (cfs) $\quad=30.40$
Tailwater Elev (ft) $\quad=$ 7123.06
Highlighted
Qtotal (cfs) $=30.40$
Qpipe (cfs) $=30.40$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $\quad=9.96$
Veloc Up (ft/s) = 9.68
HGL Dn (ft) = 7126.91
HGL Up (ft) = 7128.85
Hw Elev (ft) = 7129.93
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft}) \quad=2.17$
Flow Regime = Inlet Control


## Appendix D <br> Reference Material

## WATER QUALITY CAPTURE PLAN

## HOMESTEAD NORTH



POND C 224.42 ACRES, 10.3\% IMPERVIOUS
NOTE:

1. A SEPARATE PLAN FOR STERLING RANCH ROAD AND BRIARGATE PKWY WILL BE PROVIDED IN A THE SEPARATE FDR REOUIRED FOR CONSTRUCTION OF THESE ROADWAYS.
2. A TOTAL OF 13,517 SQ-FT ON SITE IS

LEFT UNTREATED. TO VOLLMER ROAD AND THE OFFSITE TRIBUTARY AREA





## WATER QUALITY CAPTURE PLAN

## HOMESTEAD NORTH



$$
x^{2}+4 x^{2}
$$



NORTHWESTERN TRIBUTARY SHEET 1 OF 5

Centernial 303-740-9393 • Colorado Springs 719-593-2593


SOUTHWEST TRIBUTARY SHEET 3 OF 5

J•R Engineering
A Westrian Company

## Appendix E

## Drainage Maps



# HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2 PROPOSED DRAINAGE MAP 



SEE SHEET 2

| LEGEND |  |  |  |
| :---: | :---: | :---: | :---: |
| A: BASIN LABEL <br> B: AREA <br> $\begin{array}{ll}\text { C: } & C-100 ~ Y R \\ \text { D: } & C-5 ~ Y R\end{array}$ |   <br> $A$  <br> $B$ $C$ <br>  $D$ | PROPOSED R.O.W PROPOSED PROPERTY LINES PROPOSED SIDEWALK EXISTING PROPERTY LINE ROW EXISTING FL Existing SIDEWALK EXISTING |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | desion point $\quad \#$ |  |  |
| Proposed flow direction | $\rightarrow$ | drainage access \& maintenance - - - EASEMENT |  |
| basin drainage area |  | EXISTING | PROPOSED |
| EXISTING STorm sewer | - |  | $\bigcirc$ |
| STORM SEWER PROPOSED |  | , |  |




HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2 PROPOSED DRAINAGE MAP

SEE SHEET


HOMESTEAD NORTH AT STERLING RANCH FILING NO. 2 DRAINAGE MAP (ULTIMATE/FUTURE)





[^0]:    Street and Pipe C＊A values are determined by Q／I using the catchment＇s intensity value．
    All pipes are RCP unless otherwise noted
    Pipe size shown in table column

