MASTER DEVELOPMENT DRAINAGE PLAN

FOR

LORSON RANCH EAST EAST OF THE EAST TRIBUTARY OF JIMMY CAMP CREEK

PUDSP-16-003

JUNE 30, 2017

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1st Avenue S Burnsville, MN 55306 (719) 570-1100

Project No. 100.013

TABLE OF CONTENTS

ENGINEER'S STATEMENT1
OWNER'S STATEMENT1
FLOODPLAIN STATEMENT1
EL PASO COUNTY STATEMENT1
1.0 INTRODUCTION2
2.0 DRAINAGE CRITERIA4
3.0 EXISTING HYDROLOGICAL CONDITIONS 4
4.0 DEVELOPED HYDROLOGICAL CONDITIONS 8
5.0 DRAINAGE AND BRIDGE FEES 18
6.0 DETENTION and WATER QUALITY POND 19
7.0 CONCLUSIONS
8.0 REFERENCES 21
APPENDIX A
VICINITY MAP
SCS SOILS INFORMATION
FEMA FIRM MAP
APPENDIX B
HYDROLOGY & HYDRAULIC CALCULATIONS
APPENDIX C
HYDRAFLOW CALCULATIONS
APPENDIX D
FULL SPECTRUM POND CALCULATIONS
APPENDIX E
HYDRAFLOW HYDROGRAPHS
APPENDIX F
JIMMY CAMP CREEK DBPS ETRIB DESIGN (KIOWA ENGINEERING)
BACK POCKET
EXISTING CONDITIONS DRAINAGE MAP
OVERALL DEVELOPED CONDITIONS DRAINAGE MAP
DEVELOPED CONDITIONS DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard I	Schindler	PF	#33997

Date

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

Business Name

Date

By

Jeff Mark, Manager

Title

212 North Wahsatch Avenue, Suite 301

Address

Colorado Springs, Colorado 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F and 08041C1000 F, dated March 17, 1997 and modified by modified per LOMR Case No. 14-08-0534P. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine

Date

County Engineer/ECM Administrator

delete or reword (not partially adopted, but allowed for concept)

1.0 INTRODUCTION

Purpose and Scope

The purpose of this Master Development Drainage Plan (MDDP) is to provide an overview of the overall drainage impacts/mitigation due to development in the proposed Lorson Ranch East development located to the east of the East Tributary of Jimmy Camp Creek (hereafter referred to as the East Tributary). The study area of this report is approximately 790 acres. See *Appendix A* for vicinity map.

A Drainage Basin Planning Study (DBPS) has been approved by the City of Colorado Springs and partially approved for the entire Jimmy Camp Creek Basin, including the East Tributary prepared by Kiowa Engineering [7]. Lorson Ranch East will meet the requirements of the Kiowa DBPS. See the East Tributary section of this report for discussion on the status of the East Tributary.

There is an existing (unapproved) DBPS for Jimmy Camp/Creek prepared by Wilson & Company in 1987 [3], which is referenced in this report but the use of the report has been limited since it was never officially adopted and has been superseded by the Kiowa Engineering DPBS partially adopted by El Paso County.

There is very little offsite runoff from the north which will be routed through this site to the East Tributary as in existing conditions. On site runoff will be conveyed to the East Tributary through a system of swales, constructed streets, ponds, inlets, culverts, and storm sewers. Detention basins are strategically located to reduce developed runoff into the East Tributary at a rate equal to or less than existing conditions. Detention ponds will comply with current county requirements which include full spectrum detention.

Other than flows actually conveyed by the East Tributary...

A few small sub basins flow offsite on the south side of Lorson Ranch will be detained in individual ponds and released offsite at a rate equal to or less than existing conditions and at the historic location. For these basins that flow offsite there is a possibility of extending storm sewer to intercept the runoff which will be discussed in this report.

Property Location and Description in a historic manner

The proposed 790 acre portion of the Lorson Ranch development herein referred to as Lorson Ranch East is located east of the East Tributary of Jimmy Camp Creek (hereafter referred to as the East Tributary), which flows from the north in a southwesterly direction through the property. The portion of the property addressed with this report is bounded on the west by East Tributary and on the east by existing ranch land and the future Meridian Road. The property is bounded on the north by Banning Lewis Ranch, Rolling Hills Ranch and on the south by Peaceful Valley Estates (a residential subdivision and golf course within El Paso County and an undeveloped land which is currently used for farming and ranching.

A previous Master Development Drainage Plan was created and approved by El Paso County (November 2006) for the portion of the Lorson Ranch development that exists between the main channel of Jimmy Camp Creek and the East Tributary.

The East Tributary of Jimmy Camp Creek enters the site at the center of the northern boundary and flows south. In the southern portion of the site it turns west then turns south again before it connects to the main channel of Jimmy Camp Creek, approximately 1,300 feet south of Peaceful Valley Road. The confluence of the East Tributary with the main channel is south of and offsite the Lorson Ranch.

delete or reword (not partially adopted, but allowed for concept)

The legal description for the Lorson Ranch property is:

The Lorson Ranch Development is located within portions of the north half of Section 23, the north half of Section 24, the south half of Section 13, the south half of Section 14 and the northeast quarter of Section 22, all in Township 15 South, Range 65 West of the 6th Principal Meridian, east of the county road known as Marksheffel Road, except any portion of said northeast quarter within the plat of Brownsville Subdivision No. 2 as recorded in plat book H-6 at page 81 of the County of El Paso, State of Colorado Records. The total site consists of 1,361.4 acres, more or less all in Township 15 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado. This report addresses only 790 acres east of the East Tributary of Jimmy Camp Creek (Lorson Ranch East).

(fees were not calculated for El Paso County)

Conformance with applicable Drainage Basin Planning Studies There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, adopted by El Paso County, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 a portion of the East Tributary was reconstructed from Fontaine Boulevard south 2,800 feet in accordance with the 1987 study. This section of the East Tributary included a trapezoidal channel section with 6:1 side slopes and a sand bottom. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering, The Kiowa Engineering DRBS has been adopted by the City of Colorado Springs and partially adopted by El Paso County for the entire Jimmy Camp Creek Basin, including the East Dibutary and the full spectrum detention pond requirements. El Paso county has not approved the drainage fees detailed in the Kiowa DBPS so current county drainage/bridge fees apply to this development. Per the Kiowa DBPS the preferred channel improvements include selective channel armoring with a low flow change for the East Tributary. All remaining channel improvements are Yeimbursable against drainage fees for future development within the study area. The only-major-infrastructure not shown in the Kiowa DBPS is the future bridge for Fontaine Boulevard and Lorson Boulevard on the East Tributary. The Fontaine Boulevard bridge is considered to be reimbursable since it is shown on the El Paso County 2060 Major Thereughfare Plan as a Principal Arterial roadway. Lorson Boulevard bridge is not

see below

Reconstruction of the East Tributary of Jimmy Camp Creek

The Kiowa DBPS shows the East Tributary to be protected using selective armoring (soil rip rap) at the outside stream bends (500' minimum radius) and a stabilized low flow channel. The East Tributary can be divided into three different sections, south, middle, and north. The first section (south) is from the south property line east and north to design point ET-3 (see drainage map) and is roughly 2,900 feet in length. The south section does not have any development located next to it at this time and will be armored per the Kiowa DBPS in the future as development occurs. During site visits with ACOE (Van Truan) and El Paso County Staff (Rich Harvey) it was discussed that the south section may be a good candidate to eliminate the stabilized low flow channel because of the large amounts of existing vegetation have already stabilized the low flow channel. The vegetation in this section is much more robust than the northern sections since it is supported by a higher groundwater table. The final design plans will further evaluate the low flow channel alternate. The 100-year flow rate for design is 5,500cfs. A CLOMR is not necessary for constructing the improvements in the south section

MDDP-East of the East Tributary CEG Project No. 100.013

considered reimbursable.

reimbursable in accordance with adopted DBPS -- improvements from the new DBPS need to go through the process

S

because there are no proposed bridge crossings or channel re-alignment. The middle section is from Design Point ET-3 north 2,800 feet to the future extension of Fontaine Boulevard. The channel for this section was reconstructed and stabilized in 2014 in accordance with the 1987 Wilson DBPS. The only infrastructure left to construct are the bridges over the creek at Fontaine Boulevard and Lorson Boulevard. LOMR Case No. 14-08-0534P was approved by FEMA for this middle section. The northern section is from Fontaine Boulevard and extends north to the north property line. The north section will be protected per the Kiowa DBPS during the first phase of development east of the East Tributary. The channel consists of a stabilized low flow channel and soil rip rap armored outer bends. Kiowa Engineering has submitted construction plans to El Paso County for this section of creek including bridges for Lorson Boulevard and Fontaine Boulevard. A CLOMR for the creek and bridge construction is currently submitted to FEMA. The 100-year flow rate for design is 4,750cfs for this section.

in conformance with (?)

2.0 DRAINAGE DESIGN CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual DCM dated 1994; and Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014.

The proposed improvements to the Lorson Ranch Development will be in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", dated March 9, 2014 prepared by Kiowa Engineering which has been adopted by El Paso County excluding the drainage fees.

The Rational Method as outlined in Section 3.2.7.F of the El Paso County "Engineering Criteria Manual" [5] was used for basins less than 100 acres to determine the rainfall and runoff conditions for the proposed development of the site. The soil Conservation Service (SCS) Hydrograph Procedure as outlined in the same section was used for basins larger than 100 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states when detention is necessary, Full Spectrum Detention will be included in the design. Based on this criteria, Full Spectrum Detention will be required for this development

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is located within the Jimmy Camp Creek Drainage Basin. The roughly 43,000-acre (66.9 square miles) basin is located within unincorporated El Paso County, the City of Colorado Springs, and the City of Fountain, Colorado. The "Jimmy Camp Creek Drainage Basin Planning Study" [7] establishes drainage guidelines and mitigation for development within the Jimmy Camp Creek Drainage Basin. This report has been adopted by the City of Colorado Springs and by El Paso County excluding drainage fees. El Paso County has yet to adopt the drainage fee portions of the DBPS.

see previous comments

The area that is the subject of this Master Development Drainage Plan covers approximately 808 acres of undeveloped land (790 acres onsite) that has recently been used for agriculture and grazing, and is currently zoned as RRS (rural residential district). The land east and south of the East Tributary consists of hilly terrain with slopes up to 12%.

The Soil Conservation Service (SCS) classifies the soils within the Lorson Ranch East property as Ascalon sandy loam; Manzanola clay loam; Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam (13%) [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Razor clay loams are considered hydrologic soil group C soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered will be encountered beneath some of the site but it can be excavated using conventional techniques.

Table 3.1: SCS Soils Survey

Table 3.1: 505 5					
Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
2-Ascalon Sandy Loam - (4%)	В	Moderate	Moderate	Slow to Medium	Moderate
3-Ascalon Sandy Loam - (9%)	В	Moderate	Moderate	Slow to Medium	Moderate
52-Manzanola Clay Loam (17%)	С	High	Slow	Medium	Moderate
54-Midway Clay Loam (3%)	D	High	Slow	Medium	Moderate
56-Nelson – Tassel Fine Sandy Loam (50%)	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam (10%)	С	High	Slow	Medium	Moderate
104-Vona Sandy Loam (1%)	В	Low	Moderate	Slow	Moderate
108-Wiley Silt Loam (13%)	В	Moderate	Moderate	Medium	Moderate

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" [2] are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, within existing transmission towers, runs through the center of this portion of the development and will be set aside as open space in the future. It is the intent of this drainage plans to utilize some of the open space under the towers for detention of developed storm flows.

The FMIC (irrigation canal) that runs parallel with the East Tributary through this site was decommissioned in 2006 and for the purpose of existing drainage calculations the canal was ignored and all flow was assumed to flow to the East Tributary.

Portions of the site are located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C0957 F & 08041C1000 F, effective 17 March 1997 [2]. Floodplain along the East Tributary middle section was modified per LOMR Case No. 14-08-0534P (see appendix). Floodplain designations include Zone AE and Zone X within the property boundary. A portion of this map is provided in *Appendix A* for reference.

The existing drainage area of this MDDP has been divided into major basins and numerous smaller sub basins. The majority of the area drains naturally to the East Tributary, with some smaller basins flowing offsite to the east and south, and north. See the map pocket in the rear of this report for the existing conditions map. The rational method was used to estimate the runoff from each basin for both 5-year and 100-year storm events except for the three (3) basins which are larger than 100 acres where the SCS method was utilized (see *Appendix B* for calculation and break out of the sub basins). Following is a description of the Existing Major Basins:

Basin EX-A1

This 4.28 acre basin is in the northwest corner of the site and includes part of the East Tributary. Under existing conditions, this area contributes 1.1 cfs and 8.0 cfs to the East Tributary for 5-year and 100-year events respectively. This basin comprises of the East Tributary and will not be developed in the future.

Overall Basin EX-B flows to Design Point 1

This 20.06 acre basin is the northeast corner of the site and includes off-site flows from the east (Basin OS-B1), on-site flows (Basin B1.1). All runoff flows overland to the northwest to the East Tributary. The calculated existing flows are 10.5 cfs and 58.8 cfs for the 5-year and 100-year storm events respectively and drain overland.

Overall Basin EX-C flows to Design Point 2

This is the largest existing basin at 452.97 acres which includes approximately the northern half of the site. This basin is an overall existing basin including Basins EX-C1 to EX-C10. There are two offsite basins (OS-C6.1 and OS-C5.1) which flow onto the site from the north and east and are included in the flow at Design Point 2. Under existing conditions, this basin contributes 141.0 cfs and 458.0 cfs for the 5-year and 100-year events respectively at Design Point 2. Design Point 2 is located at the East Tributary and all flow is routed to the East Tributary in an existing swale that is eroded and is not armored.

Overall Basin EX-D flows to Design Point 3

Overall Basin EX-D is located adjacent to and southwest of Basin Ex-C and is 109.55 acres in size. This basin is an overall existing on-site basin. The existing runoff of 29.7cfs and 166.5cfs for the 5-year and 100-year events at Design Point 3 respectively and flows directly overland into the East Tributary.

Overall Basin EX-E flows to Design Point 4

Overall Basin EX-E is located adjacent to and southwest of Basin Ex-D and is 186.30 acres in size. Overall Basin EX-E is the second largest historic basin at 186.30 acres and includes on-site flow (Basins EX-E1 to EX-E3) and offsite flows (Basin OS-E1.1 and OS-E2.1) from the Peaceful Valley Estates subdivision to the south. Under existing conditions, this overall basin contributes 104.0 cfs and 286.0 cfs for the 5-year and 100-year events respectively at Design Point 4 and flows directly overland into the East Tributary.

100 and 280?

Basin EX-F flows to Design Point 5

This 39.85 acre basin flows offsite to the east toward the future Meridian Road. This basin is an overall existing on-site basin including Basins EX-F1 to EX-F2. The existing runoff is 19.3 cfs and 113.7 cfs for the 5-year and 100-year events respectively.

Basin EX-G-Design Point 6

Basin Ex-G is relatively small basin of 14.91 acres in the southeast portion of the site and flow south overland offsite to the Peaceful Valley Lake Estates subdivision. The existing flows are 7.9cfs and 44.1cfs for the 5-year and 100-year storm events respectively.

Basin EX-H-Design Point 7

This 28.13 acre basin flows offsite overland to the south onto the adjacent subdivision. The existing flows are 12.3cfs and 73.2cfs for 5-year and 100-year events respectively.

Overall Basin EX-I flows to Design Point 8

This 32.92 acre overall basin includes on-site flow (Basins EX-I1) and offsite flows (Basin OS-I1.1) and flows directly into the East Tributary. Under existing conditions, this overall basin contributes 12.4cfs and 74.1cfs for the 5-year and 100-year events respectively at Design Point 8.

Overall Basin EX-J flows to Design Point 9

This 25.78 acre overall basin includes on-site flow (Basins EX-J1) and offsite flows (Basin OS-J1.1) and flows directly into the East Tributary. Under existing conditions, this basin contributes 9.0cfs and 55.9cfs for the 5-year and 100-year events respectively at Design Point 9.

Overall Basin EX-K flows to Design Point 10

This 7.57 acre overall basin is located in the southwest corner of the site and includes on-site flow (Basins EX-K1) and offsite flows (Basin OS-K1.1) and flows directly into the East Tributary. The existing flows are 2.1cfs and 15.2 cfs for 5-year and 100-year storm events respectively at Design Point 10.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Under developed conditions, there will essentially be seven (7) drainage basins that will drain directly into the East Tributary and for (4) basins that could drain offsite unless directed back on-site via storm sewer. These basins closely mimic the existing drainage patterns and locations and flow rates.

The site will be divided into multiple phases with total build out in the year 2033. The proposed total build out of this portion of the development will include residential development and a school site.

The runoff coefficient of 0.49 (5-year) and 0.65 (100-year) were used to calculate developed runoff.

Fontaine Boulevard and Lorson Boulevard will extend through the development from the west as major roadways. There will also be several local and collector roads that will be constructed for access throughout the site. Only the arterial and collector streets have been shown on the plans. The proposed detention ponds, storm sewer, drainage channels, and diversion swales shown on the plan are schematic in nature and shown for information only. As more of the development is designed in greater detail, localized, detailed drainage plans will need to be created that follow the general plan set forth in this document.

As summary table of design point developed flow rates can be found on the Developed Conditions map in the back pocket of this report. The following is a description of the Developed basins and Design Points: discuss pond concept

Basin A
This 2.6 acre basin is in the northwest corner of the site and includes the East Tributary. This basin consists of open space contributes 1.4 cfs and 7.7 cfs to the East Tributary for 5-year and 100-year events respectively. This basin comprises of the East Tributary and will not be developed.

Basin OS-B1

Offsite Basin OS-B1 is 5.64 acres and will flow overland onto Basin B2. Meridian Road may be constructed along the eastern border of Lorson Ranch in the future which will intercept the flows going to Basin B2. For this report the flows are assumed to flow overland to Basin B2. Assuming the runoff does reach the development it will flow onto Basin B2 and can be expected to be approximately 3.4 cfs and 19.0 cfs for the 5-year and 100-year design storms respectively.

Basin B2

This basin is located in the northeast corner of the site and consists of residential development. It is 3.9 acres and flows offsite to the northwest. The runoff for Basin B2 under developed conditions is estimated at 6.4 cfs and 14.3 cfs for the 5-year and 100year storm events.

Overall Basin B at Design Point 1

Overall Basin B is located at the northeast corner of the site and receives offsite flow from Basin OS-B1 and Basin B2. The total flow for the basin is 8.5 cfs and 28.0 cfs for the 5-year and 100-year storm events which is less than the existing runoff. (see Design Pt. 1 in existing conditions). Developed runoff will flow offsite to the northwest as in existing conditions. These developed flows will not need to be detained but will require water quality treatment.

Basin C1

Basin C1 consists of residential development and is located in the upstream portion of Overall Basin C. This basin is 23.2 acres and flows downstream to a low point in Lorson Boulevard and into Basin C2. The runoff under developed conditions is estimated at 34.9 cfs and 77.7cfs for the 5-year and 100-year storm events. A 36" storm sewer will be necessary to convey runoff under Lorson Boulevard into Basin C2.

Basin C2 and Design Point 2

Basin C2 consists of residential development and is located in the upstream portion of Overall Basin C. This basin is 34.5 acres and flows downstream into Pond C1. Detention Pond C1 is proposed at the downstream portion of this basin within the existing electrical transmission easement. The runoff for Basin C2 under developed conditions is estimated at 66.6cfs and 148.4 cfs for the 5-year and 100-year storm events.

The total combined flow reaching Pond C1 at Design Point 2 is from Basin C1 and C2 and is 80.1 cfs and 171 cfs for the 5-year and 100-year storm events respectively. It is estimated that a 48" storm will be necessary to convey runoff into Pond C1.

Basin C3

This is small sub basin of 8.3 acres and flows downstream north into Basin C4 at Design Point 3a. The runoff for Basin C3 under developed conditions is estimated at 13.9 cfs and 31.0 cfs for the 5-year and 100-year storm events. Runoff from this basin will be collected in storm sewer at Lorson Boulevard and will be directed west to Detention Pond C2.1.

Basin C4

This relatively large sub basin is located in the upstream portion of Basin C. The 57.5 acre basin contributes 79.7 cfs and 177.4 cfs for the 5-year and 100-year storm events. Runoff from this basin will be collected in storm sewer at Lorson Boulevard and will be directed west to Detention Pond C2.1.

Basin C5

Basin C5 is located in the upstream portion of Basin C in the northeast corner of Fontaine and Lorson Boulevards. The 25.0 acre basin contributes 42.4 cfs and 94.4 cfs for the 5-year and 100-year storm events to Design Point 3d. Runoff from this basin will be collected in storm sewer at Lorson Boulevard/Fontaine and will be directed west in Fontaine Boulevard to Detention Pond C2.2.

Basin C6

Basin C6 is located south of Fontaine Boulevard and is in the upstream portion of Basin C. Basin C6 is 18.7 acres and under developed conditions the flow is estimated to be 31.7cfs and 70.5 cfs for the 5-year and 100-year storm events respectively. Runoff will be directed to Pond C2.3. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 3a

This design point is the total outflow flow from Pond C2.1. The total developed flow is 11.0cfs and 65.0 cfs for the 5-year and 100-year storm events. flowing to Pond C2.3?

Design Point 3b

This design point is the total inflow to Pond C2.3. Runoff at this design point is from Design Point 3a and Basin C6. The total developed flow is 46.3cfs and 111.0 cfs for the 5-year and 100-year storm events at Design Point 3b. Runoff from this basin will be collected in storm sewer and will be directed to Detention Pond C2.3. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 3c

This design point is the total outflow flow from Pond C2.3. The total developed flow is 4.0cfs and 46.0 cfs for the 5-year and 100-year storm everstepond C2.1 release (65 cfs)

Basin C7

flowing through this pond?

Basin C7 is located north of Fontaine Boulevard and is in the upstream portion of Basin C. Basin C7 is 14.5 acres and under developed conditions the flow is estimated to be 26.4 cfs and 58.9 cfs for the 5-year and 100-year storm events respectively. Runoff will be directed to Pond C2.2.

Basin OS-C9.1

Offsite Basin OS-C9.1 is 3.59 acres and will flow overland onto Basin C8. Meridian Road may be constructed along the eastern border of Lorson Ranch in the future which will intercept the flows going to Basin C8. For this report the flows are assumed to flow overland to Basin C8. Assuming the runoff does reach the development it will flow onto Basin C8 and can be expected to be approximately 4.0 cfs and 10.6 cfs for the 5-year and 100-year design storms respectively.

Basin C8

Basin C8 is located north of Fontaine Boulevard and is in the northeast portion of Basin C. Portions of the northeast corner of this basin will be graded so the runoff flows southwest instead of north to Basin B. This grading will reduce the runoff flowing offsite into Basin B. Basin C8 is 74.5 acres and under developed conditions the flow is estimated to be 119.3 cfs and 265.5 cfs for the 5-year and 100-year storm events respectively at Design Point 5 flowing into Pond C4 and Pond C4 outflow rates

Basin C8a

Basin C8a is located east of Pond C3. Basin C8a is 11.7acres and under developed conditions the flow is estimated to be 22.0 cfs and 49.0 cfs for the 5-year and 100-year storm events respectively. Runoff will be directed to Pond C3.

Basin OS-C9

Sub Basin OS-C9 is 5.2 acres and will flow into Basin C10 and Lorson Boulevard. The runoff for sub Basin OS-C9 is estimated at 10.1 cfs and 22.4 cfs for the 5-year and 100-year storms respectively.

Basin C10

Basin C10 is a 13.0 acre basin is located in the north portion of Basin C and accepts offsite flow from Basin OS-C9. Runoff flows south to Lorson Boulevard and then to a

low point in Lorson Boulevard at Design Point 4. The on-site developed flows this basin are 22.8 cfs and 50.7 cfs for the 5-year and 100-year events respectively.

Design Point 4

add the inflow values

This design point is located at a low point in Lorson Boulevard (north of Fontaine Blvd.) and is the total flow into Pond C3. Runoff at this design point is from Basin C8a, OS-C9, C10, and from Pond C4. The total developed flow is 51.6cfs and 134.0 cfs for the 5-year and 100-year storm events into Detention Pond C3. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified. discuss overflow path for

Design Point 3d

developed flows

This design point is the total flow into Pond C2.2 (24" storm sewer outfall) from Basin C5, C7, and Pond C3. The total developed flow is 70.0cfs and 138.0cfs for the 5-vear and 100-year storm events. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 3e

add the inflow values

This design point is the total outflow flow from Pond C2.2. The total developed outflow is 6.0cfs and 40.0 cfs for the 5-year and 100-year storm events. Discuss pond designs and modeling ponds in series.

