PRELIMINARY DRAINAGE REPORT FOR THE VILLAS AT CLAREMONT RANCH

November 2020

Prepared for:

Phi Real Estate Services, LLC 200 W. City Center Dr. Ste 200 Pueblo, CO 81003

See comment letter for additional comments.

Prepared By:

ATAMOUN ENGINEERING

321 W. Henrietta Ave, Suite A Woodland Park, CO 80863 719-426-2124

PUDSP-21-001

PRELIMINARY DRAINAGE REPORT THE VILLAS AT CLAREMONT RANCH

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according the criteria established for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

DUCOL A D O L COM		
AC AND L. MILLAND		
David L. Mijares, Colorado PE #40510	Date	2.18.22
For and on behalf of Catamount Engineering		

Developer's Statement:

Premiere Homes Inc. the developer has read and will comply with all of the requirements specified in this drainage report and plan.

PHI	Real Estate Services
Business Nar	ne 1 Q
Ву:	fand with
Title: _Dir	ector of Operations
Address:	200 W. City Center Dr. Ste 200
	Pueblo, CO 81003

El Paso County:

Filed in accordance with the requirements of the El Paso County land Development Code and the Drainage Criteria manual Volumes 1 and 2, and the El Paso County Engineering Criteria Manual, latest revision.

Jennifer Irvine, PE County Engineer/ECM Administrator	Date
Conditions:	
	Change back to previously used County signature block.

PRELIMINARY DRAINAGE REPORT for THE VILLAS AT CLAREMONT RANCH

PURPOSE

The purpose of this drainage report is to identify existing drainage patterns, quantify developed storm water runoff, and establish outfall scenarios from the proposed development. Additionally this analysis will establish compliance with previous drainage studies and provide for water quality and detention of developed runoff.

GENERAL LOCATION AND DESCRIPTION

The subject 10.17 acres is proposed to be platted into 83 residential townhome lots and is located within the southwest ¹/₄ of Section 4, Township 14 South, Range 65 West of the 6th principal meridian El Paso County, Colorado. The parcel was previously platted as tracts G and A, Claremont Ranch Filing No. 7

The parcel is bounded on the north by the East Fork of Sand Creek, on the east by the Claremont Ranch Filing No. 7 single family residential development, on the south by Meadowbrook Parkway and undeveloped tract F, and on the west by Tract I and Marksheffel Road.

The site has been previously stripped and contains little volunteer vegetation besides erosion control cover. The existing terrain generally slopes to the west at a 2% grade. A swale has been formed adjacent to the Marksheffel embankment conveying undeveloped flow overland to the east Fork of Sand Creek. The site lies within the Sand Creek Drainage Basin.

Soils in the development parcel consist predominantly of Blendon sandy loam (Hydrologic Group 'B' soils) and also contains Blakeland loamy sand and Ellicott loamy coarse sand (Hydrologic Group 'A' soils) as determined by the Natural Resources Conservation Service Web Soil Survey. Hydrologic Group B soils were used in analysis.

No portion of the development lies within an F.E.M.A. designated floodplain per FIRM 08041C0756 G, effective 12/07/2018. The revised F.E.M.A. Flood Insurance Rate Map has been provided in the appendix.

EXISTING DRAINAGE CONDITIONS

The site was previously studied in the Final Drainage Report for Claremont Ranch Filing No. 7. Development of Filing No. 7 required analysis and implementation of improvements within the adjacent Lower East Fork of Sand Creek. Improvements were implemented per the Sand Creek Drainage Basin Planning Study and Preliminary Design Report; City of Colorado Springs, El Paso County, Colorado (DBPS), prepared by Kiowa Engineering Corp., revised March 1996. As upstream detention proposed in the DBPS has not been implemented the more conservative FEMA 100-YR Flow was utilized in channel evaluation and improvement. The FEMA analysis assumes

a 100-YR flow of 4,500 cfs through the adjacent reach, while the DBPS estimates a flow of 3,310 cfs with upstream detention. The adjacent Lower East Fork Sand Creek improvements are detailed in the Final Drainage Report for Claremont Ranch Filing no. 7.

The Villas at Claremont Ranch were platted as Tracts 'G' and 'A' with development of Claremont Ranch Filing No. 7 and was identified as 12.21 acre commercial development (basin 7) in the final drainage report. Anticipated runoff from Basin 7 was $Q_5=9.5$ cfs, $Q_{100}=24.4$ in the interim condition and $Q_5=56.0$ cfs, $Q_{100}=96.7$ in the fully developed condition. The Villas at Claremont Ranch lies entirely with the Sand Creek Drainage Basin Planning Study area.

Basin 6 Claremont Ranch Filing No. 7 consists of undeveloped tract F south of Meadowbrook Parkway. The 11.18 basin is proposed for commercial use and generates anticipated runoff of was $Q_5=10.1$ cfs, $Q_{100}=25.8$ in the interim condition and $Q_5=56.0$ cfs, $Q_{100}=96.7$ in the fully developed condition. A temporary 24" culvert crossing was installed with development of Meadowbrook Parkway to convey flows north to Sand Creek. Interim flows will be conveyed in existing swale section developed with Filing No. 7 improvements within the 70' utility and drainage easement located along the west side of the proposed Villas at Claremont Ranch Development. Developed flows will not be accepted onto the Villas at Claremont Ranch and any development scenarios for Tract F will require water quality implementation and full spectrum detention prior to site release across Meadowbrook Parkway. Interim flows defined in the Final Drainage Report for Filing No. 7 will be accepted.

DEVELOPED DRAINAGE BASINS

Developed basins proposed to receive an increase in impervious areas will be routed to an on-site extended detention basin providing full spectrum detention prior to release to the East Fork of Sand Creek. Basins routed through the proposed EDB will be collected in on proposed private roadway sections and collected in a private inlet system. Collected runoff will be conveyed in a private storm system to the EDB. A summary of peak developed runoff for the basins and design points are depicted in the Developed Drainage Plan in the appendix.

Basin 1 consists of perimeter landscape areas directly tributary to the East Fork of Sand Creek and will not be collected in the proposed extended detention basin. Basin 1 contains 2.25 acres and generates runoff of (Q₂=0.2 cfs, Q₅=0.6 cfs, Q₁₀=1.2 cfs, Q₂₅=2.0 cfs, Q₅₀=2.6 cfs, and Q₁₀₀=3.3 cfs). Runoff from Basin 1 will either sheet flow directly to the reach of Sand Creek or be combined with interim condition runoff from Basin 6 (Claremont Ranch Filing No. 7) of Q₅=10.1 cfs, Q₁₀₀=25.8 to the existing riprap rundown to Sand Creek. The swale and rundown installed with filing 7 improvements was developed to convey interim flows from both Basin 6 (tract F, Claremont Ranch Filing No. 7) and Basin 7 (tracts G and A, Claremont Ranch Filing No. 7) with a combined flow of Q₅=19.6 cfs, Q₁₀₀=50.2. Interim flows anticipated in Filing No. 7 are greater than the proposed flows with development of the Villas at Claremont Ranch.

BASINS TRIBUTARY TO EDB

Basins 2-8 consist of the landscape areas, residential townhome lots, and private street improvements tributary to the proposed extended detention basin. Basin 9 consists of rear lots developed within the residential portion of Filing No. 7 tributary to the extended detention basin.

Basin 2 (1.92 Acres, $Q_2=1.3$ cfs, $Q_5=1.9$ cfs, $Q_{10}=2.7$ cfs, $Q_{25}=3.8$ cfs, $Q_{50}=4.6$ cfs, and $Q_{100}=5.6$ cfs) consists of lots and landscape area along the north and east of the development. Flows from basin 2 will be conveyed in a grass swale along the northeast of the development to outfall directly to the proposed detention pond.

Basin 3 (0.76 Acres, $Q_2=1.1$ cfs, $Q_5=1.5$ cfs, $Q_{10}=2.0$ cfs, $Q_{25}=2.5$ cfs, $Q_{50}=2.9$ cfs, and $Q_{100}=3.4$ cfs) consists of townhome lots and roadway improvements tributary to the proposed 5' type R inlet at Design Point 2. Calculations for Carrside Grove street capacity and inlet analysis are provided in the appendix.

Basin 4 (1.00 Acres, $Q_2=1.3$ cfs, $Q_5=1.8$ cfs, $Q_{10}=2.3$ cfs, $Q_{25}=2.9$ cfs, $Q_{50}=3.5$ cfs, and $Q_{100}=4.1$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 3. Calculations for Carrside Grove street capacity and inlet analysis are provided in the appendix.

Basin 5 (0.81 Acres, $Q_2=1.2$ cfs, $Q_5=1.7$ cfs, $Q_{10}=2.2$ cfs, $Q_{25}=2.7$ cfs, $Q_{50}=3.2$ cfs, and $Q_{100}=3.8$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 4. Calculations for Fieldside Way street capacity and inlet analysis are provided in the appendix.

Basin 6 (2.58 Acres, $Q_2=2.9$ cfs, $Q_5=4.0$ cfs, $Q_{10}=5.2$ cfs, $Q_{25}=6.7$ cfs, $Q_{50}=8.0$ cfs, and $Q_{100}=9.4$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 10' type R inlet at Design Point 5. Calculations for Fieldside Way street capacity and inlet analysis are provided in the appendix.

Basin 7 (0.65 Acres, $Q_2=1.0$ cfs, $Q_5=1.4$ cfs, $Q_{10}=1.7$ cfs, $Q_{25}=2.2$ cfs, $Q_{50}=2.6$ cfs, and $Q_{100}=3.0$ cfs) consists of townhome lots, landscape corridors, and roadway improvements tributary to the proposed 5' type R inlet at Design Point 7. Calculations for Greengate Way street capacity and inlet analysis are provided in the appendix.

Basin 8 (0.06 Acres, $Q_2=0.2$ cfs, $Q_5=0.2$ cfs, $Q_{10}=0.3$ cfs, $Q_{25}=0.3$ cfs, $Q_{50}=0.4$ cfs, and $Q_{100}=0.4$ cfs) consists of a small landscape area and private roadway improvements tributary to the proposed 5' type R inlet at Design Point 6. Calculations for Greengate Way street capacity and inlet analysis are provided in the appendix.

Basin 9 (0.67 Acres, $Q_2=0.1$ cfs, $Q_5=0.3$ cfs, $Q_{10}=0.5$ cfs, $Q_{25}=0.9$ cfs, $Q_{50}=1.2$ cfs, and $Q_{100}=1.5$ cfs) consists of the rear yards of the residential portion of Filing No. 7 tributary to the Villas at Claremont development. Runoff from this area will sheet flow across the proposed landscape tract and be conveyed in a vegetated swale to the proposed EDB.

Include discussion on how flows will exit sump locations during early grading, prior to inlets being built.

CONVEYANCE

Flows at DP-7 will be collected in a 5' Type R inlet and outfall in an 18" RCP at 0.50% to the inlet at DP-6. Combined flows at DP-A of $Q_5=1.6$ cfs, $Q_{100}=3.4$ will be conveyed north in an 18" RCP at 1.31% to the proposed manhole at DP-B.

Flows from DP-5 will be collected in a 5' Type R inlet and outfall in an 18" RCP at 0.50% to the inlet at DP-4. Flows from DP-4 will be collected in a 5' Type R inlet. Combined flows from DP-4 and DP-5 will be conveyed in an 18" RCP at 0.50% to the manhole at DP-B

Combined outflow from the manhole at DP-B will be conveyed in a 24" RCP storm sewer at 0.50% to the manhole at DP-C and combined with flows intercepted in the 5' Type R inlet at DP-3. Combined flows from DP-C of $Q_5=6.1$ cfs, $Q_{100}=19.0$ cfs will be conveyed in a 24" RCP at 0.75% to the 5' Type R inlet at DP-D. Combined flows at DP-D of $Q_5=9.8$ cfs, $Q_{100}=21.9$ will be conveyed in a 24" RCP at 8.07% to pond outfall within the proposed EDB.

