回

EPC STORMWATER REVIEW COMMENTS

 IN ORANGE BOXES WITH BLACK TEXT
Drainage Report

Dutch Bros Coffee (CO0907)

PREPARED BY

Barghausen Consulting
Engineers, Inc.

PREPARED FOR
Dutch Bros Coffee

CLIENT ADDRESS
110 S.W. 4th Street, Grants Pass, OR 97526

| SITE ADDRESS | PROJECT NO. DATE | JURISDICTION |
| :---: | :---: | :---: | :---: |
| 5810 Omaha Boulevard,
 Colorado Springs,
 Colorado 80915 | 23098 | City of Colorado Springs |

ENGINEER'S STATEMENT:

DEVELOPER'S STATEMENT:
04/10/2024
Dutch Bros LLC herebv certifies that the drainage facilities for Dutch Bros CO0907 shall be

Owner/Developer's Statement: I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.	Colorado ertified by ction nal ns of
[Name, Title] [Address]	-

Title: \qquad Address: \qquad
El Paso County:
Filed in accordance with the requirements of the Drainage Criteria
Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual
and Land Development Code as amended.

Joshua Palmer, P.E.
County Engineer / ECM Administrator

Conditions:

PROJECT OVERVIEW

What does this mean? What predetermined storm basin requirements? The proposed redevelopment will need to follow all El Paso County Standards.
This document is the Drainage Report for 5810 Omaha Boulevard, Colorado Springs, CO 80915. This report is intended to demonstrate that the drainage requirements for the proposed Dutch Bros. Coffee development is in conformance with the predetermined storm basin requirements for the existing commercial development.

This project is located in the northwest corner of Powers Boulevard and Omaha Boulevard, Colorado Springs, Colorado and is currently an existing gas station. The parcel is approximately $0.62 \pm$ ac or $26,869 \pm$ square feet and is bounded by Powers Boulevard to the west, existing commercial development on the east and north, and Omaha Boulevard to the south. The disturbed area consists of approximately $0.62 \pm$ ac or $26,869 \pm$ square feet. Overall, the site slopes from the northeast to the southwest. Refer to Appendix A for the Vicinity Map.

The property is zoned as Commercial Regional. The proposed development includes a building footprint of 950 square feet and a 272 -square-foot trash enclosure. The planned site improvements include paved asphalt driving area, reinforced concrete driving area, on-site sidewalk area, and landscaping. These values give the site an overall impervious percentage of approximately $59 \% \pm$.

SOILS

Per the Natural Resources Conservation Service web soils survey, soils for this project, delineated on the Soils Map within Appendix B of this report, are classified as Blendon Sandy Loam. Blendon Sandy Loam has been classified as Hydrologic Soil Type "B". The study area consists of undeveloped land with sparse, grassy vegetation.

FLOODPLAN STATEMENT

The subject property is located in Zone " X " (Area determined to be outside the 0.2% annual chance floodplain) per the Flood Insurance Rate Map for County of El Paso, Colorado Map Number 08041C0751G, revised December 7, 2018.

EXISTING DRAINAGE

Discuss in more detail, how many inlets? What size storm drains etc.
The existing site is currently an existing gas station with existing drainage inlets near the south side of the site. There is an existing storm drain system located near the south end of the site. In general, the site typically sheet flows from the northeast to the southwest towards the existing inlets. Refer to Appendix B for the Existing Conditions Drainage Map.

In existing conditions, Basin $\mathrm{A}_{-1} 1$ is approximately 0.62 acres in size and approximately 90% impervious. The runoff coefficient for the 5 -year and 100-year storm event is 0.81 and 0.88 , respectively. The flow rate was calculated using a minimum time of concentration of 5 minutes. The $\sqrt{\text { moff }}$ is approximately 2.61 cfs for the 5 -year and 4.76 cffs for the 100-year storm event. The runoff is conveyed and collected by the existing drainage inlets located near the south end of the site and is conveyed to the existing storm drain.

values are based on DCM table 5-1

PROPOSED DRAINAGE

The project proposes to construct a new Dutch Bros Coffee building, drive aisles, parking stalls, landscaping, and utilities. In proposed conditions, the project proposes more landscaping than existing conditions, which reduces the amount of runoff to the tributary drainage inlets.