Design Point 3f

This design point is the total flow in a storm sewer in Fontaine Boulevard consisting of Pond C2.3 outflow, Pond C2.2 outflow, and Pond C1 outflow. The total developed flow is 14.0cfs and 104.0cfs for the 5-year and 100-year storm events in the pipe.

Basin C12

Basin C12 is a 19.6 acre basin is located to the east of the school site and south of Lamprey Drive (collector road). The developed flows from this basin are 33.0cfs and 73.5cfs for the 5-year and 100-year events respectively. Flows will be directed north in streets/storm sewer to Lamprey Drive. A 30" storm sewer at 1% will flow west in Lamprey Drive to Design Point 6a. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Basin C13

Basin C13 is a 21.2 acre basin is the majority of the school site. The school site will be required to detain developed flows within the basin. Stormwater quality will be provided for this basin in Pond C5. The allowable runoff from this basin is limited to existing conditions and is 7.6 cfs and 40.5 cfs for the 5-year and 100-year events respectively. Flows will be directed west within the basin to Design Point 6b where a 30" storm sewer stub will be located.

Basin C14

Basin C14 is a 11.1acre basin that contains a portion of the school site and Fontaine Boulevard that drains south to Fontaine Boulevard. Approximately 4.0 acres of the school site is allowed to direct runoff to Fontaine Bouelvard but must be detained to existing flows within the school site. The allowed runoff from Basin C14 is 16.6cfs and 37.0 cfs for the 5-year and 100-year events respectively.

Basin C15

Basin C15 is a 40.2 acre basin is located south of Fontaine Boulevard, east of Lamprey Drive, and west of Pond C1. The developed flows from this basin are 57.6 cfs and 128.3cfs for the 5-year and 100-year events respectively. Flows from this basin will be directed north to Design Point 7 in a 42" storm sewer at 2.4% slope. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Basin OS-C11

Offsite Basin OS-C11 is 5.6 acres and will flow overland west directly to the East Tributary of Jimmy Camp Creek in a swale. The runoff for sub Basin OS-C11 is estimated at 10.2 cfs and 22.7 cfs for the 5-year and 100-year storms.

show on plan

- from Lamprey Dr.?

Basin C16a

Basin C16a is a 21.29 acre basin is located north of Lamprey Drive and flows to Design Point 6a. The developed flows from this basin are 35.1 cfs and 78.3 cfs for the 5-year and 100-year events respectively. Flows from this basin will be directed south to Design Point 6a. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 6a

Design Point 6a is located in the southwest corner of Basin C16a and flows are from Basin C16a Basin C12. The developed flows are 68.1cfs and 151.8cfs for the 5-year and 100-year events respectively. Flows will be directed west in Lamprey Drive via streets/storm sewer to Design Point 6c located next to Pond C5. A 42" storm sewer at 1.0% will flow west in Lamprey Drive to Design Point 6c. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 6b

Design Point 6b is located on Lamprey Drive and flows are from Design Point 6a and Basin C12. The developed flows are 75.7cfs and 192.3cfs for the 5-year and 100-year events respectively. Flows will be directed west in Lamprey Drive via streets/storm sewer to Design Point 6c located next to Pond C5. A 54" storm sewer at 1.0% will flow west in Lamprey Drive to Design Point 6c. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Basin C16b

Basin C16b is a 32.23 acre basin is located north of Fontaine Boulevard, east of Pond C5, and west of Lamprey Drive and flows to Design Point 6c. The developed flows from this basin are 55.6cfs and 123.8cfs for the 5-year and 100-year events respectively. Flows from this basin will be directed to Design Point 6c. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 6c

Design Point 6c is located east of Pond C5 and is the flow from the C16 basins, C12, and C13. The developed flows are 90.0cfs and 222.0cfs for the 5-year and 100-year events respectively. Flows will be directed west into Pond C5 in a 66" storm sewer. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 7

This design point is the total flow in a storm sewer in a low point in Lamprey Drive and Fontaine Boulevard. The total developed flow is 88.0cfs and 270.0cfs for the 5-year and 100-year storm events and flows west in Fontaine Boulevard to Design Point 7a in a 60" storm sewer at a 1.0% grade. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Basin C17

Basin C17 is a 22.7acre basin that contains portions of Fontaine Boulevard, and residential areas south of Fontaine Boulevard. The developed flows from this basin are 31.7cfs and 70.6cfs for the 5-year and 100-year events respectively. Flows from this basin will be directed north to Design Point 7a.

Design Point 7a

Design Point 7a is located on Fontaine Boulevard south of Pond C5. Flows at this design Point are from Design Point 7 and Basin C17 and is the flow into Pond C5 from the south. The developed flows are 114.0 cfs and 337.0 cfs for the 5-year and 100-year events respectively. A 60" storm sewer at 1.0% will flow north to Pond C5. When the future preliminary drainage report for this area is prepared the actual street flows and storm sewer capacities will need to be verified.

Design Point 7b

Design Point 7b is the total inflow into Pond C5. The developed flows are 204 cfs and 484 cfs for the 5-year and 100-year events respectively.

Design Point 7c

Design Point 7c

Design Point 7c

Design Point 7c

Design Point 7c is the total outflow from Pond C5. The developed flows are 121.0 cfs and 420.0 cfs for the 5-year and 100-year events respectively and flow west into the East Tributary. These flows closely mimic the existing conditions flows into the East Tributary. See Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

Rasin D1

This 17.0 acre basin consists of residential development and Lorson Boulevard that flows to Pond D1 south of Lorson Boulevard. The developed flows from this basin are 32.0 cfs and 71.1cfs for the 5-year and 100-year events respectively.

Basin D2

This 8.0 acre basin consists of residential development and flows south to Design Point 8 in Lorson Boulevard. The developed flows from this basin are 16.0 cfs and 35.5cfs for the 5-year and 100-year events respectively.

— Discuss pond D1 design

Design Point 8

This design point is in Lorson Boulevard just east of Lamprey Drive. Flows are from Basin D2 and Pond D1 outflow. The developed flows from this basin are 18.0cfs and 46.0cfs for the 5-year and 100-year events respectively. A 30" storm sewer is needed to convey flows to Pond D2

Basin D3 - Design Point 9a

This 23 acre basin consists of residential development and flows north to Pond D2. The developed flows from this basin are 38.0cfs and 84.5 cfs for the 5-year and 100-year events respectively.

Basin D4 - Design Point 9b

This 36.4 acre basin consists of residential development and flows west to Design Point 9b just east of Pond D2. The developed flows from this basin are 61.7 cfs and 137.5 cfs for the 5-year and 100-year events respectively.

Basin D5

Basin D5 is a 4.6 acre basin that contains Pond D2, portions of Lorson Boulevard, and residential areas. The developed flows from this basin are 7.5cfs and 20.6 cfs for the 5-year and 100-year events respectively. Flows from this basin will be directed to Pond D2.

Design Point 10a

This design point is the total flow into Pond D2 from Design Points 8, 9a, 9b and Basin D5. The developed flow at this design point is 106.0 cfs and 243.0cfs for the 5-year and 100-year events respectively.

Discuss pond D2 design

Design Point 10b

This design point is the outfall of Pond D2 into the East Tributary. The developed flows at this design point are 67.0cfs and 131.2cfs for the 5-year and 100-year events respectively. These flows closely mimic the existing conditions flows into the East Tributary. See Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

Basin OS-E3

Offsite Basin OS-E3 is 9.90 acres and consists of runoff from the Peaceful Valley Lake Estates 1st Filing which is an existing residential large lot subdivision consisting of 2.5acre to 5acre lots. The runoff will flow overland onto Lorson Ranch into Basin E4 where it will be conveyed to Pond E3 and the East Tributary. Runoff from Basin OS-E3 is 9.2cfs and 32.7cfs respectively for the 5-year and 100-year storm events.

Basin OS-E6

Offsite Basin OS-E6 is 21.1 acres and consists of runoff from the Peaceful Valley Lake Estates 1st Filing which is an existing residential large lot subdivision consisting of 2.5acre to 5acre lots. The runoff will flow overland onto Lorson Ranch into Basin E7 where it will be conveyed to Pond E3 and the East Tributary. Runoff from Basin OS-E6 is 18.4cfs and 65.3cfs respectively for the 5-year and 100-year storm events.

Basin OS-E9

Offsite Basin OS-E9 is 46.9 acres and consists of runoff from the Peaceful Valley Lake Estates 1st Filing which is an existing residential large lot subdivision consisting of 2.5acre to 5acre lots. The runoff will flow overland onto Lorson Ranch into Basin E10-E11 where it will be conveyed to Pond E3 and the East Tributary. Runoff from Basin OS-E9 is 15.2 cfs and 102.0 cfs respectively for the 5-year and 100-year storm events.

Basin E1

This 10.2 acre basin is located in the upstream portion of Basin E. The developed flows from this basin are 18.5cfs and 41.1 cfs for the 5-year and 100-year events respectively. Flows from both Basins E1 will be directed to Pond E1 via storm sewer.

Basin E2

This 10.3 acre basin is located directly north of Basin E1. The developed flows from this basin are 19.9cfs and 44.3cfs for the 5-year and 100-year events respectively. Detention Pond E1 is proposed downstream of this basin within the existing electrical transmission easement.

Basin E4

This 12.8 acre basin is located just to the west of Basin E1 and flows north to Trappe Drive and then to Pond E1. The developed flows from this basin are 23.6cfs and 52.5cfs for the 5-year and 100-year events respectively.

Basin E5

Basin E7

This 13.3 acre basin is located directly east of Pond E1. The developed flows from this basin are 24.4cfs and 54.3 cfs for the 5-year and 100-year events respectively.

Basins E1-E5 at Design Point 12

The total flows reaching Pond E1 at Design Point 12 from basins E1-E5 is 88.7 cfs and 209.5 cfs for the 5-year and 100-year storm events respectively.

Discuss pond E1 design

This 6.7acre basin is located directly south of Basin OS-E6 and flows west to Trappe Drive where a storm sewer will convey the flow west to Design Point 13. The developed flows from this basin are 12.5cfs and 27.9cfs for the 5-year and 100-year events respectively.

DP11?

Design Point 11

This design point is located on Trappe Drive where a 48" storm sewer will convey the flow west to Design Point 13. The developed flows from this basin are 26.2cfs and 89.8cfs for the 5-year and 100-year events respectively.

Basin E8

This 21.6acre basin is located directly north of Basin E7 and flows south and west to Trappe Drive where a storm sewer will convey the flow west to Design Point 13. The developed flows from this basin are 35.4cfs and 78.8 cfs for the 5-year and 100-year events respectively.

Design Point 13

This design point is located at a low point on Trappe Drive where a 48" storm sewer will convey the flow south to Design Point 14 and Pond E2 The developed flows at this design point are 78.0cfs and 205.0cfs for the 5-year and 100-year events respectively.

Design Point 14

This design point is the total inflow to Pond E2 including the significant offsite areas in Basin OS-E6 and OS-E9. The developed flows at this design point are 190.0cfs and 423.0 cfs for the 5-year and 100-year events respectively.

Discuss pond E2 design

Design Point 14a

This design point is the total outflow from Pond E2 into the East Tributary. The pond outflow at this design point is 97.0cfs and 260.0cfs for the 5-year and 100-year events respectively. These flows closely mimic the existing conditions flows into the East Tributary. See Table 6,2 for a comparison of existing versus develop runoff to the East Tributary. This pond will only include water quality for development within Lorson Ranch.

Basin F at Design Point 15

This 33.0 acre basin is located on the very east portion of the site and discharges into Pond F to the east where the future proposed Meridian Road will be constructed. The total flows reaching Pond F at Design Point 15 are 50 cfs and 111.3cfs for the 5-year and 100-year storm events respectively. These flows closely mimic the existing conditions flows offsite to the east. See Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

Design Point 15a Discuss pond F design

Design Point 15a is the total outflow from Pond F. The developed flows are 3.5 cfs and 41.0 cfs for the 5-year and 100-year events respectively and flow west into the East Tributary. These flows closely mimic the existing conditions flowing east. Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

where?

Basin G-Design Point 16

This basin is located in the southeast corner of the study areas. It is 20.05 acres in size and contributes flows offsite. Detention Pond G is proposed near the southern boundary of the property and will be utilized to reduce the runoff to less than pre-development rates. The total flows reaching Pond G at Design Point 16 are 36 cfs and 80.2cfs for the 5-year and 100-year storm events respectively.

Discuss pond G design

Design Point 16a

Design Point 16a is the total outflow from Pond G. The developed flows are 2.0 cfs and 33.0 cfs for the 5-year and 100-year events respectively and flow south offsite. These flows closely mimic the existing conditions flowing south. See Table 6.2 for a comparison of existing versus develop runoff to the East Tributary. Since this flow is offsite is should also be designed to spread the flow onto the adjacent property and not concentrate the flow which can be accomplished using a rip rap berm. It may be possible to route the pond flow west into Pond H which should be evaluated in the preliminary design phase.

Basin H-Design Point 17

This basin is located in the southeast corner of the study areas. It is 22.3 acres in size and contributes flows offsite. The total flows reaching Pond H at Design Point 17 are 38.7 cfs and 86.3cfs for the 5-year and 100-year storm events respectively.

Design Point 17a

Design Point 17a is the total outflow from Pond H. The developed flows are 2.0 cfs and 35.3 cfs for the 5-year and 100-year events respectively and flow south offsite. These flows closely mimic the existing conditions flowing south. See Table 6.2 for a comparison of existing versus develop runoff to the East Tributary. Since this flow is offsite is should also be designed to spread the flow onto the adjacent property and not concentrate the flow which can be accomplished using a rip rap berm. It may be possible to route the pond flow west into Pond H which should be evaluated in the preliminary design phase.

Basin OS-I1

Offsite Basin OS-I1 is 15.96 acres and consists of runoff from the Peaceful Valley Lake Estates 1st Filing which is an existing residential large lot subdivision consisting of 2.5acre to 5acre lots. The runoff will flow overland onto Lorson Ranch into Basin I2 where it will be conveyed to Pond I and the East Tributary. Runoff from Basin OS-I1 is 14.1 cfs and 50.0 cfs respectively for the 5-year and 100-year storm events.

- consisting of future residential lots?

Basin I2 45 located south of the East Tributary and north of Basin OS-I1. This basin accepts runoff from Basin OS-I1 and flows north to the East Tributary. Runoff from Basin I2 is 25.2cfs and 56.1 cfs respectively for the 5-year and 100-year storm events.

Design Point 18a

Design Point 18a is the flow from Pond I and is located adjacent to the East Tributary. This pond accepts runoff from Basin I2, detains, treats runoff, and discharges it north to the East Tributary. The pond outflow is 1.0cfs and 21.1cfs respectively for the 5-year and 100-year storm events. Runoff from Basin OS-I1 is routed around Pond I and will not be detained or treated for water quality.

how? by swale?

Design Point 18

Design Point 18 is located at the southwest corner of the site, is adjacent to the East Tributary, and receives flows from Pond I and basin OS-I1. The developed flow is 15.1 cfs and 71.0cfs for the 5-year and 100-year event and flows. These flows closely mimic the existing conditions flowing to the East Tributary. Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

Basin OS-J1

Offsite Basin OS-J1 is 12.36 acres and consists of runoff from the Peaceful Valley Lake Estates 1st Filing which is an existing residential large lot subdivision consisting of 2.5acre to 5acre lots and Apple Ridge Subdivision. The runoff will flow overland onto Lorson Ranch into Basin J2 where it will be conveyed to Pond J and the East Tributary. Runoff from Basin OS-E9 is 10.8 cfs and 38.3 cfs respectively for the 5-year and 100-year storm events.

Basin J2

Basin J2 is located south of the East Tributary and north of Basin OS-J1. This basin accepts runoff from Basin OS-J1 and flows north to the East Tributary. Runoff from Basin J2 is 22.0cfs and 49.1cfs respectively for the 5-year and 100-year storm events.

Design Point 19a

Design Point 19a is the flow from Pond J and is located adjacent to the East Tributary. This pond accepts runoff from Basin J2, detains, treats runoff, and discharges it north to

the East Tributary. The pond outflow is 0.4cfs and 20.3cfs respectively for the 5-year and 100-year storm events. Runoff from Basin OS-J1 is routed around Pond J and will not be detained or treated for water quality.

how? by swale?

Design Point 19

Design Point 19 is located at the southwest corner of the site, is adjacent to the East Tributary, and receives flows from Pond J and basin OS-J1. The developed flow is 11.2 cfs and 58.6cfs for the 5-year and 100-year event and flows. These flows closely mimic the existing conditions flowing to the East Tributary. Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

Basin OS-K1

Offsite Basin OS-K1 is 1.98 acres and consists of runoff from the Apple Tree Golf Course. The runoff will flow overland onto Lorson Ranch into Basin K2 where it will be conveyed to Pond K and the East Tributary. Runoff from Basin OS-K1 is 2.0 cfs and 7.3 cfs respectively for the 5-year and 100-year storm events.

- consisting of future residential lots?

Basin K2 is located south of the East Tributary and north of Basin OS-K1. Runoff from Basin K2 is 7.3cfs and 16.3cfs respectively for the 5-year and 100-year storm events.

Design Point 20a

Design Point 20a is the flow from Pond K and is located adjacent to the East Tributary. This pond accepts runoff from Basin K2, detains, treats runoff, and discharges it north to the East Tributary. The pond outflow is 0.1cfs and 5.6cfs respectively for the 5-year and 100-year storm events. Runoff from Basin OS-K1 is routed around ₽ond K and will not be detained or treated for water quality. how? by swale?

Design Point 20

Design Point 20 is located at the southwest corner of the site, is adjacent to the East Tributary, and receives flows from Pond K and basin OS-K1. The developed flow is 2.1 cfs and 12.9cfs for the 5-year and 100-year event and flows. These flows closely mimic the existing conditions flowing to the East Tributary. Table 6.2 for a comparison of existing versus develop runoff to the East Tributary.

5.0 DRAINAGE AND BRIDGE FEES

Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land. Fees will be paid according to the fee at the time of platting. Construction of the major drainage improvements on the East Tributary to be completed as part of development will be eligible for reimbursement.

There will be two creek crossings associated with the construction of the East Tributary to serve this development. The two crossings will be at Fontaine Boulevard and Lorson Boulevard as they cross the East Tributary. At each crossing, a Conspan will be used to span the creek. The arches will be secured with engineered footer and the channel bottom will consist of natural material. Only the Fontaine Boulevard crossing will be eligible for reimbursement since it is a principal arterial in the 2060 Major Thoroughfare Plan.

Reword that reimbursement may be requested through the DCM and Drainage Board process.

MDDP-East of the East Tributary

CEG Project No. 100.013

6.0 DETENTION AND WATER QUALITY POND

The purpose of this MDDP is to provide an overview of the overall drainage impacts/mitigation due to development in the proposed Lorson Ranch Development on the East side of the East Tributary. It is recommended to construct larger (semi-regional off-line) on-site detention ponds to reduce the developed runoff at or below predevelopment runoff rates. This approach to detention ponds is in compliance with the Jimmy Camp DBPS. Also included within the detention ponds are provisions for storm water quality as required by El Paso County DCM, Volume 2 [4].

There is existing 325 foot electrical transmission line easement that runs diagonally through the middle of the site in a north-south direction. It is the intention of this report to utilize this area for detention ponding, thereby decreasing the runoff further downstream and resulting in smaller storm sewer sizes. The detention ponds within the easement shall not adversely affect the existing power poles and should be at existing grade or lower as to not raise the grade under the power lines.

The detention ponds will be Full Spectrum have been preliminary sized using the Full Spectrum Detention Pond excel spreadsheets from Denver Urban Drainage for ponds that are not in series (no upstream ponds tributary). For ponds in series, the WQ portion of the pond was calculated by the excel spreadsheets and the 5-year/100-year sizing/outflows were determined using hydrologic modeling software called Hydraflow Hydrographs by Intellisolve. See Table 6.1 below for the required volumes of the 5-year, 100-year, and the allowable release rates of each pond. Please see the plan in the back pocket of this report for the location. The detention ponds shown are schematic and will need to be designed with greater detail when the localized plans are designed. All ponds will include WQCV and full spectrum detention design as part of the preliminary plan drainage design.

Table 6.1: Detention Pond Data (full-spectrum (?))

Pond	5-year Volume (Ac-ft)	100-year Volume (Ac-ft)	Release Rate 5-year (cfs)	Release Rate 100-year (cfs)
Pond C1	5.98	10.22	3.0	17.7
Pond C2.1	4.83	8.33	11.0	65.0
Pond C2.2	3.72	6.38	6.0	40.0
Pond C2.3	1.48	4.32	4.0	46.0
Pond C3	1.73	6.33	4.6	17.8
Pond C4	5.69	10.72	12.4	38.3
Pond C5	13.01	15.56	121.0	420.0
Pond D1	1.25	2.48	2.0	10.5
Pond D2	5.61	8.53	31.2	131.2
Pond E1	3.60	6.57	9.4	32.0
Pond E2	5.94	9.67	97.0	260.0
Pond F	2.42	3.48	3.5	41.0
Pond G	1.41	2.20	1.1	33.0

This needs to be clarified.

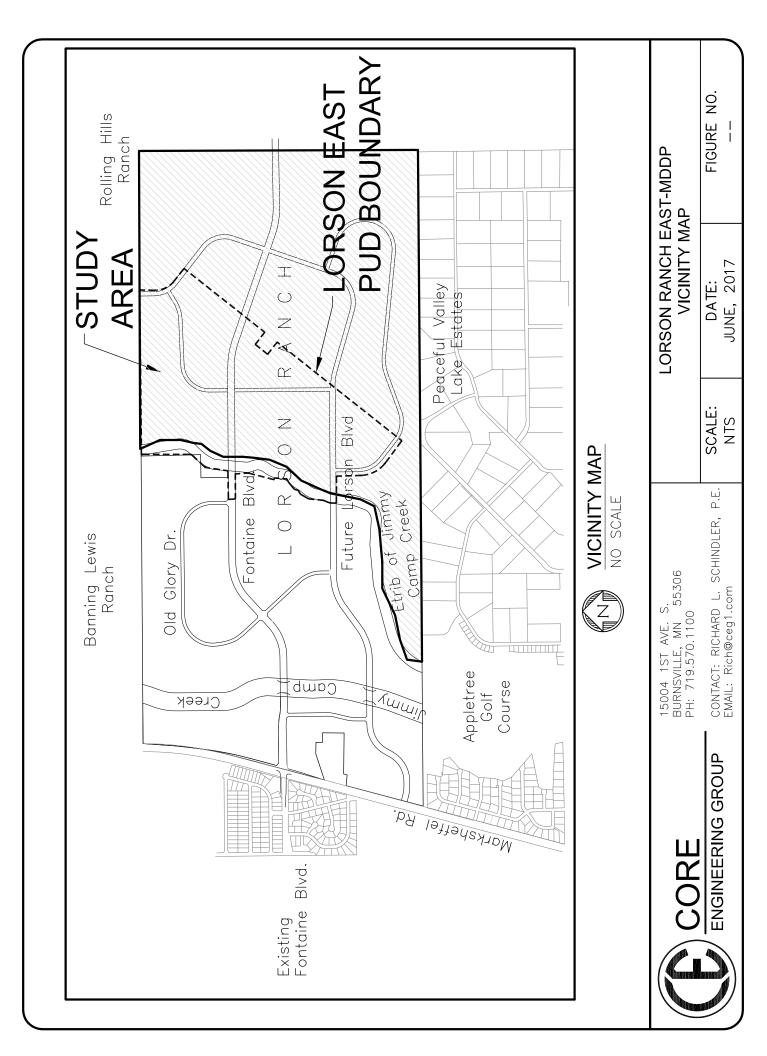
Pond H	1.57	2.35	1.7	35.3
Pond I	0.91	1.38	1.0	21.0
Pond J	0.86	1.25	0.4	20.3
Pond K	0.26	0.47	0.1	5.6

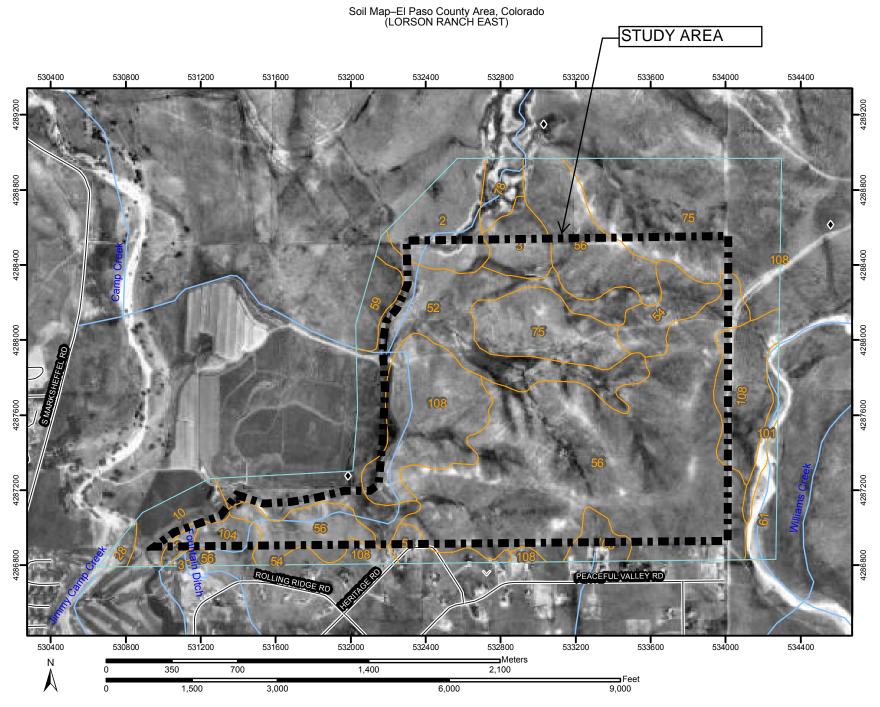
The detention ponds within Basins G and H , which historically flow onto the subdivision to the south will not only need to release at the pre-development rate and location, but shall be designed as to not concentrate the flow onto the adjacent property, but rather spread it by using a rip rap berm. There is a possibility that the pond outflow may be routed west in storm sewer which should be analyzed in the preliminary drainage reports.

