July 2, 2020 Revised July 16, 2020

M.A. Infrastructure 17145 Colonial Park Drive Monument, CO 80132

Attn: Matt Dunston

Re: Pavement Recommendations - Revised Monument Academy High School El Paso County, Colorado

Dear Mr. Dunston:

As requested, Entech Engineering, Inc. obtained samples of the pavement subgrade soils from the existing and proposed roadways at the above referenced site. Laboratory testing was performed in order to determine the pavement support characteristics of the soil. This letter presents the results of the laboratory testing and pavement recommendations for the roadways.

Project Description

The project will consist of paving of the proposed Jane Lundeen Drive, Pinehurst Circle, and a portion of Walker Road. A Subsurface Soil Investigation and laboratory testing were performed to determine the pavement support characteristics on the soils. The general location is shown on the Vicinity Map Figure 1. The general layout of the site is presented in the Test Boring Location Map in Figure 2.

Subgrade Conditions

A total of ten test borings were drilled along the roadways to depths of approximately 5 and 10 feet below the existing subgrade surface.

The soils at the roadway subgrade depth consisted of slightly silty to silty sand fill (Soil Type 1), silty to very clayey sand fill (Soil Type 2), and native slightly silty to silty sand to clayey sand (Soil Type 3). Silty to slightly silty sandstone (Soil Type 4) was encountered at depths below the subgrade influence zone. The Test Boring Logs are presented in Appendix A. Sieve Analyses and Atterberg Limit testing were performed on soil samples obtained from the test borings for the purpose of classification. The percent passing the No. 200 sieve for the Type 1 soils ranged from approximately 8 to 30 percent, and 37 to 42 percent for the Type 2 soils, and 6 to 27 percent for the Type 3 soils. Two subgrade soil types were determined for pavement evaluation based on the laboratory testing (Types 1 and 2). The Type 1 subgrade soils classified as A-2-4, A-2-5, A-6-6, and A-1-b soils which exhibit good pavement support. The Type 2 subgrade soils classified as A-2-4, A-2-5, A-6-6, and A-1-b soils which exhibit fair to poor pavement support, using the AASHTO classification system. Due to the similarities of the Type 1 and Type 3 soils, the design for both types will be grouped together as Type 1 soils. Groundwater was not encountered in the test borings. Sulfate testing resulted in 0.00 to less than 0.01 percent soluble sulfate by weight, indicating a negligible potential for below grade concrete degradation due to sulfate attack.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

PPR199

Swell/Consolidation Testing was not required on the Type 1 subgrade soils based on their soil type. Swell tests on the Type 2 soils resulted in a consolidation of 0.02 and a volume change of 0.00 percent, which are below levels in which mitigation is required. Mitigation for expansive soils is not required on this site.

California Bearing Ratio (CBR) testing was performed on representative subgrade samples to determine the support characteristics of the subgrade soils for the roadway sections. The results of the CBR testing, are presented in Appendix B and summarized as follows:

<u>Soil Type 1 – Silty Sand Fill</u> <u>CBR 1</u> R @ 90% = 71.0 R @ 95% = 74.0	•	Soil Type 2 – Very Clayey to Silty Sand Fill CBR 2 R @ 90% = 22.0				
Use $R = 50.0$ for design		R @ 95% = 35.0 Use R = 35.0 for design				
			sign			
Classification Testing		Classification Testing				
Liquid Limit	NV	Liquid Limit	22			
Plasticity Index	NP	Plasticity Index	5			
Percent Passing 200	15.8	Percent Passing 200	42.1			
AASHTO Classification	A-2-4	AASHTO Classification	A-4			
Group Index	0	Group Index	0			
Unified Soils Classification	SM	Unified Soils Classification	SC-SM			

Pavement Design

CBR testing was used to determine pavement sections for the roadways. Pavement sections were determined utilizing El Paso County Pavement Design Criteria Manual. Pinehurst Circle classifies as an urban residential collector, which used an 18k ESAL value of 821,000 for design purposes. Jane Lundeen Drive classifies as an urban residential collector, which used a modified ESAL value of 1,079,500 for design purposes. Walker Road classifies as a minor arterial, which used an 18k ESAL value of 1,971,000 for design purposes. Alternative pavement sections were determined for asphalt on cement stabilized subgrade.

Design parameters used in the pavement analysis for the roadways are as follows:

Reliability	
Minor Collector	85%
Standard Deviation	0.45
Δpsi	2.5
"R" Value Subgrade (Soil Type 1: A-2-4)	50.0
"R" Value Subgrade (Soil Type 2: A-4)	35.0
Resilient Modulus (Soil Type 1: A-2-4)	13,168 psi
Resilient Modulus (Soil Type 2: A-4)	8,065 psi
Hot Bituminous Pavement	0.44
Cement Stabilized Subgrade	0.12

The pavement design calculations are presented in Appendix C. Pavement section alternatives for the roadway sections are presented below. Any additional grading may result in subgrade soils with different support characteristics. The following pavement sections should be re-evaluated if additional grading is performed.

<u>Pavement Sections</u> <u>ESAL = 1,079,500- Jane Lundeen Drive</u> <u>Soil Type 1</u>

			Cement Stabilized
	Alternative	<u>Asphalt (in</u>)	<u>Subgrade (in)</u>
1.	Asphalt Over Stabilized Subgrade	4.0*	8.0*

Pavement Sections ESAL = 821,000 -Pinehurst Circle Soil Type 1

		Cement Stabilized
Alternative	<u>Asphalt (in)</u>	<u>Subgrade (in)</u>
1. Asphalt Over Stabilized Subgrade	4.0*	8.0*
n Asprian Over Stabilized Subgrade	4.0	0.0

Soil Type 2

		<u>Cement Stabilized</u>
Alternative	<u>Asphalt (in</u>)	Subgrade (in)
1. Asphalt Over Stabilized Subgrade	4.0*	10.0

Pavement Sections ESAL = 1,971,000 - Walker Road Soil Type 1

	Alternative	<u>Asphalt (in</u>)	<u>Cement Stabilized</u> Subgrade (in)
1.	Asphalt Over Stabilized Subgrade	5.0*	10.0

Soil Type 2

Alternative	<u>Asphalt (in</u>)	Cement Stabilized Subgrade (in)
1. Asphalt Over Stabilized Subgrade	5.0*	10.0

*Minimum sections required per the El Paso County Engineering Criteria Manual

Roadway Construction – Cement Stabilized Subgrade

Prior to placement of the asphalt, the subgrade should be scarified, moisture-conditioned, compacted to a minimum of 95% of its maximum Standard Proctor Dry Density, ASTM D-698 at 0 to 3 percent over optimum moisture content and proofrolled after properly compacted. Any soft areas should be removed and replaced with suitable materials approved by Entech. Base course materials should be compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2% of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

Due to the nature of the subgrade soils, overexcavation and cement-treatment of the subgrade to a depth of 8 to 10 inches is recommended, (See Tables above). The subgrade shall be stabilized by the addition of cement to a depth of 8 inches for the collector roads and 10 inches for the arterial roads. The amount of cement applied shall be 3.0 percent (by weight) of the subgrade's maximum dry density as determined by the Standard Proctor Test (ASTM D-698) based on laboratory cement stabilization testing. The cement should be spread evenly on the subgrade surface and be thoroughly mixed into the subgrade over the recommended 8 and 10-inch depths such that a uniform blend of soil and cement is achieved. Prior to application or mixing of the cement, the subgrade should be thoroughly moisture conditioned to the soil's optimum water content or as much as 3 to 4 percent more than the optimum water content as necessary to provide a compactable soil condition. Densification of the cement-stabilized subgrade should be completed to obtain a compaction of at least 95 percent of the subgrade maximum dry density as determined by the Standard Proctor Test (ASTM D-698). Satisfactory compaction of the subgrade shall be completed to obtain a compaction of at least 95 percent of the subgrade maximum dry density as determined by the Standard Proctor Test (ASTM D-698). Satisfactory compaction of the subgrade shall be completed to obtain 90 minutes from the time of mixing the cement into the subgrade.

The following conditions shall be observed as part of the subgrade stabilization:

- Type II cement as supplied by a local supplier shall be used. All cement used for stabilization should come from the same source. If cement sources are changed a new laboratory mix design should be completed.
- Moisture conditioning of the subgrade and/or mixing of the cement into the subgrade shall not occur when soil temperatures are below 40° F. Cement treated subgrades should be maintained at a temperature of 40° F or greater until the subgrade has been compacted as required.
- Cement placement, cement mixing and compaction of the cement treated subgrade should be observed by a Soils Engineer. The Soils Engineer should complete in situ compaction tests and construct representative compacted specimens of the treated subgrade material for subsequent laboratory quality assurance testing.

If significant grading is performed, the soils at subgrade may change. Modification to the pavement sections should be evaluated after site grading is completed.

In addition to the above guidance the materials, subgrade conditions, compaction of materials, testing, inspections, and roadway construction methods shall meet the El Paso County Pavement Design Criteria.

We trust that this has provided you with the information you required. The pavement sections provided are based on general site soil types. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman

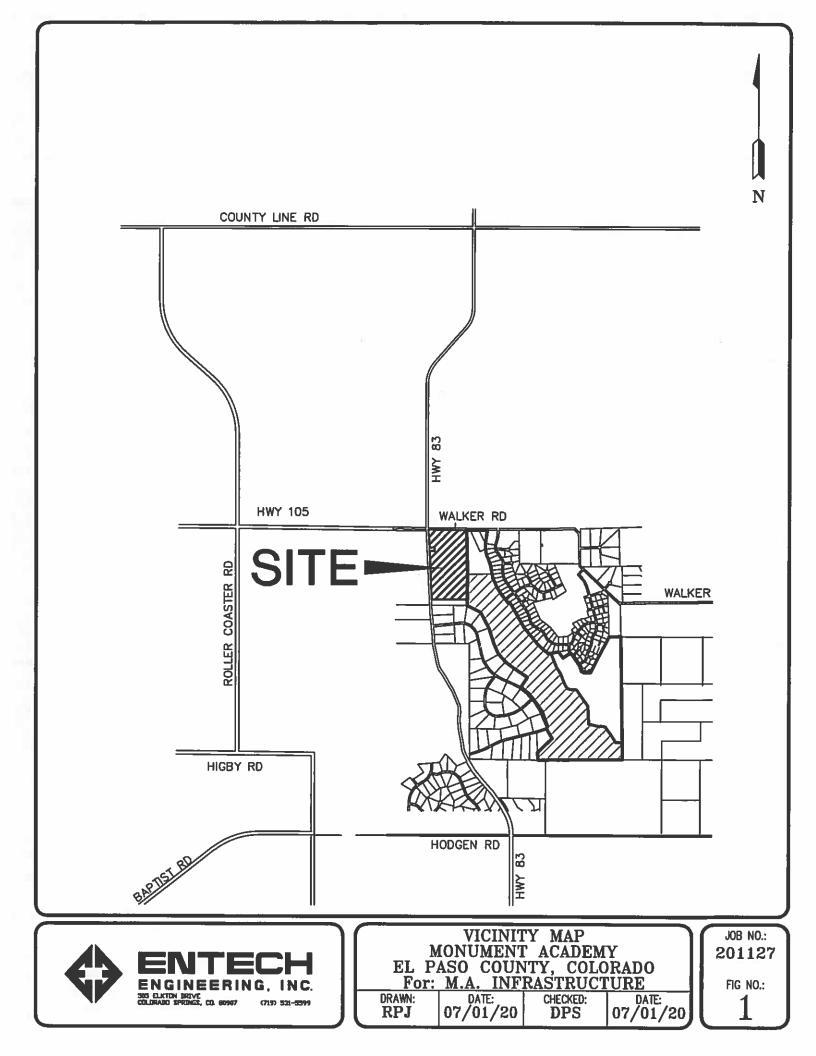
DPS/bs

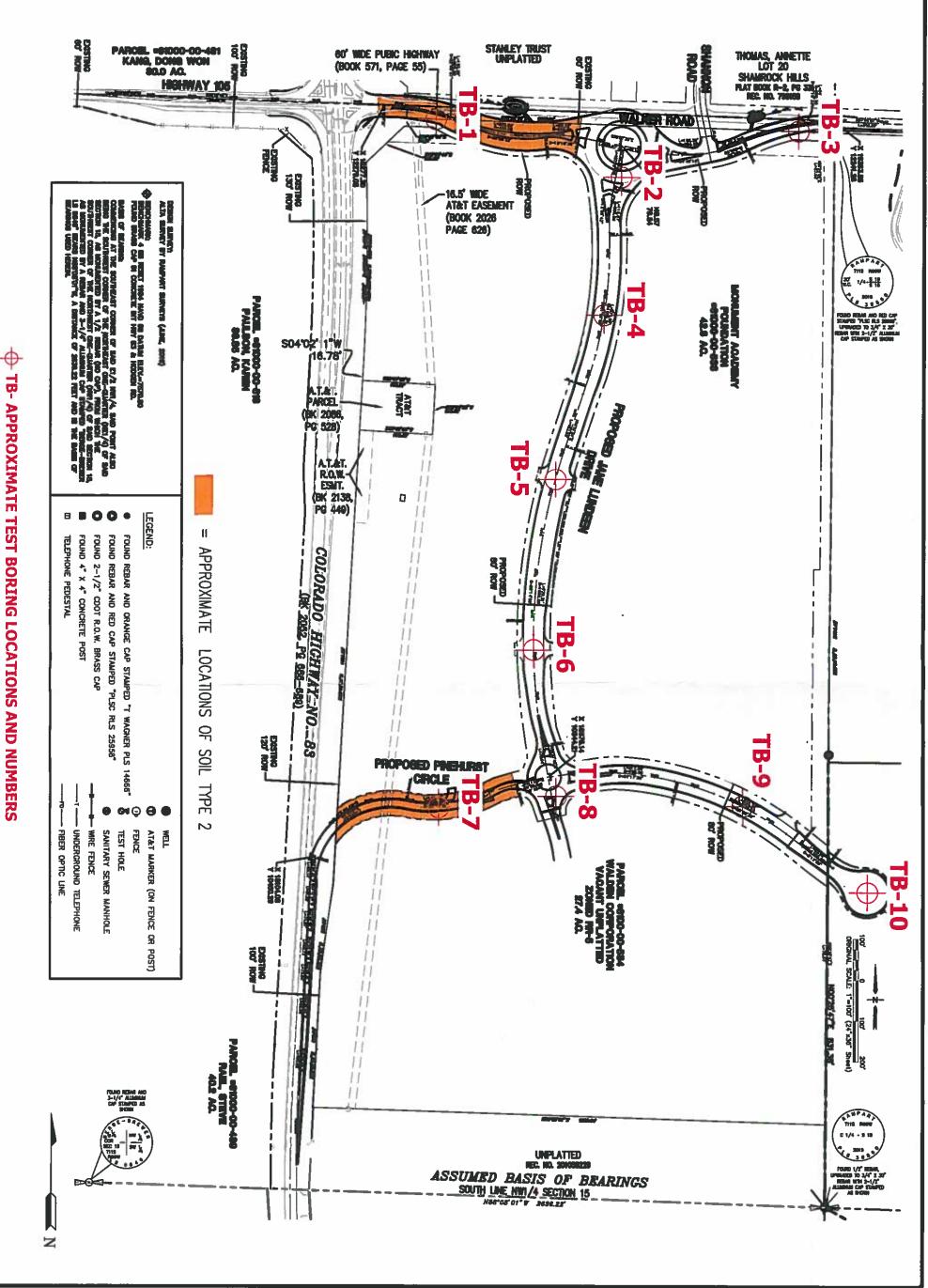
Encl.

Entech Job No. 201127 AAprojects/2020/201127 pr-REV Joseph L. Goode, Jr., P.E. President

Reviewed by:

TABLE


-	
ш	
m	
4	


SUMMARY OF LABORATORY TEST RESULTS

CLIENT MA INFRASTRUCTURE PROJECT MONUMENT ACADEMY JOB NO. 201127

	Г	1	_	_	T	<u> </u>	<u> </u>	_	F	T	T	Т	_	_	1		_		T	T
SOIL DESCRIPTION	FILL, SAND, SILTY	FILL, SAND, SILTY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, CLAYEY	FILL, SAND, SILTY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, SILTY	FILL, SAND, VERY CLAYEY, SILTY	FILL, SAND, VERY CLAYEY, SILTY	FILL, SAND, CLAYEY	SAND, SILTY	SAND, SILTY	SAND, SLI GHTLY SILTY	SAND, SLIGHTLY SILTY	SAND, CLAYEY	SAND. SILTY	SANDSTONE. SILTY	SANDSTONE. SLIGHTLY SILTY	SANDSTONE, SILTY	
UNIFIED	SM	SM	SM-SW	SC	SM	SM-SW	SM	SC-SM	SC-SM	SC	SM	SM	SM-SW	SM-SW	SC	SM	SM	SM-SW	SM	
SWELL/ CONSOL (%)									-0.2	0.0										
AASHTO CLASS.	A-2-4	A-2-4	A-1-b	A-2-4	A-1-b	A-1-b		A-4	A-4	A-6	A-2-4	A-2-5	A-1-b	A-1-b	A-2-6		A-2-4	A-1-b	A-1-b	
SULFATE (WT %)		<0.01			0.00							<0.01		0.00	0.00		<0.01	<0.01		
PLASTIC INDEX (%)	NP	NP	NP	10	NP	NP		Ω	5	14	NP	ΝΡ	ď	ď	13		ΔN	٩N	NP	
LIQUID LIMIT (%)	NV	N	N	28	N	N		52	22	31	N	N	Ž	Ş	90		NV	N	N	
PASSING NO. 200 SIEVE (%)	15.8	13.9	7.8	30.0	19.3	8.3	23.3	42.1	38.5	37.3	26.5	16.1	7.7	5.9	30.8	21.5	19.3	11.6	15.6	
DRY DENSITY (PCF)									109.8	110.9										
WATER (%)									5.0	7.5										
DEPTH (FT)	0-3	1-2	1-2	1-2	1-2	1-2	0-3	6-3	1-2	1-2	1-2	10	1-2	₽	-1-2	<u>е</u>	10	5	S	
TEST BORING NO.	c۷	~	4	5	9	6	9	~	-	~		~		₽	₽	е С	4	0	8	
SOIL	1, CBR	-	-	-				2, CBR	5	N	e	9	ო	с.	e	e	4	4	4	

FIGURES

APPENDIX A: Test Boring Logs

	10 15 10 15 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10	4.2 2	TEST BORING NO. DATE DRILLED CLIENT LOCATION REMARKS DRY TO 10', 6/18//2 POSS. FILL 0-5', SAND FINE TO COARSE GRAI BROWN, MEDIUM DENSE SAND, SILTY, FINE TO A GRAINED, TAN, DENSE	6/18/2020 MA INFR MONUMI NONUMI	Debth (ft) ENT ACADEM Samples	
ENTECH ENGINEERING, I SOS ELKTON DRIVE COLORADO SPRINGS, COLO		DRAWN			G G G G SO ZO	JOB NO.: 201127 FIG NO.: A-1

DATE Job # REMAI DRY T SAND, S GRAINE DENSE, SANDS	O 5', 6/18/20 BILTY, FINE TO COARSE D, BROWN, MEDIUM MOIST TONE, SILTY, FINE TO E GRAINED, TAN, VERY	0	15 Blows per foot	% Watercontent %	3	TEST BORING N DATE DRILLED CLIENT LOCATION REMARKS DRY TO 10', 6/18 POSS. FILL 0-4', 5A SILTY, FINE TO COA BROWN, MEDIUM DE SANDSTONE, SILTY COARSE GRAINED, DENSE, MOIST	6/18/202 MA INFR MONUM 8//20 ND, SLIGHTLY RSE GRAINED, ENSE, MOIST 7, FINE TO	OBPHT (ft)	YM	% Matercontent %	add I Soil Type
\bigcirc	ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL			DRAWI	N	TEST		G 094			NO. 1127 NO. -2

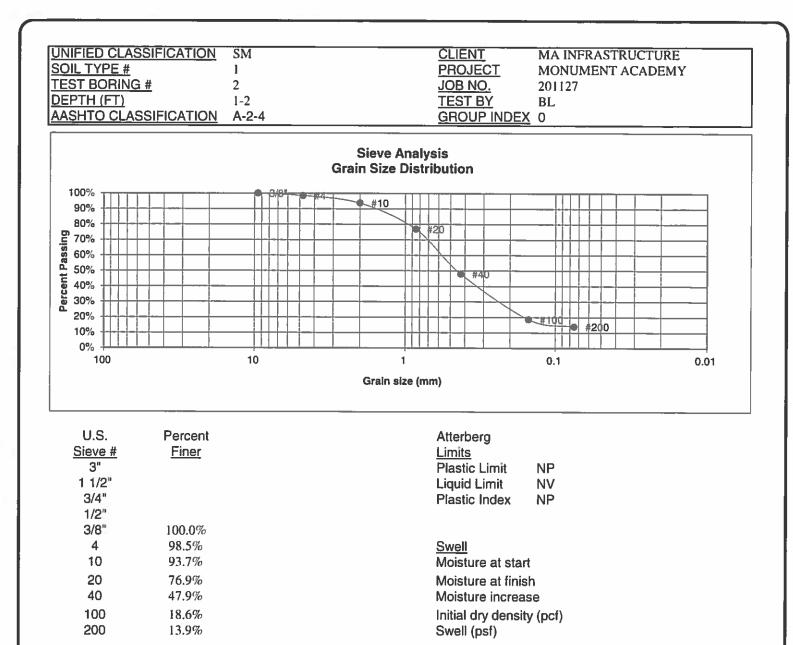
TEST BORING NO. 5 DATE DRILLED 6/18/2020 Job # 201127	0			DATE DRILLED 6/18/20 CLIENT MA INF LOCATION MONUM	6 20 RASTRUCTL MENT ACADE		
REMARKS		k %		REMARKS			~
DRY TO 5', 6/18/20	Depth (ft) Symbol Samples	Blows per foot Watercontent %	Soil Type	DRY TO 5', 6/18/20	Depth (ft) Symbol Samoloc	Blows per foot	Watercontent % Soil Type
POSS. FILL O-5', SAND, CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE TO DENSE, MOIST		20 9.1		POSS. FILL 0-4', SAND, SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST			7.1 1
	5 <u>}</u>	35 7.3		SAND, SILTY, FINE TO COARSE GRAINED, BROWN, DENSE, MOIST	5 <u>1.11</u> - - 10 -	39	4.5 3
	- - 15				- - 15 -		
	20				20		
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAW	N:		DG (730 /20		JOB NO.: 201127 FIG NO.: A-3