EXTENDED DETENTION BASIN

Proposed EDB 'B will require a WQCV of 0.132 acre-feet and a total storage volume of 0.712 acre-ft. The pond provides 0.720 acre-ft of storage below the emergency outfall. The EDB will be designed to meet current Urban Drainage design criteria for forebay, outfall structure, and micropool to be presented in final construction drawings for the development. Proposed EDB 'B will outfall through a 12" RCP storm sewer directly to the East Branch of Sand Creek. The Basin outfalls developed runoff of ($Q_5=1.1$ cfs, $Q_{100}=5.2$ cfs) to Design Point E. The emergency spillway will consist of a 20' wide trapezoidal weir constructed of soil riprap conveying the undetained 100-YR flow from Design Point 1 of 26.1 cfs at a maximum depth of 0.5'. Emergency overflow will be conveyed directly to the East Branch of Sand Creek. See Appendix for calculations.

The improved trail adjacent to Sand Creek has not been installed adjacent to the pond. The area will be graded to represent anticipated trail installation but will be constructed from pond overflow through channel toe with soil riprap with seeded topsoil cover. Future installation of trail segment is anticipated to be concrete trail along top of channel embankment. Spillway is intended only for emergency outflow path to adjacent channel. Major storm event is conveyed through outlet structure and conveyed through pipe system to channel bottom. Final design will provide additional detail on conveyance.

The area of the development tributary to proposed EDB 'B' includes the following:	

Tract/Use	Area	% Impervious
Townhome	2.50	80%
Roadways	1.57	100%
Open Space	3.71	10%
Rear Yards (Filing 7)	0.67	30%
Total Area	8.45	49% Ave % Impervious

Address maintenance access per comment letter response.

Address the interim condition with the TSB after early grading. Provide SDI or MHFD calculation sheet showing drain times will work with TSB design. (A smaller TSB may be needed.)

WATER QUALITY/4-STEP PROCESS

4-STEP PROCESS

STEP 1: EMPLOY RUNOFF REDUCTION PRACTICES

The development addresses Low Impact Development strategies primarily through the utilization of landscape swales within rear lots directing runoff from rooflines and patios through swales with minimal longitudinal grade prior to outfall to the private street system.

STEP 2: STABILIZE DRAINAGEWAYS

The ultimate recipient of runoff from the site is the East Branch of Sand Creek. The adjacent reach of Sand Creek was improved to ultimate DBPW recommendations with the development of Filing No. 7.

STEP 3: PROVIDE WATER QUALITY CAPTURE VOLUME

On-site flow is directed to a proposed extended detention basin providing water quality capture volume and attenuated release rates prior to release off-site. Release from the extended detention basin is less than assumed in the Final Drainage Report for Filing No. 7 as development was assumed to be commercial in nature and no detention scenario was initially proposed.

STEP 4: CONSIDER NEED FOR INDUSTRIAL AND COMMERCIAL BMP'S

A Grading, Erosion Control, and Stormwater Quality Plan and narrative have been submitted concurrently for the development and will be subject to county approval prior to any soil disturbance. The erosion control plan included specific source control BMP's as well defined overall site management practices for the construction period. No industrial or commercial uses are proposed with the Villas at Claremont Ranch development. No temporary batch plant operations are proposed with residential development.

COST ESTIMATE

Private Improvements Non-reimbursable

	<u>T0</u>		\$ 114,161	
	15%	% CONT	INGENCY	\$ 14,891
	SU	втота	L	\$ 99,270
Extended Detention Basin	1 LS	@\$	15,000/LS	\$ 15,000
24" RCP	359 LF	<u>@</u> \$	55/LF	\$ 19,745
18"RCP	381 LF	<u>@</u> \$	45/LF	\$ 17,145
15" RCP	97 LF	<i>@</i> \$	40/LF	\$ 3,880
TYPE I MH	3 EA	@ \$	4,000/EA	\$ 12,000
10' TYPE R INLET	1 EA	<i>@</i> \$	7,500/EA	\$ 7,500
5' TYPE R INLET	5 EA	(a)\$	4,800/EA	\$ 24,000

DRAINAGE FEE CALCULATION

Drainage Fees were accounted for with the original platting of the parcel as tracts G and A of Claremont Ranch Filing No. 7 (see appendix).

DRAINAGE METHODOLOGY

This drainage report was prepared in accordance to the criteria established in the City of Colorado Springs/El Paso County Drainage Criteria Manual Volumes 1 and 2, as revised May 2015.

The rational method for drainage basin study areas of less than 100 acres was utilized in the analysis. For the Rational Method, flows were calculated for the 2, 5, 10, 25, 50, and 100-year recurrence intervals. The average runoff coefficients, 'C' values, are taken from Table 6-6 and the Intensity-Duration-Frequency curves are taken from Figure 6-5 of the City of Colorado Springs/El Paso County Drainage Criteria Manual. Time of concentration for overland flow and storm drain or gutter flow are calculated per Section 3.2 of the City Drainage Criteria Manual. Calculations for the Rational Method are shown in the Appendix of this report.

SUMMARY

The Villas at Claremont Ranch Development exhibits drainage patterns consistent with those anticipated in the Final Drainage Report for Filing No. 7. Volume of water released from the site anticipated in the Filing 7 Final Drainage Report has been significantly reduced due to the parcel developing as residential rather commercial and implementation of on-site water quality and full spectrum detention facilities as required by current criteria. Private Storm system is designed to intercept the full 100-year runoff event and convey to existing east branch of sand creek. Development of the parcel is in conformance of current El Paso County criteria and will not adversely affect downstream properties or facilities.

REFERENCES:

El Paso County, Colorado Engineering Division Drainage Criteria Manual Volume 1, (1990), revised Oct 2018

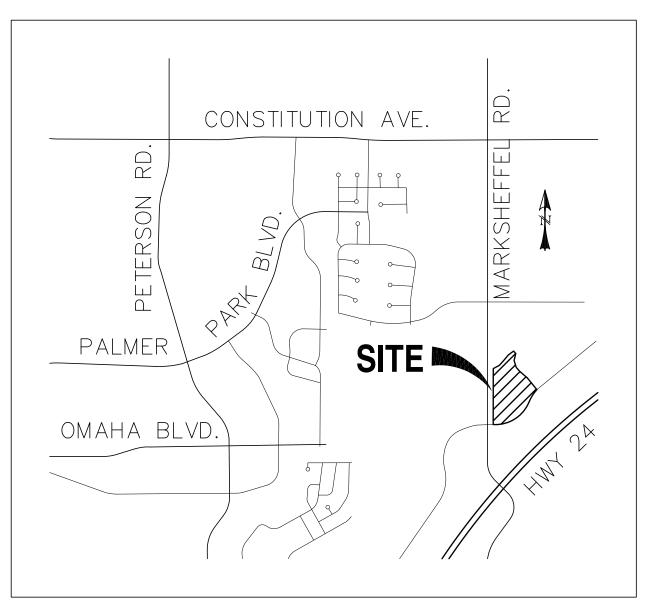
El Paso County, Colorado Engineering Division Drainage Criteria Manual Volume 2, November 2002

El Paso County, Colorado Engineering Division Drainage Criteria Manual Update, (2015)

El Paso County Engineering Criteria Manual, (2004), revised Oct 2020

"Claremont Ranch Subdivision Filing No. 7 Preliminary and Final Drainage Report", prepared by Engineering and Surveying, Inc., dated May 2004.

"Final Master Development Drainage Plan and Preliminary Drainage Plan for the Claremont Ranch", prepared by Matrix Design Group, Inc., revised July 2002.

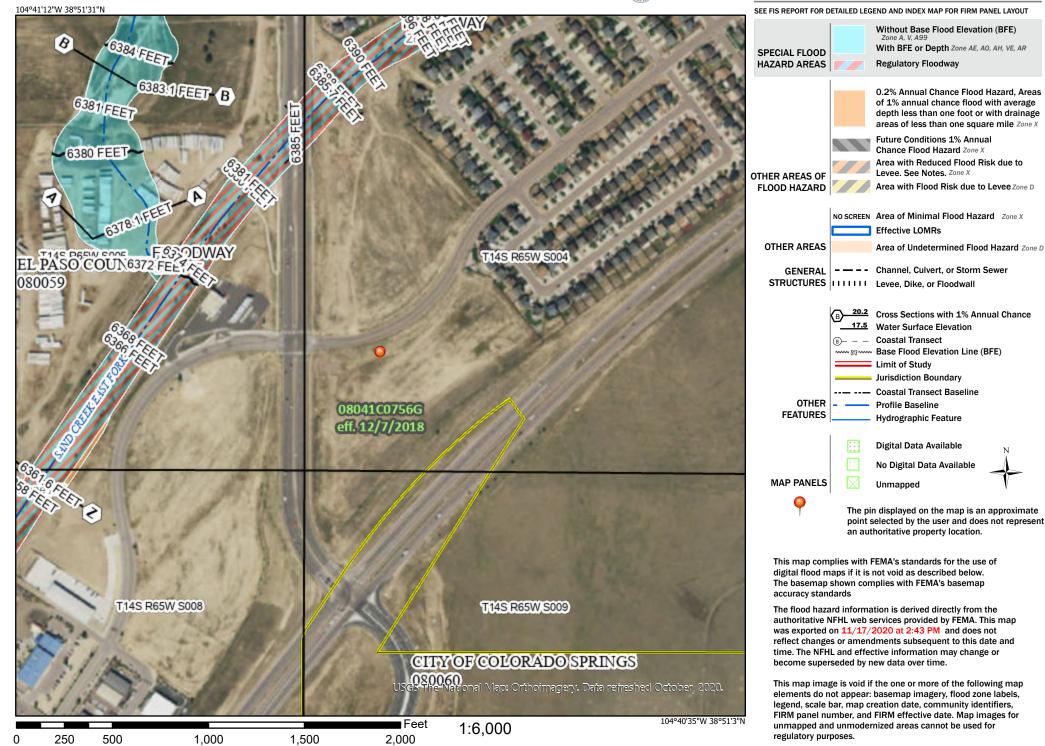

"Sand Creek Drainage Basin Planning Study Preliminary Drainage Report", prepared by Kiowa Engineering Corporation, revised March 21996.

Preliminary and Final Drainage Report for International Bible Society Filing No. 1" prepared by URS Consultants, dated August, 1988.

