IN ORANGE BOXES WITH BLACK TEXT
provide original PDF. This version seems to have been scanned in and is difficult to read.

PRELIMINARY AND FINAL DRAINAGE PLAN AND REPORT

FALCON STORAGE SUBDIVISION

PART OF THE SW1/4 SECTION 1, T.13S.. R.65W. OF THE $6^{\text {TH }}$ P.M. EL PASO COUNTY

February 4, 2021
Revised
November 23, 2022
PCD File No. PPR2232
Please also add PCD File No. MS232
Prepared for
Falcon Storage Partners LLLP

Oliver E. Watts, Consulting Engineer, Inc.
Colorado Springs, Colorado
Due to the type and quantity of comments provided additional comments may be generated on the resubmittal.

OLIVER E. WATTS, PE-LS
OLIVER E. WATTS, CONSULTING ENGINEER, INC.
CIVIL ENGINEERING AND SURVEYING
614 ELKTON DRIVE
COLORADO SPRINGS, COLORADO 8090%
(719) 593-0173
fax (719) 265-9660
olliewatts@aol.com
Celebrating over 41 years in business

November 23, 2022
El Paso County Planning and Community Development 2880 International Circle
Colorado Springs, CO 80910
ATtn: Joshua Palmer, P.E.

SUBJECT: Preliminary and Final Drainage Plan and Report
Falcon Storage Subdivision

Transmitted herewith for your review and approval is the drainage plan and report for The Falcon Storage Subdivision in El Paso County. This report will accompany the development plan and subdivision plat submittal. This report has been revised in accordance with your review comments.

Please contact me if I may provide any further information.
Oliver E. Watts, Consulting Engineer, Inc.

Oliver E. Watts, President

FALCON STORAGE SUBDIVISION
 DRAINAGE REPORT
 TABLE OF CONTENTS

Drainage Report 5 pages
Computations, 7 pages
Vicinity Map
FEMA Panel No. 08041C0553 G
SCS Soils Map and Interpretation Sheet
Backup Information, 4 sheets
Falcon DBPS Map
Drainage Plan, Falcon Meadows at Bent Grass
Drainage Plan, Latigo Business Center
Drainage Plan, Ewg 02-5523-04

FALCON STORAGE SUBDIVISION DRAINAGE REPORT
 REFERENCES

City-County Drainage Criteria, current edition Fema Firm Insurance Rate Map El Paso County Soils Survey, SCS Falcon Drainage Basin Planning Study Drainage Report, Falcon Meadows at Bent Grass Drainage Report, Latigo Business Center, Lot 1

1. ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Oliver E. Watts, Consulting Engineer, Inc.

Oliver E. Watts Colo. PE-LS No. 9853 date

2. OWNERS / DEVELOPER'S STATEMENT:

I the owner / developer have read and will comply with all of the requirements specified in this drainage report and plan.

Falcon Storage Partners LLLP

By:
Richard Graham Date
4615 Northpark Drive
Colorado Springs, CO 80918

3. EL PASO COUNTY:

Filed in accordance with the requirements of the El Paso Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.,
date
County Engineer / ECM Administrator
Conditions:

4. LOCATION AND DESCRIPTION:

The Falcon Storage Subdivision is located in the Latigo Business Center development of El Paso County as shown on the enclosed vicinity map. Occupying a portion of the West half of Section 1, Township 13 South, Range 65 West of the $6^{\text {th }}$ P.M., totaling 5.004 acres. It is located in the Falcon Drainage Basin as shown on the enclosed basin map. It lies west of Bent Grass Meadows Drive north of the Latigo Business Center as shown on the enclosed drainage plan. The site will be developed into an RV Storage site as shown on the enclosed drainage plan, as an expansion to the one in the Latigo Business Center, both owned by the developer.

5. FLOOD PLAIN STATEMENT:

This subdivision is not within the limits of a flood plain or flood hazard area, according to FEMA map panel number 08041 C 0553 G , dated December 7, 2018, a copy of which is enclosed for reference.