							· · · · · · · · · · · · · · · · · · ·							
DATE DRILLED 6/18/20 Job # 20112							TEST BORING NO. DATE DRILLED CLIENT LOCATION	8 6/18/2020 MA INFR/ MONUME	ASTR					
REMARKS				t	%		REMARKS						%	
DRY TO 5', 6/18/20	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 10', 6/18/20		Depth (ft)	Symbol	Samples	Blows per toot	Watercontent %	Soil Type
FILL O-5', SAND, VERY CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE TO DENSE, MOIST		/ / / /		15	11.0	2	SAND, SLIGHTLY SILTY, COARSE GRAINED, TAN, MOIST		-		4	11	4.3	3
	5			48	6.4	2	SANDSTONE, SILTY, FIN COARSE GRAINED, TAN, DENSE, MOIST		5			<u>50</u> 9"	8.0	4
	10								- 10 - -		<u>5</u> 7	<u>50</u> 7"	6.7	4
	15								15					
	20							4	- - 20					
				l					٦	ļ				
ENTECH ENGINEERING,					_		TEST BO		i				20 ⁻	08 NO. 1127 IG NO.
505 ELKTON DRIVE COLORADO SPRINGS, CO	LORADO	0 8090	7		DRAW	N:	DATE:	CHECKED.	6/	TE シノマ	2)	Ľ	\-4

TEST BORING NO. 9 DATE DRILLED 6/18/202 Job # 201127	0		TEST BORING NO. DATE DRILLED CLIENT LOCATION	10 6/18/2020 MA INFRASTRU MONUMENT AG		
DRY TO 5', 6/18/20 POSS. FILL O-3', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, DENSE, MOIST SANDSTONE, SLIGHTLY SILTY, FINE TO COARSE GRAINED, TAN, VERY DENSE, MOIST	Depth (ft)	201 Type	LOCATION REMARKS	MONUMENT AC	CADEMY Ympol Samples et foot 95 Blows per foot	2.5 Watercontent % 3.6 3 3.6 3 3.6 3
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAWN				JOB NO.: 201127 FIG NO.: A-5

APPENDIX B: Laboratory Testing Results

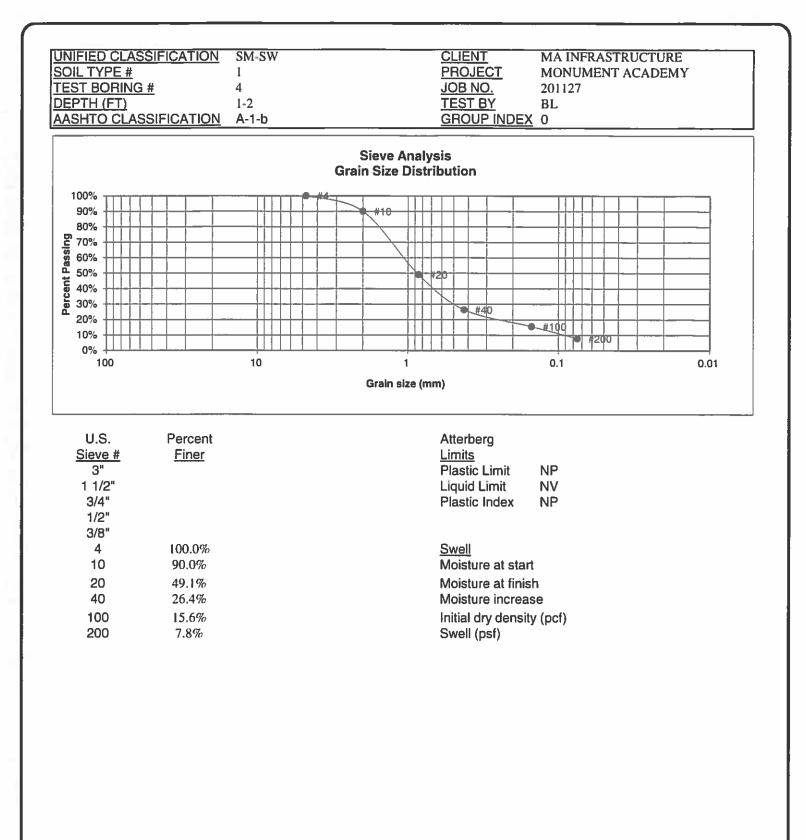
\Rightarrow	


ENIEUN	
ENGINEERING, INC.	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	

DRAWN:

ENTECH

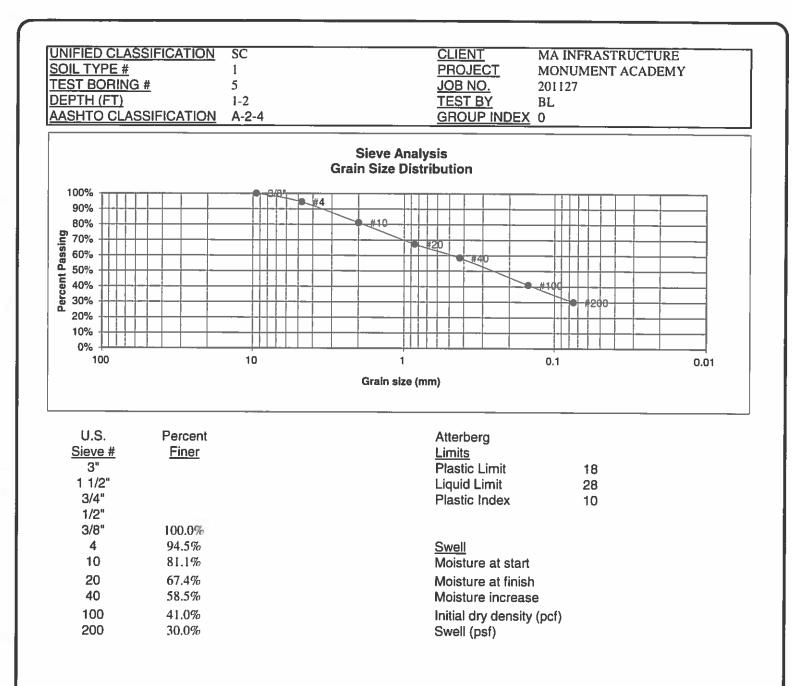
LABOF RESUL	RATORY T .TS	EST	
DATE:	CHECKED	h	DATE: 4/30/20



ENIEGH	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 80907	

	LABOF RESUL	ATORY TEST	
DRAWN	DATE:		DATE: 30/20

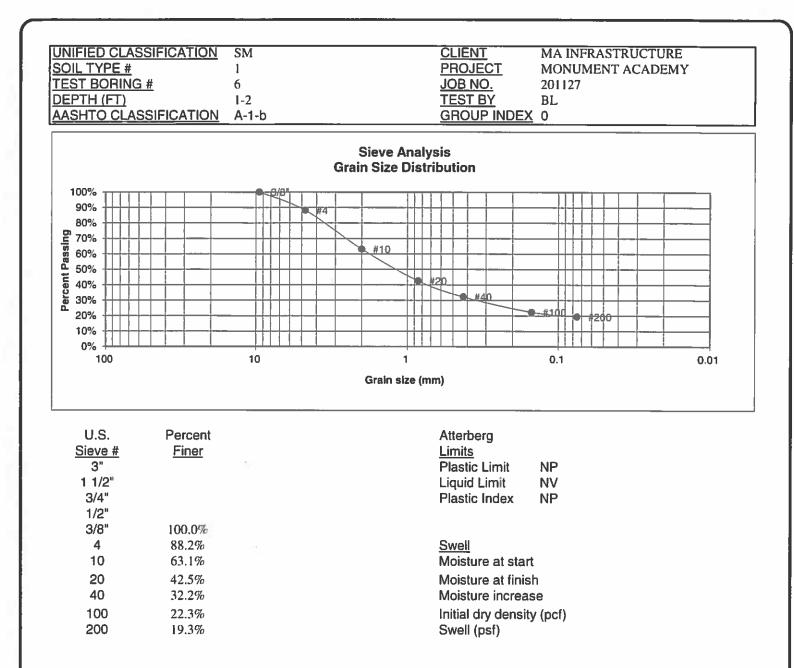
JOB NO
201127
FIG NO.
B-2



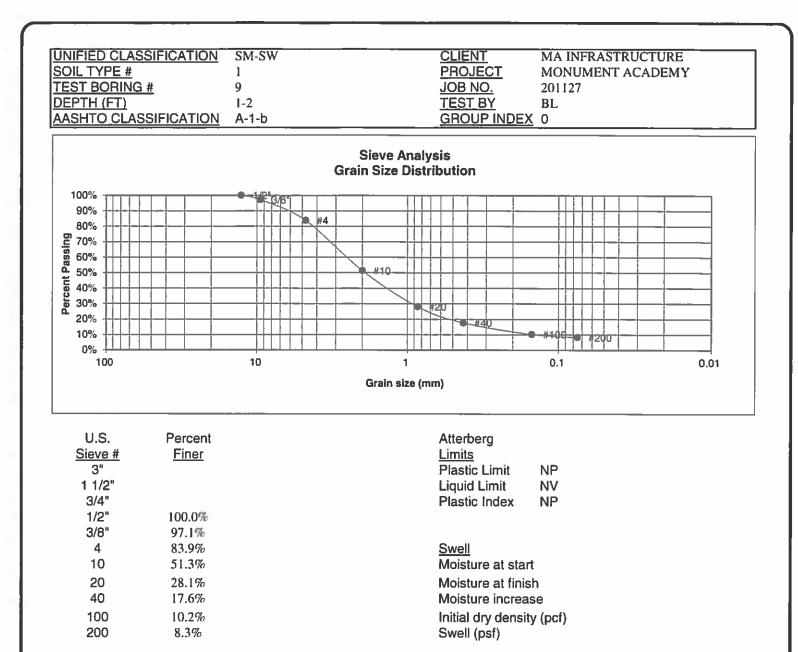
|--|

ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABO RESU	RATORY TE	ST	
DRAWN:	DATE	CHECKED:	h	- CATE: 120

