December 22, 2017
County of El Paso

## Engineering Division

2880 International Circle, Suite 110
Colorado Springs, Colorado 80910

## Re: Academy Village Filing Number 3- Drainage Addendum Letter

To Whom It May Concern:
This letter is an addendum to the "Final Drainage Report for Academy Village" dated April 1999, prepared by HMS Group, LLC. This addendum will address the reconfiguration of the drainage pattern within Basin 1a of the approved report. The purpose of this addendum is to quantify the changes to the drainage condition due to site variations from the approved report.

The site was originally intended to drain to a CDOT Type D Catch Basin located at the north end of the site. The Type D catch basin can be seen within the approved "Drainage Map - Developed Academy Village" located in Appendix B. The existing site currently drains to two locations. The first site outfall is a $24{ }^{\prime}{ }^{\prime}$ RCP with a flared end section located at where the Type D Catch Basin was originally planned to the northeast. The second site outfall is at a 24 '' RCP with a flared end section located northeast of the existing bank parking lot. Both 24 " RCPs connect to an existing 54 " RCP storm drain that flows northwest, ultimately outfalling to a detention pond west of Struthers Road, approximately 1,200 feet northwest of the site.

## General Location

The legal description for the property is as follows: Academy Village Filing No. 3, Lot 4, "Academy Village Filing No. 2", being a portion of the southeast quarter of Section 1, Township 12 South, Range 67 West of the $6^{\text {th }}$ P.M., County of El Paso, State of Colorado. The site is bounded by Academy Village Filing 3, Lot 1 to the southeast, Struthers Road to the west and south, and Paradise Villas Phases 1E, 1F and 1C to the northeast. Surrounding platted developments are the Gleneagle Executive Office Condominiums to the west, Paradise Villas to the east, Lot 1 of the Academy Village Filing 3 to the south, and an unplatted piece of property further south across Struthers Road. The legal description for the property is as follows: Academy Village Filing No. 3, Lot 4, "Academy Village Filing No. 2", being a portion of the southeast queart of section 1 , township 12 south, range 67 west of the $6^{\text {th }}$ P.M., County of El Paso, State of Colorado.

# Provide calculation: <br> $\$ 16,270 \times 0.71$ Ac. $\times 0.7=$ drainage fee due <br> $\$ 443 \times 0.71$ Ac. $\times 0.7=$ bridge fee $\mathrm{ed}_{\mathrm{d}} \mathrm{du} \mathrm{e}_{o f 7}$ <br> Academy Village Filing Numpererify imperviousness) <br> December 22, 2017 

## Description of Property

Academy Village Filing 3, Lot 2 is composed of approximately 0.711 acres of vacant land. The site has a large ditch running parallel to Struthers Road along the western edge of the property that generally slopes from southeast to northwest with slopes ranging from $0-3 \%$. Academy Village Filing 3 is generally made up of Type B Soil classified as Pring Coarse Sandy Loam as can be seen in the NRCS Map located within Appendix B. The vacant land is vegetated with native grasses. The site is located within the Black Forest FOMO 4200 drainage basin and has a drainage fee of $\$ 16,270$ and a bridge fee of $\$ 433$.

## Hydrology



All hydrologic data was obtained from the "El Pas County Drainage Criteria Manual," Volume 2 and the "Urban Drainage and Flood Control District Urban Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100 -year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5 -year and the 100 -year storm return frequencies were obtained from Table 6-2 of the Colorado Springs Criteria. One hour point rainfall data for the storm events is identified in the Table below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the DCM. Time of concentrations were developed using equations from DCM. All runoff calculations and applicable charts and graphs are included in Appendix B.