Table 6.2: Existing versus Developed Runoff Summary at Outfall Points

Existing	Runoff		Developed Runot	f		
Design Point	Runoff 5-yr (cfs)	Runoff 100-yr (cfs)	Corresponding Developed Design Point	Runoff 5-yr (cfs)	Runoff 100-yr (cfs)	Outfall
1	10.5	58.8	1	8.5	28.0	"B" basins to north
2	141.0	458.0	7c	121.0	420.0	"C" basins to Etrib
3	29.7	166.5	10b	31.2	131.2	"D" basins to Etrib
4	104.0	286.0	14a	97.0	260.0	"E" basins to Etrib
5	19.3	113.7	15a	3.5	41.0	Basin F to east
6	7.9	44.1	16	2.0	33.0	Basin G to south
7	12.3	73.2	17	2.0	35.3	Basin H to south
8	12.4	74.1	18	15.1	71.0	Basin I to Etrib
9	9.0	55.9	19	11.2	58.6	Basin J to Etrib
10	2.1	15.2	20	2.1	12.9	Basin K to Etrib

7.0 CONCLUSIONS


This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:


- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- Full Spectrum Detention is provided in all ponds
- Water Quality Capture Volume will be provided in all ponds

8.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, 1987, Wilson & Co.
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
- Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 8. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	
APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	
APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	
APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	
APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	
APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP	

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Units

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

.. Gravelly Spot

Landfill

∧ Lava Flow

علد Marsh

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Perennial Water

.

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Spoil Area

Stony Spot

α

Very Stony Spot

•

Wet Spot

Other

Special Line Features

?ു Gully

Short Steep Slope

Other

Political Features

Municipalities

Urban Areas

Water Features

Oceans

Cities

Streams and Canals

Transportation

Rails

Roads

Interstate Highways

US Routes

State Highways

Local Roads

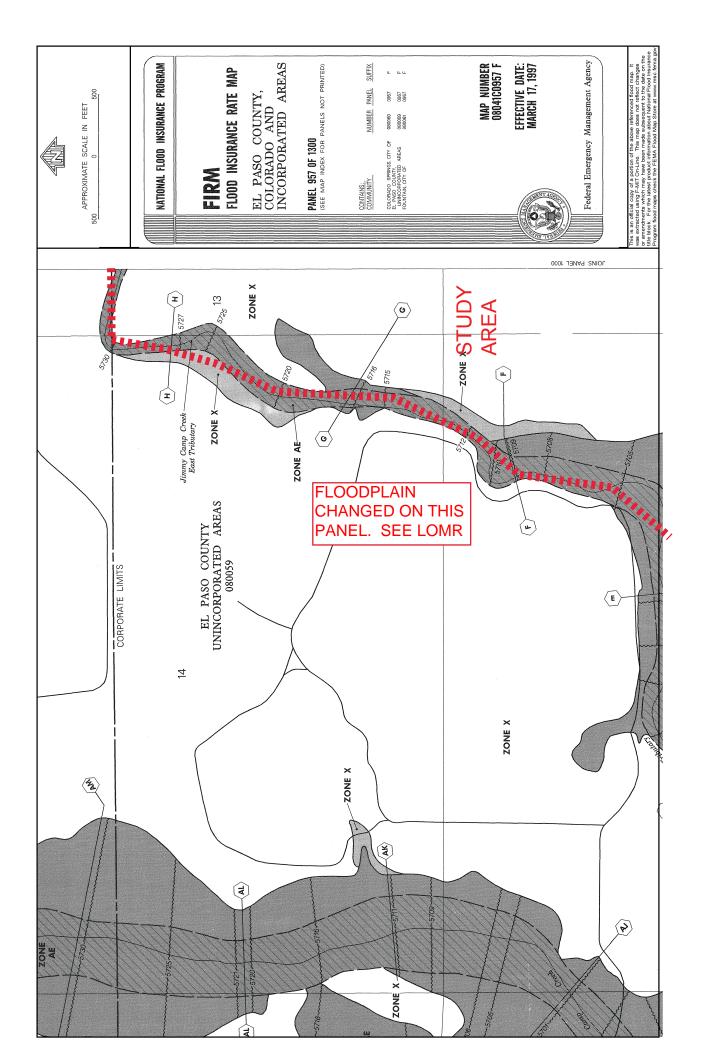
Other Roads

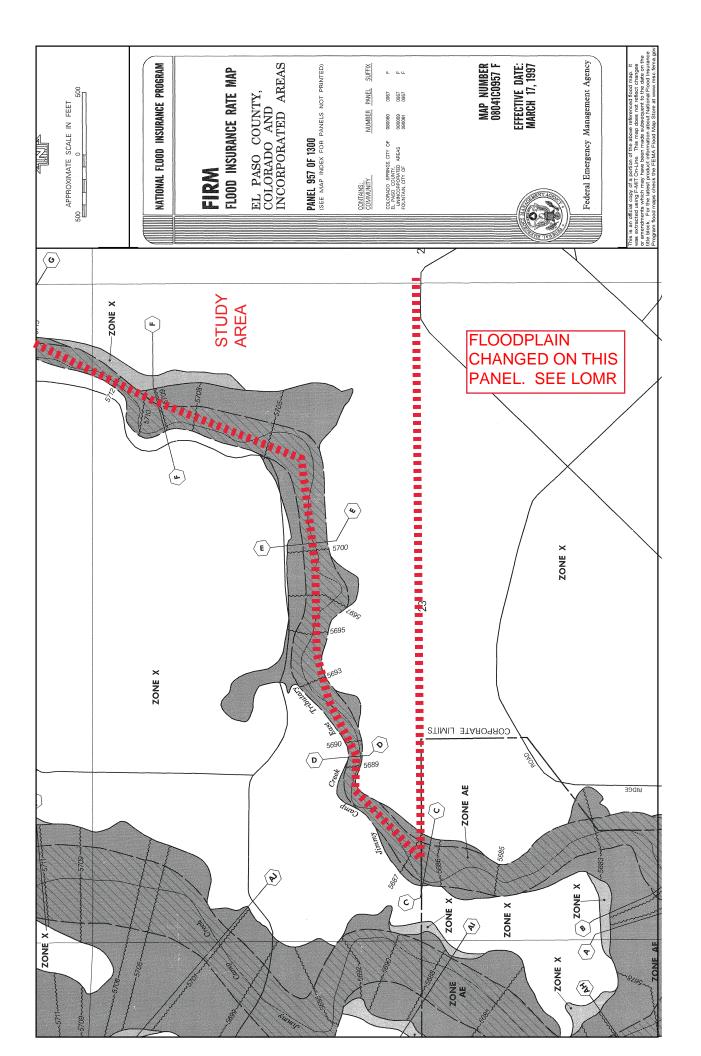
MAP INFORMATION

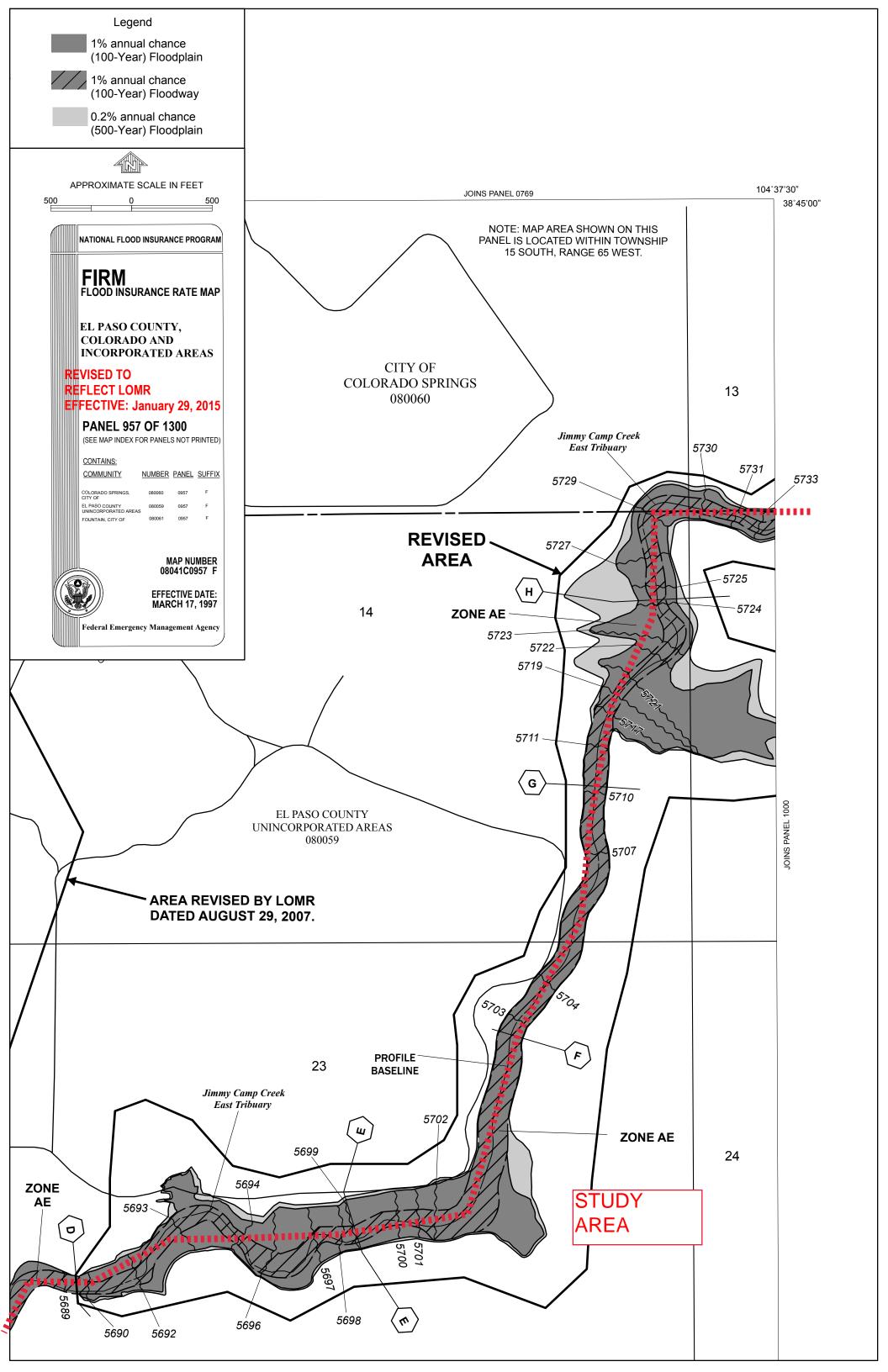
Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 13N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

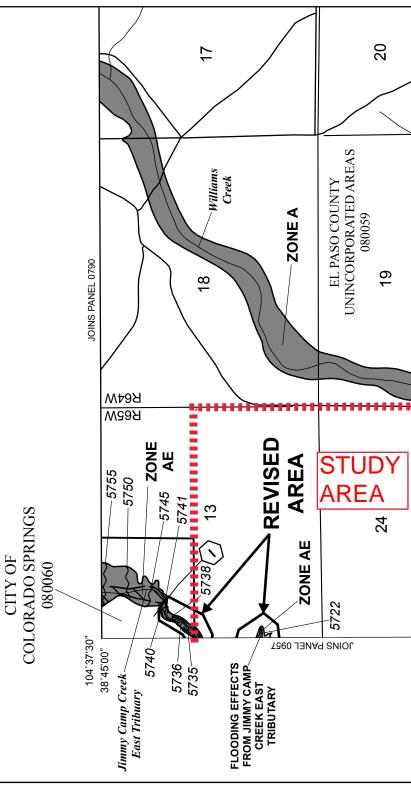

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 5, Jan 15, 2008


Date(s) aerial images were photographed: 1999


The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

El Paso County Area, Colorado (CO625)									
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
2	Ascalon sandy loam, 1 to 3 percent slopes	54.4	4.2%						
3	Ascalon sandy loam, 3 to 9 percent slopes	32.6	2.5%						
10	Blendon sandy loam, 0 to 3 percent slopes	29.0	2.2%						
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	5.5	0.4%						
52	Manzanola clay loam, 1 to 3 percent slopes	180.3	14.0%						
54	Midway clay loam, 3 to 25 percent slopes	46.2	3.6%						
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	476.6	37.0%						
59	Nunn clay loam, 0 to 3 percent slopes	16.8	1.3%						
61	Olney sandy loam, 3 to 5 percent slopes	18.8	1.5%						
75	Razor-Midway complex	213.9	16.6%						
78	Sampson loam, 0 to 3 percent slopes	16.4	1.3%						
101	Ustic Torrifluvents, loamy	11.3	0.9%						
104	Vona sandy loam, 1 to 3 percent slopes	17.4	1.4%						
108	Wiley silt loam, 3 to 9 percent slopes	170.2	13.2%						
Totals for Area of Interest (A	OI)	1,289.3	100.0%						



East Tribuary 2.000 REFLECT LOMR EFFECTIVE: January 29, 2015 MAP NUMBER 08041C1000 F **MARCH 17, 1997 EFFECTIVE DATE:** (SEE MAP INDEX FOR PANELS NOT PRINTED) Federal Emergency Management Agency NATIONAL FLOOD INSURANCE PROGRAM NUMBER PANEL SUFFIX INCORPORATED AREAS FLOOD INSURANCE RATE MAP APPROXIMATE SCALE IN FEET (100-Year) Floodplain (500-Year) Floodplain (100-Year) Floodway 0.2% annual chance 1% annual chance **PANEL 1000 OF 1300** 1% annual chance EL PASO COUNTY, COLORADO AND 080060 Legend EL PASO COUNTY, UNINCORPORATED AREAS COLORADO SPRINGS, CITY OF REVISED TO COMMUNITY CONTAINS: 03

NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 15 SOUTH, RANGE 64 WEST AND TOWNSHIP 16 SOUTH, RANGE 65 WEST.

APPENDIX B – HYDROLOGY & HYDRAULIC CALCULATIONS

15004 1st Avenue South Burnsville, MN 55306 PROJECT NAME: Lorson Ranch East MDDP

PROJECT NUMBER: 100.032

ENGINEER: LAB DATE: April 27, 2016

Master Development Drainage Plan EXISTING CONDITIONS RUNOFF COEFFICIENTS

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	CN	Wtd. CN	Type of Cov
EX-C1	108	В	0.10	0.09%	0.08	0.00	0.35	0.00	61	0.1	
	56	С	107.02	97.32%	0.15	0.15	0.50	0.49	74	72.0	
	54	D	2.85	2.59%	0.15	0.00	0.50	0.01	80	2.1	
			109.97	100.00%		0.15		0.50		74.1	
EX-C2	75	С	9.84	92.22%	0.15	0.14	0.50	0.46	74	68.2	
	54	D	0.83	7.78%	0.15	0.01	0.50	0.04	80	6.2	
		_	10.67	100.00%	00	0.15	0.00	0.50		74.5	
EX-C3	108	В	4.22	5.67%	0.08	0.00	0.35	0.02	61	3.5	
	52 & 56	С	70.18	94.33%	0.15	0.14	0.50	0.02	74	69.8	
	02 0 00		74.40	100.00%	0.10	0.15	0.00	0.49		73.3	
EX-C5	108	В	1.46	1.43%	0.08	0.00	0.35	0.01	61	0.9	
	56	С	71.84	70.30%	0.15	0.11	0.50	0.35	74	52.0	
	54	D	28.89	28.27%	0.15	0.04	0.50	0.14	80	22.6	
			102.19	100.00%		0.15		0.50		75.5	
EX-C6	3	В	1.02	8.94%	0.08	0.01	0.35	0.03	61	5.5	
	56	С	10.39	91.06%	0.15	0.14	0.50	0.46	74	67.4	
			11.41	100.00%		0.14		0.49		72.8	
EX-C7	3	В	6.24	15.99%	0.08	0.01	0.35	0.06	61	9.8	
	75	С	32.78	84.01%	0.15	0.13	0.50	0.42	74	62.2	
			39.02	100.00%		0.14		0.48		71.9	
EX-C8	108	В	3.90	30.90%	0.08	0.02	0.35	0.11	61	18.9	
	75	С	8.72	69.10%	0.15	0.10	0.50	0.35	74	51.1	
			12.62	100.00%	5.10	0.13		0.45		70.0	
EV 22	0.00		45.55	07.0404	0.00	0.00	0.05	0.40	0.4	00.4	
EX-C9	2 & 3	В	15.57 25.61	37.81% 62.19%	0.08	0.03	0.35	0.13	74	23.1 46.0	
	52		41.18	100.00%	0.10	0.09	0.50	0.31	14	69.1	

15004 1st Avenue South Burnsville, MN 55306 PROJECT NAME: Lorson Ranch East MDDP

PROJECT NUMBER: 100.032

ENGINEER: LAB DATE: April 27, 2016

Master Development Drainage Plan FXISTING CONDITIONS RUNOFF COFFFICIENTS

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	CN	Wtd. CN	Type of Cov
EX-C10	108	В	7.51	68.96%	0.08	0.06	0.35	0.24	61	42.1	
	52	С	3.38	31.04%	0.15	0.05	0.50	0.16	74	23.0	
			10.89	100.00%		0.10		0.40		65.0	
EX-C	108	P	40.02	8.84%	0.08	0.01	0.35	0.03	40	3.5	
LA-0	56	В	380.38	83.97%	0.08	0.01	0.35	0.03	40 54	3.5 45.3	
	54	D	32.57	7.19%	0.15	0.01	0.50	0.04	63	4.5	
	34		452.97	100.00%	0.13	0.14	0.50	0.49	03	53.4	
			432.91	100.0076		0.14		0.49		33.4	
EX-D1	108	В	18.79	93.95%	0.08	0.08	0.35	0.33	61	57.3	
	56	С	1.21	6.05%	0.15	0.01	0.50	0.03	74	4.5	
			20.00	100.00%		0.08		0.36		61.8	
EX-D2	108	В	50.90	56.84%	0.08	0.05	0.35	0.20	61	34.7	
	56	С	38.65	43.16%	0.15	0.06	0.50	0.22	74	31.9	
			89.55	100.00%		0.11		0.41		66.6	
		_									
EX-D	108	В	69.69	63.61%	0.08	0.05	0.35	0.22	61	38.8	
	56	С	39.86	36.39%	0.15	0.05	0.50	0.18	74	26.9	
			109.55	100.00%		0.11		0.40		65.7	
EX-E1	108	В	5.47	6.88%	0.08	0.01	0.35	0.02	61	4.2	
LA-E I	56	С	73.88	92.86%	0.08	0.01	0.50	0.02	74	68.7	
	54	D	0.21	0.26%	0.15	0.14	0.50	0.46	80	0.2	
	04		79.56	100.00%	0.10	0.00	0.50	0.00	00	73.1	
			19.00	100.00 /6		0.10		0.49		7.5.1	
EX-E2	108	В	0.44	2.56%	0.08	0.00	0.35	0.01	61	1.6	
	56	С	13.55	78.73%	0.15	0.12	0.50	0.39	74	58.3	
	54	D	3.22	18.71%	0.15	0.03	0.50	0.09	80	15.0	
			17.21	100.00%		0.15		0.50		74.8	

15004 1st Avenue South Burnsville, MN 55306 PROJECT NAME: Lorson Ranch East MDDP

PROJECT NUMBER: 100.032

ENGINEER: LAB
DATE: April 27, 2016

Master Development Drainage Plan EXISTING CONDITIONS RUNOFF COEFFICIENTS

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	CN	Wtd. CN	Type of Cover
OS-E1.1	108	В	4.76	15.50%	0.08	0.01	0.35	0.05	61	9.5	
	56	С	7.72	25.15%	0.15	0.04	0.50	0.13	74	18.6	
	54	D	18.22	59.35%	0.15	0.09	0.50	0.30	80	47.5	
			30.70	100.00%		0.14		0.48		75.5	
OS-E2.1	108	В	32.76	69.84%	80.0	0.06	0.35	0.24	61	42.6	
	56	С	0.89	1.90%	0.15	0.00	0.50	0.01	74	1.4	
	54	D	13.26	28.27%	0.15	0.04	0.50	0.14	80	22.6	
			46.91	100.00%		0.10		0.40		66.6	
EX-E	108	В	43.43	23.31%	0.08	0.02	0.35	0.08	40	9.3	
	56	С	107.96	57.95%	0.15	0.09	0.50	0.29	54	31.3	
	54	D	34.91	18.74%	0.15	0.03	0.50	0.09	63	11.8	
			186.30	100.00%		0.13		0.47		52.4	
EX-F1	108	В	8.74	39.09%	0.08	0.03	0.35	0.14	61	23.8	
	56	С	13.62	60.91%	0.15	0.09	0.50	0.30	74	45.1	
			22.36	100.00%		0.12		0.44		68.9	
EX-F2	108	В	0.23	1.32%	0.08	0.00	0.35	0.00	61	0.8	
	56	С	17.26	98.68%	0.15	0.15	0.50	0.49	74	73.0	
			17.49	100.00%		0.15		0.50		73.8	
EVE	400	D	0.07	20 540/	0.00	0.00	0.25	0.00	64	40.7	
EX-F	108	В	8.97	22.51%	0.08	0.02	0.35	0.08	61	13.7	
	56	С	30.88	77.49%	0.15	0.12	0.50	0.39	74	57.3	
			39.85	100.00%		0.13		0.47		71.1	
EX-H1	108	В	7.70	27.37%	0.08	0.02	0.35	0.10	61	16.7	
	56	С	20.43	72.63%	0.15	0.11	0.50	0.36	74	53.7	
			28.13	100.00%		0.13		0.46		70.4	
OS-I1.1	108	В	11.51	72.12%	0.08	0.06	0.35	0.25	61	44.0	
	56	С	4.45	27.88%	0.15	0.04	0.50	0.14	74	20.6	
			15.96	100.00%		0.10		0.39		64.6	

These seem high for existing. Provide land use/impervious table and coefficients tables.

