

PRELIMINARY DRAINAGE REPORT

RISING MOON FILING NO. 1
(A Replat of Tract B, Morning Sun I)

JUNE 2024

PCD Filing No.: XXXX

Prepared for:

PIKES PEAK HABITAT FOR HUMANITY, INC. 2802 N. PROSPECT STREET COLORADO SPRINGS, CO 80907 719-661-5527

Prepared by:

CLASSIC CONSULTING ENGINEERS & SURVEYORS
619 CASCADE AVENUE, SUITE 200
COLORADO SPRINGS, CO 80903
(719) 785-0790

Job no. 2506.03

PRELIMINARY DRAINAGE REPORT FOR RISING MOON FILING NO. 1

DRAINAGE REPORT STATEMENT

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

negligent acts, erro	ors, or omissions on my part in pre	paring this report.	, , , , , ,
Kyle R. Campbell, C	Colorado P.E. #29794	ī	Date
	PER'S STATEMENT: loper, have read and will comp d plan.	ly with all of the re	quirements specified in this
Business Name:	Pikes Peak Habitat for Humani	ty, Inc.	
Title:			Date
Address:	2802 N. Prospect Street		
	Colorado Springs, CO 80907		
	e with the requirements of the g Criteria Manual and Land Develo	_	
Joshua Palmer, P.E County Engineer /	ECM Administrator	Date	
Conditions:			

PRELIMINARY DRAINAGE REPORT FOR RISING MOON FILING NO. 1

TABLE OF CONTENTS:

PURPOSE	Page	4
GENERAL DESCRIPTION	Page	4
EXISTING DRAINAGE CONDITIONS	Page	4
DEVELOPED DRAINAGE CONDITIONS	Page	5
DETENTION FACILITY	Page	6
STORMWATER QUALITY	Page	6
HYDROLOGIC CALCULATIONS	Page	7
FLOODPLAIN STATEMENT	Page	7
EROSION CONTROL PLAN	Page	8
DRAINAGE AND BRIDGE FEES	Page	8
SUMMARY	Page	8
REFERENCES	Page	9

APPENDICES

VICINITY MAP

SOILS MAP (S.C.S. SURVEY)

F.E.M.A. MAP

HYDROLOGIC / HYDRAULIC CALCULATIONS

FULL SPECTRUM DETENTION CALCULATIONS

REFERENCE MATERIAL FROM PRIOR STUDIES

EXISTING CONDITIONS DRAINAGE MAP

PROPOSED CONDITIONS DRAINAGE MAP

Page iii

PURPOSE

This document is the Preliminary Drainage Report for Rising Moon Filing No. 1. The purpose of this report is to identify general onsite and offsite drainage patterns, conceptual storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate stormwater facilities, in accordance with all applicable area drainage plans. This report is required to accompany the proposed Preliminary Plan that is proposed to replace the prior approved and platted Tract B, Morning Sun I previously anticipated Elementary School.

Please include the plat number for reference

A Final Drainage Report will be provided when the Final Plat and Construction Drawings details are processed for review.

GENERAL DESCRIPTION

The overall Rising Moon Filing No. 1 development is a 9.00-acre residential community within a portion of Section 3, Township 15 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is generally located west of Shining Star Drive just north of Peaceful Meadow Street. The proposed City of Colorado Springs Meadoworks Residential Community sits directly west of the site. The development includes a total of 41 single-family residences that will be developed as a single phase for the Pikes Peak Habitat for Humanity.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "B" (Ustic Torrifluveots) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

Include a PCD File No. reference if one is

available.

EXISTING DRAINAGE CONDITIONS

The site is located within the Jimmy Camp Drainage Basin. This site was previously studied in the "Drainage Report for Morning Sun Subdivision", by United Planning and Engineering, Co. (revised February 11, 1986). This currently proposed residential community is proposed to replace the previously platted (Tract B) but not constructed previously anticipated elementary school site. This

report and map will be used as a portion of the existing conditions reference material.

Per visual observation, the site is predominantly covered in native grasses. The existing ground slopes in a south and south westerly direction as depicted on the Existing Conditions Drainage Map in the Appendix. All existing site flows drain directly into the existing southwesterly Colorado Centre Metropolitan District drainage facilities (culverts and trapezoidal channel). Existing flows tributary to the southwest corner of the site include:

Basin EX-A: $Q_5 = 3.3$ cfs and $Q_{100} = 7.3$ cfs (off-site unconcentrated flows into the site)

Basin EX-B: $Q_5 = 2.4$ cfs and $Q_{100} = 17.5$ cfs (on-site existing flows).

DEVELOPED DRAINAGE CONDITIONS

Based upon City/County Drainage Criteria, the drainage approach for this development now reflects current criteria for stormwater quality (on-site) and Full Spectrum Detention requirements. The attached "Proposed Conditions Drainage Map" contains the preliminary, anticipated approach to drainage.

The majority of the site is comprised of Basin A (Q_5 = 17.6 cfs, Q_{100} = 40.5 cfs), 10.31-acres of existing off-site and proposed on-site public roadways, and single-family lots. At this preliminary stage of analysis, it is anticipated that all developed flows will be intercepted on-site in a proposed public storm system and then directed toward the proposed private Extended Detention Basin for detention and stormwater quality treatment. The ultimate release of all stormwater flows will be directly into the existing CCMD Storm Facilities as the flows currently do (Q_5 = 0.5 cfs and Q_{100} = 5.8 cfs from proposed

Include discussion of existing downstream drainage facilities and their ability to convey runoff from the proposed development. Include the final outfall location

downstream. Please clarify the overflow spillway path and the outfall to the west. Define what the condition will be once the new roadway on the west of the proposed

The subsequesubdivision is built and the outfall condition changes.

storm system and facilities, including public street capacity analysis, inlet calculations and pipe sizing analysis.

All proposed storm facilities within the public street right-of way will be public with ownership and maintenance by El Paso County.

The proposed Full Spectrum Detention Facility will be privately owned and maintained by the proposed homeowner's association.

DETENTION FACILITY

A proposed private Extended Detention Basin (EDB) will provide full capture and detention of the on and off-site flows as reflected in the attached calculation sheets. Further design and calculation details will be provided in the subsequent Final Drainage Report.

STORMWATER QUALITY

Preliminary design showing that the sizing will work and not require site revisions is needed in this report.

This site adheres to this **Four Step Process** as follows:

- Employ Runoff Reduction Practices: Proposed impervious areas (roof tops, patios) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
- 2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the yards, these flows will travel via curb and gutter within the public streets and eventually public storm systems. These collected flows are then routed directly to the proposed Full Spectrum Detention and stormwater quality facility on-site and ultimately released into existing CCMD storm facilities.
- 3. Full Spectrum Detention and Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV in the proposed private on-site Full Spectrum Detention and water quality facility designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative will be submitted along with the grading and erosion control plan. Details such as site-specific source control construction BMP's as well as permanent BMP's

were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

Based upon the requirement to provide Full Spectrum Detention and stormwater quality capture volume for the development area, a proposed Extended Detention Basin is proposed in the south area of the site. Per the preliminary calculations in the Appendix, a 1.087 ac-ft capture volume is needed. The details of this stormwater facility will be provided in the subsequent Final Drainage Report, including treatment of all disturbed areas, less any excluded areas.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Full Spectrum Detention pond modeling developed using UD-Detention spreadsheet ver. 3.07, Urban Drainage and Flood Control District.

