PRELIMINARY DRAINAGE REPORT FOR THE VILLAS AT CLAREMONT RANCH

November 2020

Prepared for:
Phi Real Estate Services, LLC
200 W. City Center Dr. Ste 200
Pueblo, CO 81003

See comment letter for additional comments.

Prepared By:

321 W. Henrietta Ave, Suite A Woodland Park, CO 80863

719-426-2124

PRELIMINARY DRAINAGE REPORT THE VILLAS AT CLAREMONT RANCH

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

David L. Mijares, Colorado PE \#40510
For and on behalf of Catamóunt Engineering

Developer's Statement:

Premiere Homes Inc. the developer has read and will comply with all of the requirements specified in this drainage report and plan.

PHI Real Estate Services

Title: \qquad
Director of Operations
Address: \qquad
Pueblo, CO 81003

El Paso County:

Filed in accordance with the requirements of the El Paso County land Development Code and the Drainage Criteria manual Volumes 1 and 2, and the El Paso County Engineering Criteria Manual, latest revision.

PRELIMINARY DRAINAGE REPORT for THE VILLAS AT CLAREMONT RANCH

PURPOSE

The purpose of this drainage report is to identify existing drainage patterns, quantify developed storm water runoff, and establish outfall scenarios from the proposed development. Additionally this analysis will establish compliance with previous drainage studies and provide for water quality and detention of developed runoff.

GENERAL LOCATION AND DESCRIPTION

The subject 10.17 acres is proposed to be platted into 83 residential townhome lots and is located within the southwest $1 / 4$ of Section 4, Township 14 South, Range 65 West of the $6^{\text {th }}$ principal meridian El Paso County, Colorado. The parcel was previously platted as tracts G and A, Claremont Ranch Filing No. 7

The parcel is bounded on the north by the East Fork of Sand Creek, on the east by the Claremont Ranch Filing No. 7 single family residential development, on the south by Meadowbrook Parkway and undeveloped tract F, and on the west by Tract I and Marksheffel Road.

The site has been previously stripped and contains little volunteer vegetation besides erosion control cover. The existing terrain generally slopes to the west at a 2% grade. A swale has been formed adjacent to the Marksheffel embankment conveying undeveloped flow overland to the east Fork of Sand Creek. The site lies within the Sand Creek Drainage Basin.

Soils in the development parcel consist predominantly of Blendon sandy loam (Hydrologic Group ' B ' soils) and also contains Blakeland loamy sand and Ellicott loamy coarse sand (Hydrologic Group 'A' soils) as determined by the Natural Resources Conservation Service Web Soil Survey. Hydrologic Group B soils were used in analysis.

No portion of the development lies within an F.E.M.A. designated floodplain per FIRM 08041C0756 G, effective 12/07/2018. The revised F.E.M.A. Flood Insurance Rate Map has been provided in the appendix.

EXISTING DRAINAGE CONDITIONS

The site was previously studied in the Final Drainage Report for Claremont Ranch Filing No. 7. Development of Filing No. 7 required analysis and implementation of improvements within the adjacent Lower East Fork of Sand Creek. Improvements were implemented per the Sand Creek Drainage Basin Planning Study and Preliminary Design Report; City of Colorado Springs, El Paso County, Colorado (DBPS), prepared by Kiowa Engineering Corp., revised March 1996. As upstream detention proposed in the DBPS has not been implemented the more conservative FEMA 100-YR Flow was utilized in channel evaluation and improvement. The FEMA analysis assumes
a 100-YR flow of 4,500 cfs through the adjacent reach, while the DBPS estimates a flow of 3,310 cfs with upstream detention. The adjacent Lower East Fork Sand Creek improvements are detailed in the Final Drainage Report for Claremont Ranch Filing no. 7.

The Villas at Claremont Ranch were platted as Tracts ' G ' and 'A' with development of Claremont Ranch Filing No. 7 and was identified as 12.21 acre commercial development (basin 7) in the final drainage report. Anticipated runoff from Basin 7 was $\mathrm{Q}_{5}=9.5 \mathrm{cfs}, \mathrm{Q}_{100}=24.4$ in the interim condition and $\mathrm{Q}_{5}=56.0 \mathrm{cfs}, \mathrm{Q}_{100}=96.7$ in the fully developed condition. The Villas at Claremont Ranch lies entirely with the Sand Creek Drainage Basin Planning Study area.

Basin 6 Claremont Ranch Filing No. 7 consists of undeveloped tract F south of Meadowbrook Parkway. The 11.18 basin is proposed for commercial use and generates anticipated runoff of was $\mathrm{Q}_{5}=10.1 \mathrm{cfs}, \mathrm{Q}_{100}=25.8$ in the interim condition and $\mathrm{Q}_{5}=56.0 \mathrm{cfs}, \mathrm{Q}_{100}=96.7$ in the fully developed condition. A temporary 24 " culvert crossing was installed with development of Meadowbrook Parkway to convey flows north to Sand Creek. Interim flows will be conveyed in existing swale section developed with Filing No. 7 improvements within the 70 ' utility and drainage easement located along the west side of the proposed Villas at Claremont Ranch Development. Developed flows will not be accepted onto the Villas at Claremont Ranch and any development scenarios for Tract F will require water quality implementation and full spectrum detention prior to site release across Meadowbrook Parkway. Interim flows defined in the Final Drainage Report for Filing No. 7 will be accepted.

DEVELOPED DRAINAGE BASINS

Developed basins proposed to receive an increase in impervious areas will be routed to an on-site extended detention basin providing full spectrum detention prior to release to the East Fork of Sand Creek. Basins routed through the proposed EDB will be collected in on proposed private roadway sections and collected in a private inlet system. Collected runoff will be conveyed in a private storm system to the EDB. A summary of peak developed runoff for the basins and design points are depicted in the Developed Drainage Plan in the appendix.