6. METHOD AND CRITERIA:

The method used for all computations is that specified in the City. Manual, using the rational method for areas of the size of the deve enclosed for reference and review. Pertinent portions of the criteri

The soils in the subdivision have been mapped by the local USDA interpretation sheet are enclosed for reference. All soils in this are within the development area.

7. DESCRIPTION OF RUNOFF:

Please see comments on the drainage plan regarding the conveyance of flows from the basins into the pond as portions of each of the basins do not reach the pond.
Elaborate in your description of each of the basins and how the flow is conveyed to the pond and/or subsequent basin that will convey the flow to the pond.
A. Drainage Inflows: The drainage Report for Falcon Meadows at Bent Grass indicatos an existing drainage swale above the north boundary to divert runoff from this site and route it to Bent Grass Meadows and then past this development in Bent Grass Meadows Drive to outfall points to an existing detention pond across the street. A copy of this drainage plan is enclosed. Also shown on this map is that portion of the Meadows Filing No. 1 that drains $0.62 \mathrm{cfs} / 3.5 \mathrm{cfs}$ (5-rear / 100year runoffs) into this subdivision along the westerly boundary, and it indicalds the historic undeveloped runoff of the site, totaling $1.25 \mathrm{cfs} / 7.6 \mathrm{cfs}$ at the lowest (sourneast) portion of the subdivision.
B. Interior Routing: The area will be graded to conform to the exisfing topography shown on the drainage plan. The property has been rough graded, which complies with the historic runoff pattern. Minor grading is indicated which is intended to contain the runoff into the interior drive isle street network. The site will be graded to route and contain all runoff within the priyate northsouth streets, terminating at the south boundary. The westerl. street (Basin A) will deve 4 p 4.1 cfs I 11.8 cfs (5-year / 100-year runoffs) near the in the southwest comer of the plat. Basins B, C, and D will develop $5.9 \mathrm{cfs} / 11.9 \mathrm{cfs}$ in the easterly street near the southeast corner. The total outfall into the detention pond near the southeast corner is $5.5 \mathrm{cfs} / 12.5 \mathrm{cfs}$.
C. Detention Storage: At the proposed outfall point a detentionpond is proposec
full spectrum detention is required per criteria. Please state that. sized for sedimentation basins to be used during the construction period and converted into a sand filter basins upon completion. The, basin will contain 13\$20 CF (at 1800 CF per acre). An 8 -inch riser pipe is used as an outlet, with holes drilled as computed to detain the runoff as required. One

Please identify these as basins $\mathrm{O}-1$ and AH in the narrative as shown on the drainage plan.

The underdrain system should be placed within an 5-inch-thick section of CDOT Class C filter material
4.1 cfs per the excerpt provided. revise accordingly.
footef freeboard is provided with a spiliway that will pass the 100 -year runoff. Details are shown on the enclosed drainage plan/Following construction the basin will be modified to a sand filter basin, withone foot of sand in the bottom. A 4 -inch underdrain fvill drain into the grated inlet outlet structures set at the WQCV level, and sized for the 100-year runoff. An orifice plate will be provided on the end of the underdrain with an orifice sized for the installation. Detention basin stage-storage tables are included for each basin.

```
slotted
```

C. Outfall Point: Discharge from the subdivision will be into existing north-south street of Lot 1 of the Latigy Business Center. Some minor construction is shown along the north boundary of Lot 1. The twy properties are under common ownership. The drainage plan for this property is enclose. This report indicated two existing discharges: $0.2 \mathrm{cfs} / 0.5 \mathrm{cfs}$ near the southwest corner and $6.1 \mathrm{cfs} / 10.1 \mathrm{cfs}$ over the remaining south frontage.