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

FLOODPLAIN STATEMENT

that it is not in the floodplain

The site does not appear to be in the floodplain. LOI states

A portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C0769G, with effective dates of December 7, 2018 (See Appendix).

EROSION CONTROL PLAN

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be

submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and

cost estimate be submitted in conjunction with the Overlot Grading Plan and construction assurances

posted prior to obtaining a grading permit. Early grading is not being requested with this application.

DRAINAGE & BRIDGE FEES

This site lies within the Jimmy Camp Creek Drainage Basin. As this site was previously platted as Tract

B, no drainage or bridge fees will be required to be paid. Confirmation of prior platting and inclusion or

exclusion in the Drainage Basin Planning Study will be provided in the Final Drainage Report to justify

that no fees are required.

SUMMARY

This proposed development remains consistent with the previously anticipated drainage patterns for

the site. The proposed Full Spectrum Detention and stormwater quality facility meets current criteria.

The proposed development will not adversely impact surrounding developments.

A future Final Plat application will include Construction Drawings and a Final Drainage Report to

provide further Final Design details associated with the more detailed design.

PREPARED BY:

Classic Consulting

Kyle R. Campbell, P.E.

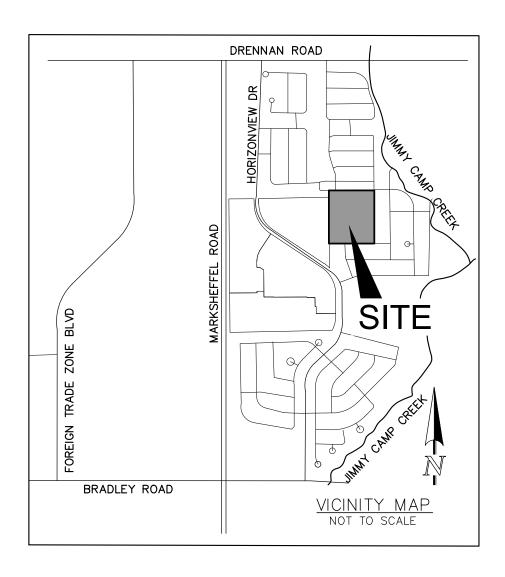
Thy My Cambull

Division Manager

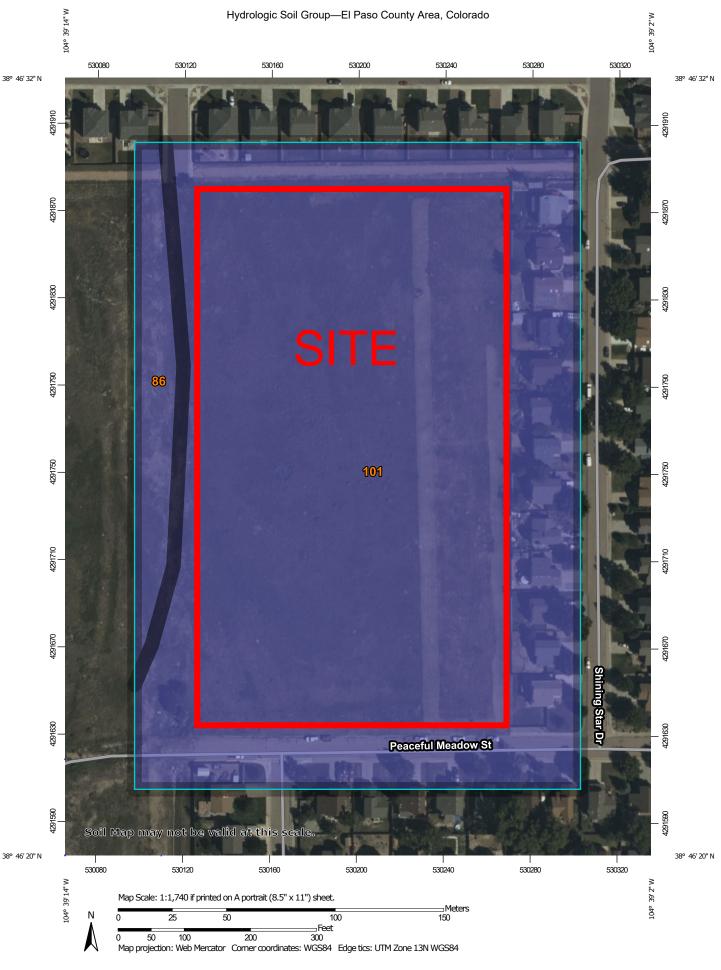
db/250603/REPORTS/PDR

Page 8

REFERENCES


- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.*
- 2. "Drainage Report and Plan Waterside Condominiums Subdivision", by Leigh Whitehead.
- 3. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.
- 4. El Paso County Engineering Criteria Manual, Resolution No. 20-222, June 23, 2020 (Supp. No.2).
 - *EPC Board Resolution NO. 15-042 (El Paso County adoption of Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria manual dated May 2014, hydrology and full-spectrum detention)

APPENDIX


VICINITY MAP

SOILS MAP (S.C.S SURVEY)

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 11, 2018—Oct 20. 2018 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
86	Stoneham sandy loam, 3 to 8 percent slopes	В	1.1	7.0%
101	Ustic Torrifluvents, loamy	В	14.0	93.0%
Totals for Area of Intere	est		15.1	100.0%

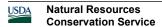
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

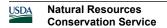
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

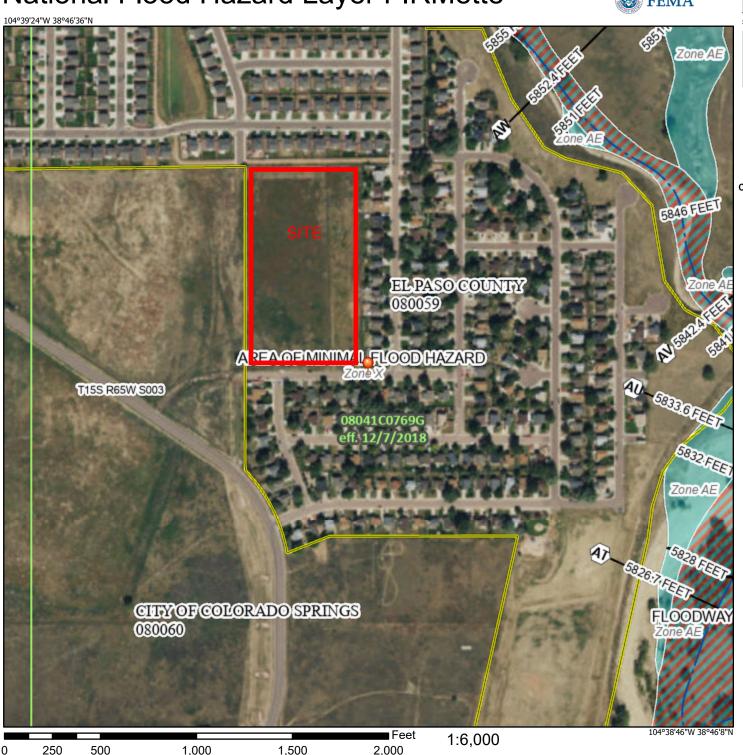
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