Table 1- 1-hr Point Rainfall Data

| Storm | Rainfall (in.) |
| :---: | :---: |
| 5 -year | 1.50 |
| 100 -year | 2.52 |

The proposed improvements have been designed with the intent to maintain the hydrology of the approved report. The approved report conveyed the generated runoff untreated to the existing 54 '' RCP. The proposed drainage condition for Academy Village will convey the generated runoff to an onsite water quality pond before ultimately outfalling to the same 54 ' ' RCP as in the approved report. The drainage plan for Academy Village is located in Appendix B. Runoff from Basin A will be routed via curb and gutter, a natural swales and a 12" PVC pipe to a water quality capture pond at the northern end of the site. The water quality pond is sized to treat 0.014 ac-ft and release the treated runoff to the existing 54 " RCP via a 12 " RCP outfall. The runoff from Basin B will be collected in a natural grass swale that runs along the southeast edge of the site. Flows from Basin B will go to an existing 24'’ RCP that ties into the $54{ }^{\prime \prime}$ RCP to the south of the site. All basin calculations can be found in Appendix A. The runoff from Basin OS1 is primarily sheet flow off of Struthers into the natural swale within Basin B.

Basin OS2 is composed of a portion of the adjacent Bank site drive, drainage swale and Struthers Road. Basin OS2 was evaluated in order to determine the offsite flows that made their way into
the drainage ditch on Lot 2 via a culvert at design point 3 (DP3). The runoff from OS2 ultimately makes its way to DP2 and into the 54 " RCP.

Table 2 - Basin Summary

| Tributary <br> Sub-basin | Area <br> (acres) | Percent <br> Impervious | $\mathbf{C}_{\mathbf{5}}$ | $\mathbf{C}_{\mathbf{1 0 0}}$ | $\mathbf{t}_{\mathbf{c}}$ <br> $(\mathbf{m i n})$ | $\mathbf{Q}_{\mathbf{5}}$ <br> (cfs) | $\mathbf{Q}_{100}$ <br> (cfs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.46 | $86 \%$ | 0.65 | 0.79 | 6.9 | 1.4 | 2.8 |
| B | 0.22 | $50 \%$ | 0.12 | 0.38 | 10.1 | 0.1 | 0.6 |
| OS1 | 0.51 | $88 \%$ | 0.71 | 0.82 | 6.6 | 1.7 | 3.3 |
| OS2 | 0.71 | $84 \%$ | 0.65 | 0.77 | 7.1 | 2.1 | 4.3 |

Therefore, the total inflows as determined in the approved Final Drainage Report are still valid and no revisions to the existing storm sewer are necessary.

## Hydraulic Criteria

The rational method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site and the UDFCD UD-Detention v3.07 spreadsheet was utilized for sizing and release rate of the water quality pond.

## Water Quality

In accordance with the El Paso County Drainage Criteria Manual, Volume 2 this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls. In order to reduce runoff volume the new impervious area for the site was minimized. The WQCV is treated through an on-site water quality pond located at the northeast portion of the site. The pond was designed using the Urban Drainage spreadsheet, "UD_Detention_v3.07" located in Appendix A. The water quality pond was sized to treat $0.014 \mathrm{ac}-\mathrm{ft}$ of site runoff. The pond is relatively small so rather than implementing a trickle channel, the pond bottom will be sloped at 1.0 percent minimum to the water quality structure. The emergency spillway for the pond is located along its western border with an elevation of 6763.49. 1' of freeboard has been provided above the emergency spillway water surface elevation as well. The emergency spillway will outfall towards the existing natural grass swale inside the western property line. The restrictor plate as well as pond storage design details can be located in Appendix A. There are no proposed major drainageways for the site that would need to be stabilized. Some site specific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill

| Page 4 of 7 |
| ---: |
| Academy Village Filing Number 3 |

containment and control, etc. The RFI calculations were performed and can be found attached within Appendix A.

Maintenance access will be provided via an eight-foot wide maintenance access path. The path follows the western border of the pond and services to the outlet structure. The path maintenance access crosses the emergency spillway, therefore; side slopes of the spillway do not exceed $10 \%$ to allow for maintenance truck access.