WATER QUALITY

Water quality facilities will be provided as described above.
FOUR STEP PROCESS
The following process has been followed to minimize advers

Per the drainage plan the spillway is located in the landscape strip along Bentgrass. The outfall pipe is not shown on the plan. Please clarify where the outfall is and where the developments

Runoff Reduction: The scope of the development has been minimized consistent with zoning requirements to present the minimum footprint in providing a RV Storage development. The undisturbed portions are to be landscaped to reduce the impervious percent. $\begin{aligned} & \text { show these locations on the } \\ & \text { plans }\end{aligned}$

Treat and Slowly Release: Detention storage is being provided downstream by others with sub regional facilities. Identify that detention/WQCV is being provided by the sand filter detention pond as identified above. Channel Stabilizing: The site will be graded to route the runotf over improved street installations to provide channel stabilzation in the natural erosive material over the site. Discharge from the site will be into adjacent and downstream facilities in accordance with the master drainage basin plan for the Falcon drainage pasin and previously approved subdivision drainage reports. Copies of each plan are enclosed. There will be no adverse affect on downstream developments as a result of this subdivision

Source Controls: This is a RV Storage site, so source control problems will be a minimum. During construction, standard site specific state of threvise the 4 -step headings to match ECM mitigate erosive problems.

Appendix I.7.2, (Runoff reduction, stabilize drainage ways, provide WQCV, Consider need
8. COST ESTIMATE: for industrial and Commercial BMPs).

Item No.	Description	Quantity	Unitcost	Cost/
1	Sand Filter Basin	1 ea	\$ 4000.00	\$ 4000.00
2	Grated inlet	1 ea $\}$	1800.00	1800.00
3	24" CMP drainage pipe	105 lf ¢	${ }^{40.00}$	\cdots 入 ${ }^{4200.00}$
Subtotal Cynstruction Cost				\$ 10,000.00
	Engineering	10\%		1,000.00

Total EstimateAs the subdivision was submitted in 2023 , the site is subject to the 2023
drainage basin fees $(\$ 37,256$ drainage
\& $\$ 5,118$ bridge). Please revise

9. FLELS: At plat recording.
2021 Falcon Basin Fees: 5.004 acres @ 80% Impervious $=4.0032$ Impervious acres
Drainage fees @ $\$ 34,117$ per acre $=\$ 136,577.17$
Bridge fees @ $\$ 4,687$ per acre $=\$ 10,762.99$
Total Fees: $\$ 155,340.17$

10. SUMMARY

The Falcon Storage Subdivision is a proposed 1-lot, RV Storage subdivision containing 5.004 acres. The proposed street facilities will adequately convey, detain and outfall runoff from the site to existing sufficient adjacent and downstream facilities, Site appurtenances will not adversely affect the downstream and surrounding developments.

This report and findings is in general conformance the MDDP and Preliminary Drainage Reports or other pertinent studies

Please identify and analyze whether the downstream facilities are adequate to accept the developments flows.

Additionally, compare the detained flows and the historical flow leaving the site. Indicate whether or not the sites flow is at or below historic flows leaving the site.

Flows for DP1 do not match the drainage plan nor the table on the drainage plan for DP1. Revise accordingly.
see comment on drainage map regarding total flow at the pond and revise accordingly.

Atter praviding iequred inputs above induding 1 -hour rantall depiths, click 'Run CUHP' to generate runari hydroprophs using the embeddea Colorada Uiban Hydropraph Proeedure. Water Quality Capture Volume (WQCV) $=0.125$ Excess Utian Runoff Volume (EURV) $=0.591$ acre-feet 2 -yt Runotl Volume ($\mathrm{Pl}=1.19 \mathrm{in}$. $)=0.43 \mathrm{x}$ acre-feet $5-y r$ Runoff Volume $\left(\rho_{1}=1.5 \mathrm{in}.\right)=0.575$ 10-yr Runoff velume $(\mathrm{P} 1=1.75 \mathrm{in})=0.685$ $25-\mathrm{yr}$ Runott Volume $\left(\rho_{1}=2 \mathrm{in}\right)=0.829$ acce-feet $50-y \mathrm{y}$ Runotf Volume $(\mathrm{P} 1=2.25 \mathrm{in})=0.971$ acteret $500 \cdot \mathrm{yr}$ Runot Volume $(\mathrm{PI}=3.14 \mathrm{In})=$ Approximate 2 -yr Detention Volumg 1.523 Approximate S-yt Detention Volume $=0.304$ acce-feet
 Approximate $50-\mathrm{yr}$ Detention Volume $=0.805$ Approximate $100-y r$ Detention Volume $=0.603$

Notat L/ whatio >8

Media Surface	

Area (t ${ }^{\text {i }}$)	Optional Overide Area (f) ${ }^{2}$
-*	5,432
.	5,800
\cdots	8,240
+	9,752
..	