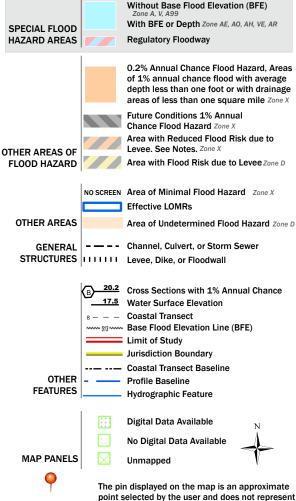
Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher



F.E.M.A. MAP


National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

accuracy standards

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/4/2024 at 8:43 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

HYDROLOGIC / HYDRAULIC CALCULATIONS

JOB NAME:HABITAT FOR HUMANITYJOB NUMBER:2506.03DATE:05/23/23CALCULATED BY: \overline{MAL}

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (EXISTING CONDITIONS)

									•			
		IMPERVIOUS AREA / STREETS			LOTS/LAN	LOTS/LANDSCAPE/UNDEV. AREAS (NOT PAVEMENT)			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL	AREA (AC)	C/E)	C(100)	AREA (AC)	LAND USE	C(5)	C(100)	C(5)	C(100)	CA(E)	CA(100)
BASIN	AINLA (AC)	AREA (AC)	C(5)	C(100)	AREA (AC)	LAIND USE	C(5)	C(100)	U(5)	C(100)	CA(5)	CA(100)
EX-A	1.63	1.63	0.45	0.59	0.00	OPEN	0.08	0.35	0.45	0.59	0.73	0.96
EX-B	9.00	0.00	0.90	0.96	9.00	OPEN	0.08	0.35	0.08	0.35	0.72	3.15

JOB NAME: HABITAT FOR HUMANITY

JOB NUMBER: **2506.03**DATE: **5/23/2023**CALC'D BY: **MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (EXISTING CONDITIONS)

-																
		WEIGHTED			OVERLAND		STREET / CHANNEL FLOW			Tc INTENSITY		NSITY	TOTAL	FLOWS		
	BASIN	CA(5)	CA(100)	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	I(5)	I(100)	Q(5)	Q(100)
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
	EX-A	0.73	0.96	0.45	70	1.5	7.6	50	2.0%	4.9	0.2	7.8	4.50	7.56	3.3	7.3
	EX-B	0.72	3.15	0.08	100	2	14.7	700	1.5%	4.3	2.7	17.4	3.30	5.54	2.4	17.5

JOB NAME:HABITAT FOR HUMANITYJOB NUMBER:2506.03DATE:05/23/23CALCULATED BY: \overline{MAL}

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (DEVELOPED CONDITIONS)

		IMPERVIO	US AREA / [DEV. AREA	L	LANDSCAPE/UNDEVELOPED AREAS				WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(5)	C(100)	AREA (AC)	LAND USE	C(5)	C(100)	C(5)	C(100)	CA(5)	CA(100)	
A	10.31	9.28	0.45	0.59	1.03	-	0.08	0.35	0.41	0.57	4.26	5.84	

JOB NAME: HABITAT FOR HUMANITY

JOB NUMBER: **2506.03**DATE: **5/23/2023**CALC'D BY: **MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (DEVELOPED CONDITIONS)

	WEIGHTED		OVERLAND		STREET / CHANNEL FLOW			Tc	INTE	NSITY	TOTAL	FLOWS			
BASIN	CA(5)	CA(100)	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	I(5)	I(100)	Q(5)	Q(100)
				(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
А	4.26	5.84	0.45	70	1.5	7.6	720	2.2%	5.2	2.3	9.9	4.14	6.95	17.6	40.5

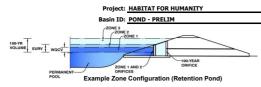
Page 4of 4

FULL SPECTRUM DETENTION CALCULATIONS

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer: M. Larson		
Company: Classic Consulting		
Date: June 4, 2024 Project: Habitat for Humanity		
Project: Habitat for Humanity Location: Pond - Prelim Design		
Location. Total From Bodgii		
Basin Storage Volume		
•		
A) Effective Imperviousness of Tributary Area, I	a .	I _a = 58.7 %
B) Tributary Area's Imperviousness Ratio (i = I _a /	100)	i = 0.587
C) Contributing Watershed Area		Area = 10.310 ac
D) For Watersheds Outside of the Denver Regi	on. Depth of Average	d ₆ = 0.42 in
Runoff Producing Storm	7 1 3	
E) Design Concept		Choose One Water Quality Contrary Values (MOCQ)
(Select EURV when also designing for flood of	control)	○ Water Quality Capture Volume (WQCV) ⑤ Excess Urban Runoff Volume (EURV)
		© Excess order relation volume (EURY)
F) Design Volume (WQCV) Based on 40-hour I	Orain Time	V _{DESIGN} = ac-ft
$(V_{DESIGN} = (1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i))$		
G) For Watersheds Outside of the Denver Regi		V _{DESIGN OTHER} = 0.195 ac-ft
Water Quality Capture Volume (WQCV) Des $(V_{WQCV OTHER} = (d_6^*(V_{DESIGN}/0.43)))$	sign Volume	
 H) User Input of Water Quality Capture Volume (Only if a different WQCV Design Volume is 		V _{DESIGN USER} = ac-ft
I) NDCS Hydrologic Soil Croups of Tributory W.	otorohod	
 NRCS Hydrologic Soil Groups of Tributary Wa i) Percentage of Watershed consisting of T 		HSG _A = 0 %
ii) Percentage of Watershed consisting of Tiii) Percentage of Watershed consisting of		HSG _B = 100 % HSG _{CID} = 0 %
		1.100 g _D
J) Excess Urban Runoff Volume (EURV) Design For HSG A: EURV _A = 1.68 * i ^{1.28}	n Volume	EURV _{DESIGN} = 0.657 ac-f t
For HSG B: EURV _p = 1.36 * i ^{1.08}		
For HSG C/D: EURV _{C/D} = 1.20 * i ^{1.08}		
 K) User Input of Excess Urban Runoff Volume ((Only if a different EURV Design Volume is of 		EURV _{DESIGN USER} = ac-f t
(Only if a different Eorty Design volume to	2001104)	
Basin Shape: Length to Width Ratio		L:W= 2.0 :1
(A basin length to width ratio of at least 2:1 will in	mprove TSS reduction.)	
3. Basin Side Slopes		
A) Basin Maximum Side Slopes	T. "	Z = 4.00 ft / ft
(Horizontal distance per unit vertical, 4:1 or f	natter preferred)	
4. Inlet		
 A) Describe means of providing energy dissipat inflow locations: 	tion at concentrated	-
5. Forebay		
A) Minimum Forebay Volume		V _{FMIN} = 0.006 ac-ft
(V _{FMIN} = 3% of the WQCV)		V _{FMN} = <u>0.006</u> ac-ft
B) Actual Forebay Volume		V _F = ac-ft
•		- r <u>u</u> u n
C) Forebay Depth (D _F =18inch maximum)		D _F = in
D) Forebay Discharge		
i) Undetained 100-year Peak Discharge		Q ₁₀₀ = cfs
ii) Forebay Discharge Design Flow		Q _F = cfs
$(Q_F = 0.02 * Q_{100})$		
E) Forebay Discharge Design		Choose One
		Berm With Pipe Wall with Rect. Notch Flow too small for berm w/ pipe
		Wall with V-Notch Weir
EVEN DE DE COMPANIE		
F) Discharge Pipe Size (minimum 8-inches)		Calculated D _P =iin
G) Rectangular Notch Width		Calculated W _N = in