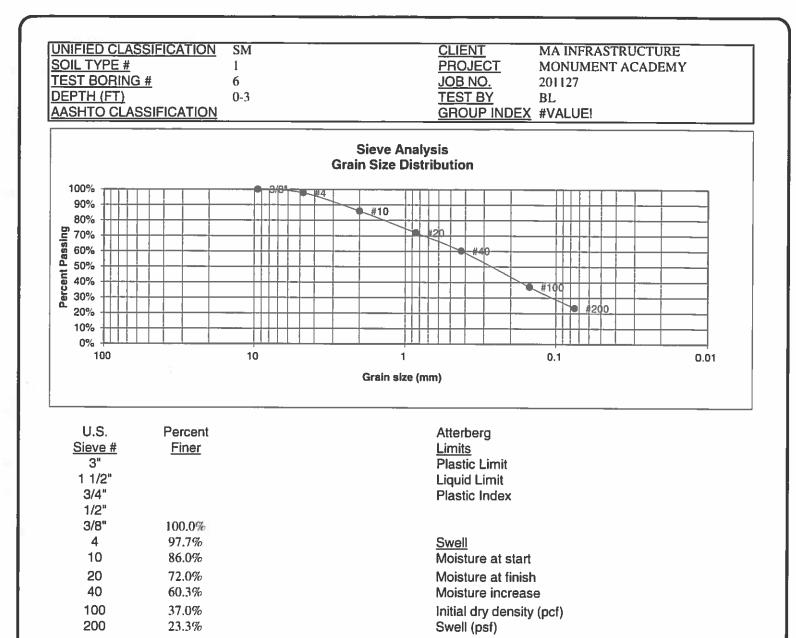

JOB NO .:
201127
FIG NO.
8-3

\diamond	ENTECH ENGINEERING, INC.
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


	LABOF RESUL	RATORY T	EST		
DRAWN:	DATE	CHECKED:	U	DATE 4/30/20	Jl

JOB NO.: 201127 FIG NO.: B ~4

LABORATORY TEST						JOB NO.:
	RESU	LTS				201127 FIG NO.:
DRAWN:	DATE	CHECKED	L	DATE:]	B-5



ENTECH	
ENGINEERING, INC.	
505 ELKTON DRIVE	DRAWN
COLORADO SPRINGS, COLORADO 80907	

LABORATORY TEST RESULTS				
DATE	CHECKED	h	DATE:	

JOB NO.:
201127
FIG NO.:
B-6

ENTECH ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF	RATORY TI	EST			JOB NO.::
DRAWN:	DATE:	4HECKED	4	DATE:	$\frac{1}{2}$	FIG NO.

UNIFIED CLASSIFICATION SOIL TYPE # TEST BORING # DEPTH (FT) AASHTO CLASSIFICATION	SC-SM 2, CBR 7 0-3 A-4	CLIENTMA INFRASTRUCTUREPROJECTMONUMENT ACADEMYJOB NO.201127TEST BYBLGROUP INDEX0
	Sieve A Grain Size I	nalysis Distribution
100% 90% 80% 70% 60% 50% 40% 20% 10% 0%		
U.S. Percent <u>Sieve # Finer</u> 3" 1 1/2" 3/4" 1/2"		Atterberg <u>Limits</u> Plastic Limit 17 Liquid Limit 22 Plastic Index 5
3/8" 100.0% 4 99.2% 10 90.6% 20 79.2% 40 70.0% 100 53.8% 200 42.1%		<u>Swell</u> Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

LABORATORY TEST					JOB NO.	
	RESU	TS				201127 FIG NO
DRAWN	DATE:	CHECKED	h	DATE:]	B-8

JNIFIED CLAS SOIL TYPE # TEST BORING DEPTH (FT) ASHTO CLAS	<u>#</u>	SC-SM 2 1 1-2 A-4	CLIEN PROJ JOB N TEST GROU	JECT MONUMENT ACA NO. 201127	
			Sieve Analysis Grain Size Distribution	1	
100% 90% 80% 70% 60% 50% 40% 20% 10% 0%			1 Grain size (mm)	##0 ##0 ##106 #200 0.1	0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>		Liquid	c Limit 18	
3/8" 4 10 20 40	100.0% 99.0% 92.9% 81.1% 69.3%		Moistu	ure at start ure at finish ure increase	

|--|

200

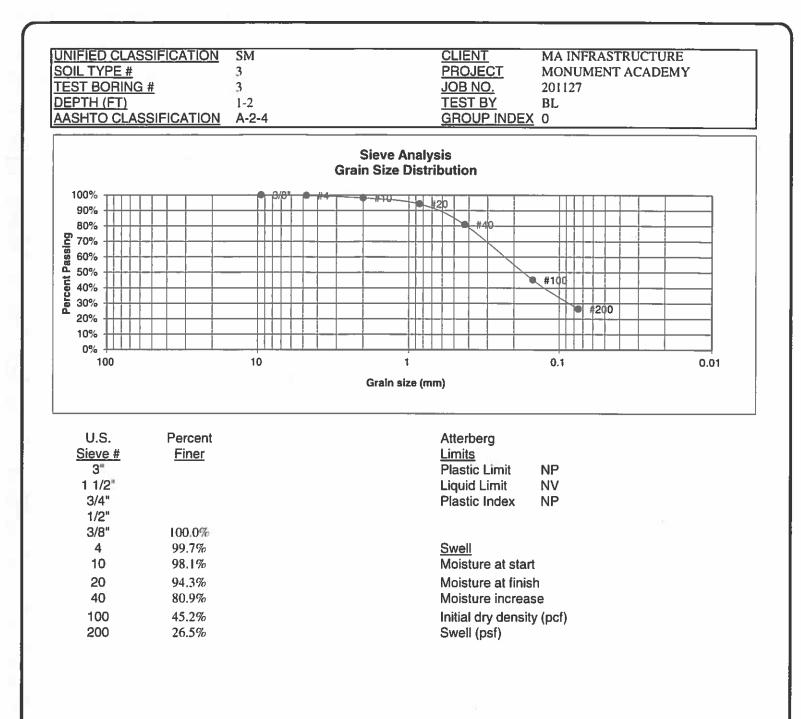
49.8%

38.5%

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

LABORATORY TEST RESULTS				
DRAWN	DATE	CHECKED: 1 430/20	FIG	

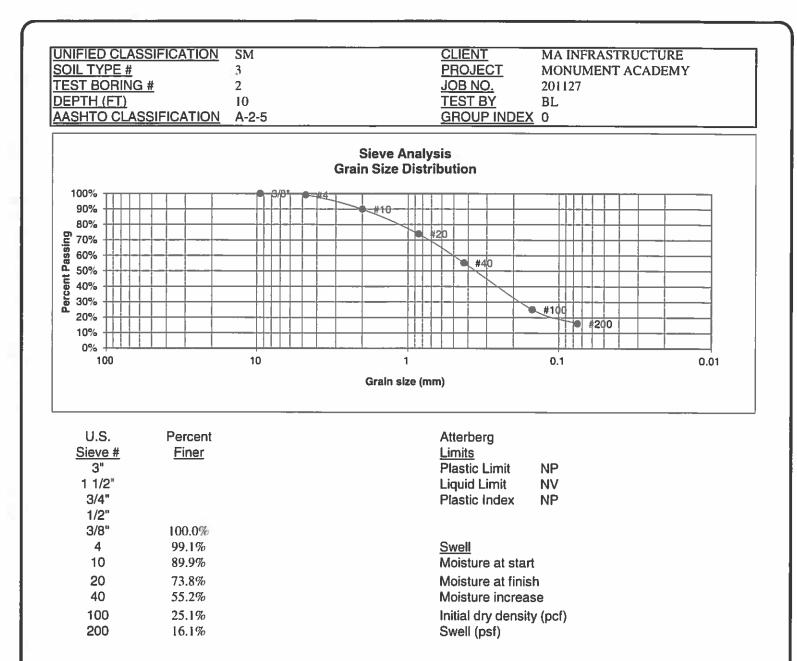
Initial dry density (pcf) Swell (psf)


JOB NO
201127
FIG NO
B-9

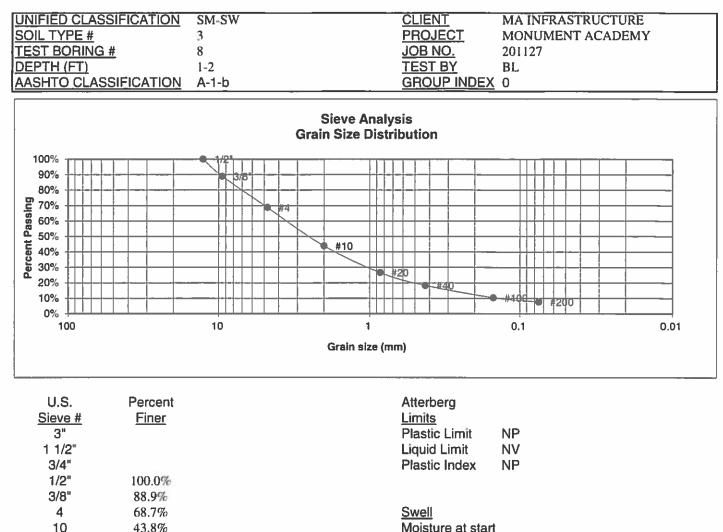
OIL TYPE # EST BORING EPTH (FT)	SSIFICATION # SSIFICATION	SC 2 7 1-2 A-6	CLIENTMA INFRASPROJECTMONUMENJOB NO.201127TEST BYBLGROUP INDEX1	STRUCTURE
		G	Sieve Analysis ain Size Distribution	
100% 90% 80% 70% 60% 50% 40% 20% 10% 100		10	#10 #10 #20 #40 #40 #20 #40 #20 #20 #20 #20 #20 #20 #20 #2	0
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>		Atterberg Limits Plastic Limit 17 Liquid Limit 31 Plastic Index 14	
3/8" 4 10 20 40 100	100.0% 96.7% 81.5% 65.6% 55.9% 43.7%		<u>Swell</u> Moisture at start Moisture at finish Moisture increase Initial dry density (pcf)	

\diamond

ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


LABORATORY TEST RESULTS					JOB NO.: 201 127 FIG NO.:
DRAWN:	DATE	CHECKED:	h	DATE: 120	B-10

ENIEGR
ENGINEERING, INC.
505 ELKTON DRIVE
COLORADO SPRINGS, COLORADO 80907


LABORATORY TEST RESULTS						
DRAWN:	DATE	CHECKED:	U	DATE:		