Please fill out the
Initial Surcharge Area $\left(A_{\text {BV }}\right)$) Surcharge Volume Length (L_{Bv}) = Surcharge Volume With (W W) uset Depth of Hasin Fioor $\left(H_{\text {neok }}\right)=$ Length of Basin Foor (Lhoon) $=$ Width of gasin Floor (Whroon) Ares of Basin Hoor (A_{n} iona) Volume of Basin foor (Vnoon) Depth of Main Basin $\left(\mathrm{H}_{\text {mass }}\right)$) Length of Main Basin ((Luabu) $=$ Width of Main Basin $\left(W_{\text {reasis }}\right)=$ Area of Main Basin (Amain) $=$ Volume of Main Basin $\left(V_{\text {ransu }}\right)=$
 zones (i.e. WQCV, EURV-zone 1, 100yr-Zones 1 \& 2)

\square | user |
| :--- |
| user | user $\left.\right|^{n \prime}$ user $e r$

n
n
n
n
n
n
n^{2}

please fill out the spreadsheet accordingly. MHFD has an example in

 spectrum detention Sand filter basin. Please also provide the UD-BMP worksheet. zone $1-\frac{\text { Stage (} \mathrm{t} \text {) }}{\text { \#N/A }}$ further review and possible comments will be provided once design of pond has been updated/revised.

User Inout: Orifice Plate with one or more orifice	sor Ellliptical Slot	Welr (typically used	to drain WecV and	/or EURV in a sedi	mentation BMP)		Calculated Parame	ers for Plate	
Centroid of Lowest Orifice $=$		ft (realtive to basin	bottom at Stage $=$	0 ft)	WQ Orifi	Area per Row $=$	N/A		
Depth at top of Zone using Orifice Plate $=$		ft (relative to basil	battom at Stage $=$	Oft)		tical Half-Width $=$	N/A	feet	
Orifice Plate: Orifice Vertical Spacing $=$		inches			Ellipti	al Slot Centroid $=$	N/A	feet	
Orifice Plate: Orifice Area per Row $=$		sq. Inches				Iptical Slot Area $=$	N/A		
Usec- Input: Stage and Total Ares of Each Ocfifice	Row (numbered fid	fom lowest to high							
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optlonal)	Row 8 (optional)	
Stage of Orifice Centrold (r)									
Orince Area (sq. inches)									
	Row 9 (optional)	Row 10 (optional)	Row 11 (optona)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (ootional)	Row 16 (optional)	
Stage of Orifice Centrold (r)									
Orifice Area (sq, inches)									
User.Indut: Vertical Orifice (Cralar or Rectangul							Calculated Parame	ters for Vertical Or	
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice $=$			ft (reative to basio	bottom at Stage		ical Orifice Area $=$			
Depth at top of Zone using Vertical Orifice $=$			$f \mathrm{fl}$ (reative to basin	bottom at Stage $=$		Orifice Centroid =			
Vertical Orifice Diameter =			inches						
Usec IoDut: Overflow Weir (Dronbox with Flat or	Sloped Grate and	Uutlet Pipe OR Re	anulat/Trapezold	Weir and No Out	let Pipel		Calculated Parame	ters for Overflow	
	Not Selected	Not Selected					Not Selected	Not Selected	
Overflow Weir Front Edge Helght, Ho =			ft (relative to basin born	Jottom at Stage $=0$	Height of Grate	Upper Edge, $\mathrm{H}_{2}=$			feet
Overflow Welr Front Edge Length $=$					Overflow W	Weir Slope Length $=$			feet
Overflow Weir Grate Slope =			$\mathrm{H}: \mathrm{V}$		ate Open Area / 10	-yr Orlifice Area $=$			
Horiz. Length of Weir Sides $=$	-		feet		Eerflow Grate Open	Area w/o Debris =			ft^{2}
Overflow Grate Type $=$					verflow Grate Ope	Area w/ Debris =			ft^{2}
Debris Clogging \% $=$			\%						
User-Inout: Outtet Pipe w/ Flow Restiction Plate	Citcular Orifice, R	estrictor Plate, or	Rectangular orifice)			culated Parameters	Sfor Qutter Pipew	Flow Restriction P	
	Not Selected	Not Selected					Not Selected	Not Selected	
Depth to Invert of Outlet Pipe $=$			ft dilstance below ba	Sin bottom at Stage	Oft	itet Orifice Area $=$			
Circular Orifice Diameter =			inches		Outte	Orifice Centroid =			
				Hall-Cent	ral Angle of Restric	or Plate on Pipe $=$	N/A	N/A	radians