UD-BMP_v3.07-PRELIM, EDB 6/4/2024, 2:03 PM

	Design Procedure Form:	Extended Detention Basin (EDB) Sheet 2 of 3
Designer: Company: Date: Project: Location:	M. Larson Classic Consulting June 4, 2024 Habitat for Humanity Pond - Prelim Design	Sileet 2 01 3
Trickle Channe A) Type of Tric F) Slope of Tri	ckle Channel	Choose One
	icropool (2.5-feet minimum) sa of Micropool (10 ft ² minimum)	$D_{M} = $
D) Smallest Di (Use UD-Deter E) Total Outlet		$D_{\text{orifice}} = $
(Minimum re B) Minimum Ini (Minimum vo	tial Surcharge Volume ecommended depth is 4 inches) tial Surcharge Volume slume of 0.3% of the WQCV) arge Provided Above Micropool	$D_{IS} =$ in $V_{IS} =$ cu ft $V_{e} =$ 25.0 cu ft
B) Type of Scre in the USDCM, total screen are	lity Screen Open Area: A _r = A _{rd} * 38.5*(e ^{-0.095D}) een (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the e for the material specified.) Other (Y/N): N al Open Area to Total Area (only for type 'Other')	A _t = 385 square inches S.S. Well Screen with 60% Open Area User Ratio =
D) Total Water E) Depth of De (Based on F) Height of Wa	Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ater Quality Screen (H _{TR}) ater Quality Screen Opening (W _{opening}) 2 inches is recommended)	A _{total} = 642 sq. in. H= 3.9 feet H _{TR} = 74.8 inches W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.


UD-BMP_v3.07-PRELIM, EDB 6/4/2024, 2:03 PM

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	M. Larson Classic Consulting June 4, 2024 Habitat for Humanity Pond - Prelim Design	Sheet	3 of 3
B) Slope of C	coankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	BURIED RIPRAP SPILLWAY Ze = 4.00 ft / ft	
11. Vegetation		Choose One Irrigated Not Irrigated Not Irrigated Not Irrigated Not Irrigated Not Irrigated Not Irrigated	
12. Access A) Describe 9	Sediment Removal Procedures	ROAD TO BOTTOM AND ALL STRUCTURES	
Notes:			

UD-BMP_v3.07-PRELIM, EDB 6/4/2024, 2:03 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

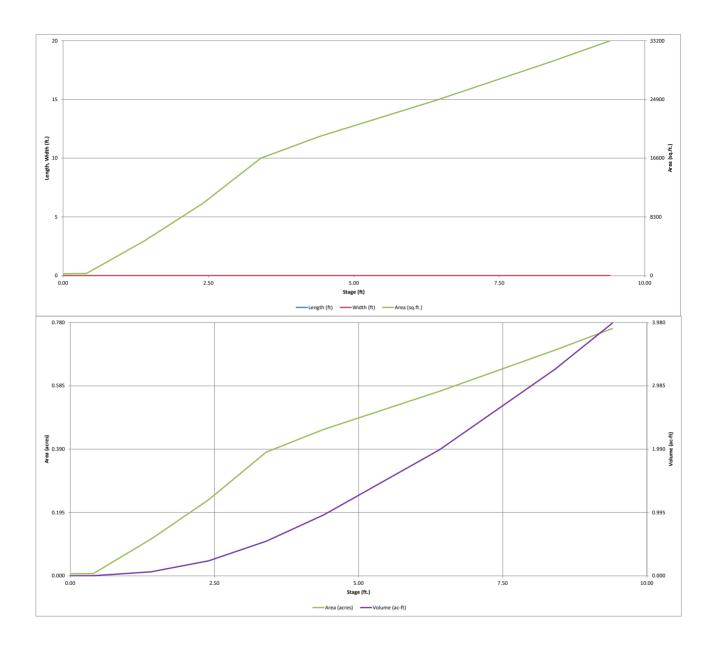
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	10.31	acres
Watershed Length =	850	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	58.70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.199	acre-feet
Excess Urban Runoff Volume (EURV) =	0.655	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.582	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.808	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.002	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.250	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.458	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.715	acre-feet
500-yr Runoff Volume (P1 = 3.1 in.) =	2.212	acre-feet
Approximate 2-yr Detention Volume =	0.503	acre-feet
Approximate 5-yr Detention Volume =	0.680	acre-feet
Approximate 10-yr Detention Volume =	0.879	acre-feet
Approximate 25-yr Detention Volume =	0.952	acre-feet
Approximate 50-yr Detention Volume =	0.993	acre-feet
Approximate 100-yr Detention Volume =	1.087	acre-feet

Optional User	Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.10	inches
•	

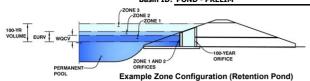

Define Zones and Basin Geometr

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.199	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.456	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.431	acre-feet
Total Detention Basin Volume =	1.087	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-f

1		1_							
Depth Increment =	0.25	ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Top of Micropool		0.00				273	0.006		
	-	0.40	-			300	0.007	115	0.003
		1.40	-			4,926	0.113	2,728	0.063
		2.40 3.40	-			10,203	0.234	10,292	0.236 0.544
		4.40				16,599 19,652	0.381 0.451	23,693 41,819	0.960
		6.40	-			24,746	0.568	86,217	1.979
		8.40	-			30,260	0.695	141,223	3.242
		9.40	-			33,171	0.762	172,938	3.970
			-						
			-						
			_		_				
			-						
	-								
			-		-				
			-						
	-		-						
	-		-		-				
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			_						
			-						
			-						
			-						
			-						
			-						
			-						
	-		-	-	-				
			-						
									-
	-		-						
	-								
	-		-						
	-		-						
	-								
	1 1								
	-								
	1 1								
	1 1								
			-				1		
	-								
			-						
	-		-		-				
	-								
			-						