JOB NO.:	
201127	
FIG NO.	
B-1	l

ENTECH ENGINEERING, INC.		LABORATORY TEST RESULTS				
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED	h	DATE 6/30/20	

JOB NO :
201127
FIG NO.
R-12

 4
 68.7%
 Swell

 10
 43.8%
 Moisture at start

 20
 26.6%
 Moisture at finish

 40
 18.3%
 Moisture increase

 100
 10.4%
 Initial dry density (pcf)

 200
 7.7%
 Swell (psf)

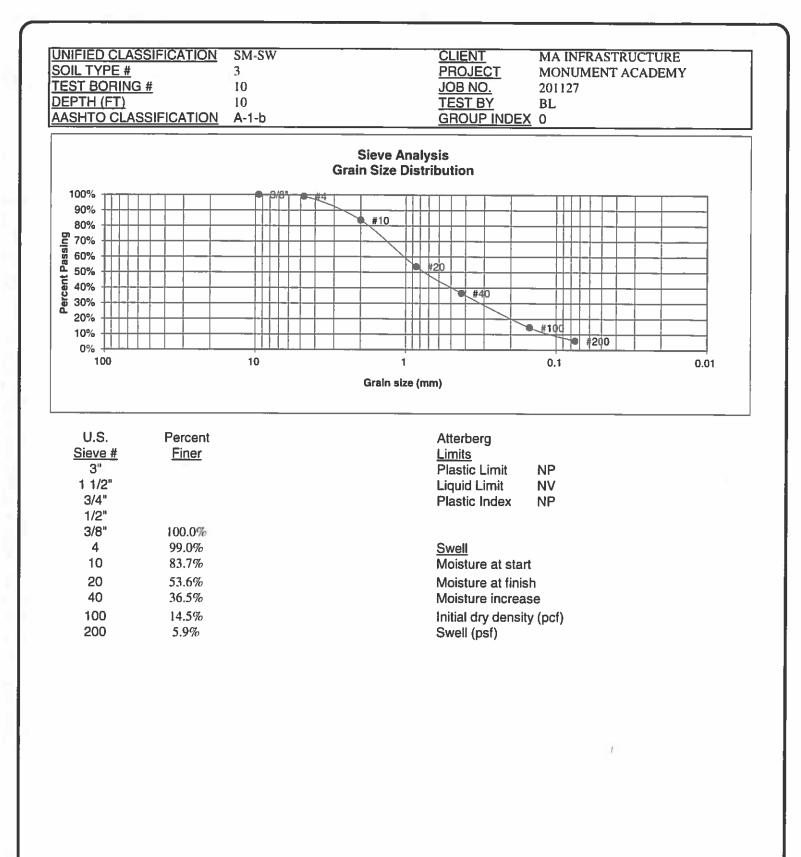
ENTECH

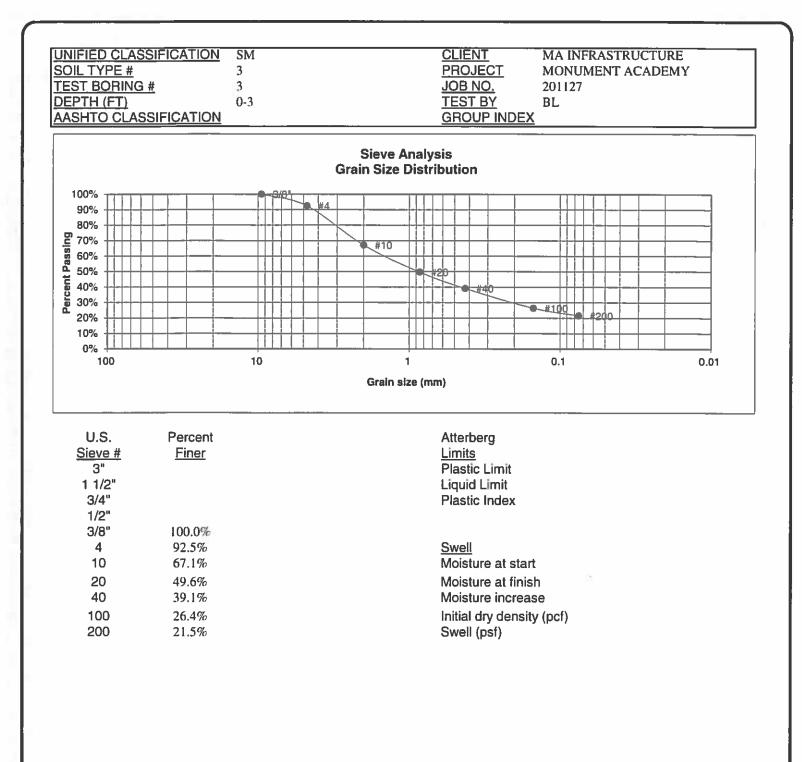
ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF RESUL	RATORY TEST LTS	
DRAWN:	DATE	CHECKED: A LATE	j

JOB ND. 201127 FIG ND. B - 13

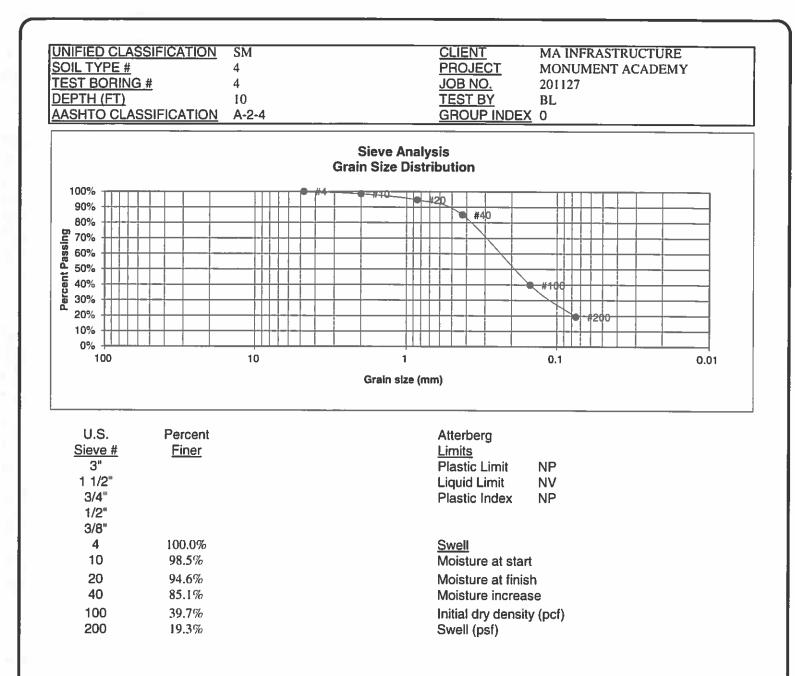

<u>DIL TYPE #</u> EST BORINC EPTH (FT)	SSIFICATION # SSIFICATION	SC 3 10 1-2 A-2-6	JOB TES	<u>ENT</u> MA INFRASTRU DJECT MONUMENT AG NO. 201127 T BY BL DUP INDEX 0	
			Sieve Analysis Grain Size Distributio	on	
100% 90% 80% 70% 60% 50% 40% 20% 10% 0% 100		10	1 Grain size (mm)	#40 #100 #200 0.1	0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8" 4 10 20 40 100 200	Percent Finer 100.0% 99.8% 94.8% 87.9% 78.5% 51.1% 30.8%		<u>Limit</u> Plas Liqui Plas Mois Mois Mois Initia	tic Limit 18 id Limit 30 tic Index 13	


ENTECH	
ENGINEERING, INC.	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 80907	

LABORATORY TEST RESULTS					
DRAWN	DATE:	CHECKED	h	DATE:	J

JOB NO. 201127 FIG NO: B-14

\bigcirc	ENTECH ENGINEERING, INC.		LABOF RESUL	RATORY TEST		20	08 NO.: 01 127 1G NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED	1/20 /20	J	B-15

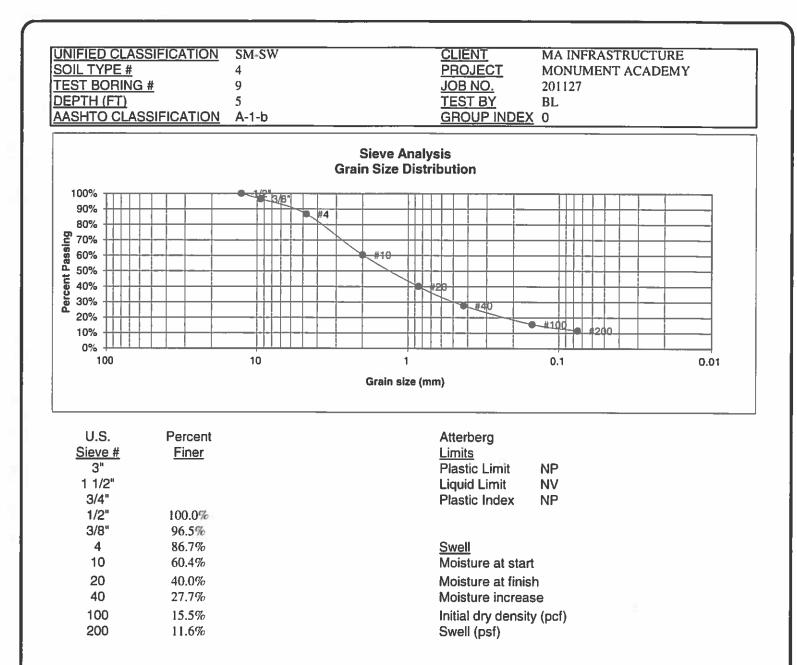

|--|

\$

ENIECH	
ENGINEERING, INC.	
05 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	
COLORADO SPICINOS, COLORADO BUSUI	, i