Basin 1 consists of perimeter landscape areas directly tributary to the East Fork of Sand Creek and will not be collected in the proposed extended detention basin. Basin 1 contains 2.25 acres and generates runoff of $\left(\mathrm{Q}_{2}=0.2 \mathrm{cfs}, \mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{10}=1.2 \mathrm{cfs}, \mathrm{Q}_{25}=2.0 \mathrm{cfs}, \mathrm{Q}_{50}=2.6 \mathrm{cfs}\right.$, and $\mathrm{Q}_{100}=3.3$ cfs). Runoff from Basin 1 will either sheet flow directly to the reach of Sand Creek or be combined with interim condition runoff from Basin 6 (Claremont Ranch Filing No. 7) of $\mathrm{Q}_{5}=10.1 \mathrm{cfs}$, $\mathrm{Q}_{100}=25.8$ to the existing riprap rundown to Sand Creek. The swale and rundown installed with filing 7 improvements was developed to convey interim flows from both Basin 6 (tract F, Claremont Ranch Filing No. 7) and Basin 7 (tracts G and A, Claremont Ranch Filing No. 7) with a combined flow of $\mathrm{Q}_{5}=19.6 \mathrm{cfs}, \mathrm{Q}_{100}=50.2$. Interim flows anticipated in Filing No. 7 are greater than the proposed flows with development of the Villas at Claremont Ranch.

BASINS TRIBUTARY TO EDB

Basins 2-8 consist of the landscape areas, residential townhome lots, and private street improvements tributary to the proposed extended detention basin. Basin 9 consists of rear lots developed within the residential portion of Filing No. 7 tributary to the extended detention basin.

Basin 2 (1.92 Acres, $\mathrm{Q}_{2}=1.3 \mathrm{cfs}, \mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{10}=2.7 \mathrm{cfs}, \mathrm{Q}_{25}=3.8 \mathrm{cfs}, \mathrm{Q}_{50}=4.6 \mathrm{cfs}$, and $\mathrm{Q}_{100}=5.6$ cfs) consists of lots and landscape area along the north and east of the development. Flows from basin 2 will be conveyed in a grass swale along the northeast of the development to outfall directly to the proposed detention pond.

Basin 3 (0.76 Acres, $\mathrm{Q}_{2}=1.1 \mathrm{cfs}, \mathrm{Q}_{5}=1.5 \mathrm{cfs}, \mathrm{Q}_{10}=2.0 \mathrm{cfs}, \mathrm{Q}_{25}=2.5 \mathrm{cfs}, \mathrm{Q}_{50}=2.9 \mathrm{cfs}$, and $\mathrm{Q}_{100}=3.4$ cfs) consists of townhome lots and roadway improvements tributary to the proposed 5' type R inlet at Design Point 2. Calculations for Carrside Grove street capacity and inlet analysis are provided in the appendix.

Basin 4 (1.00 Acres, $\mathrm{Q}_{2}=1.3 \mathrm{cfs}, \mathrm{Q}_{5}=1.8 \mathrm{cfs}, \mathrm{Q}_{10}=2.3 \mathrm{cfs}, \mathrm{Q}_{25}=2.9 \mathrm{cfs}, \mathrm{Q}_{50}=3.5 \mathrm{cfs}$, and $\mathrm{Q}_{100}=4.1$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 3. Calculations for Carrside Grove street capacity and inlet analysis are provided in the appendix.

Basin 5 (0.81 Acres, $\mathrm{Q}_{2}=1.2 \mathrm{cfs}, \mathrm{Q}_{5}=1.7 \mathrm{cfs}, \mathrm{Q}_{10}=2.2 \mathrm{cfs}, \mathrm{Q}_{25}=2.7 \mathrm{cfs}, \mathrm{Q}_{50}=3.2 \mathrm{cfs}$, and $\mathrm{Q}_{100}=3.8$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 4. Calculations for Fieldside Way street capacity and inlet analysis are provided in the appendix.

Basin 6 (2.58 Acres, $\mathrm{Q}_{2}=2.9 \mathrm{cfs}, \mathrm{Q}_{5}=4.0 \mathrm{cfs}, \mathrm{Q}_{10}=5.2 \mathrm{cfs}, \mathrm{Q}_{25}=6.7 \mathrm{cfs}, \mathrm{Q}_{50}=8.0 \mathrm{cfs}$, and $\mathrm{Q}_{100}=9.4$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 10' type R inlet at Design Point 5. Calculations for Fieldside Way street capacity and inlet analysis are provided in the appendix.

Basin 7 (0.65 Acres, $\mathrm{Q}_{2}=1.0 \mathrm{cfs}, \mathrm{Q}_{5}=1.4 \mathrm{cfs}, \mathrm{Q}_{10}=1.7 \mathrm{cfs}, \mathrm{Q}_{25}=2.2 \mathrm{cfs}, \mathrm{Q}_{50}=2.6 \mathrm{cfs}$, and $\mathrm{Q}_{100}=3.0$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 7. Calculations for Greengate Way street capacity and inlet analysis are provided in the appendix.

Basin 8 (0.06 Acres, $\mathrm{Q}_{2}=0.2 \mathrm{cfs}, \mathrm{Q}_{5}=0.2 \mathrm{cfs}, \mathrm{Q}_{10}=0.3 \mathrm{cfs}, \mathrm{Q}_{25}=0.3 \mathrm{cfs}, \mathrm{Q}_{50}=0.4 \mathrm{cfs}$, and $\mathrm{Q}_{100}=0.4$ cfs) consists of a small landscape area and private roadway improvements tributary to the proposed 5' type R inlet at Design Point 6. Calculations for Greengate Way street capacity and inlet analysis are provided in the appendix.

Basin 9 (0.67 Acres, $\mathrm{Q}_{2}=0.1 \mathrm{cfs}, \mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{10}=0.5 \mathrm{cfs}, \mathrm{Q}_{25}=0.9 \mathrm{cfs}, \mathrm{Q}_{50}=1.2 \mathrm{cfs}$, and $\mathrm{Q}_{100}=1.5$ cfs) consists of the rear yards of the residential portion of Filing No. 7 tributary to the Villas at Claremont development. Runoff from this area will sheet flow across the proposed landscape tract and be conveyed in a vegetated swale to the proposed EDB.

Flows at DP-7 will be collected in a 5^{\prime} Type R inlet and outfall in an $18{ }^{\prime \prime} \mathrm{RCP}$ at 0.50% to the inlet at DP-6. Combined flows at DP-A of $\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.4$ will be conveyed north in an 18 " RCP at 1.31% to the proposed manhole at DP-B.

