Traffic Impact Study

Circle K – US-24 & Meridian El Paso County, Colorado

See comments on pages 1-39 throughout

Prepared for:

Land Development Consultants

Kimley»Horn

Add "PCD File No. CS-21-003"

TRAFFIC IMPACT STUDY

Traffic Engineer's Statement

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Jeffrey R. Hanck	
Jeffrey R. Planck, P.E., PE #53006	May 27, 2021 Date
Developer's Statement	
I, the Developer, have read and will comply	with all commitments made on my behalf within this report.
Ms. Sofia Hernandez Land Development Consultants 100 Filmore Street Suite 500 Denver, Colorado 80206	Date

Circle K - US-24 & Meridian

El Paso County, Colorado

Prepared for Land Development Consultants

100 Filmore Street Suite 500 Denver, Colorado 80206

Prepared by Kimley-Horn and Associates, Inc.

4582 South Ulster Street Suite 1500 Denver, Colorado 80237 (303) 228-2300

May 2021

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS	i
APPENDICES	ii
LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	6
3.0 EXISTING AND FUTURE CONDITIONS	8
3.1 Surrounding Land Use	8
3.2 Existing and Future Roadway Network	8
3.3 Existing Traffic Volumes	9
3.4 Unspecified Development Traffic Growth	9
Figure 4 – 2021 Existing Traffic Volumes	12
4.0 PROJECT TRAFFIC CHARACTERISTICS	16
4.1 Trip Generation	16
4.2 Trip Distribution	17
4.3 Traffic Assignment	17
4.4 Total (Background Plus Project) Traffic	17
5.0 TRAFFIC OPERATIONS ANALYSIS	22
5.1 Analysis Methodology	22
5.2 Key Intersection Operational Analysis	23
5.3 Future Intersections	26
5.4 El Paso County and CDOT Turn Lane Requirement Analysis	27
5.5 Queuing Analysis	31
5.6 Access Spacing and Sight Distance Evaluation	32
5.7 Bicycle and Pedestrian Access	34
5.8 Improvement Summary	34
6.0 CONCLUSIONS AND RECOMMENDATIONS	37

APPENDICES

Appendix A – Intersection Count Sheets	
Appendix B – CDOT Traffic Data	
Appendix C - Trip Generation Worksheets	
Appendix D – Intersection Analysis Worksheets	
Appendix E - Queuing Analysis Worksheets	
Appendix F - Conceptual Site Plan	
LIST OF TABLES	
Table 1 – Project Traffic Generation	
Table 2 – Level of Service Definitions	22
Table 3 – US-24 and (Old) Meridian Road LOS Results	24
Table 4 – US-24 and (New) Meridian Road LOS Results	25
Table 5 – Project Accesses and Future Intersections LOS Results	27
Table 6 – Turn Lane Length Analysis Results	31
LIST OF FIGURES	
Figure 1 – Vicinity Map	
Figure 2 – Site Area	
Figure 3 – Existing Lanes and Control	
Figure 4 – 2021 Existing Traffic Volumes	
Figure 5 – 2021 Existing Adjusted Traffic Volumes	13
Figure 6 – 2023 Background Traffic Volumes	14
Figure 7 – 2040 Background Traffic Volumes	15
Figure 8 – Project Trip Distribution	18
Figure 9 – Project Traffic Assignment	19
Figure 10 – 2023 Background Plus Project Traffic Volumes	20
Figure 11 – 2040 Background Plus Project Traffic Volumes	21
Figure 12 – 2023 Recommended Lane Configurations and Control	35
Figure 13 – 2040 Recommended Lane Configurations and Control	36

1.0 EXECUTIVE SUMMARY

A Circle K gas station is proposed to redevelop an existing gas station located on the southwest corner of US-24 and (Old) Meridian Road intersection in El Paso County, Colorado. The project is proposing 16 fueling positions with a 5,200 square foot convenience market. It should be noted that the existing gas station on site currently provides eight (8) fueling positions. It is expected that the project will be completed by 2023; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per El Paso County requirements.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersections were incorporated into this traffic study in accordance with El Paso County and Colorado Department of Transportation (CDOT) standards and requirements:

- US-24 and (Old) Meridian Road
- US-24 and (New) Meridian Road (future)
- Swingline Road and (New) Meridian Road (future)
- Swingline Road and (Old) Meridian Road (future realignment)
- Pacific Avenue and (New) Meridian Road (future)
- Pacific Avenue and (Old) Meridian Road (future)

Regional access will be provided by Woodmen Road and United States Highway 24 (US-24). Primary and direct access to the site will be provided from (New) Meridian Road and (Old) Meridian Road. The proposed accesses include three-quarter turning movements at the future intersection of Pacific Avenue and (New) Meridian Road and a full movement access along the west side of (Old) Meridian Road at the future Pacific Avenue. Driveway access will be provided along the north side of the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road.

The redeveloped Circle K project is expected to generate approximately 4,356 weekday daily trips with 432 of these trips occurring during the morning peak hour and 360 trips occurring during the afternoon peak hour. Based on traffic volume counts conducted and driveways of the

existing gas station, the existing gas station on site is currently generating 110 trips during the weekday morning peak hour and 146 trips during the afternoon peak hour. To account for a COVID-19 adjustment, the existing gas station driveway volumes were increased and would be expected to generate approximately 160 trips during the weekday morning peak hour and 213 trips during the afternoon peak hour. Therefore, the redeveloped Circle K project is expected to generate a net additional 272 morning peak hour trips and 147 trips afternoon peak hour trips than the existing adjusted site traffic volume level.

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, anticipated surrounding development in the area, and the proposed access system for the project. Assignment of project traffic was based upon the trip generation described previously and the distributions developed.

Based on the analysis presented in this report, Kimley-Horn believes the redeveloped Circle K project will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

2023 Recommendations:

- The following improvements are recommended in association with the project:
 - The future intersections of Pacific Avenue/(New) Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning

Collaboration is needed between CDOT, City of Colorado Springs, and El Paso County regarding the proposed access to (New) Meridian Road. This will be discussed during the monthly CDOT-Local Agency coordination meeting (Dec. 21). Additional comments/guidance will be provided after the meeting.

Be Advised: If the proposed access is not supported by either agency then the TIS would need to be amended without the access from (New) Meridian Road.

driveways located ktending between nat the proposed are appropriately (M) standards for The driveway accesses along Pacific Avenue and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections. A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection.

Internal divider road not recommended with shorter intersection distance from HWY 24 intersection distance not met

Thère is approximately 340 feet of spacing along (New) Meridian Road between US-24 and the proposed Pacific Avenue (measured edge to edge). With the future intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road intersection be restriped from 400 feet to 150 feet of length to accommodate back to back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should provide 100 feet of length with a reduced shared taper length of 75 feet. A deviation request will need to be provided to allow these substandard left turn lane lengths; however, calculated vehicles are expected to be accommodated within the proposed left turn lane lengths.

It is recommended that the existing 400 foot northbound right turn lane at the US-24 and (New) Meridian Road intersection be shortened to 155 feet of length plus a 160-foot taper to accommodate the future intersection of Pacific Avenue and (New) Meridian Road. This new length meets El Paso County standards for a design speed of 40 miles per hour and vehicle queues will be accommodated in this lane as the northbound to eastbound right turn acceleration lane will provide free movements at this intersection.

Intersection spacing distance not met for collector or minor arterial

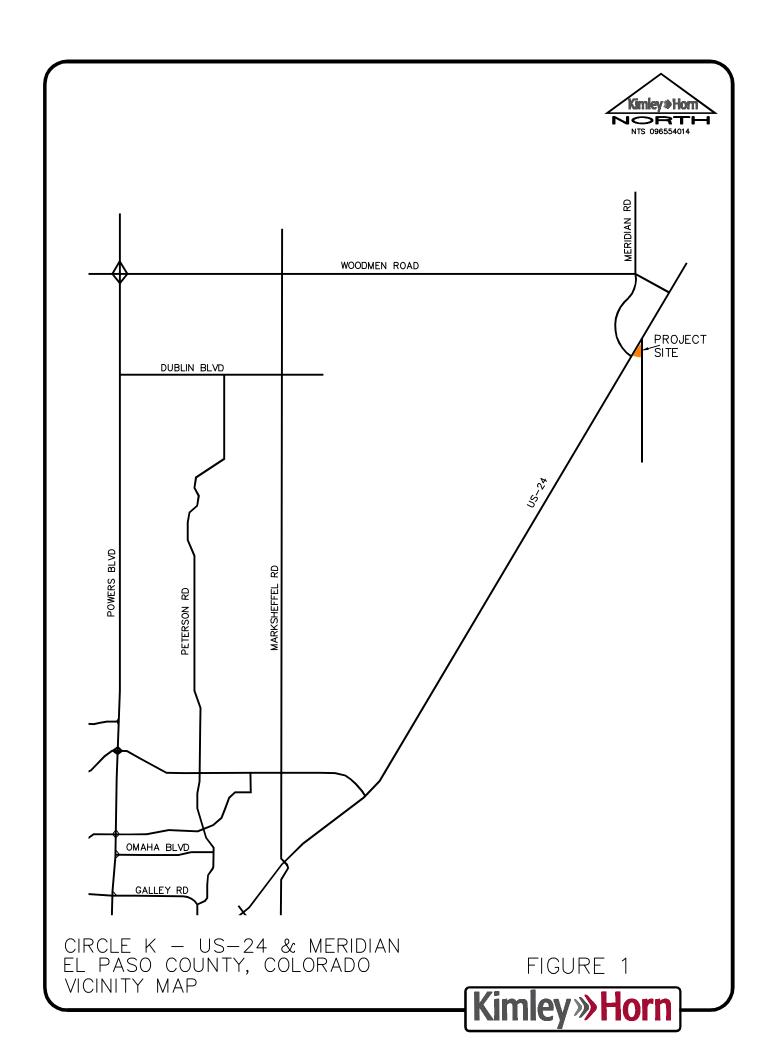
- The following improvements along US-24 are anticipated to be completed by CDOT in association with the ongoing realignment of Meridian Road:
 - O By project buildout year of 2023 and coinciding the completion of the new alignment of Meridian Road, it is anticipated that CDOT will convert the signalized intersection of US-24 and (Old) Meridian Road will to an unsignalized intersection. Further, this intersection will be restricted to right-in/right-out only movements with stop control along the northbound and southbound (Old) Meridian Road approaches.
 - With completion of the new alignment of Meridian Road, it is anticipated that CDOT will construct a combination right turn acceleration to deceleration lane that will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road. Likewise, a combination right turn acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.
 - A 600-foot eastbound right turn deceleration lane with a 225-foot taper is recommended at the intersection of US-24 and (New) Meridian Road. A 1,125-foot left turn lane with a 225-foot taper is also recommended along the eastbound approach of this intersection. Likewise, a westbound left turn lane with a length of 770 feet is recommended at the US-24 and (New) Meridian Road intersection. Lastly, a southbound Meridian Road to westbound US-24 right turn acceleration is recommended with a length of 960 feet plus a 225-foot taper. It is anticipated that CDOT will be constructing all these improvements with the new alignment of Meridian Road.

2040 Recommendations:

- If future traffic volume projections materialize, US-24 will need to be improved to provide two through lanes in each direction throughout the study area.
- The westbound left turn lane at the US-24 and Meridian Road intersection may need to be extended from 770 feet to 835 feet of length.
- The eastbound approach of the US-24 and Meridian Road intersection may need to provide dual left turn lanes with 965 feet of length per lane.

General Recommendations:

 All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to El Paso County Standards as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).


2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study of future traffic conditions associated with a Circle K gas station proposed to redevelop an existing gas station located on the southwest corner of US-24 and (Old) Meridian Road intersection in El Paso County, Colorado. A vicinity map illustrating the project location is shown in **Figure 1**. The project is proposing 16 fueling positions with a 5,200 square foot convenience market. It should be noted that the existing gas station on site currently provides eight (8) fueling positions. A conceptual site plan illustrating the development is shown in **Appendix F**. It is expected that the project will be completed by 2023; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per El Paso County and CDOT requirements.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersections were incorporated into this traffic study in accordance with El Paso County and Colorado Department of Transportation (CDOT) standards and requirements:

- US-24 and (Old) Meridian Road
- US-24 and (New) Meridian Road (future)
- Swingline Road and (New) Meridian Road (future)
- Swingline Road and (Old) Meridian Road (future realignment)
- Pacific Avenue and (New) Meridian Road (future)
- Pacific Avenue and (Old) Meridian Road (future)

Regional access will be provided by Woodmen Road and United States Highway 24 (US-24). Primary and direct access to the site will be provided from (New) Meridian Road and (Old) Meridian Road. The proposed accesses include three-quarter turning movements at the future intersection of Pacific Avenue and (New) Meridian Road and a full movement access along the west side of (Old) Meridian Road at the future Pacific Avenue. Driveway access will be provided along the north side of the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Surrounding Land Use

The project site is comprised of an existing gas station, two single-family residential homes, and vacant land. The south half of the project area will be for future development. The area to the southwest is primarily vacant while the surrounding area in direction includes residential developments. The area and roadway network surrounding the project site are shown in the aerial of **Figure 2**.

Coordinate with CDOT for potential Hwy 24 widening.

Provide a summary of the coordination efforts.

3.2 Existing and Future Roadway Network

US-24 provides one through lane in each direction adjacent to the project site with a posted speed limit of 55 miles per hour. US-24 is classified as a "principal arterial" per El Paso County roadway classification map while being categorized as E-X: Expressway, Major Bypass by CDOT. (Old) Meridian Road provides one through lane in each direction with a posted speed limit of 40 miles per hour. The (New) Meridian Road is currently under construction and is located approximately 1,000 feet west of the (Old) Meridian Road. El Paso County classifies Meridian Road as a principal arterial north of US-24 and a minor arterial roadway south of US-24

The existing intersection of US-24 and (Old) Meridian Road is signalized with protective-permissive left turn signal phasing on the eastbound westbound approaches of US-24. The north-south approaches of (Old) Meridian Road operates with split phasing. The eastbound and westbound approaches of this intersection provide a left turn lane, a through lane, and a right turn lane while the northbound and southbound approaches provide a shared through/left turn lane and a right turn lane. When the (New) Meridian Road is constructed, this intersection will operate under stop control on the north-south approach of (Old) Meridian Road and be restricted to right-in/right-out only movements.

The US-24 and (New) Meridian Road intersection will be signalized in the near future and be located approximately 1,000 feet west of the (Old) Meridian Road and US-24 intersection. The northbound and southbound approaches are anticipated to provide a left turn lane, two through lanes, and a right turn lane. The eastbound and westbound approaches are anticipated to

provide a left turn lane, a through lane, and a right turn lane. The existing intersection lane configuration and control for these study area key intersections are shown in **Figure 3**.

3.3 Existing Traffic Volumes

Existing PM peak hour turning movement counts were collected on Wednesday, April 14, 2021 while AM peak hour turning movement counts were conducted on Thursday, April 15, 2021. The counts were conducted in 15-minute intervals during the morning and afternoon peak hours of adjacent street traffic from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM. Existing turning movement counts are shown in **Figure 4** with count sheets provided in **Appendix A**.

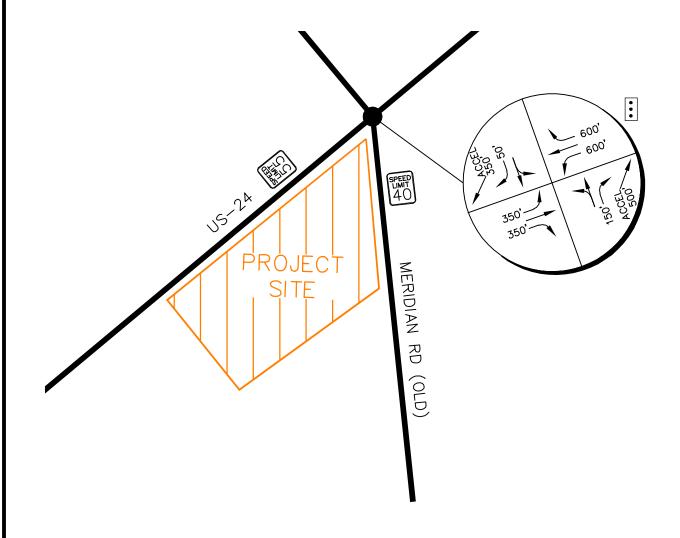
Due to the counts being collected during the COVID-19 Pandemic, an adjustment factor was determined in order to grow the counts to non-COVID conditions to represent normal condition traffic volumes. Peak hour through volumes conducted in 2019 that were provided by the Colorado Department of Transportation along US-24 were grown to year 2021. These volumes were compared to the approach volumes collected in 2021 at the intersection of US-24 and (Old) Meridian Road. It was determined the morning peak hour traffic volumes needed to be increase by 46 percent while the afternoon peak hour traffic volumes needed to be increased by 47 percent to identify normal existing conditions traffic volumes. The adjusted peak hour turning movement counts are shown in **Figure 5**.

3.4 Unspecified Development Traffic Growth

Based on information provided on the website for the Colorado Department of Transportation, the 20-year average growth factor along US-24 within the study area between 1.4 and 1.5. The average value equates to an annual growth rate of approximately 1.8 percent per year. Traffic information from the CDOT Online Transportation Information System (OTIS) is included in **Appendix B**. Based on the above information, a 2.0 percent annual growth rate was used to calculate future traffic volumes at the study area intersection and adjacent roadways. This

Elaborate on the background traffic. What other TIS was incorporated into the background traffic volumes? Was the TIS for the park-n-ride to the south included?

estimated short-term 2023 and long-term 2040 traffic volumes traffic counts at the intersection of US-24 and (Old) Meridian ntersection of US-24 and (New) Meridian Road due to the nd (Old) Meridian Road being restricted to right-in/right-out local local page 100 and 2040 are espectively.


Update hatching to include Lot 2 for all the figure in this TIS. The Traffic Study needs to analyze traffic impact based on the entire requested rezoned properties.

CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO SITE AREA

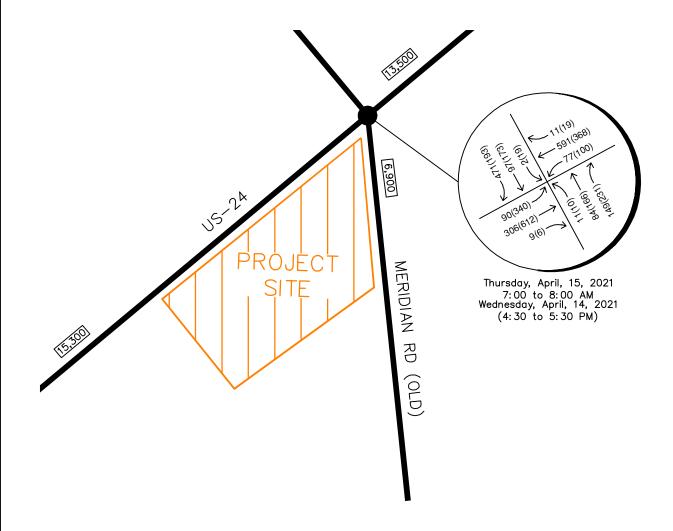
CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO EXISTING LANE CONFIGURATIONS

LEGEND

Study Area Key Intersection

Signalized Intersection

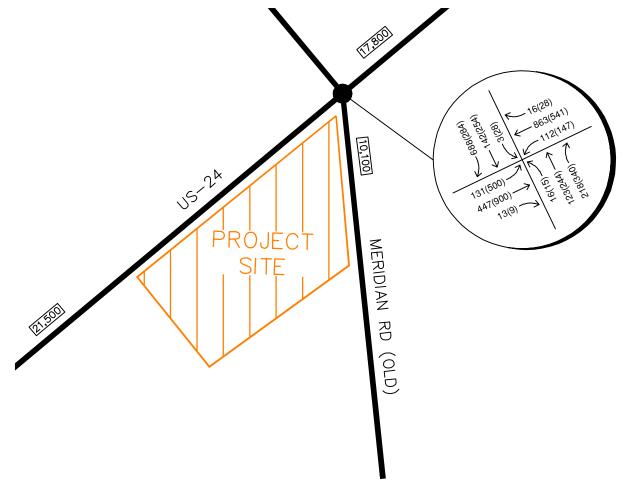
Stop Controlled Approach


Roadway Speed Limit

-100' Turn Lane Length (feet)

CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO 2021 EXISTING TRAFFIC VOLUMES

LEGEND


Study Area Key Intersection

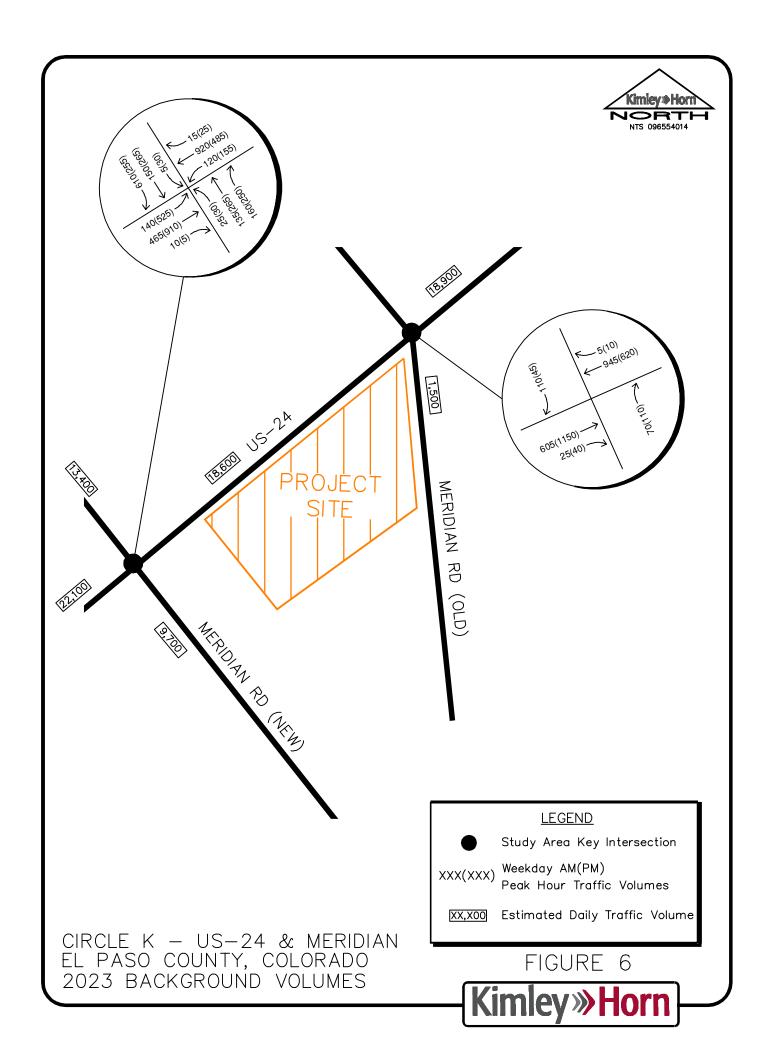
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