User Invut: Emergencr Soillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	1.00
Spillway Crest Length =	10.00
Splllway End Slopes =	3.00
Freeboard above Max Water Surface $=$	1.00

Spillway Design Flow Depth	$=$Calculated Parameters for SD Stage at Top of Freeboard $=0.53$ feet Basin Area at Top of Freeboard $=$ feet Basin Volume at Top of Freeboard $=0.21$ acres

Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25. Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.125	0.591	0.438	0.575	0.685	0.829	0.971	1.145	1.523
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.438	0.575	0.685	0.829	0.971	1.145	1.523
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.0	0.0	0.1	0.6	1.3	2.2	4.1
OPTIONAL Override Predevelopment Peak Q (crs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.09	0.17	0.29	0.54
Peak Inflow Q (cfs) $=$	N/A	N/A	4.1	5.1	8.2	8.8	1.9	$\sqrt{11.6}$	15.7
Peak Outflow Q (efs) $=$	0.6	61.8	2.8	4.1	5.0	7.4	9.0	11.2	15,3
Ratio Peak Outfow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	81.7	71.6	11.4	6.9	5.2	3.8
Structure Controiling Flow =	Filtration Media	Spillway	Splliwa	Spillway	Spillway	Spillway	Spillway	Spillway	Spillway
Max Velocity through Grate $1(f p s)=$	N / A	N/A							
Max Velocity through Grate $2(f p s)=$	$\frac{N / A}{3}$	N/A	N/A	N/8	N/A	λ N/d	N/A	入/人	N/4
Time to Drain 97\% of Inflow Volume (hours) $=$	3	4	6	6	6	6	6	6	5
Time to Drain 99\% of Inflow Volume (hours) $=$	3	4	6	6	6	6	6	6	6
Maximum Ponding Depth $(\mathrm{t})=$	0.91	1.12	1.17	1.23	1.27	1.35	1.40	1.46	1.57
Area at Maximum Ponding Depth (acres) =	0.15	0.16	0.16	0.16	0.16	0.17	0.17	0.17	0.17
Maximum Volume Stored (acre-ft) =	0.126	0.158	0.167	0.176	0.182	0.195	0.205	0.216	0.233

revise so that peak outflow is less than predevelopment flow. Design must comply for the full spectrum of storms.