Flows from DP-5 will be collected in a 5' Type R inlet and outfall in an $18{ }^{\prime \prime} \mathrm{RCP}$ at 0.50% to the inlet at DP-4. Flows from DP-4 will be collected in a 5^{\prime} Type R inlet. Combined flows from DP4 and DP- 5 will be conveyed in an 18 " RCP at 0.50% to the manhole at DP-B

Combined outflow from the manhole at DP-B will be conveyed in a 24 " RCP storm sewer at 0.50% to the manhole at DP-C and combined with flows intercepted in the 5' Type R inlet at DP-3. Combined flows from DP-C of $\mathrm{Q}_{5}=6.1 \mathrm{cfs}, \mathrm{Q}_{100}=19.0 \mathrm{cfs}$ will be conveyed in a 24 " RCP at 0.75% to the 5^{\prime} Type R inlet at DP-D. Combined flows at $\mathrm{DP}-\mathrm{D}$ of $\mathrm{Q}_{5}=9.8 \mathrm{cfs}, \mathrm{Q}_{100}=21.9$ will be conveyed in a $24 "$ RCP at 8.07% to pond outfall within the proposed EDB.

EXTENDED DETENTION BASIN

Proposed EDB 'B will require a WQCV of 0.132 acre-feet and a total storage volume of 0.712 acre-ft. The pond provides 0.720 acre-ft of storage below the emergency outfall. The EDB will be designed to meet current Urban Drainage design criteria for forebay, outfall structure, and micropool to be presented in final construction drawings for the development. Proposed EDB 'B will outfall through a 12 " RCP storm sewer directly to the East Branch of Sand Creek. The Basin outfalls developed runoff of $\left(\mathrm{Q}_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=5.2 \mathrm{cfs}\right)$ to Design Point E. The emergency spillway will consist of a 20 ' wide trapezoidal weir constructed of soil riprap conveying the undetained $100-$ YR flow from Design Point 1 of 26.1 cfs at a maximum depth of 0.5^{\prime}. Emergency overflow will be conveyed directly to the East Branch of Sand Creek. See Appendix for calculations.

The improved trail adjacent to Sand Creek has not been installed adjacent to the pond. The area will be graded to represent anticipated trail installation but will be constructed from pond overflow through channel toe with soil riprap with seeded topsoil cover. Future installation of trail segment is anticipated to be concrete trail along top of channel embankment. Spillway is intended only for emergency outflow path to adjacent channel. Major storm event is conveyed through outlet structure and conveyed through pipe system to channel bottom. Final design will provide additional detail on conveyance.

The area of the development tributary to proposed EDB ' B ' includes the following:

Tract/Use	Area	\% Impervious
Townhome	2.50	80%
Roadways	1.57	100%
Open Space	3.71	10%
Rear Yards (Filing 7)	0.67	30%
Total Area	8.45	49% Ave \% Impervious

[^0]Address the interim condition with
the TSB after early grading.
Provide SDI or MHFD calculation sheet showing drain times will work with TSB design. (A smaller
TSB may be needed.)

WATER QUALITY/4-STEP PROCESS

4-STEP PROCESS

STEP 1: EMPLOY RUNOFF REDUCTION PRACTICES

The development addresses Low Impact Development strategies primarily through the utilization of landscape swales within rear lots directing runoff from rooflines and patios through swales with minimal longitudinal grade prior to outfall to the private street system.

STEP 2: STABILIZE DRAINAGEWAYS

The ultimate recipient of runoff from the site is the East Branch of Sand Creek. The adjacent reach of Sand Creek was improved to ultimate DBPW recommendations with the development of Filing No. 7.

STEP 3: PROVIDE WATER QUALITY CAPTURE VOLUME

On-site flow is directed to a proposed extended detention basin providing water quality capture volume and attenuated release rates prior to release off-site. Release from the extended detention basin is less than assumed in the Final Drainage Report for Filing No. 7 as development was assumed to be commercial in nature and no detention scenario was initially proposed.

STEP 4: CONSIDER NEED FOR INDUSTRIAL AND COMMERCIAL BMP'S

A Grading, Erosion Control, and Stormwater Quality Plan and narrative have been submitted concurrently for the development and will be subject to county approval prior to any soil disturbance. The erosion control plan included specific source control BMP's as well defined overall site management practices for the construction period. No industrial or commercial uses are proposed with the Villas at Claremont Ranch development. No temporary batch plant operations are proposed with residential development.

COST ESTIMATE

Private Improvements Non-reimbursable

5' TYPE R INLET	5 EA	@\$	4,800/EA	\$	24,000
10' TYPE R INLET	1 EA	@ ${ }^{\text {a }}$	7,500/EA	\$	7,500
TYPE I MH	3 EA	@ ${ }^{\text {a }}$	4,000/EA	\$	12,000
$15^{\prime \prime} \mathrm{RCP}$	97 LF	@\$	40/LF	\$	3,880
18"RCP	381 LF	@\$	45/LF	\$	17,145
$24 " \mathrm{RCP}$	359 LF	@	55/LF	\$	19,745
Extended Detention Basin	1 LS	@	15,000/LS	\$	15,000
	SUBTOTAL			\$	99,270
	15\% CONTINGENCY			\$	14,891
	TOTAL			\$	114,16

DRAINAGE FEE CALCULATION

Drainage Fees were accounted for with the original platting of the parcel as tracts G and A of Claremont Ranch Filing No. 7 (see appendix).

DRAINAGE METHODOLOGY

This drainage report was prepared in accordance to the criteria established in the City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2, as revised May 2015.

The rational method for drainage basin study areas of less than 100 acres was utilized in the analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100-year recurrence intervals. The average runoff coefficients, ' C ' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City of Colorado Springs/El Paso County Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

SUMMARY

The Villas at Claremont Ranch Development exhibits drainage patterns consistent with those anticipated in the Final Drainage Report for Filing No. 7. Volume of water released from the site anticipated in the Filing 7 Final Drainage Report has been significantly reduced due to the parcel developing as residential rather commercial and implementation of on-site water quality and full spectrum detention facilities as required by current criteria. Private Storm system is designed to intercept the full 100 -year runoff event and convey to existing east branch of sand creek. Development of the parcel is in conformance of current El Paso County criteria and will not adversely affect downstream properties or facilities.

REFERENCES:

El Paso County, Colorado Engineering Division Drainage Criteria Manual Volume 1, (1990), revised Oct 2018

El Paso County, Colorado Engineering Division Drainage Criteria Manual Volume 2, November 2002

El Paso County, Colorado Engineering Division Drainage Criteria Manual Update, (2015)
El Paso County Engineering Criteria Manual, (2004), revised Oct 2020
"Claremont Ranch Subdivision Filing No. 7 Preliminary and Final Drainage Report", prepared by Engineering and Surveying, Inc., dated May 2004.
"Final Master Development Drainage Plan and Preliminary Drainage Plan for the Claremont Ranch", prepared by Matrix Design Group, Inc., revised July 2002.
"Sand Creek Drainage Basin Planning Study Preliminary Drainage Report", prepared by Kiowa Engineering Corporation, revised March 21996.