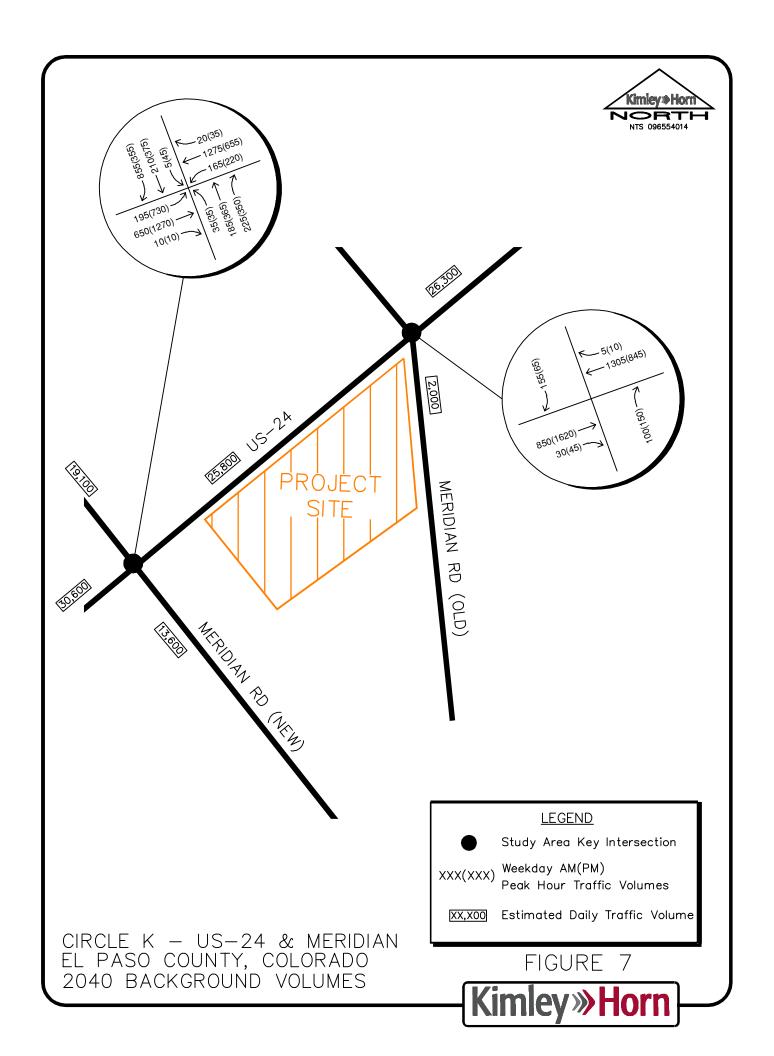
xx,x00 Estimated Daily Traffic Volume

LEGEND

Study Area Key Intersection

XXX(XXX)


Weekday AM(PM)


Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO EXISTING ADJUSTED TRAFFIC VOLUMES

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land uses to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Report*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rate equations that apply to Super Convenience Market/Gas Station (ITE Code 960) for traffic associated with the development.

Existing peak hour traffic volumes were collected at the site driveways of the existing gas station on site. Based on the data from these counts, it is determined that the existing site generates 110 morning peak hour trips (59 in and 51 out) and 146 afternoon peak hour trips (70 in and 76 out). To account for a COVID-19 adjustment, the existing gas station driveway volumes were increased and would be expected to generate approximately 160 trips during the weekday morning peak hour and 213 trips during the afternoon peak hour during normal traffic conditions. Therefore, the redeveloped Circle K project is expected to generate a net additional 272 morning peak hour trips and 147 trips afternoon peak hour trips than the existing adjusted site traffic volume level.

Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 10th Edition – Volume 2: Data, 2017. **Table 1** summarizes the estimated trip generation for the proposed development. The trip generation worksheets are included in **Appendix C**.

Identify the percent increase used.

¹ Institute of Transportation Engineers, *Trip Generation: An Information Report*, Tenth Edition, Washington DC, 2017.

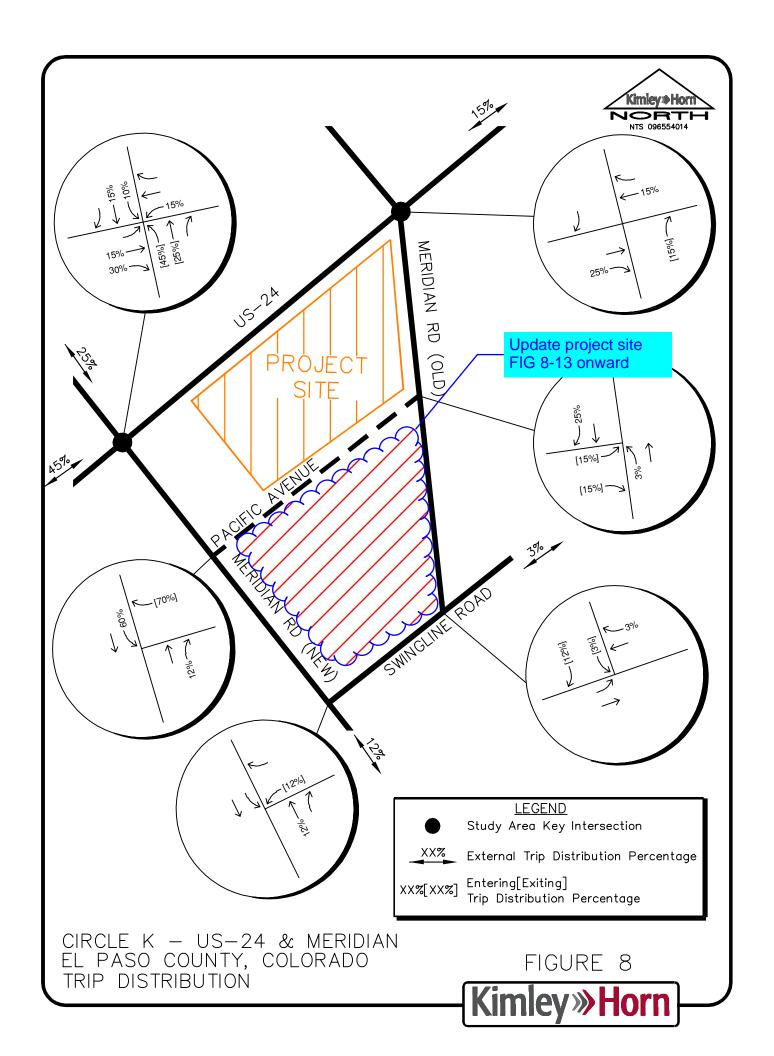
Update to include the southern lot 2 w/ highest and best use land use since this is a part of the rezone application

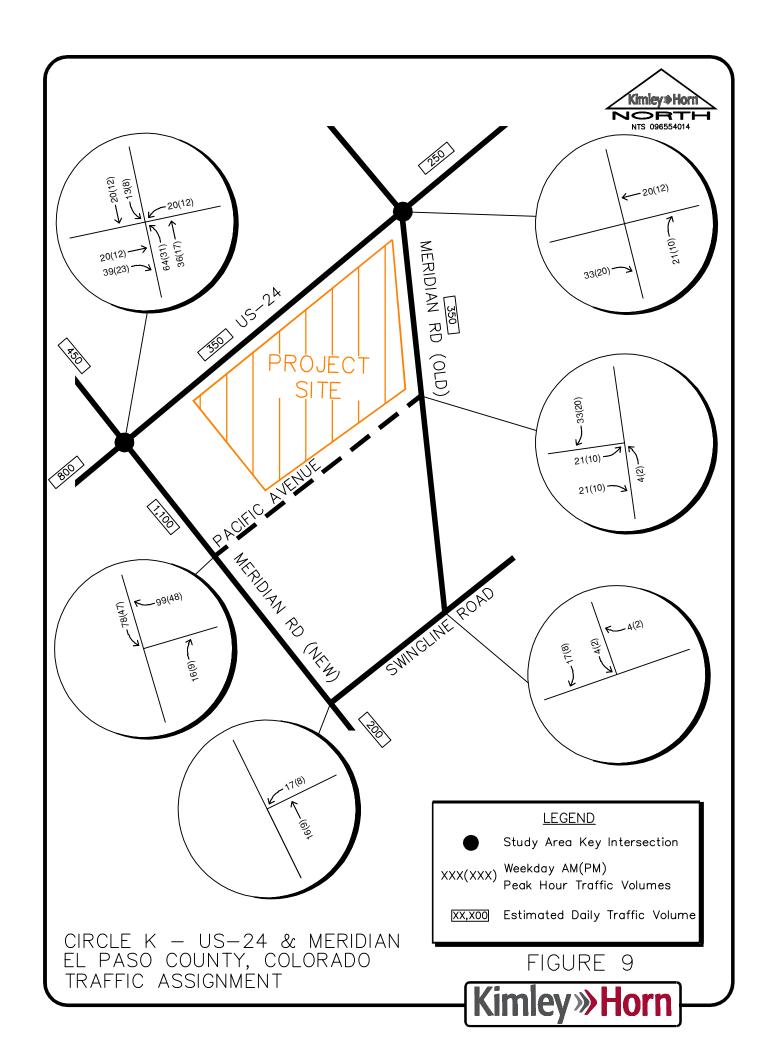
Table 1 - Project Tramic Generation

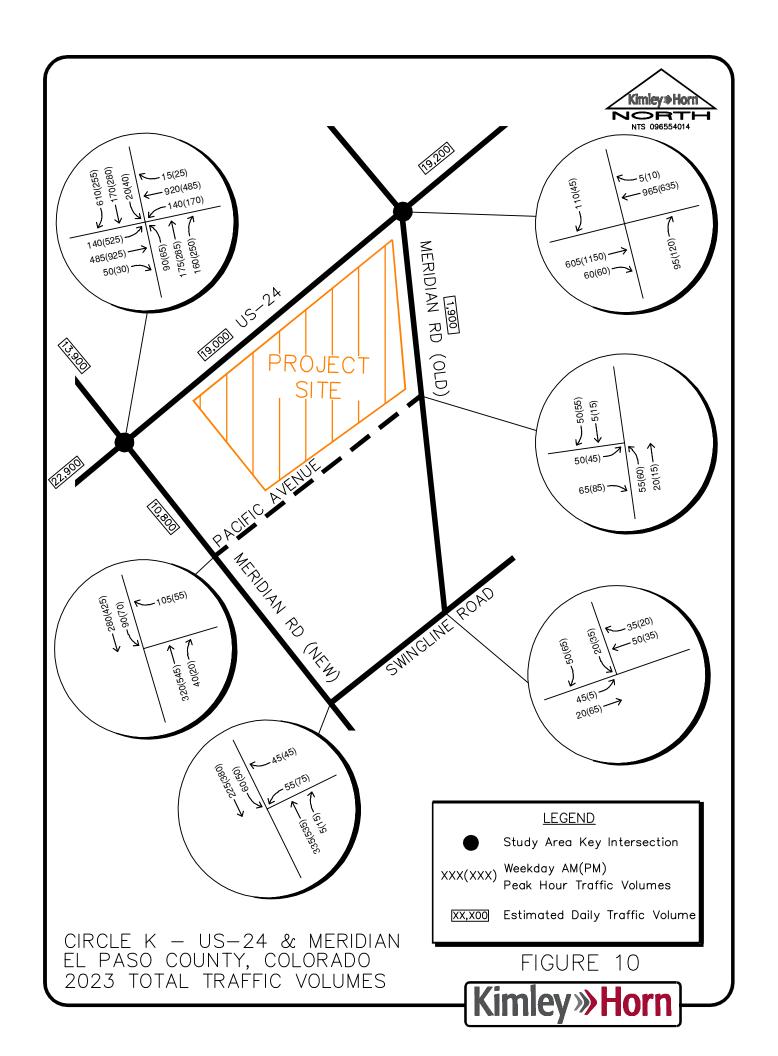
V	Weekday Vehicle Trips						
	AM Peak Hour			PM Peak Hour			
Land Use and Quantity	Daily	In	Out	Total	In	Out	Total
Redeveloped Circle K –							
(ITE 960) – 16 Fueling Positions	4,356	216	216	432	180	180	360
Existing Gas Station Trips –							
Existing Counts: 8 Fueling Positions	*1,826	59	51	110	70	76	146
Existing Adjusted Gas Station Trips –							
8 Fueling Positions	*2,662	86	74	160	102	111	213
Net Site Generated Trips	1,694	130	142	272	78	69	147

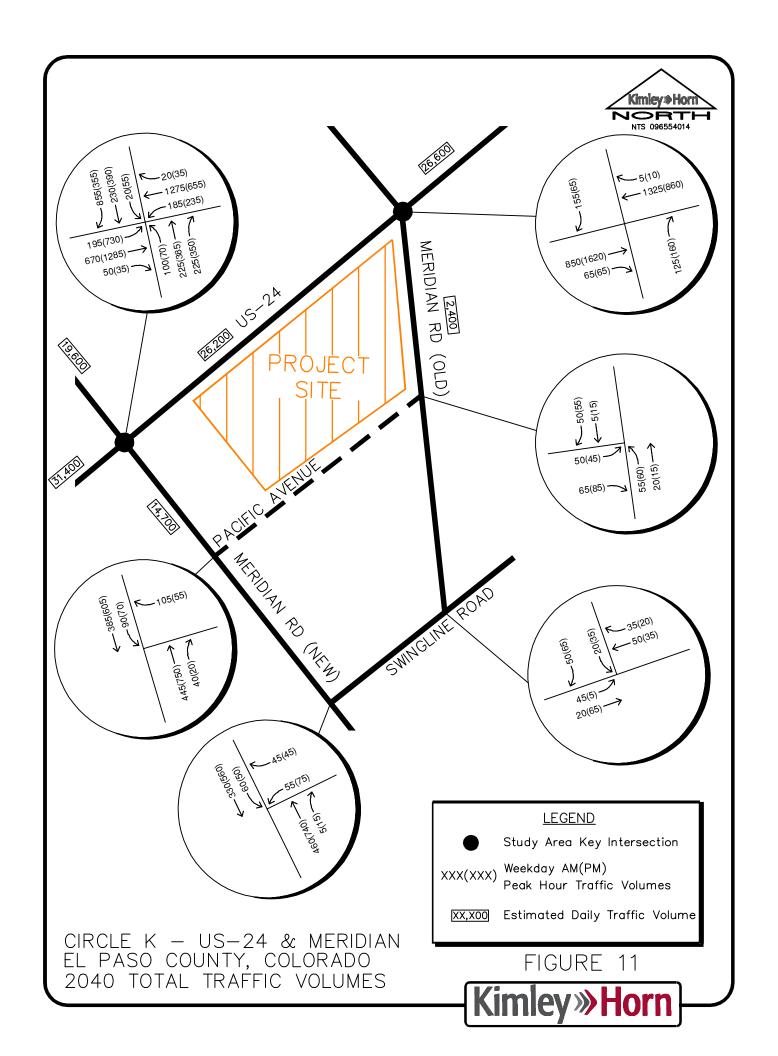
^{*}Assuming PM peak hour is 8% of the Daily

4.2 Trip Distribution


Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution is illustrated in **Figure 8**.


4.3 Traffic Assignment


Traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in **Table 1**. Project traffic assignment for the Circle K project is shown in **Figure 9**.


4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short term 2023 horizon and long term 2040 horizon. These total traffic volumes for the site are illustrated for the 2023 and 2040 horizon years in **Figure 10** and **Figure 11**, respectively.

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2023 and 2040 development horizons at the identified key intersections and access driveway. The acknowledged source for determining overall capacity is the current edition of the *Highway Capacity Manual (HCM)*².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). Typical standard traffic engineering practice recommends LOS D for overall intersections and LOS E for movements or approaches as the minimum thresholds for acceptable operations at intersections. **Table 2** shows the definition of level of service for signalized and unsignalized intersections.

Table 2 – Level of Service Definitions

Level of Signalized Intersection Service Signalized Intersection Average Total Delay (sec/veh)		Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
В	> 10 and ≤ 20	> 10 and ≤ 15
С	> 20 and ≤ 35	> 15 and ≤ 25
D	> 35 and ≤ 55	> 25 and ≤ 35
Е	> 55 and ≤ 80	> 35 and ≤ 50
F	> 80	> 50

Definitions provided from the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2010.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

Kimley-Horn and Associates, Inc. 096554014 – Circle K – US-24 & Meridian

² Transportation Research Board, *Highway Capacity Manual*, Special Report 209, Washington DC, 2010.

5.2 Key Intersection Operational Analysis

Calculations for the level of service at the key intersection and project access driveways for the study area are provided in **Appendix D**. The existing year analysis is based on the lane geometry and intersection control shown in **Figure 3**. Synchro traffic analysis software was used to analyze the study area intersection and access driveway. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service.

US-24 and (Old) Meridian Road

The intersection of US-24 and (Old) Meridian Road currently operates as a signalized intersection with protected-permissive left turn phasing on the east-west approaches. This intersection currently operates with LOS C during the morning peak hour and LOS E during the afternoon peak hour. By 2023 and coinciding with the realignment of Meridian Road to the west, the intersection will convert to an unsignalized intersection with stop-control on the north and south approaches and be restricted to right-in/right-out movements on (Old) Meridian Road. With this configuration and control, the intersection movements are anticipated to operate at LOS A during the morning and afternoon peak hours throughout the 2040 horizon. Acceleration lanes will be provided along US-24 at (Old) Meridian Road; therefore, there will not be any movements at this intersection that report vehicular delays. By 2040, the El Paso County Major Transportation Corridors Plan (MTCP) identifies US-24 to be widened to six-lanes. It was determined based on the projected through volumes that the roadway would only need to be widened to a four lane roadway (two through lanes in each direction) and was analyzed as such at the studied intersections along US-24. **Table 3** provides the results of the level of service at this intersection.

Table 3 – US-24 and (Old) Meridian Road LOS Results

	AM Peak	Hour	PM Peak Hour		
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
2021 Existing (Adjusted)	33.3	С	65.4	Е	
2023 Background					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2023 Background Plus Project					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2040 Background					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2040 Background Plus Project #					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	

^{* =} Acceleration Lane with Free Movement; # = Includes Two Eastbound and Westbound Through Lanes

US-24 and (New) Meridian Road

The intersection of US-24 and (New) Meridian Road is currently under construction and is anticipated to be complete by the short-term horizon buildout year. The northbound and southbound Meridian Road approaches are anticipated to provide a left turn lane, two through lanes, and a channelized free right turn lane. The eastbound and westbound US-24 approaches are anticipated to provide a left turn lane, a through lane, and a right turn lane. Therefore, under the proposed configuration and control, the intersection is anticipated to operate at LOS C during the morning peak hour and LOS D during the afternoon peak hour with the addition of project traffic and re-routed traffic from the US-24 and (Old) Meridian Road intersection. By 2040, US-24 was identified as needing to provide two through lanes in each direction. In addition, if 2040 volumes are realized, eastbound dual left turn lanes are likely to be needed due to high volumes of left turns projected at this intersection in the future. With these improvements, this intersection is anticipated to operate acceptably during the peak hours in 2040. **Table 4** provides the results of the level of service at this intersection.

Table 4 – US-24 and (New) Meridian Road LOS Results

	AM Pea	ak Hour	PM Peak Hour		
Scenario	Delay (sec)	LOS	Delay (sec)	LOS	
2023 Background	34.9	С	43.3	D	
2023 Background Plus Project	33.2	С	40.0	D	
2040 Background	94.2	F	131.3	F	
2040 Background Plus Project#	31.3	С	40.1	D	

= Includes Two Eastbound and Westbound Through Lanes and Eastbound Dual Left Turn Lanes

5.3 Future Intersections

The future intersections of Pacific Avenue/(New) Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning movements. Direct access to the project will be provided from two driveways located along the north side of the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road.

The driveway accesses along Pacific Avenue and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections.

A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection. A northbound right turn lane should be provided at the proposed Pacific Avenue and (New) Meridian Road intersection.

The future intersection of Swingline Road and (New) Meridian Road is currently being constructed and will open with the completion of (New) Meridian Road in the surrounding area. (New) Meridian Road will provide two through lanes in each direction and separate left and right turn lanes onto Swingline Road. The westbound approach of Swingline Road will operate under stop control and will provide separate left and right turn lanes.

In addition, Swingline Road and (Old) Meridian Road will become a 'T'-intersection with the stop control on the north leg of (Old) Meridian Road. The existing south leg of (Old) Meridian Road at this intersection will be vacated with the completion of (New) Meridian Road. It is anticipated that the eastbound and westbound approaches of Swingline Road will provide one single lane for shared movements and the southbound approach will provide separate left and right turn lanes and stop control.

With the recommended lane configurations and control, all the movements at the project accesses and proposed new intersections to the south are anticipated to operate at LOS C or better during the morning and afternoon peak hour throughout the 2040 horizon. **Table 5** provides the results of the level of service at these intersections.