LABORATORY TEST RESULTS					
DRAWN:	DATE	CHECKED	U	ANTE 120	

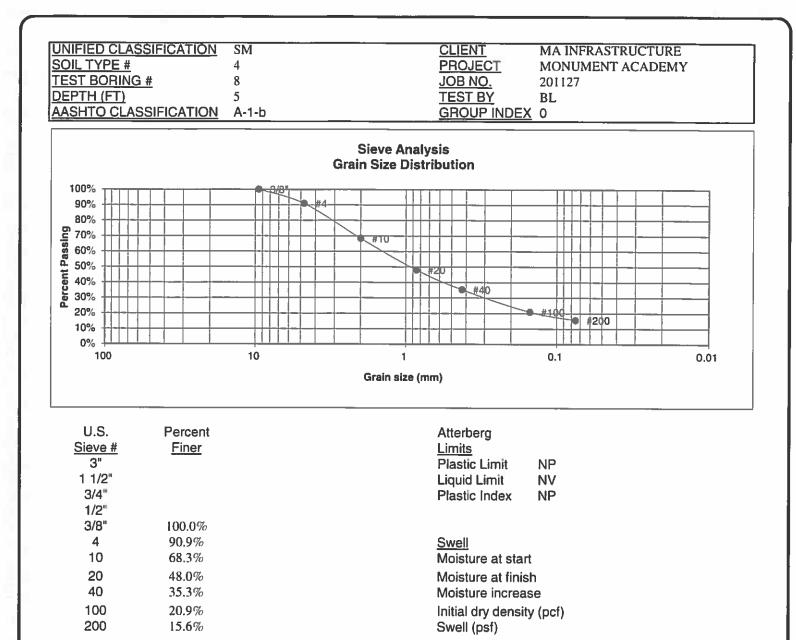
JOB NO. 201127 FIG NO. **B-16**

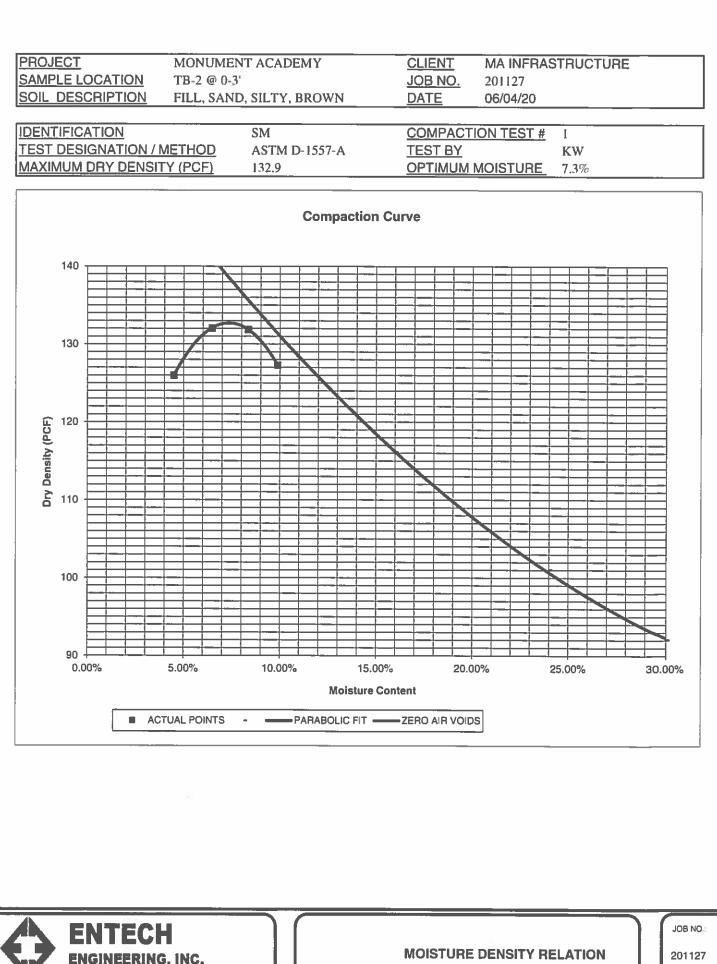


\diamondsuit

ENIEGH
ENGINEERING, INC.
505 ELKTON DRIVE
COLORADO SPRINGS, COLORADO 80907

LABORATORY TEST RESULTS					
DRAWN:	DATE:	CHECKED:	h	DATE .	


JOB NO.: 201127 FIG NO.: B-17


ENTECH	
ENGINEERING, INC.	
05 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	

	LABOF RESUL	RATORY T _TS	EST	
DRAWN:	DATE	CHECKED	4	DATE DATE

JOB NO
201127
FIG NO.:
B-18

$\overline{\bigcirc}$	ENTECH ENGINEERING, INC.	LABORATORY TES RESULTS			JOB NO. 201127 FIG NO.
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED DATE	B-19

DRAWN:

	*	
505 ELKTON DRIVE		
COLORADO SPRINGS	COLORADO 80907	

DATE: CHECKED: DATE: 4/30/20

201127 FIG NO. B-20

CBR TEST LOAD DATA

PISTON

PISTON

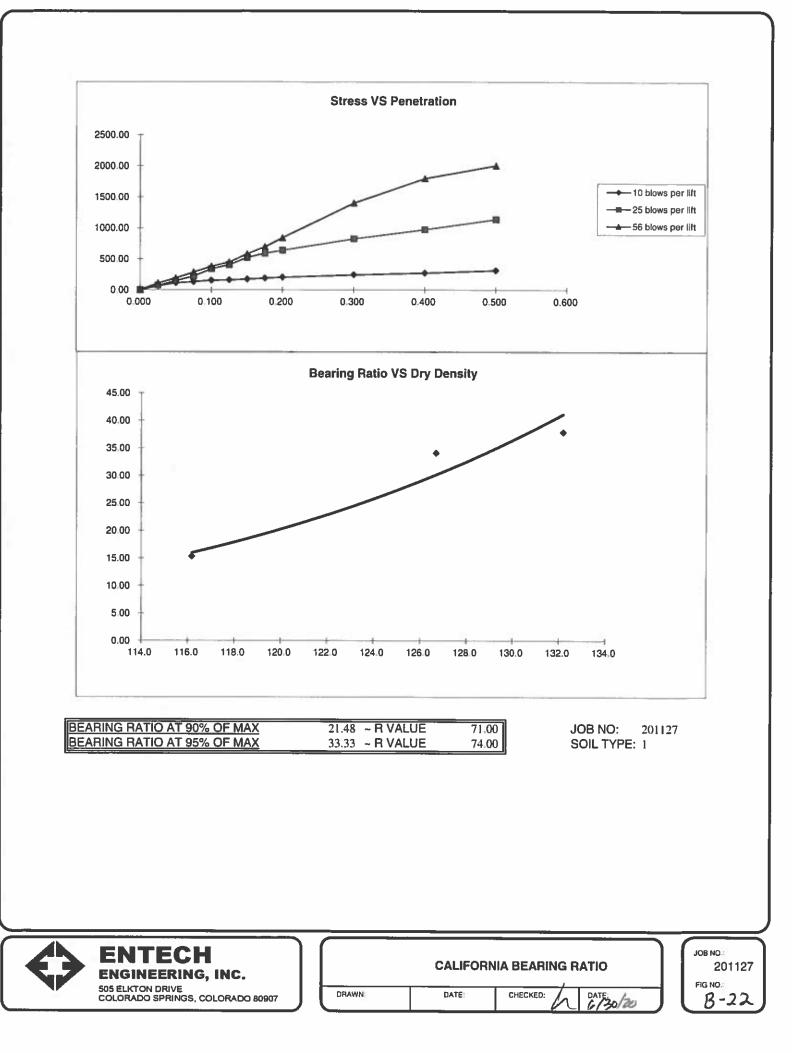
JOB NO: 201127 CLIENT: MA INFRASTRUCTURE PROJECT: MONUMENT ACADEMY

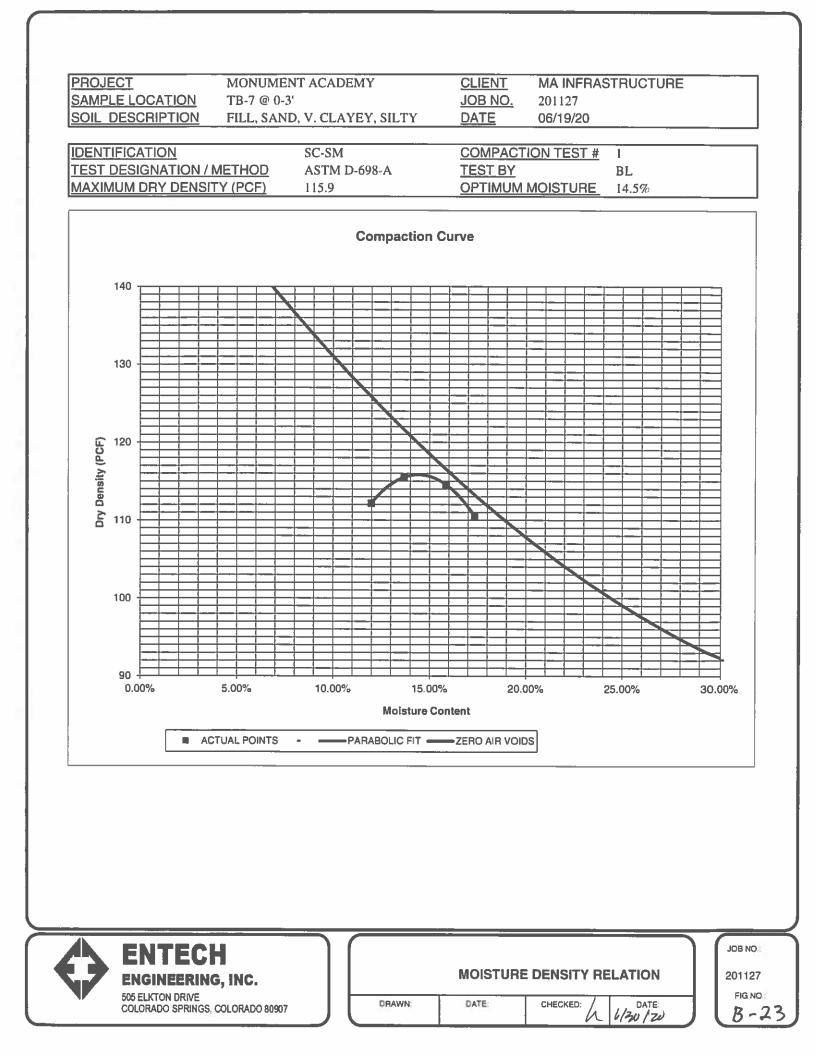
DIAMETER (cm)	AREA (in ²)	SOIL TYPE: 1				
4.958	2.99250919				_	
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	194	64.83	224	74.85	324	108.27
0.050	341	113.95	444	148.37	568	189.81
0.075	396	132.33	660	220.55	858	286.72
0.100	460	153.72	1021	341.19	1135	379.28
0.125	479	160.07	1211	404.68	1338	447.12
0.150	519	173.43	1563	522.30	1733	579.11
0.175	562	187.80	1759	587.80	2078	694.40
0.200	607	202.84	1915	639.93	2515	840.43
0.300	725	242.27	2467	824.39	4191	1400.50
0.400	821	274.35	2915	974.10	5375	1796.15
0.500	941	314.45	3408	1138.84	6000	2005.01

FINAL MOISTURE CONTENT

	MOLD #	1	MOLD #	2	MOLD #	3
CAN #		349		343		342
WT. CAN		8.43		8.49		8.49
<u>WT. CAN+WET</u>		280.95		287.65		359.15
WT. CAN+DRY		251.63		262.98		331.5
<u>WT. H20</u>		29.32		24.67		27.65
WT. DRY SOIL		243.2		254.49		323.01
MOISTURE CONTENT		12,06%		9.69%	_	8.56%
		22				
WET DENSITY (PCF)		124.7		135.9		141.8
DRY_DENSITY (PCF)		116.2		126.7		132.2
		15.07		24.10		
BEARING RATIO		15.37		34.12		37.93
90% OF DRY DENSITY	119.6					
95% OF DRY DENSITY	126.3					
	174					
BEARING RATIO AT 90% OF MAX		21.48	- R VALUE	71		
BEARING RATIO AT 95% OF MAX		33.33	- R VALUE	74		