## Conclusion

The proposed changes to the hydrologic configuration and drainage calculations including storm sewer and water quality pond pose no significant changes to the concepts presented within the "Final Drainage Report for Academy Village" dated April 1999, prepared by HMS Group, LLC. This addendum is in conformance with the originally intended design and meets the latest criteria requirements.

If you have any questions regarding any of the above comments please do not hesitate to contact me at 720-383-3045.

Sincerely, JR Engineering, LLC

Glenn Ellis, P.E.

# Please move this page to the beginning of the report. 

Page 5 of 7
Academy Village Filing Number 3
December 22, 2017

## Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Glenn Ellis, Colorado P.E. \# 38861
Date
For and On Behalf of JR Engineering, LLC

## Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Ron Covington
Date
Ron Covington Homes
13725 Struthers Road, Suite 200
Colorado Springs, CO 80920

## El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E.
County Engineer / ECM Administrator
Conditions:

Page 6 of 7
Academy Village Filing Number 3
December 22, 2017

## Appendix A

## COM POSITE \% IM PERVIOUS CALCULATIONS

Subdivision: Academy Village Filing Number 3
Location: El Paso County, CO

Project Name: Struthers Road
Project No: 25123.00
Calculated By: AJH

## Checked By:

Date: $\underline{12 / 22 / 17}$

| Basin ID | Total Area (ac) | Paved Roads \& Walks |  |  | Roofs |  |  | Lawns |  |  | Basins Total Weighted \% Imp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \%Imp. | Area (ac) | $\begin{gathered} \text { Weighted \% } \\ \text { Imp. } \end{gathered}$ | \% Imp. | Area (ac) | Weighted \% Imp. | \% Imp. | Area (ac) | Weighted \% Imp. |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| A | 0.46 | 100\% | 0.25 | 55.0\% | 90\% | 0.09 | 17.0\% | 48\% | 0.14 | 14.0\% | 86.0\% |
| B | 0.22 | 100\% | 0.01 | 5.0\% | 90\% | 0.00 | 0.0\% | 48\% | 0.21 | 45.0\% | 50.0\% |
| OS1 | 0.51 | 100\% | 0.39 | 77.0\% | 90\% | 0.00 | 0.0\% | 48\% | 0.12 | 11.0\% | 88.0\% |
| OS2 | 0.71 | 100\% | 0.50 | 70.0\% | 90\% | 0.00 | 0.0\% | 48\% | 0.21 | 14.0\% | 84.0\% |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL | 1.91 |  |  |  |  |  |  |  |  |  | 81.5\% |

## COM POSITE \% RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Academy Village Filing Number 3
Location: El Paso County, CO

Project Name: Struthers Road
Project No.: 25123.00
Calculated By: AJH
Checked By:
Date: $12 / 22 / 17$


## STANDARD FORM SF-2

## TIME OF CONCENTRATION

Subdivision: Academy Village Filing Number 3
Location: El Paso County , CO

Project Name: Struthers Road
Project No.: 25123.00
Calculated By: AJH
Checked By:
Date: $\overline{12 / 22 / 17}$
TRAVEL TIME