Table 5 – Project Accesses and Future Intersections LOS Results

	2023 Total Traffic				2040 Total Traffic			
	AM Peak Hour PM Peak Hour		AM Peak Hour		PM Peak Hour			
	Delay		Delay		Delay		Delay	
	(sec/	LOS	(sec/	LOS	(sec/	LOS	(sec/	LOS
Scenario	veh)		veh)		veh)		veh)	
Pacific Avenue &								
(New) Meridian Rd (3/4 Mvmts)								
Westbound Right	10.0	В	10.6	В	10.6	В	11.8	В
Southbound Left	8.4	Α	9.1	Α	8.8	Α	10.0	В
Swingline Road &								
(New) Meridian Road								
Westbound Left	13.2	В	16.8	С	15.1	С	22.4	С
Westbound Right	9.6	Α	10.5	В	10.1	В	11.6	В
Southbound Left	8.2	Α	8.9	Α	8.6	Α	9.8	Α
Swingline Road &								
(Old) Meridian Road								
Eastbound Left	7.5	Α	7.3	Α	7.5	Α	7.3	Α
Southbound Left	9.8	Α	9.4	Α	9.8	Α	9.4	Α
Southbound Right	8.9	Α	8.8	Α	8.9	Α	8.8	Α
Pacific Avenue &								
(Old) Meridian Road								
Northbound Left	7.4	Α	7.5	Α	7.4	Α	7.5	Α
Eastbound Approach	9.6	Α	9.7	Α	9.6	Α	9.7	Α

5.4 El Paso County and CDOT Turn Lane Requirement Analysis

The El Paso County ECM was used to determine if right turn lanes are warranted along (New) Meridian Road. El Paso County classifies Meridian Road as a minor arterial roadway. According to El Paso County ECM guidelines for Minor Arterials, a right turn lane is required for any access with a projected peak hour right turning volume of 50 vehicles per hour or greater.

Based on 2040 traffic volume projections, a northbound right turn lane is not warranted for the future Pacific Avenue and (New) Meridian Road based on projected 2040 total traffic volumes being 40 northbound right provide left and right turn lane analysis at the control of the period of the peri

being 40 northbound rig
Provide left and right turn lane analysis at the hour.

Pacific Avenue and Old Meridian Road

intersection for each leg

Include the SBLT analysis at the Pacific Avenue/(New) Meridian intersection

Since US-24 is a state owned and maintained facility, it is recommended that auxiliary turn lanes along US-24 be constructed in accordance with the current CDOT State Highway Access Code (SHAC). CDOT categorizes the segment of US-24 through the study area as E-X: Expressway. According to the State Highway Access Code for category E-X roadways, the following thresholds apply:

- A left turn deceleration lane is required for any access with a projected average daily left turn ingress volume greater than 10 with the transition taper included within the required deceleration length. If the projected peak hour left ingress turning volume is greater than 10 vehicles per hour (vph), a left turn deceleration, storage, and taper lane is required for any access.
- A right turn deceleration lane and taper is required for any access with a projected peak hour right ingress turning volume greater than 10 vph.
- A right turn acceleration lane and taper is required for any access with a project peak hour right turning volume greater than 10 vph.

Based on traffic projections and the above thresholds, auxiliary turn lanes requirements along US-24 with a posted speed limit of 55 miles per hour are as follows:

US-24 and (Old) Meridian Road

- An eastbound right turn deceleration lane exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 60 eastbound right turns during the peak hour and the threshold being 10 vph. The existing right turn lane length is approximately 350 feet. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). Therefore, the 600-foot deceleration lane is not accommodated in the existing 350-foot turn lane. It is anticipated that with completion of the (New) Meridian Road intersection to the west, a combination acceleration to deceleration lane will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road.
- A westbound right turn deceleration lane exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 10 westbound right turns during the peak hour and the threshold being 10 vph. The existing right turn lane length is approximately 600 feet with a 50-foot taper. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). A design waiver was likely granted

previously by CDOT for the existing substandard taper length due to the bridge located east of this intersection. Project traffic does not contribute to this movement and no mitigation is recommended to the existing taper length.

- An acceleration lane for the northbound right to eastbound through exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 120 northbound right turns during the peak hour and the threshold being 10 vph. The existing acceleration lane length is 500 feet long with a 225-foot taper. The acceleration lane length per SHAC requirements is 960 feet with a 225-foot taper (18.5:1 ratio). A design waiver was likely granted previously by CDOT for the existing substandard acceleration lane length due to the bridge located east of this intersection. It is believed that the existing northbound to eastbound acceleration lane along US-24 should remain at the current length and no mitigation is recommended.
- An acceleration lane for the southbound right to westbound through exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 110 southbound right turns during the peak hour and the threshold being 10 vph. The existing acceleration lane length is 350 feet long with a 225-foot taper. The acceleration lane length per SHAC requirements is 960 feet with a 225-taper (18.5:1 ratio). Therefore, the 960-foot acceleration lane is not accommodated in the existing 350-foot acceleration lane. It is anticipated that with completion of the (New) Meridian Road intersection to the west, a combination acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.

US-24 and (New) Meridian Road

The intersection of US-24 and (New) Meridian Road is currently under construction and some turn lanes cannot be determined from the aerials. Therefore, only recommendations based on CDOT standards have been provided for the future auxiliary turn lanes.

- An eastbound right turn deceleration lane <u>is</u> warranted based on the projected 2023 background plus project traffic being 50 eastbound right turns during the peak hour and the threshold being 10 vph. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). Therefore, a 600-foot deceleration lane with a 225-foot taper is recommended.
- A westbound right turn deceleration lane <u>is</u> warranted based on the projected 2023 background plus project traffic being 25 westbound right turns during the peak hour and

the threshold being 10 vph. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). The eastbound right turn lane is anticipated to be continuous from the southbound right acceleration lane at the intersection of US-24 and (Old) Meridian Road and therefore is recommended to provide 350 feet of storage with 150 feet of shared taper.

- An eastbound left turn deceleration <u>is</u> warranted based on the projected 2023 background plus project traffic being 525 eastbound left turns during the peak hour and the threshold being 10 vph. The left turn deceleration lane per SHAC requirements is 525 feet of storage plus 600 feet of deceleration length plus a 225-foot taper (18.5:1 ratio). Therefore, the left turn deceleration lane should provide 1,125 feet of length plus a 225-foot taper. If 2040 volumes are realized, eastbound dual left turn lanes will likely be needed at this intersection should provide 965 feet of length per lane plus a 225-foot taper.
- A westbound left turn deceleration <u>is</u> warranted based on the projected 2023 background plus project traffic being 170 westbound left turns during the peak hour and the threshold being 10 vph. The left turn deceleration lane per SHAC requirements is 170 feet of storage plus 600 feet of deceleration length plus a 225-foot taper (18.5:1 ratio). Therefore, the left turn deceleration lane should provide 770 feet of length plus a 225-foot taper. By 2040, the turn lane may need to be extended to 835 feet of length.
- An acceleration lane for the northbound right to eastbound through <u>is</u> warranted based on the projected 2023 background plus project traffic being 250 northbound right turns during the peak hour and the threshold being 10 vph. The acceleration lane length per SHAC requirements is 960 feet with a 225-foot taper (18.5:1 ratio). However, it is anticipated that a combination acceleration to deceleration lane will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road.
- An acceleration lane for the southbound right to westbound through <u>is</u> warranted based on the projected 2023 background plus project traffic being 610 southbound right turns during the peak hour and the threshold being 10 vph. The acceleration lane length per SHAC requirements is 960 feet with a 225-foot taper (18.5:1 ratio). Therefore, a 960-foot acceleration lane with a 225-foot taper is recommended to be provided.

5.5 Queuing Analysis

A queuing analysis was conducted for turn lanes at the study intersections. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Results are shown in the following **Table 6** with calculations provided in **Appendix D** for the unsignalized intersections and **Appendix E** for the signalized intersections.

Table 6 – Turn Lane Length Analysis Results

	Existing Turn Lane	2023 Total Queue	2023 Recommended	2040 Total Queue	2040 Recommended	
Intersection Turn Lane	Length (feet)	Length (feet)	Turn Lane Length (feet)	Length (feet)	Turn Lane Length (feet)	
US-24 & (New) Meridian		Ì		•		
Eastbound Left	DNE	523'	1125'+225'T	356' DL	965'+225'T DL	
Eastbound Right	DNE	0'	600'+225'T	0'	600'+225'T	
Westbound Left	DNE	237'	770'+225'T	232'	835'+225'T	
Westbound Right	DNE	0'	C	0'	С	
Northbound Left	400'	108'	150'	113'	150'	
Northbound Right	DNE	0'	200'	0'	200'	
Southbound Left	150'	57'	150'	71'	150'	
Southbound Right	300'	0'	300'	0'	300'	
Pacific Ave & (New) Meridian Rd						
Westbound Approach	DNE	25'	C	25'	С	
Southbound Left	DNE	25'	100'	25'	100'	
Swingline Rd & (New) Meridian						
Westbound Left	DNE	25'	100'	50'	100'	
Westbound Right	DNE	25'	C	25'	С	
Southbound Left	125'	25'	125'	25'	125'	
Swingline Rd & (Old) Meridian						
Southbound Left	250'	25'	250'	25'	250'	
Southbound Right	С	25'	С	25'	С	
Pacific Ave & (Old) Meridian Rd						
Eastbound Approach	DNE	25'	C	25'	С	

DNE = Does Not Exist; T = Taper; DL = Dual Left Turn Lanes; C = Continuous Lane

Results of the queuing analysis indicate that vehicle queues are expected to remain within the provided turn lanes of the studied intersections. In addition, the turn lanes for the eastbound left, eastbound right, westbound left, and westbound right at the intersection of US-24 and (New) Meridian Road have been designed per SHAC requirements.

There is approximately 340 feet of spacing along (New) Meridian Road between US-24 and the proposed Pacific Avenue (measured edge to edge). With the future intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road

intersection be restriped from 400 feet to 150 feet of length to accommodate back to back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should The highlighted section is incorrect. Limited access on an arterial road is reques granted if there is no lower classification road that can provide access to an existing lot. Access is available for this property through (Old) Meridian Road calcula which is a lower classification road, therefore access from (New) Meridian is not necessary. It is red The applicant would have to submit a deviation request for the ECM Meridia Administrator's review and consideration. With available access via (Old) Meridian Road there does not seem to be sufficient justification why a deviation accom from the ECM should be granted for intersection spacing at (New) Meridian length road. aueues

5.6 Access Spacing and Sight Distance Evaluation

CDOT coordination meeting.

accele

The future Pacific Avenue access along (New) Meridian Road will be located approximately 390 feet south of US-24 (measured centerline to centerline) while the access along (Old) Meridian Road will be located approximately 410 feet south of US-24. According to El Paso County 2016 Major Transportation Corridors Plan Update, Meridian Road to the south of US-24 if classified as a Minor Arterial while (Old) Meridian Road will have the character of a minor collector roadway once the (New) Meridian Road realignment is complete.

Per the comment on page 2, additional guidance will be provided after the

According to the EI Paso Engineering Criteria Manual (ECM), spacing of roads accessing an urban minor arterial that will result in a full movement intersection shall be planned at one-quarter mile. However, as stated in the ECM, one parcel access shall be granted to each existing lot, if it does not create safety or operational problems. Therefore, it is believed that an access (Pacific Avenue) along (New) Meridian Road should be granted to allow for access to the existing lot. This access along (New) Meridian Road is proposed with three-quarter movements with the exiting left turn movements being restricted. The back to back left turn configuration with this proposed access along (New) Meridian Road and the intersection of US-24 and Meridian Road (New) has been discussed in detail above in Section 5.5. According to the EI Paso Engineering Criteria Manual, spacing of intersections along minor collector roadways should be 330 feet from the right-of-way line of the arterial to the centerline of the

access roadway. Therefore, it is believed that the proposed accesses along (New) Meridian Road and (Old) Meridian Road are appropriately spaced according to ECM standards.

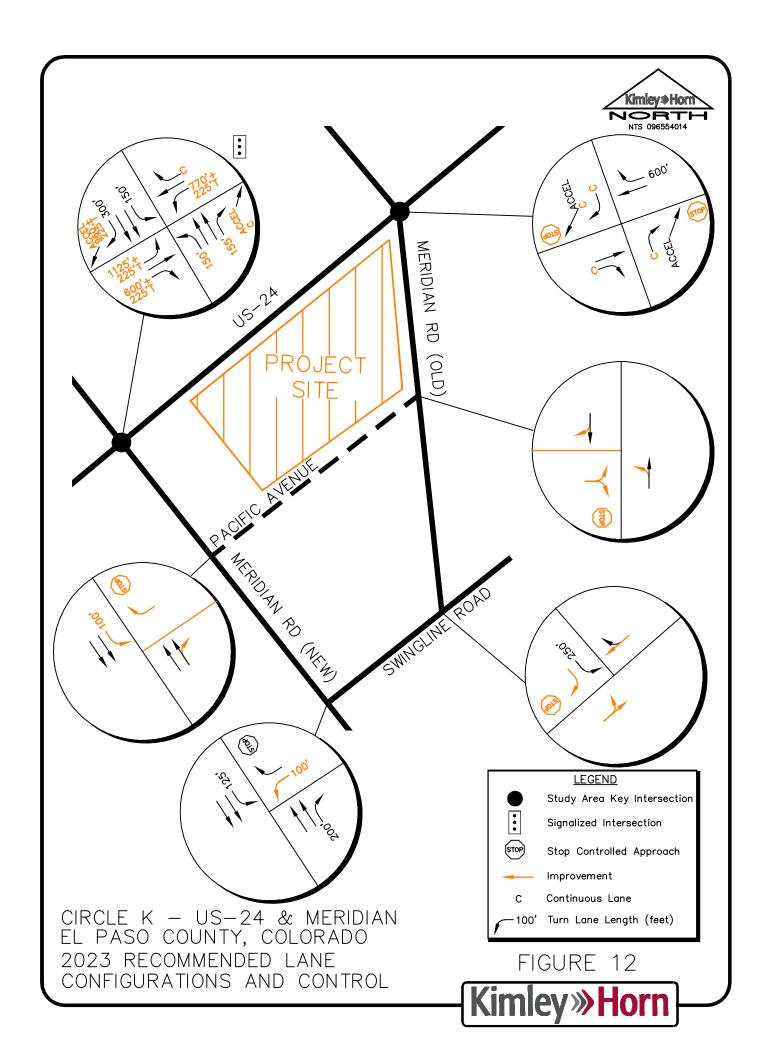
With AASHTO standards for a roadway design speed of 40 miles per hour along (New) Meridian Road, the intersection sight distance for a vehicle turning right from stop is 390 feet, while the sight distance for a vehicle turning right from stop is 385 feet. Therefore, all obstructions for right turning vehicles from stop should be clear to the left within the triangle created with a vertex point located 14.5 feet from the edge of the major road traveled way and a line of sight distance of 385 feet located in the middle of the nearest northbound through lane along (New) Meridian Road.

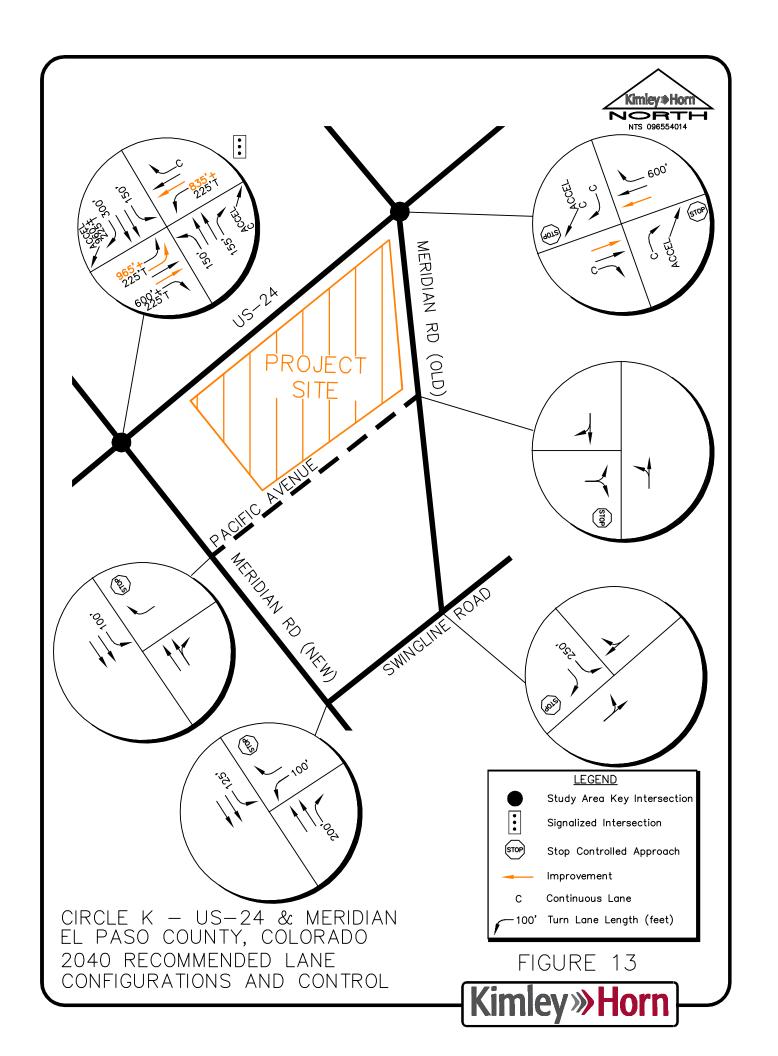
Likewise, with AASHTO standards and a future collector roadway design speed of 35 miles per hour along (Old) Meridian Road, the intersection sight distance for a vehicle turning left from stop is 390 feet, while the sight distance for a vehicle turning right from stop is 335 feet. Therefore, all obstructions for left turning vehicles from stop should be clear to the right within the triangle created with a vertex point located 14.5 feet from the edge of the major road traveled way (typical position of the minor road driver's eye when stopped) and a line of sight distance of 390 feet located in the middle of the northbound through lane along (Old) Meridian Road. Likewise, all obstructions for right turning vehicles from stop should be clear to the left within the triangle created with a vertex point located 14.5 feet from the edge of the major road traveled way and a line of sight distance of 335 feet located in the middle of the southbound through lane along (Old) Meridian Road.

It is believed that both accesses are appropriately located to provide the necessary sight distance needed. It is recommended that appropriate sight distance triangles be provided at all site access points to give drivers exiting the development areas a clear view of oncoming traffic. Landscaping and objects within sight triangles must not obstruct drivers' views of the adjacent travel lanes.

5.7 Bicycle and Pedestrian Access

Bicycle lanes and sidewalks are provided along both sides of the recently constructed (New) Meridian Road. Sidewalks are provided on both side of Swingline Road. Adjacent to the site, there are no bicycle lanes or sidewalks along US-24 and (Old) Meridian Road.


5.8 Improvement Summary


Based on the results of the intersection operational and queuing analysis, the recommended lane configurations and control at the study key intersection and project access in 2023 and 2040 are shown in **Figure 12** and **Figure 13**, respectively.

Review the Big-O-Tires project application (PCD File No. VR1810 & PPR1836). With Old Meridian classified as Collector, Big-O-Tires was required to dedicate 10-ft additional ROW and provide escrow for future improvements in lieu of constructing sidewalk, curb & gutter.

Given the extent of the of (Old) Meridian Rd frontage, expect to upgrade (Old) Meridian Road to the standard Urban Non-Residential Collector road cross section from Hwy 24 to Swingline Rd.

Update the conclusion/recommendation to note the 10-ft ROW dedication along (Old) Meridian Road and upgrading Swingline Road to the standard Urban Non-Residential Collector. Staff recommends the TIS include a note for the applicant to petition the Road Impact Fee advisory committee to include (Old) Meridian Road improvement as an eligible improvement for credits in the Road Impact Fee program.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes the redeveloped Circle K project will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

2023 Recommendations:

- The following improvements are recommended in association with the project:
 - The future intersections of Pacific Avenue/(New) Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning movements. Direct access to the project will be provided from two driveways located along the north side of the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road. It is believed that the proposed accesses along (New) Meridian Road and (Old) Meridian Road are appropriately spaced to meet El Paso County Engineering Criteria Manual (ECM) standards for sight distance.
 - The driveway accesses along Pacific Avenue and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections. A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection.
 - There is approximately 340 feet of spacing along (New) Meridian Road between US 24 and the proposed Pacific Avenue (measured edge to edge). With the future

intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road intersection be restriped from 400 feet to 150 feet of length to accommodate back to back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should provide 100 feet of length with a reduced shared taper length of 75 feet. A deviation request will need to be provided to allow these substandard left turn lane lengths; however, calculated vehicles are expected to be accommodated within the proposed left turn lane lengths.

- o It is recommended that the existing 400 foot northbound right turn lane at the US-24 and (New) Meridian Road intersection be shortened to 155 feet of length plus a 160-foot taper to accommodate the future intersection of Pacific Avenue and (New) Meridian Road. This new length meets El Paso County standards for a design speed of 40 miles per hour and vehicle queues will be accommodated in this lane as the northbound to eastbound right turn acceleration lane will provide free movements at this intersection.
- The following improvements along US-24 are anticipated to be completed by CDOT in association with the ongoing realignment of Meridian Road:
 - o By project buildout year of 2023 and coinciding the completion of the new alignment of Meridian Road, it is anticipated that CDOT will convert the signalized intersection of US-24 and (Old) Meridian Road will to an unsignalized intersection. Further, this intersection will be restricted to right-in/right-out only movements with stop control along the northbound and southbound (Old) Meridian Road approaches.
 - With completion of the new alignment of Meridian Road, it is anticipated that CDOT will construct a combination right turn acceleration to deceleration lane that will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road. Likewise, a combination right turn acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.

A 600-foot eastbound right turn deceleration lane with a 225-foot taper is recommended at the intersection of US-24 and (New) Meridian Road. A 1,125-foot left turn lane with a 225-foot taper is also recommended along the eastbound approach of this intersection. Likewise, a westbound left turn lane with a length of 770 feet is recommended at the US-24 and (New) Meridian Road intersection. Lastly, a southbound Meridian Road to westbound US-24 right turn acceleration is recommended with a length of 960 feet plus a 225-foot taper. It is anticipated that CDOT will be constructing all these improvements with the new alignment of Meridian Road.