ſ	JOB NO
	201127
	FIG NO


ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


ENTECH

			_
DRAWN:	DATE:	CHECKED:	DATE:

CBR TEST DATA

B-21

CBR TEST LOAD DATA

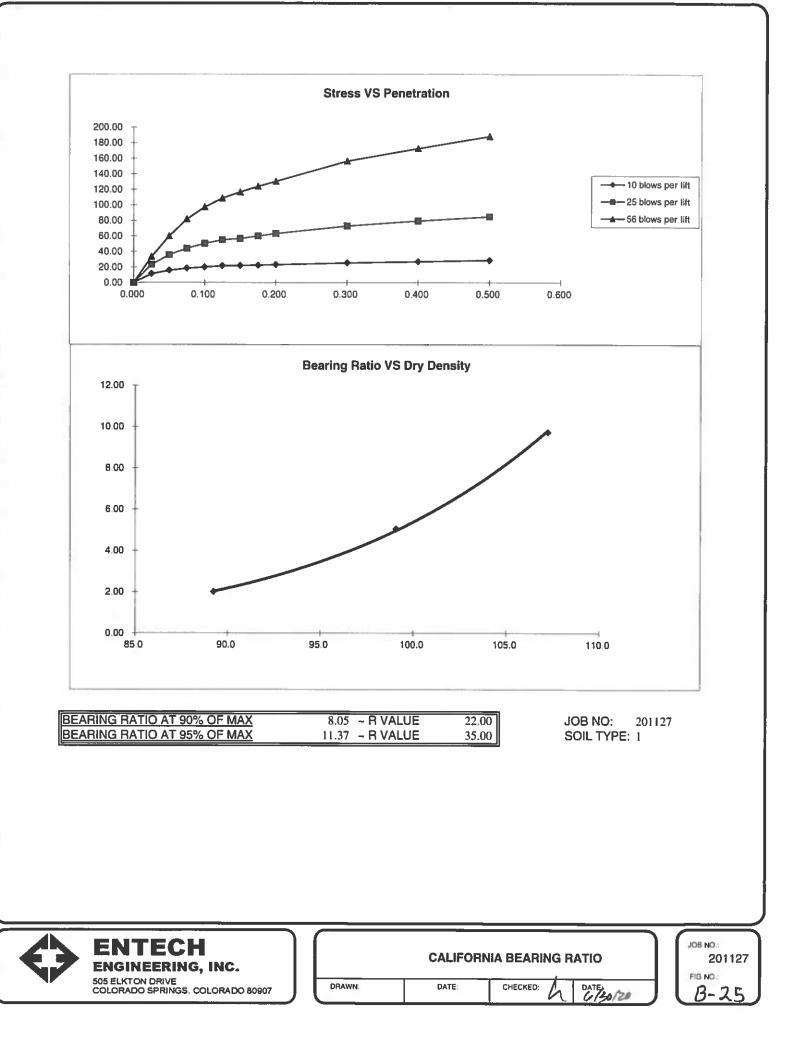
PISTON

PISTON

JOB NO: 201127 CLIENT: MA INFRASTRUCTURE PROJECT: MONUMENT ACADEMY SOIL TYPE: 1

		THOULDT MONOMENT ACADEMI				
DIAMETER (cm)	AREA (in ²)		SOIL TYPE:	1		
4.958	2.99250919					
-	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	34	11.36	70	23.39	001	33.42
0.050	47	15.71	107	35.76	179	59.82
0.075	55	18.38	132	44.11	245	81.87
0.100	60	20.05	151	50.46	291	97.24
0.125	65	21.72	165	55.14	326	108.94
0.150	66	22.06	170	56.81	349	116.62
0.175	67	22.39	180	60.15	371	123.98
0.200	69	23.06	189	63.16	390	130.33
0.300	76	25.40	218	72.85	468	156.39
0.400	81	27.07	238	79.53	517	172.76
0.500	86	28.74	254	84.88	563	188.14

FINAL MOISTURE CONTENT


	MOLD #	1	MOLD #	2	MOLD #	3
CAN #	-	102		119		109
WT. CAN		9.32		9.11		9.21
WT. CAN+WET		290.23		290.77		247.92
WT. CAN+DRY		231.23		238.34		207.74
<u>WT. H20</u>		59		52.43		40.18
WT. DRY_SOIL		221.91		229.23		198.53
MOISTURE CONTENT	_	26.59%		22.87%		20.24%
	_					
WET DENSITY (PCF)		102.2		113.4		122.8
DRY DENSITY (PCF)		89.2		<u> </u>		107.2
BEARING RATIO		2.01		5.05		9.72
90% OF DRY DENSITY	104.3					
95% OF DRY DENSITY	110.1					
BEARING RATIO AT 90% OF MAX		8.05	~ R VALUE	22		
BEARING RATIO AT 95% OF MAX		11.37	~ R VALUE	35		

ENTECH

ENTECH		CBR	TEST DATA	
ENGINEERING, INC.				
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE		6/30/20

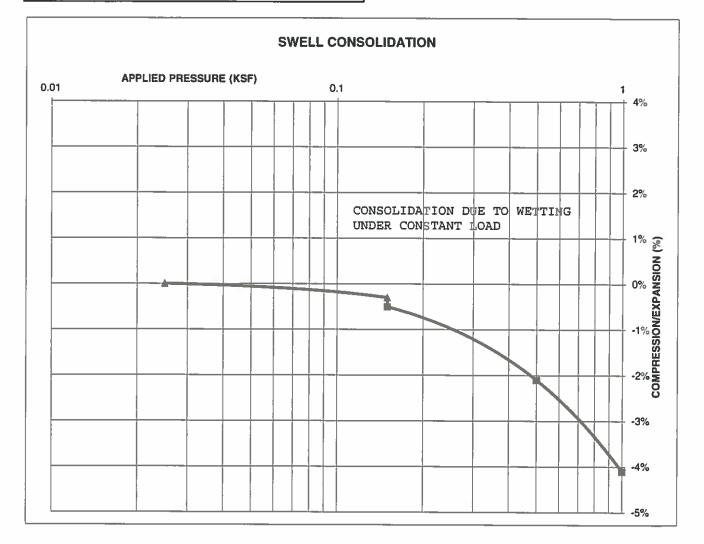
JOB NO 201127 FIG NO B-24

CLIENT	MA INFRASTRUCTURE	JOB NO.	201127
PROJECT	MONUMENT ACADEMY	DATE	6/10/2020
LOCATION	MONUMENT ACADEMY	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-2	1-2	1	SM	<0.01
TB-2	10	3	SM	<0.01
TB-4	10	4	SM-SW	<0.01
TB-6	1-2	1	SM	0.00
TB-9	5	4	SM-SW	<0.01
TB-10	1-2	3	SC	0.00
TB-10	10	3	SM-SW	0.00

OC BLANK PASS

ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

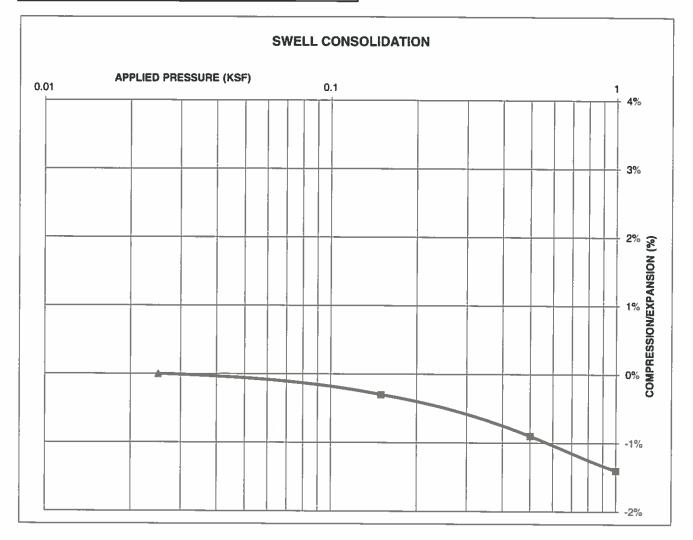

LABORATORY TEST SULFATE RESULTS					
DRAWN:	DATE:	CHECKED: U GIDATE			

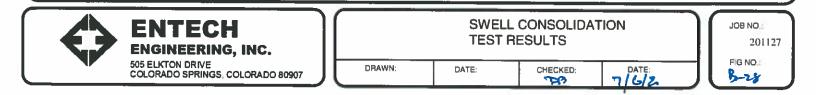
JOB NO. 201127 FIG NO. B-26

CONSOLIDATION TEST RESULTS

TEST BORING #	1 DEPTH(ft)	1-2
DESCRIPTION	SC-SM SOIL TYPE	2
NATURAL UNIT DRY	WEIGHT (PCF)	110
NATURAL MOISTUR	E CONTENT	5.0%
SWELL/CONSOLIDA	TION (%)	-0.2%

JOB NO.	201127
CLIENT	MA INFRASTRUCTURE
PROJECT	MONUMENT ACADEMY




\diamond	ENTECH	SWELL CONSOLIDATION			JOB NO.:	
	ENGINEERING, INC.	TEST RESULTS			201127	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE:	FIG NO.:

CONSOLIDATION TEST RESULTS

TEST BORING #	7	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	2
NATURAL UNIT DRY	WEIGI	HT (PCF)	111
NATURAL MOISTURE	E CON	TENT	7.5%
SWELL/CONSOLIDA	ΓΙΟΝ ('	%)	0.0%