Preliminary and Final Drainage Report for International Bible Society Filing No. 1" prepared by URS Consultants, dated August, 1988.

Flood Insurance rate map 08041C0756 F, as revised to reflect LOMR Case No. 08-08-0630P
Natural Resources Conservation Service Web Soil Survey

APPENDIX

$\frac{\text { VICINITY MAP }}{\text { SCALE: N.T.S. }}$

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

| SPECIAL FLOOD |
| :--- | :--- |
| HAZARD AREAS |

Without Base Flood Elevation (BFE)
Zone A, V, A99
With BFE or Depth Zone AE, AO, AH, VE, AR

Regulatory Floodway
(B) 20.2 Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
(8)- - Coastal Transect
mu $\mathrm{m}_{13} \mathrm{~mm}$ Base Flood Elevation Line (BFE)
Limit of Study
—_Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline Hydrographic Feature

MAP PANELS
$\because \quad$ Digital Data Available
No Digital Data Available

Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on $11 / 17 / 2020$ at 2:43 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 14, Sep 23, 2016
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 15, 2011-Mar 9, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	1.6	16.2\%
10	Blendon sandy loam, 0 to 3 percent slopes	B	7.1	74.2\%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	0.9	9.6\%
Totals for Area of Interest			9.6	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

CLAREMONT RANCH SUBDIVISION
 FLLING NO. 7
 PRELIMINARY \& FINAL DRAINAGE REPORT

May 2004

Prepared for:

SWAT X, LLC.
20 Boulder Crescent, $2^{\text {nd }}$ Floor
Colorado Springs, CO 80903
(719) 471-1742

Prepared by:
Engineering and Surveying, Inc. 20 Boulder Crescent, $2^{\text {nd }}$ Floor Colorado Springs, CO 80903
(719) 955-5485

Project \#01-006

IURAINAGE AND BRIDGE FEES

The Claremont Ranch Subdivision, Filing No. 7, site is located entirely within the Sand Creek Drainage Elasin. The 2004 Drainage and Bridge Fees per El Paso County for this site are listed below.

Drainage Fee: \$ 15,000/Impervious acre
Eridge Fee: \$ 1,336/Impervious acre
The impervious area for this subdivision was calculated from the site plan since this is a residential project.
The total platted acreage for the site is 17.79 acres consisting of 16.61 residential acres with an impervious rating of 44% and 1.18 open space acres at 7% impervious. Therefore, the calculated impervious area is 7.38 acres (42\%).

Drainage Fee: $\quad \$ 15,000 /$ Impervious acre $\times 42 \%$ Impervious $=\$ 6,222 / \mathrm{ac}$.
Bridge Fee: $\$$ 1,336/Impervious acre x 42% Impervious $=\$$ 554/ac.
Total fees due per platted acreage $=\quad \$ 6,776 /$ ac.
The total fee obligation for Claremont Ranch Subdivision Filing No. 7 is summarized as follows:

Drainage fees for subdivision: $\mathbf{\$ 6 , 2 2 2} / \mathrm{ac} \times 17.79 \mathrm{ac}=$
Bridge fees for subdivision: \$ 554/ac x $17.79 \mathrm{ac}=$
Total fees for subdivision: $\mathbf{\$ 6 , 7 7 6} / \mathrm{ac} \times 17.79 \mathrm{ac}=$
\$ 110,689.38
\$ 9,855.66
\$ 120,545.04

Bridge Fees in the amount of $\mathbf{\$ 9 , 8 5 5 . 6 6}$ are due with final platting of Filing No. 7.

Claremont Ranch Filings \#1-7 - Overall Drainage Fee Calculations:

Filing \#	Required Drainage Fees	Sand Creek \& Sub- tributary Improvement Construction Costs
1	$\$ 316,744.50$	$\$ 376,000.00$
2	$\$ 197,274.00$	$\$ 355,850.00$
3	$\$ 200,700.00$	$\$ 0.00$
4	$\$ 293,100.00$	$\$ 433,250.00$
5	$\$ 140,285.00$	$\$ 517,145.00$
6	$\$ 283,228.50$	$\$ 0.00$
7	$\$ \mathbf{1 1 0 , 6 8 9 . 3 8}$	$\mathbf{\$ 2 8 2 , 0 0 0 . 0 0}$
Total	$\mathbf{\$ 1 , 5 4 2 , 0 1 1 . 3 8}$	$\mathbf{\$ 1 , 9 6 4 , 2 4 5 . 0 0}$