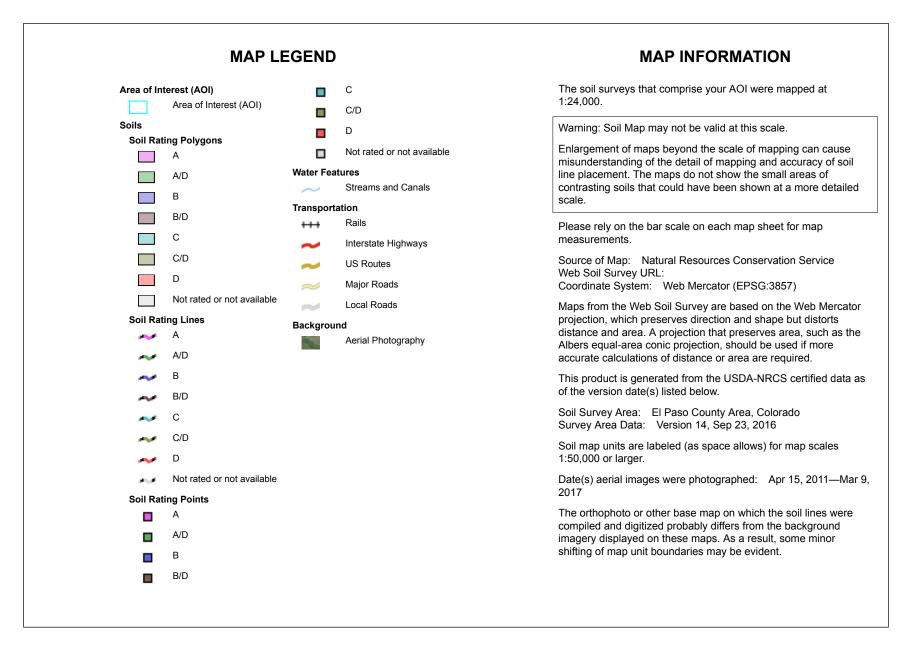
Flood Insurance rate map 08041C0756 F, as revised to reflect LOMR Case No. 08-08-0630P

Natural Resources Conservation Service Web Soil Survey

APPENDIX



National Flood Hazard Layer FIRMette



Legend

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	1.6	16.2%
10	Blendon sandy loam, 0 to 3 percent slopes	В	7.1	74.2%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	0.9	9.6%
Totals for Area of Inter	rest	9.6	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

CLAREMONT RANCH SUBDIVISION FILING NO. 7 PRELIMINARY & FINAL DRAINAGE REPORT

May 2004

Prepared for:

SWAT X, LLC. 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903 (719) 471-1742

Prepared by:

Engineering and Surveying, Inc. 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903 (719) 955-5485

Project #01-006

DRAINAGE AND BRIDGE FEES

The Claremont Ranch Subdivision, Filing No. 7, site is located entirely within the Sand Creek Drainage Elasin. The 2004 Drainage and Bridge Fees per El Paso County for this site are listed below.

Drainage Fee:	\$ 15,000/Impervious acre

Eridge Fee: \$ 1,336/Impervious acre

The impervious area for this subdivision was calculated from the site plan since this is a residential project.

The total platted acreage for the site is 17.79 acres consisting of 16.61 residential acres with an impervious rating of 44% and 1.18 open space acres at 7% impervious. Therefore, the calculated impervious area is 7.38 acres (42%).

Drainage Fee:	\$ 15,000/Impervious acre x 42% Impervious =	\$ 6,222/ac.	
Bridge Fee:	<pre>\$ 1,336/Impervious acre x 42% Impervious =</pre>	\$ 554/ac.	
	Total fees due per platted acreage =	\$ 6,776/ac.	

The total fee obligation for Claremont Ranch Subdivision Filing No. 7 is summarized as follows:

Drainage fees for subdivision: \$ 6,222/ac x 17.79 ac =	\$ 110,689.38
Bridge fees for subdivision: \$ 554/ac x 17.79 ac =	<u>\$ 9,855.66</u>
Total fees for subdivision: \$ 6,776/ac x 17.79 ac =	\$ 120,545.04

Bridge Fees in the amount of \$9,855.66 are due with final platting of Filing No. 7.

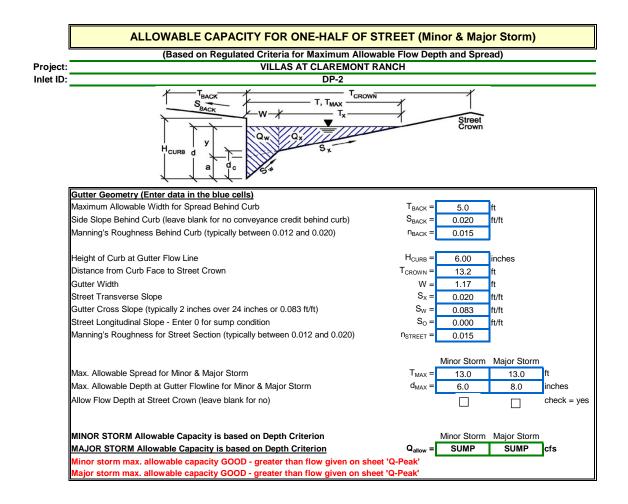
Claremont Ranch Filings #1-7 – Overall Drainage Fee Calculations:

Filing #	Required Drainage Fees	Sand Creek & Sub- tributary Improvement Construction Costs
1	\$316,744.50	\$376,000.00
2	\$197,274.00	\$355,850.00
3	\$200,700.00	\$0.00
4	\$293,100.00	\$433,250.00
5	\$140,285.00	\$517,145.00
6	\$283,228.50	\$0.00
7	\$110,689.38	\$282,000.00
Total	\$1,542,011.38	\$1,964,245.00

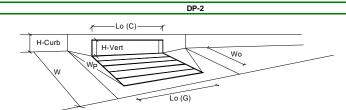
											CONVEYANCE TC					TT INTENSITY							TOTAL FLOWS						
BASIN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Length	Height	TI	Length	Height	$\mathbf{C}_{\mathbf{V}}$	Slope	Velocity	тс	TOTAL	I_2	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
	(Acres)							(ft)	(ft)	(min)	(ft)	(ft)		(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
1	2.25	0.05	0.12	0.20	0.30	0.34	0.39	100	4	12.0	1030	12	7	1.2%	0.8	22.7	34.7	1.8	2.3	2.6	3.0	3.4	3.8	0.2	0.6	1.2	2.0	2.6	3.3
LANDSCAPED	2.25	0.05	0.12	0.20	0.30	0.34	0.39																						
2 HARDSCAPE	1.92 0.51	0.25 0.79	0.30 0.81	0.37 0.83	0.45 0.85	0.48 0.87	0.52 0.88	100	4	9.8	451	10	7	2.2%	1.0	7.2	17.0	2.7	3.3	3.9	4.4	5.0	5.6	1.3	1.9	2.7	3.8	4.6	5.6
LANDSCAPED	1.41	0.05	0.12	0.20	0.30	0.34	0.39																						
3	0.76	0.41	0.45	0.49	0.54	0.57	0.59	46	2.5	4.8	440	7	20	1.6%	2.5	2.9	7.7	3.6	4.5	5.3	6.0	6.8	7.6	1.1	1.5	2.0	2.5	2.9	3.4
LOTS	0.76	0.41	0.45	0.49	0.54	0.57	0.59																						
4	1.00	0.41	0.45	0.49	0.54	0.57	0.59	49	2	5.5	197	3	7	1.5%	0.9	3.8	10.2	3.3	4.1	4.8	5.5	6.1	6.9	1.3	1.8	2.3	2.9	3.5	4.1
LOTS	1.00	0.41	0.45	0.49	0.54	0.57	0.59				138	2	20	1.4%	2.4	1.0													
5	0.81	0.41	0.45	0.49	0.54	0.57	0.59	51	2	5.7	176	2.5	20	1.4%	2.4	1.2	6.9	3.7	4.7	5.5	6.2	7.0	7.9	1.2	1.7	2.2	2.7	3.2	3.8
LOTS	0.81	0.41	0.45	0.49	0.54	0.57	0.59																						
6	2.58	0.37	0.41	0.45	0.51	0.54	0.57	91	2	9.8	441	10	20	2.3%	3.0	2.4	12.2	3.1	3.8	4.5	5.1	5.7	6.4	2.9	4.0	5.2	6.7	8.0	9.4
LOTS	2.26	0.41	0.45	0.49	0.54	0.57	0.59																						
LANDSCAPED	0.32	0.05	0.12	0.20	0.30	0.34	0.39																						
7 LOTS	0.65 0.65	0.41 0.41	0.45 0.45	0.49 0.49	0.54 0.54	0.57 0.57	0.59 0.59	54	2	5.9	136	2	20	1.5%	2.4	0.9	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.0	1.4	1.7	2.2	2.6	3.0
8 HARDSCAPE	0.06 0.05	0.73 0.79	0.75 0.81	0.77 0.83	0.80 0.85	0.82 0.87	0.83 0.88	10	0.5	1.3	38	0.5	20	1.3%	2.3	0.3	5.0 MINIMUM	4.1	5.2	6.0	6.9	7.8	8.7	0.2	0.2	0.3	0.3	0.4	0.4
LOTS	0.01	0.41	0.45	0.49	0.54	0.57	0.59																						
9	0.67	0.05	0.12	0.20	0.30	0.34	0.39	87	3	11.8	451	10	15	2.2%	2.2	3.4	15.1	2.8	3.5	4.1	4.7	5.3	5.9	0.1	0.3	0.5	0.9	1.2	1.5
REAR YARD	0.67	0.05	0.12	0.20	0.30	0.34	0.39																						

Calculated by: DLM Date: 10/1/2017

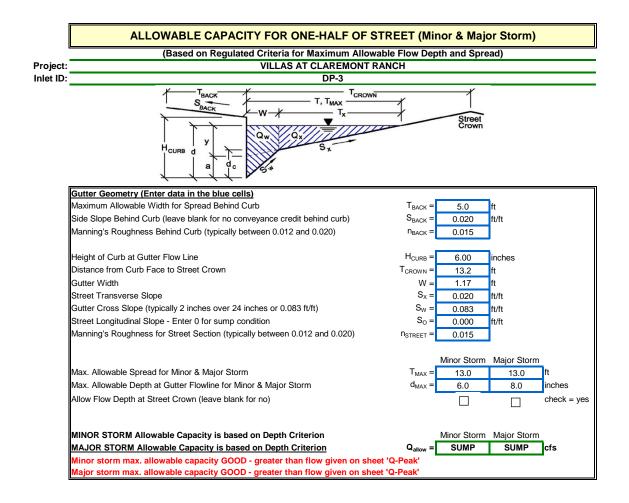
				WEIG	HTED			ТТ			INTEN	ISITY				Т	OTAL	FLOW	'S	
DESIGN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	TOTAL	I_2	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q 5	Q ₁₀	Q ₂₅	Q50	Q10
POINT	(Acres)							(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s
7 BASIN 7	0.65	0.41	0.45	0.49	0.54	0.57	0.59	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.0	1.4	1.7	2.2	2.6	3.0
6 BASIN 8	0.06	0.73	0.75	0.77	0.80	0.82	0.83	5.0	4.1	5.2	6.0	6.9	7.8	8.7	0.2	0.2	0.3	0.3	0.4	0.4
5 BASIN 6	2.58	0.37	0.41	0.45	0.51	0.54	0.57	12.2	3.1	3.8	4.5	5.1	5.7	6.4	2.9	4.0	5.2	6.7	8.0	9.4
4 BASIN 5	0.81	0.41	0.45	0.49	0.54	0.57	0.59	6.9	3.7	4.7	5.5	6.2	7.0	7.9	1.2	1.7	2.2	2.7	3.2	3.
3 BASIN 4	1.00	0.41	0.45	0.49	0.54	0.57	0.59	10.2	3.3	4.1	4.8	5.5	6.1	6.9	1.3	1.8	2.3	2.9	3.5	4.
2 BASIN 3	0.76	0.41	0.45	0.49	0.54	0.57	0.59	7.7	3.6	4.5	5.3	6.0	6.8	7.6	1.1	1.5	2.0	2.5	2.9	3.
1	8.45	0.33	0.38	0.43	0.49	0.52	0.55	17.0	2.7	3.3	3.9	4.4	5.0	5.6	7.5	10.7	14.1	18.5	22.2	26
BASIN 2	1.92	0.25	0.30	0.37	0.45	0.48	0.52													
BASIN 9 DP-D	0.67 5.86	0.05 0.39	0.12 0.44	0.20 0.48	0.30 0.53	0.34 0.56	0.39 0.58													