| SUB-BASIN |  |  |  |  |  | INITIAL/ OVERLAND |  |  | TRAVEL TIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | ( $\mathrm{T}_{\mathrm{i}}$ ) |  |  | ( $\mathrm{t}_{\mathrm{t}}$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| $\begin{gathered} \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$ | D.A. <br> (ac) | Hydrologic <br> Soils Group | Impervious (\%) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | L <br> (ft) | $\begin{aligned} & \mathbf{S}_{\mathbf{o}} \\ & \text { (\%) } \\ & \hline \end{aligned}$ | $\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min ) \end{gathered}$ | $L_{t}$ <br> (ft) | $\begin{gathered} \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \end{gathered}$ | K | $\begin{aligned} & \text { VEL. } \\ & \text { (ft/s) } \end{aligned}$ | $\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min ) \end{gathered}$ | $\begin{gathered} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \\ \hline \end{gathered}$ | TOTAL LENGTH (ft) | $\begin{gathered} \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ (\min ) \end{gathered}$ | $\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min ) \end{gathered}$ |
| A | 0.46 | B | 86\% | 0.65 | 0.79 | 45 | 1.8\% | 4.5 | 226 | 0.6\% | 20.0 | 1.5 | 2.4 | 6.9 | 271.0 | 6.9 | 6.9 |
| B | 0.22 | B | 50\% | 0.12 | 0.38 | 49 | 8.0\% | 6.2 | 326 | 0.5\% | 20.0 | 1.4 | 3.8 | 10.1 | 375.0 | 14.2 | 10.1 |
| OS1 | 0.51 | B | 88\% | 0.71 | 0.82 | 49 | 5.6\% | 2.8 | 326 | 0.5\% | 20.0 | 1.4 | 3.8 | 6.6 | 375.0 | 7.5 | 6.6 |
| OS2 | 0.71 | B | 84\% | 0.65 | 0.77 | 63 | 5.6\% | 3.6 | 253 | 0.5\% | 20.0 | 1.4 | 3.0 | 6.6 | 316.0 | 7.7 | 6.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

NOTES:
$\mathrm{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{t}}$
$\mathrm{t}_{\mathrm{i}}=\left(0.395^{*}\left(1.1-\mathrm{C}_{5}\right)^{*}(\mathrm{~L})^{\wedge} 0.5\right) /\left(\left(\mathrm{S}_{0}\right)^{\wedge} 0.33\right)$
$\mathrm{t}_{\mathrm{i}}=$ overland (initial) flow time (minutes)
$\mathrm{S}=$ Average Slope along the overland flow path, $\mathrm{ft} / \mathrm{ft}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{L} /\left(60 \mathrm{~K} *\left(\mathrm{~S}_{0}\right)^{\wedge} 0.5\right.$
$\mathrm{t}_{\mathrm{t}}=$ channelized flow time (minutes)
S = waterway slope, ft/ft
$\mathrm{V}_{\mathrm{t}}=$ travel time velocity ( $\mathrm{ft} / \mathrm{sec}$ ) $=\mathrm{K}^{*} \mathrm{~S}_{0}{ }^{\wedge} 0.5$

First Design Point Time of Concentration:
$\mathrm{t}_{\mathrm{c}}=(18-15 * \mathrm{i})+\mathrm{L} /\left(60 *(24 * \mathrm{i}+12)^{*}\left(\mathrm{~S}_{0}\right)^{\wedge} 0.5\right.$
$\mathrm{i}=$ =imperviousness (expressed as a decimal)
$t_{c}$ is lesser of Equation 6-2 and Equation 6-5.
For Urbanized basins a minimum $t_{c}$ of 5.0 minutes is required
For non-urbanized basins a minimum $t_{c}$ of 10.0 minutes is required.
(Equation 6-2)
(Equation 6-3)
(Equation 6-4)

Table 6-2. NRCS Conveyance Factors, K

| Type of Land Surface | K |
| :---: | :---: |
| Heavy M eadow | 2.5 |
| Tillage/field | 5 |
| Short pasture and lawns | 7 |
| Nearly bare ground | 10 |
| Grassed waterway | 15 |
| Paved areas and shallow paved swales | 20 |

Subdivision: Academy Village Filing Number 3
Location: El Paso County , CO
Design Storm: 5-Year