2040 Recommendations:

- If future traffic volume projections materialize, US-24 will need to be improved to provide two through lanes in each direction throughout the study area.
- The westbound left turn lane at the US-24 and Meridian Road intersection may need to be extended from 770 feet to 835 feet of length.
- The eastbound approach of the US-24 and Meridian Road intersection may need to provide dual left turn lanes with 965 feet of length per lane.

General Recommendations:

 All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to El Paso County Standards as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).

Add a bullet point which identify the proposed classification for the proposed internal roadway (Pacific Ave)

Add a section for road impact fee. State the applicable road impacts are and what option the developer will be selecting for payment. If the site is in a special district, so state and summarize the applicable fee.

List all deviations from the County ECM that the applicant will making during the subsequent preliminary plan application.

APPENDICES

APPENDIX A

Intersection Count Sheets

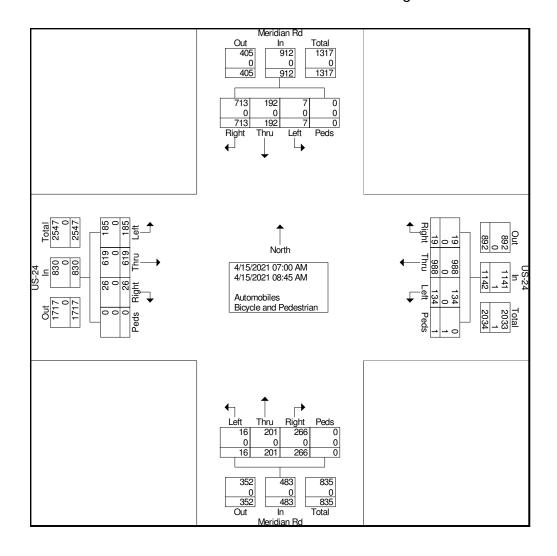
Falcon, CO Circle K - US24 & Meridian AM Peak US-24 & Meridian Rd File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

			US-2	4			ючро	US-2		mobile	, 5.0		eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	20	70	3	0	93	16	166	2	0	184	3	25	37	0	65	1	18	127	0	146	488
07:15 AM	26	85	0	0	111	11	164	3	0	178	2	15	42	0	59	0	25	114	0	139	487
07:30 AM	22	78	3	0	103	24	151	2	0	177	5	20	25	0	50	0	31	135	0	166	496
07:45 AM	22	73	3	0	98	26	110	4	0	140	1	24	45	0	70	1	23	95	0	119	427
Total	90	306	9	0	405	77	591	11	0	679	11	84	149	0	244	2	97	471	0	570	1898
•••	ا م		_			۱ ـ		_			١ .										l <u></u> .
08:00 AM	21	83	6	0	110	9	95	2	1	107	1	17	17	0	35	2	31	89	0	122	374
08:15 AM	24	64	4	0	92	16	98	1	0	115	0	26	43	0	69	0	28	50	0	78	354
08:30 AM	20	86	3	0	109	17	108	2	0	127	2	46	38	0	86	2	18	65	0	85	407
08:45 AM	30	80	4	0	114	15	96	3	0	114	2	28	19	0	49	1	18	38	0	57	334
Total	95	313	17	0	425	57	397	8	1	463	5	117	117	0	239	5	95	242	0	342	1469
														_							
Grand Total	185	619	26	0	830	134	988	19	1	1142	16	201	266	0	483	/	192	713	0	912	3367
Apprch %	22.3	74.6	3.1	0		11.7	86.5	1.7	0.1		3.3	41.6	55.1	0		0.8	21.1	78.2	0		
Total %	5.5	18.4	8.0	0	24.7	4	29.3	0.6	0	33.9	0.5	6	7.9	0	14.3	0.2	5.7	21.2	0	27.1	
Automobiles	185	619	26	0	830	134	988	19	0	1141	16	201	266	0	483	7	192	713	0	912	3366
% Automobiles	100	100	100	0	100	100	100	100	0	99.9	100	100	100	0	100	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	100	0.1	0	0	0	0	0	0	0	0	0	0	0

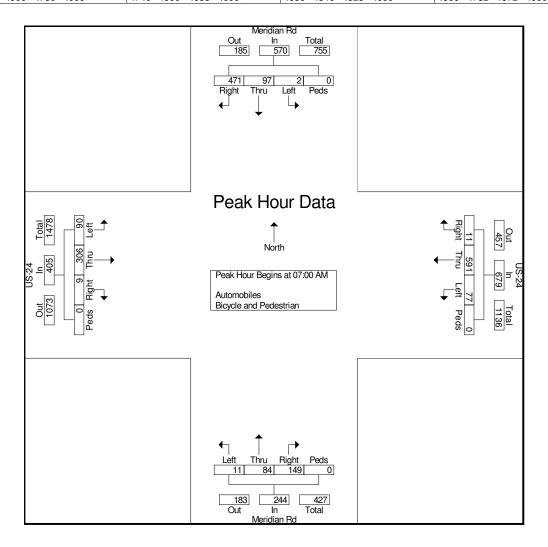


Falcon, CO Circle K - US24 & Meridian AM Peak

US-24 & Meridian Rd

File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021



Falcon, CO Circle K - US24 & Meridian AM Peak US-24 & Meridian Rd File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021

			US-2	4				US-2	4			М	eridiar	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	08:45 A	M - Pe	eak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	n Begin	s at 07:	00 AM															
07:00 AM	20	70	3	0	93	16	166	2	0	184	3	25	37	0	65	1	18	127	0	146	488
07:15 AM	26	85	0	0	111	11	164	3	0	178	2	15	42	0	59	0	25	114	0	139	487
07:30 AM	22	78	3	0	103	24	151	2	0	177	5	20	25	0	50	0	31	135	0	166	496
07:45 AM	22	73	3	0	98	26	110	4	0	140	1	24	45	0	70	1	23	95	0	119	427
Total Volume	90	306	9	0	405	77	591	11	0	679	11	84	149	0	244	2	97	471	0	570	1898
% App. Total	22.2	75.6	2.2	0		11.3	87	1.6	0		4.5	34.4	61.1	0		0.4	17	82.6	0		
PHF	.865	.900	.750	.000	.912	.740	.890	.688	.000	.923	.550	.840	.828	.000	.871	.500	.782	.872	.000	.858	.957

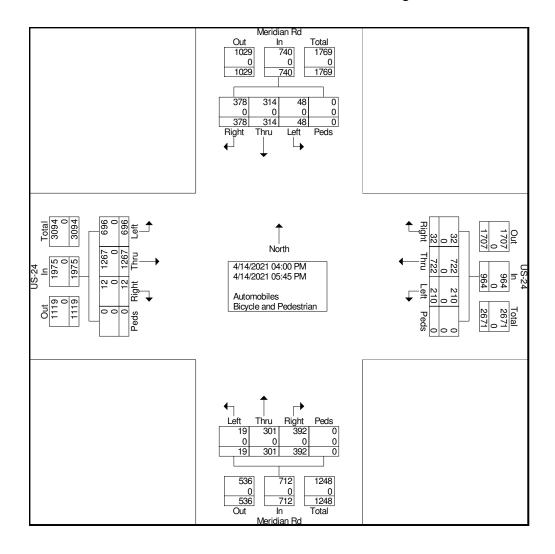
Falcon, CO Circle K - US24 & Meridian PM Peak US-24 & Meridian Rd File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

			US-24	4			гоаро	US-24		, i i i i i i i i i i i i i i i i i i i	, 1010		eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	78	161	1	0	240	20	107	4	0	131	1	49	56	0	106	5	38	63	0	106	583
04:15 PM	108	173	2	0	283	27	76	5	0	108	3	28	35	0	66	6	28	42	0	76	533
04:30 PM	74	159	1	0	234	18	101	4	0	123	0	47	53	0	100	6	38	56	0	100	557
04:45 PM	88	150	1	0	239	27	89	9	0	125	5	39	62	0	106	6	39	40	0	85	555
Total	348	643	5	0	996	92	373	22	0	487	9	163	206	0	378	23	143	201	0	367	2228
					·																
05:00 PM	87	149	3	0	239	32	90	2	0	124	3	41	62	0	106	3	53	41	0	97	566
05:15 PM	91	154	1	0	246	23	88	4	0	115	2	39	54	0	95	4	43	56	0	103	559
05:30 PM	95	156	0	0	251	36	77	2	0	115	3	31	37	0	71	11	38	38	0	87	524
05:45 PM	75	165	3	0	243	27	94	2	0	123	2	27	33	0	62	7	37	42	0	86	514
Total	348	624	7	0	979	118	349	10	0	477	10	138	186	0	334	25	171	177	0	373	2163
Grand Total	696	1267	12	0	1975	210	722	32	0	964	19	301	392	0	712	48	314	378	0	740	4391
Apprch %	35.2	64.2	0.6	0		21.8	74.9	3.3	0		2.7	42.3	55.1	0		6.5	42.4	51.1	0		
Total %	15.9	28.9	0.3	0	45	4.8	16.4	0.7	0	22	0.4	6.9	8.9	0	16.2	1.1	7.2	8.6	0	16.9	
Automobiles	696	1267	12	0	1975	210	722	32	0	964	19	301	392	0	712	48	314	378	0	740	4391
% Automobiles	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrian																					

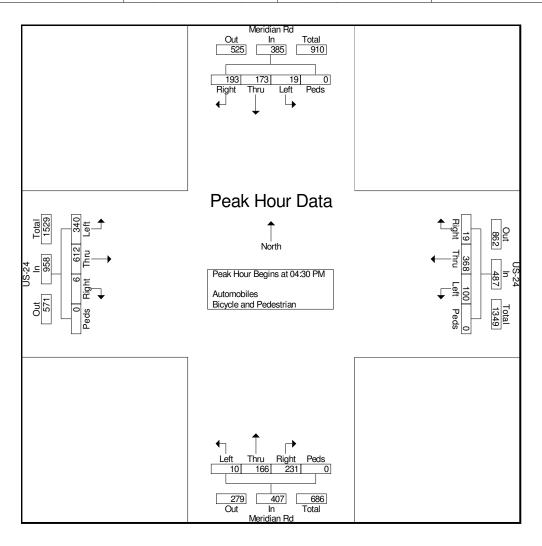


Falcon, CO Circle K - US24 & Meridian PM Peak

US-24 & Meridian Rd

File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021



Falcon, CO Circle K - US24 & Meridian PM Peak US-24 & Meridian Rd File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021

			US-2	4				US-2	4			М	eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			So	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	04:00	PM to	05:45 P	M - Pe	ak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	n Begin	s at 04:	30 PM															
04:30 PM	74	159	1	0	234	18	101	4	0	123	0	47	53	0	100	6	38	56	0	100	557
04:45 PM	88	150	1	0	239	27	89	9	0	125	5	39	62	0	106	6	39	40	0	85	555
05:00 PM	87	149	3	0	239	32	90	2	0	124	3	41	62	0	106	3	53	41	0	97	566
05:15 PM	91	154	1	0	246	23	88	4	0	115	2	39	54	0	95	4	43	56	0	103	559
Total Volume	340	612	6	0	958	100	368	19	0	487	10	166	231	0	407	19	173	193	0	385	2237
% App. Total	35.5	63.9	0.6	0		20.5	75.6	3.9	0		2.5	40.8	56.8	0		4.9	44.9	50.1	0		
PHF	.934	.962	.500	.000	.974	.781	.911	.528	.000	.974	.500	.883	.931	.000	.960	.792	.816	.862	.000	.934	.988

Falcon, CO Circle K - US24 & Meridian AM Peak Meridian Circle K Access File Name: Meridian CircleK Access AM

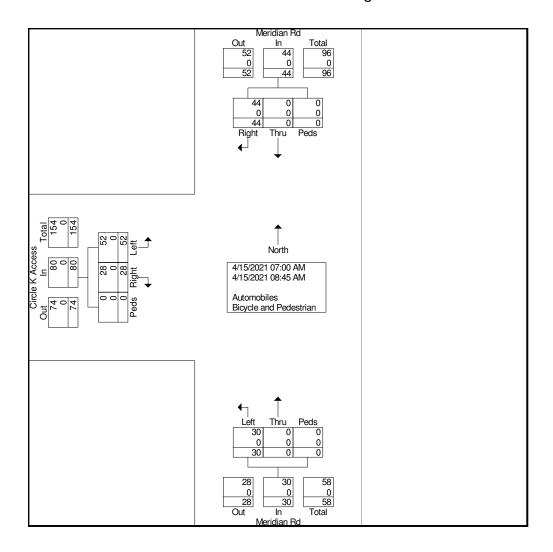
Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Circle K	Access	Groups i	iiiileu- Aul		ian Rd	and Pedesi	iiaii	Merid	ian Rd		
		Easth	oound			North	bound				bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	8	2	0	10	2	0	0	2	0	3	0	3	15
07:15 AM	10	1	0	11	5	0	0	5	0	1	0	1	17
07:30 AM	4	8	0	12	5	0	0	5	0	9	0	9	26
07:45 AM	7	3	0	10	6	0	0	6	0	3	0	3	19
Total	29	14	0	43	18	0	0	18	0	16	0	16	77
08:00 AM	6	4	0	10	2	0	0	2	0	10	0	10	22
08:15 AM	5	4	0	9	5	0	0	5	0	4	0	4	18
08:30 AM	7	3	0	10	2	0	0	2	0	6	0	6	18
08:45 AM	5	3	0	8	3	0	0	3	0	8	0	8	19
Total	23	14	0	37	12	0	0	12	0	28	0	28	77
Grand Total	52	28	0	80	30	0	0	30	0	44	0	44	154
Apprch %	65	35	0		100	0	0		0	100	0		
Total %	33.8	18.2	0	51.9	19.5	0	0	19.5	0	28.6	0	28.6	
Automobiles	52	28	0	80	30	0	0	30	0	44	0	44	154
% Automobiles	100	100	0	100	100	0	0	100	0	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO

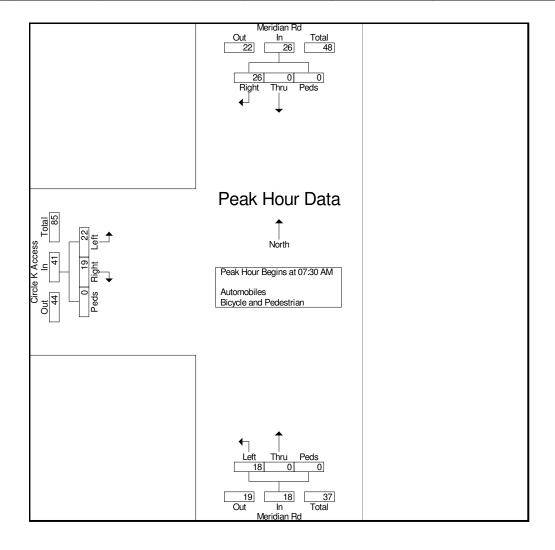

Circle K - US24 & Meridian

AM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021


Falcon, CO Circle K - US24 & Meridian AM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

		Circle k	Access			Merid	ian Rd			Merid	lian Rd		
		East	bound			North	bound			South	bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:0	0 AM to	08:45 AM	- Peak 1 of 1	ı				•				
Peak Hour for Entire	e Intersecti	on Begins	at 07:30	AM									
07:30 AM	4	8	0	12	5	0	0	5	0	9	0	9	26
07:45 AM	7	3	0	10	6	0	0	6	0	3	0	3	19
08:00 AM	6	4	0	10	2	0	0	2	0	10	0	10	22
08:15 AM	5	4	0	9	5	0	0	5	0	4	0	4	18
Total Volume	22	19	0	41	18	0	0	18	0	26	0	26	85
% App. Total	53.7	46.3	0		100	0	0		0	100	0		
PHF	.786	.594	.000	.854	.750	.000	.000	.750	.000	.650	.000	.650	.817

Falcon, CO Circle K - US24 & Meridian PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

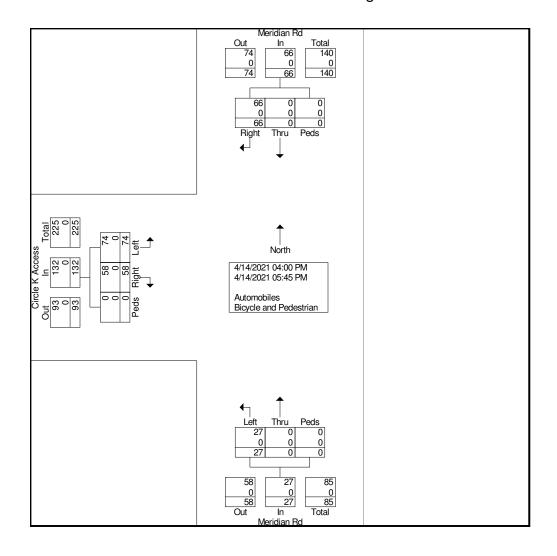
Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Circle K	Access	Gloups F	IIIIeu- Aut		ian Rd	and Pedesi	IIaII	Merid	ian Rd		
			ound				bound				bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	14	11	0	25	7	0	0	7	0	10	0	10	42
04:15 PM	12	7	0	19	4	0	0	4	0	4	0	4	27
04:30 PM	4	5	0	9	4	0	0	4	0	5	0	5	18
04:45 PM	3	6	0	9	3	0	0	3	0	10	0	10	22
Total	33	29	0	62	18	0	0	18	0	29	0	29	109
05 00 DM	4.0	40		00		•	•		١ .	•	•	ا م	
05:00 PM	12	10	0	22	2	0	0	2	0	8	0	8	32
05:15 PM	10	7	0	17	1	0	0	1	0	7	0	7	25
05:30 PM	10	8	0	18	3	0	0	3	0	14	0	14	35
05:45 PM	9	4	0	13	3	0	0	3	0	8	0	8	24
Total	41	29	0	70	9	0	0	9	0	37	0	37	116
Grand Total	74	58	0	132	27	0	0	27	0	66	0	66	225
Apprch %	56.1	43.9	0	.02	100	0	0		0	100	0		
Total %	32.9	25.8	0	58.7	12	0	0	12	0	29.3	0	29.3	
Automobiles	74	58	0	132	27	0	0	27	0	66	0	66	225
% Automobiles	100	100	0	100	100	0	0	100	0	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO


Circle K - US24 & Meridian

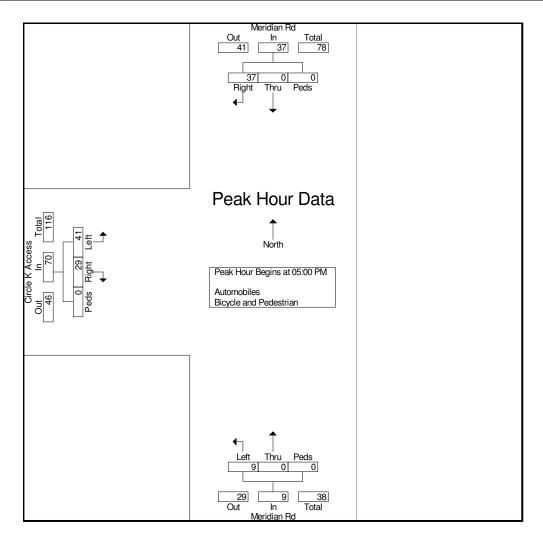
PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021

Falcon, CO Circle K - US24 & Meridian


PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021

		Circle k	Access			Merid	lian Rd			Merid	lian Rd		
		East	bound			North	bound			South	bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:0	00 PM to 0)5:45 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersect	ion Begins	at 05:00	PM									
05:00 PM	12	10	0	22	2	0	0	2	0	8	0	8	32
05:15 PM	10	7	0	17	1	0	0	1	0	7	0	7	25
05:30 PM	10	8	0	18	3	0	0	3	0	14	0	14	35
05:45 PM	9	4	0	13	3	0	0	3	0	8	0	8	24
Total Volume	41	29	0	70	9	0	0	9	0	37	0	37	116
% App. Total	58.6	41.4	0		100	0	0		0	100	0		
PHF	.854	.725	.000	.795	.750	.000	.000	.750	.000	.661	.000	.661	.829

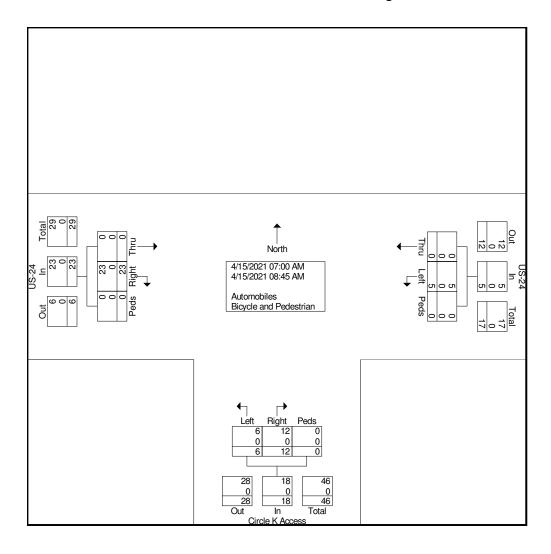
Falcon, CO Circle K - US24 & Meridian AM Peak US-24 Circle K Access File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		US	i-24	Groups i	IIIIleu- Ault		-24	and Pedesi	ΠαΠ	Circle K	Access		
		Eastk	oound				oound			North	bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
07:00 AM	0	2	0	2	0	0	0	0	0	1	0	1	3
07:15 AM	0	6	0	6	0	0	0	0	0	2	0	2	8
07:30 AM	0	3	0	3	2	0	0	2	1	0	0	1	6
07:45 AM	0	0	0	0	2	0	0	2	0	2	0	2	4
Total	0	11	0	11	4	0	0	4	1	5	0	6	21
08:00 AM	0	2	0	2	0	0	0	0	2	3	0	5	7
	_			_	0	-		U			-		,
08:15 AM	0	1	0	1	1	0	0	1	0	0	0	0	2
08:30 AM	0	6	0	6	0	0	0	0	1	4	0	5	11
08:45 AM	0	3	0	3	0	0	0	0	2	0	0	2	5
Total	0	12	0	12	1	0	0	1	5	7	0	12	25
Grand Total	0	23	0	23	5	0	0	5	6	12	0	18	46
Apprch %	0	100	0		100	0	0		33.3	66.7	0		
Total %	0	50	0	50	10.9	0	0	10.9	13	26.1	0	39.1	
Automobiles	0	23	0	23	5	0	0	5	6	12	0	18	46
% Automobiles	0	100	0	100	100	0	0	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