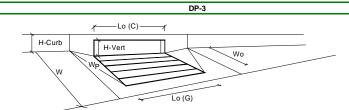

Calculated by: DLM

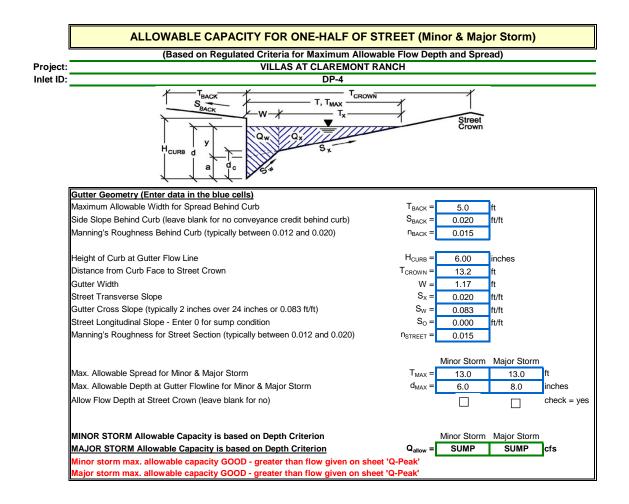
Date: 10/1/2017

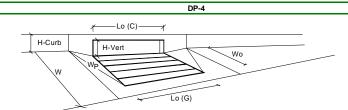

				WEIG	HTED			TT			INTE	ISITY				Т	OTAL	FLOW	ſS	
DESIGN	AREA TOTAL	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	TOTAL	I ₂	I ₅	I ₁₀	I ₂₅	I ₅₀	I ₁₀₀	Q ₂	Q5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀
POINT	(Acres)						•	(min)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)	(c.f.s.)
Α	0.71	0.44	0.48	0.51	0.56	0.59	0.61	6.9	3.7	4.7	5.5	6.3	7.0	7.9	1.2	1.6	2.0	2.5	3.0	3.4
DP-6	0.06	0.73	0.75	0.77	0.80	0.82	0.83													
DP-7	0.65	0.41	0.45	0.49	0.54	0.57	0.59													
В	4.10	0.39	0.43	0.47	0.53	0.56	0.58	12.2	3.1	3.8	4.5	5.1	5.7	6.4	4.8	6.7	8.6	11.0	13.1	15.2
DP-5	2.58	0.37	0.41	0.45	0.51	0.54	0.57													
DP-4	0.81	0.41	0.45	0.49	0.54	0.57	0.59													
DP-A	0.71	0.44	0.48	0.51	0.56	0.59	0.61													
С	5.10	0.39	0.43	0.48	0.53	0.56	0.58	12.2	3.1	3.8	4.5	5.1	5.7	6.4	6.1	8.5	10.8	13.8	16.4	19.0
DP3	1.00	0.41	0.45	0.49	0.54	0.57	0.59													
DP-B	4.10	0.39	0.43	0.47	0.53	0.56	0.58													
D	5.86	0.39	0.44	0.48	0.53	0.56	0.58	12.2	3.1	3.8	4.5	5.1	5.7	6.4	7.1	9.8	12.5	15.9	18.9	21.9
DP-2	0.76	0.41	0.45	0.49	0.54	0.57	0.59													
DP-C	5.10	0.39	0.43	0.48	0.53	0.56	0.58													
E POND OUTFALL															2.6	4.3	6.5	9.7	10.0	10.4

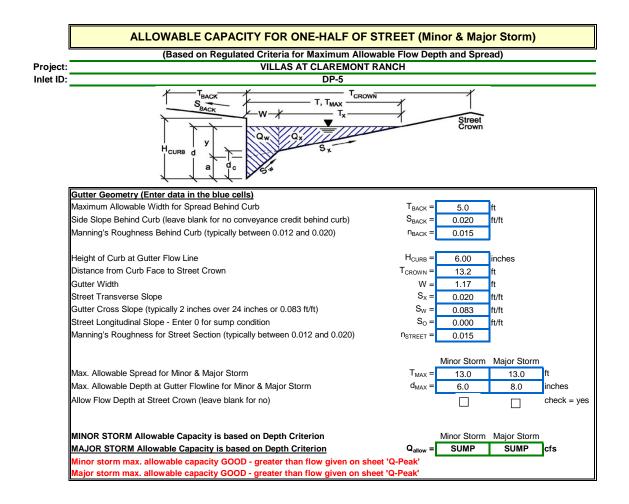
Calculated by: DLM

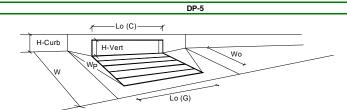

Date: 10/1/2017

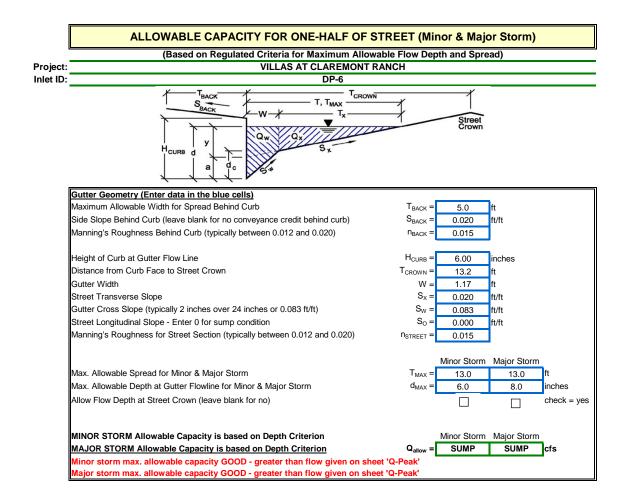

Project = Inlet ID =

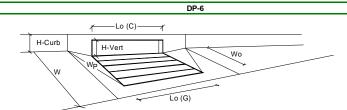

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.6	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.5	3.4	cfs

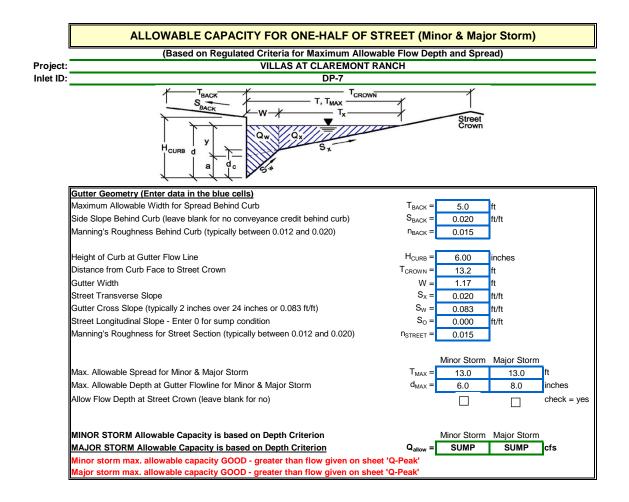

Project = Inlet ID =

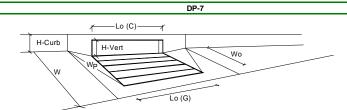

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.6	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.8	4.1	cfs


Project = Inlet ID =


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.6	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.7	3.8	cfs

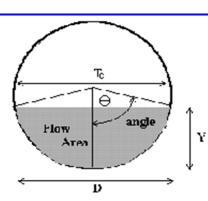

Project = Inlet ID =


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.2	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.2	9.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	4.0	9.4	cfs


Project = Inlet ID =

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.6	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	0.2	0.4	cfs

Project = Inlet ID =

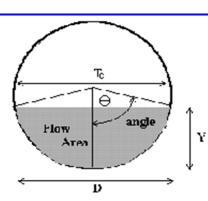


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.6	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.4	3.0	cfs

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH

Pipe ID: DP-A

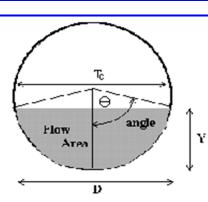


Design Information (Input)		0.0056	c. (c.
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.40	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.52</td><td>radians</td></theta<3.14)<>	Theta =	1.52	radians
Flow area	An =	0.83	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.28	ft
Flow depth	Yn =	0.71	ft
Flow velocity	Vn =	4.12	fps
Discharge	Qn =	3.40	cfs
Percent Full Flow	Flow =	45.6%	of full flow
Normal Depth Froude Number	Fr _n =	0.98	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.51</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.51	radians
Critical flow area	Ac =	0.81	sq ft
Critical top width	Tc =	1.50	ft
Critical flow depth	Yc =	0.70	ft
Critical flow velocity	Vc =	4.18	fps
Critical Depth Froude Number	Fr _c =	1.00	

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH

Pipe ID: DP-A



Design Information (Input)			
Pipe Invert Slope	So =	0.0130	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.40	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	12.01	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.30</td><td>radians</td></theta<3.14)<>	Theta =	1.30	radians
Flow area	An =	0.58	sq ft
Top width	Tn =	1.44	ft
Wetted perimeter	Pn =	1.94	ft
Flow depth	Yn =	0.55	ft
Flow velocity	Vn =	5.85	fps
Discharge	Qn =	3.40	cfs
Percent Full Flow	Flow =	28.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.62	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.51</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.51	radians
Critical flow area	Ac =	0.81	sq ft
Critical top width	Tc =	1.50	ft
Critical flow depth	Yc =	0.70	ft
Critical flow velocity	Vc =	4.18	fps
Critical Depth Froude Number	Fr _c =	1.00	

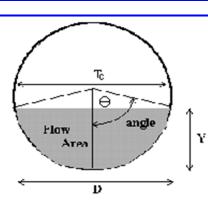
CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: VILLAS AT CLAREMONT RANCH


Pipe ID: DP-4

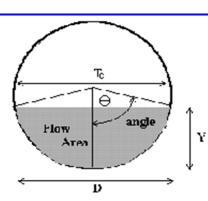
Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.80	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.58</td><td>radians</td></theta<3.14)<>	Theta =	1.58	radians
Flow area	An =	0.90	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.37	ft
Flow depth	Yn =	0.76	ft
Flow velocity	Vn =	4.24	fps
Discharge	Qn =	3.80	cfs
Percent Full Flow	Flow =	51.0%	of full flow
Normal Depth Froude Number	Fr _n =	0.97	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.56</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.56	radians
Critical flow area	Ac =	0.88	sq ft
Critical top width	Tc =	1.50	ft
Critical flow depth	Yc =	0.75	ft
Critical flow velocity	Vc =	4.34	fps
Critical Depth Froude Number	Fr _c =	1.00	7

Project: VILLAS AT CLAREMONT RANCH


Pipe ID: DP-B

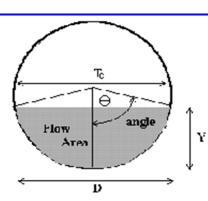
Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	15.20	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	16.04	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.16</td><td>radians</td></theta<3.14)<>	Theta =	2.16	radians
Flow area	An =	2.62	sq ft
Top width	Tn =	1.67	ft
Wetted perimeter	Pn =	4.31	ft
Flow depth	Yn =	1.55	ft
Flow velocity	Vn =	5.81	fps
Discharge	Qn =	15.20	cfs
Percent Full Flow	Flow =	94.8%	of full flow
Normal Depth Froude Number	Fr _n =	0.82	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.99</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.99	radians
Critical flow area	Ac =	2.36	sq ft
Critical top width	Tc =	1.83	ft
Critical flow depth	Yc =	1.41	ft
Critical flow velocity	Vc =	6.44	fps
Critical Depth Froude Number	Fr _c =	1.00	7

