Civil Engineer Stormwater Best Management Practice (Permanent) Certification Letter

December 3 ${ }^{\text {rd }}, 2021$
El Paso County
Planning and Community Development
2880 International Circle, Suite 110
Colorado Springs, CO 80910
Attn.: Jeff Rice
Engineer III-Permanent WQ Structures
Gentlemen:
Site visits were made by M\&S Civil Consultants on $2 / 5 / 21,6 / 11 / 21,12 / 1 / 21$, and $12 / 2 / 21$ to review the construction of the Sand Filter Water Quality Pond, Pond 2, located on the southwestern end of Claremont Business Park 2 Filing No. 1. The pond has been constructed conforming to the appropriate size and design of all structures. Pond volume has been surveyed and confirmed to be adequate.

Statement Of Engineer In Responsible Charge:

To the best of my knowledge, information, and belief, the referenced Claremont Business Park 2 Filing No. 1 onsite Water Quality improvements have been constructed in general compliance with the approved design plans and specifications as filed with El Paso County.

[^0]

PRE-CONSTRUCTION

Project: Claremont Business Park 2 Filing No. 1 'ersion 4.02 (February 2020)

Basin ID: WQCV POND 2

User Input: Orifice Plate with one or m		(rapicaly used to drain WQCV and/or	BMP)		ters for Plate
Invert of Lowest Orifice $=$	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	N/A	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

User Input: Vertical Orifice (Circular or Rectangular)

	Calculated Parameters for Vertical Orifice
	Not Selected
Vertical Orifice Area	Not Selected
Vertical Orifice Centroid	$=$
ft^{2}	
feet	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, $\mathrm{Ho}=$	Zone 2 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet
	1.75		
Overflow Weir Front Edge Length =	7.00		
Overflow Weir Grate Slope =	0.00		$\mathrm{H}: \mathrm{V}$ Grate
Horiz. Length of Weir Sides =	2.91		feet Overflow
Overflow Grate Open Area \% =	70\%		\%, grate open area/total area Overf
Debris Clogging \% =	50\%		\%

Calculated Parameters for Overflow Weir	
Zone 2 Weir	Not Selected
1.75	
2.91	
6.47	
14.26	
7.13	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Spillway Invert Stage=	3.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	12.50	feet
Spillway End Slopes =	4.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.75	feet
Stage at Top of Freeboard =	4.75	feet
Basin Area at Top of Freeboard =	0.18	acr
Basin Volume at Top of Freeboard =	0.40	acre-ft

Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	2.53
CUHP Runoff Volume (acre-ft) =	0.142	0.593	0.521	0.713	0.877	1.080	1.254	1.466	1.473
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.521	0.713	0.877	1.080	1.254	1.466	1.473
CUHP Predevelopment Peak Q (ff) =	N/A	N/A	1.2	3.2	4.8	8.5	10.7	13.3	13.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q ((ff/acre) $=$	N/A	N/A	0.14	0.38	0.56	0.99	1.24	1.56	1.57
Peak Inflow Q (ffs) $=$	N/A	N/A	10.5	14.4	17.1	21.3	24.8	29.5	29.6
Peak Outflow Q (cfs) $=$	0.1	42.6	8.0	13.3	15.9	22.1	22.9	23.8	23.8
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	4.1	3.3	2.6	2.2	1.8	1.8
Structure Controlling Flow $=$	Filtration Media	Outlet Plate 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	1.53	0.54	0.9	1.1	1.5	1.6	1.7	1.7
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	13	12	14	14	13	13	12	12	12
Time to Drain 99\% of Inflow Volume (hours) $=$	13	13	15	15	15	15	15	14	14
Maximum Ponding Depth (t) =	1.72	2.39	2.07	2.21	2.26	2.39	2.58	2.93	2.94
Area at Maximum Ponding Depth (acres) $=$	0.11	0.13	0.12	0.13	0.13	0.13	0.14	0.15	0.15
Maximum Volume Stored (acre-ft) $=$	0.143	0.223	0.183	0.199	0.207	0.224	0.250	0.299	0.302

Per resolution 16-426 of the BoCC, on-site WQCV is required but on-site stormwater detention is not required per the FDR for Claremont Business Park Filing No. 2.

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
	Zone 2 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid =	Zone 2 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe $=$	2.46				2.20		
Outlet Pipe Diameter $=$	30.00				0.67		feet
Restrictor Plate Height Above Pipe Invert =	13.80		inches Half-Central An	estrictor Plate on Pipe $=$	1.49	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

page 9 of 13 of latest as-builts shows a difference of 0.06 ft between designed and as-built. But these calc sheets show a difference of 0.23 ft . Please revise to remove discrepancy.

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	2.53
CUHP Runoff Volume (acre-ft) =	0.142	0.593	0.521	0.713	0.877	1.080	1.254	1.466	1.473
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.521	0.713	0.877	1.080	1.254	1.466	1.473
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.2	3.2	4.8	8.5	10.7	13.3	13.4
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.14	0.38	0.56	0.99	1.24	1.56	1.57
Peak Inflow Q (cfs) $=$	N/A	N/A	10.5	14.4	17.1	21.3	24.8	29.5	29.6
Peak Outflow Q (cfs) $=$	0.1	30.1	7.4	11.9	15.3	20.1	21.8	22.7	22.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	3.7	3.2	2.4	2.0	1.7	1.7
Structure Controlling Flow =	Filtration Media	Outlet Plate 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	1.54	0.52	0.8	1.1	1.4	1.5	1.6	1.6
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	13	14	16	16	15	15	14	13	13
Time to Drain 99\% of Inflow Volume (hours) =	13	15	17	17	17	17	17	16	16
Maximum Ponding Depth (ft) $=$	1.45	2.57	1.92	2.03	2.11	2.21	2.42	2.78	2.79
Area at Maximum Ponding Depth (acres) $=$	0.13	0.17	0.15	0.15	0.15	0.16	0.16	0.18	0.18
Maximum Volume Stored (acre-ft) $=$	0.142	0.308	0.206	0.224	0.236	0.251	0.283	0.345	0.346

SPILLWAY LOCATION AND POND OVERVIEW

RUNDOWNS 1/2

RUNDOWNS 2/2

OUTLET STRUCTURE 2/3

OUTLET STRUCTURE 3/3

[^0]: Virgil A. Sanchez P.E.
 Colorado No. 37160
 For and on Behalf of M\&S Civil Consultants, Inc.