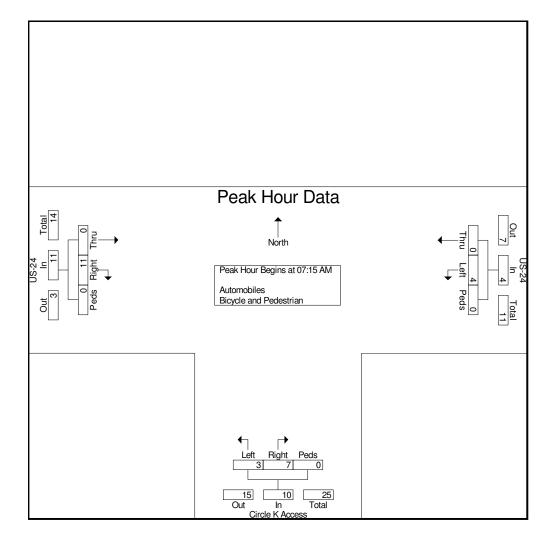

Falcon, CO Circle K - US24 & Meridian

AM Peak

US-24 Circle K Access

File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021



Falcon, CO Circle K - US24 & Meridian AM Peak US-24 Circle K Access File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

		US	S-24			US	-24			Circle K	Access		
		East	bound			West	oound			North	bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:0	00 AM to	08:45 AM	- Peak 1 of 1									_
Peak Hour for Entire	e Intersecti	on Begin	s at 07:15	AM									
07:15 AM	0	6	0	6	0	0	0	0	0	2	0	2	8
07:30 AM	0	3	0	3	2	0	0	2	1	0	0	1	6
07:45 AM	0	0	0	0	2	0	0	2	0	2	0	2	4
08:00 AM	0	2	0	2	0	0	0	0	2	3	0	5	7
Total Volume	0	11	0	11	4	0	0	4	3	7	0	10	25
% App. Total	0	100	0		100	0	0		30	70	0		
PHF	.000	.458	.000	.458	.500	.000	.000	.500	.375	.583	.000	.500	.781

Falcon, CO Circle K - US24 & Meridian PM Peak US-24 Circle K Access File Name: US24 CircleK Access PM

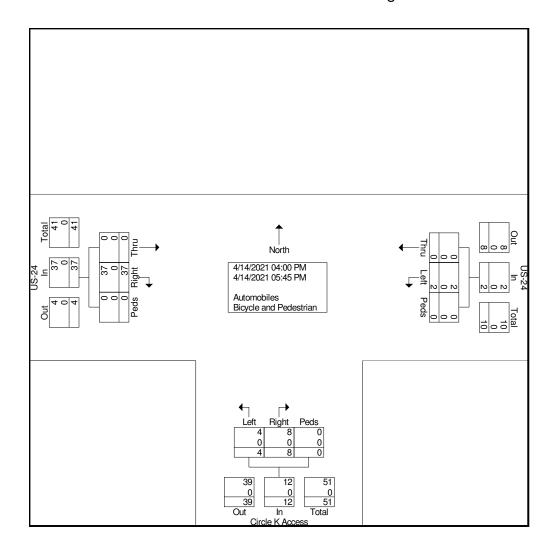
Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		US	-24	агоарот	initod Auto		-24	and Pedesi	i i di i	Circle K	Access		
			oound				oound				bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
04:00 PM	0	6	0	6	0	0	0	0	1	2	0	3	9
04:15 PM	0	3	0	3	0	0	0	0	0	1	0	1	4
04:30 PM	0	2	0	2	1	0	0	1	0	1	0	1	4
04:45 PM	0	4	0	4	0	0	0	0	1	2	0	3	7
Total	0	15	0	15	1	0	0	1	2	6	0	8	24
05:00 PM	0	5	0	5	0	0	0	0	1 0	0	0	0	5
	0	5	0	5	0	0	0	0	0	U	0	U	5
05:15 PM	0	9	0	9	0	0	0	0	0	1	0	1	10
05:30 PM	0	5	0	5	1	0	0	1	2	0	0	2	8
05:45 PM	0	3	0	3	0	0	0	0	0	1	0	1	4
Total	0	22	0	22	1	0	0	1	2	2	0	4	27
Grand Total	0	37	0	37	2	0	0	2	4	8	0	12	51
Apprch %	0	100	0	_	100	0	0		33.3	66.7	0		
Total %	0	72.5	0	72.5	3.9	0	0	3.9	7.8	15.7	0	23.5	
Automobiles	0	37	0	37	2	0	0	2	4	8	0	12	51
% Automobiles	0	100	0	100	100	0	0	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO

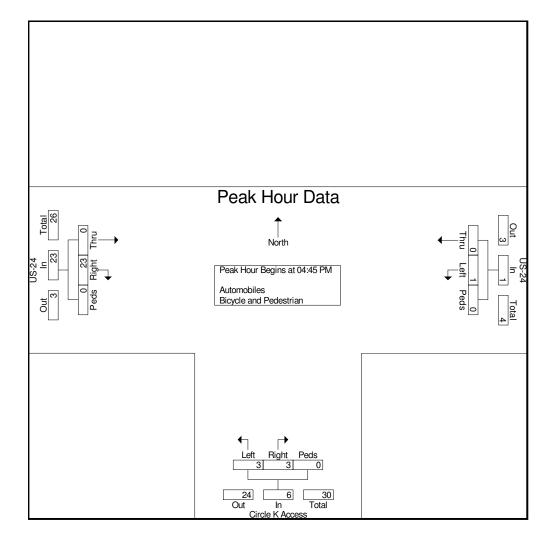

Circle K - US24 & Meridian

PM Peak

US-24 Circle K Access

File Name: US24 CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021



Falcon, CO Circle K - US24 & Meridian PM Peak US-24 Circle K Access File Name: US24 CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021

		US	5-24			US	-24			Circle K	Access		
		East	bound			Westl	oound			North	bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:0	00 PM to	05:45 PM	- Peak 1 of									
Peak Hour for Entire	e Intersecti	on Begin	s at 04:45	PM									
04:45 PM	0	4	0	4	0	0	0	0	1	2	0	3	7
05:00 PM	0	5	0	5	0	0	0	0	0	0	0	0	5
05:15 PM	0	9	0	9	0	0	0	0	0	1	0	1	10
05:30 PM	0	5	0	5	1	0	0	1	2	0	0	2	8
Total Volume	0	23	0	23	1	0	0	1	3	3	0	6	30
% App. Total	0	100	0		100	0	0		50	50	0		
PHF	.000	.639	.000	.639	.250	.000	.000	.250	.375	.375	.000	.500	.750

APPENDIX B

CDOT Traffic Data

Circle K US-24 & Meridian Counts Adjustment

Traffic Counts										
Scenario	AM Peak	PM Peak								
2019 Existing (Pre-COVID - 2019-04-16)	2,076	2,161								
2019 Grown to 2021	2,160	2,248								
2021 Counts (During COVID - 2021-04-15)	1,478	1,529								
Percent Change	-31.57%	-31.99%								
Growth Adjustment	46.13%	47.04%								
Adjustment Factor	1.46	1.47								

CDOT OTIS Count Station 107900: SH-24 S/O Woodman Road

COUNTDIR	HOUR7	HOUR8	HOUR16	HOUR17		
Primary	535	476	1464	1346		
Secondary	1541	1023	697	607		
Total	2076	1499	2161	1953		

OTIS Growth Rate for Circle K @ US-24 & Meridian Road

ROUTE	UPDATEYR	AADT	AADTYR	COUNTYEAR	OFFPKTRK	YR20FACTOR	Growth Rate	DHV	D	D	LOCATION
024G	2019	20000	2019	2019	5.9	1.5	1.950%		10.5	75	ON SH 24 0.5MI NE/O CONSTITUTION AVE COLORADO SPRINGS
024G	2019	17000	2019	2017	4.1	1.4	1.615%		9.5	69	ON SH 24 NE/O FALCON HIGHWAY FALCON
024G	2019	14000	2019	2017	3.8	1.49	1.917%		11	57	ON SH 24 NE/O WOODMAN RD FALCON
024G	2019	11000	2019	2017	4.7	1.45	1.785%		11	57	ON SH 24 NE/O JUDGE ORR RD FALCON

Average 1.817%

APPENDIX C

Trip Generation Worksheets

Project	Circle K @ US-24	& Meridian Road			
Subject	Trip Generation for	r Super Convenier	ce Market/Gas Station		
Designed by	MAG	Date	54/2021	Job No.	096554014
Checked by		Date		Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations

Land Use Code - Super Convenience Market/Gas Station (960)

Independant Variable - 1000 Square Feet Gross Leasable Area (X)

Gross Leasable Area = 5,200 Square Feet

X = 5.200

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 404)

Directional Distribution: 50% ent. 50% exit. T = 83.14 (X) T = 432 Average Vehicle Trip Ends T = 83.14 $^{\circ}$ 5.200 216 entering 216 exiting

216 + 216 = 432

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 405)

Directional Distribution: 50% ent. 50% exit.

T = 69.28 (X)

T = 69.28 * 5.200

Directional Distribution: 50% ent. 50% exit.

T = 360 Average Vehicle Trip Ends

180 entering 180 exiting

Weekday (800 Series page 335)

Average Weekday Directional Distribution: 50% entering, 50% exiting T = 837.58 (X) T = 4356 Average Vehicle Trip Ends 2178 entering 2178 exiting

2178 + 2178 = 4356

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

PM Peak Hou	ır = 44	·% Non	-Pass By	AM Peak Hour =	38%	Non-Pass By
	IN	Out	Total	* Utilized ITE 945 p	bass-by	calculations
AM Peak	82	82	164			
PM Peak	79	79	158			
Dailv	958	958	1916	PM Peak Hour Rat	e Applie	ed to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

PM Peak Ho	ur = 56	% Pas	s By	AM Peak Hour = 62% Pass By	
	IN	Out	Total		
AM Peak	134	134	268		
PM Peak	101	101	202		
Daily	1220	1220	2440	PM Peak Hour Rate Applied to Daily	

APPENDIX D

Intersection Analysis Worksheets

1: (Old) Meridian Road & US-24

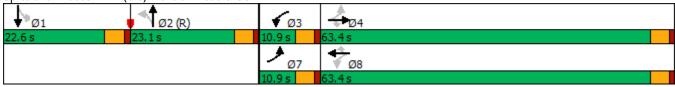
	۶	→	•	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	†	7	7	†	7		ર્ન	7		4	7
Traffic Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Future Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Free
Protected Phases	7	4		3	8			2			1	
Permitted Phases	4		4	8		8	2		Free	1		Free
Detector Phase	7	4	4	3	8	8	2	2		1	1	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)	10.9	63.4	63.4	10.9	63.4	63.4	23.1	23.1		22.6	22.6	
Total Split (%)	9.1%	52.8%	52.8%	9.1%	52.8%	52.8%	19.3%	19.3%		18.8%	18.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		Max	Max	
Act Effct Green (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Actuated g/C Ratio	0.54	0.49	0.49	0.54	0.49	0.49		0.16	1.00		0.15	1.00
v/c Ratio	0.87	0.51	0.02	0.28	0.98	0.02		0.53	0.14		0.95	0.45
Control Delay	68.2	23.2	0.0	13.2	56.8	0.1		54.4	0.2		110.5	0.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Delay	68.2	23.2	0.0	13.2	56.8	0.1		54.4	0.2		110.5	0.9
LOS	Е	С	Α	В	Е	Α		D	Α		F	Α
Approach Delay		32.6			50.9			21.3			20.0	
Approach LOS		С			D			С			В	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 33.9 Intersection LOS: C
Intersection Capacity Utilization 82.7% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: (Old) Meridian Road & US-24

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	†	7	7	†	7		र्स	7		र्स	7
Traffic Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Future Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.0		4.5	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00		1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583		1852	1583		1861	1583
Flt Permitted	0.07	1.00	1.00	0.35	1.00	1.00		0.95	1.00		0.57	1.00
Satd. Flow (perm)	127	1863	1583	659	1863	1583		1776	1583		1059	1583
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	136	466	14	117	899	17	17	128	227	3	148	717
RTOR Reduction (vph)	0	0	7	0	0	9	0	0	0	0	0	0
Lane Group Flow (vph)	136	466	7	117	899	8	0	145	227	0	151	717
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Free
Protected Phases	7	4		3	8			2			1	
Permitted Phases	4		4	8		8	2		Free	1		Free
Actuated Green, G (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Effective Green, g (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Actuated g/C Ratio	0.54	0.49	0.49	0.54	0.49	0.49		0.16	1.00		0.15	1.00
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	156	914	776	417	914	776		275	1583		159	1583
v/s Ratio Prot	c0.05	0.25		0.01	c0.48							
v/s Ratio Perm	0.43		0.00	0.14		0.01		0.08	0.14		c0.14	c0.45
v/c Ratio	0.87	0.51	0.01	0.28	0.98	0.01		0.53	0.14		0.95	0.45
Uniform Delay, d1	29.1	20.7	15.6	14.7	30.1	15.6		46.7	0.0		50.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	37.6	0.4	0.0	0.4	25.6	0.0		7.1	0.2		59.2	0.9
Delay (s)	66.7	21.2	15.6	15.1	55.7	15.6		53.7	0.2		109.6	0.9
Level of Service	Е	С	В	В	Е	В		D	Α		F	Α
Approach Delay (s)		31.1			50.4			21.1			19.8	
Approach LOS		С			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			33.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.89									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			18.0			
Intersection Capacity Utiliz	ation		82.7%	IC	CU Level	of Service	<i>,</i>		Е			
Analysis Period (min)			15									

c Critical Lane Group

1: (Old) Meridian Road & US-24

	•	-	•	•	←	*	†	/	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	NBR	SBT	SBR	
Lane Configurations	7	†	7	7	†	7	ર્ન	7	4	7	
Traffic Volume (vph)	500	900	9	147	541	28	244	340	254	284	
Future Volume (vph)	500	900	9	147	541	28	244	340	254	284	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Free	NA	Free	
Protected Phases	7	4		3	8		2		1		
Permitted Phases	4		4	8		8		Free		Free	
Detector Phase	7	4	4	3	8	8	2		1		
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	22.5		22.5		
Total Split (s)	33.2	62.0	62.0	11.3	40.1	40.1	23.5		23.2		
Total Split (%)	27.7%	51.7%	51.7%	9.4%	33.4%	33.4%	19.6%		19.3%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max		Max		
Act Effct Green (s)	68.8	57.5	57.5	42.4	35.6	35.6	19.0	120.0	18.7	120.0	
Actuated g/C Ratio	0.57	0.48	0.48	0.35	0.30	0.30	0.16	1.00	0.16	1.00	
v/c Ratio	1.05	1.03	0.01	0.93	1.00	0.05	0.90	0.22	1.00	0.18	
Control Delay	89.5	69.4	0.0	83.0	81.0	0.2	82.0	0.3	104.1	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	89.5	69.4	0.0	83.0	81.0	0.2	82.0	0.3	104.1	0.3	
LOS	F	Е	Α	F	F	Α	F	Α	F	Α	
Approach Delay		76.1			78.2		35.6		52.0		
Approach LOS		E			E		D		D		

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:, Start of Green

Natural Cycle: 130


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.05

Intersection Signal Delay: 65.0 Intersection LOS: E
Intersection Capacity Utilization 99.8% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 1: (Old) Meridian Road & US-24

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	7	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	500	900	9	147	541	28	15	244	340	28	254	284
Future Volume (vph)	500	900	9	147	541	28	15	244	340	28	254	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.0		4.5	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00	1.00		0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583		1857	1583		1853	1583
Flt Permitted	0.10	1.00	1.00	0.11	1.00	1.00		1.00	1.00		0.99	1.00
Satd. Flow (perm)	186	1863	1583	209	1863	1583		1857	1583		1853	1583
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	510	918	9	150	552	29	15	249	347	29	259	290
RTOR Reduction (vph)	0	0	5	0	0	20	0	0	0	0	0	0
Lane Group Flow (vph)	510	918	4	150	552	9	0	264	347	0	288	290
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Split	NA	Free	Split	NA	Free
Protected Phases	7	4		3	8		2	2		1	1	
Permitted Phases	4		4	8		8			Free			Free
Actuated Green, G (s)	68.8	57.5	57.5	42.4	35.6	35.6		19.0	120.0		18.7	120.0
Effective Green, g (s)	68.8	57.5	57.5	42.4	35.6	35.6		19.0	120.0		18.7	120.0
Actuated g/C Ratio	0.57	0.48	0.48	0.35	0.30	0.30		0.16	1.00		0.16	1.00
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	485	892	758	162	552	469		294	1583		288	1583
v/s Ratio Prot	c0.25	0.49		0.05	0.30			c0.14			c0.16	
v/s Ratio Perm	c0.35		0.00	0.27		0.01			0.22			0.18
v/c Ratio	1.05	1.03	0.01	0.93	1.00	0.02		0.90	0.22		1.00	0.18
Uniform Delay, d1	37.0	31.2	16.3	33.1	42.2	29.8		49.5	0.0		50.6	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	55.1	37.8	0.0	49.0	38.3	0.0		31.8	0.3		53.0	0.3
Delay (s)	92.1	69.1	16.3	82.2	80.5	29.9		81.4	0.3		103.7	0.3
Level of Service	F	Е	В	F	F	С		F	Α		F	Α
Approach Delay (s)		76.9			78.8			35.3			51.8	
Approach LOS		E			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			65.4	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	acity ratio		1.04									
Actuated Cycle Length (s)			120.0		um of los				18.0			
Intersection Capacity Utiliza	ation		99.8%	IC	CU Level	of Service	!		F			
Analysis Period (min)			15									

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		†	7			7			7
Traffic Vol, veh/h	0	605	25	0	945	5	0	0	70	0	0	110
Future Vol, veh/h	0	605	25	0	945	5	0	0	70	0	0	110
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	630	26	0	984	5	0	0	73	0	0	115
Major/Minor M	1ajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	<u>-</u>	0	0			0		_		-	_	_
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	_	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-		-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-		-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
, in the second second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	. N	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Lane V/C Ratio		-	-	-	-	-	-					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A	-	-	-	-	A					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					

t Delay, s/veh overment EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR ane Configurations affic Vol, veh/h 0 1150 40 0 620 10 0 0 110 0 0 45 atture Vol, veh/h 0 1150 40 0 620 10 0 0 110 0 0 45 onflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 gn Control Free Free Free Free Free Free Stop Stop Stop Stop Stop T Channelized - None - None - None - Tree - Free
The Configurations of the first state of the Configurations of the Configuration of the Config
affic Vol, veh/h
affic Vol, veh/h
Inflicting Peds, #/hr 0
gn Control Free Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop
T Channelized - - None - - None - - Free - - Free orage Length - - 350 - - 375 - - - - - - eh in Median Storage, # - 0 - - 0 - 0 - 0 -
orage Length 350 375
eh in Median Storage, # - 0 0 0 -
1 0/
rade, % - 0 0 0 -
eak Hour Factor 98 98 98 98 98 98 98 98 98 98 98 98
eavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
vmt Flow 0 1173 41 0 633 10 0 0 112 0 0 46
ajor/Minor Major1 Major2 Minor1 Minor2
onflicting Flow All - 0 0
Stage 1
Stage 2
ritical Hdwy
ritical Hdwy Stg 1
ritical Hdwy Stg 2
ollow-up Hdwy
ot Cap-1 Maneuver 0 0 0 0 0 0 0
Stage 1 0 0 0 0 0 0 0
Stage 2 0 0 0 0 0 0 0
atoon blocked, %
ov Cap-1 Maneuver
ov Cap-2 Maneuver
Stage 1
Stage 2
oproach EB WB NB SB
CM Control Delay, s 0 0 0 0
CM LOS A A
inor Lane/Major Mvmt NBLn1 EBT EBR WBT WBR SBLn1
apacity (veh/h)
CM Control Polov (c)
CM Long LOS
CM Lane LOS A A
CM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>	7		†	7			7			7
Traffic Vol, veh/h	0	605	60	0	965	5	0	0	95	0	0	110
Future Vol, veh/h	0	605	60	0	965	5	0	0	95	0	0	110
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	630	63	0	1005	5	0	0	99	0	0	115
Major/Minor M	lajor1		1	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)						.,,,,,,,,	-					
HCM Lane V/C Ratio		_	-	-	_	-	_					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A	-	-	-	_	A					
HCM 95th %tile Q(veh)		-				_	-					
110.W1 70.01 70.010 Q(VCII)												