BASIN	AREA TOTAL (Acres)							Length Height (ft)		$\begin{gathered} \mathrm{TI} \\ (\mathrm{~min}) \end{gathered}$	CONVEYANCE TC						TT	INTENSITY						TOTAL FLOWS						
		C_{2}	C_{5}	C_{10}	C_{25}	C_{50}	C_{100}			$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	Height (ft)	C_{v}	$\begin{gathered} \text { Slope } \\ (\%) \end{gathered}$	$\begin{gathered} \text { Velocity } \\ \text { (fps) } \end{gathered}$	$\begin{gathered} \mathrm{TC} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{2} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{array}{c\|} \mathrm{I}_{5} \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{array}$	$\begin{gathered} \mathbf{I}_{10} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{25} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{50} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{100} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\binom{\mathbf{Q}_{2}}{(\text { c.f.f.s. }}$	$\begin{gathered} \mathbf{Q}_{5} \\ \text { (c.f.s.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{10} \\ (\text { c.f.f.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{25} \\ (\text { c.f.f.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{50} \\ \text { (c.f.f.s.) } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{100} \\ (\text { c.f.f.s. } \end{gathered}$		
1 LANDSCAPED	2.25 2.25	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 1 2} \\ & 0.12 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 2 0} \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 0} \\ & 0.30 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 4} \\ & \\ & 0.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 9} \\ & \\ & 0.39 \\ & \hline \end{aligned}$	100	4		12.0	1030	12	7	1.2\%	0.8	22.7	34.7	1.8	2.3	2.6	3.0	3.4	3.8	0.2	0.6	1.2	2.0	2.6	3.3
$\mathbf{2}$ HARDCAPE LANDSCAPED	$\begin{aligned} & 1.92 \\ & 0.51 \\ & 1.41 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 2 5} \\ & 0.79 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 3 0} \\ 0.81 \\ 0.12 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 3 7} \\ & 0.83 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{0 . 4 5} \\ 0.85 \\ 0.30 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 8} \\ 0.87 \\ 0.34 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 2} \\ 0.88 \\ 0.39 \\ \hline \end{gathered}$	100	4	9.8	451	10	7	2.2\%	1.0	7.2	17.0	2.7	3.3	3.9	4.4	5.0	5.6	1.3	1.9	2.7	3.8	4.6	5.6	
$\begin{gathered} \hline \mathbf{3} \\ \text { LOTS } \end{gathered}$	$\begin{gathered} 0.76 \\ 0.76 \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 1} \\ 0.41 \end{gathered}$	0.45 0.45	$\begin{gathered} \hline \mathbf{0 . 4 9} \\ 0.49 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 4} \\ 0.54 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 7} \\ 0.57 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 9} \\ 0.59 \end{gathered}$	46	2.5	4.8	440	7	20	1.6\%	2.5	2.9	7.7	3.6	4.5	5.3	6.0	6.8	7.6	1.1	1.5	2.0	2.5	2.9	3.4	
$\begin{gathered} \mathbf{4} \\ \text { LOTS } \end{gathered}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \end{aligned}$	$\begin{gathered} \mathbf{0 . 4 1} \\ 0.41 \end{gathered}$	0.45 0.45	0.49 0.49	0.54 0.54	0.57 0.57	$\begin{gathered} \hline 0.59 \\ 0.59 \end{gathered}$	49	2	5.5	$\begin{aligned} & \hline 197 \\ & 138 \end{aligned}$	3 2	$\begin{gathered} 7 \\ 20 \end{gathered}$	$\begin{aligned} & \hline 1.5 \% \\ & 1.4 \% \end{aligned}$	$\begin{aligned} & \hline 0.9 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.8 \\ & 1.0 \end{aligned}$	10.2	3.3	4.1	4.8	5.5	6.1	6.9	1.3	1.8	2.3	2.9	3.5	4.1	
5 LOTS	0.81 0.81	$\begin{gathered} \mathbf{0 . 4 1} \\ 0.41 \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 5} \\ 0.45 \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 9} \\ 0.49 \end{gathered}$	0.54	$\begin{gathered} \hline \mathbf{0 . 5 7} \\ 0.57 \end{gathered}$	$\begin{gathered} \hline 0.59 \\ 0.59 \end{gathered}$	51	2	5.7	176	2.5	20	1.4\%	2.4	1.2	6.9	3.7	4.7	5.5	6.2	7.0	7.9	1.2	1.7	2.2	2.7	3.2	3.8	
$\mathbf{6}$ LOTS LANDSCAPED	$\begin{aligned} & 2.58 \\ & 2.26 \\ & 0.32 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 7} \\ & 0.41 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 4 1} \\ & 0.45 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 4 5} \\ & 0.49 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 5 1} \\ 0.54 \\ 0.30 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 5 4} \\ & 0.57 \\ & 0.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 7} \\ & 0.59 \\ & 0.39 \\ & \hline \end{aligned}$	91	2	9.8	441	10	20	2.3\%	3.0	2.4	12.2	3.1	3.8	4.5	5.1	5.7	6.4	2.9	4.0	5.2	6.7	8.0	9.4	
$\begin{gathered} \hline 7 \\ \text { LOTS } \end{gathered}$	$\begin{gathered} \hline 0.65 \\ 0.65 \end{gathered}$	0.41 0.41	0.45 0.45	$\begin{gathered} \hline \mathbf{0 . 4 9} \\ 0.49 \end{gathered}$	0.54	$\begin{gathered} \hline \mathbf{0 . 5 7} \\ 0.57 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 9} \\ 0.59 \end{gathered}$	54	2	5.9	136	2	20	1.5\%	2.4	0.9	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.0	1.4	1.7	2.2	2.6	3.0	
$\mathbf{8}$ HARDSAPE LOTS	$\begin{aligned} & \hline 0.06 \\ & 0.05 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 7 3} \\ 0.79 \\ 0.41 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 7 5} \\ & 0.81 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 7 7} \\ & 0.83 \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 8 0} \\ 0.85 \\ 0.54 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 8 2} \\ 0.87 \\ 0.57 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 8 3} \\ 0.88 \\ 0.59 \\ \hline \end{gathered}$	10	0.5	1.3	38	0.5	20	1.3\%	2.3	0.3	$\begin{gathered} 5.0 \\ \text { MINIMUM } \end{gathered}$	4.1	5.2	6.0	6.9	7.8	8.7	0.2	0.2	0.3	0.3	0.4	0.4	
	$\begin{aligned} & \hline 0.67 \\ & 0.67 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline \mathbf{0 . 0 5} \\ \\ 0.05 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{0 . 1 2} \\ & \\ & \hline 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 2 0} \\ & \\ & \hline 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 0} \\ & 0.30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 4} \\ & \\ & 0.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 9} \\ & \\ & 0.39 \\ & \hline \end{aligned}$	87	3	11.8	451	10	15	2.2\%	2.2	3.4	15.1	2.8	3.5	4.1	4.7	5.3	5.9	0.1	0.3	0.5	0.9	1.2	1.5	