Project:	VILLAS	AT CL	AREMON	T RANCH


Pipe ID: DP-7

Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.00	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.45</td><td>radians</td></theta<3.14)<>	Theta =	1.45	radians
Flow area	An =	0.75	sq ft
Top width	Tn =	1.49	ft
Wetted perimeter	Pn =	2.18	ft
Flow depth	Yn =	0.66	ft
Flow velocity	Vn =	3.99	fps
Discharge	Qn =	3.00	cfs
Percent Full Flow	Flow =	40.3%	of full flow
Normal Depth Froude Number	Fr _n =	0.99	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.45</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.45	radians
Critical flow area	Ac =	0.75	sq ft
Critical top width	Tc =	1.49	ft
Critical flow depth	Yc =	0.66	ft
Critical flow velocity	Vc =	4.02	fps
Critical Depth Froude Number	Fr _c =	1.00	

Project: VILLAS AT CLAREMONT RANCH


Pipe ID: DP-C

Design Information (Input)		0.0075	C. 10.
Pipe Invert Slope	So =	0.0075	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	19.00	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	19.64	cfs
Octoversite and Name at Flow Occudition			
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.19</td><td>radians</td></theta<3.14)<>	Theta =	2.19	radians
Flow area	An =	2.13	sq ft
Top width	Tn =	1.62	ft
Wetted perimeter	Pn =	4.39	ft
Flow depth	Yn =	1.58	ft
Flow velocity	Vn =	7.12	fps
Discharge	Qn =	19.00	cfs
Percent Full Flow	Flow =	96.7%	of full flow
Normal Depth Froude Number	Fr _n =	0.98	subcritical
Colouistion of Critical Flow Condition			
Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.18</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.18	radians
Critical flow area	Ac =	2.10	sq ft
Critical top width	Tc =	1.65	ft
Critical flow depth	Yc =	1.03	ft
Critical flow velocity	Vc =	7.19	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

Project:	VILLAS A	T CLAREMON	IT RANCH

Pipe ID: DP-D

Design Information (Input)			
Pipe Invert Slope	So =	0.0807	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	21.90	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	64.44	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.37</td><td>radians</td></theta<3.14)<>	Theta =	1.37	radians
Flow area	An =	1.18	sq ft
Top width	Tn =	1.96	ft
Wetted perimeter	Pn =	2.75	ft
Flow depth	Yn =	0.80	ft
Flow velocity	Vn =	18.54	fps
Discharge	Qn =	21.90	cfs
Percent Full Flow	Flow =	34.0%	of full flow
Normal Depth Froude Number	Fr _n =	4.21	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.31</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.31	radians
Critical flow area	Ac =	2.81	sq ft
Critical top width	Tc =	1.48	ft
Critical flow depth	Yc =	1.67	ft
Critical flow velocity	Vc =	7.81	fps
Critical Depth Froude Number	Fr _c =	1.00	7

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ft

0.00

Override

Stage (ft)

Length (ft)

Width (ft)

Area (ft²)

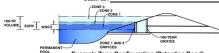
Override Area (ft²)

Г 16 T 0.000

Area (acre)

Volume (ft³)

Volume (ac-ft)


Stage (ft)

Depth Increment =

Stage - Storage Description

Top of Micropool

Example Zone Configuration (Retention Pond)

Water

atershed Information		
Selected BMP Type =	EDB	
Watershed Area =	7.78	acres
Watershed Length =	1,300	ft
Watershed Length to Centroid =	1,130	ft
Watershed Slope =	0.015	ft/ft
Watershed Imperviousness =	49.00%	percent
Percentage Hydrologic Soil Group A =	25.8%	percent
Percentage Hydrologic Soil Group B =	74.2%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capit	ol Building

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graphi Floceuc	iie.
Water Quality Capture Volume (WQCV) =	0.132	acre-feet
Excess Urban Runoff Volume (EURV) =	0.415	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.360	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.518	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.653	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.855	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.014	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.225	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.632	acre-feet
Approximate 2-yr Detention Volume =	0.300	acre-feet
Approximate 5-yr Detention Volume =	0.408	acre-feet
Approximate 10-yr Detention Volume =	0.531	acre-feet
Approximate 25-yr Detention Volume =	0.598	acre-feet
Approximate 50-yr Detention Volume =	0.635	acre-feet
Approximate 100-yr Detention Volume =	0.712	acre-feet

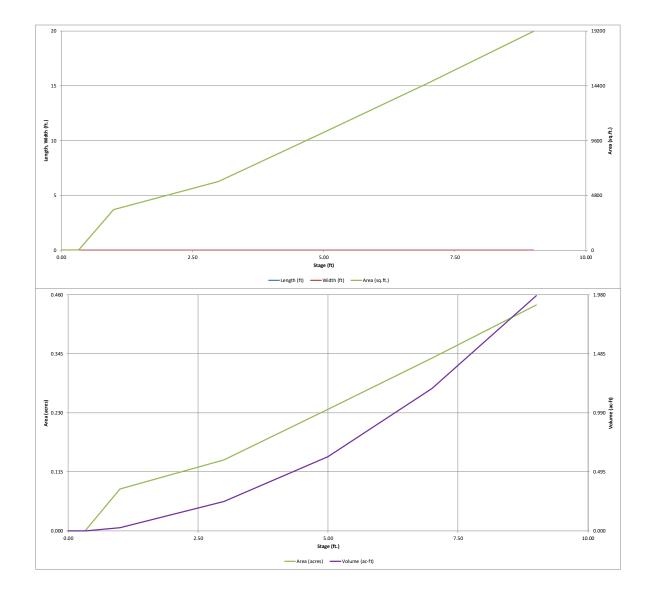
Zone 1 Volume (WQCV) =	0.1
Zone 2 Volume (EURV - Zone 1) =	0.2
Zone 3 Volume (100-year - Zones 1 & 2) =	0.2
Total Detention Basin Volume =	0.7
Initial Surcharge Volume (ISV) =	us
Initial Surcharge Depth (ISD) =	US
Total Available Detention Depth (H _{total}) =	US
Depth of Trickle Channel (H _{TC}) =	US
Slope of Trickle Channel (S _{TC}) =	us
Slopes of Main Basin Sides (Smain) =	US
Basin Length-to-Width Ratio (R _{L/W}) =	US

ft 2 Sur ft Sur D n Le ft w ft 2 Vo ft ³

		Top of Micropool		0.00	-	 	16	0.000		
		ISV		0.33	-	 	16	0.000	5	0.000
		FLOOR-6384		1.00	-	 	3,553	0.082	1,201	0.028
		6386		3.00	-	 	6,020	0.138	10,774	0.247
		6388		5.00	-	 	10,299	0.236	27,093	0.622
		6390		7.00		 	14,646	0.336	52,038	1.195
		6392		9.00	-	 	19,186	0.440	85,870	1.971
		0352		5.00		 	15,100	0.110	05,070	1.5/1
Optional Use	r Overrides					 				
Optional Osc	acre-feet				-	 				
	acre-feet					 				
1.19	inches					 				
1.50	inches					 				
1.75	inches					 				
2.00	inches					 				
2.25	inches					 				
2.52	inches					 				
	inches					 				
	1				-	 				
						 			1	
					-	 			1	
					-	 				
						 			1	
					-	 				
					-	 				
					-	 			1	
					-	 				
					-	 				
					-	 				
					-	 				
					-	 				
					-	 				
					-	 				
					-	 				
					-	 				
					-	 -				
					-	 -				
					-	 				
					-	 				
					-	 -				
			-		-	 -				
					-	 				
					-	 -				
					-	 				
					-	 		1		
					-	 				
					-	 				
			-		-	 -				
					-	 				
					-	 				
					-	 				
			-		-	 				
					-	 -				
					-	 				
			1 1		1 1	 				
			-		-	 			-	
						 		1		
					-	 				
			1 1		1 1	 				
					-	 				
					1 1	 				
					-	 -				
					-	 		1		
					-	 				
			-		-	 -			I	

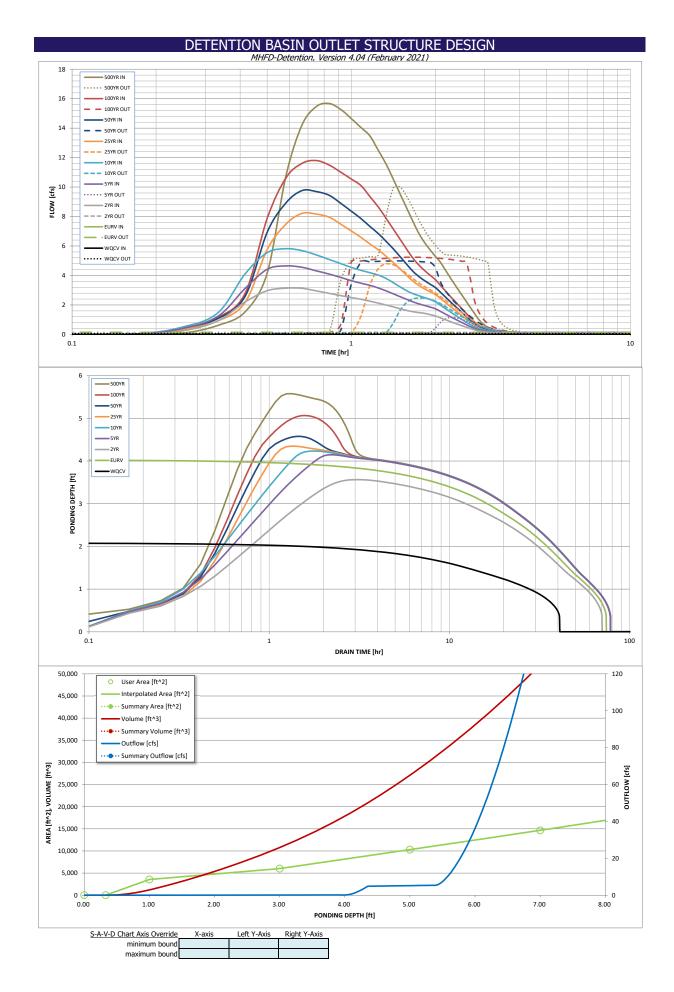
Approximate 50-yr Detention Volume =	
Approximate 100-yr Detention Volume =	
Define Zones and Basin Geometry	
Zone 1 Volume (WQCV) =	
Zone 2 Volume (EURV - Zone 1) =	
Zone 3 Volume (100-year - Zones 1 & 2) =	

d Basin Geometry		
Zone 1 Volume (WQCV) =	0.132	acre-feet
Volume (EURV - Zone 1) =	0.283	acre-feet
(100-year - Zones 1 & 2) =	0.298	acre-feet
Detention Basin Volume =	0.712	acre-feet
Surcharge Volume (ISV) =	user	ft ³
al Surcharge Depth (ISD) =	user	ft
Detention Depth $(H_{total}) =$	user	ft
of Trickle Channel $(H_{TC}) =$	user	ft
of Trickle Channel (S _{TC}) =	user	ft/ft
Main Basin Sides (S _{main}) =	user	H:V
th-to-Width Ratio $(R_{L/W}) =$	user	


Initial Surcharge Area $(A_{ISV}) =$	user	ft
rcharge Volume Length $(L_{ISV}) =$	user	ft
rcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
ength of Basin Floor $(L_{FLOOR}) =$	user	ft
Nidth of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft
olume of Basin Floor (V_{FLOOR}) =	user	ft
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft

 Volume of Main Basin (V_{MABN})
 user
 ft³

 Calculated Total Basin Volume (V_{total})
 user
 acce-feet


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

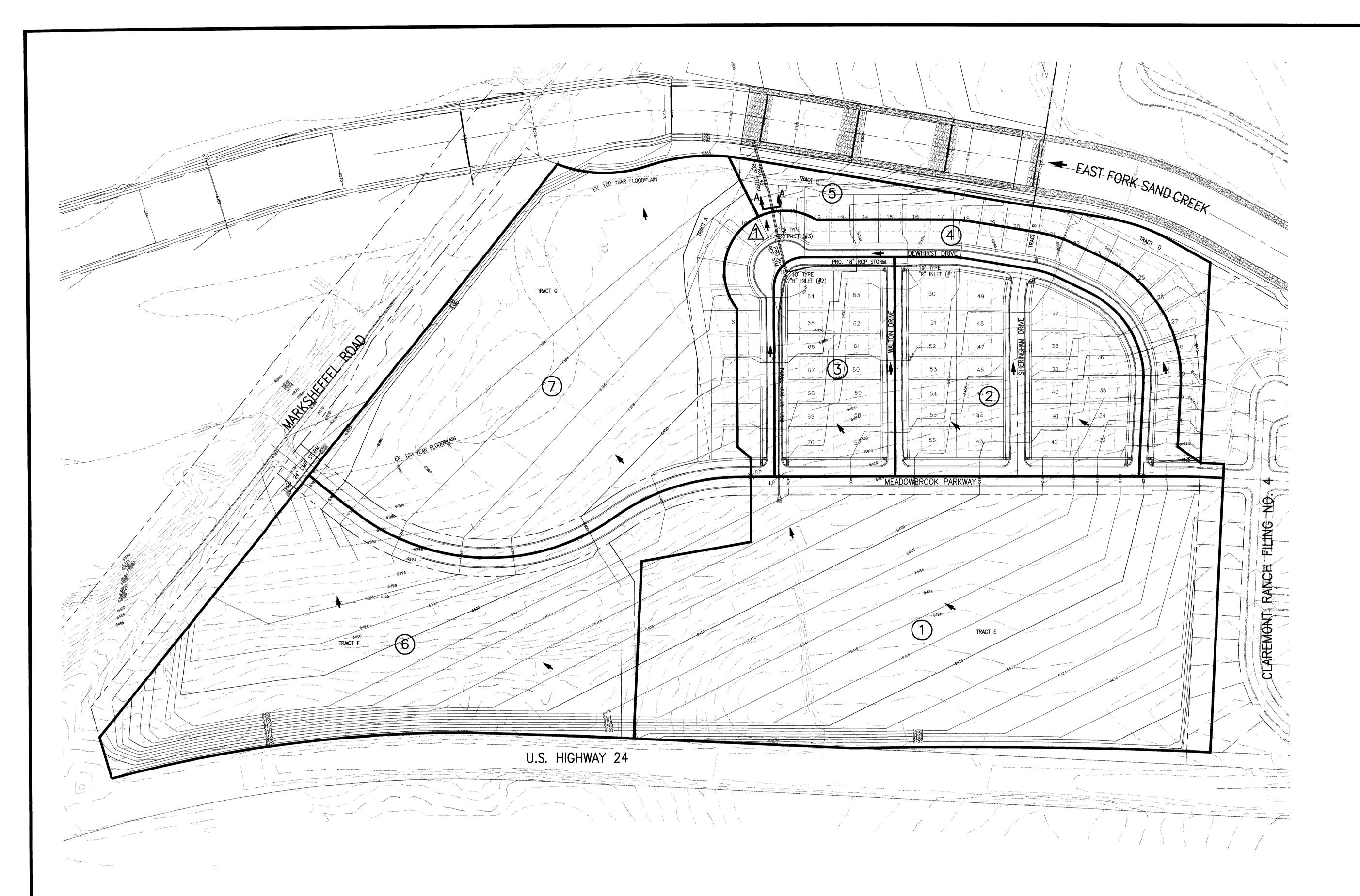
	Project:	VILLAS AT CLAREN		FD-Detention, Vers	sion 4.04 (Februar	y 2021)				
Description Description Description Description Description Vertex Description Description Description Description Description Description Vertex Description Description Description Description Description Description Description Vertex Description Description </td <td></td>										
Wind	ZONE 2 ZONE 1						Outlet Type			
Image: Control in the second of the				Zone 1 (WQCV)						
Description Data (Display Labor (Play		100-YEAR ORIFICE		Zone 2 (EURV)	4.03	0.283	Orifice Plate			
United and analysis of the control of the contro of the control of the control of the control of the co	PERMANENT ORIFICES			Zone 3 (100-year)	5.37	0.298	Weir&Pipe (Restrict)			
Understand Offen Intern Internet Internet in Understand Offen Enternet Internet I	Example 2016	•			Total (all zones)	0.712				
Underdan Office Deimer NA mder Underdan Office Central 4 NA met User funct Under dan Office Central 40 User A value to basin bottom at Dag = 0.1) User funct User funct <td></td> <td>-</td> <td></td> <td></td> <td>curfaca)</td> <td>Undor</td> <td>drain Orifica Aroa -</td> <td></td> <td></td> <td></td>		-			curfaca)	Undor	drain Orifica Aroa -			
List Lock Child Filte still, on ar more till ogen filter og Hoder og Hyn, Kurkalt us data MOCY andre EMPY in a stillneshtilde BMF Child Pareneshtilde BMF Digt in still og ar more of till open og Hoder og Hyn, Kurkalt us data MOCY andre EMPY in a stillneshtilde BMF Still og and till open og Hoder og Hyn Still og Andre Hyne		-			surface)			-		
Inter of Lower Office Area using Wind Performance Office Person Office Person Office Area and Performed Stage = 01, Control Person Office Person Office Area and Performed Stage = 01, Number Stage = 0]	
Darb in top of Zone using online Beller, Differ Hate the basis holtman at Stage = 0 f) mices Bigling at all which are beller belle										
Oncine Patter: Office Veneral Spaces are 10.10 prints Space and Total Acts of Each Office Number of Each Office				5	,		•			
Orifice Pase: Orifice Area per Nor = 0.88 ps, include (damater = 1-1/16 inclue) Editors for an end of pase in the end of pase in				i bottom at Stage –	010)		•			
Segre of other centers (in No. 3 No. 4 Segre of other centers (in No. 6 Control (centers) Control (centers) No. 6 No. 6 <td></td> <td></td> <td></td> <td>er = 1-1/16 inches)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				er = 1-1/16 inches)						
Segre of other centers (in No. 3 No. 4 Segre of other centers (in No. 6 Control (centers) Control (centers) No. 6 No. 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
Segre of other centers (in No. 3 No. 4 Segre of other centers (in No. 6 Control (centers) Control (centers) No. 6 No. 6 <td>Han Tanak, Chara and Takal Ana of Fash Oriford</td> <td>Davis (assessible and for</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Han Tanak, Chara and Takal Ana of Fash Oriford	Davis (assessible and for								
Spage of othics Centrol (b) 0.08 <t< td=""><td>User Input: Stage and Total Area of Each Orlifice</td><td></td><td></td><td></td><td>Row 4 (optional)</td><td>Row 5 (optional)</td><td>Row 6 (optional)</td><td>Row 7 (optional)</td><td>Row 8 (ontional)</td><td>1</td></t<>	User Input: Stage and Total Area of Each Orlifice				Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (ontional)	1
Office Area (pa, inches) 0.88 0.88 0.88 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0	Stage of Orifice Centroid (ft)	· · · · · · · · · · · · · · · · · · ·						(opuonal)		1
Stage of Onice Control (h) International (h) International (h) International (h) User Innut: Vertical Office Conduct or Restanguar) Calculated Parameters for Vertical Office Calculated Parameters for Vertical Office Depth at top of Zone using Vertical Office Innut: Vertical Office Demoter NA NA NA Wertical Office Conduct or Restanguar) Calculated Parameters for Vertical Office NA NA User Innut: Vertical Office Demoter NA NA NA NA Vertical Office Demoter NA NA NA NA User Innut: Vertical Office Demoter NA NA NA NA User Innut: Vertical Office Demoter Cane 3 Wer NA NA NA Overflow Wer (Ditaglow with Flot of Septed At 000 NA fte date to basin bottom at Stage = 0 h) Height of Grate Upper Edget, ht = 4.03 NA Overflow Wer Front Edge Height, ho = Cane 3 Wer NA ft (relative to basin bottom at Stage = 0 h) User Innut: Vertical Office Centrol Calculated Parameters for Vertical NA Overflow Wer foret Edge Height, hor = Cane 3 Wer NA ft (relative to basin bottom at Stage = 0 h) User Innut: Vertins Ver		0.88	0.88							
Stage of Onice Control (h) International (h) International (h) International (h) User Innut: Vertical Office Conduct or Restanguar) Calculated Parameters for Vertical Office Calculated Parameters for Vertical Office Depth at top of Zone using Vertical Office Innut: Vertical Office Demoter NA NA NA Wertical Office Conduct or Restanguar) Calculated Parameters for Vertical Office NA NA User Innut: Vertical Office Demoter NA NA NA NA Vertical Office Demoter NA NA NA NA User Innut: Vertical Office Demoter NA NA NA NA User Innut: Vertical Office Demoter Cane 3 Wer NA NA NA Overflow Wer (Ditaglow with Flot of Septed At 000 NA fte date to basin bottom at Stage = 0 h) Height of Grate Upper Edget, ht = 4.03 NA Overflow Wer Front Edge Height, ho = Cane 3 Wer NA ft (relative to basin bottom at Stage = 0 h) User Innut: Vertical Office Centrol Calculated Parameters for Vertical NA Overflow Wer foret Edge Height, hor = Cane 3 Wer NA ft (relative to basin bottom at Stage = 0 h) User Innut: Vertins Ver										1
Oritica Area (a, Index) Calculated Parameters for Vertical Orifice Index Calculated Parameters for Vertical Orifice Index User Input: Vertical Orifice Dameter NA <		Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
User Input: Vertical Orifice (Circular or Rectangelar) Catalated Parameters for Vertical Orifice (No. Selected) No. Selected										
Invert of Vertical Orifice Init: Selected	onnee Area (sq. menes)									1
Invest of verical Onfree N/A N/A <td>User Input: Vertical Orifice (Circular or Rectangu</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ice</td>	User Input: Vertical Orifice (Circular or Rectangu									ice
Depth at top of Zone using Vertical Onfrice = N/A N/A <td>The state of Manhael And</td> <td></td> <td></td> <td>ft (rolative to be '</td> <td>bottom at Ct</td> <td>0.61)</td> <td>stical Orifica Arra-</td> <td></td> <td></td> <td>a2</td>	The state of Manhael And			ft (rolative to be '	bottom at Ct	0.61)	stical Orifica Arra-			a2
Vertical Orifice Diameter = N/A N/A Inches User Input: Overflow Weir (Dropbox with Flat or Stoped Grate and Outlet Pipe OR Rectangular/Trapazoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Overflow Weir Front Edge Height, Ho 4.00 N/A feet Overflow Weir Stope Ength 4.00 N/A feet Overflow Weir Grost Edge Height, Ho 4.00 N/A feet Overflow Weir Stope Ength 4.00 N/A feet Overflow Weir Grost Edge Height, Ho 10.00 N/A feet Overflow Weir Stope Ength 4.00 N/A feet Overflow Weir Grost Edge Height, Ho 11.14 N/A feet Overflow Reading Feet 5.57 N/A feet Overflow Weir Grost Edge Height, Ho 11.14 N/A feet 0.00 N/A feet Overflow Weir Grost Edge Height, Ho 11.14 N/A feet 0.00 N/A feet Overflow Reading Fee 10.00 N/A ft diatance biow basin botom at Stage = 0 ft) Calculated Parameters for Outlet Pipe 0.014E Orifice Area a 0.048 N/A ft ²				· ·	-	,		-	-	-
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe Or Sloped Grate and Outlet Pipe) Calculated Parameters for Outlet Weir Overflow Weir Front Edge Height, He = 4.00 N/A ft (relative to basin bottom at Slage = 0 tt) Height of Grate Upper Edge, Ht, etc. 4.00 N/A feet Overflow Weir Front Edge Height, He = 4.00 N/A feet Overflow Weir Slope = 2.0.01 N/A feet Overflow Weir Sore Slope = 0.00 N/A feet Overflow Grate Open Area V/D Ord/roft Area 2.3.4.1 N/A feet Overflow Weir Grate Dipe w/ Pow Redriction Plate Core Cate N/A Overflow Grate Open Area V/D Detris 5.7 N/A th" User Input: Outlet Pipe w/ Pow Redriction Plate Core Restrictor Plate, or Restrictor Plate Orffice, Restrictor Plate Orffice, Restrictor Plate N/A feet Overflow Grate Open Area N/D Detris 5.7 N/A th" User Input: Outlet Pipe w/ Pow Redriction Plate Core Restrictor Plate, or Restrictor Plate Orffice, Restrictor Plate N/A th" feet 0.30 N/A th" 0.00 N/A th" 0.00 N/A th" 0.00 N/A th" 0.00 N/A					bottom at Stage -	vertice		IN/A	ПЛА	icci