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		†	7			7			7
Traffic Vol, veh/h	0	1150	60	0	635	10	0	0	120	0	0	45
Future Vol, veh/h	0	1150	60	0	635	10	0	0	120	0	0	45
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1173	61	0	648	10	0	0	122	0	0	46
Major/Minor N	1ajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0		-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	_	-	_	-	-	-	-	-	_	_	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-		-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-		-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	t N	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		_	_	_	-	-	-					
HCM Lane V/C Ratio		-	-	-	-	-	-					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A	-	_	-	-	A					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		†	7			7			7
Traffic Vol, veh/h	0	850	30	0	1305	5	0	0	100	0	0	155
Future Vol, veh/h	0	850	30	0	1305	5	0	0	100	0	0	155
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	885	31	0	1359	5	0	0	104	0	0	161
Major/Minor M	lajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	_	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	_	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0	_	-	-	-	0					
HCM Lane LOS		A	-	-	-	-	A					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		†	7			7			7
Traffic Vol, veh/h	0	1620	45	0	845	10	0	0	150	0	0	65
Future Vol, veh/h	0	1620	45	0	845	10	0	0	150	0	0	65
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1653	46	0	862	10	0	0	153	0	0	66
Major/Minor N	/lajor1		_	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0		-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	_	-	-	-	-	-	-	_	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
							,,			, ,		
Minor Lane/Major Mvm	† N	NBLn1	EBT	EBR	WBT	WBR S	SRI n1					
Capacity (veh/h)	· 1	VDLIII	LDI	LDI	VVDI	WDIX .	DEIT					
HCM Lane V/C Ratio		-	-	-	-	-	-					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A		-	-		A					
HCM 95th %tile Q(veh)	·	A -	-	-	-	-	- A					
HOW FOUT WITH U(VEII)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		^	7			7			7
Traffic Vol, veh/h	0	850	65	0	1325	5	0	0	125	0	0	155
Future Vol, veh/h	0	850	65	0	1325	5	0	0	125	0	0	155
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free		-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	885	68	0	1380	5	0	0	130	0	0	161
Major/Minor M	ajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0		-	0	-	-	-		_	_
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	_	_	-	-	-	-	-	-	-	_	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-		-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-		-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	_	-	-	-					
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A	-	-	-	-	A					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations		^	7		^	7			7			7
Traffic Vol, veh/h	0	1620	65	0	860	10	0	0	160	0	0	65
Future Vol, veh/h	0	1620	65	0	860	10	0	0	160	0	0	65
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1653	66	0	878	10	0	0	163	0	0	66
Major/Minor M	lajor1		N	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS	*			*			A			A		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0	_	_	_	_	0					
HCM Lane LOS		A	_	_	_	_	A					
HCM 95th %tile Q(veh)		-	_	_	_	_	-					

	۶	→	•	•	•	•	4	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	77	†	7	7	†	7	ሻ	^	7	7	^	7
Traffic Volume (vph)	140	465	10	120	920	15	25	135	160	5	150	610
Future Volume (vph)	140	465	10	120	920	15	25	135	160	5	150	610
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	12.0	76.6	76.6	10.4	75.0	75.0	9.5	23.5		9.5	23.5	
Total Split (%)	10.0%	63.8%	63.8%	8.7%	62.5%	62.5%	7.9%	19.6%		7.9%	19.6%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	7.5	70.9	70.9	75.2	69.3	69.3	28.8	27.8	120.0	27.0	24.0	120.0
Actuated g/C Ratio	0.06	0.59	0.59	0.63	0.58	0.58	0.24	0.23	1.00	0.22	0.20	1.00
v/c Ratio	0.71	0.46	0.01	0.26	0.93	0.02	0.09	0.18	0.11	0.02	0.23	0.42
Control Delay	73.7	15.2	0.0	8.0	38.8	0.0	36.4	39.3	0.1	35.4	43.3	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.7	15.2	0.0	8.0	38.8	0.0	36.4	39.3	0.1	35.4	43.3	0.8
LOS	Е	В	Α	Α	D	Α	D	D	Α	D	D	Α
Approach Delay		28.3			34.8			19.5			9.4	
Approach LOS		С			С			В			А	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 24.5 Intersection LOS: C
Intersection Capacity Utilization 75.9% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: (New) Meridian Road & US-24

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	16.54	•	7	ሻ	•	7	ሻ	44	7	ሻ	^	7
Traffic Volume (veh/h)	140	465	10	120	920	15	25	135	160	5	150	610
Future Volume (veh/h)	140	465	10	120	920	15	25	135	160	5	150	610
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	505	11	130	1000	16	27	147	0	5	163	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	206	1071	908	511	1047	888	309	796		308	731	
Arrive On Green	0.06	0.57	0.57	0.05	0.56	0.56	0.02	0.22	0.00	0.01	0.21	0.00
Sat Flow, veh/h	3456	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	152	505	11	130	1000	16	27	147	0	5	163	0
Grp Sat Flow(s), veh/h/ln	1728	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	5.2	19.0	0.4	3.7	60.7	0.5	1.4	4.0	0.0	0.3	4.6	0.0
Cycle Q Clear(q_c), s	5.2	19.0	0.4	3.7	60.7	0.5	1.4	4.0	0.0	0.3	4.6	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	206	1071	908	511	1047	888	309	796		308	731	
V/C Ratio(X)	0.74	0.47	0.01	0.25	0.95	0.02	0.09	0.18		0.02	0.22	
Avail Cap(c_a), veh/h	216	1124	952	514	1099	931	339	796		371	731	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	55.5	15.0	11.0	11.5	25.0	11.7	36.2	37.7	0.0	37.4	39.7	0.0
Incr Delay (d2), s/veh	11.9	0.3	0.0	0.3	17.0	0.0	0.1	0.5	0.0	0.0	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	8.0	0.1	1.5	30.3	0.2	0.6	1.8	0.0	0.1	2.1	0.0
Unsig. Movement Delay, s/veh		0.0	0		00.0	0.2	0.0		0.0	0		0.0
LnGrp Delay(d),s/veh	67.4	15.3	11.0	11.7	41.9	11.7	36.3	38.2	0.0	37.4	40.4	0.0
LnGrp LOS	E	В	В	В	D	В	D	D	0.0	D	D	0.0
Approach Vol, veh/h		668			1146			174	А		168	А
Approach Delay, s/veh		27.1			38.1			37.9	А		40.3	А
Approach LOS		C C			D			D			D	
											D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.3	31.4	10.1	73.2	7.5	29.2	11.7	71.7				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.0	5.9	72.1	5.0	19.0	7.5	70.5				
Max Q Clear Time (g_c+I1), s	2.3	6.0	5.7	21.0	3.4	6.6	7.2	62.7				
Green Ext Time (p_c), s	0.0	0.6	0.0	3.8	0.0	0.7	0.0	4.5				
Intersection Summary												
HCM 6th Ctrl Delay			34.9									
HCM 6th LOS			С									
Notes												

	•	→	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	44	†	7	J.	†	7	7	^	7	¥	^	7
Traffic Volume (vph)	525	910	5	155	485	25	30	265	250	30	265	255
Future Volume (vph)	525	910	5	155	485	25	30	265	250	30	265	255
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	32.5	73.0	73.0	13.0	53.5	53.5	9.5	24.5		9.5	24.5	
Total Split (%)	27.1%	60.8%	60.8%	10.8%	44.6%	44.6%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	24.5	67.4	67.4	60.0	51.5	51.5	27.9	24.9	120.0	27.9	24.9	120.0
Actuated g/C Ratio	0.20	0.56	0.56	0.50	0.43	0.43	0.23	0.21	1.00	0.23	0.21	1.00
v/c Ratio	0.82	0.95	0.01	0.90	0.66	0.04	0.14	0.39	0.17	0.14	0.39	0.17
Control Delay	55.6	42.6	0.0	75.2	32.6	0.1	36.4	44.5	0.2	36.4	44.5	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	55.6	42.6	0.0	75.2	32.6	0.1	36.4	44.5	0.2	36.4	44.5	0.2
LOS	Е	D	Α	Е	С	Α	D	D	Α	D	D	Α
Approach Delay		47.2			41.3			23.7			23.6	
Approach LOS		D			D			С			С	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 37.9 Intersection LOS: D
Intersection Capacity Utilization 83.0% ICU Level of Service E

	۶	→	*	•	←	4	1	†	~	/		√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	•	7	7	•	7	7	^	7	7	^	7
Traffic Volume (veh/h)	525	910	5	155	485	25	30	265	250	30	265	255
Future Volume (veh/h)	525	910	5	155	485	25	30	265	250	30	265	255
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	571	989	5	168	527	27	33	288	0	33	288	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	650	1030	873	209	807	683	254	721		254	721	
Arrive On Green	0.19	0.55	0.55	0.07	0.43	0.43	0.03	0.20	0.00	0.03	0.20	0.00
Sat Flow, veh/h	3456	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	571	989	5	168	527	27	33	288	0	33	288	0
Grp Sat Flow(s), veh/h/ln	1728	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	19.3	60.5	0.2	6.3	26.8	1.2	1.7	8.4	0.0	1.7	8.4	0.0
Cycle Q Clear(g_c), s	19.3	60.5	0.2	6.3	26.8	1.2	1.7	8.4	0.0	1.7	8.4	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	650	1030	873	209	807	683	254	721		254	721	
V/C Ratio(X)	0.88	0.96	0.01	0.81	0.65	0.04	0.13	0.40		0.13	0.40	
Avail Cap(c_a), veh/h	806	1068	905	213	807	683	279	721		279	721	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	47.4	25.7	12.1	27.3	27.0	19.7	36.5	41.5	0.0	36.5	41.5	0.0
Incr Delay (d2), s/veh	9.3	18.4	0.0	19.6	1.9	0.0	0.2	1.7	0.0	0.2	1.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.1	30.7	0.1	3.7	12.2	0.4	0.8	3.9	0.0	8.0	3.9	0.0
Unsig. Movement Delay, s/veh		441	10.1	4/ 0	20.0	10.0	2/7	40.1	0.0	2/7	10.1	0.0
LnGrp Delay(d),s/veh	56.6	44.1	12.1	46.9	28.9	19.8	36.7	43.1	0.0	36.7	43.1	0.0
LnGrp LOS	<u>E</u>	D	В	D	C	В	D	D	Δ.	D	D	•
Approach Vol, veh/h		1565			722			321	А		321	Α
Approach Delay, s/veh		48.5			32.8			42.5			42.5	
Approach LOS		D			С			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.8	28.8	12.7	70.6	7.8	28.8	27.1	56.2				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	8.5	68.5	5.0	20.0	28.0	49.0				
Max Q Clear Time (g_c+l1), s	3.7	10.4	8.3	62.5	3.7	10.4	21.3	28.8				
Green Ext Time (p_c), s	0.0	1.2	0.0	3.6	0.0	1.2	1.3	3.5				
Intersection Summary												
HCM 6th Ctrl Delay			43.3									
HCM 6th LOS			D									

User approved pedestrian interval to be less than phase max green.
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	۶	→	•	•	←	*	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	ሻ	44	7	7	44	7
Traffic Volume (vph)	140	485	50	140	920	15	90	175	160	20	170	610
Future Volume (vph)	140	485	50	140	920	15	90	175	160	20	170	610
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	12.0	74.4	74.4	11.6	74.0	74.0	9.5	24.5		9.5	24.5	
Total Split (%)	10.0%	62.0%	62.0%	9.7%	61.7%	61.7%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	77.3	69.3	69.3	76.5	68.9	68.9	28.7	25.4	120.0	26.8	21.2	120.0
Actuated g/C Ratio	0.64	0.58	0.58	0.64	0.57	0.57	0.24	0.21	1.00	0.22	0.18	1.00
v/c Ratio	0.84	0.49	0.06	0.31	0.93	0.02	0.36	0.25	0.11	0.08	0.30	0.42
Control Delay	62.1	16.6	0.5	8.6	39.9	0.0	40.7	42.3	0.1	35.0	44.8	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.1	16.6	0.5	8.6	39.9	0.0	40.7	42.3	0.1	35.0	44.8	8.0
LOS	Е	В	Α	Α	D	Α	D	D	Α	D	D	Α
Approach Delay		24.9			35.2			26.1			11.0	
Approach LOS		С			D			С			В	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

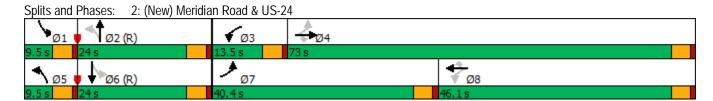
Intersection Signal Delay: 25.1 Intersection LOS: C
Intersection Capacity Utilization 79.2% ICU Level of Service D

Analysis Period (min) 15

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	↑	7	7	^	7	ሻ	^	7
Traffic Volume (veh/h)	140	485	50	140	920	15	90	175	160	20	170	610
Future Volume (veh/h)	140	485	50	140	920	15	90	175	160	20	170	610
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	527	54	152	1000	16	98	190	0	22	185	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	191	1048	888	484	1048	888	334	796		321	725	
Arrive On Green	0.06	0.56	0.56	0.06	0.56	0.56	0.05	0.22	0.00	0.03	0.20	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	152	527	54	152	1000	16	98	190	0	22	185	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	4.3	20.7	1.9	4.3	60.6	0.5	5.2	5.3	0.0	1.2	5.2	0.0
Cycle Q Clear(q_c), s	4.3	20.7	1.9	4.3	60.6	0.5	5.2	5.3	0.0	1.2	5.2	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	191	1048	888	484	1048	888	334	796		321	725	
V/C Ratio(X)	0.79	0.50	0.06	0.31	0.95	0.02	0.29	0.24		0.07	0.26	
Avail Cap(c_a), veh/h	209	1097	930	496	1091	925	334	796		357	725	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	27.8	16.2	12.0	11.8	24.9	11.7	35.6	38.2	0.0	36.1	40.1	0.0
Incr Delay (d2), s/veh	17.5	0.4	0.0	0.4	17.1	0.0	0.5	0.7	0.0	0.1	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.3	8.7	0.7	1.7	30.3	0.2	2.3	2.4	0.0	0.5	2.4	0.0
Unsig. Movement Delay, s/veh		0.7	0.7	•••	00.0	0.2	2.0		0.0	0.0		0.0
LnGrp Delay(d),s/veh	45.3	16.5	12.0	12.2	42.0	11.7	36.0	38.9	0.0	36.2	40.9	0.0
LnGrp LOS	D	В	В	В	D	В	D	D	0.0	D	D	0.0
Approach Vol, veh/h		733			1168			288	А		207	Α
Approach Delay, s/veh		22.2			37.7			37.9	А		40.4	А
Approach LOS		C			D			D			D	
											D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	30.9	10.8	71.2	9.5	28.5	10.8	71.2				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	7.1	69.9	5.0	20.0	7.5	69.5				
Max Q Clear Time (g_c+I1), s	3.2	7.3	6.3	22.7	7.2	7.2	6.3	62.6				
Green Ext Time (p_c), s	0.0	0.8	0.0	4.1	0.0	0.8	0.0	4.1				
Intersection Summary												
HCM 6th Ctrl Delay			33.2									
HCM 6th LOS			С									
Notes												

	•	→	•	•	←	*	1	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	7	^	7	¥	^	7
Traffic Volume (vph)	525	925	30	170	485	25	65	285	250	40	280	255
Future Volume (vph)	525	925	30	170	485	25	65	285	250	40	280	255
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	40.4	73.0	73.0	13.5	46.1	46.1	9.5	24.0		9.5	24.0	
Total Split (%)	33.7%	60.8%	60.8%	11.3%	38.4%	38.4%	7.9%	20.0%		7.9%	20.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	81.7	68.2	68.2	53.2	43.7	43.7	27.1	22.7	120.0	27.1	22.7	120.0
Actuated g/C Ratio	0.68	0.57	0.57	0.44	0.36	0.36	0.23	0.19	1.00	0.23	0.19	1.00
v/c Ratio	0.92	0.95	0.04	0.92	0.78	0.04	0.32	0.46	0.17	0.20	0.46	0.17
Control Delay	47.4	42.8	0.1	79.1	43.7	0.1	40.1	47.0	0.2	37.5	46.8	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.4	42.8	0.1	79.1	43.7	0.1	40.1	47.0	0.2	37.5	46.8	0.2
LOS	D	D	Α	Е	D	Α	D	D	А	D	D	Α
Approach Delay		43.6			51.0			26.8			25.5	
Approach LOS		D			D			С			С	
Intersection Summary												

Cycle Length: 120
Actuated Cycle Length: 120


Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

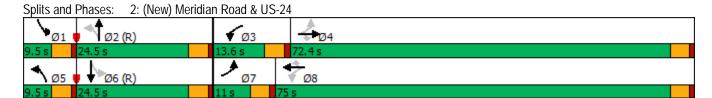
Maximum v/c Ratio: 0.95

Intersection Signal Delay: 38.9 Intersection LOS: D
Intersection Capacity Utilization 83.5% ICU Level of Service E

	۶	→	•	•	←	•	•	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	^	7	ሻ	^	7	7	^	7	7	^	7
Traffic Volume (veh/h)	525	925	30	170	485	25	65	285	250	40	280	255
Future Volume (veh/h)	525	925	30	170	485	25	65	285	250	40	280	255
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	571	1005	33	185	527	27	71	310	0	43	304	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	613	1046	887	226	787	667	256	685		247	649	
Arrive On Green	0.22	0.56	0.56	0.08	0.42	0.42	0.05	0.19	0.00	0.04	0.18	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	571	1005	33	185	527	27	71	310	0	43	304	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	22.0	61.4	1.1	7.0	27.3	1.2	3.8	9.3	0.0	2.3	9.2	0.0
Cycle Q Clear(g_c), s	22.0	61.4	1.1	7.0	27.3	1.2	3.8	9.3	0.0	2.3	9.2	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	613	1046	887	226	787	667	256	685		247	649	
V/C Ratio(X)	0.93	0.96	0.04	0.82	0.67	0.04	0.28	0.45		0.17	0.47	
Avail Cap(c_a), veh/h	766	1075	911	227	787	667	256	685		265	649	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	21.3	25.2	11.9	27.0	28.0	20.5	37.6	42.8	0.0	37.8	43.8	0.0
Incr Delay (d2), s/veh	16.0	18.4	0.0	20.4	2.2	0.0	0.6	2.2	0.0	0.3	2.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.2	31.0	0.4	4.1	12.5	0.5	1.7	4.3	0.0	1.0	4.3	0.0
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	37.3	43.6	11.9	47.4	30.2	20.5	38.1	45.0	0.0	38.2	46.2	0.0
LnGrp LOS	D	D	В	D	С	С	D	D		D	D	
Approach Vol, veh/h		1609			739			381	А		347	Α
Approach Delay, s/veh		40.7			34.2			43.7			45.2	
Approach LOS		D			С			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.3	27.1	13.4	71.1	9.5	25.9	30.1	54.5				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.5	9.0	68.5	5.0	19.5	35.9	41.6				
Max Q Clear Time (q_c+l1), s	4.3	11.3	9.0	63.4	5.8	11.2	24.0	29.3				
Green Ext Time (p_c), s	0.0	1.2	0.0	3.2	0.0	1.2	1.6	2.8				
<u> </u>	0.0	1.2	0.0	3.2	0.0	1.2	1.0	2.0				
Intersection Summary												
HCM 6th Ctrl Delay			40.0									
HCM 6th LOS			D									
Notes												

	ၨ	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	7	^	7	7	44	7
Traffic Volume (vph)	195	650	10	165	1275	20	35	185	225	5	210	855
Future Volume (vph)	195	650	10	165	1275	20	35	185	225	5	210	855
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	11.0	72.4	72.4	13.6	75.0	75.0	9.5	24.5		9.5	24.5	
Total Split (%)	9.2%	60.3%	60.3%	11.3%	62.5%	62.5%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	75.8	68.8	68.8	80.2	71.0	71.0	29.2	28.1	120.0	27.6	24.3	120.0
Actuated g/C Ratio	0.63	0.57	0.57	0.67	0.59	0.59	0.24	0.23	1.00	0.23	0.20	1.00
v/c Ratio	1.28	0.66	0.01	0.47	1.26	0.02	0.15	0.24	0.15	0.02	0.32	0.59
Control Delay	194.8	21.5	0.0	11.0	148.7	0.1	36.1	39.2	0.2	34.2	43.5	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	194.8	21.5	0.0	11.0	148.7	0.1	36.1	39.2	0.2	34.2	43.5	1.6
LOS	F	С	Α	В	F	Α	D	D	Α	С	D	Α
Approach Delay		60.7			131.1			19.2			10.0	
Approach LOS		Е			F			В			А	

Cycle Length: 120
Actuated Cycle Length: 120


Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

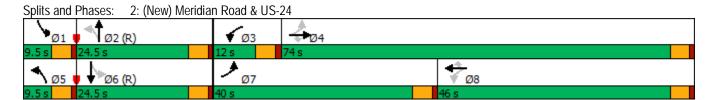
Maximum v/c Ratio: 1.28

Intersection Signal Delay: 68.6 Intersection LOS: E
Intersection Capacity Utilization 101.2% ICU Level of Service G

	۶	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ň	†	7	Ť	^	7	7	^	7
Traffic Volume (veh/h)	195	650	10	165	1275	20	35	185	225	5	210	855
Future Volume (veh/h)	195	650	10	165	1275	20	35	185	225	5	210	855
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	212	707	11	179	1386	22	38	201	0	5	228	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1102	934	417	1107	938	267	732		266	649	
Arrive On Green	0.06	0.59	0.59	0.06	0.59	0.59	0.03	0.21	0.00	0.01	0.18	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	212	707	11	179	1386	22	38	201	0	5	228	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	7.0	30.0	0.3	4.7	71.0	0.7	2.0	5.7	0.0	0.3	6.7	0.0
Cycle Q Clear(g_c), s	7.0	30.0	0.3	4.7	71.0	0.7	2.0	5.7	0.0	0.3	6.7	0.0
Prop In Lane	1.00	00.0	1.00	1.00	7 1.0	1.00	1.00	0.7	1.00	1.00	0.7	1.00
Lane Grp Cap(c), veh/h	164	1102	934	417	1107	938	267	732	1.00	266	649	1.00
V/C Ratio(X)	1.29	0.64	0.01	0.43	1.25	0.02	0.14	0.27		0.02	0.35	
Avail Cap(c_a), veh/h	164	1102	934	452	1107	938	287	732		329	649	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	39.7	16.3	10.2	13.1	24.5	10.1	37.2	40.1	0.0	39.2	42.8	0.0
Incr Delay (d2), s/veh	169.7	1.3	0.0	0.7	121.2	0.0	0.2	0.9	0.0	0.0	1.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.7	12.7	0.1	1.8	66.3	0.2	0.9	2.6	0.0	0.1	3.1	0.0
Unsig. Movement Delay, s/vel		12.7	0.1	1.0	00.0	0.2	0.7	2.0	0.0	0.1	0.1	0.0
LnGrp Delay(d),s/veh	209.4	17.5	10.2	13.8	145.7	10.2	37.5	41.0	0.0	39.2	44.3	0.0
LnGrp LOS	F	В	В	В	F	В	D	D	0.0	D	D	0.0
Approach Vol, veh/h	<u>'</u>	930			1587			239	A		233	A
Approach Delay, s/veh		61.2			128.9			40.4	Λ.		44.2	Λ
Approach LOS		61.Z E			120.7 F			40.4 D			44.2 D	
					•						D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.3	28.7	11.3	74.7	8.1	25.9	11.0	75.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	9.1	67.9	5.0	20.0	6.5	70.5				
Max Q Clear Time (g_c+l1), s		7.7	6.7	32.0	4.0	8.7	9.0	73.0				
Green Ext Time (p_c), s	0.0	0.9	0.1	5.9	0.0	1.0	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			94.2									
HCM 6th LOS			F									
Notos												