6/4/2024, 2:16 PM MHFD-Detention_v4-06-HABITAT, Basin



MHFD-Detention_v4-06-HABITAT, Basin 6/4/2024, 2:16 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: HABITAT FOR HUMANITY
Basin ID: POND - PRELIM

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.24	0.199	Orifice Plate
Zone 2 (EURV)	3.69	0.456	Orifice Plate
one 3 (100-year)	4.68	0.431	Weir&Pipe (Circular)
•	Total (all zones)	1.087	

Zc

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row = Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) N/A ft-2 Depth at top of Zone using Orifice Plate = 3.90 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 14.80 inches Elliptical Slot Centroid feet N/A Orifice Plate: Orifice Area per Row = N/A sa, inches Elliptical Slot Area = N/A ft²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Vertical Orifice Diameter =

Freeboard above Max Water Surface =

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.30	2.60					
Orifice Area (sq. inches)	0.50	4.00	6.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area: N/A N/A N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A

User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Re	ctangular/Trapezoidal Weir and No Outlet Pipe)	Calculated Parame	ters for Overflow W	eir
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	ii
Overflow Weir Front Edge Height, Ho =	3.90	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.23	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	4.22	N/A	feet
Overflow Weir Grate Slope =	3.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	6.64	N/A	ii
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	11.74	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	5.87	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

1.00

feet

N/A

N/A

inches

	Zone 3 Circular	Not Selected			Zone 3 Circular	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft ²
Circular Orifice Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet
			Half-Central Angle of	of Restrictor Plate on Pipe =	N/A	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= Spillway Invert Stage= 7.40 0.93 feet Spillway Crest Length = 10.00 feet Stage at Top of Freeboard = 9.33 feet Spillway End Slopes = 4.00 H:V Basin Area at Top of Freeboard = 0.76 acres


Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	v entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.10
CUHP Runoff Volume (acre-ft) =	0.199	0.655	0.582	0.808	1.002	1.250	1.458	1.715	2.212
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.582	0.808	1.002	1.250	1.458	1.715	2.212
CUHP Predevelopment Peak Q (cfs) =		N/A	1.5	4.1	6.0	10.7	13.4	16.7	22.8
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.14	0.39	0.59	1.04	1.30	1.62	2.21
Peak Inflow Q (cfs) =	N/A	N/A	11.9	16.6	19.9	25.1	29.3	35.1	44.7
Peak Outflow Q (cfs) =	0.2	0.4	0.4	0.5	1.0	2.2	3.5	5.8	10.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.2	0.2	0.3	0.3	0.4
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.1	0.2	0.4	0.8
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	51	59	59	60	59	54	51	46	42
Time to Drain 99% of Inflow Volume (hours) =	55	70	69	73	74	73	72	70	66
Maximum Ponding Depth (ft) =	2.24	3.69	3.36	3.89	4.26	4.59	4.86	5.21	5.72
Area at Maximum Ponding Depth (acres) =	0.21	0.40	0.38	0.42	0.44	0.46	0.48	0.50	0.53
Maximum Volume Stored (acre-ft) =	0.200	0.657	0.529	0.739	0.898	1.047	1.169	1.340	1.601

Calculated Parameters for Outlet Pine w/ Flow Restriction Plate

3.92

acre-ft

Basin Volume at Top of Freeboard =

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.02	0.50
	0:15:00	0.00	0.00	1.45	2.37	2.94	1.97	2.42	2.40	3.27
	0:20:00	0.00	0.00	4.86	6.29	7.52	4.61	5.32	5.75	7.37
	0:25:00	0.00	0.00	10.33	14.88	18.89	10.13	11.88	13.07	18.52
	0:30:00	0.00	0.00	11.90	16.62	19.91	24.76	29.18	32.87	42.37
	0:35:00	0.00	0.00	9.95	13.58	16.22	25.13	29.29	35.07	44.69
	0:40:00	0.00	0.00	8.07	10.75	12.88	22.29	25.87	30.60	38.87
	0:45:00	0.00	0.00	6.08	8.33	10.21	17.93	20.80	25.71	32.61
	0:50:00 0:55:00	0.00	0.00	4.79 3.84	6.81 5.40	8.16 6.62	14.88 11.57	17.25 13.47	21.03 17.12	26.74 21.81
	1:00:00	0.00	0.00	3.06	4.26	5.34	9.14	10.68	14.25	18.16
	1:05:00	0.00	0.00	2.52	3.45	4.45	7.24	8.48	11.90	15.19
	1:10:00	0.00	0.00	2.00	3.09	4.12	5.28	6.22	8.23	10.68
	1:15:00	0.00	0.00	1.74	2.77	4.02	4.30	5.10	6.18	8.16
	1:20:00	0.00	0.00	1.60	2.46	3.57	3.43	4.05	4.44	5.85
	1:25:00	0.00	0.00	1.52	2.26	3.00	2.90	3.42	3.35	4.40
	1:30:00	0.00	0.00	1.47	2.14	2.62	2.40	2.80	2.70	3.53
	1:35:00	0.00	0.00	1.43	2.06	2.37	2.09	2.41	2.26	2.94
	1:40:00	0.00	0.00	1.41	1.79	2.21	1.90	2.17	1.99	2.58
	1:45:00	0.00	0.00	1.40	1.61	2.10	1.77	2.01	1.84	2.38
	1:50:00	0.00	0.00	1.40	1.49	2.02	1.71	1.93	1.80	2.31
	1:55:00 2:00:00	0.00	0.00	1.16	1.42	1.91	1.67	1.88	1.78	2.28
	2:05:00	0.00	0.00	0.99 0.64	1.32 0.85	1.70 1.10	1.65 1.07	1.86 1.21	1.78 1.16	1.48
	2:10:00	0.00	0.00	0.40	0.53	0.70	0.69	0.77	0.74	0.95
	2:15:00	0.00	0.00	0.25	0.33	0.43	0.43	0.48	0.46	0.59
	2:20:00	0.00	0.00	0.14	0.20	0.26	0.26	0.29	0.27	0.35
	2:25:00	0.00	0.00	0.07	0.11	0.14	0.15	0.17	0.16	0.20
	2:30:00	0.00	0.00	0.03	0.05	0.06	0.07	0.08	0.07	0.09
	2:35:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00 3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage	Area	Area [acres]	Volume	Volume [ac-ft]	Total Outflow	
	[ft]	[ft²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
							For best results, include the stages of all grade slope
							changes (e.g. ISV and Floor
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of a
							outlets (e.g. vertical orifice,
							overflow grate, and spillway
							where applicable).
							_
		-					4
							4
							_
							-
				 			+
							1
							1
		-					4
							+
							1
							4
		-					4
							=
]
							4
							+
		1					7
							_
							- - -

JOB NAME: HABITAT

JOB NUMBER: 2506.03

DATE: 06/04/24

CALCULATED BY: MAL

TOTAL POND VOLUME

POND SIZING WITH PONDPACK EQUATION:

INSERT POND DESIGN SIZE INFO: (RED)

POND ELEVATION:

I OND LELVATION.	
(from lowest to highest)	5831.60
	5831.60
	5831.93
	5832.00
	5833.00
	5834.00
	5835.00
	5836.00
	5838.00
	5840.00
	5841.00

AREA (BTM to TOP):					
273	0.01	acres			
273	0.01	acres			
273	0.01	acres			
300	0.01	acres			
4,926	0.11	acres			
10,203	0.23	acres			
16,599	0.38	acres			
19,652	0.45	acres			
24,746	0.57	acres			
30,260	0.69	acres			
33,171	0.76	acres			
	-	acres			

PRELIMINARY SIZE:

VOLUME = 1/3{(EL2-EL1)*(A1+A2+((A1*A2)^.5))}

CUMMULATIVE VOLUME:

=	AC-FT	from	5,832	to	5,832	
0.00	AC-FT	from	5,832	to	5,832	0.00
0.00	AC-FT	from	5,832	to	5,832	0.00
0.05	AC-FT	from	5,832	to	5,833	0.05
0.17	AC-FT	from	5,833	to	5,834	0.22
0.30	AC-FT	from	5,834	to	5,835	0.52
0.41	AC-FT	from	5,835	to	5,836	0.93
1.01	AC-FT	from	5,836	to	5,838	1.94
1.25	AC-FT	from	5,838	to	5,840	3.19
0.72	AC-FT	from	5,840	to	5,841	3.91
-	AC-FT	from	5,841	to	-	3.91

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

VOLUME = 3.91 AC-FT

APPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH	PON	SURFACE AREA		
(FT)	AC-FT	CF		(SF)
4	3.91	=	######	42,560
6	3.91	=	######	28,373
8	3.91	=	######	21,280
10	3.91	=	######	17,024

JOB NAME: HABITAT

JOB NUMBER: 2506.03

DATE: 06/04/24

CALCULATED BY: MAL

TOTAL EURV

POND SIZING WITH PONDPACK EQUATION:

INSERT POND DESIGN SIZE INFO: (RED)

POND ELEVATION:

I OND ELEVATION .	
(from lowest to highest)	5831.60
	5831.60
	5831.93
	5832.00
	5833.00
	5834.00
	5835.00
	5835.50

AREA (BTM to TOP):					
273	0.01	acres			
273	0.01	acres			
273	0.01	acres			
300	0.01	acres			
4,926	0.11	acres			
10,203	0.23	acres			
16,599	0.38	acres			
18,462	0.42	acres			
	-	acres			
	-	acres			
	-	acres			
	-	acres			

PRELIMINARY SIZE:

VOLUME = 1/3{(EL2-EL1)*(A1+A2+((A1*A2)^.5))}

CUMMULATIVE VOLUME:

-	AC-FT	from	5,832	to	5,832	
0.00	AC-FT	from	5,832	to	5,832	0.00
0.00	AC-FT	from	5,832	to	5,832	0.00
0.05	AC-FT	from	5,832	to	5,833	0.05
0.17	AC-FT	from	5,833	to	5,834	0.22
0.30	AC-FT	from	5,834	to	5,835	0.52
0.20	AC-FT	from	5,835	to	5,836	0.72
-	AC-FT	from	5,836	to	-	0.72
-	AC-FT	from	-	to	-	0.72
-	AC-FT	from		to	-	0.72
	AC-FT	from		to		0.72

*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

VOLUME = 0.72 AC-FT

APPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH	PON	SURFACE AREA		
(FT)	AC-FT	CF		(SF)
4	0.72	=	31,380	7,845
6	0.72	=	31,380	5,230
8	0.72	=	31,380	3,922
10	0.72	=	31,380	3,138

JOB NAME: HABITAT

JOB NUMBER: 2506.03

DATE: 06/04/24

CALCULATED BY: MAL

TO SPILLWAY

POND SIZING WITH PONDPACK EQUATION:

INSERT POND DESIGN SIZE INFO: (RED)

POND ELEVATION:

(from lowest to highest)	5831.60
	5831.60
	5831.93
	5832.00
	5833.00
	5834.00
	5835.00
	5836.00
	5838.00
	5839.00

AREA (BTM to TOP):					
273	0.01	acres			
273	0.01	acres			
273	0.01	acres			
300	0.01	acres			
4,926	0.11	acres			
10,203	0.23	acres			
16,599	0.38	acres			
19,652	0.45	acres			
24,746	0.57	acres			
27,450	0.63	acres			
	-	acres			
	-	acres			

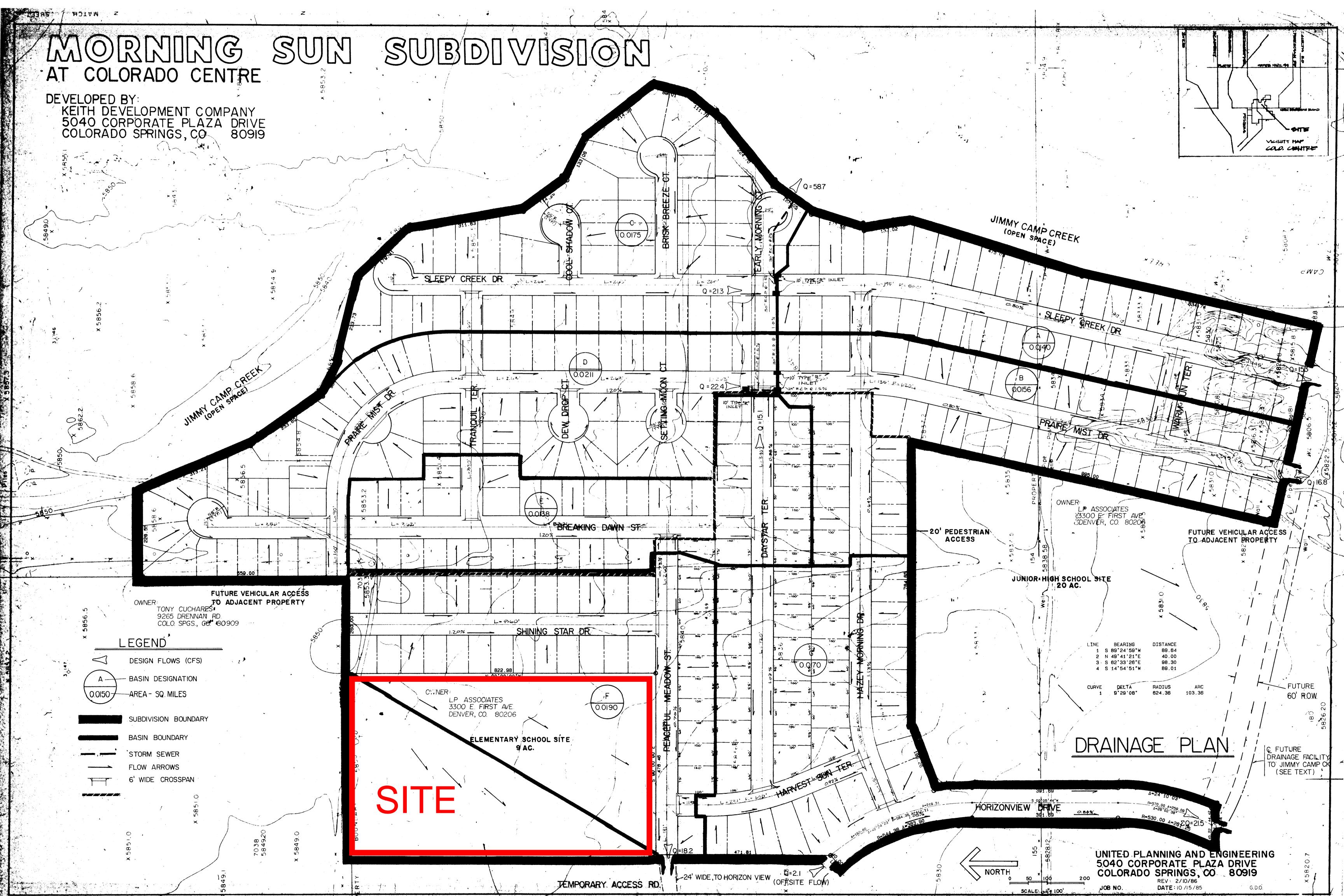
PRELIMINARY SIZE:

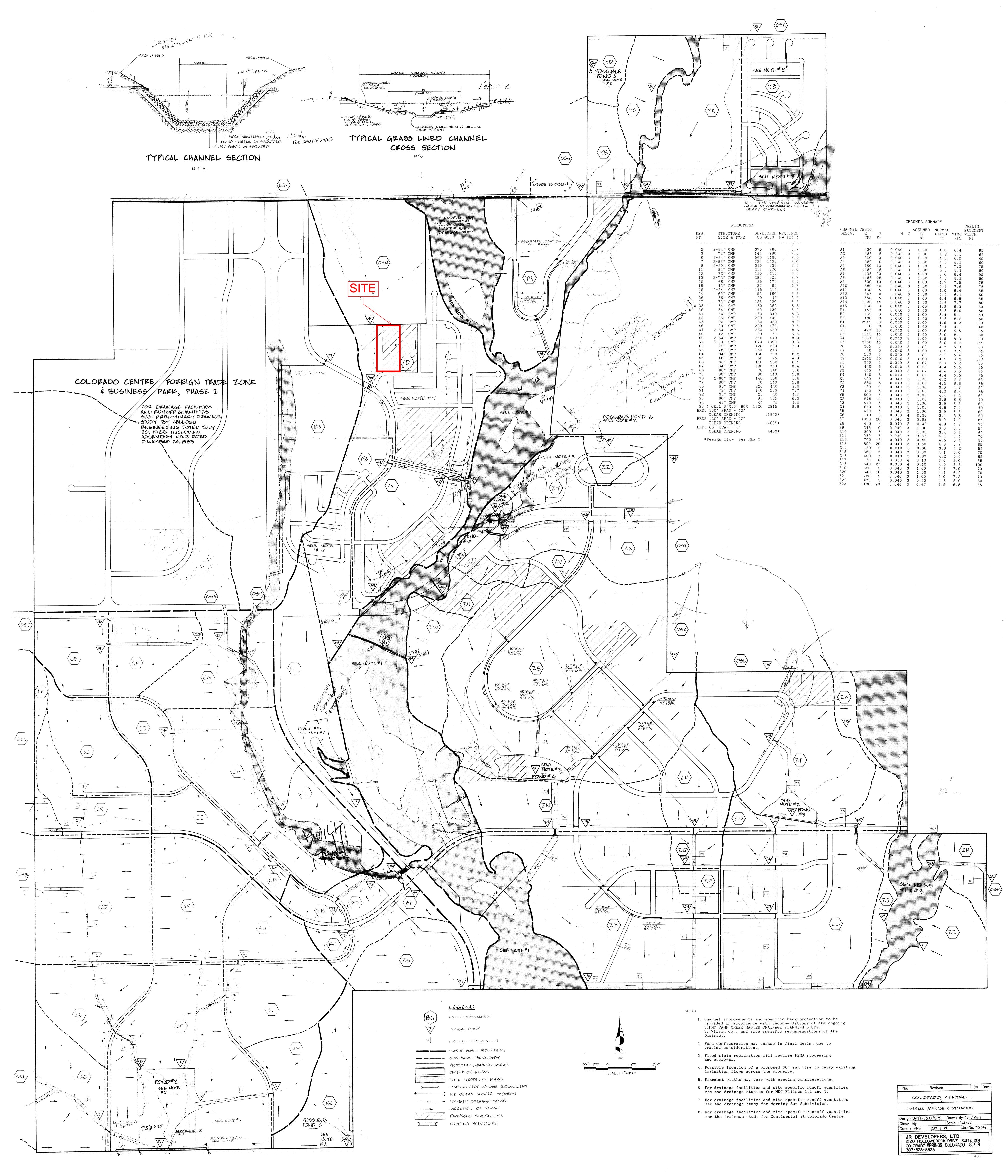
VOLUME = 1/3{(EL2-EL1)*(A1+A2+((A1*A2)^.5))}

CUMMULATIVE VOLUME:

-	AC-FT	from	5,832	to	5,832	
0.00	AC-FT	from	5,832	to	5,832	0.00
0.00	AC-FT	from	5,832	to	5,832	0.00
0.05	AC-FT	from	5,832	to	5,833	0.05
0.17	AC-FT	from	5,833	to	5,834	0.22
0.30	AC-FT	from	5,834	to	5,835	0.52
0.41	AC-FT	from	5,835	to	5,836	0.93
1.01	AC-FT	from	5,836	to	5,838	1.94
0.59	AC-FT	from	5,838	to	5,839	2.53
-	AC-FT	from	5,839	to	-	2.53
-	AC-FT	from		to	-	2.53