		WEIGHTED						TT	INTENSITY						TOTAL FLOWS					
DESIGN POINT	AREA TOTAL (Acres)	C_{2}	C_{5}	C_{10}	C_{25}	C_{50}	C_{100}	$\begin{gathered} \text { TOTAL } \\ (\mathrm{min}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{2} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{5} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{10} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{25} \\ (\mathbf{i n} / \mathbf{h r}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{50} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{100} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{2} \\ \text { (c.f.f.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ \text { (c.f.f.) } \end{gathered}$	$\left.\begin{array}{c} \mathbf{Q}_{10} \\ (\text { c.f.f.s. } \end{array}\right)$	$\begin{gathered} \mathbf{Q}_{25} \\ \text { (c.f.f.s.) } \end{gathered}$	$\left.\begin{array}{c} \mathbf{Q}_{50} \\ (\text { (c.f.s. } \end{array}\right)$	$\begin{gathered} \mathbf{Q}_{100} \\ (\text { c.f.f.s. } \end{gathered}$
$\begin{gathered} 7 \\ \text { BASIN } 7 \end{gathered}$	0.65	0.41	0.45	0.49	0.54	0.57	0.59	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.0	1.4	1.7	2.2	2.6	3.0
$\begin{gathered} \hline 6 \\ \text { BASIN } 8 \end{gathered}$	0.06	0.73	0.75	0.77	0.80	0.82	0.83	5.0	4.1	5.2	6.0	6.9	7.8	8.7	0.2	0.2	0.3	0.3	0.4	0.4
$\begin{gathered} \hline \mathbf{5} \\ \text { BASIN } 6 \end{gathered}$	2.58	0.37	0.41	0.45	0.51	0.54	0.57	12.2	3.1	3.8	4.5	5.1	5.7	6.4	2.9	4.0	5.2	6.7	8.0	9.4
$\begin{gathered} \hline 4 \\ \text { BASIN } 5 \end{gathered}$	0.81	0.41	0.45	0.49	0.54	0.57	0.59	6.9	3.7	4.7	5.5	6.2	7.0	7.9	1.2	1.7	2.2	2.7	3.2	3.8
$\begin{gathered} \hline \mathbf{3} \\ \text { BASIN } 4 \end{gathered}$	1.00	0.41	0.45	0.49	0.54	0.57	0.59	10.2	3.3	4.1	4.8	5.5	6.1	6.9	1.3	1.8	2.3	2.9	3.5	4.1
$\begin{gathered} \mathbf{2} \\ \text { BASIN } 3 \end{gathered}$	0.76	0.41	0.45	0.49	0.54	0.57	0.59	7.7	3.6	4.5	5.3	6.0	6.8	7.6	1.1	1.5	2.0	2.5	2.9	3.4
$\mathbf{1}$ BASIN 2 BASIN 9 DP-D	$\begin{gathered} \hline 8.45 \\ 1.92 \\ 0.67 \\ 5.86 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 3 3} \\ 0.25 \\ 0.05 \\ 0.39 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 3 8} \\ 0.30 \\ 0.12 \\ 0.44 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 3} \\ 0.37 \\ 0.20 \\ 0.48 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 9} \\ 0.45 \\ 0.30 \\ 0.53 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 2} \\ 0.48 \\ 0.34 \\ 0.56 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 5} \\ 0.52 \\ 0.39 \\ 0.58 \end{gathered}$	17.0	2.7	3.3	3.9	4.4	5.0	5.6	7.5	10.7	14.1	18.5	22.2	26.1

\qquad

		WEIGHTED						TT	INTENSITY						TOTAL FLOWS					
DESIGN POINT	AREA TOTAL (Acres)	C_{2}	C_{5}	C_{10}	C_{25}	C_{50}	C_{100}	$\begin{gathered} \text { TOTAL } \\ \text { (min) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{2} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{5} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{10} \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{25} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{I}_{50} \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{100} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{2} \\ \text { (c.f.s.) } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ \text { (c.f.f.) } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{10} \\ (\text { c.f.f.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{25} \\ \text { (c.f.f.) } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{50} \\ (\text { c.f.f.s. } \end{gathered}$	$\begin{gathered} \mathbf{Q}_{100} \\ \text { (c.f.f. } \end{gathered}$
$\begin{gathered} \hline \mathbf{A} \\ \text { DP-6 } \\ \text { DP-7 } \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 7 1} \\ 0.06 \\ 0.65 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 4} \\ 0.73 \\ 0.41 \end{gathered}$	$\begin{aligned} & \hline \mathbf{0 . 4 8} \\ & 0.75 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 1} \\ & 0.77 \\ & 0.49 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 6} \\ & 0.80 \\ & 0.54 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 9} \\ & 0.82 \\ & 0.57 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 6 1} \\ & 0.83 \\ & 0.59 \end{aligned}$	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.2	1.6	2.0	2.5	3.0	3.4
$\begin{gathered} \hline \mathbf{B} \\ \text { DP-5 } \\ \text { DP-4 } \\ \text { DP-A } \end{gathered}$	$\begin{aligned} & \hline 4.10 \\ & 2.58 \\ & 0.81 \\ & 0.71 \end{aligned}$	$\begin{gathered} \hline \mathbf{0 . 3 9} \\ 0.37 \\ 0.41 \\ 0.44 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 3} \\ 0.41 \\ 0.45 \\ 0.48 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 7} \\ 0.45 \\ 0.49 \\ 0.51 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 3} \\ 0.51 \\ 0.54 \\ 0.56 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 6} \\ 0.54 \\ 0.57 \\ 0.59 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 8} \\ 0.57 \\ 0.59 \\ 0.61 \end{gathered}$	12.2	3.1	3.8	4.5	5.1	5.7	6.4	4.8	6.7	8.6	11.0	13.1	15.2
$\begin{gathered} \hline \mathbf{C} \\ \text { DP3 } \\ \text { DP-B } \end{gathered}$	$\begin{array}{r} \hline \mathbf{5 . 1 0} \\ 1.00 \\ 4.10 \end{array}$	$\begin{gathered} \hline \mathbf{0 . 3 9} \\ 0.41 \\ 0.39 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 3} \\ 0.45 \\ 0.43 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 4 8} \\ 0.49 \\ 0.47 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 3} \\ 0.54 \\ 0.53 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 6} \\ 0.57 \\ 0.56 \end{gathered}$	$\begin{gathered} \hline \mathbf{0 . 5 8} \\ 0.59 \\ 0.58 \end{gathered}$	12.2	3.1	3.8	4.5	5.1	5.7	6.4	6.1	8.5	10.8	13.8	16.4	19.0
$\begin{gathered} \hline \mathbf{D} \\ \text { DP-2 } \\ \text { DP-C } \end{gathered}$	$\begin{aligned} & \hline 5.86 \\ & 0.76 \\ & 5.10 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 3 9} \\ & 0.41 \\ & 0.39 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 4 4} \\ & 0.45 \\ & 0.43 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 4 8} \\ & 0.49 \\ & 0.48 \end{aligned}$	$\begin{aligned} & \mathbf{0 . 5 3} \\ & 0.54 \\ & 0.53 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 6} \\ & 0.57 \\ & 0.56 \end{aligned}$	$\begin{aligned} & \hline \mathbf{0 . 5 8} \\ & 0.59 \\ & 0.58 \end{aligned}$	12.2	3.1	3.8	4.5	5.1	5.7	6.4	7.1	9.8	12.5	15.9	18.9	21.9
E POND OUTFALL															2.6	4.3	6.5	9.7	10.0	10.4