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Overflow Weir Front Edge Height, Ho 4.03 N/A ft (elative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H ₁ 4.03 N/A feet Overflow Weir Front Edge Length = 4.00 N/A feet Overflow Weir Stope Length = 4.00 N/A Overflow Weir Grate Stope = 0.00 N/A feet Overflow Grate Open Area vi Do-yr Ordice Area = 23.41 N/A Overflow Grate Open Area vi Do-yr Ordice Area = 23.41 N/A feet Overflow Grate Open Area wi Debris = 5.57 N/A ft ² Detris Ougging % = Type C Grate 50% N/A % Overflow Grate Open Area wi Debris = 5.57 N/A ft ² User Input: Outlet Pipe w/ Erow Restriction Pite C(rouler Concernet) Sole Calculated Parameters for Outlet Pipe W/ Erow Restriction Pite Zone 3 Restrictor Not Selected 7 7 N/A ft ² Depth to Invert of Outlet Pipe Invert = 7.00 Inches Half-Central Angle of Restrictor Pite over Selected 7 7 7 7 7 7 7 7 7 7 7 <t< td=""><td>User Input: Overflow Weir (Dropbox with Flat or</td><td></td><td></td><td>angular/Trapezoidal 1</td><td>Weir (and No Outle</td><td><u>et Pipe)</u></td><td></td><td></td><td></td><td>eir_</td></t<>	User Input: Overflow Weir (Dropbox with Flat or			angular/Trapezoidal 1	Weir (and No Outle	<u>et Pipe)</u>				eir_
Overflow Weir Front Edge Length + Overflow Weir Grate Siope - Horiz Length of Weir Sides + Overflow Weir Grate Siope - Debrs Oging % -	Overflow Weir Front Edge Height Ho -			ft (rolativo to bacin h	ottom at Stago - 0 fl	 Height of Grat 	e Unner Edge H. –			foot
Overflow Weir Gate Siges = Horiz. Length of Weir Sides = Debrs Clogging % 0.00 N/A H:V Grate Open Area / 100-yr Ortice Area = Overflow Grate Open Area w/o Debris = Debrs Clogging % 23.1 N/A n² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Ortice, Restrictor Plate, or Restangular Ortice) Outlet Pipe w/ Flow Restriction Plate (Circular Ortice), Restrictor Plate, or Restangular Ortice) Outlet Pipe w/ Flow Restriction Plate (Circular Ortice, Restrictor Plate, or Restangular Ortice) Outlet Pipe w/ Flow Restriction Plate (Circular Ortice), Restrictor Plate, Ortice, Restrictor Plate, NA 12.00 Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Outlet Pipe V/ Flow Restrictor Plate, NA 12.00 N/A n² User Input: Emergency Spillway (Restangular or Tapezoida) Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = 1.00 feet Spillway Crest Length = 1.00 feet Outlet Ortice Area = 0.32 Outlet Area = 0.32					ottom at stage – 0 n	-			-	
Overflow Grate Öpen Area w/ Debris $\overline{\text{Type C Grate N/A}}$ Debris Clogging % = $\overline{\text{S0W}}$ N/A $\overline{\text{N/A}}$ \overline{\text{N/A}}\overline{\text{N/A}} <th< td=""><td></td><td></td><td></td><td></td><td>G</td><td></td><td></td><td></td><td></td><td></td></th<>					G					
Debris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Tool 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0 0.50 N/A inches Outlet Orifice Centrol a Tool 3 Restrictor Not Selected Outlet Pipe Diameter = 12.00 N/A inches Outlet Orifice Centrol a Tool 3 Restrictor Not Selected Not Selected 7.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.74 N/A feet Spillway Intert Stage = 5.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Oepth 0.32 arces Spillway Intert Stage = 1.00 feet Basin Area at Top of Freeboard = 0.32 arces Spillway Inter Stage = 1.00 feet 1.10 arces 0.32 arces Cuted Hydrograph Kabu(me (arce-ft) N/A N/A 1.10 arces 0.32 arces Cuted Hydrograph Notime (arce-ft) N/A N/A 1.10 arces	Horiz. Length of Weir Sides =			feet	0	verflow Grate Oper	n Area w/o Debris =			
List in the first of the construction of the constructin of the construction of the construction of the constru						Overflow Grate Ope	en Area w/ Debris =	5.57	N/A	ft²
Depth to Invert of Outlet Pipe Outlet Pipe Diameters Zone 3 Restrictor Not Selected Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Not Selected Outlet Orifice Area 0.48 N/A Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Na Na	Debris Clogging % =	50%	N/A	%						
Depth to Invert of Outlet Pipe Outlet Pipe Diameters Zone 3 Restrictor Not Selected Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Not Selected Outlet Orifice Area 0.48 N/A Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Not Selected Outlet Orifice Area 0.33 NA Restrictor Na Na	User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	strictor Plate, or Re	ctangular Orifice)		C	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla	ate
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = 12.00 N/A Inches Outlet Orfice Centrol = 0.33 N/A feet Restrictor Plate Height Above Pipe Invert = 7.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.74 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Freetoard Spillway Invert Stage = 5.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.32 feet Spillway Crest Length 20.00 feet Stage at Top of Freeboard = 0.32 acres Spillway Crest Length 400 H:V Basin Area at Top of Freeboard = 0.32 acres Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.32 acres Design Storm Return Period = 0.00 feet 0.320 0.415 0.320 0.415 0.320 0.416 0.32 acres CuHP Rund Volume (acret, H) 0.132 0.415 0.360 0.518 0.653 0.855 1.014 1.225 1.632 CUHP Rund Volume (acret, H)	•			1						
Restrictor Plate Height Above Pipe Invert = 7.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.74 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Crest Length = 5.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.32 feet Spillway Ind Stopes 4.00 H/V Basin Area at Top of Freeboard = 0.32 feet Spillway End Stopes 1.00 feet Basin Volume at Top of Freeboard = 0.32 acres Routed Hydrograph Results The user can override the default CLHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). CutHP Rondf Volume (acreft) = N/A N/A 0.320 0.518 0.653 0.855 1.014 1.225 1.632 OPTIONAL Overfide redevelopment Teak Q (cfs) = N/A N/A 0.1 0.8 1.4 2.9 3.8 5.1 7.4 1.02 OPTIONAL Overfide redevelopment Pak Q (cfs) = N/A N/A 0.1 0.1	Depth to Invert of Outlet Pipe =			ft (distance below ba	sin bottom at Stage =	= 0 ft) C	Outlet Orifice Area =			ft²
User Input: Emergency Spillway (Invert Stage Spillway Invert Stage Spillway Crest Length = 20.00 Calculated Parameters for Spillway Invert Stage Spillway Crest Length = 20.00 Freeboard above Max Water Surface = 0.32 Freeboard above Max Water Surface = 0.32 Spillway Crest Length = 20.00 Freeboard above Max Water Surface = 0.32 Spillway Crest Length = 20.00 Freeboard above Max Water Surface = 1.00 Freeboard above Max Water Surface = 1.10 Arces a			N/A	1					-	
Spillway Invert Stage 5.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.32 feet Spillway Cest Length = Spillway Eds Slopes = Freeboard above Max Water Surface = 20.00 feet Stage at Top of Freeboard = 6.72 feet Spillway End Slopes = Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.32 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). No N/A N/A 1.19 1.50 1.75 2.00 2.25 3.14 CUHP Runoff Volume (arce-ft) = 0.132 0.415 0.360 0.518 0.653 0.855 1.014 1.225 1.632 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.1 0.8 1.4 2.9 3.8 5.1 7.4 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.10 0.18 0.37 0.49 0.666 0.96 Predevelopment Nuh Peak (Ordis) =	Restrictor Plate Height Above Pipe Invert =	7.00	l	inches	Half-Cen	itral Angle of Restri	ctor Plate on Pipe =	1.74	N/A	radians
Spillway Invert Stage 5.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.32 feet Spillway Cest Length = Spillway Eds Slopes = Freeboard above Max Water Surface = 20.00 feet Stage at Top of Freeboard = 6.72 feet Spillway End Slopes = Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.32 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). No N/A N/A 1.19 1.50 1.75 2.00 2.25 3.14 CUHP Runoff Volume (arce-ft) = 0.132 0.415 0.360 0.518 0.653 0.855 1.014 1.225 1.632 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.1 0.8 1.4 2.9 3.8 5.1 7.4 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.10 0.18 0.37 0.49 0.666 0.96 Predevelopment Nuh Peak (Ordis) =	User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillwav	
Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 0.32 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 1.10 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). CUHP Runoff Volume (acre-ft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.32 0.415 0.360 0.518 0.653 0.855 1.014 1.225 1.632 CUHP Predevelopment Peak Q (cfs) = N/A N/A 0.1 0.8 1.4 2.9 3.8 5.1 7.4 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.10 0.18 0.37 0.49 0.66 5.2 10.0 Predevelopment Peak (gr (cfs) = N/A N/A <td></td> <td></td> <td>ft (relative to basin</td> <td>bottom at Stage =</td> <td>0 ft)</td> <td>Spillway [</td> <td>Design Flow Depth=</td> <td></td> <td>1</td> <td></td>			ft (relative to basin	bottom at Stage =	0 ft)	Spillway [Design Flow Depth=		1	
Freeboard above Max Water Surface 1.00 feet Basin Volume at Top of Freeboard = 1.10 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). One-Hour Rainfall Depth (in) CUHP Redevelopment Peak (C) (5) N/A										