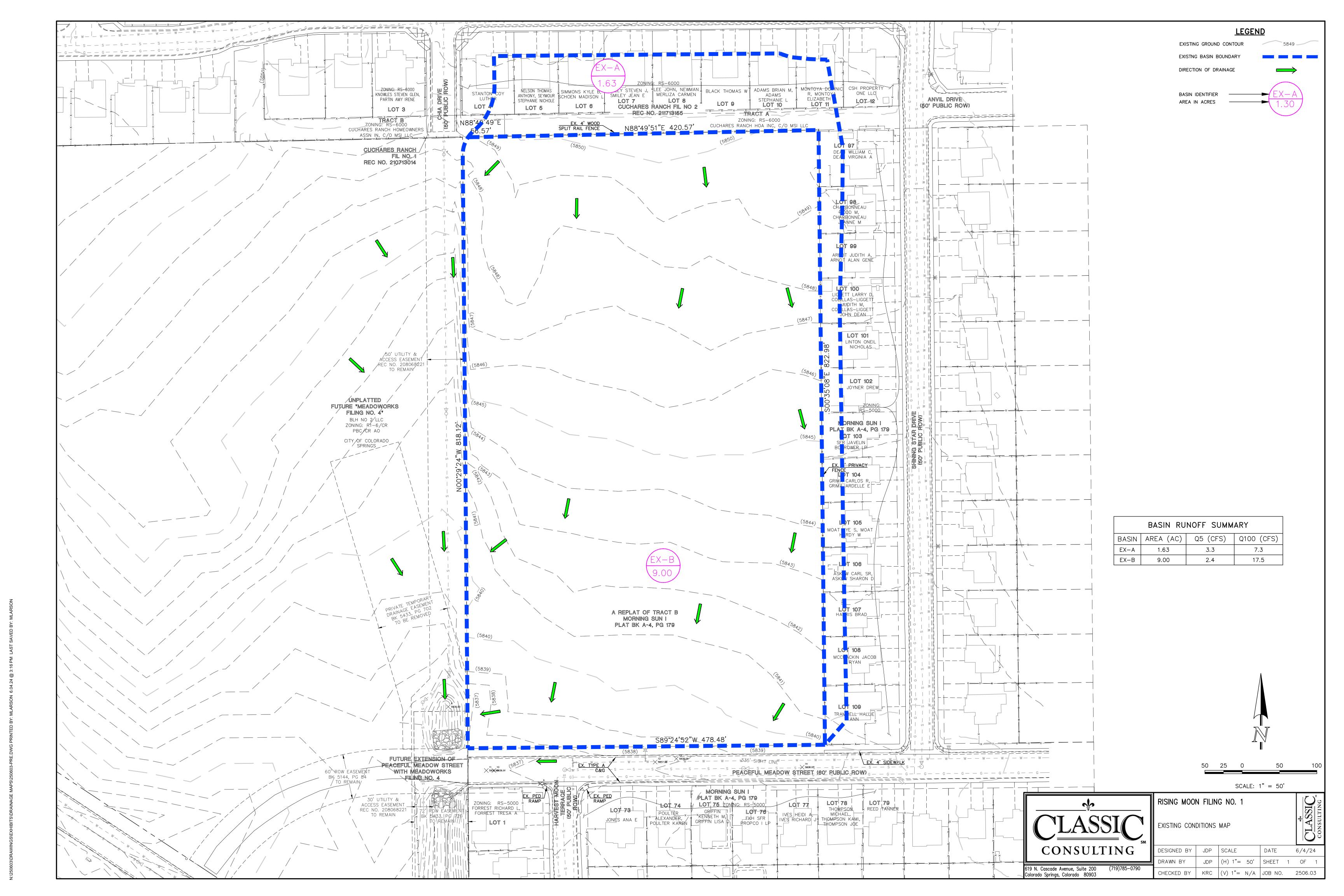
*SIZING IS FOR PRELIMINARY PURPOSES ONLY.

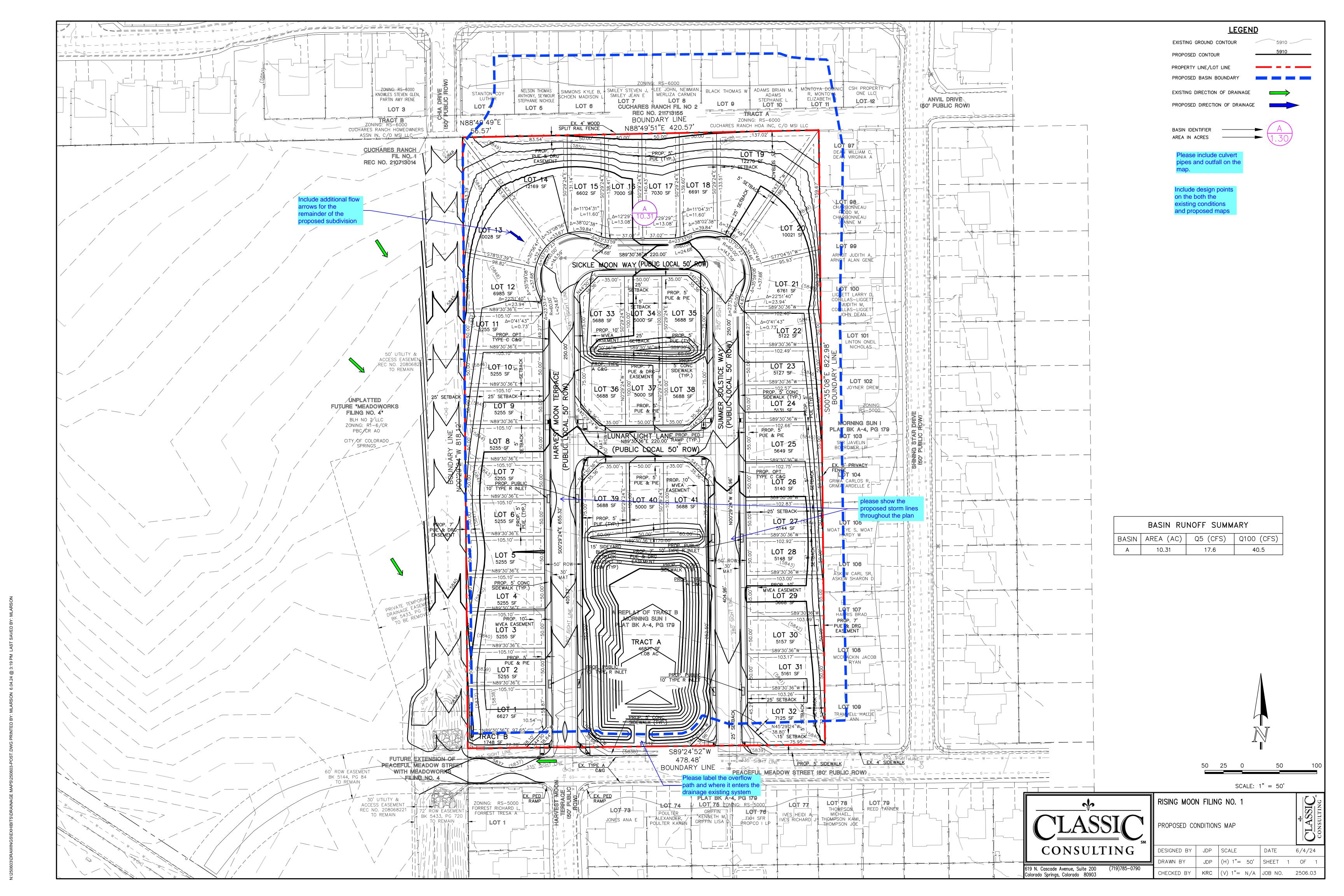

VOLUME = 2.53 AC-FT


APPROXIMATE SURFACE AREA REQUIREMENT

POND DEPTH	POND VOLUME			SURFACE AREA
(FT)	AC-FT		CF	(SF)
4	2.53	=	######	27,578
6	2.53	=	######	18,385
8	2.53	=	######	13,789
10	2.53	=	######	11,031

REFERENCE MATERIAL FROM PRIOR STUDIES




EXISTING CONDITIONS DRAINAGE MAP

PROPOSED CONDITIONS DRAINAGE MAP