DETENTION BASIN OUTLET STRUCTURE DESIGN

S-A-Y-D Chart Axis Override
minimum bound maximum bound maxis

Inflow Hydregraphs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [ffs]	50 Year [cfs]	100 Year [cts]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.14
	0:15:00	0.00	0.00	0.40	0.65	0.80	0.54	0.68	0.66	0.96
	0:20:00	0.00	0.00	1.46	1.93	2.28	1.44	1.70	1.80	2.38
	0:25:00	0.00	0.00	3.10	4.12	4.97	3.10	3.55	3.81	5.08
	0:30:00	0.00	0.00	3.94	5.18	6.11	6.41	7.66	8.63	11.65
	0:35:00	0.00	0.00	4.07	5.28	6.19	7.90	9.41	11.18	14.97
	0:40:00	0.00	0.00	3.97	5.08	5.93	8.31	9.91	11.82	15.81
	0:45:00	0.00	0.00	3.73	4.80	5.62	8.01	9.52	11.60	15.55
	0:50:00	0.00	0.00	3.50	4.55	5.29	7.70	9.13	11.09	14.90
	0:55:00	0.00	0.00	3.29	4.29	5.00	7.19	8.50	10.44	14.02
	1:00:00	0.00	0.00	3.13	4.07	4.77	6.71	7.91	9.84	13.20
	1:05:00	0.00	0.00	2.99	3.88	4.57	6.32	7.43	9.36	12.58
	1:10:00	0.00	0.00	2.79	3.70	4.37	5.89	6.90	8.62	11.55
	1:15:00	0.00	0.00	2.58	3.46	4.16	5.47	6.39	7.88	10.53
	1:20:00	0.00	0.00	2.38	3.21	3.88	4.99	5.82	7.06	9.40
	1:25:00	0.00	0.00	2.21	2.98	3.58	4.55	5.29	6.29	8.35
	1:30:00	0.00	0.00	2.08	2.82	3.34	4.10	4.76	5.59	7.41
	1:35:00	0.00	0.00	1.99	2.70	3.16	3.76	4.36	5.07	6.70
	1:40:00	0.00	0.00	1.91	2.54	3.01	3.49	4.04	4.66	6.15
	1:45:00	0.00	0.00	1.84	2.38	2.86	3.26	3.77	4.31	5.65
	1:50:00	0.00	0.00	1.76	2.23	2.72	3.05	3.52	3.98	5.22
	1:55:00	0.00	0.00	1.63	2.09	2.57	2.85	3.29	3.68	4.81
	2:00:00	0.00	0.00	1.49	1.94	2.38	2.66	3.06	3.39	4.41
	2:05:00	0.00	0.00	1.29	1.69	2.06	2.32	2.66	2.94	3.82
	2:10:00	0.00	0.00	1.10	1.43	1.75	1.98	2.27	2.50	3.25
	2:15:00	0.00	0.00	0.92	1.20	1.46	1.65	1.89	2.08	2.69
	2:20:00	0.00	0.00	0.75	0.98	1.20	1.35	1.54	1.69	2.18
	2:25:00	0.00	0.00	0.61	0.79	0.98	1.08	1.23	1.34	1.71
	2:30:00	0.00	0.00	0.50	0.65	0.80	0.85	0.96	1.02	1.30
	2:35:00	0.00	0.00	0.41	0.54	0.68	0.68	0.76	0.80	1.01
	2:40:00	0.00	0.00	0.34	0.45	0.57	0.55	0.62	0.64	0.80
	2:45:00	0.00	0.00	0.29	0.38	0.47	0.45	0.51	0.51	0.64
	2:50:00	0.00	0.00	0.24	0.32	0.39	0.37	0.41	0.41	0.51
	2:55:00	0.00	0.00	0.20	0.26	0.33	0.30	0.34	0.32	0.40
	3:00:00	0.00	0.00	0.17	0.21	0.27	0.24	0.27	0.26	0.32
	3:05:00	0.00	0.00	0.14	0.18	0.22	0.20	0.22	0.21	0.26
	3:10:00	0.00	0.00	0.11	0.14	0.18	0.16	0.18	0.17	0.21
	3:15:00	0.00	0.00	0.09	0.12	0.14	0.13	0.15	0.14	0.17
	3:20:00	0.00	0.00	0.07	0.09	0.11	0.11	0.12	0.11	0.14
	3:25:00	0.00	0.00	0.06	0.07	0.09	0.08	0.09	0.09	0.11
	3:30:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.07	0.08
	3:35:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.06
	3:40:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.04
	3:45:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	3:50:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Required Area per Row (in ${ }^{2}$)

$0.1+A-D \quad \omega Q C V$
$0.125 \mathrm{AF}=5445 \mathrm{CF}^{\circ}$ $0.3225 i^{2}$
lea "/10" 0^{6}
Circular Perforation Sizing

TABLE SB-2

$$
Q=\frac{0.463}{n} D^{8 / 3} S^{\frac{1}{2}} \quad Q=K S^{\frac{1}{2}}
$$

FALCON STORAGE SUBDIVISION

Colorado Springs, CO 80920

National Flood Hazard Layer FIRMette

SPECIAL FLOOD HAZARD AREAS		Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR Regulatory Floodway
OTHER AREAS OF FLOOD HAZARD		0.2\% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile zone X
		Future Conditions 1\% Annual Chance Flood Hazard Zone X
		Area with Reduced Flood Risk due to Levee. See Notes. Zone X
		Area with Flood Risk due to Leveezone D
	no Screen	Area of Minimal Flood Hazard Zone X
		Effective LOMRs
OTHER AREAS		Area of Undetermined Flood Hazard Zone 1
GENERAL STRUCTURES		Channel, Culvert, or Storm Sewer
	1111	Levee, Dlke, or Floodwall