In proposed conditions, Basin A-1 is the proposed Dutch Bros Coffee site. The basin is approximately 0.63 acres in size and approximately 73% impervious. The runoff coefficient for the 5 -year and 100-year storm event is 0.68 and 0.80 , respectively. The flow rate was calculated using a minimum time of concentration of 5 minutes. The hunoff is approximately 2.22 cfs for the 5 -year and 4.35 cfs for the 100 -year storm event, which is less than the existing conditions. The runoff is conveyed to curb cuts, is collected by the drainage inlets located near the south end of the site, and is conveyed to the existing storm drain.

Refer to Appendix B for the Proposed Conditions Drainage Map and Appendix C for the Hydrology Calculations for Basin A-1 Ensure that these
SUMMARY values are based on DCM table 5-1

It has been concluded that the proposed project and the constructed improvements will maintain the thresholds of the existing conditions. The proposed project is less than one (1) acre in size, reduces the amount of the existing impervious area from 90% impervious to 73% impervious, and reduces the amount of runoff from 2.61 cfs to 2.22 cfs for the 5 -year storm event and from 4.76 cfs to 4.35 cfs for the 100 -year storm event. The proposed site also maintains the existing drainage patterns; because the site reduces the amount of runoff tributary to the existing inlets, the existing storm drains/appurtenances will not adversely affect the downstream and surrounding developments. Therefore, the proposed site is in conformance with the City of Colorado Springs and El Paso County standards and requirements.

Water quality/exemption from water quality needs to be discussed in the report.

Provide hydraulic calculations for proposed drainage features and how they will interact with existing drainage features. Ensure modifications to the site are hydraulically working with no negative impacts. See comments on the drainage map.

Appendix A

VICINITY MAP

ApPENDIX B

- EXISTING CONDITIONS DRAINAGE MAP - PROPOSED CONDITIONS DRAINAGE MAP

Appendix C

HYDROLOGY CALCULATIONS

Project:	Dutch Bros - CO0907
Location:	5810 Omaha Blvd, Colorado Springs, CO
BCE\#	$\quad 23098$

5810 Omaha Blvd, Colorado Springs, CO

 23098Rational Method

Project:	Dutch Bros - CO0907
Location:	5810 Omaha Blvd, Colorado Springs, CO
BCE\#	$\quad 23098$

5810 Omaha Blvd, Colorado Springs, CO

 23098
Rational Method

PROPOSED						
Basin:	A-1					
Total Area (sf)	27,405					
Total Area (ac)	0.63					
Impervious Area (sf)	20,095					
Pervious Area (sf)	7,310					
Total Area (sf)	27,405					
\%Impervious (i)	0.73					
Runoff Coefficient, c Soil Type				(per Table 6-6 Runoff Coefficient - Commercial) (per NRCS Web Soil Survey)		
	B					
	2 YR	5 YR	100 YR			
Impervious	0.89	0.9	0.96			
Pervious	0.02	0.08	0.35			
	A-1					
2 Year	0.66					
5 Year	0.68					
100 year	0.80					
Rainfall Intensity, i (in/hr)				(per Figure 6-5 - Colorado Springs Rainfall Intensity Duration Frequency)		
		5 (min)	60 (min)			
	i2 (in/hr) =	4.12	1.16			
	i5 (in/hr) =	5.17	1.44			
	i 100 (in/hr) =	8.68	2.42			
Runoff, Q (cfs), assume $\min \mathrm{Tc}=5 \mathrm{~min}$			$\mathrm{Q}=\mathrm{C} * \mathbf{i}^{*} \mathbf{A}$	Runoff, Q (cfs),	assume $\min \mathrm{Tc}=1 \mathrm{hr}$	$\mathrm{Q}=\mathrm{C} * \mathbf{i}^{*} \mathbf{A}$
	A-1				A-1	
Q2 (cfs) =	1.71			Q2 (cfs) =	0.48	
Q5 (cfs) =	2.22			Q5 (cfs) =	0.62	
Q100 (cfs) =	4.35			Q100 (cfs) =	1.21	

Appendix D

REFERENCES

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{\mathbf{1 0 0}}=-\mathbf{2 . 5 2} \ln (\mathrm{D})+12.735$
$\mathbf{I}_{50}=-\mathbf{2 . 2 5} \ln (\mathrm{D})+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{\mathbf{2 5}}=-\mathbf{2 . 0 0} \ln (\mathrm{D})+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (\mathrm{D})+8.847$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+7.583$
$\mathbf{I}_{2}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_{t}) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