15004 1st Avenue South Burnsville, MN 55306

Master Development Drainage Plan

EXISTING CONDITIONS RUNOFF COEFFICIENTS

PROJECT NAME: Lorson Ranch East MDDP

PROJECT NUMBER: 100.032

ENGINEER: LAB
DATE: April 27, 2016

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	CN	Wtd. CN	Type of Cover
					~\ 						
EX-I	108	В	11.51	34.96%	0.08	0.03	0.35	0.12	61	21.3	
	56	С	21.41	65.04%	0.15	0.10	0.50	0.33	74	48.1	
			32.92	100.00%		0.13		0.45		69.5	
EX-J1	104	В	9.20	68.55%	0.08	0.05	0.35	0.24	61	41.8	
	56	С	4.22	31.45%	0.15	0.05	0.50	0.16	74	23.3	
			13.42	100.00%		0.10		0.40		65.1	
00.14.4		_									
OS-J1.1	104	В	3.84	31.07%	0.08	0.02	0.35	0.11	61	19.0	
	56	С	8.52	68.93%	0.15	0.10	0.50	0.34	74	51.0	
			12.36	100.00%		0.13		0.45		70.0	
EX-J	104	В	13.08	50.74%	0.08	0.04	0.35	0.18	61	30.9	
	56	С	12.70	49.26%	0.15	0.07	0.50	0.25	74	36.5	
			25.78	100.00%		0.11		0.42		67.4	

Calculated By: Leonard Beasley

Date: <u>June</u>, 2017

Job No: 100.013

Project: Lorson Ranch East MDDP

Design Storm: 5 - Year Event, Existing Conditions Checked By: Leonard Beasley Direct Runoff Total Runoff Street Pipe Travel Time Point Pipe Size Runoff Coeff. (C) <u>O</u> Street Area Design 3 Remarks Slope Length Velocity Street Flow Design Flow (S or Design Area (ಭ S Ø ဍ Ø Basin % % ft ac. min. in/hr cfs min in/hr cfs cfs cfs in ft/sec min EX-A1 4.28 0.08 18.6 0.34 3.20 1.1 EX-B1 14.42 0.15 16.9 2.16 3.34 7.2 OS-B1.1 5.64 0.15 14.7 0.85 3.55 3.0 DP-1 20.06 0.15 15.3 3.01 3.49 10.5 EX-B EX-C1 109.97 0.15 29.6 16.50 2.50 41.3 EX-C2 10.67 0.15 14.7 1.60 3.55 5.7 2.47 EX-C3 74.40 0.15 30.2 11.16 27.6 EX-C4 27.13 0.15 19.6 4.07 3.12 12.7 OS-C5.1 3.59 0.15 12.6 0.54 3.78 2.0 EX-C5 102.19 0.15 30.4 15.33 2.46 37.7 OS-C6.1 9 96 0.15 14.1 1.49 3.61 5.4 EX-C6 11.47 0.14 19.5 1.61 3.13 5.0 EX-C7 39.02 0.14 22.7 5.46 2.90 15.8 EX-C8 12.62 0.13 19.8 1.64 3.10 5.1 EX-C9 41.18 0.12 21.7 4.94 2.97 14.7 EX-C10 10.89 0.10 18.1 1.09 3.24 3.5 EX-C DP-2 452.97 CN = 67SCS = 141.0 DP-3 EX-D 109.55 0.12 34.7 13.15 2.26 297 25.9 OS-E1.1 31.10 0.25 17.0 7.78 3.33 2.34 27.9 EX-E1 79.50 0.15 33.0 11.93 OS-E2.1 46.90 0.25 18.1 11.73 3.24 38.0 3.33 EX-E2 30.40 0.15 17.0 4.56 15.2 DP-4 187.30 CN =73 SCS = EX-E **100**.0 EX-F1 22.36 0.12 13.8 2.68 3.65 9.8 EX-F2 17.49 0.15 13.5 2.62 3.68 9.7 DP-5 39.85 0.13 13.8 5.31 3.65 19.3 EX-F EX-G 14.91 0.15 15.0 2.24 3.52 7.9 3.37 12.3 EX-H 28.13 0.13 16.6 3.66 OS-I1.1 15.96 0.10 16.4 1.60 3.39 5.4

Calculated By: Leonard Beasley

Date: June, 2017 Checked By: Leon

Job No: <u>100.013</u>

Project: Lorson Ranch East MDDP

Design Storm: 5 - Year Event Existing

				Checke	ed By: L	.eonard	Beasley	L					Design	Storm:	<u>5 - Y</u>	ear Ev	ent, Ex	<u>isting (</u>	Condition	<u>ns</u>	
	ıt				ect Run	off				Total	Runoff		Stı	reet		Pipe)	Tı	avel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		Ø	Slope	Street	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	Ц	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-I1			16.96	0.15	15.7	2.54	3.45	8.8													
EX-I	DP-8		32.92	0.13					21.2	4.14	3.00	12.4									
OS-J1.1			12.36	0.13	17.0	1.61	3.33	5.4													
EX-J1			13.42	0.10	15.3	1.34	3.49	4.7													
EX-J	DP-9		25.78	0.11					20.6	2.95	3.05	9.0									
OS-K1.1			1.98	0.08	16.0	0.16	3.42	0.5													
EX-K1			5.59	0.08	15.3	0.45	3.49	1.6													
EX-K	DP-10		7.57	0.08					16.0	0.61	3.42	2.1									

Calculated By: Leonard Beasley

Date: April 28, 2016

Job No: 100.032

Project: Lorson Ranch East MDDP

Checked By: Leonard Beasley Design Storm: 100 - Year Event, Existing Conditions Direct Runoff Total Runoff Street Pipe Travel Time Point Runoff Coeff. (C Street Area Design 3 Remarks (CA) Street Flow Length Velocity S or Area ೭ Ø ೭ Q Design Pipe \bowtie Basin in/hr in/hr % cfs % ft ft/sec ac. min. cfs min cfs cfs in min EX-A1 4.28 0.35 18.6 1.50 5.37 8.0 EX-B1 14.42 0.50 16.9 7.21 5.61 40.4 OS-B1.1 16.8 5.64 0.50 14.7 2.82 5.96 DP-1 20.06 0.50 15.3 10.03 5.86 58.8 EX-C1 29.6 4.20 230.8 109.97 0.50 54.99 EX-C2 10.67 0.50 14.7 5.34 5.96 31.8 EX-C3 74.40 0.49 30.2 36.46 4.15 151.2 EX-C4 27.13 0.50 19.6 13.57 5.24 71.0 OS-C5.1 3.59 0.50 12.6 1.80 6.35 11.4 EX-C5 102.19 0.50 30.4 51.10 4.13 211.1 OS-C6.1 9.96 0.50 14.1 4.98 6.07 30.2 EX-C6 0.49 19.5 5.62 5.25 29.5 11.47 EX-C7 39.02 0.48 22.7 18.73 4.87 91.2 5.21 29.6 EX-C8 12.62 0.45 19.8 5.68 EX-C9 41.18 0.44 21.7 18.12 4.98 90.2 18.1 EX-C10 10.89 0.40 4.36 5.44 23.7 EX-C DP-2 452.97 CN = 67SCS = 458.0 EX-D DP-3 109.55 0.40 34.7 43.82 3.80 166.5 OS-E1.1 31.10 0.48 17.0 14.93 5.60 83.5 EX-E1 79.50 0.49 33.0 38.96 3.92 152.9 OS-E2.1 18.1 5.44 102.0 46.90 0.40 18.76 EX-E2 30.40 0.50 17.0 15.20 5.60 85.0 EX-E DP-4 187.30 CN = 73SCS = 280.0 EX-F1 22.36 0.44 13.8 9.84 6.12 60.2 EX-F2 17.49 0.50 13.5 8.75 6.18 54.0 DP-5 39.85 0.47 13.8 18.58 6.12 113.7 EX-F EX-G 14.91 0.50 15.0 7.46 5.91 44.1 73.2 EX-H 28.13 0.46 16.6 12.94 5.66 OS-I1.1 15.96 0.39 16.4 6.22 5.69 35.4

Calculated By: Leonard Beasley

Date: April 28, 2016
Checked By: Leonard Beasley

Job No: <u>100.032</u>

Project: Lorson Ranch East MDDP

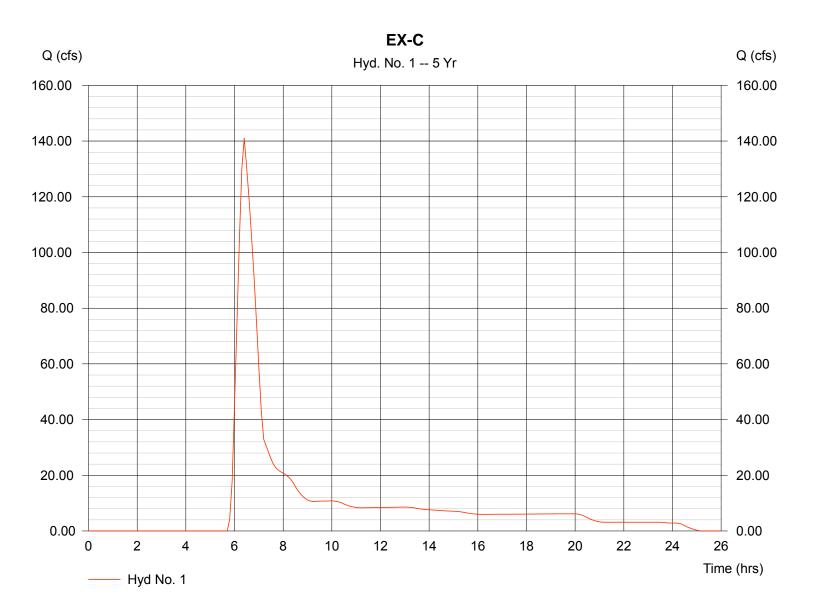
Design Storm: 100 - Year Event, Existing Conditions

				Спеске	ea By: <u>L</u>	<u>.eonard</u>	Beasley	<u>L</u>					Design	Storm:	<u> 100 -</u>	<u>rear</u>	<u>Event, i</u>	<u>=xisting</u>	g Condi	tions	
	ıt		-		ect Run	off				Total I	Runoff		Str	eet		Pipe		Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	oţ	CA	ļ	O	oţ	Σ (CA)	l	Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-I1			16.96	0.50	15.7	8.48	5.80	49.1													
EX-I	DP-8		32.92	0.45					21.2	14.70	5.04	74.1									
OS-J1.1			12.36	0.45	17.0	5.56	5.60	31.1													
EX-J1			13.42	0.40	15.3	5.37	5.86	31.5													
EX-J	DP-9		25.78	0.42					20.6	10.93	5.11	55.9									
OS-K1.1			1.98	0.35	16.0	0.69	5.75	4.0													
EX-K1			5.59	0.35	15.3	1.96	5.86	11.5													
EX-K	DP-10		7.57	0.35					16.0	2.65	5.75	15.2									

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 4:1 PM

Hyd. No. 1


EX-C

Hydrograph type = SCS Runoff
Storm frequency = 5 yrs
Drainage area = 452.970 ac
Basin Slope = 0.0 %
Tc method = USER
Total precip. = 2.80 in

Storm duration = CSpring_IIA-6min.cds

Peak discharge = 140.99 cfs
Time interval = 6 min
Curve number = 69
Hydraulic length = 7400 ft
Time of conc. (Tc) = 49.50 min
Distribution = Custom
Shape factor = 484

Hydrograph Volume = 905,484 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 4:1 PM

= 100.11 cfs

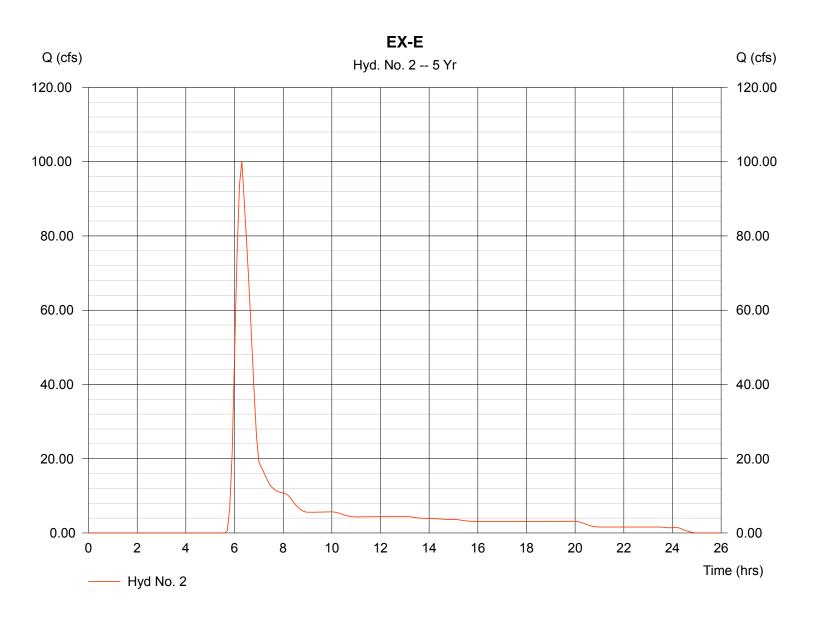
= 6 min

= 4150 ft

= 33.00 min

= 73

Hyd. No. 2


Storm duration

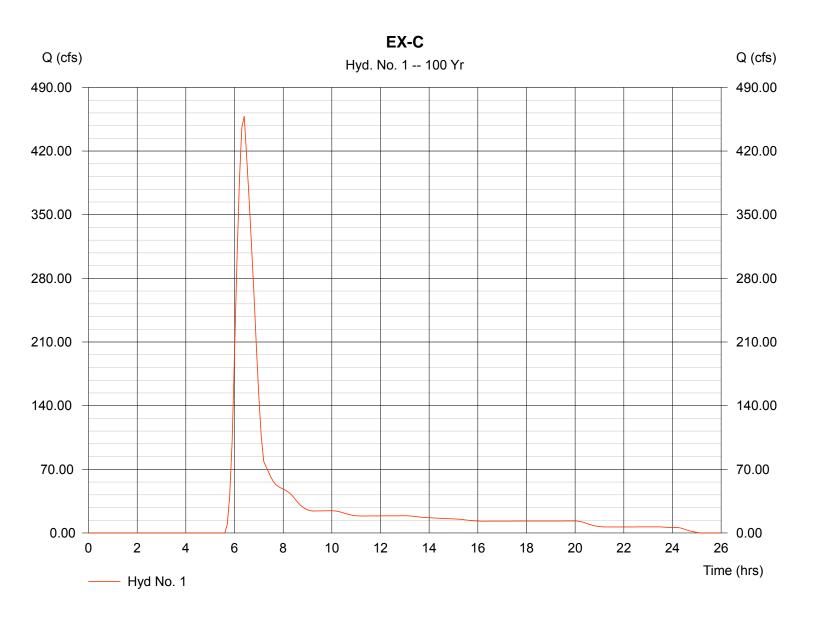
EX-E

Hydrograph type = SCS Runoff Peak discharge Storm frequency Time interval = 5 yrsDrainage area = 187.300 ac Curve number Basin Slope = 3.0 % Hydraulic length Time of conc. (Tc) Tc method = USER Total precip. = 2.80 in

= 2.80 in Distribution = Custom = CSpring_IIA-6min.cds Shape factor = 484

Hydrograph Volume = 513,793 cuft

Hydraflow Hydrographs by Intelisolve


Monday, Jun 5 2017, 4:1 PM

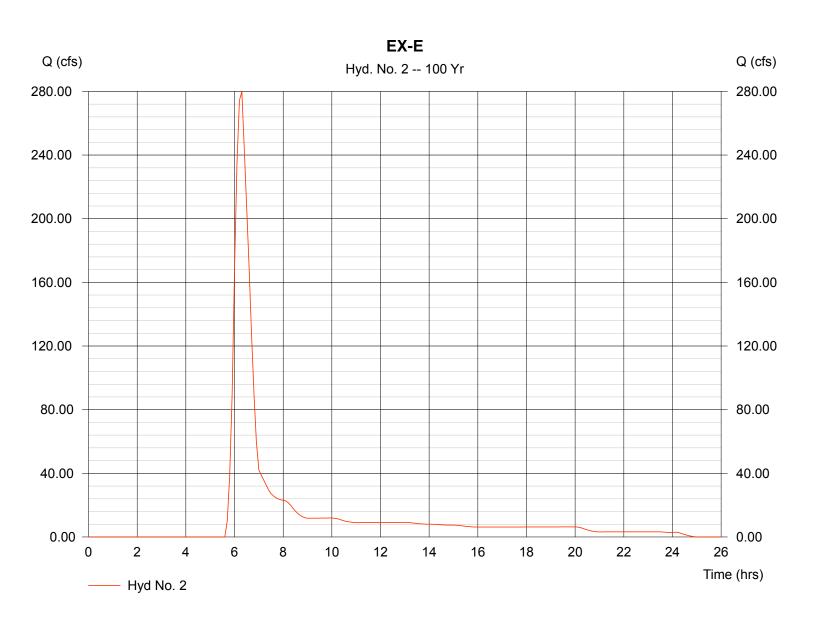
Hyd. No. 1

EX-C

Hydrograph type = SCS Runoff Peak discharge = 458.13 cfsStorm frequency Time interval = 6 min = 100 yrsDrainage area = 452.970 ac Curve number = 69 Basin Slope = 0.0 %Hydraulic length = 7400 ftTime of conc. (Tc) Tc method = USER = 49.50 minTotal precip. = 4.40 inDistribution = Custom = CSpring_IIA-6min.cds Storm duration = 484 Shape factor

Hydrograph Volume = 2,456,980 cuft

Hydraflow Hydrographs by Intelisolve


Monday, Jun 5 2017, 4:1 PM

Hyd. No. 2

EX-E

Hydrograph type = SCS Runoff Peak discharge = 279.84 cfsStorm frequency Time interval = 100 yrs= 6 min Drainage area = 187.300 acCurve number = 73 Basin Slope = 3.0 % Hydraulic length = 4150 ftTime of conc. (Tc) Tc method = USER = 33.00 minTotal precip. = 4.40 inDistribution = Custom Storm duration = CSpring_IIA-6min.cds = 484 Shape factor

Hydrograph Volume = 1,267,200 cuft

Calculated By: <u>Leonard Beasley</u>
Date: <u>September, 2016</u>

Checked By: Leonard Beasley

Job No: 100.013

Project: Lorson Ranch East MDDP

	Sub-Ba	sin Data		lni	tial Overla			_	Tr	avel Time	(tt)			(urbanized	Final t _c
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min
Α	0.08	2.6	7.0	100.00	8.00%	0.18	9.27	928.00	0.54%	0.51	30.07	39.34	1028.00	15.71	15.71
OS-B1	0.15	5.6	20.0	100.00	7.00%	0.18	9.02	435.00	4.25%	4.12	1.76	10.78	535.00	12.97	10.78
B2	0.49	3.9	20.0	100.00	3.60%	0.23	7.22	1652.00	2.08%	2.88	9.55	16.76	1752.00	19.73	16.76
В	0.15	9.5	20.0	100.00	7.00%	0.18	9.02	2119.00	2.55%	3.19	11.06	20.08	2219.00	22.33	20.08
C1	0.49	23.2	15.0	100.00	1.30%	0.17	10.10	900.00	3.30%	2.72	5.50				
			20.0					1000.00	3.20%	3.58	4.66	20.26	2000.00	21.11	20.26
C2	0.49	34.5	15.0	75.00	2.00%	0.16	7.59	5.00	0.72%	1.27	0.07				
			20.0					510.00	3.70%	3.85	2.21				
			pipe					1385.00	2.70%	15.63	1.48	11.34	1975.00	20.97	11.34
DP-2	0.49	57.7	15.0	100.00	0.90%	0.15	11.40	1105.00	3.19%	2.68	6.87				
			20.0					547.00	4.02%	4.01	2.27				
			pipe					1494.00	1.00%	15.63	1.59	22.14	3246.00	28.03	22.14
C3	0.49	8.3	15.0	100.00	2.70%	0.21	7.94	200.00	2.70%	2.46	1.35				
			20.0					1161.00	2.07%	2.88	6.72	16.01	1461.00	18.12	16.01
C4	0.49	57.5	15.0	100.00	1.87%	0.19	8.96	755.00	1.87%	2.05	6.13				
			20.0					1318.00	2.28%	3.02	7.27				
			pipe					1230.00	2.93%	14.30	1.43	23.80	3403.00	28.91	23.80
C5	0.49	25.0	15.0	100.00	4.20%	0.24	6.86	200.00	4.15%	3.06	1.09				
			15.0					498.00	5.12%	3.39	2.45				
			20.0					1328.00	4.52%	4.25	5.21	15.60	1428.00	17.93	15.60
C6	0.49	18.7	20.0	100.00	1.00%	0.15	11.01	885.00	3.62%	3.81	3.88				
			pipe					831.00	2.41%	17.73	0.78	15.67	1816.00	20.09	15.67
C7	0.49	14.5	20.0	100.00	2.00%	0.19	8.76	681.00	2.50%	3.16	3.59				
			pipe					831.00	2.41%	17.73	0.78	13.13	1612.00	18.96	13.13
DP-4	0.49	124.0	15.0	100.00	1.87%	0.19	8.96	755.00	1.87%	2.05	6.13				
			20.0					1318.00	2.28%	3.02	7.27				
			24"					1230.00	2.93%	14.30	1.43				
			48"					831.00	2.41%	17.73	0.78				
			54"					200.00	2.50%	19.55	0.17	24.75	4434.00	34.63	24.75
C8	0.49	74.5	15.0	100.00	5.30%	0.26	6.35	1415.00	5.40%	3.49	6.77				
			20.0					883.00	2.50%	3.16	4.65	17.77	2398.00	23.32	17.77
C8a	0.49	11.7	15.0	100.00	2.00%	0.19	8.76	100.00	2.00%	2.12	0.79				
			20.0					715.00	5.17%	4.55	2.62	12.17	915.00	15.08	12.17
OS-C9	0.49	5.2	15.0	100.00	4.18%	0.24	6.87	810.00	4.18%	3.07	4.40	11.27	910.00	15.06	11.27
C10	0.49	13.0	15.0	100.00	3.00%	0.22	7.66	100.00	3.00%	2.60	0.64				

Calculated By: Leonard Beasley

Job No: <u>100.013</u>

	Date: September, 2016	Project: <u>Lorson Rar</u>	nch East MDDP
•	Checked By: Leonard Beasle	<u>Y</u>	
Sub-Basin Data	Initial Overland Time (ti)	Travel Time (tt)	tc Check (urban Basins)

					Спескеа	By: <u>Leona</u>	ra Beasie	<u>y</u>							
;	Sub-Ba	sin Data		Ini	tial Overla	nd Time (1	ti)		Tr	avel Time ((tt)			(urbanized isins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tc Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (mir
			20.0					957.00	2.60%	3.22	4.95				
			pipe					653.00	1.50%	8.91	1.22	14.47	1810.00	20.06	14.47
OS-C11	0.49	5.6	15.0	100.00	3.00%	0.22	7.66	100.00	3.00%	2.60	0.64				
			20.0					957.00	2.60%	3.22	4.95	13.25	1157.00	16.43	13.25
DP-5	0.49	5.2	15.0	100.00	4.18%	0.24	6.87	810.00	4.18%	3.07	4.40				
			20.0					1758.00	2.39%	3.09	9.48	20.75	2668.00	24.82	20.75
C12	0.49	19.6	15.0	100.00	3.00%	0.22	7.66	969.00	1.34%	1.74	9.30				
			20.0					292.00	0.60%	1.55	3.14	20.11	1361.00	17.56	17.56
C13	0.16	21.2	15.0	100.00	3.17%	0.14	11.60	595.00	3.17%	2.67	3.71				
			20.0					2968.00	1.00%	2.00	24.73	40.04	3663.00	30.35	30.35
DP-6	0.49	40.8	15.0	100.00	3.00%	0.22	7.66	969.00	1.34%	1.41	11.45				
			20.0					3280.00	0.82%	1.81	30.18	49.30	4349.00	34.16	34.16
C14	0.16	7.6	15.0	100.00	4.82%	0.17	10.10	382.00	4.82%	1.41	4.52				
			20.0					1404.00	4.50%	4.24	5.52	20.13	1886.00	20.48	20.48
C15	0.49	44.0	15.0	100.00	1.00%	0.15	11.01	238.00	2.10%	2.17	1.82				
			20.0					1758.00	2.39%	3.09	9.48	22.31	2096.00	21.64	22.31
C16	0.49	69.0	15.0	100.00	5.00%	0.26	6.48	100.00	5.00%	3.35	0.50				
			20.0					596.00	3.40%	3.69	2.69				
			pipe					2801.00	1.20%	7.93	5.89	15.55	3597.00	29.98	15.55
C17	0.49	18.8	15.0	100.00	4.00%	0.24	6.97	1462.00	3.42%	2.77	8.78				
			pipe					95.00	6.30%	18.10	0.09	15.84	1657.00	19.21	15.84
Basin C	0.49	464.9	15.0	100.00	4.18%	0.24	6.87	865.00	4.18%	3.07	4.70				
			20.0					4150.00	1.40%	2.37	29.23	40.80	5115.00	38.42	38.42
D1	0.49	17.0	15.0	100.00	3.30%	0.22	7.43	200.00	3.30%	2.72	1.22				
			20.0					909.00	4.50%	4.24	3.57	12.22	1209.00	16.72	12.22
D2	0.49	8.0	15.0	100.00	4.00%	0.24	6.97	600.00	3.69%	2.88	3.47	10.44	700.00	13.89	10.44
D3	0.49	23.0	15.0	100.00	3.00%	0.22	7.66	700.00	1.00%	1.50	7.78				
			20.0					400.00	3.00%	3.46	1.92	17.37	1200.00	16.67	16.67
D4	0.49	36.4	15.0	100.00	2.50%	0.20	8.14	100.00	3.50%	2.81	0.59				
			20.0					1400.00	2.90%	3.41	6.85	15.58	1600.00	18.89	15.58
D5	0.40	4.6	20.0	70.00	4.00%	0.17	6.69	300.00	0.50%	1.41	3.54				
								0.00	2.60%	15.17	0.00	10.23	370.00	12.06	10.23