B- 20.2 Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
s - - Coastal Transect
mase Flood Elevation Line (BFE)
Limit of Study
—Jurisdiction Boundary
.-- .-. Coastal Transect Baseline
OTHER
FEATURES

- Proflle Basellne

MAP PANELS
Q
Digital Data Available
No Digital Data Available
Unmapped
The pin displayed on the map is an approximate
point selected by the user and does not represen
an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps If it is not void as described below. digital flood maps if it is not void as described below. accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/25/2021 at 9:47 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effectlve information may change or become superseded by new data over time.
This map image is void if the one or more of the following map lements do not appear: basemap imagery, flood zone labels, egend, scale bar, map creation date, community identifiers, m. panel number, and fin effective date. Map lmages nmapped and unmodernized areas cannot be used for egulatory purposes.

TABLE 16, --SOIL AND WATER FEATURES
[Absence of an entry indicates the feature is not a concern. See "flooding" in Gl (ossa) y for definition of terms as "rare," "brief," and "very brief." The symbol means greater than]

See footnote at end of table.

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristles	Percent Impervious	Runoff Coafficlents											
		2-yaar		S-year		10-year		25-year		50-year		100-year	
		HSGAEB	HSGCAD	HSGAEB	HSG CAO	HSGABA	HSG C8D	HSG ABB	HSGCED	HSGABE	HSECAD	HSGAEA	HSG C8O
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0,88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0,53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0,68
Residential													
1/8Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0,54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0,32	0.38	0.39	0,47	0.43	0.52	0.47	0.57
1/2Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.42	0.51	0.46	0.56
2 Acre	20	0.12	0.17	0.20	0.26	0.27	0,34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.50	0.55	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeterles	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0,32	0.42	0.37	0.48	0.41	0.54
Ralliroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0,42	0.42	0,50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	-0.38	0.31	0,45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0,92	0.92	0.94	0,94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.95
Gravel	80	0.57	0.60	0.59	0,63	0.63	0,66	0,66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0,83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0,35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{1}\right)$ plus the travel time (t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{1}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{1}+t_{1} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{1}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{t}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{1}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5 -year frequency (see Table 6-6)
$L=$ length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
$S=$ average basin slope (ft/ft)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq,6-9}
\end{equation*}
$$

Where:
$V=$ velocity (f / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope (ft/ft)

Table 6-7. Conveyance Coefficient, \boldsymbol{C}_{ν}

Type of Land Surface	\boldsymbol{C}_{v}
Heavy meadow :	2.5
Tillage/field	5
Riprap (not buried) ${ }^{*}$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{l}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:
$t_{c}=$ maximum time of concentration at the first design point in an urban watershed (min)
$L=$ waterway length (ft)
Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5 -year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

DFF Equations
$\mathrm{I}_{100}=-2.52 \ln (\mathrm{D})+\mathbf{1 2 . 7 3 5}$
$\mathrm{I}_{50}=\mathbf{- 2 . 2 5} \ln (\mathrm{D})+\mathbf{1 1 . 3 7 5}$
$\mathrm{I}_{25}=-2.00 \ln (\mathrm{D})+10.111$
$\mathrm{I}_{10}=-1.75 \ln (\mathrm{D})+8.847$
$\mathrm{I}_{5}=-1.50 \ln (\mathrm{D})+7.583$
$\mathrm{I}_{2}=-1.19 \ln (\mathrm{D})+6.035$
Note; equations may calculated by duplicate values read from figure.

LOT 1

LATIGO BUSINESS CENTER

 DEVELOPED BASINS MAP| Rensions: | | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\cdots \mathrm{Na}$ | oescrap Tow | ${ }^{\text {DaIE }}$ | | |
| | | | | |
| | | | ${ }^{18}$ H Hou | |
| | | | | - -92-19 |