	•	→	•	•	•	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (vph)	730	1270	10	220	655	35	35	365	350	45	375	355
Future Volume (vph)	730	1270	10	220	655	35	35	365	350	45	375	355
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	40.0	74.0	74.0	12.0	46.0	46.0	9.5	24.5		9.5	24.5	
Total Split (%)	33.3%	61.7%	61.7%	10.0%	38.3%	38.3%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	82.0	70.0	70.0	50.0	42.0	42.0	26.8	22.4	120.0	27.6	24.3	120.0
Actuated g/C Ratio	0.68	0.58	0.58	0.42	0.35	0.35	0.22	0.19	1.00	0.23	0.20	1.00
v/c Ratio	1.34	1.27	0.01	1.34	1.09	0.06	0.21	0.60	0.24	0.27	0.57	0.24
Control Delay	193.1	154.7	0.0	214.2	100.5	0.2	37.5	49.8	0.4	38.9	47.8	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	193.1	154.7	0.0	214.2	100.5	0.2	37.5	49.8	0.4	38.9	47.8	0.4
LOS	F	F	Α	F	F	Α	D	D	Α	D	D	Α
Approach Delay		167.9			124.1			26.2			25.6	
Approach LOS		F			F			С			С	

Cycle Length: 120
Actuated Cycle Length: 120


Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.34

Intersection Signal Delay: 110.2 Intersection LOS: F
Intersection Capacity Utilization 106.9% ICU Level of Service G

	۶	→	*	•	-	•	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	+	7	ሻ	•	7	ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	730	1270	10	220	655	35	35	365	350	45	375	355
Future Volume (veh/h)	730	1270	10	220	655	35	35	365	350	45	375	355
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	793	1380	11	239	712	38	38	397	0	49	408	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	594	1091	925	179	655	555	196	636		202	649	2.00
Arrive On Green	0.30	0.58	0.58	0.07	0.35	0.35	0.03	0.18	0.00	0.04	0.18	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	793	1380	11	239	712	38	38	397	0	49	408	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	36.0	70.0	0.3	8.0	42.0	1.9	2.1	12.4	0.0	2.7	12.7	0.0
Cycle Q Clear(g_c), s	36.0	70.0	0.3	8.0	42.0	1.9	2.1	12.4	0.0	2.7	12.7	0.0
Prop In Lane	1.00	1001	1.00	1.00		1.00	1.00		1.00	1.00	(10	1.00
Lane Grp Cap(c), veh/h	594	1091	925	179	655	555	196	636		202	649	
V/C Ratio(X)	1.33	1.26	0.01	1.34	1.09	0.07	0.19	0.62		0.24	0.63	
Avail Cap(c_a), veh/h	594	1091	925	179	655	555	216	636	1.00	216	649	1.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	36.1	25.0	10.5	31.2	39.0	26.0	38.6	45.5	0.0	38.5	45.3	0.0
Incr Delay (d2), s/veh	161.6	126.6	0.0	184.5	61.4	0.1	0.5	4.6	0.0	0.6	4.6	0.0
Initial Q Delay(d3),s/veh	0.0 42.9	0.0 67.2	0.0	0.0 12.4	0.0 30.1	0.0	0.0	0.0 5.9	0.0	0.0 1.2	0.0 6.0	0.0
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		07.2	0.1	12.4	30.1	0.7	0.9	5.9	0.0	1.2	0.0	0.0
LnGrp Delay(d),s/veh	197.8	151.6	10.5	215.7	100.4	26.0	39.1	50.1	0.0	39.1	49.9	0.0
LnGrp LOS	197.6 F	131.0 F	10.5 B	213.7 F	F	20.0 C	39.1 D	50.1 D	0.0	39.1 D	49.9 D	0.0
	Г	2184	В			<u> </u>	<u> </u>		А	<u> </u>	457	А
Approach Polavi s/voh		167.6			989 125.4			435 49.1	А		48.7	А
Approach Delay, s/veh Approach LOS		107.0 F			123.4 F			49.1 D			40.7 D	
Approacti LOS		Г			Г			U			U	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	25.5	12.0	74.0	8.1	25.9	40.0	46.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	7.5	69.5	5.0	20.0	35.5	41.5				
Max Q Clear Time (g_c+l1), s	4.7	14.4	10.0	72.0	4.1	14.7	38.0	44.0				
Green Ext Time (p_c), s	0.0	1.2	0.0	0.0	0.0	1.2	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			131.3									
HCM 6th LOS			F									

User approved pedestrian interval to be less than phase max green.
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	۶	→	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	† †	7	7	† †	7	ሻ	^	7	7	44	7
Traffic Volume (vph)	195	670	50	185	1275	20	100	225	225	20	230	855
Future Volume (vph)	195	670	50	185	1275	20	100	225	225	20	230	855
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	17.0	66.0	66.0	16.0	65.0	65.0	13.0	28.5		9.5	25.0	
Total Split (%)	14.2%	55.0%	55.0%	13.3%	54.2%	54.2%	10.8%	23.8%		7.9%	20.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	12.1	58.1	58.1	68.9	57.4	57.4	38.3	32.5	120.0	31.4	25.3	120.0
Actuated g/C Ratio	0.10	0.48	0.48	0.57	0.48	0.48	0.32	0.27	1.00	0.26	0.21	1.00
v/c Ratio	0.61	0.43	0.07	0.47	0.82	0.03	0.33	0.26	0.15	0.07	0.34	0.59
Control Delay	59.7	20.6	0.7	13.4	31.2	0.1	34.3	37.8	0.2	31.6	43.3	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.7	20.6	0.7	13.4	31.2	0.1	34.3	37.8	0.2	31.6	43.3	1.6
LOS	Е	С	Α	В	С	Α	С	D	Α	С	D	Α
Approach Delay		27.9			28.6			21.8			10.8	
Approach LOS		С			С			С			В	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 22.7 Intersection LOS: C
Intersection Capacity Utilization 66.0% ICU Level of Service C

Analysis Period (min) 15

	۶	→	•	•	←	•	•	†	~	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	^	7	*	^	7	Ţ	^	7	ň	^	7
Traffic Volume (veh/h)	195	670	50	185	1275	20	100	225	225	20	230	855
Future Volume (veh/h)	195	670	50	185	1275	20	100	225	225	20	230	855
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	212	728	54	201	1386	22	109	245	0	22	250	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	285	1607	717	420	1603	715	414	1092		397	964	
Arrive On Green	0.08	0.45	0.45	0.08	0.45	0.45	0.06	0.31	0.00	0.03	0.27	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	212	728	54	201	1386	22	109	245	0	22	250	0
Grp Sat Flow(s), veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	7.2	16.9	2.3	7.1	42.1	0.9	5.1	6.2	0.0	1.1	6.6	0.0
Cycle Q Clear(g_c), s	7.2	16.9	2.3	7.1	42.1	0.9	5.1	6.2	0.0	1.1	6.6	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00	0.2	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	285	1607	717	420	1603	715	414	1092	1.00	397	964	1.00
V/C Ratio(X)	0.74	0.45	0.08	0.48	0.86	0.03	0.26	0.22		0.06	0.26	
Avail Cap(c_a), veh/h	374	1836	819	453	1806	806	438	1092		432	964	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	53.8	22.6	18.6	16.5	29.7	18.3	27.4	30.9	0.0	30.0	34.3	0.0
Incr Delay (d2), s/veh	5.6	0.2	0.0	0.8	4.3	0.0	0.3	0.5	0.0	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.4	7.1	0.9	3.0	18.4	0.3	2.2	2.7	0.0	0.5	3.0	0.0
Unsig. Movement Delay, s/veh			0.,	0.0		0.0		,	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh	59.4	22.8	18.7	17.3	33.9	18.4	27.7	31.4	0.0	30.1	34.9	0.0
LnGrp LOS	E	C	В	В	C	В	C	С	0.0	С	C	0.0
Approach Vol, veh/h		994			1609			354	А		272	А
Approach Delay, s/veh		30.4			31.6			30.2	А		34.5	
Approach LOS		C C			C C			30.2 C			C C	
											C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.1	40.9	13.8	58.3	11.4	36.6	13.9	58.1				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	24.0	11.5	61.5	8.5	20.5	12.5	60.5				
Max Q Clear Time (g_c+l1), s	3.1	8.2	9.1	18.9	7.1	8.6	9.2	44.1				
Green Ext Time (p_c), s	0.0	1.3	0.1	6.2	0.0	1.1	0.2	9.5				
Intersection Summary												
HCM 6th Ctrl Delay			31.3									
HCM 6th LOS			С									
Notes												

	۶	→	•	•	←	*	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	† †	7	J.	†	7	7	† †	7	¥	^	7
Traffic Volume (vph)	730	1285	35	235	655	35	70	385	350	55	390	355
Future Volume (vph)	730	1285	35	235	655	35	70	385	350	55	390	355
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	41.3	60.0	60.0	24.0	42.7	42.7	10.0	26.4		9.6	26.0	
Total Split (%)	34.4%	50.0%	50.0%	20.0%	35.6%	35.6%	8.3%	22.0%		8.0%	21.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	33.2	54.8	54.8	56.2	38.9	38.9	33.0	27.8	120.0	32.3	27.4	120.0
Actuated g/C Ratio	0.28	0.46	0.46	0.47	0.32	0.32	0.28	0.23	1.00	0.27	0.23	1.00
v/c Ratio	0.83	0.86	0.05	0.80	0.62	0.06	0.33	0.51	0.24	0.26	0.53	0.24
Control Delay	49.1	35.9	0.1	51.5	37.0	0.2	37.5	44.8	0.4	36.1	45.3	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.1	35.9	0.1	51.5	37.0	0.2	37.5	44.8	0.4	36.1	45.3	0.4
LOS	D	D	Α	D	D	Α	D	D	Α	D	D	Α
Approach Delay		40.0			39.3			24.8			24.8	
Approach LOS		D			D			С			С	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 34.5 Intersection LOS: C
Intersection Capacity Utilization 76.8% ICU Level of Service D

Analysis Period (min) 15

	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	^	7	ň	^	7	*	^	7	*	^	7
Traffic Volume (veh/h)	730	1285	35	235	655	35	70	385	350	55	390	355
Future Volume (veh/h)	730	1285	35	235	655	35	70	385	350	55	390	355
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	793	1397	38	255	712	38	76	418	0	60	424	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	896	1562	697	303	1069	477	298	947		295	919	
Arrive On Green	0.26	0.44	0.44	0.12	0.30	0.30	0.05	0.27	0.00	0.04	0.26	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	793	1397	38	255	712	38	76	418	0	60	424	0
Grp Sat Flow(s), veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	26.5	43.6	1.7	11.6	21.0	2.1	3.7	11.7	0.0	2.9	12.1	0.0
Cycle Q Clear(g_c), s	26.5	43.6	1.7	11.6	21.0	2.1	3.7	11.7	0.0	2.9	12.1	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	896	1562	697	303	1069	477	298	947		295	919	
V/C Ratio(X)	0.88	0.89	0.05	0.84	0.67	0.08	0.26	0.44		0.20	0.46	
Avail Cap(c_a), veh/h	1074	1658	740	385	1146	511	301	947		306	919	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	42.7	31.1	19.3	28.4	36.7	30.1	30.8	36.6	0.0	31.0	37.4	0.0
Incr Delay (d2), s/veh	7.9	6.5	0.0	12.5	1.4	0.1	0.4	1.5	0.0	0.3	1.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.2	19.6	0.6	5.9	9.3	0.8	1.6	5.3	0.0	1.3	5.5	0.0
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	50.6	37.5	19.3	40.9	38.0	30.1	31.2	38.1	0.0	31.4	39.1	0.0
LnGrp LOS	D	D	В	D	D	С	С	D		С	D	
Approach Vol, veh/h		2228			1005			494	А		484	А
Approach Delay, s/veh		41.9			38.5			37.0			38.2	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.8	36.0	18.5	56.7	9.8	35.0	35.1	40.1				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.1	21.9	19.5	55.5	5.5	21.5	36.8	38.2				
Max Q Clear Time (q_c+l1), s	4.9	13.7	13.6	45.6	5.7	14.1	28.5	23.0				
Green Ext Time (p_c), s	0.0	1.7	0.4	6.7	0.0	1.6	2.2	4.5				
Intersection Summary	0.0	1.7	0.4	0.7	0.0	1.0	2.2	7.0				
			40.1									
HCM 6th Ctrl Delay			40.1									
HCM 6th LOS			D									
Notes												

Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL					
Lane Configurations		105	^	7	ነ	^
Traffic Vol, veh/h	0	105	320	40	90	280
Future Vol, veh/h	0	105	320	40	90	280
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	100	100	-
Veh in Median Storage	e,# 0	-	0	-	-	0
Grade, %	0	_	0	-	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	114	348	43	98	304
IVIVIIIL FIOW	U	114	340	43	90	304
Major/Minor	Minor1	Ν	Major1	N	Major2	
Conflicting Flow All	-	174	0	0	391	0
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Critical Hdwy		6.94	_	_	4.14	_
,	-					
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	839	-	-	1164	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	839	-	-	1164	-
Mov Cap-2 Maneuver		-	_	_	-	_
Stage 1	-	-	-	-	_	-
Stage 2	_	_	_	_	_	_
Stage 2						
Approach	WB		NB		SB	
HCM Control Delay, s	10		0		2	
HCM LOS	В				_	
110111 200						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	839	1164	-
HCM Lane V/C Ratio		-	-	0.136	0.084	-
)	_	_	10	8.4	-
HCM Control Delay (s))	_	_	R	Δ	_
		-	-	0.5	A 0.3	-

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX	† †	TIDIX	JDL Š	† †
Traffic Vol, veh/h	0	55	TT 545	20	70	TT 425
	0					
Future Vol, veh/h	0	55	545	20	70	425
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	100	100	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	60	592	22	76	462
				_		
	Minor1		Major1		Major2	
Conflicting Flow All	-	296	0	0	614	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	_	2.22	_
Pot Cap-1 Maneuver	0	700	_	_	961	_
Stage 1	0	-	_	_	-	_
Stage 2	0	_	_	_	_	_
Platoon blocked, %	U					
Mov Cap-1 Maneuver	_	700		_	961	
			-	-		
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		1.3	
HCM LOS	В		U		1.5	
HCW LOS	Ь					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
		_	_	700	961	_
Capacity (veh/h)						_
Capacity (veh/h) HCM Lane V/C Ratio		_	_	0 085	()()/9	
HCM Lane V/C Ratio)	-		0.085		
HCM Lane V/C Ratio HCM Control Delay (s)	- -	-	10.6	9.1	-
HCM Lane V/C Ratio		-	- - -			

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	VVDIX	† †	NDIC	JDL Š	† †
Traffic Vol, veh/h	0	105	445	40	90	385
Future Vol, veh/h	0	105	445	40	90	385
Conflicting Peds, #/hr	0	0	0	0	0	300
					Free	
Sign Control RT Channelized	Stop -	Stop None	Free	Free None		Free None
	-	None 0		100	100	none -
Storage Length			0	100	100	0
Veh in Median Storage		-				
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	114	484	43	98	418
Major/Minor N	/linor1	N	Major1	N	//ajor2	
Conflicting Flow All	-	242	0	0	527	0
Stage 1	_	-	-	-	521	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.94	_	_	4.14	_
Critical Hdwy Stg 1	_	0.74	_	_	7.17	_
Critical Hdwy Stg 2	_	_	-		_	_
Follow-up Hdwy	-	3.32		_	2.22	_
Pot Cap-1 Maneuver	0	759	_	-	1036	
	0	709	-	-	1030	-
Stage 1			-	-	-	
Stage 2	0	-	-	-	-	-
Platoon blocked, %		750	-	-	100/	-
Mov Cap-1 Maneuver	-	759	-	-	1036	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.6		0		1.7	
HCM LOS	В		U		1.7	
TICIVI LOS	U					
Minor Lane/Major Mvm	<u>t </u>	NBT	NBRV	VBL _{n1}	SBL	SBT
Capacity (veh/h)		-	-	759	1036	-
HCM Lane V/C Ratio		-	-		0.094	-
HCM Control Delay (s)		-	-		8.8	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh)		-	-	0.5	0.3	-

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL				JDL Š	
Lane Configurations	^	7	^	70		^
Traffic Vol, veh/h	0	55	750	20	70	605
Future Vol, veh/h	0	55	750	20	70	605
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	100	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	60	815	22	76	658
			0.0		. 0	
	Minor1		Major1		Major2	
Conflicting Flow All	-	408	0	0	837	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.32	_	_	2.22	_
Pot Cap-1 Maneuver	0	593	_	_	793	_
Stage 1	0	J7J -			173	
Stage 2	0	_		-	-	
	U	-	-	-	-	
Platoon blocked, %		F00	-	-	700	-
Mov Cap-1 Maneuver	-	593	-	-	793	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	11.8		0		1	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		IVDI	IVDICV	593	793	ODI
		-	-			-
HCM Lane V/C Ratio		-	-	0.101		-
HCM Control Delay (s)		-	-	11.8	10	-
HCM Lane LOS		-	-	В	В	-
HCM 95th %tile Q(veh)	-	-	0.3	0.3	-

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘ	7	^	7	<u> </u>	^
Traffic Vol, veh/h	55	45	335	5	60	225
Future Vol, veh/h	55	45	335	5	60	225
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	100	0	-	200	125	-
Veh in Median Storage	, # 1	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	49	364	5	65	245
Major/Minor N	Minor1	N	Najor1	N	Major2	
Conflicting Flow All	617	182	0	0	369	0
Stage 1	364	-	-	-	-	-
Stage 2	253	_	_	_	_	_
Critical Hdwy	6.84	6.94	_	-	4.14	_
Critical Hdwy Stg 1	5.84	-	-	-	-	_
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	422	829	-	-	1186	-
Stage 1	673	-	-	-	-	-
Stage 2	766	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	399	829	-	-	1186	-
Mov Cap-2 Maneuver	500	-	-	-	-	-
Stage 1	673	-	-	-	-	-
Stage 2	724	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.6		0		1.7	
HCM LOS	11.0 B		U		1.7	
TIOW EOS	ט					
Minor Lane/Major Mvm	ıt	NBT	NRDV	VBLn1V	/RI n2	SBL
	IL	וטוו	NDRV			
Capacity (veh/h) HCM Lane V/C Ratio		-	-	500	829 0.059	1186
		-	-	13.2	9.6	8.2
HCM Control Delay (s) HCM Lane LOS		-	-	13.2 B	9.6 A	6.2 A
HCM 95th %tile Q(veh)	-	-	0.4	0.2	0.2
HOW FOUR MINE CIVELL)	-	-	0.4	0.2	U.Z

Intersection						
Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	₩DK	^	T T	<u> </u>	† †
Traffic Vol, veh/h	75	45	535	15	50	380
Future Vol, veh/h	75	45	535	15	50	380
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None		None	-	None
Storage Length	100	0	-	200	125	-
Veh in Median Storage		-	0	200	125	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2	2	2
Heavy Vehicles, %	82	49	582	16	54	413
Mvmt Flow	82	49	582	10	54	413
Major/Minor N	Minor1	N	Major1	N	Major2	
Conflicting Flow All	897	291	0	0	598	0
Stage 1	582	-	-	-	-	-
Stage 2	315	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	279	706	-	-	975	-
Stage 1	522	-	-	-	-	-
Stage 2	713	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	264	706	-	-	975	-
Mov Cap-2 Maneuver	386	-	-	-	_	-
Stage 1	522	-	-	-	-	-
Stage 2	674	_		_		_
J. W. G.						
	MD		ND		C.D.	
Approach	WB		NB		SB	
HCM Control Delay, s	14.4		0		1	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		_		386	706	975
HCM Lane V/C Ratio		_	_			0.056
HCM Control Delay (s)		_	_		10.5	8.9
HCM Lane LOS		_	_	C	В	Α
HCM 95th %tile Q(veh))	_	_	0.8	0.2	0.2
1.5111 70111 701110 2(1011)	,			0.0	0.2	0.2

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	^	7	*	^
Traffic Vol, veh/h	55	45	460	5	60	330
Future Vol, veh/h	55	45	460	5	60	330
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	100	0	-	200	125	-
Veh in Median Storage	, # 1	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	49	500	5	65	359
Major/Minor N	/linor1	N	/lajor1	N	Major2	
Conflicting Flow All	810	250	0	0	505	0
Stage 1	500	250	-	U	505	-
Stage 2	310	-	_	_	_	_
Critical Hdwy	6.84	6.94	_	_	4.14	_
Critical Hdwy Stg 1	5.84	-	_	_	T. 1T	_
Critical Hdwy Stg 2	5.84	_		_	_	_
Follow-up Hdwy	3.52	3.32	_	_	2.22	_
Pot Cap-1 Maneuver	318	750	_	_	1056	_
Stage 1	575	-	_	_	-	_
Stage 2	717	_	_	_	_	_
Platoon blocked, %	, , , ,		_	_		_
Mov Cap-1 Maneuver	298	750	_	_	1056	_
Mov Cap-2 Maneuver	417	-	_	_	-	_
Stage 1	575	_	_	_	_	_
Stage 2	673	_	_	_	_	_
Olago 2	070					
) 1 / D				0.5	
Approach	WB		NB		SB	
HCM Control Delay, s	12.9		0		1.3	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		_	_	417	750	1056
HCM Lane V/C Ratio		-	-	0.143		
HCM Control Delay (s)		-	-	15.1	10.1	8.6
HCM Lane LOS		-	-	С	В	Α
HCM 95th %tile Q(veh)		-	-	0.5	0.2	0.2