Project Name: Struthers Road
Project No.: 25123.00
Calculated By: AJH
Checked By:
Date: $12 / 22 / 17$

|  |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | Street/ Swale |  | PIPE |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STREET |  | $\begin{aligned} & \text { @ } \\ & \text {.ㄷ } \\ & 0 \\ & \hline 0 \end{aligned}$ |  |  | $\begin{gathered} \widehat{\bar{c}} \\ \hline \end{gathered}$ | $$ | $\stackrel{\Sigma}{\Sigma}$ | $\begin{aligned} & \frac{\pi}{0} \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \boxed{4} \\ & 4 \\ & 4 \\ & \hline \end{aligned}$ | $\underset{\substack{\text { E }}}{ }$ | $\begin{aligned} & \frac{\pi}{n} \\ & \stackrel{4}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \text { © } \\ & \text { ó } \\ & \text { 으 } \\ & \hline \hline \end{aligned}$ |  |  |  |  | $\begin{aligned} & \mathbb{E} \\ & \frac{5}{6} \\ & \mathbf{9} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{2} \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$ |  | REM ARKS |
|  | 1 | A | 0.46 | 0.65 | 6.9 | 0.30 | 4.7 | 1.4 |  |  |  |  |  |  |  |  |  |  |  |  | Flow to pond through pipe to 54" pipe |
|  | 2 | B | 0.22 | 0.12 | 10.1 | 0.03 | 4.1 | 0.1 | 10.1 | 0.85 | 4.1 | 3.5 |  |  |  |  |  |  |  |  | Flow through Swale |
|  |  | OS1 | 0.51 | 0.71 | 6.6 | 0.36 | 4.7 | 1.7 |  |  |  |  |  |  |  |  |  |  |  |  | Struthers Road sheet flow into ditch |
|  | 3 | OS2 | 0.71 | 0.65 | 6.6 | 0.46 | 4.7 | 2.2 |  |  |  |  |  |  |  |  |  |  |  |  | Bank ditch/culvert |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

STANDARD FORM SF-3
STORM DRAINAGE SYSTEM DESIGN
(RATIONAL M ETHOD PROCEDURE)

Subdivision: Academy Village Filing Number 3
Project Name: Struthers Road
Project No.: 25123.00
Design Storm: 100-Year
Calculated By:
Checked
Checked By:
Date: $\overline{12 / 22 / 17}$

| STREET |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | Street/Swale |  | PIPE |  |  | TRAVEL TIME |  |  | REM ARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} \text { Q } \\ \stackrel{\rightharpoonup}{\bar{W}} \\ 0 \\ \hline \end{array}$ | $\begin{aligned} & \text { y } \\ & \text { } \\ & \mathscr{y} \\ & \frac{1}{4} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \mathbb{4} \\ & \boxed{4} \\ & 4 \\ & \hline \end{aligned}$ | $\underset{~ E}{\text { ETE }}$ | $\begin{aligned} & \frac{\pi}{4} \\ & 0 \\ & \hline \end{aligned}$ | E. | 5 4 4 4 4 | $\overbrace{i}^{\substack{c}}$ | $\begin{aligned} & \frac{\pi}{6} \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \overline{0} \\ & 3 \\ & 0 \\ & \text { D} \\ & \text { E } \\ & \text { Vy } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ○ } \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ |  |  |  |  |  |
|  | 1 | A | 0.46 | 0.79 | 6.9 | 0.36 | 7.87 | 2.8 |  |  |  |  |  |  | 2.8 | 1.0 | 18 | 56 | 5.0 | 0.2 | Flow to pond through pipe to 54" pipe |
|  | 2 | B | 0.22 | 0.38 | 10.1 | 0.09 | 6.91 | 0.6 | 10.1 | 1.06 | 6.91 | 7.3 |  |  |  |  |  |  |  |  | Flow through Swale |
|  |  | OS1 | 0.51 | 0.82 | 6.6 | 0.42 | 7.97 | 3.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | OS2 | 0.71 | 0.77 | 6.6 | 0.55 | 7.97 | 4.4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



## DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)



| User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) |  |  | Calculated Parameters for Overflow Weir |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not Selected | Not Selected |  |  | Not Selected | Not Selected |
| Overflow Weir Front Edge Height, $\mathrm{Ho}=$ | 1.40 |  | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) | Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ | 1.40 |  |
| Overflow Weir Front Edge Length $=$ | 5.00 |  | feet | Over Flow Weir Slope Length = | 5.00 |  |
| Overflow Weir Slope = | 0.00 |  | $\mathrm{H}: \mathrm{V}$ (enter zero for flat grate) | Grate Open Area / 100-yr Orifice Area $=$ | 22.28 |  |
| Horiz. Length of Weir Sides $=$ | 5.00 |  | feet | Overflow Grate Open Area w/o Debris = | 17.50 |  |
| Overflow Grate Open Area \% = | 70\% |  | \%, grate open area/total area | Overflow Grate Open Area w/ Debris $=$ | 8.75 |  |
| Debris Clogging \% = | 50\% |  | \% |  |  |  |

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)



## Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

| Outlet Orifice Area | $=$ | 0.79 |
| ---: | :--- | :--- |
|  |  |  |
| $\mathrm{ft}^{2}$ |  |  |
| Outlet Orifice Centroid | $=0.50$ |  |
|  | feet |  |
| Half-Central Angle of Restrictor Plate on Pipe | $=0 \mathrm{~N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |
|  | radian |  |

User Input: Emergency Spillway (Rectangular or Trapezoidal)


Calculated Parameters for Spillway

| Spillway Design Flow Depth | $=10.12$ |
| ---: | :--- |
| feet |  |
| Stage at Top of Freeboard | $=2.86$ |
| feet |  |
| Basin Area at Top of Freeboard | $=$ |
|  | acres |


| Routed Hydrograph Results |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Storm Return Period = | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | 0.53 | 1.07 | 1.19 | 1.50 | 1.75 | 2.00 | 2.25 | 2.52 | 0.00 |
| Calculated Runoff Volume (acre-ft) = | 0.014 | 0.044 | 0.038 | 0.049 | 0.060 | 0.072 | 0.081 | 0.093 | 0.000 |
| OPTIONAL Override Runoff Volume (acre-ft) $=$ |  |  |  |  |  |  |  |  |  |
| Inflow Hydrograph Volume (acre-ft) $=$ | 0.014 | 0.044 | 0.037 | 0.049 | 0.060 | 0.071 | 0.081 | 0.093 | \#N/A |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00 | 0.00 | 0.01 | 0.01 | 0.11 | 0.39 | 0.54 | 0.75 | 0.00 |
| Predevelopment Peak Q (cfs) $=$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.0 |
| Peak Inflow Q (cfs) = | 0.2 | 0.5 | 0.4 | 0.5 | 0.6 | 0.8 | 0.8 | 1.0 | \#N/A |
| Peak Outflow Q (cfs) = | 0.1 | 0.6 | 0.4 | 0.8 | 0.8 | 0.8 | 1.0 | 1.4 | \#N/A |
| Ratio Peak Outiow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A | 146.5 | 17.1 | 4.3 | 4.0 | 4.1 | \#N/A |
| Structure Controlling Flow = | Overflow Grate 1 | \#N/A |
| Max Velocity through Grate 1 (fps) = | 0.00 | 0.02 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | \#N/A |
| Max Velocity through Grate 2 (fps) = | N/A | \#N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 37 | 32 | 33 | 31 | 29 | 28 | 27 | 25 | \#N/A |
| Time to Drain 99\% of Inflow Volume (hours) = | 40 | 37 | 38 | 37 | 36 | 36 | 35 | 34 | \#N/A |
| Maximum Ponding Depth ( ft ) $=$ | 1.41 | 1.45 | 1.45 | 1.47 | 1.47 | 1.47 | 1.48 | 1.50 | \#N/A |
| Area at Maximum Ponding Depth (acres) $=$ | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | \#N/A |
| Maximum Volume Stored (acre-ft) $=$ | 0.011 | 0.011 | 0.011 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | \#N/A |



## Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|  | SOURCE | WORKBOOK | \#N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 8.10 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 0:08:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
| Hydrograph Constant | 0:16:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 0:24:18 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.05 | \#N/A |
| 0.617 | 0:32:24 | 0.02 | 0.06 | 0.05 | 0.06 | 0.08 | 0.09 | 0.10 | 0.12 | \#N/A |
|  | 0:40:30 | 0.05 | 0.15 | 0.13 | 0.16 | 0.20 | 0.24 | 0.27 | 0.31 | \#N/A |
|  | 0:48:36 | 0.13 | 0.41 | 0.35 | 0.45 | 0.55 | 0.65 | 0.73 | 0.84 | \#N/A |
|  | 0:56:42 | 0.15 | 0.47 | 0.40 | 0.52 | 0.64 | 0.75 | 0.85 | 0.98 | \#N/A |
|  | 1:04:48 | 0.14 | 0.44 | 0.38 | 0.49 | 0.60 | 0.71 | 0.81 | 0.93 | \#N/A |
|  | 1:12:54 | 0.13 | 0.40 | 0.34 | 0.44 | 0.54 | 0.65 | 0.73 | 0.84 | \#N/A |
|  | 1:21:00 | 0.11 | 0.35 | 0.30 | 0.39 | 0.48 | 0.57 | 0.65 | 0.74 | \#N/A |
|  | 1:29:06 | 0.09 | 0.30 | 0.25 | 0.33 | 0.41 | 0.48 | 0.55 | 0.63 | \#N/A |
|  | 1:37:12 | 0.08 | 0.26 | 0.22 | 0.29 | 0.36 | 0.42 | 0.48 | 0.55 | \#N/A |
|  | 1:45:18 | 0.07 | 0.24 | 0.20 | 0.26 | 0.32 | 0.38 | 0.43 | 0.50 | \#N/A |
|  | 1:53:24 | 0.06 | 0.19 | 0.16 | 0.21 | 0.26 | 0.31 | 0.35 | 0.40 | \#N/A |
|  | 2:01:30 | 0.05 | 0.15 | 0.13 | 0.17 | 0.21 | 0.25 | 0.28 | 0.32 | \#N/A |
|  | 2:09:36 | 0.03 | 0.11 | 0.09 | 0.12 | 0.15 | 0.18 | 0.21 | 0.24 | \#N/A |
|  | 2:17:42 | 0.02 | 0.08 | 0.07 | 0.09 | 0.11 | 0.13 | 0.15 | 0.17 | \#N/A |
|  | 2:25:48 | 0.02 | 0.06 | 0.05 | 0.06 | 0.08 | 0.10 | 0.11 | 0.13 | \#N/A |
|  | 2:33:54 | 0.01 | 0.05 | 0.04 | 0.05 | 0.06 | 0.08 | 0.09 | 0.10 | \#N/A |
|  | 2:42:00 | 0.01 | 0.04 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | \#N/A |
|  | 2:50:06 | 0.01 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06 | 0.07 | \#N/A |
|  | 2:58:12 | 0.01 | 0.03 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06 | \#N/A |
|  | 3:06:18 | 0.01 | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | \#N/A |
|  | 3:14:24 | 0.01 | 0.03 | 0.02 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05 | \#N/A |
|  | 3:22:30 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | \#N/A |
|  | 3:30:36 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | \#N/A |
|  | 3:38:42 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | \#N/A |
|  | 3:46:48 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | \#N/A |
|  | 3:54:54 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | \#N/A |
|  | 4:03:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | \#N/A |
|  | 4:11:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:19:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:27:18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:35:24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:43:30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:51:36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 4:59:42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:07:48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:15:54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:24:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:32:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:40:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:48:18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 5:56:24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:04:30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:12:36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:20:42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:28:48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:36:54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 6:53:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:01:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:09:18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:17:24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:25:30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:33:36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:41:42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:49:48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 7:57:54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:06:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:14:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:22:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:30:18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:38:24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:46:30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 8:54:36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:02:42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:10:48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:18:54 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:27:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:35:06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |
|  | 9:43:12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | \#N/A |