JOB NO.	201127
CLIENT	MA INFRASTRUCTURE
PROJECT	MONUMENT ACADEMY

APPENDIX C: Pavement Design Calculations

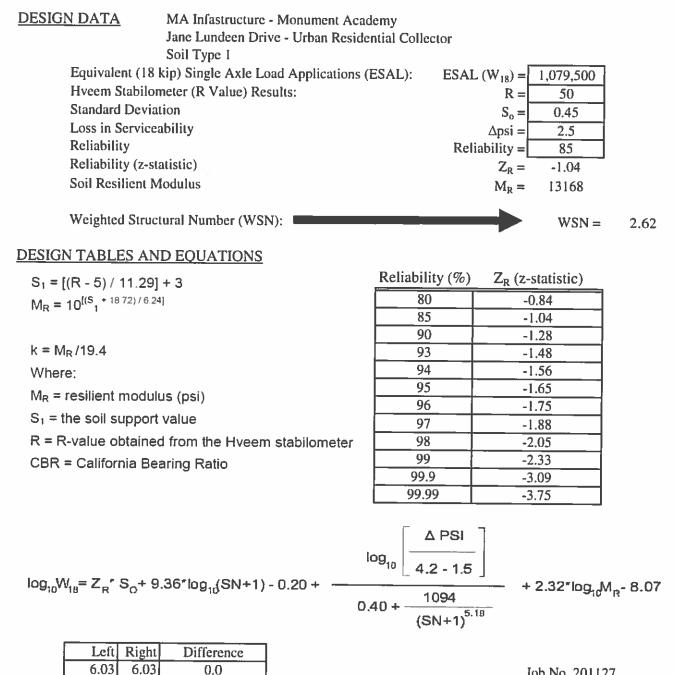
DESIGN DATA	MA Infastructure - Monument Academy		
	Jane Lundeen Drive - Urban Residential Collector		
	Soil Type 1		
Equiva	lent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	1,079,500
Hveem	a Stabilometer (R Value) Results:	R =	50
Weigh	ted Structural Number (WSN):	WSN =	2.62

DESIGN EQUATION

$$WSN = C_1D_1 + C_2D_2$$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Stabilized Subgrade

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)


FOR ASPHALT + CEMENT STABILIZED BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.2$ inches of Cement Stabilized Subgrade CSS, use 8.0 inches

RECOMMENDED ALTERNATIVE

- 1. 4.0 inches of Asphalt +
- 8.0 inches of Cement Stabilized Subgrade

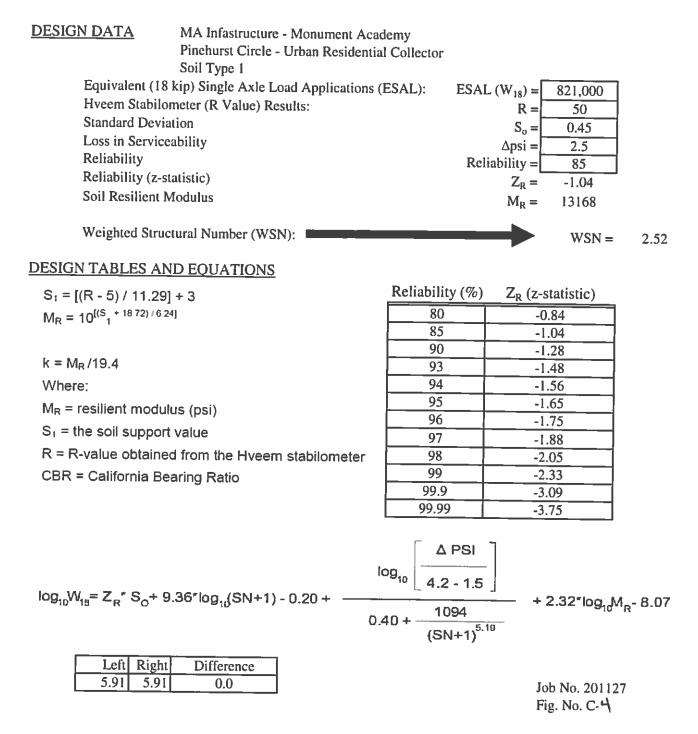
5

DESIGN DATA	MA Infastructure - Monument Academy		
	Pinehurst Circle - Urban Residential Collector		
	Soil Type 1		
Equiva	lent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	821.000
	Stabilometer (R Value) Results:	R =	50
Weigh	ted Structural Number (WSN):	WSN =	2.52

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Stabilized Subgrade


D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR ASPHALT + CEMENT STABILIZED BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 6.3$ inches of Cement Stabilized Subgrade CSS, use 8.0 inches

RECOMMENDED ALTERNATIVE

- 1. 4.0 inches of Asphalt +
- 8.0 inches of Cement Stabilized Subgrade

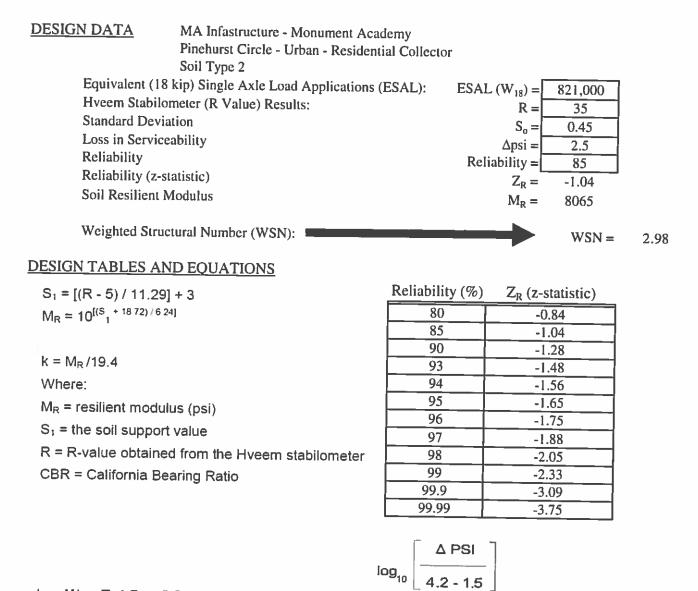
DESIGN DATA	MA Infastructure - Monument Academy		
	Pinehurst Circle - Urban - Residential Collector		
	Soil Type 2		
Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	821.000
Hveem Stab	ilometer (R Value) Results:	R =	35
Weighted St	ructural Number (WSN):	WSN =	2.98

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Stabilized Subgrade

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)


FOR ASPHALT + CEMENT STABILIZED BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 10.2$ inches of Cement Stabilized Subgrade CSS, use 10.0 inches

RECOMMENDED ALTERNATIVE

1. 4.0 inches of Asphalt +

10.0 inches of Cement Stabilized Subgrade

0.40 + 1094 (SN+1)^{5.19}

 $\log_{10}W_{16} = Z_R^* S_0^+ 9.36^* \log_{10}(SN+1) - 0.20 + -$

_		
Left	Right	Difference
5.91	5.91	0.0

Job No. 201127 Fig. No. C- L

+ 2.32*log₁₀M_R- 8.07

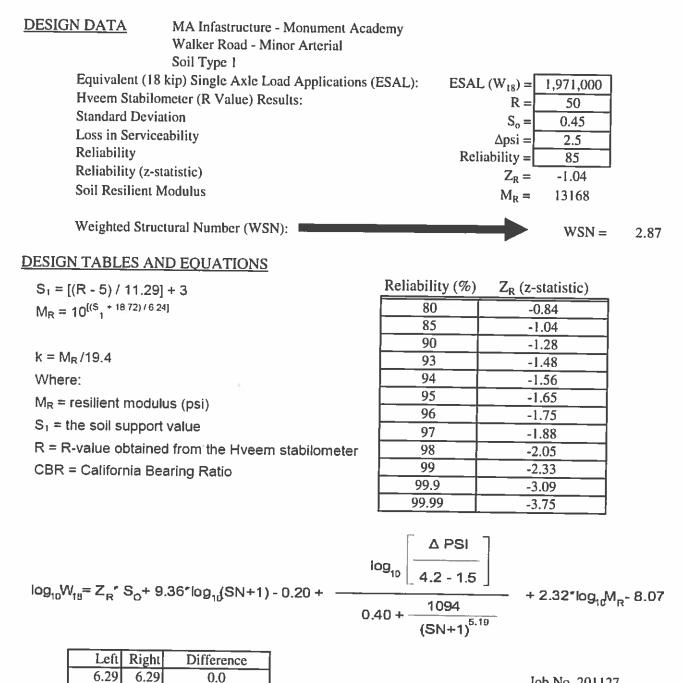
<u>DESIGN DATA</u>	MA Infastructure - Monument Academy		
	Walker Road - Minor Arterial		
	Soil Type 1		
Equiv	alent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	1,971,000
	n Stabilometer (R Value) Results:	R =	50
Weigh	nted Structural Number (WSN):	WSN =	2.87

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Stabilized Subgrade

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)


FOR ASPHALT + CEMENT STABILIZED BASE COURSE SECTION

Asphalt Thickness (t) = 5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 5.6$ inches of Cement Stabilized Subgrade CSS, use 10.0 inches

RECOMMENDED ALTERNATIVE

1. 5.0 inches of Asphalt +

10.0 inches of Cement Stabilized Subgrade

<u>DESIGN DATA</u>	MA Infastructure - Monument Academy	
	Walker Road - Minor Arterial	
	Soil Type 2	
Equiv	alent (18 kip) Single Axle Load Applications (ESAL):	ESAL = 1,971,000
Hvee	m Stabilometer (R Value) Results:	R = 35
Weig	hted Structural Number (WSN):	WSN = 3.38

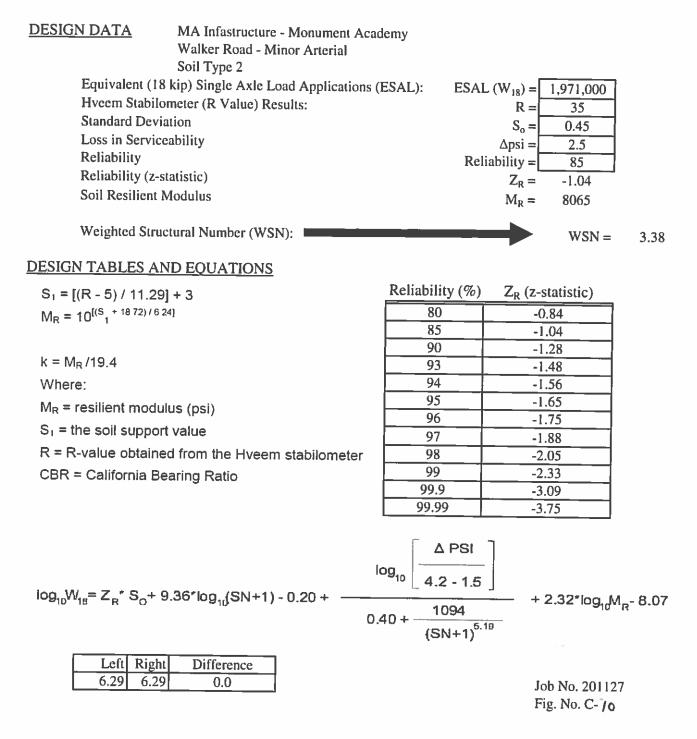
DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.12$ Strength Coefficient - Cement Stabilized Subgrade

 D_1 = Depth of Asphalt (inches)

 D_2 = Depth of Base Course (inches)


FOR ASPHALT + CEMENT STABILIZED BASE COURSE SECTION

Asphalt Thickness (t) = 5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 9.9$ inches of Cement Stabilized Subgrade CSS, use 10.0 inches

RECOMMENDED ALTERNATIVE

1. 5.0 inches of Asphalt +

10.0 inches of Cement Stabilized Subgrade