Calculated By: <u>Leonard Beasley</u>
Date: <u>September, 2016</u>
Checked By: <u>Leonard Beasley</u>

Job No: <u>100.013</u>

Project: Lorson Ranch East MDDP

	Cub Da	ein Dete				By: <u>Leona</u>		Y			/± \		t _c Check	(urbanized	Final tc
	Sub-Ba	sin Data	. un oc		tial Overla	•		LENGTH		avel Time ((t t)		Ва	sins)	
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
DP-10	0.49	92.5	15.0	100.00	3.30%	0.22	7.43	200.00	3.30%	2.72	1.22				
			20.0					909.00	4.50%	4.24	3.57				
			20.0					1865.00	2.68%	3.27	9.49	21.71	1965.00	20.92	20.92
E1	0.49	10.2	15.0	100.00	2.30%	0.20	8.37	120.00	2.30%	2.27	0.88				
			20.0					1098.00	4.90%	4.43	4.13	13.38	1318.00	17.32	13.38
E2	0.49	10.3	15.0	100.00	4.90%	0.26	6.52	43.00	4.90%	3.32	0.22				
			20.0					1186.00	4.60%	4.29	4.61	11.34	1329.00	17.38	11.34
OS-E3	0.26	9.9	15.0	100.00	2.90%	0.16	10.67	200.00	2.90%	2.55	1.30				
			15.0					500.00	3.50%	2.81	2.97	14.95	800.00	14.44	14.44
E4	0.49	12.8	15.0	100.00	3.00%	0.22	7.66	900.00	4.70%	3.25	4.61				
			20.0					100.00	2.50%	3.16	0.53	12.80	1100.00	16.11	12.80
E5	0.49	13.3	15.0	100.00	3.00%	0.22	7.66	391.00	6.14%	3.72	1.75				
			20.0					657.00	2.40%	3.10	3.53	12.95	1148.00	16.38	12.95
DP-12	0.49	43.4	15.0	100.00	2.90%	0.22	7.75	200.00	2.90%	2.55	1.30				
			20.0					1400.00	3.50%	3.74	6.24	15.29	1700.00	19.44	15.29
OS-E6	0.26	20.8	15.0	100.00	2.70%	0.15	10.93	200.00	2.70%	2.46	1.35				
			20.0					920.00	1.70%	2.61	5.88	18.16	1220.00	16.78	16.78
E7	0.49	8.8	15.0	100.00	3.50%	0.23	7.28	900.00	4.05%	3.02	4.97	12.25	1000.00	15.56	12.25
E8	0.49	21.6	15.0	100.00	6.00%	0.27	6.10	600.00	6.00%	3.67	2.72				
			20.0					1300.00	1.80%	2.68	8.07	16.89	2000.00	21.11	16.89
OS-E9	0.26	46.9	15.0	100.00	3.00%	0.16	10.55	200.00	3.00%	2.60	1.28				
			20.0					1160.00	1.70%	2.61	7.41	19.25	1460.00	18.11	18.11
E10	0.49	20.0	15.0	100.00	2.00%	0.19	8.76	1411.00	2.83%	2.52	9.32	18.08	1511.00	18.39	18.08
E11	0.49	14.5	15.0	100.00	2.82%	0.21	7.82	965.00	2.82%	2.52	6.38	14.21	1065.00	15.92	14.21
E9-E11	0.36	81.4	15.0	100.00	3.00%	0.18	9.30	200.00	3.00%	2.60	1.28				
			20.0					2000.00	2.80%	3.35	9.96	20.54	2300.00	22.78	20.54
F1	0.49	5.1	15.0	100.00	4.00%	0.24	6.97	654.00	5.05%	3.37	3.23				
			20.0					175.00	0.60%	1.55	1.88	12.09	929.00	15.16	12.09
F2	0.49	28.0	15.0	100.00	5.70%	0.27	6.20	1704.00	1.84%	2.03	13.96	20.16	1804.00	20.02	20.02
G	0.49	20.1	15.0	100.00	2.70%	0.21	7.94	862.00	2.82%	2.52	5.70	13.64	962.00	15.34	13.64
H1	0.49	4.3	15.0	100.00	1.00%	0.15	11.01	46.00	1.00%	1.50	0.51				
			20.0					863.00	4.90%	4.43	3.25	14.77	1009.00	15.61	14.77
H2	0.49	18.0	15.0	100.00	4.00%	0.24	6.97	1132.00	4.42%	3.15	5.98	12.95	1232.00	16.84	12.95

Calculated By: <u>Leonard Beasley</u> Date: <u>September, 2016</u> Job No: <u>100.013</u>

Project: Lorson Ranch East MDDP

Checked By: <u>Leonard Beasley</u>

	Sub-Ba	sin Data		Ini	tial Overla	nd Time (1	ti)		Tr	avel Time ((tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
OS-I1	0.26	16.0	15.0	100.00	2.00%	0.14	12.07	200.00	2.00%	2.12	1.57				
			20.0					845.00	3.20%	3.58	3.94	17.57	1145.00	16.36	16.36
12	0.49	13.0	15.0	100.00	3.50%	0.23	7.28	762.00	4.53%	3.19	3.98	11.26	862.00	14.79	11.26
I	0.38	29.0	15.0	100.00	2.00%	0.16	10.34	200.00	3.00%	2.60	1.28				
			20.0					1470.00	1.70%	2.61	9.40	21.02	1770.00	19.83	19.83
OS-J1	0.26	12.4	15.0	100.00	3.00%	0.16	10.55	200.00	3.00%	2.60	1.28				
			20.0					965.00	2.70%	3.29	4.89	16.73	1265.00	17.03	16.73
J2	0.49	12.0	15.0	100.00	2.00%	0.19	8.76	737.00	3.93%	2.97	4.13	12.89	837.00	14.65	12.89
J	0.38	24.4	15.0	100.00	3.00%	0.18	9.05	200.00	3.00%	2.60	1.28				
			20.0					1802.00	3.17%	3.56	8.43	18.76	2102.00	21.68	18.76
OS-K1	0.26	2.0	15.0	100.00	4.00%	0.17	9.60	200.00	6.97%	3.96	0.84				
			20.0					216.00	6.97%	5.28	0.68	11.12	516.00	12.87	11.12
K2	0.49	3.7	15.0	100.00	3.64%	0.23	7.19	586.00	3.64%	2.86	3.41	10.60	686.00	13.81	10.60
К	0.43	5.7	15.0	100.00	8.00%	0.27	6.09	750.00	2.27%	2.26	5.53	11.62	850.00	14.72	11.62

Calculated By: Leonard Beasley

Date: September, 2016

Job No: 100.013

Project: Lorson Ranch East MDDP

Checked By: Leonard Beasley Design Storm: 5 - Year Event, Proposed Conditions Total Runoff Direct Runoff Street Pipe Travel Time 9 Design Flow Street Flow Design Point Runoff Coeff. Pipe Size Velocity Remarks € (S S Length Slope Street Area (S Ø ಧ Ø # or **Area Design** Basin ac. min. in/hr cfs min in/hr cfs % cfs cfs % in ft ft/sec min Α 2.59 0.16 15.7 0.41 3.45 1.4 OS-B1 5.64 0.15 10.8 0.85 4.02 3.4 B2 3.90 0.49 16.8 1.91 3.35 6.4 9.54 20.1 2.76 3.08 8.5 Basin B 23.20 0.49 20.3 11.37 3.07 C1 34.9 C2 34.50 0.49 11.3 16.91 3.94 66.6 DP-2 57.70 22.1 80.1 C3 8.30 0.49 16.0 4.07 3.42 13.9 C4 57.50 0.49 23.8 28.18 2.83 79.7 C5 25.00 0.49 15.6 12.25 3.46 42.4 0.49 18.70 15.7 31.7 C6 9.16 3.46 C7 14.50 0.49 13.1 7.11 3.72 26.4 C8a 11.70 0.49 12.2 5.73 3.83 22.0 74.50 17.8 36.51 C8 0.49 3.27 119.3 0.49 OS-C9 5.20 11.3 2.55 3.95 10.1 13.00 6.37 3.57 22.8 C10 0.49 14.5 OS-C11 5.60 0.49 13.3 2.74 3.71 10.2 C12 20.50 0.49 17.6 10.05 3.28 33.0 C13 19.20 0.16 30.4 3.07 2.46 7.6 DP-6c 93.22 34.2 39.34 2.29 90.0 C14 11.10 0.49 20.5 5.44 3.05 16.6 22.3 C15 40.20 0.49 19.70 2.93 57.6 C16a 21.29 0.49 16.6 10.43 3.37 35.1 15.0 15.79 3.52 55.6 C16b 32.23 0.49 Overall C16 53.52 0.49 16.6 26.22 3.37 88.3 C17 18.80 0.49 15.8 9.21 3.44 31.7 C17a 7.50 0.16 8.0 1.20 4.46 5.4 D1 17.00 0.49 12.2 8.33 3.83 31.9 D2 8.00 0.49 10.4 3.92 4.07 16.0

Calculated By: <u>Leonard Beasley</u>
Date: September, <u>2016</u>
Checked By: <u>Leonard Beasley</u>

Job No: <u>100.013</u>

Project: Lorson Ranch East MDDP
Design Storm: 5 - Year Event, Proposed Conditions

				OHOOK	, а Бу. <u>с</u>	eonard	Deasie	L					Design	Storii.	<u>5 - 1ea</u>	r Event	, Fropo	sea co	Haition	<u> </u>	
				Dire	ect Runo	off				I otal I	Runoff		Str	eet		Pipe		l r	avel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA	·I	Ø	tc	Σ (CA)	·	Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
D3			23.00	0.49	16.6	11.27	3.37	38.0													
D4			36.40	0.49	15.6	17.84	3.46	61.7													
D5			4.60	0.40	10.2	1.84	4.10	7.5													
			1.00	0.10	10.2	1.01	1.10	7.0													
Basin D		89.00							20.9	43.20	3.02	130.5									
E1			10.20	0.49	13.4	5.00	3.69	18.5													
E2			10.30	0.49	11.3	5.05	3.94	19.9													
OS-E3			9.90	0.26	14.4	2.57	3.58	9.2													
E4			12.80	0.49	12.8	6.27	3.76	23.6													
E5			13.30	0.49	13.0	6.52	3.74	24.4													
	DP-12	56.50							15.3	25.41	3.49	88.7									
OS-E6			21.10	0.22	16.8	4.54	3.35	15.2													
E7			6.70	0.49	12.3	3.28	3.82	12.5													
	DP-11	27.80							16.8	7.82	3.35	26.2									
E8			21.60	0.49	16.9	10.58	3.34	35.4													
OS-E9			46.90	0.26	18.1	12.19	3.24	39.5													
E10			20.00	0.49	18.1	9.80	3.24	31.8													
E11			14.50	0.49	14.2	7.11	3.60	25.6													
	E9-E11	81.40							20.5	29.10	3.05	88.8									
Basin E		187.30																			
F1		107.50	5.06	0.49	12.1	2.48	3.84	9.5													
F2			27.97	0.49	20.0	13.71	3.09	42.3													
Basin F		33.03	21.31	0.70	20.0	10.71	0.00	72.0	20.0	16.18	3.09	50.0									
G		00.00	20.05	0.49	13.6	9.82	3.66	36.0	20.0	10.10	0.00	00.0									
H1			4.27	0.49	14.8	2.09	3.54	7.4													<u> </u>
H2			18.04	0.49	13.0	8.84	3.74	33.1													<u> </u>
Basin H		22.31	10.04	0.48	13.0	0.04	5.74	JJ. I	14.8	10.93	3.54	38.7									
OS-I1		22.01	15.96	0.26	16.4	4.15	3.39	14.1	17.0	10.33	J.J 4	50.1									
12			13.00		11.3	6.37	3.95	25.2													
			. 5.50	5.10	. 1.0	3.07	2.00	_0.2													

Calculated By: <u>Leonard Beasley</u>
Date: September, <u>2016</u>
Checked By: Leonard Beasley

Project: Lorson Ranch East MDDP

Design Storm: 5 - Year Event, Proposed Conditions

Job No: 100.013

				Checke	.ed By: <u>L</u>	<u>.eonard</u>	Beasley	✓					Design	Storm:	<u>5 - Yea</u>	r Event	., Propo	sed Co	<u>ndition</u> :	<u>.s</u>	
				Dire	ect Runc	off				Total	Runoff		Str	eet		Pipe		Tr	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA		O	ţ	Σ (CA)		Ö	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.	l l	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
			ļ	ļ!	<u> </u>	 '	ļ	 '				<u> </u>				1		ł		ı '	1
OS-J1			12.36	0.26	16.7	3.21	3.36	10.8													
J2			12.00	0.49	12.9	5.88	3.75	22.0													
																	<u> </u>		 	<u> </u>	-
OS-K1			1.98	0.26	11.1	0.51	3.97	2.0											\vdash	 	
K2			3.70	0.49	10.6	1.81	4.04	7.3											\vdash	<u> </u>	
	l	1	1		1 '	1 '	'	1 '	l			1 '					l.	í		,	1

Calculated By: Leonard Beasley

_ . . . _ . _ . _

Job No: 100.013

Date: September, 2016

Project: Lorson Ranch East MDDP

Checked By: Leonard Beasley

Design Storm: 100 - Year Event, Proposed Conditions

		1		Checke	ed By: <u>L</u>	eonard	Beasle	У					Design	Storm:	<u> 100 - Y</u>	ear Ev	ent, Pro	posed	Conditi	<u>ons</u>	
				Dir	ect Rur	off				Total	Runoff		Str	eet		Pipe		T	avel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	#	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
Α			2.59	0.51	15.7	1.32	5.79	7.7													
OS-B1			5.64	0.50	10.8	2.82	6.74	19.0													
B2			3.90	0.65	16.8	2.54	5.63	14.3													
Basin B	DP-1	9.54							20.1	5.36	5.18	27.7									
C1			23.20	0.65	20.3	15.08	5.15	77.7													
C2			34.50	0.65	11.3	22.43	6.62	148.4													
	DP-2	57.70							22.1			171.0									
C3			8.30	0.65	16.0	5.40	5.75	31.0													
C4			57.50	0.65	23.8	37.38	4.75	177.4													
C5			25.00	0.65	15.6	16.25	5.81	94.4													
C6			18.70	0.65	15.7	12.16	5.80	70.5													
C7			14.50	0.65	13.1	9.43	6.25	58.9													
C8a			11.70	0.65	12.2	7.61	6.44	49.0													
C8			74.50	0.65	17.8	48.43	5.48	265.5													
OS-C9			5.20	0.65	11.3	3.38	6.63	22.4													
C10			13.00	0.65	14.5	8.45	6.00	50.7													
OS-C11			5.60	0.65	13.3	3.64	6.22	22.7													
C12			20.50	0.65	17.6	13.33	5.51	73.5													
C13			19.20	0.51	30.4	9.79	4.13	40.5													
	DP-6c	93.22							34.2	57.91	3.84	222.2									
C14			11.10	0.65	20.5	7.22	5.13	37.0													
C15			40.20	0.65	22.3	26.13	4.91	128.3													
C16a			21.29	0.65	16.6	13.84	5.66	78.3													
C16b			32.23	0.65	15.0	20.95	5.91	123.8					-								
Overall C16			53.52	0.65	16.6	34.79	5.66	196.7					-								
C17			18.80	0.65	15.8	12.22	5.77	70.6													
C17a			7.50	0.51	8.0	3.83	7.49	28.7													
													1								

Calculated By: <u>Leonard Beasley</u>

Job No: <u>100.013</u>

Date: September, 2016

Project: Lorson Ranch East MDDP

Checked By: Leonard Beasley

Design Storm: 100 - Year Event, Proposed Conditions

	1	1				eonard.	Deasie	<u>Y</u>	I						100 - Y	ear Eve	ent, Pro				
					ect Run	off		T		Total I	Runoff		Str	eet		Pipe	T	Tı	avel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA	·	Ø	ţ	Σ (CA)	Į.	Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	ţţ	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
D1			17.00	0.65	12.2	11.05	6.43	71.1													
D2			8.00	0.65	10.4	5.20	6.83	35.5													
- 52			0.00	0.00	10.4	0.20	0.00	00.0													
D3			23.00	0.65	16.6	14.95	5.66	84.5													
D4			36.40	0.65	15.6	23.66	5.81	137.5													
D5			4.60	0.65	10.2	2.99	6.88	20.6													
													-								
E1			10.20	0.65	13.4	6.63	6.20	41.1													
E2			10.30	0.65	11.3	6.70	6.62	44.3													
OS-E3			9.90	0.55	14.4	5.45	6.01	32.7					-								
E4			12.80	0.65	12.8	8.32	6.31	52.5													
E5			13.30	0.65	13.0	8.65	6.28	54.3													
	DP-12	56.50							15.3	35.74	5.86	209.5									
OS-E6			21.10	0.55	16.8	11.61	5.63	65.3													
E7			6.70	0.65	12.3	4.36	6.41	27.9													
	DP-11	27.80							16.8	15.96	5.63	89.8	1								
E8			21.60	0.65	16.9	14.04	5.61	78.8													
	E6-E8	49.40							21.6	30.00	5.61	168.3									
OS-E9			46.90	0.40	18.1	18.76	5.44	102.0													
E10			20.00	0.65	18.1	13.00	5.44	70.7													
E11			14.50	0.65	14.2	9.43	6.05	57.0					-								
	E9-E11	81.40							22.0	41.19	4.95	203.9									
Basin E		187.30																			
F1			5.06	0.65	12.1	3.29	6.45	21.2													
F2			27 07	0.65	20 U	12 12	5 12	04 2													

Calculated By: Leonard Beasley

Job No: <u>100.013</u>

Date: September, 2016

Project: Lorson Ranch East MDDP

Checked By: <u>Leonard Beasley</u> Design Storm: <u>100 - Year Event, Proposed Conditions</u>

Oncored by. <u>Leonard Beastey</u>							росоц														
				Dir	ect Run	off				Total	Runoff		Str	eet		Pipe		Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Area	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
12			21.01	0.00	20.0	10.10	3.10	J-7.2													
Basin F		33.03							20.0	21.47	5.18	111.3									
G			20.05	0.65	13.6	13.03	6.15	80.2													
H1			4.27	0.65	14.8	2.78	5.95	16.5													
H2			18.04	0.65	13.0	11.73	6.28	73.7													
Basin H		22.31							14.8	14.50	5.95	86.3									
OS-I1			15.96	0.55	16.4	8.78	5.69	50.0													
12			13.00	0.65	11.3	8.45	6.63	56.1													
OS-J1			12.36	0.55	16.7	6.80	5.64	38.3													
J2			12.00	0.65	12.9	7.80	6.29	49.1													
OS-K1			1.98	0.55	11.1	1.09	6.66	7.3													
K2			3.70	0.65	10.6	2.41	6.79	16.3													

Hydraflow Express by Intelisolve

Sunday, Aug 7 2016, 10:17 AM

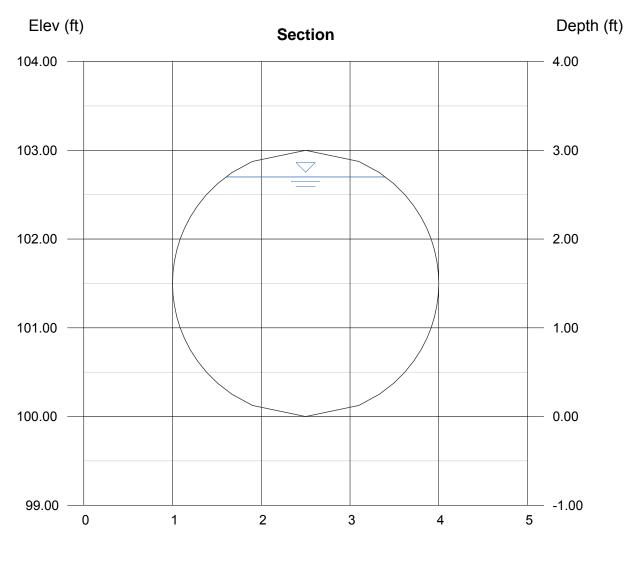
36-inch from Basin C1 under Lorson Blvd.