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator UD Credit by Impervious Reduction Factor (IRF) Method

|  | User Input |  | inches |
| :---: | :---: | :---: | :---: |
|  | Calculated cells |  |  |
| .-1Design Storm: 1-Hour Rain Depth | Wocve Event | 0.22 |  |
| ".-M Minor Storm: 1-Hour Rain Depth | 10-Year Event | 1.75 | inches |
| ..-Major Storm: 1-Hour Rain Depth | 100-Year Event | 2.52 | inches |
| Optional User Defined Storm | CUHP |  |  |
| (CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm | 100-Year Event | 2.52 |  |
| Max \Intensity for Optional User Defined Storm | 2.51496 |  |  |

Designer: AJH
Company: JRENGINEERIN
Date: $\quad$ August 28, 2017
Project:
ACADEMY VILLAGE FILING NUMBER 3
Location:- ELPASO COUNTY, CO

STE INFORMATON (USER-NNPUT


CALCULATED RESULTS (OUTPUT)

| Total Calculated Area (ac, check against input) | 0 | 0.220 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Directly Connected Impervious Area (DCIA, \%) | 0.0\% | 0.0\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Unconnected Impervious Area (UA, \%) | 69.6\% | 4.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Receiving Pervious Area (RPA, \%) | 0.1\% | 0.0\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Separate Pervious Area (SPA, \%) | 30.3\% | 95.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{A}_{\mathrm{R}}$ (RPA/UAA) | 0.002 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |
| $1_{s}$ Check | 1.000 | 1.000 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{f} / \mathrm{I}$ for WQCV Event: | 8.7 | 8.7 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{f} / \mathrm{f}$ for 10 -Year Event: | 0.5 | 0.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{f} / \mathrm{I}$ for 100-Year Event: | 0.4 | 0.4 |  |  |  |  |  |  |  |  |  |  |  |  |
| f/ I for Optional User Defined Storm CuHP: | 0.39 | 0.39 |  |  |  |  |  |  |  |  |  |  |  |  |
| IRF for WQCV Event: | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |
| IRF for 10-Year Event: | 1.00 | 1.00 |  |  |  |  |  |  |  |  |  |  |  |  |
| IRF for 100-Year fvent: | 1.00 | 1.00 |  |  |  |  |  |  |  |  |  |  |  |  |
| IRF for Optional User Defined Storm CUHP: | 1.00 | 1.00 |  |  |  |  |  |  |  |  |  |  |  |  |
| Total Site Imperviousness: l ,oal | 69.6\% | 4.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Effective Imperviousness for WOCV Event: | 0.0\% | 0.0\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Effective Imperviousness for 10 --ear Event: | 69.6\% | 4.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Effective Imperviousness for 100-Year Event: | 69.6\% | 4.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
| Effective Imperviousness for Optional User Defined Storm CUHP: | 69.6\% | 4.5\% |  |  |  |  |  |  |  |  |  |  |  |  |

LD / EFFECTIVE IM PERVVIOUSNESS CREDTITS


Page 7 of 7
Academy Village Filing Number 3
December 22, 2017

## Appendix B






Natural Resources
Conservation Service
啢

# Hydrologic Soil Group 

| Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI |
| :--- | :--- | :--- | ---: | ---: |
| 71 | Pring coarse sandy <br> loam, 3 to 8 percent <br> slopes | B | 3.5 | $100.0 \%$ |
| Totals for Area of Interest |  | $\mathbf{3 . 5}$ | $\mathbf{1 0 0 . 0 \%}$ |  |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## Rating Options

Aggregation Method: Dominant Condition