Calculated by: DLM
Date: 10/1/2017

INLET IN A SUMP OR SAG LOCATION

Project $=$
Inlet ID =
\qquad

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.0	6.0	inchos
	MINOR	MAJOR	\square Override Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.9	cfs
$Q_{\text {PEAK Required }}=$	1.5	3.4	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
Inlet ID =

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.0	6.0	inchos
	MINOR	MAJOR	Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.9	cfs
$Q_{\text {PEAK Required }}=$	1.8	4.1	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
Inlet ID =

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.0	6.0	inchos
	MINOR	MAJOR	s
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.9	cfs
$Q_{\text {PEAK Required }}=$	1.7	3.8	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
Inlet ID =

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.2	6.0	inchos
	MINOR	MAJOR	Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	4.2	9.8	cfs
$Q_{\text {PEAK Required }}=$	4.0	9.4	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
inlet ID =

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.0	6.0	inchos
	MINOR	MAJOR	Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{i}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.9	cfs
$Q_{\text {PEAK Required }}=$	0.2	0.4	cfs

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
Inlet ID = DP-7

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	1	1	
Ponding Depth $=$	4.0	6.0	inchos
	MINOR	MAJOR	\square Override Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	1.17	1.17	feet
$\mathrm{C}_{\mathrm{i}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.9	cfs
$Q_{\text {PEAK Required }}=$	1.4	3.0	cfs

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-A

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0050	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D =	18.00	inches
Q =	3.40	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta- $c<3.14$)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	1.51	radians
$A c=$	0.81	sq ft
Tc =	1.50	ft
Yc =	0.70	ft
$\mathrm{Vc}=$	4.18	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-A

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0130	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D =	18.00	inches
Q =	3.40	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta- $c<3.14$)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	1.51	radians
$\mathrm{Ac}=$	0.81	sq ft
Tc =	1.50	ft
$\mathrm{Yc}=$	0.70	ft
$\mathrm{Vc}=$	4.18	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-4

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0050	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D =	18.00	inches
Q =	3.80	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition
Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta- $c<3.14$)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	1.56	radians
Ac =	0.88	sq ft
Tc =	1.50	ft
$\mathrm{Yc}=$	0.75	ft
$\mathrm{Vc}=$	4.34	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-B

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0050	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D =	24.00	inches
Q =	15.20	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c $=$	1.99	radians
Ac =	2.36	sq ft
Tc =	1.83	ft
$\mathrm{Yc}=$	1.41	ft
$\mathrm{Vc}=$	6.44	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-7

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So =	0.0050	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D $=$	18.00	inches
Q =	3.00	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	1.45	radians
$A c=$	0.75	sq ft
Tc =	1.49	ft
Yc =	0.66	ft
$\mathrm{Vc}=$	4.02	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-C

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0075	$\mathrm{ft} / \mathrm{ft}$
n =	0.0130	
D =	24.00	inches
Q =	19.00	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c $=$	2.18	radians
Ac =	2.64	sq ft
Tc =	1.65	ft
$\mathrm{Yc}=$	1.57	ft
$\mathrm{Vc}=$	7.19	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH
Pipe ID: DP-D

Design Information (Input)

Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0807	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
D =	24.00	inches
Q =	21.90	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle (0<Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c <3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	2.31	radians
$\mathrm{Ac}=$	2.81	sq ft
Tc =	1.48	ft
$\mathrm{Yc}=$	1.67	ft
$\mathrm{Vc}=$	7.81	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

DETENTION BASIN OUTLET STRUCTURE DESIGN
 MHFD-Detention, Version 4.04 (February 2021)

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.08	0.132	Orifice Plate
Zone 2 (EURV)	4.03	0.283	Orifice Plate
Zone 3 (100-year)	5.37	0.298	Weir\&Pipe (Restrict)
	Total (all zones)	0.712	

	Calculated Parameters
Underdrain Orifice Area =	N/A
Underdrain Orifice Centroid =	N/A

ut: Orifice Plate with one or more orifice	ptical			Calculated Parameters for Plate	
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate $=$ Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches sq. inches (diameter $=1-1 / 16$ inches)	WQ Orifice Area per Row = Elliptical Half-Width =	6.111E-03	ft^{2}
	4.03			N/A	
	16.10		Elliptical Slot Centroid $=$	N/A	feet
	0.88		Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)					Calculated Parameters for Overflow Weir	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ feet	ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length =	Zone 3 Weir	Not Selected
	4.03	N/A			4.03	N/A
	4.00	N/A			4.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$ Gr	Grate Open Area / 100-yr Orifice Area =	23.41	N/A
Horiz. Length of Weir Sides =	4.00	N/A	feet $\begin{aligned} & \text { Overflow Grate Open Area w/o Debris }= \\ & \%\end{aligned}$		11.14	N/A
Overflow Grate Type =	Type C Grate	N/A			5.57	N/A
Debris Clogging \% =	50\%	N/A				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)							
$\begin{aligned} \text { Depth to Invert of Outlet Pipe } & = \\ \text { Outlet Pipe Diameter } & = \\ \text { Restrictor Plate Height Above Pipe Invert } & =\end{aligned}$	$\begin{array}{\|c} \hline \text { Zone } 3 \text { Restrictor } \\ \hline 0.50 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Not Selected } \\ \hline \mathrm{N} / \mathrm{A} \\ \hline \end{gathered}$	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$)		$\begin{array}{\|c} \hline \text { Zone } 3 \text { Restrictor } \\ \hline 0.48 \end{array}$	$\begin{gathered} \hline \text { Not Selected } \\ \hline \text { N/A } \\ \hline \end{gathered}$	ft^{2} feet radians
	12.00	N/A	inches	Outlet Orifice Centroid =	0.33	N/A	
	7.00		inches Half-Central An	e of Restrictor Plate on Pipe =	1.74	N/A	
User Input: Emergency Spillway (Rectanqular or	Trapezoidal)				Calculated Paramet	ers for Spillway	
Spillway Invert Stage=	5.40	ft (relative to bas	bottom at Stage $=0 \mathrm{ft}$)	Spillway Design Flow Depth=	0.32	feet	
Spillway Crest Length $=$	20.00	feet		Stage at Top of Freeboard =	6.72	feet	
Spillway End Slopes =	4.00	$\mathrm{H}: \mathrm{V}$		in Area at Top of Freeboard =	0.32	acres	
Freeboard above Max Water Surface =	1.00	feet		Volume at Top of Freeboard $=$	1.10	acre-ft	