Circular

Diameter (ft) = 3.00

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.013

Calculations


Compute by: Q vs Depth

No. Increments = 10

Depth (ft) = 2.70 Q (cfs) = 71.10 Area (sqft) = 6.70 Velocity (ft/s) = 10.61 Wetted Perim (ft) = 7.50 Crit Depth, Yc (ft) = 2.59

Highlighted

Top Width (ft) = 1.80EGL (ft) = 4.45

Reach (ft)

Hydraflow Express by Intelisolve

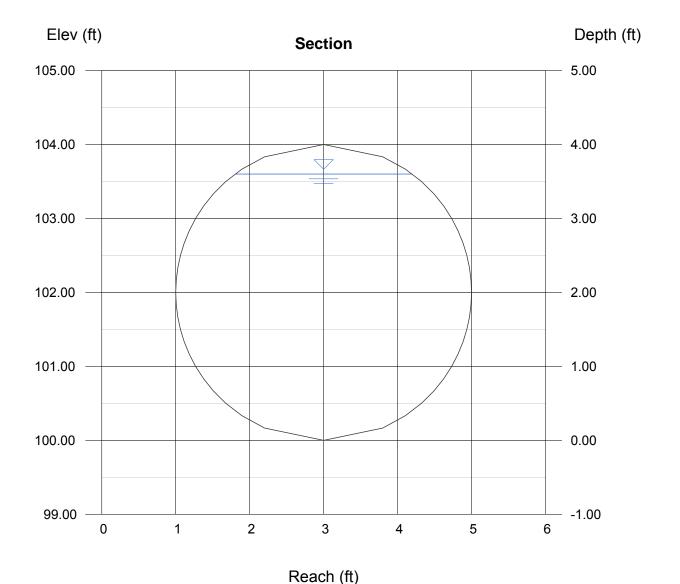
Sunday, Aug 7 2016, 9:42 AM

48-inch at Des. Pt. 2 into Pond C1

Circular

Diameter (ft) = 4.00

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.013


Calculations

Compute by: Q vs Depth

No. Increments = 10

Highlighted

Depth (ft) = 3.60 Q (cfs) = 153.14 Area (sqft) = 11.92 Velocity (ft/s) = 12.85 Wetted Perim (ft) = 10.00 Crit Depth, Yc (ft) = 3.52 Top Width (ft) = 2.39 EGL (ft) = 6.17

Hydraflow Express by Intelisolve

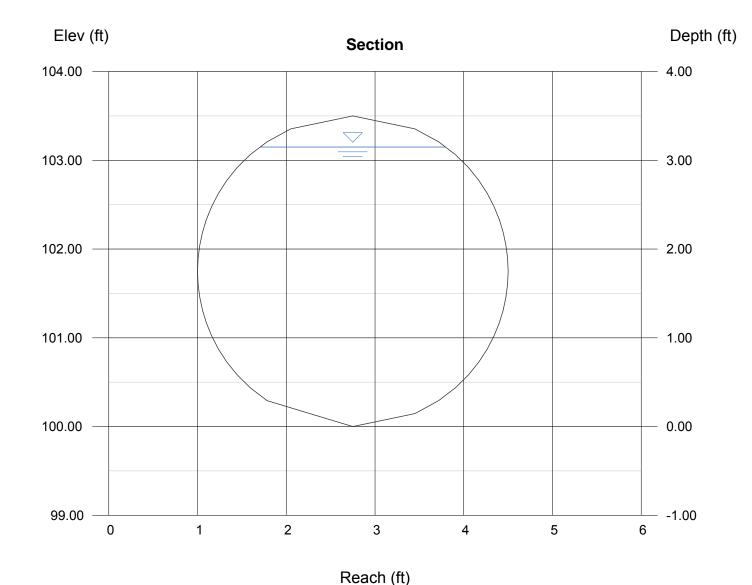
42-inch from Design Pt. 3e to Design Pt. 7

Circular

Diameter (ft) = 3.50

Invert Elev (ft) = 100.00 Slope (%) = 1.30 N-Value = 0.013

Calculations


Compute by: Q vs Depth

No. Increments = 10

Highlighted

Depth (ft) = 3.15Q (cfs) = 122.29Area (sqft) = 9.12Velocity (ft/s) = 13.40Wetted Perim (ft) = 8.75Crit Depth, Yc (ft) = 3.19Top Width (ft) = 2.09EGL (ft) = 5.94

Sunday, Aug 7 2016, 2:34 PM

Hydraflow Express by Intelisolve

Friday, Sep 2 2016, 10:37 PM

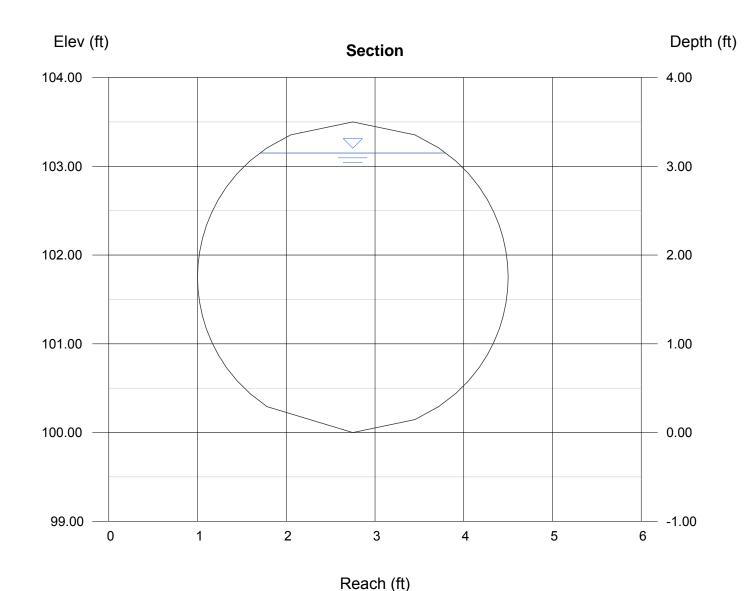
Design Pt. 6a to 6c

Circular

Diameter (ft) = 3.50

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.013

Calculations


Compute by: Q vs Depth

No. Increments = 10

42" RCP

Highlighted

Depth (ft) = 3.15Q (cfs) = 107.26Area (sqft) = 9.12Velocity (ft/s) = 11.75Wetted Perim (ft) = 8.75Crit Depth, Yc (ft) = 3.05Top Width (ft) = 2.09EGL (ft) = 5.30

Hydraflow Express by Intelisolve

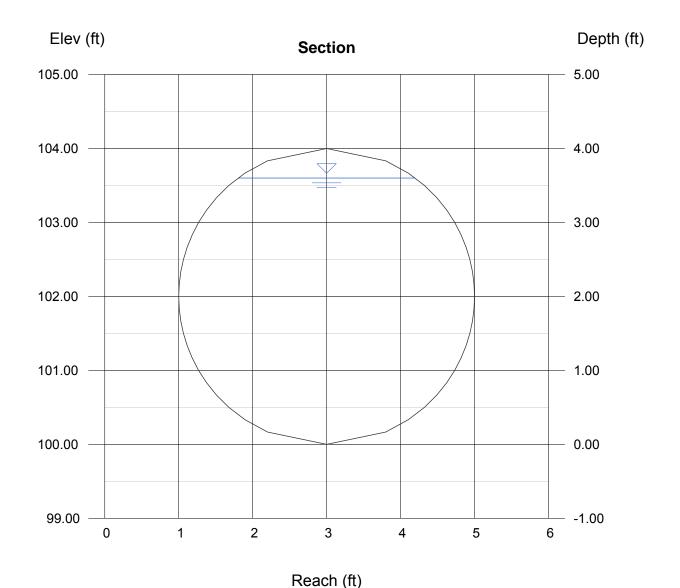
Sunday, Aug 7 2016, 3:36 PM

48-inch from Design Pt.6c to Design Point 6

Circular

Diameter (ft) = 4.00

Invert Elev (ft) = 100.00 Slope (%) = 0.70 N-Value = 0.013


Calculations

Compute by: Q vs Depth

No. Increments = 10

Highlighted

Depth (ft) = 3.60 Q (cfs) = 128.13 Area (sqft) = 11.92 Velocity (ft/s) = 10.75 Wetted Perim (ft) = 10.00 Crit Depth, Yc (ft) = 3.27 Top Width (ft) = 2.39 EGL (ft) = 5.40

Hydraflow Express by Intelisolve

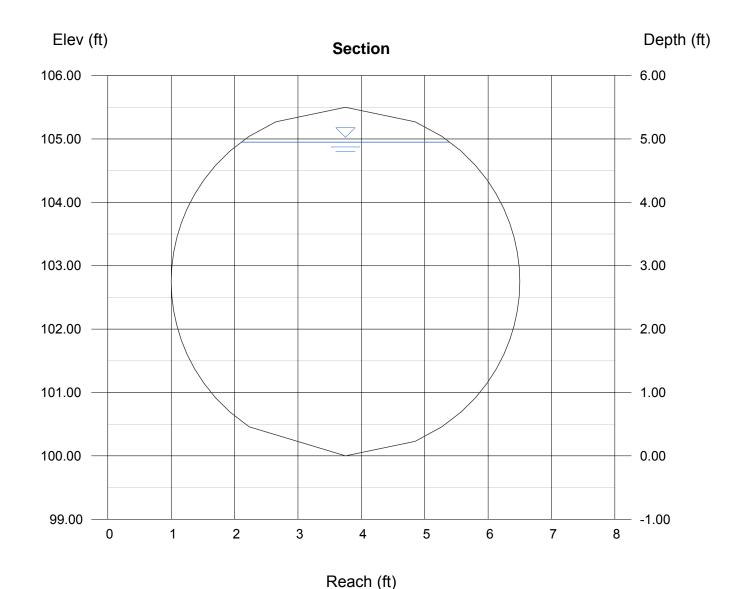
Friday, Sep 2 2016, 10:44 PM

66-inch cmp from Design Pt. 6 to Pond C5

Circular

Diameter (ft) = 5.50

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.013


Calculations

Compute by: Q vs Depth

No. Increments = 10

Highlighted

= 4.95Depth (ft) Q (cfs) = 358.06Area (sqft) = 22.53Velocity (ft/s) = 15.89Wetted Perim (ft) = 13.75Crit Depth, Yc (ft) = 4.92 Top Width (ft) = 3.29EGL (ft) = 8.88

APPENDIX C – HYDRAFLOW CALCULATIONS

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	140.99	6	384	905,484				EX-C
2	SCS Runoff	104.56	6	378	530,876				EX-E
existing Flows to East Tribgpw			Return I	Period: 5	Year	Tuesday, I	May 23 2017, 7:39 AM		

Hydrograph Summary Report

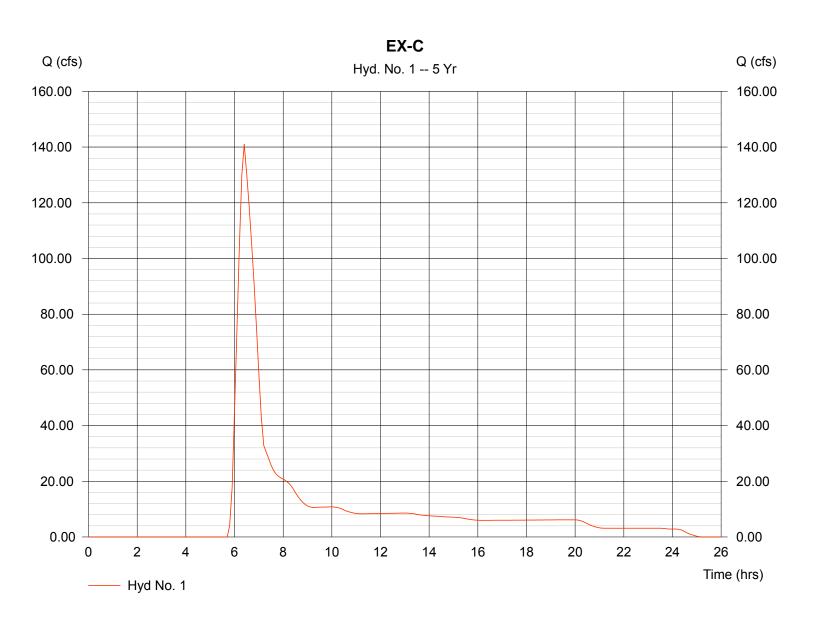
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	458.13	6	384	2,456,980				EX-C
1 2	SCS Runoff SCS Runoff	458.13 286.52	6 6	384 378	2,456,980 1,291,638				EX-C EX-E
	ting Flows					Period: 10			May 23 2017, 7:39 AM

Hydraflow Hydrographs by Intelisolve

Tuesday, May 23 2017, 7:39 AM

Hyd. No. 1

EX-C


Hydrograph type = SCS Runoff Storm frequency = 5 yrsDrainage area = 452.970 ac Basin Slope = 0.0 %Tc method = USER Total precip. = 2.80 in

Storm duration = CSpring_IIA-6min.cds

Peak discharge = 140.99 cfsTime interval = 6 min Curve number = 69 Hydraulic length = 7400 ftTime of conc. (Tc) = 49.50 minDistribution = Custom = 484

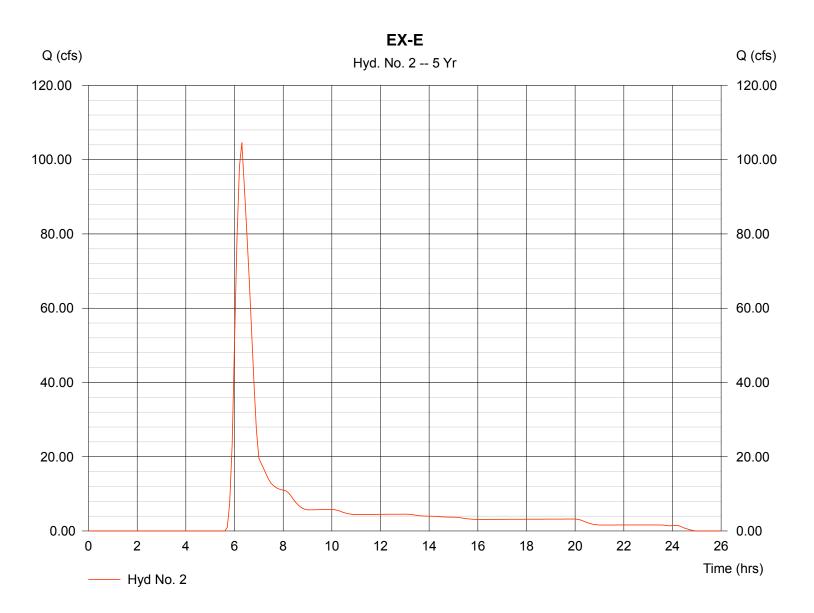
Shape factor

Hydrograph Volume = 905,484 cuft

Hydraflow Hydrographs by Intelisolve

Tuesday, May 23 2017, 7:12 AM

Hyd. No. 2


EX-E

Hydrograph type = SCS Runoff
Storm frequency = 5 yrs
Drainage area = 187.300 ac
Basin Slope = 3.0 %
Tc method = USER
Total precip. = 2.80 in

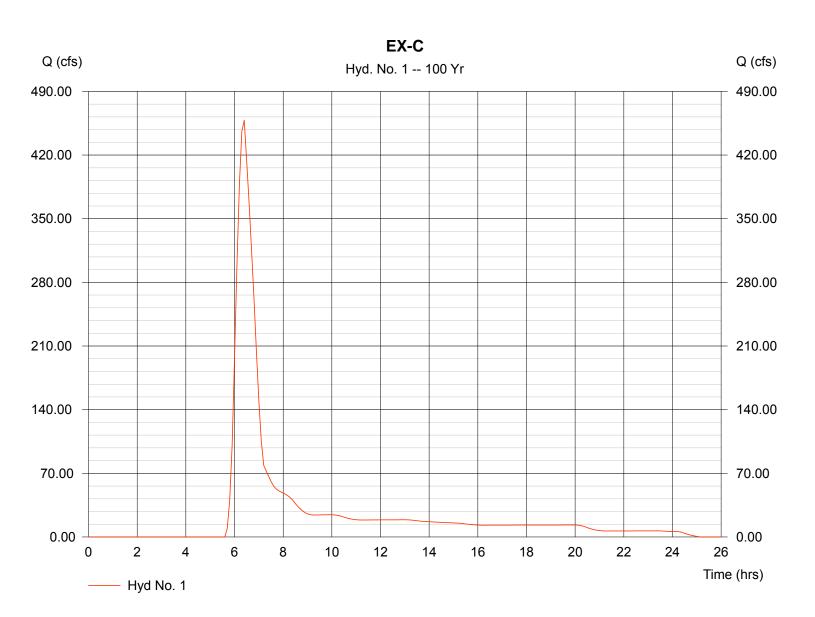
Storm duration = CSpring_IIA-6min.cds

Peak discharge = 104.56 cfs
Time interval = 6 min
Curve number = 73.5
Hydraulic length = 4150 ft
Time of conc. (Tc) = 33.00 min
Distribution = Custom
Shape factor = 484

Hydrograph Volume = 530,876 cuft

Hydraflow Hydrographs by Intelisolve

Tuesday, May 23 2017, 7:39 AM


Hyd. No. 1

EX-C

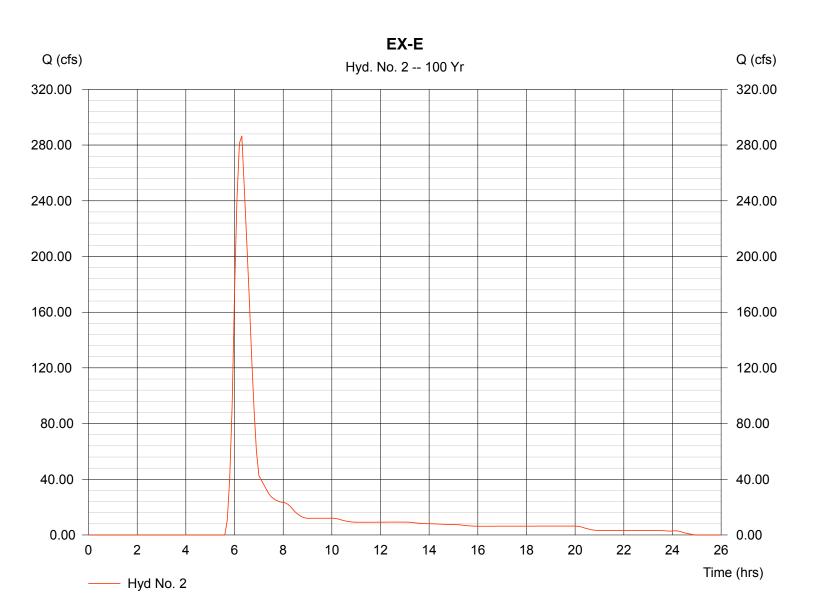
Hydrograph type = SCS Runoff Peak discharge = 458.13 cfsStorm frequency Time interval = 6 min = 100 yrsDrainage area = 452.970 ac Curve number = 69 Basin Slope = 0.0 %Hydraulic length = 7400 ftTime of conc. (Tc) Tc method = USER = 49.50 minTotal precip. = 4.40 inDistribution = Custom

Storm duration = CSpring_IIA-6min.cds Shape factor = 484

Hydrograph Volume = 2,456,980 cuft

Hydraflow Hydrographs by Intelisolve

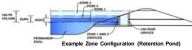
Tuesday, May 23 2017, 7:13 AM


Hyd. No. 2

EX-E

Hydrograph type = SCS Runoff Peak discharge = 286.52 cfsStorm frequency Time interval = 100 yrs= 6 min Drainage area = 187.300 acCurve number = 73.5Basin Slope = 3.0 % Hydraulic length = 4150 ftTime of conc. (Tc) Tc method = USER = 33.00 minTotal precip. = 4.40 inDistribution = Custom

Storm duration = CSpring_IIA-6min.cds Shape factor = 484


Hydrograph Volume = 1,291,638 cuft

APPENDIX D - POND CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

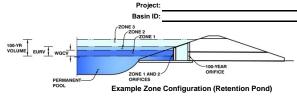
UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C1, C2 & C3 Pond "C1"

		ulleu volulle Calculation
Ì	EDB	Selected BMP Type =
acres	57.70	Watershed Area =
ft	2,400	Watershed Length =
ft/ft	0.040	Watershed Slope =
percent	65.00%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	0.0%	Percentage Hydrologic Soil Group B =
percent	100.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Desired WQCV Drain Time =

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	1.222	acre-feet
Excess Urban Runoff Volume (EURV) =	3.623	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	3.370	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	4.678	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	5.763	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	7.356	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	8.625	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	10.193	acre-feet
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	3.162	acre-feet
Approximate 5-yr Detention Volume =	4.406	acre-feet

Approximate 2-yr Detention Volume =	3.162	acr
Approximate 5-yr Detention Volume =	4.406	acr
Approximate 10-yr Detention Volume =	5.038	acr
Approximate 25-yr Detention Volume =	5.375	acr
Approximate 50-yr Detention Volume =	5.533	acr
Approximate 100-yr Detention Volume =	6.046	acr

Zone 1 Volume (WQCV) =	1.222	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.401	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.423	acre-feet
Total Detention Basin Volume =	6.046	acre-feet
Initial Surcharge Volume (ISV) =	user	ft*3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
		•


Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{15V}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Stage - Storage Description	0.2 Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft'2)	Optional Override Area (ft ²)	Area (acre)	Volume (ft/3)	Volum (ac-ft
Top of Micropool		0.00			- (10.2)	4,020	0.092	(11.3)	(ac-it
5745.33									0.053
		0.33			-	10,492	0.241	2,290	
5746	-	1.00	-	-	-	23,632	0.543	13,591	0.312
5747	-	2.00	-	-	-	53,900	1.237	52,054	1.195
5748		3.00			-	57,925	1.330	108,504	2.491
5749	-	4.00		-	-	62,019	1.424	168,476	3.868
5750		5.00	-	_	_	66,200	1.520	232,586	5.339
5751		6.00	-		_	70,500	1.618	300,936	6.909
			-	-	_				
5752	-	7.00		-		74,920	1.720	373,646	8.578
5753	-	8.00		-	-	78,760	1.808	450,486	10.34
5754		9.00		-	-	80,000	1.837	529,866	12.16
5755	-	10.00	-	-	-	82,000	1.882	610,866	14.02
			-	-					
			-	_	-				
					-				
		-	-	-	-				
	-		-	-					
			-	-	-				
				-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
					_				
			-	-	-				-
	-		-	-					
	-		-	-					
	-		-	-	-				<u></u>
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
				_	_				
					_			1	-
			-	-	_				
	-		-	-					
	-				-				
	-			-	-				
	-		-	-	-				
			-	-	-				
					-				
			-	-	-				
			_	_	_				
					_				
			-	-	_				
	-		-	-	-				
	-		-	-					
	-			-	-				
	-		-	-	-				
			-	-	-				
					-				
			-	-	-				
			-	_	_				
					_				
			-		-				
			-	-					
	-		-	-	-				
	-			-	-				
				-	-				
	-		-	-	-				
					-				
	-		-	-	-				
			-	=	-				
	-			-	-				
			-	-	-				
			-		-			-	-
			-	-	1 -				
			-	-	-				
			-	-	-				
			-	-	-			-	
			-	-	-			1	-
	-		-	-	-				
	-		-	-	-			-	-
			-	-	-				
	-			-	-				
			-	-	-				
	 -		-	-	-			-	
	-		-	-	-			1	-
									L
	-			-	-				
			-	-					_
				-	-			-	-
		1	-	-	-			1	-
				-	-				
	-				-				L
	-		-	-					
			-	-	-				
	-		-	-	-				
	-			-	-				
	-		-	-	-				
	-			-					
	-			-					
	-			-					
	-			-					

100.013 MDDP-UD-Det 3.07 Pond C1-rls, Basin 5/18/2017, 2:47 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin C1, C2 & C3, Pond "C1"

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.02	1.222	Orifice Plate
Zone 2 (EURV)	3.83	2.401	Rectangular Orifice
one 3 (100-year)	5.46	2.423	Weir&Pipe (Restrict)
		6,046	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.32	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	9.30	inches
Orifice Plate: Orifice Area per Row =	7.20	sq. inches (use rectangular openings)

Calcu	iateu Parameters ioi	Plate
WQ Orifice Area per Row =	5.000E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²
		-

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.77	1.55					
Orifice Area (sq. inches)	7.20	7.20	7.20					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.02	N/A	ft (relative to basin bottom at Stage = 0 ft)
top of Zone using Vertical Orifice =	3.83	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	5.00	N/A	inches
Vertical Orifice Width =	10.49		inches

Calculated Parameters for Vertical Orifice								
	Zone 2 Rectangular	Not Selected						
Vertical Orifice Area =	0.36	N/A	ft ²					
Vertical Orifice Centroid =	0.21	N/A	feet					

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

Depth at

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.47	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	6.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	25%	N/A	%

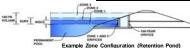
Calculated Parameters for Overflow Weir						
	Zone 3 Weir	Not Selected				
Height of Grate Upper Edge, H_t =	5.47	N/A	feet			
Over Flow Weir Slope Length =	6.00	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	11.39	N/A	should be ≥ 4			
Overflow Grate Open Area w/o Debris =	16.80	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	12.60	N/A	ft ²			
			_			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected]	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	
Outlet Pipe Diameter =	18.00	N/A	inches	
Restrictor Plate Height Above Pipe Invert =	14.00		inches Half-Centra	al a

calculated a diameter stor outlett ipe ut 1100 hestration i late									
	Zone 3 Restrictor	Not Selected							
Outlet Orifice Area =	1.47	N/A	ft ²						
Outlet Orifice Centroid =	0.64	N/A	feet						
I Angle of Restrictor Plate on Pipe =	2.16	N/A	radiar						

ser input. Linergency spinway (nectang	imput. Emergency Spinway (Nectangular of Trapezoluar)									
Spillway Invert Stage=	8.00	ft (relative to basin bottom at Stage = 0 ft)								
Spillway Crest Length =	50.00	feet								
Spillway End Slopes =	4.00	H:V								
Freeboard above Max Water Surface =		feet								


Calcula	Calculated Parameters for Spillway				
Spillway Design Flow Depth=	1.16	feet			
Stage at Top of Freeboard =	9.16	feet			
Basin Area at Top of Freeboard =	1.84	acres			

Routed Hydrograph Results

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	1.222	3.623	3.370	4.678	5.763	7.356	8.625	10.193	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.223	3.625	3.372	4.680	5.765	7.355	8.621	10.194	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.13	0.35	0.81	1.07	1.39	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.9	7.4	20.2	46.7	61.6	80.2	0.0
Peak Inflow Q (cfs) =	21.3	62.4	58.1	80.1	98.2	124.6	145.4	171.0	#N/A
Peak Outflow Q (cfs) =	0.7	3.2	3.1	3.8	4.4	12.6	16.8	17.9	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.2	0.3	0.3	0.2	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.5	0.7	0.7	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	37	46	46	47	48	48	47	46	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	54	56	58	57	57	#N/A
Maximum Ponding Depth (ft) =	1.93	3.56	3.40	4.25	4.93	5.71	6.23	6.98	#N/A
Area at Maximum Ponding Depth (acres) =	1.19	1.38	1.37	1.45	1.51	1.59	1.64	1.72	#N/A
Maximum Volume Stored (acre-ft) =	1.122	3.250	3.017	4.212	5.218	6.443	7.267	8.526	#N/A
<u>-</u>									

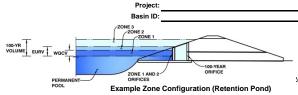
DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C3 & C4, Pond "C2.1"

Selected BMP Type =	EDB	
Watershed Area =	68.00	acres
Watershed Length =	2,500	ft
Watershed Slope =	0.038	ft/ft
Watershed Imperviousness =	65.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours

| Desired WGCV Drain Time | 40.0 | hours | 10.005% | hours | 40.0 | hours | 10.005% | hours | 10.005%

2.16


Zone 1 Volume (WQCV) =	1.440	acre-fee
Zone 2 Volume (EURV - Zone 1) =	2.830	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	2.855	acre-fee
Total Detention Basin Volume =	7.126	acre-fee
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
·		•