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

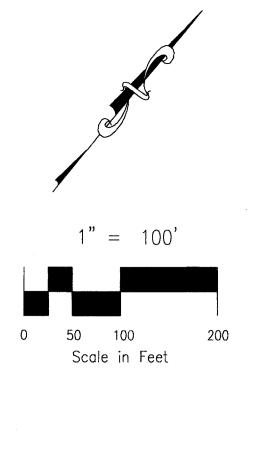
	Inflow Hydrographs The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 1111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00
	0:15:00	0.00	0.00	0.25	0.41	0.51	0.34	0.43	0.42	0.62
	0:20:00	0.00	0.00	0.93	1.24	1.48	0.93	1.09	1.16	1.53
	0:25:00	0.00	0.00	2.20	3.12	4.11	2.17	2.59	2.79	4.16
	0:30:00	0.00	0.00	2.96	4.42	5.55	5.75	6.93	7.88	10.75
	0:35:00	0.00	0.00	3.14 3.13	4.65 4.55	5.81 5.69	7.48 8.22	8.92 9.76	10.62 11.61	14.22 15.46
	0:45:00	0.00	0.00	2.95	4.35	5.39	8.17	9.69	11.80	15.46
	0:50:00	0.00	0.00	2.79	4.10	5.08	7.96	9.44	11.49	15.27
	0:55:00	0.00	0.00	2.64	3.87	4.81	7.49	8.90	11.01	14.65
	1:00:00	0.00	0.00	2.50	3.65	4.55	7.02	8.36	10.55	14.04
	1:05:00	0.00	0.00	2.39	3.47	4.35	6.59	7.86	10.10	13.47
	1:10:00	0.00	0.00	2.26	3.33	4.19	6.14	7.33	9.35	12.49
	1:15:00 1:20:00	0.00	0.00	2.12	3.15	4.03	5.74	6.84	8.65	11.55
	1:25:00	0.00	0.00	2.00	2.95	3.79 3.50	5.30 4.86	6.31 5.79	7.87	10.50 9.49
	1:30:00	0.00	0.00	1.00	2.75	3.30	4.60	5.25	6.42	8.53
	1:35:00	0.00	0.00	1.62	2.37	2.95	3.99	4.74	5.75	7.63
	1:40:00	0.00	0.00	1.54	2.20	2.76	3.60	4.26	5.15	6.82
	1:45:00	0.00	0.00	1.48	2.07	2.62	3.31	3.92	4.69	6.22
	1:50:00	0.00	0.00	1.43	1.96	2.49	3.08	3.64	4.33	5.73
	1:55:00 2:00:00	0.00	0.00	1.34	1.85	2.37	2.89	3.40	4.01	5.30
	2:00:00	0.00	0.00	1.26	1.75	2.22	2.71 2.45	3.19 2.87	3.72 3.35	4.91 4.41
	2:10:00	0.00	0.00	1.13	1.37	1.77	2.45	2.56	2.98	3.92
	2:15:00	0.00	0.00	0.89	1.23	1.56	1.93	2.27	2.64	3.46
	2:20:00	0.00	0.00	0.78	1.08	1.36	1.70	1.99	2.31	3.03
	2:25:00	0.00	0.00	0.68	0.93	1.17	1.47	1.72	2.01	2.63
	2:30:00	0.00	0.00	0.58	0.79	1.00	1.26	1.47	1.71	2.23
	2:35:00	0.00	0.00	0.49	0.66	0.83	1.05	1.22	1.42	1.85
	2:40:00 2:45:00	0.00	0.00	0.40	0.54	0.67	0.85	0.99	1.14 0.88	1.48
	2:50:00	0.00	0.00	0.32	0.43	0.54	0.66	0.57	0.65	0.83
	2:55:00	0.00	0.00	0.21	0.28	0.36	0.39	0.44	0.49	0.63
	3:00:00	0.00	0.00	0.18	0.24	0.30	0.30	0.35	0.38	0.49
	3:05:00	0.00	0.00	0.15	0.20	0.26	0.25	0.28	0.30	0.38
	3:10:00	0.00	0.00	0.13	0.17	0.21	0.20	0.23	0.23	0.30
	3:15:00	0.00	0.00	0.11	0.14	0.18	0.16	0.19	0.18	0.23
	3:20:00 3:25:00	0.00	0.00	0.09	0.12	0.15	0.13	0.15	0.14	0.18
	3:30:00	0.00	0.00	0.06	0.10	0.12	0.09	0.12	0.09	0.14
	3:35:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.07	0.09
	3:40:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.07
	3:45:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.06
	3:50:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.03	0.04
	3:55:00 4:00:00	0.00	0.00	0.02	0.02	0.03	0.02	0.03	0.02	0.03
	4:00:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

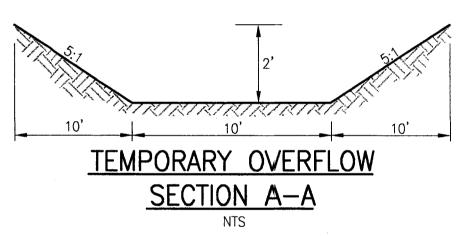

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
	-						
							-
							-
	-						
	_						_
							_
							1
]
							4
							4
	_						_
							_
	-						
							_
							_
							_
							-
							_
							_
							_
	-						
							_
							_
	_						_
							-
							-
							4
							4
]
							4
						<u> </u>	-
]
							J

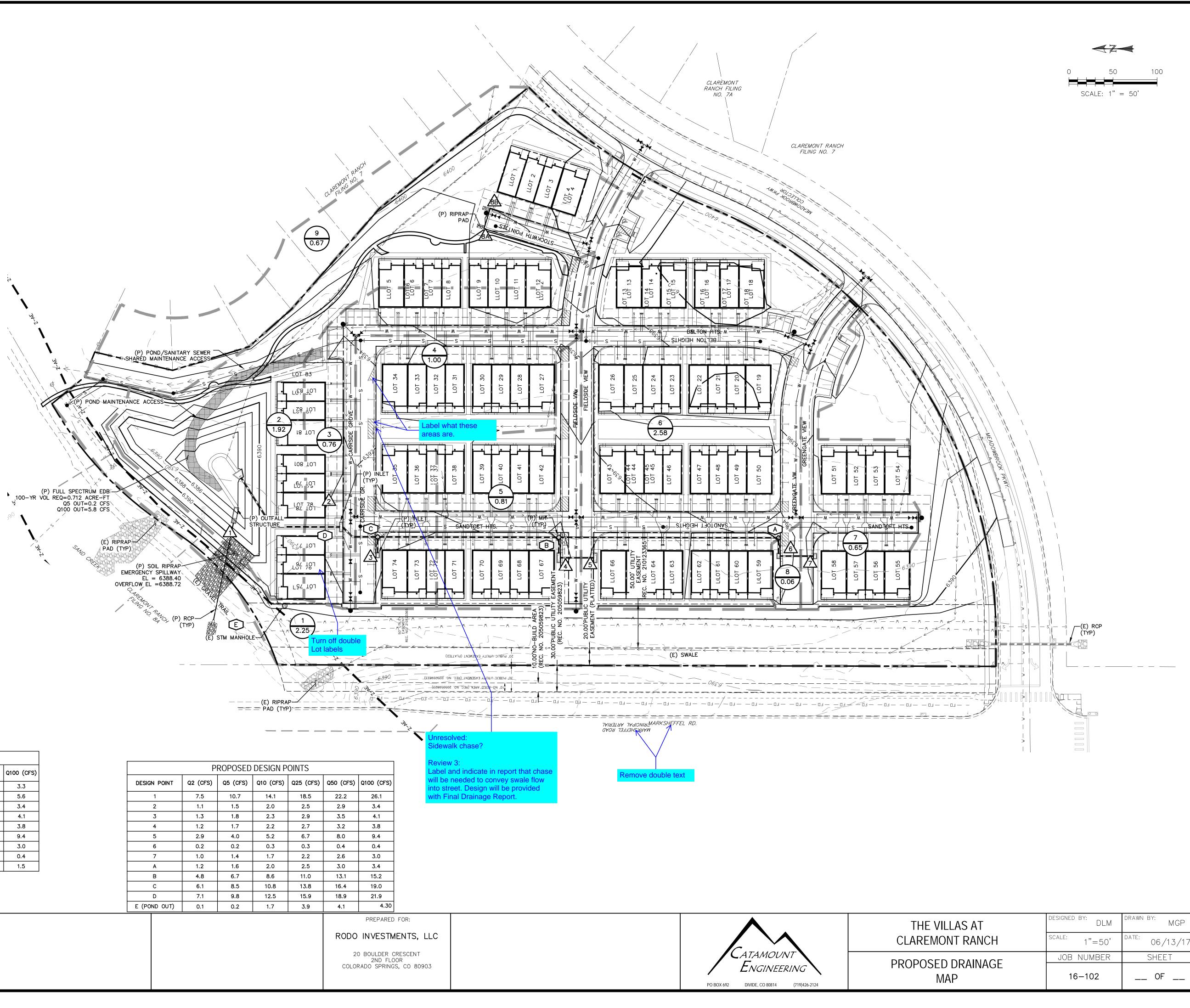
DRAINAGE MAPS


	IONS:				1
NO.	DATE:	BY:	DESCRIPTION:	APPROVED BY:	DATE:

	TIM D. McCONNELL, COLORADO P.E. NO. 33797		
		FOR AND ON BEHALF OF ENGINEERING AND SURVEYING INC. (ESI)	<i>ENG</i> 2 (71

<u>LEGEND</u>

EXISTING CONTOURS-MNR (2')	มะกับของสมบาร เหตุญาณหมู่หาย หากรุงและการเป็น (ประเทศ)
EXISTING CONTOURS-MJR (10')	สารสูงไปกล่างประ อรูปการรูประวบรูประ เทศสารสุปที่สอบกัน จะเหตุ (())การรู
PROPOSED CONTOURS-MNR (2')	
PROPOSED CONTOURS-MJR (10")	
BASIN BOUNDARY	
BASIN DESIGNATOR DESIGN POINT DESIGNATOR	$\begin{pmatrix} 1 \\ \uparrow \end{pmatrix}$
DIRECTION OF FLOW	►
HIGH POINT	× HP
LOW POINT	× LP


BASIN TABLE

#	AC	Q5 (cfs)	Q100 (cfs)
1	15.60	35.6	77.5
2	5.15	11.1	24.9
3	2.77	65	14.6
4	3.36	7.9	18.1
5	2.43	5.8	13.1
6	11.18	60.4	90.5
7	12.21	56.0	96.7

DESIGN POINT TABLE

#	AC	Q5 (cfs)	Q100 (cfs)
1	26.88	58.1	128.0

	CLAREMONT RANCH FILING NO. 7							
INEERING AND SURVEYING INC.		DRAINAG	E PLAN					
	PROJECT NO. 01-006	FILE: Claremont	#7\dwg\D1-drainage.dwg					
0 BOULDER CRESCENT, 2nd FLOOR	DESIGNED BY: TDM	SCALE	DATE: 05/17/04					
COLORADO SPRINGS, CO 80903 9) 955–5485, FAX (719) 471–4812	DRAWN BY: KGV CHECKED BY: TDM	HORIZ: 1"=100' VERT: N/A	SHEET 1 OF 1	D1				

PONI	POND DESIGN						
STORM EVENT	ELEVATION	VOLUME (A-FT)					
WQCV	6385.08	0.13					
EURV	6387.03	0.38					
10-YR	6387.23	0.45					
100-YR	6388.06	0.71					
EM. OVERFLOW	6388.40						
MIN TOP OF BERM	6389.72						

	PROPOSED DRAINAGE BASINS									
BASIN	AREA (ACRES)	Q2 (CFS)	Q5 (CFS)	Q10 (CFS)	Q25 (CFS)	Q50 (CFS)	Q100 (CFS)			
1	2.25	0.2	0.6	1.2	2.0	2.6	3.3			
2	1.92	1.3	1.9	2.7	3.8	4.6	5.6			
3	0.76	1.1	1.5	2.0	2.5	2.9	3.4			
4	1.00	1.3	1.8	2.3	2.9	3.5	4.1			
5	0.81	1.2	1.7	2.2	2.7	3.2	3.8			
6	2.58	2.9	4.0	5.2	6.7	8.0	9.4			
7	0.65	1.0	1.4	1.7	2.2	2.6	3.0			
8	0.06	0.2	0.2	0.3	0.3	0.4	0.4			
9	0.67	0.1	0.3	0.5	0.9	1.2	1.5			

DESIGN POINT	Q2 (CF
1	7.5
2	1.1
3	1.3
4	1.2
5	2.9
6	0.2
7	1.0
A	1.2
В	4.8
С	6.1
D	7.1
E (POND OUT)	0.1

REV.	DESCRIPTION	DATE
1	ADDRESS AGENCY COMMENTS	12/03/21