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u> </u>	₩DK	^	T T	<u> </u>	† †
Traffic Vol, veh/h	75	45	740	15	50	560
Future Vol, veh/h	75	45	740	15	50	560
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siup -	None		None	-	None
Storage Length	100	0	-	200	125	-
Veh in Median Storage		-	0	200	125	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	82	49	804	16	54	609
IVIVIIIL FIOW	02	47	004	10	34	009
Major/Minor N	Minor1	N	/lajor1	N	Major2	
Conflicting Flow All	1217	402	0	0	820	0
Stage 1	804	-	-	-	-	-
Stage 2	413	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	173	598	-	-	805	-
Stage 1	401	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	161	598	-	-	805	-
Mov Cap-2 Maneuver	288	-	-	-	-	-
Stage 1	401	-	-	-	-	-
Stage 2	593	-	-	-	-	-
, and the second						
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	18.3		0		0.8	
HCM LOS	С					
Minor Lane/Major Mvm	ıt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	_	288	598	805
HCM Lane V/C Ratio		-	_	0.283		0.068
HCM Control Delay (s)		-	-		11.6	9.8
HCM Lane LOS		-	-	С	В	A
HCM 95th %tile Q(veh))	-	-		0.3	0.2

4.5						
EBL	EBT	WBT	WBR	SBL	SBR	
				ች		
45	20	50	35	20	50	
45	20	50	35	20	50	
0	0	0	0	0	0	
Free	Free	Free	Free	Stop	Stop	
-	None	-	None	-	None	
-	-	-	-	100	0	
e,# -	0	0	-	0	-	
-	0	0	-	0	-	
92	92	92	92	92	92	
2	2	2	2	2	2	
49	22	54	38	22	54	
Major1	I	Maior2	N	Minor2		
	0	-			73	
-	-	-	-	73	-	
-	-	-	-	120	-	
4.12	-	-	-		6.22	
-	-	-	-	5.42	-	
-	-	-	-	5.42	-	
2.218	-	-	-	3.518	3.318	
1503	-	-	-	796	989	
-	-	-	-	950	-	
-	-	-	-	905	-	
	-	-	-			
1503	-	-	-	770	989	
	-	-	-	770	-	
-	-	-	-	919	-	
-	-	-	-	905	-	
FR		W/R		C R		
3.2		U				
				A		
nt		EBT	WBT	WBR:		
		-	-	-	770	989
	0.033	-	-	-		
s)		0	-	-		8.9
		Α	-	-		Α
n)	0.1	-	-	-	0.1	0.2
	## A5 45 45 0 Free 92 2 49 Major1 92 2.218 1503 1503	## EBL EBT ## 45 20 ## 45 20 ## 0 0 ## Free None	EBL EBT WBT 45 20 50 45 20 50 0 0 0 0 Free Free Free - None - None - 0 0 92 92 92 2 2 2 2 49 22 54 Major1 Major2 92 0 4.12 2.218 1503	EBL EBT WBT WBR 45 20 50 35 45 20 50 35 0 0 0 0 0 0 Free Free Free Free - None - None	EBL EBT WBT WBR SBL 45 20 50 35 20 45 20 50 35 20 0 0 0 0 0 Free Free Free Stop - None - None - 100 10 0 - 0 0 - 10 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 92 <	BBL BBT WBT WBR SBL SBR

Intersection							
Int Delay, s/veh	4.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ની	₽			- 7	
Traffic Vol, veh/h	5	65	35	20	35	65	
Future Vol, veh/h	5	65	35	20	35	65	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	100	0	
Veh in Median Storage	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	5	71	38	22	38	71	
Major/Minor 1	Major1	N	Major2	N	Minor2		
Conflicting Flow All	60	0	<u>- viajuiz</u>	0	130	49	
Stage 1	-	-	-	-	49	49	
Stage 2	-	-		-	81	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	4.12	-	_	-	5.42	0.22	
Critical Hdwy Stg 2		-		_	5.42	_	
Follow-up Hdwy	2.218				3.518	3.318	
Pot Cap-1 Maneuver	1544			_	864	1020	
Stage 1	1344	_		_	973	1020	
Stage 2	_	-		_	942	_	
Platoon blocked, %	_	_		_	742	_	
Mov Cap-1 Maneuver	1544		-	_	861	1020	
Mov Cap-1 Maneuver	1344	-	-	-	861	1020	
Stage 1	-		-	_	970	_	
Stage 2	-	-	-	-	942	-	
Staye 2	-		-		742	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.5		0		9		
HCM LOS					Α		
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WRD.	SBLn1	SRI n2
	IL.		LDI	VVDI	אטוי.		
Capacity (veh/h)		1544	-	-	-	861	1020
HCM Central Delay (c)		0.004	-	-		0.044	
HCM Long LOS		7.3	0	-	-	9.4	8.8
HCM Lane LOS	١	A	Α	-	-	A	A
HCM 95th %tile Q(veh)	0	-	-	-	0.1	0.2

Intersection							
Int Delay, s/veh	4.5						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	LDL	4	₩ <u>₩</u>	אטוי	JDL Š	JUK **	
Traffic Vol, veh/h	45	20	50	35	20	50	
Future Vol, veh/h	45	20	50	35	20	50	
Conflicting Peds, #/hr		0	0	35	0	0	
		Free	Free	Free			
Sign Control	Free				Stop	Stop	
RT Channelized	-	None	-	None	100	None	
Storage Length	-	-	-	-	100	0	
Veh in Median Storag		0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	49	22	54	38	22	54	
Major/Minor	Major1		Major2	N	Minor2		
Conflicting Flow All	92	0	<u>viajoi 2</u> -	0	193	73	
Stage 1	72	-		-	73	-	
Stage 2	_	_	_	_	120	_	
Critical Hdwy	4.12	-	_	_	6.42	6.22	
Critical Hdwy Stg 1	4.12	_	-	_	5.42	- 0.22	
Critical Hdwy Stg 2	-			_	5.42	-	
Follow-up Hdwy	2.218	-	-			3.318	
Pot Cap-1 Maneuver	1503	-	-	-	796	989	
•	1503	•	-		950	909	
Stage 1		-	-	-			
Stage 2	-	-	-	-	905	-	
Platoon blocked, %	1500	-	-	-	770	000	
Mov Cap-1 Maneuver		-	-	-	770	989	
Mov Cap-2 Maneuver		-	-	-	770	-	
Stage 1	-	-	-	-	919	-	
Stage 2	-	-	-	-	905	-	
Approach	EB		WB		SB		
HCM Control Delay, s			0		9.2		
HCM LOS	5 5.2		U		7.Z		
HOW LOS					А		
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR :	SBLn1 S	SBLn2
Capacity (veh/h)		1503	-	-	-	770	989
HCM Lane V/C Ratio		0.033	-	-	-	0.028	0.055
HCM Control Delay (s	s)	7.5	0	-	-	9.8	8.9
HCM Lane LOS		A	A	-	-	Α	Α
HCM 95th %tile Q(vel	h)	0.1	-	-	-	0.1	0.2
2 2 700 2(10)							

Intersection							
Int Delay, s/veh	4.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1	אפייי	<u> </u>	JDIK **	
Traffic Vol, veh/h	5	65	35	20	35	65	
Future Vol, veh/h	5	65	35	20	35	65	
Conflicting Peds, #/h		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	Jiop -	None	
Storage Length	_	-	_	-	100	0	
Veh in Median Stora		0	0	-	0	-	
Grade, %	.go, " -	0	0	_	0	_	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	5	71	38	22	38	71	
IVIVIIIL I IOVV		71	30	ZZ	50	71	
Major/Minor	Major1	N	Major2	N	Minor2		
Conflicting Flow All	60	0	-	0	130	49	
Stage 1	-	-	-	-	49	-	
Stage 2	-	-	-	-	81	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	r 1544	-	-	-	864	1020	
Stage 1	-	-	-	-	973	-	
Stage 2	-	-	-	-	942	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuve	er 1544	-	-	-	861	1020	
Mov Cap-2 Maneuve	er -	-	-	-	861	-	
Stage 1	-	-	-	-	970	-	
Stage 2	-	-	-	-	942	-	
Annroach	EB		WB		SB		
Approach							
HCM Control Delay,	s 0.5		0		9		
HCM LOS					Α		
Minor Lane/Major Mv	vmt_	EBL	EBT	WBT	WBR :	SBLn1S	SBL _{n2}
Capacity (veh/h)		1544	-	-	-	861	1020
HCM Lane V/C Ratio	0	0.004	-	-	_	0.044	
HCM Control Delay		7.3	0	-	-	9.4	8.8
HCM Lane LOS	. ,	A	A	-	-	Α	A
HCM 95th %tile Q(ve	eh)	0	-	-	-	0.1	0.2

Intersection						
Int Delay, s/veh	6.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDI	NDL	4	<u>301</u>	אטכ
Traffic Vol, veh/h	50	65	55	20	5	50
Future Vol, veh/h	50	65	55	20	5	50
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	71	60	22	5	54
					_	
	/linor2		Major1		/lajor2	
Conflicting Flow All	174	32	59	0	-	0
Stage 1	32	-	-	-	-	-
Stage 2	142	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	816	1042	1545	-	_	-
Stage 1	991	-	-	_	_	_
Stage 2	885	_	_	_	_	_
Platoon blocked, %	000			_	_	_
Mov Cap-1 Maneuver	784	1042	1545		_	
	784	1042	1343	-		
Mov Cap-2 Maneuver			-	-		-
Stage 1	952	-	-	-	-	-
Stage 2	885	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.6		5.4		0	
HCM LOS	Α.		J. 4		U	
HOW LOS	٨					
Minor Lane/Major Mvm	<u>t </u>	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1545	-	912	-	-
HCM Lane V/C Ratio		0.039	-	0.137	-	
HCM Control Delay (s)		7.4	0	9.6	_	_
HCM Lane LOS		Α	A	Α.	_	_
HCM 95th %tile Q(veh)		0.1	-	0.5	_	_
		0.1		0.0		

6.2					
EBL	EBR	NBL	NBT	SBT	SBR
	85	60			55
					55
					0
					Free
					None
		_		_	-
		_		0	_
					_
					92
					2
					60
49	92	00	10	10	60
Minor2	N	Major1	Λ	Najor2	
192	46	76	0	-	0
46	-	-	-	-	-
146	-	-	-	-	-
6.42	6.22	4.12	-	-	-
5.42	-	-	-	-	-
5.42	-	-	-	-	-
	3.318	2.218	-	_	-
			-	_	-
	-	_	_		_
	_	_	_	-	_
001			_	_	_
763	1023	1523	_	_	_
	1023	1025	_	_	_
	_	_			_
	_	-	-	-	_
001	_	-	-	-	-
EB		NB		SB	
9.7		6		0	
ant .	NDI	NDT	CDI1	CDT	CDD
nt		MRII		SBI	SBR
		-		-	-
	0.043	-		-	-
s)	7.5	0	9.7	-	-
'/					
h)	A 0.1	Α	A 0.5	-	-
	45 45 45 0 Stop - 0 0 92 2 49 Minor2 192 46 6.42 5.42 3.518 797 976 881 - 763 797 976 881 - 763 934 881 - EB 6 9.7 A	## 45 85 45 85 0 0 Stop Stop - None 0 - 92 92 2 2 2 49 92 Minor2 1 192 46 46 - 146 - 146 - 6.42 6.22 5.42 - 5.42 - 3.518 3.318 797 1023 976 - 881 - 763 1023 763 - 934 - 881 - EB 5 9.7 A mt NBL 1523	## 45 85 60 45 85 60 45 85 60 6 0 0 0 0 Stop Stop Free - None - 0 19, # 0 192 92 92 2 2 2 49 92 65 Minor2	45 85 60 15 45 85 60 15 0 0 0 0 0 Stop Stop Free Free - None - None 0 0 92 92 92 92 2 2 2 2 2 49 92 65 16 Minor2 Major1 N 192 46 76 0 46 146 146 5.42 5.42 3.518 3.318 2.218 - 797 1023 1523 - 976 881 763 1023 1523 - 976 881 763 1023 1523 - 976 881 7763 1023 1523 - 976 881 881 7763 1023 1523 - 976 881	## 45 85 60 15 15 45 85 60 15 15 45 85 60 15 15 6 0 0 0 0 0 0 Stop Stop Free Free Free - None - None 0 0 0 90 92 92 92 92 92 2 2 2 2 2 2 49 92 65 16 16 Minor2 Major1 Major2

Intersection						
Int Delay, s/veh	6.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7/	LUI	NUL	4	<u>361</u>	JUK
		65	55	20		50
Traffic Vol, veh/h	50				5	
Future Vol, veh/h	50	65	55	20	5	50
Conflicting Peds, #/hr	0	0	_ 0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	71	60	22	5	54
Naion/Naionn	N /!: = = = 2		\		10:00	
	Minor2		Major1		/lajor2	
Conflicting Flow All	174	32	59	0	-	0
Stage 1	32	-	-	-	-	-
Stage 2	142	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	816	1042	1545	-	-	-
Stage 1	991	-	-	-	-	-
Stage 2	885	-	-	-	-	-
Platoon blocked, %	000			_	_	_
Mov Cap-1 Maneuver	784	1042	1545	_	_	_
Mov Cap-1 Maneuver	784	1042	1343		_	
	952		-	-		-
Stage 1		-	-	-	-	-
Stage 2	885	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.6		5.4		0	
HCM LOS	A		0.1			
HOW EOO	, ,					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1545	-	912	-	-
HCM Lane V/C Ratio		0.039	-	0.137	-	-
)	7.4	0	9.6	-	-
HUM Control Delay (S.						
HCM Control Delay (s) HCM Lane LOS		Α	Α	Α	-	-
HCM Lane LOS HCM 95th %tile Q(veh		A 0.1	A -	A 0.5	-	-

Intersection						
Int Delay, s/veh	6.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDK	NDL	4	<u>301</u>	אומכ
		85	60	식 15		55
Traffic Vol. veh/h	45				15	
Future Vol, veh/h	45	85	60	15	15	55
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	49	92	65	16	16	60
		-				
	Minor2		Major1		/lajor2	
Conflicting Flow All	192	46	76	0	-	0
Stage 1	46	-	-	-	-	-
Stage 2	146	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	797	1023	1523	-	-	-
Stage 1	976	-	-	_	_	_
Stage 2	881	_	_	_	_	_
Platoon blocked, %	001			_	_	_
Mov Cap-1 Maneuver	763	1023	1523	-	-	-
			1023	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	934	-	-	-	-	-
Stage 2	881	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			6		0	
HCM LOS	A		U		U	
HCW LOS	A					
			MDT	EBLn1	SBT	SBR
Minor Lane/Major Mvr	nt	NBL	NDI			
	mt		-		-	-
Capacity (veh/h)	nt	1523	-	915	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1523 0.043	-	915 0.154	-	- -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		1523 0.043 7.5	- - 0	915 0.154 9.7		-
Capacity (veh/h) HCM Lane V/C Ratio	s)	1523 0.043	-	915 0.154	-	

APPENDIX E

Queuing Analysis Worksheets

	•	→	\rightarrow	•	←	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	152	527	54	152	1000	16	98	190	174	22	185	663
v/c Ratio	0.84	0.49	0.06	0.31	0.93	0.02	0.36	0.25	0.11	0.08	0.30	0.42
Control Delay	62.1	16.6	0.5	8.6	39.9	0.0	40.7	42.3	0.1	35.0	44.8	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.1	16.6	0.5	8.6	39.9	0.0	40.7	42.3	0.1	35.0	44.8	0.8
Queue Length 50th (ft)	65	222	0	37	660	0	61	68	0	13	66	0
Queue Length 95th (ft)	#185	311	4	61	#989	0	108	105	0	35	102	0
Internal Link Dist (ft)		1241			1307			590			512	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	180	1092	967	492	1086	963	272	747	1583	290	623	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.84	0.48	0.06	0.31	0.92	0.02	0.36	0.25	0.11	0.08	0.30	0.42

Intersection Summary

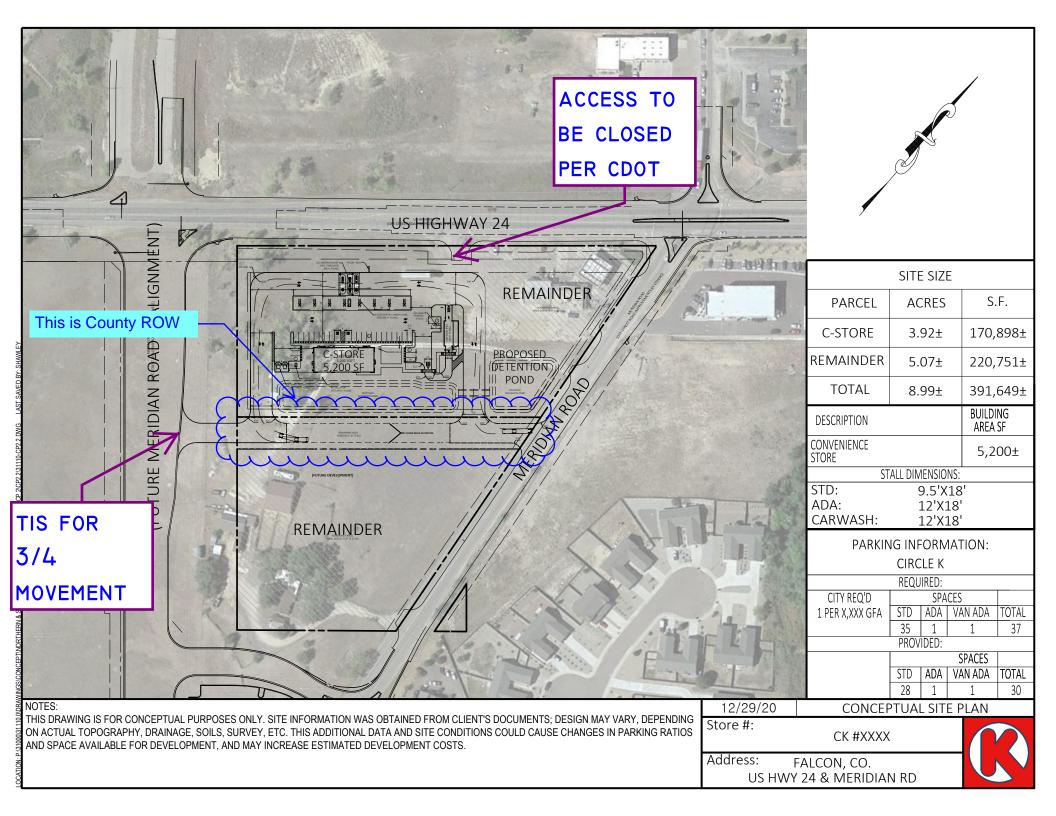
⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	-	\rightarrow	•	•	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	571	1005	33	185	527	27	71	310	272	43	304	277
v/c Ratio	0.92	0.95	0.04	0.92	0.78	0.04	0.32	0.46	0.17	0.20	0.46	0.17
Control Delay	47.4	42.8	0.1	79.1	43.7	0.1	40.1	47.0	0.2	37.5	46.8	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.4	42.8	0.1	79.1	43.7	0.1	40.1	47.0	0.2	37.5	46.8	0.2
Queue Length 50th (ft)	316	682	0	94	367	0	43	116	0	26	114	0
Queue Length 95th (ft)	#523	#1010	0	#237	#521	0	84	164	0	57	161	0
Internal Link Dist (ft)		1345			1307			590			309	
Turn Bay Length (ft)	800		60	750			150		400	150		300
Base Capacity (vph)	647	1071	950	202	678	662	224	668	1583	220	668	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.88	0.94	0.03	0.92	0.78	0.04	0.32	0.46	0.17	0.20	0.46	0.17

Intersection Summary

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	→	*	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	212	728	54	201	1386	22	109	245	245	22	250	929
v/c Ratio	0.61	0.43	0.07	0.47	0.82	0.03	0.33	0.26	0.15	0.07	0.34	0.59
Control Delay	59.7	20.6	0.7	13.4	31.2	0.1	34.3	37.8	0.2	31.6	43.3	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.7	20.6	0.7	13.4	31.2	0.1	34.3	37.8	0.2	31.6	43.3	1.6
Queue Length 50th (ft)	81	181	0	60	457	0	63	85	0	12	91	0
Queue Length 95th (ft)	122	221	5	89	534	0	113	125	0	33	133	0
Internal Link Dist (ft)		1471			1307			590			563	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	371	1828	863	440	1798	851	338	957	1583	325	745	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.40	0.06	0.46	0.77	0.03	0.32	0.26	0.15	0.07	0.34	0.59
Intersection Summary												


	ᄼ	→	\rightarrow	•	•	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	793	1397	38	255	712	38	76	418	380	60	424	386
v/c Ratio	0.83	0.86	0.05	0.80	0.62	0.06	0.33	0.51	0.24	0.26	0.53	0.24
Control Delay	49.1	35.9	0.1	51.5	37.0	0.2	37.5	44.8	0.4	36.1	45.3	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.1	35.9	0.1	51.5	37.0	0.2	37.5	44.8	0.4	36.1	45.3	0.4
Queue Length 50th (ft)	294	475	0	133	234	0	45	158	0	35	162	0
Queue Length 95th (ft)	356	592	0	#232	311	0	87	214	0	71	218	0
Internal Link Dist (ft)		1037			1307			590			683	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	1067	1661	793	357	1167	613	230	818	1583	229	807	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.74	0.84	0.05	0.71	0.61	0.06	0.33	0.51	0.24	0.26	0.53	0.24

Intersection Summary

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

APPENDIX F

Conceptual Site Plan