Initial Surcharge Area (A ₁₅₁) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft/3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =	0.2	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft*2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
Top of Micropool	-	0.00	-	-	-	50	0.001		
5765.33	-	0.33	-	-	-	200	0.005	39	0.001
5766		1.00		-	-	5,012	0.115	1,737	0.040
5767	-	2.00	-	-	-	29,041	0.667	18,524	0.425
5768	-	3.00	-	-	-	43,198	0.992	54,933	1.261
5769	-	4.00	-	-	-	46,089	1.058	99,576	2.286
5770		5.00		-	-	49,051	1.126	147,146	3.378
5771		6.00		-	-	52,082	1.196	197,713	4.539
5772	-	7.00	-	-	-	55,183	1.267	251,345	5.770
5773	-	8.00	-	-	-	58,358	1.340	308,116	7.073
5774	-	9.00	-	-	-	61,000	1.400	367,795	8.443
			-	-	_				
	-		-	-	-				
			_	_	-				
	-		-	-	-				
	-		-	-	-				
				-	-				
				-	-				
	-		-	-	-				
	-		-	-	-				
	-				-				
	-			-					
	-		-	-	-				
	-			-	-			-	
	-		-	-	-			-	
	-			-	_				
	-		-	-	-				
	-		-	-	-			 	
	-		-		_				
	-		-	-	-				
					-				
	-		-	-	-				
			-		-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			-		-				
			-	-	-				
			-	-	-				
	_		-	_	-				
			_		_				
	-		-	_	_				
					-				
	-		-	-	-				
				-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	=	=				
	=		=	-	-		_		
	-		-	-	-				
	-		-	-					
	-		-	-	-				
	-		-	-					
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	=	-				
	-		-	-	-				
	-		-	-					
	-		-	-	-				
				-					
	-		-	=	=				
	-		-	-					
	-		-	-					
					_				
	-		-	-	-				
	-		-	-	-				
	-			-	-				
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-			-	-				
	-		-	-	-				
	-			-	-				
	-		-	-	-				
			-	=					
		. —	. —	. —	. —	. —		. —	

5/18/2017, 2:51 PM c2.1, Basin

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C3 & C4, Pond C2.1

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.18	1.440	Orifice Plate
Zone 2 (EURV)	5.78	2.830	Rectangular Orifice
one 3 (100-year)	8.04	2.855	Weir&Pipe (Restrict)
		7 126	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = N/A Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	3.20	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	12.00	inches
Orifice Plate: Orifice Area per Row =	4.66	sq. inches (use rectangular openings)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	3.236E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	2.00	3.00				
Orifice Area (sq. inches)	4.66	4.66	4.66	4.66				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

oser input. Vertical office (circ			
	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	3.18	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	5.78	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	4.00	N/A	inches
Vertical Orifice Width =	13.86		inches

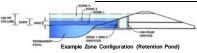
Calculated Parameters for Vertical Orifice					
	Zone 2 Rectangular	Not Selected			
Vertical Orifice Area =	0.39	N/A	ft ²		
Vertical Orifice Centroid =	0.17	N/A	feet		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	12.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected			
Height of Grate Upper Edge, H_t =	6.00	N/A	feet		
Over Flow Weir Slope Length =	12.00	N/A	feet		
Grate Open Area / 100-yr Orifice Area =	6.84	N/A	should be <u>></u> 4		
Overflow Grate Open Area w/o Debris =	33.60	N/A	ft ²		
Overflow Grate Open Area w/ Debris =	16.80	N/A	ft ²		
•					

ıt: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectan			gular Orifice)	Calculated Parameter	s for Outlet Pipe w/ Flow Restriction Plate		
	Zone 3 Restrictor	Not Selected]		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0	ft) Outlet Orifice Area =	4.91	N/A	ft ²
Outlet Pipe Diameter =	30.00	N/A	inches	Outlet Orifice Centroid =	1.25	N/A	feet
Restrictor Plate Height Above Pipe Invert =	48.00		inches Half-	-Central Angle of Restrictor Plate on Pipe =	3.14	N/A	radians


Jser Input: Emergency Spillway (Rectangular or Trapezoidal)						
Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)				
Spillway Crest Length =	50.00	feet				
Spillway End Slopes =	4.00	H:V				
Freeboard above Max Water Surface =		feet				
		=				

Calculated Parameters for Spillwa					
Spillway Design Flow Depth=	1.39	feet			
Stage at Top of Freeboard =	10.39	feet			
Basin Area at Top of Freeboard =	1.40	acres			

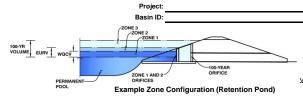
Routed	Hydr	ograph	Results
-			

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	1.440	4.270	3.972	5.513	6.792	8.669	10.164	12.013	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.440	4.271	3.972	5.513	6.784	8.669	10.161	12.008	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.13	0.36	0.83	1.09	1.42	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	1.1	8.9	24.4	56.2	74.2	96.5	0.0
Peak Inflow Q (cfs) =	25.6	74.7	69.6	95.9	117.4	149.0	173.8	204.2	#N/A
Peak Outflow Q (cfs) =	0.7	3.9	3.7	10.8	33.5	56.6	59.4	63.3	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.2	1.4	1.0	8.0	0.7	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.9	1.5	1.6	1.7	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	38	48	47	49	47	45	44	42	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	54	53	52	52	51	#N/A
Maximum Ponding Depth (ft) =	3.08	5.40	5.16	6.20	6.56	6.99	7.58	8.42	#N/A
Area at Maximum Ponding Depth (acres) =	1.00	1.15	1.14	1.21	1.23	1.27	1.31	1.37	#N/A
Maximum Volume Stored (acre-ft) =	1.341	3.834	3.559	4.779	5.207	5.745	6.504	7.641	#N/A

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C5 & C7, Pond C2.2

uired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	40.00	acres
Watershed Length =	2,500	ft
Watershed Slope =	0.045	ft/ft
Watershed Imperviousness =	65.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours
Lanction for 4 by Dainfell Danths -	Licar Input	

Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.847	acre-feet
Excess Urban Runoff Volume (EURV) =	2.512	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	2.336	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	3.243	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	3.995	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	5.100	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	5.979	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	7.066	acre-feet
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	2.192	acre-feet
Approximate 5-yr Detention Volume =	3.054	acre-feet
Approximate 10-yr Detention Volume =	3.493	acre-feet
Approximate 25-yr Detention Volume =	3.726	acre-feet
Approximate 50-yr Detention Volume =	3.835	acre-feet
Approximate 100-yr Detention Volume =	4.191	acre-feet
		-


tage-Storage Calculation		
Zone 1 Volume (WQCV) =	0.847	acre-fee
Zone 2 Volume (EURV - Zone 1) =	1.665	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	1.680	acre-fee
Total Detention Basin Volume =	4.191	acre-fee
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A _{SV}) =	user	ft^2

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =	0.2	ft							
Stage - Storage		Optional	Londin	Width		Optional	A	Makama	Makasa
Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	Area (ft*2)	Override Area (ft'2)	Area (acre)	Volume (ft'3)	Volum (ac-ft
Top of Micropool		0.00		-	-	30	0.001		
5745.33		0.33	-	-	-	200	0.005	36	0.001
5746		1.00	-	-	_	2,363	0.054	873	0.020
5747		2.00	-	-	-	23,792	0.546	13,737	0.315
5748		3.00	-	-	-	25,787	0.592	38,763	0.890
5749		4.00				27,855	0.639	65,584	1.506
5750		5.00	-	-	-	29,992	0.689	94,508	2.170
5751	-	6.00	-	-	-	32,230	0.740	125,619	2.884
5752		7.00	-		-	34,712	0.797	159,090	3.652
5753	-	8.00	-	-	-	37,000	0.849	194,946	4.475
5754		9.00	-		-	40,000	0.918	233,446	5.359
	-		-	-	-				
	-		-	-	-				
			-						
			-						
	-		-	-	-				
			-						
			-						
			_	-	-				
			_						
			_	_	_				
			-	-	-				
			-						
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
				-	-				
	-		-		-		1		
					-				
	-		-	-	-				
					-				
	-		_	-	_				
			_	_	_				
				-	_				
			_	_	_				
			-	-	_				
			-						
	-		-	-	-				
			-		-				
			-		-				
	-		-	-	-				
			-	-	-				
	-		-	-	-				
			-		-				
	-		_		-				
			_	-	_				
			_		_				
				-	_				
			_	_	_				
			-	-	_				
			-						
	-		-	-	-				
			-		-				
			-		-				
	-		-	-	-				
	-		-	-	-				
					-				
			-	-	-		-	-	
	-		-	-	-				
					-				
	-		-	-	-		ļ	-	-
	-		-	-	-				
	-		-	-	-				
			-	-	-		-		
	-		-	-	-		l		
	-		-		-				
			-						<u> </u>
			-	-	-				
			-	-	-				
				-	-				_
			-	-	-		-		
							1		
	-		-	-					1
	=			-	-				
	-		-	-	-				
			11111	-	-				
			1 1 1		-				
			-		-				
					-				
				-					
			1 1 1 1 1 1		-				
	-		1						

c2.2, Basin 5/18/2017, 2:52 PM

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin C5 & C7, Pond C2.2

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.93	0.847	Orifice Plate
Zone 2 (EURV)	5.49	1.665	Rectangular Orifice
one 3 (100-year)	7.67	1.680	Weir&Pipe (Restrict)
		4.191	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	u raiailleteis ioi oi	iueiuiai
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 12.00 inches Orifice Plate: Orifice Area per Row = 2.90 sq. inches (diameter = 1-15/16 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	2.014E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	2.00	3.00				
Orifice Area (sq. inches)	2.90	2.90	2.90	2.90				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

oser input. Vertical office (circ			
	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	3.10	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	5.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	4.00	N/A	inches
Vertical Orifice Width =	4.00		inches

Calculated Parameters for Vertical Orifice						
	Zone 2 Rectangular	Not Selected				
Vertical Orifice Area =	0.11	N/A	ft ²			
Vertical Orifice Centroid =	0.17	N/A	fee			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.80	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	10.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir						
Zone 3 Weir Not Selected						
Height of Grate Upper Edge, H_t =	5.80	N/A	feet			
Over Flow Weir Slope Length =	10.00	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	8.91	N/A	should be >			
Overflow Grate Open Area w/o Debris =	28.00	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	14.00	N/A	ft ²			
•			-			

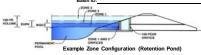
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	1	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Sta	ge = 0 ft) Outlet Orifice Area
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid
Restrictor Plate Height Above Pipe Invert =	48.00		inches	Half-Central Angle of Restrictor Plate on Pipe

	- · · · · · · · · · · · · · · · · · · ·		
	Zone 3 Restrictor	Not Selected	
t Orifice Area =	3.14	N/A	ft ²
ifice Centroid =	1.00	N/A	feet
DI LI LI DI LI	2.4.4	21/2	

Routed Hydrograph Results Design Storm Return Period =


ser input. Lineigency spinway (nectang	guiai oi Trapezoiuai)	
Spillway Invert Stage=	8.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	30.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =		feet

ted Parameters for S	pillway
1.03	feet
9.03	feet
0.92	acres
	1.03 9.03

Calculated Runoff Volume (acre-ft) =	0.847	2.512	2.336	3.243	3.995	5.1
OPTIONAL Override Runoff Volume (acre-ft) =						
Inflow Hydrograph Volume (acre-ft) =	0.846	2.509	2.334	3.240	3.991	5.0
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.11	0.29	0.
Predevelopment Peak Q (cfs) =	0.0	0.0	0.5	4.2	11.7	27
Peak Inflow Q (cfs) =	13.1	38.3	35.7	49.3	60.5	76
Peak Outflow Q (cfs) =	0.4	1.5	1.4	5.4	19.1	35
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.3	1.6	1
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet

One-nour realition Depart (iii) =	0.55	1.07	1.10	1.77	1.00	1.32	2.10	2.72	0.00
Calculated Runoff Volume (acre-ft) =	0.847	2.512	2.336	3.243	3.995	5.100	5.979	7.066	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.846	2.509	2.334	3.240	3.991	5.087	5.967	7.056	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.11	0.29	0.69	0.91	1.19	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.5	4.2	11.7	27.5	36.3	47.6	0.0
Peak Inflow Q (cfs) =	13.1	38.3	35.7	49.3	60.5	76.7	89.6	105.5	#N/A
Peak Outflow Q (cfs) =	0.4	1.5	1.4	5.4	19.1	35.5	36.8	39.1	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.3	1.6	1.3	1.0	0.8	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Plate N/A	Vertical Orifice 1 N/A	Vertical Orifice 1 N/A	Overflow Grate 1 0.1	Overflow Grate 1 0.6	Outlet Plate 1 1.2	Outlet Plate 1 1.2	Outlet Plate 1 1.3	#N/A #N/A
· · · · · · · · · · · · · · · · · · ·									
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.6	1.2	1.2	1.3	#N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A N/A	N/A N/A	N/A N/A	0.1 N/A	0.6 N/A	1.2 N/A	1.2 N/A	1.3 N/A	#N/A #N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A N/A 38	N/A N/A 56	N/A N/A 55	0.1 N/A 58	0.6 N/A 57	1.2 N/A 55	1.2 N/A 53	1.3 N/A 52	#N/A #N/A #N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A N/A 38 41	N/A N/A 56 60	N/A N/A 55 59	0.1 N/A 58 63	0.6 N/A 57 63	1.2 N/A 55 62	1.2 N/A 53 61	1.3 N/A 52 60	#N/A #N/A #N/A #N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	N/A N/A 38 41 2.82	N/A N/A 56 60 5.20	N/A N/A 55 59 4.96	0.1 N/A 58 63 5.96	0.6 N/A 57 63 6.24	1.2 N/A 55 62 6.51	1.2 N/A 53 61 6.93	1.3 N/A 52 60 7.67	#N/A #N/A #N/A #N/A #N/A

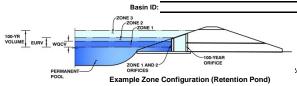
UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C6, Pond C2.3

equired Volume Calculation							
EDB							
18.70	acres						
900	ft						
0.050	ft/ft						
65.00%	percent						
0.0%	percent						
0.0%	percent						
100.0%	percent						
	18.70 900 0.050 65.00% 0.0%						

Percentage Hydrologic Sol Group B = | 0.0% | percent Percentage Hydrologic Sol Group C | 100.0% | percent Percentage Hydrologic Sol Group C | 100.0% | percent Volume (Percent Percent Percen

1.16 inches
1.44 inches
1.68 inches
1.92 inches
2.16 inches
inches

50-yr Runott Volume (P1 = 2.16 in.) =	2.795	acre-te
100-yr Runoff Volume (P1 = 2.42 in.) =	3.304	acre-fe
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-fe
Approximate 2-yr Detention Volume =	1.025	acre-fe
Approximate 5-yr Detention Volume =	1.428	acre-fe
Approximate 10-yr Detention Volume =	1.633	acre-fe
Approximate 25-yr Detention Volume =	1.742	acre-fe
Approximate 50-yr Detention Volume =	1.793	acre-fe
Annrovimate 100 or Detention Volume =	1.960	acre-fe


Zone 1 Volume (WQCV) =	0.396	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.778	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.785	acre-fee
Total Detention Basin Volume =	1.960	acre-fee
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

user	ft^2
user	ft
user	ft^2
user	ft^3
user	ft
user	ft
user	ft
user	ft^2
user	ft^3
user	acre-feet
	user user user user user user user user

Depth Increment =	0.2	ft							
		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volun
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft'2)	(acre)	(ft/3)	(ac-f
Top of Micropool	-	0.00	-		-	30	0.001		
5746.33	-	0.33	-	-	-	500	0.011	83	0.002
5747	-	1.00		_	-	22,141	0.508	7,452	0.17
5748	_	2.00	-	-	_	24,321	0.558	30,660	0.704
5749	-	3.00	-	-	-	26,601	0.611	56,364	1.29
5750	-	4.00			-	28,983	0.665	84,156	1.93
5751	-	5.00	-	-	-	31,466	0.722	114,380	2.62
5752		6.00			_	34,050	0.782	147,138	3.37
5753		7.00	-	_	_	36,742	0.843	182,534	4.19
	-								
5754	-	8.00		-	-	38,000	0.872	219,905	5.04
5755	-	9.00			-	40,000	0.918	258,905	5.94
	-		-	-	-				
			_		_				
				-	_				
			_	-					
	-								
	-			-	-				
	-		-	-	-				
	_			_	-				
				-	_				
	-								<u> </u>
	-			-	-				
			-	-	-			_	L T
	-			-					
			_	_	_				
	-			_			-		<u> </u>
	-								-
				-	-				Ш.
	-		-	-	-				
	-		-	-	-				
				-			 		—
	-						-	-	-
	-				-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			_	-	_				
	-		_		_				
	-			-					
	-		-	-	-				
	-		-	-	-				
			_		_				
			_	_	_				
	-			-	-				
	-				-				
	-		-	-	-				
	_			_	-				
			_	-	_				
	-		_		_				
	-			-					
	-		-	-	-				
	-		-	-	-				
	_			_	-				
	_		_	-	_				
				_	_				
	-		-						
	1		-	-	-				
	-		-	-	-				
	-				-				
			l .		l .				
	-		-	_	-		-		<u> </u>
	-		-	-	-				<u> </u>
	-		-	-					-
	-		-	-	-		 		
			-	-	-				
			-	-	-				
	_		-	-	-				
	_			-					_
	-		-	-					-
	-		-	-	-		 		—
	-		-	-	-				
	-		-	-	-				
			-	-	-				
	-			-	-		_		_
	-		-	-	-		-	-	-
	-		-	-	-		 		—
	-		-	-	-				
				-	-				
	_			-					_
	-		-	-					-
			-	-	-		l	1	-
	-		-	-	-				
	-			-					
	-			-	-				<u> </u>
	-		-	-	-				<u> </u>
		-	-	-	-				-
	-			-	-				-
	-				-		-		—
	1 1 1		-						
	-		-	-	-				
			-		=				
	1 1 1		-	-	-				
	1111		-	-	-				
	1 1 1		-	-	-				
	1111		-	-	-				
	1111		-	-	-				
					-				
	1111		-	-	-				

5/18/2017, 2:53 PM c2.3, Basin

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin C6, Pond C2.3

Project:

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.43	0.396	Orifice Plate
Zone 2 (EURV)	2.81	0.778	Rectangular Orifice
one 3 (100-year)	4.05	0.785	Weir&Pipe (Restrict)
		1.960	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = N/A Underdrain Orifice Centroid :

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.43	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	8.00	inches
Orifice Plate: Orifice Area per Row =	2.61	sq. inches (diameter = 1-13/16 inches)

Calculated Parameters for Plate					
WQ Orifice Area per Row =	1.813E-02	ft ²			
Elliptical Half-Width =	N/A	feet			
Elliptical Slot Centroid =	N/A	feet			
Elliptical Slot Area =		ft ²			

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40					
Orifice Area (sq. inches)	2.61	2.61	2.61					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	1.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	2.81	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	4.00	N/A	inches
Vertical Orifice Width =	7.39		inches

Calculated Parameters for Vertical Orifice							
	Zone 2 Rectangular	Not Selected					
Vertical Orifice Area =	0.21	N/A	ft²				
Vertical Orifice Centroid =	0.17	N/A	fee				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	6.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected			
Height of Grate Upper Edge, H_t =	3.00	N/A	feet		
Over Flow Weir Slope Length =	6.00	N/A	feet		
Grate Open Area / 100-yr Orifice Area =	4.23	N/A	should be		
Overflow Grate Open Area w/o Debris =	16.80	N/A	ft ²		
Overflow Grate Open Area w/ Debris =	8.40	N/A	ft ²		
•		•	_		

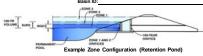
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected		
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	
Outlet Pipe Diameter =	27.00	N/A	inches	Ou
Restrictor Plate Height Above Pipe Invert =	27.00		inches	Half-Central Angle of Res

	Zone 3 Restrictor	Not Selected						
Outlet Orifice Area =	3.98	N/A	ft ²					
Outlet Orifice Centroid =	1.13	N/A	feet					
testrictor Plate on Pipe =	3.14	N/A	radian					

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Emergency Spillway (Rectangular or Trapezoidal)


Spillway Invert Stage=	8.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	30.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =		feet

Calculated Parameters for Spillway					
0.84	feet				
8.84	feet				
0.91	acres				
	0.84 8.84				

Routed Hydrograph Results

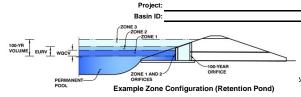
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.396	1.174	1.092	1.516	1.868	2.384	2.795	3.304	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.396	1.174	1.092	1.516	1.867	2.383	2.794	3.302	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	1.86	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	3.4	9.2	20.5	27.0	34.7	0.0
Peak Inflow Q (cfs) =	9.4	27.4	25.5	35.3	43.4	55.2	64.5	76.1	#N/A
Peak Outflow Q (cfs) =	0.2	1.3	1.2	2.7	9.8	20.6	29.0	32.5	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	1.1	1.0	1.1	0.9	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.5	1.1	1.6	1.8	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	38	49	49	50	48	46	44	43	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	54	53	55	55	54	53	52	#N/A
Maximum Ponding Depth (ft) =	1.39	2.62	2.49	3.09	3.33	3.58	3.73	4.00	#N/A
Area at Maximum Ponding Depth (acres) =	0.53	0.59	0.58	0.62	0.63	0.64	0.65	0.67	#N/A
Maximum Volume Stored (acre-ft) =	0.373	1.060	0.989	1.343	1.492	1.651	1.754	1.932	#N/A

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C8a & C10, Pond "C3"

Required Volume Calculation							
Selected BMP Type =	EDB						
Watershed Area =	24.70	acres					
Watershed Length =	1,250	ft					
Watershed Slope =	0.040	ft/ft					
Watershed Imperviousness =	65.00%	percent					
Percentage Hydrologic Soil Group A =	0.0%	percent					
Percentage Hydrologic Soil Group B =	30.0%	percent					
Percentage Hydrologic Soil Groups C/D =	70.0%	percent					

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	-
Vater Quality Capture Volume (WQCV) =	0.523	acre-fee
Excess Urban Runoff Volume (EURV) =	1.612	acre-fee
2-yr Runoff Volume (P1 = 1.16 in.) =	1.434	acre-fee
5-yr Runoff Volume (P1 = 1.44 in.) =	1.960	acre-fee
10-yr Runoff Volume (P1 = 1.68 in.) =	2.445	acre-fee
25-yr Runoff Volume (P1 = 1.92 in.) =	3.128	acre-fee
50-yr Runoff Volume (P1 = 2.16 in.) =	3.658	acre-fee
100-yr Runoff Volume (P1 = 2.42 in.) =	4.326	acre-fee
600 or Pupoff Volume (P1 = 0 in) =	0.000	acra for

acre-	4.326	100-yr Runoff Volume (P1 = 2.42 in.) =
acre-	0.000	500-yr Runoff Volume (P1 = 0 in.) =
acre-	1.345	Approximate 2-yr Detention Volume =
acre-	1.845	Approximate 5-yr Detention Volume =
acre-	2.179	Approximate 10-yr Detention Volume =
acre-	2.331	Approximate 25-yr Detention Volume =
acre-	2.408	Approximate 50-yr Detention Volume =
acre-	2.623	Approximate 100-vr Detention Volume =


age otorage oaloulation		
Zone 1 Volume (WQCV) =	0.523	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.089	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.012	acre-feet
Total Detention Basin Volume =	2.623	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{15V}) =	user	ft
Surcharge Volume Width (W _{15V}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft*3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft*2
Volume of Main Basin (V _{MAIN}) =	user	ft*3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =	0.2 Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft'2)	(acre) 0.006	(ft/3)	(ac-ft)
Top of Micropool	-	0.00	-		-	262			
5757.33	-	0.33	-		-	4,657	0.107	766	0.018
5758	-	1.00	-	-	-	13,580	0.312	6,786	0.156
5759	_	2.00	_		-	33,254	0.763	30,006	0.689
5760				-	_		1.074		1.615
		3.00	-	-	-	46,803		70,366	
5761		4.00				50,425	1.158	118,980	2.731
5762	-	5.00	-		-	54,123	1.242	171,254	3.931
5763		6.00	-	-	-	57,909	1.329	227,270	5.217
5764	-	7.00	-		-	61,796	1.419	287,123	6.591
	-		-	-	-				
	-		-	-					
			-	_	-				
				-	-				
			-	-	-				
	-								
			-	-	-				
	-		-		-				
	-		-		-				
	-		-	-	-				
			-		-				
			-	-	-				
				-	-				
			-	-	-			1	
									-
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			-	-	-				Ш
			-	-	-				
	-		-	-	-				
	-		-	-	_				
			-	-	-				
			-	-					-
	-				-				
			-		-				
			-		-				
	-		-		-				
	-		-	-	-				
	-		-		-				
			_	-	-				
			_		-				
			_	-	_				
	-		-	-	-				
			-		-				
			-	-	-				
	-				-				
	-		-		-				
			-	_	-				
			_	-	-				
				-	_				
			-	-					
	-				-				
			-	-	-				
	-		-		-				
	-		-	-	-				
	-		-	-	-				
			-		-				
	-		-	-	-				
			-	-	_				
				-					
			-	-	-				
			-	-					
	-		-	-	-		-		
	-		-	-	-			-	-
			-	-	-			1	-
					_				
	-		-	-	_				
	-		-	-	-				
			-	-	-				
				_					
			-	-	_				
			-	-	_				
			-	-	-			-	-
			-	-	-				
	-		-	-	-				
			-	-					
			-	-	-				-
			-	-	-				
			-	-	-				
	_		-	-	_				
	-		-	-	-			-	-
			-	-	-			1	
			-	-	-				
	-			-	-				
			-	-	-				
			-	-					
	-		-	-	-				-
			-	-	-				
	-		-		-				
								1	1
	-		-						
	-		-		-				
	-				-				
			1 1 1 1						