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.132	0.415	0.360	0.518	0.653	0.855	1.014	1.225	1.632
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.360	0.518	0.653	0.855	1.014	1.225	1.632
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.8	1.4	2.9	3.8	5.1	7.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.10	0.18	0.37	0.49	0.66	0.96
Peak Inflow Q (cfs) =	N/A	N/A	3.1	4.6	5.8	8.2	9.8	11.8	15.7
Peak Outflow Q (cfs) =	0.1	0.1	0.1	1.1	2.5	4.8	5.0	5.2	10.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.5	1.8	1.6	1.3	1.0	1.3
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.2	0.4	0.4	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	39	68	65	70	69	66	64	62	57
Time to Drain 99\% of Inflow Volume (hours) =	40	72	68	75	75	74	73	72	70
Maximum Ponding Depth (ft) =	2.08	4.03	3.56	4.14	4.23	4.35	4.58	5.06	5.57
Area at Maximum Ponding Depth (acres) $=$	0.11	0.19	0.17	0.19	0.20	0.20	0.22	0.24	0.26
Maximum Volume Stored (acre-ft) $=$	0.132	0.416	0.332	0.437	0.454	0.477	0.525	0.636	0.765

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.09
	0:15:00	0.00	0.00	0.25	0.41	0.51	0.34	0.43	0.42	0.62
	0:20:00	0.00	0.00	0.93	1.24	1.48	0.93	1.09	1.16	1.53
	0:25:00	0.00	0.00	2.20	3.12	4.11	2.17	2.59	2.79	4.16
	0:30:00	0.00	0.00	2.96	4.42	5.55	5.75	6.93	7.88	10.75
	0:35:00	0.00	0.00	3.14	4.65	5.81	7.48	8.92	10.62	14.22
	0:40:00	0.00	0.00	3.13	4.55	5.69	8.22	9.76	11.61	15.46
	0:45:00	0.00	0.00	2.95	4.31	5.39	8.17	9.69	11.80	15.67
	0:50:00	0.00	0.00	2.79	4.10	5.08	7.96	9.44	11.49	15.27
	0:55:00	0.00	0.00	2.64	3.87	4.81	7.49	8.90	11.01	14.65
	1:00:00	0.00	0.00	2.50	3.65	4.55	7.02	8.36	10.55	14.04
	1:05:00	0.00	0.00	2.39	3.47	4.35	6.59	7.86	10.10	13.47
	1:10:00	0.00	0.00	2.26	3.33	4.19	6.14	7.33	9.35	12.49
	1:15:00	0.00	0.00	2.12	3.15	4.03	5.74	6.84	8.65	11.55
	1:20:00	0.00	0.00	2.00	2.95	3.79	5.30	6.31	7.87	10.50
	1:25:00	0.00	0.00	1.86	2.75	3.50	4.86	5.79	7.13	9.49
	1:30:00	0.00	0.00	1.74	2.55	3.22	4.42	5.25	6.42	8.53
	1:35:00	0.00	0.00	1.62	2.37	2.95	3.99	4.74	5.75	7.63
	1:40:00	0.00	0.00	1.54	2.20	2.76	3.60	4.26	5.15	6.82
	1:45:00	0.00	0.00	1.48	2.07	2.62	3.31	3.92	4.69	6.22
	1:50:00	0.00	0.00	1.43	1.96	2.49	3.08	3.64	4.33	5.73
	1:55:00	0.00	0.00	1.34	1.85	2.37	2.89	3.40	4.01	5.30
	2:00:00	0.00	0.00	1.26	1.75	2.22	2.71	3.19	3.72	4.91
	2:05:00	0.00	0.00	1.13	1.57	2.00	2.45	2.87	3.35	4.41
	2:10:00	0.00	0.00	1.01	1.40	1.77	2.19	2.56	2.98	3.92
	2:15:00	0.00	0.00	0.89	1.23	1.56	1.93	2.27	2.64	3.46
	2:20:00	0.00	0.00	0.78	1.08	1.36	1.70	1.99	2.31	3.03
	2:25:00	0.00	0.00	0.68	0.93	1.17	1.47	1.72	2.01	2.63
	2:30:00	0.00	0.00	0.58	0.79	1.00	1.26	1.47	1.71	2.23
	2:35:00	0.00	0.00	0.49	0.66	0.83	1.05	1.22	1.42	1.85
	2:40:00	0.00	0.00	0.40	0.54	0.67	0.85	0.99	1.14	1.48
	2:45:00	0.00	0.00	0.32	0.43	0.54	0.66	0.77	0.88	1.13
	2:50:00	0.00	0.00	0.26	0.34	0.43	0.50	0.57	0.65	0.83
	2:55:00	0.00	0.00	0.21	0.28	0.36	0.39	0.44	0.49	0.63
	3:00:00	0.00	0.00	0.18	0.24	0.30	0.30	0.35	0.38	0.49
	3:05:00	0.00	0.00	0.15	0.20	0.26	0.25	0.28	0.30	0.38
	3:10:00	0.00	0.00	0.13	0.17	0.21	0.20	0.23	0.23	0.30
	3:15:00	0.00	0.00	0.11	0.14	0.18	0.16	0.19	0.18	0.23
	3:20:00	0.00	0.00	0.09	0.12	0.15	0.13	0.15	0.14	0.18
	3:25:00	0.00	0.00	0.08	0.10	0.12	0.11	0.12	0.11	0.14
	3:30:00	0.00	0.00	0.06	0.08	0.10	0.09	0.10	0.09	0.11
	3:35:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.07	0.09
	3:40:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.07
	3:45:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.06
	3:50:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.03	0.04
	3:55:00	0.00	0.00	0.02	0.02	0.03	0.02	0.03	0.02	0.03
	4:00:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:05:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:10:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points

Stage - Storage Description	Stage [ft]	Area [ft^{2}]	Area [acres]	Volume $\left[\mathrm{ft}^{3}\right]$	Volume [ac-ft]	$\begin{gathered} \hline \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \\ \hline \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							the S-A-V table on
							eeet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).

DRAINAGE MAPS

[^0]: Address maintenance access per comment letter response.