100.013, MDDP-UD-Det 3.07 Pond C3, Basin 5/18/2017, 3:54 PM

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin C8a & C10, Pond "C3"

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.76	0.523	Orifice Plate
Zone 2 (EURV)	3.00	1.089	Rectangular Orifice
one 3 (100-year)	3.91	1.012	Weir&Pipe (Restrict)
		2.623	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = N/A Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.76	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	8.00	inches
Orifice Plate: Orifice Area per Row =	3.00	sq. inches (diameter = 1-15/16 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	2.083E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40					
Orifice Area (sq. inches)	3.00	3.00	3.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circ	cular or Rectangular)		Calculated Parameters for Vertical Orifice						
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected	1			
Invert of Vertical Orifice =	1.80	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Are	a = 0.06	N/A	ft ²			
epth at top of Zone using Vertical Orifice =	3.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid	i = 0.13	N/A	feet			
Vertical Orifice Height =	3.00	N/A	inches			-			
Vertical Orifice Width =	3.00		inches						

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

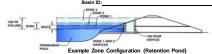
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.10	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	8.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated	Parameters for Ove		
ſ	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H_t =	3.10	N/A	feet
Over Flow Weir Slope Length =	8.00	N/A	feet
Grate Open Area / 100-yr Orifice Area =	12.68	N/A	should be
Overflow Grate Open Area w/o Debris =	22.40	N/A	ft ²
Overflow Grate Open Area w/ Debris =	11.20	N/A	ft ²
-	•		

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	1
0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft ²
18.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet
18.00		inches Half-Central Angle	e of Restrictor Plate on Pipe =	3.14	N/A	radians
	20ne 3 Restrictor 0.00 18.00	Zone 3 Restrictor Not Selected 0.00 N/A 18.00 N/A	0.00 N/A ft (distance below basin bottom at Stage = 0 ft) 18.00 N/A inches	Zone 3 Restrictor Not Selected 0.00 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 18.00 18.00 N/A inches Outlet Orifice Centroid = 18.00	Zone 3 Restrictor Not Selected Zone 3 Restrictor 0.00 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 1.77 18.00 N/A inches Outlet Orifice Centroid = 0.75	Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected 0.00 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 1.77 N/A 18.00 N/A inches Outlet Orifice Centroid = 0.75 N/A


ser input. Linergency spinway (Nectangular of Trapezoluar)								
Spillway Invert Stage=	7.00	ft (relative to basin bottom at Stage = 0 ft)						
Spillway Crest Length =	20.00	feet						
Spillway End Slopes =	4.00	H:V						
Freeboard above Max Water Surface =		feet						

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	1.13	feet
Stage at Top of Freeboard =	8.13	feet
Basin Area at Top of Freeboard =	1.42	acres

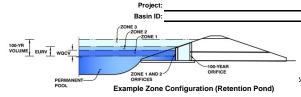
Routed	Hydrograph	Results

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.523	1.612	1.434	1.960	2.445	3.128	3.658	4.326	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.523	1.612	1.434	1.960	2.445	3.129	3.659	4.327	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.12	0.37	0.91	1.22	1.59	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	2.9	9.2	22.5	30.1	39.3	0.0
Peak Inflow Q (cfs) =	10.6	32.3	28.8	39.2	48.7	62.1	72.5	85.4	#N/A
Peak Outflow Q (cfs) =	0.3	0.7	0.7	2.1	8.8	14.5	15.3	16.3	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	1.0	0.6	0.5	0.4	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.4	0.6	0.6	0.7	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	39	58	56	60	58	56	54	53	#N/A
Time to Drain 99% of Inflow Volume (hours) =	42	64	61	67	66	65	64	64	#N/A
Maximum Ponding Depth (ft) =	1.70	2.91	2.75	3.19	3.39	3.67	3.98	4.40	#N/A
Area at Maximum Ponding Depth (acres) =	0.63	1.05	0.99	1.09	1.11	1.13	1.16	1.19	#N/A
Maximum Volume Stored (acre-ft) =	0.488	1.520	1.347	1.810	2.030	2.354	2.708	3.189	#N/A

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin C8, Pond "C4"

quired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	75.00	acres
Watershed Length =	2,300	ft
Watershed Slope =	0.055	ft/ft
Watershed Imperviousness =	65.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	='
Water Quality Capture Volume (WQCV) =	1.588	acre-feet
Excess Urban Runoff Volume (EURV) =	4.710	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	4.381	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	6.080	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	7.491	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	9.562	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	11.210	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	13.250	acre-feet
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	4.110	acre-feet
Approximate 5-yr Detention Volume =	5.727	acre-feet
Approximate 10-yr Detention Volume =	6.549	acre-feet
Approximate 25-yr Detention Volume =	6.987	acre-feet
Approximate 50-yr Detention Volume =	7.191	acre-feet
Approximate 100-yr Detention Volume =	7.859	acre-feet


ne Calculatio

1.588	acre-fee
3.122	acre-fee
3.149	acre-fee
7.859	acre-fee
user	ft^3
user	ft
user	ft
user	ft
user	ft/ft
user	H:V
user	1
	•
user	ft^2
user	ft
user	ft^2
user	ft^3
user	ft
user	ft
user	ft
user	ft′2
user	ft^3
user	acre-fee
	3.122 3.149 7.859 User User User User User User User User

Depth Increment =	0.2	ft							
		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
Top of Micropool	-	0.00	-	-	-	500	0.011		
5767.33		0.33			-	5,000	0.115	858	0.020
5768		1.00	-		-	48,694	1.118	18,411	0.423
5769		2.00	_	-		51,543	1.183	68,497	1.572
5770		3.00	_	_	_	54,460	1.250	122,014	2.801
			-	-	-	57,445			
5771		4.00			-		1.319	177,967	4.086
5772		5.00	-	-	-	60,499	1.389	236,939	5.439
5773	-	6.00	-	-	-	63,620	1.461	298,998	6.864
5774		7.00	-		-	66,809	1.534	364,213	8.361
5775	-	8.00	-	-	-	70,066	1.608	432,650	9.932
5776	-	9.00	-	-	-	73,392	1.685	504,379	11.579
5777		10.00	_	_	-	76,785	1.763	579,468	13.303
5778		11.00		-		80,246	1.842	657,983	15.105
5779		12.00	_	_	_	83,760	1.923	739,986	16.988
3//9		12.00		-	-	63,760	1.923	739,900	10.900
	-			-	-				
	-		-						
			-						
	-		-	-					
	-		-	-	-				
	-		-	-					
				-					
				-	-				
									
	-			-	-			-	
	-			-	-			-	-
				-	-				
			-						
	-		-	-	-				
			-						Ш
	-		-	-	-		-	1	
	-		-	-	-				
				-	-				
			-	-	_				
		-	_	_				+	
			_						
				-	-				
	-			-	-				
			-	-	-				
			-		-				
			-		-				
	-		-	-	-				
	-		-	-	-				
			_	_	-				
			_	_	_				
			_						
				-	-				
	-			-	-				
	-		-	-	-				
			-	-	-				
			-		-				
			-		-				
	-		-	-	-				
	-		-	-	-				
	-		_	-	-				
				-	_				
				H .				 	
	-			-	-			-	
			-	-	-				-
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			-	-	-			-	
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
			-	-	-			 	
				-	-				
	-		-	-	-				
			-	-	-				-
	-		-	=	-				
	-		-	-	-				
									
			-	-	-			 	
	_		-	-	_			-	
	-		-	-	-			-	-
	-		-	-	-				
					-				
	-		-	-	-				
			-	-	-				
	-		-	-	-				
			-		-				
		-	-	-	-			-	-
	-		-	=	-				
			-	-	-				
			-	-	-			-	
			-	-	-				-
	-		-	-	-				
			-	-	-				
			-		-				
			-	-	-			1	!

100.013, MDDP-UD-Det 3.07 Pond C4, Basin 5/18/2017, 3:56 PM

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin C8, Pond C4

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.01	1.588	Orifice Plate
Zone 2 (EURV)	4.47	3.122	Rectangular Orifice
one 3 (100-year)	6.68	3.149	Weir&Pipe (Restrict)
		7.859	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = N/A Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.10	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	6.00	inches
Orifice Plate: Orifice Area per Row =	8.00	sq. inches (use rectangular openings)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	5.556E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40					
Orifice Area (sq. inches)	8.00	8.00	8.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.30	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	4.70	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	8.00		inches

Calculated Farameters for Vertical Office					
	Zone 2 Rectangular	Not Selected			
Vertical Orifice Area =	0.11	N/A	ft ²		
Vertical Orifice Centroid =	0.08	N/A	fee		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.70	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	12.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated	Parameters for Ove					
	Zone 3 Weir	Zone 3 Weir Not Selected				
Height of Grate Upper Edge, H_t =	4.70	N/A	feet			
Over Flow Weir Slope Length =	12.00	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	10.70	N/A	should be ≥ 4			
Overflow Grate Open Area w/o Debris =	33.60	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	16.80	N/A	ft ²			

feet

radians

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

it: Outlet Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restric	ctor Plate, or Rectan	gular Orifice)	Calculated Parameter	s for Outlet Pipe w/	Flow Restriction Plat	te
	Zone 3 Restrictor	Not Selected]		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage =	= 0 ft) Outlet Orifice Area =	3.14	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	1.00	N/A	fee
Restrictor Plate Height Above Pipe Invert =	48.00		inches Ha	alf-Central Angle of Restrictor Plate on Pipe =	3.14	N/A	rad

User Input: Emergency Spillway	(Rectangular or Trapezoidal)

osci input. Emergency spinway (nectang	guidi or rrupczoludi,	
Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	50.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =		feet

Calcula	Calculated Parameters for Spillw				
Spillway Design Flow Depth=	1.39	feet			
Stage at Top of Freeboard =	10.39	feet			
Basin Area at Top of Freeboard =	1.79	acres			

Routed	Hydrograph	Results

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	1.588	4.710	4.381	6.080	7.491	9.562	11.210	13.250	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.587	4.707	4.378	6.068	7.486	9.546	11.194	13.239	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.15	0.40	0.92	1.21	1.57	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	1.3	11.1	30.2	68.9	90.9	117.7	0.0
Peak Inflow Q (cfs) =	31.9	93.2	86.8	119.5	146.6	185.6	216.5	254.5	#N/A
Peak Outflow Q (cfs) =	0.9	2.2	2.1	12.4	31.7	34.9	37.5	40.5	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	1.0	0.5	0.4	0.3	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.9	1.0	1.0	1.1	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	40	58	57	60	58	56	55	54	#N/A
Time to Drain 99% of Inflow Volume (hours) =	42	64	62	67	66	65	65	64	#N/A
Maximum Ponding Depth (ft) =	1.92	4.27	4.04	4.97	5.38	6.32	7.14	8.16	#N/A
Area at Maximum Ponding Depth (acres) =	1.18	1.34	1.32	1.39	1.42	1.48	1.54	1.62	#N/A
Maximum Volume Stored (acre-ft) =	1.478	4.444	4.125	5.398	5.972	7.335	8.561	10.174	#N/A

UD-Detention, Version 3.07 (February 2017)

Project: Lorson East MDDP (100.013)

Basin ID: Pond C5 VOLUME CURV WOOV ONIFICE Depth Increment = 0.2 PERM Stage - Storage Description Top of Micropol Example Zone Configuration (Retention Pond) Length (ft) Volume (ac-ft) Required Volume Calculation Selected BMP Type = EDB 5706.33 0.33 100 0.002 24 383 0.001 Watershed Area = 171.00 0.009 1.00 1,000 0.023 Watershed Length = 3,200 ft
Watershed Slope = 0.018 ft
Watershed Imperviousness = 63.00% ft 2.00 3.00 4.00 10,154 58,507 152,358 5708 18.898 0.434 0.233 1.343 3.498 5709 77,432 1.778 110,270 Percentage Hydrologic Soil Group A = 0.0% rcent 5711 5.00 115,455 2.650 265,220 6.089 | Percentage Hydrologic Soil Group B = 0.0%
| Percentage Hydrologic Soil Groups C/D = 100.0%
| Desired WQCV Drain Time = 40.0 120,720 2.771 126,045 2.894 131,696 3.023 383,308 506,690 8.800 11.632 14.590 5712 5713 6.00 7.00 8.00 Location for 1-th Rainfall Depths = Demver - Capitol Building
Water Quality Capture Volume (WQCV) = \$5.515 acre-feet
Excess Uthan Rumoff Volume (EVRV) = 10.32 acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) = 0.641 acre-feet
1-yr Runoff Volume (P1 = 1.86 in.) = 10.650 acre-feet
1-yr Runoff Volume (P1 = 1.92 in.) = 25.07 Runoff Volume (P1 = 1.92 in.) = 25.07 Runoff Volume (P1 = 1.92 in.) = 25.07 Runoff Volume (P1 = 2.42 in.) = 20.97 Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume (P1 = 3.14 in.) = 45.00 acre-feet
100-yr Runoff Volume = 10.67 acre-feet
100-yr Deternion Volume = 15.47 acre-feet
100-yr Deternion Volume = 15.47 acre-feet
100-yr Deternion Volume = 15.47 acre-feet
100-yr Deternion Volume = 17.508 acre-feet
100-yr Deternion Volume = 17.508 acre-feet Location for 1-hr Rainfall Depths = Denver - Capitol Building 5715 9.00 136,745 3.139 769,781 17.672 909,082 20.870 5716 10.00 141,857 3.257 1.16 inches 1.44 inches 1.68 inches 1.92 inches 2.16 inches 2.42 inches
 rage Calculation
 Zone 1 Volume (WQCV) = 3.515
 acre-feet

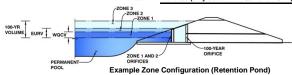
 Zone 2 Volume (EURV - Zone 1) = 6.888
 acre-feet
 Zone 2 Volume (ELIXY - ZUINE 1) - USSS

Select Zone 3 Storage Volume (Optional) = Total Detention Basin Volume = 10.382

Initial Surcharge Volume (ISV) = user acre-feet inted Surcharge Volume (ISV) = user Initial Surcharge Depth (ISD) = user Total Available Detention Depth (H_{total}) = user Depth of Trickle Channel (H_{TC}) = user Slope of Trickle Channel (H_{TC}) = user Slopes of Main Basin Sides (H_{TC}) = user user Basin Length-Mulffth Patil (H_{TC}) = user user H_{TC} Slopes of Main Basin Sides (S_{main}) = user

Basin Length-to-Width Ratio ($R_{L/W}$) = user Initial Surcharge Area (A_{ssv}) = user rcharge Volume Length (L_{isv}) = user Surcharge Volume Length (L_{ISV}) = Surcharge Volume Width (W_{ISV}) = Depth of Basin Floor (H_{FLOOR}) Length of Basin Floor (V_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) = Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) Depth of Main Basin (H_{MAIN}) = user

Length of Main Basin (L_{MAIN}) = user


Width of Main Basin (W_{MAIN}) = user Area of Main Basin (A_{MANN}) = user ft²
Volume of Main Basin (A_{MANN}) = user ft³
sted Total Basin Volume (V_{total}) = user acre-feet

100.013, MDDP-UD-Det 3,07 Pond CS, Basin 5/19/2017, 7:34 AM

UD-Detention, Version 3.07 (February 2017)

Project: Lorson East MDDP (100.013)

Basin ID: Pond C5 (only used for WQCV and EURV) Do not use for 100-yr Storm Event!!!!!!

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	4.01	3.515	Orifice Plate
Zone 2 (EURV)	6.57	6.868	Rectangular Orifice
one 3 (100-year)	8.95	7.126	Weir&Pipe (Restrict)
•		17 508	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Or	ideraraii
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	4.01	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	16.00	inches
Orifice Plate: Orifice Area per Row =	9.21	sq. inches (use rectangular openings)

Calculated Parameters for Plate						
WQ Orifice Area per Row = 6.396E-02 ft ²						
Elliptical Half-Width =	N/A	feet				
Elliptical Slot Centroid =	N/A	feet				
Elliptical Slot Area =	N/A	ft ²				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.34	2.67					
Orifice Area (sq. inches)	9.21	9.21	9.21					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

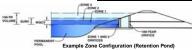
User Input: Vertical Orifice (Circular or Rectangular)			Calculated Parameters for Vertical Orifice				
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected		
Invert of Vertical Orifice =	4.01	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Are	= 0.78	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	6.57	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroi	0.25	N/A	feet	
Vertical Orifice Height =	6.00	N/A	inches				

Vertical Orifice Width = User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.60	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	18.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	3.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated			
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H_t =	6.60	N/A	feet
Over Flow Weir Slope Length =	3.00	N/A	feet
Grate Open Area / 100-yr Orifice Area =	3.01	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	37.80	N/A	ft ²
Overflow Grate Open Area w/ Debris =	18.90	N/A	ft ²
_			_

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


t: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)			gular Orifice)	Calculated Parameter	s for Outlet Pipe w/ I	Flow Restriction Pla	te
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	12.57	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	Outlet Orifice Centroid =	2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	48.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	3.14	N/A	radians

iser input: Emergency Spillway (Rectang	guiar or Trapezoidai)	
Spillway Invert Stage=		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =		feet
Spillway End Slopes =		H:V
Freeboard above Max Water Surface =		feet
	•	-

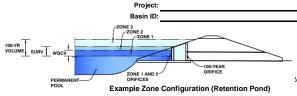
Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =		feet
Basin Area at Top of Freeboard =		acres

Routed Hydrograph Results_									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	3.14
Calculated Runoff Volume (acre-ft) =	3.515	10.382	9.641	13.459	16.659	21.433	25.205	29.878	41.092
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	3.517	10.386	9.640	13.467	16.663	21.449	25.222	29.902	41.123
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.14	0.37	0.85	1.12	1.46	2.19
Predevelopment Peak Q (cfs) =	0.0	0.0	2.8	23.2	63.2	145.3	191.8	249.0	374.8
Peak Inflow Q (cfs) =	63.1	181.4	168.8	233.0	286.9	364.1	424.6	497.8	660.8
Peak Outflow Q (cfs) =	1.4	7.3	7.0	30.7	77.5	132.6	154.2	163.7	171.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.3	1.2	0.9	0.8	0.7	0.5
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.6	1.8	3.3	3.8	4.0	4.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	54	53	55	54	52	50	48	45
Time to Drain 99% of Inflow Volume (hours) =	40	58	57	60	59	58	58	57	56
Maximum Ponding Depth (ft) =	3.92	6.27	6.02	6.99	7.43	7.99	8.50	9.32	10.00
Area at Maximum Ponding Depth (acres) =	2.47	2.80	2.77	2.89	2.95	3.02	3.08	3.18	3.26
Maximum Volume Stored (acre-ft) =	3.298	9.524	8.827	11.603	12.888	14.530	16.086	18.682	20.870

UD-Detention, Version 3.07 (February 2017)
Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013
Basin D1, Pond "D1"

uirea voidine Calculation						
Selected BMP Type =	EDB					
Watershed Area =	17.00	acres				
Watershed Length =	850	ft				
Watershed Slope =	0.060	ft/ft				
Watershed Imperviousness =	65.00%	percent				
Percentage Hydrologic Soil Group A =	0.0%	percent				
Percentage Hydrologic Soil Group B =	0.0%	percent				
Percentage Hydrologic Soil Groups C/D =	100.0%	percent				
Desired WQCV Drain Time =	40.0	hours				
Landing for 4 to Deinfell Denths -						

Location for 1-hr Rainfall Depths =		
Water Quality Capture Volume (WQCV) =	0.360	acre-feet
Excess Urban Runoff Volume (EURV) =	1.068	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	0.993	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	1.378	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	1.698	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	2.167	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	2.541	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	3.003	acre-feet
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	0.932	acre-feet
Approximate 5-yr Detention Volume =	1.298	acre-feet
Approximate 10-yr Detention Volume =	1.484	acre-feet
Approximate 25-yr Detention Volume =	1.584	acre-feet
Approximate 50-yr Detention Volume =	1.630	acre-feet
Approximate 100-yr Detention Volume =	1.781	acre-feet


lage-Storage Carculation		
Zone 1 Volume (WQCV) =	0.360	acre
Zone 2 Volume (EURV - Zone 1) =	0.708	acre-
Zone 3 Volume (100-year - Zones 1 & 2) =	0.714	acre-
Total Detention Basin Volume =	1.781	acre-
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{SV}) =	user	ft^2
Surcharge Volume Length (L _{isv}) =	user	ft
Surcharge Volume Width (W _{SV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet
		•

D#-	0.0	1_							
Depth Increment =	0.2	ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool		0.00	-		-	50	0.001		
5752		1.00			-	10,904	0.250	5,368	0.123
5753		2.00			-	19,275	0.442	20,374	0.468
5754		3.00			-	21,293	0.489	40,850	0.938
5755	-	4.00	-		-	23,346	0.536	63,170	1.450
5756		5.00			-	25,482	0.585	87,584	2.011
5757		6.00	1		-	27,711	0.636	114,180	2.621
5758	-	7.00	-		-	30,034	0.689	143,053	3.284
5759		8.00			-	32,451	0.745	174,295	4.001
5760		9.00			-	37,565	0.862	209,303	4.805
					-				
			-		-				
			-		-				
	-		-		-				
			-	-	-				
	-			-	-				
	-		-	_	-				
				-					
			-		-				
			-						
	-				-				
	-		-		-				
			-						
	-		-						
	-		-		-				
			-		-			ļ	
			-					<u> </u>	
			-						
					-			-	
			-		-		-	-	-
			-		-				-
			-		-				
			-		-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
	-		-		-				
					-				
					-				
			-		-				
			-		-				
			-		-				
	-				-				
					-				
			-		-				
					-				
					-				
			-	-	-				
					-			<u> </u>	
			-	-	-				
	-		-		-				
	-		1 1		-			1	
			-		-				
	-		-		-				
			-		-			†	
	-				-			1	
			-		-		-	 	-
	-		-		-			1	
			-		-				
					-				
			-		-		-	 	-
			-						
			-		-		-	 	-
					-				-
	-		-		-				
			-						
					-			1	
					-		l	 	l
	-								
	-		-		-				
			1 1 1 1	-	-				

Copy of 100.013 MDDP-UD-Det 3.07 Pond D1, Basin 5/22/2017, 6:28 AM

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin D1, Pond "D1"

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.74	0.360	Orifice Plate
Zone 2 (EURV)	3.27	0.708	Rectangular Orifice
one 3 (100-year)	4.61	0.714	Weir&Pipe (Restrict)
		1.781	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area : N/A Underdrain Orifice Centroid :

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.75	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	7.00	inches
Orifice Plate: Orifice Area per Row =	2.09	sq. inches (diameter = 1-5/8 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	1.451E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.60	1.20					
Orifice Area (sq. inches)	2.09	2.09	2.09					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	1.74	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.27	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	7.51		inches

Calculated Parameters for Vertical Orifice					
Zone 2 Rectangular Not Selected					
Vertical Orifice Area =	0.10	N/A	ft ²		
Vertical Orifice Centroid =	0.08	N/A	feet		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	6.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	6.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

alculated Parameters for Overflow Weir			
Zone 3 Weir	Not Selected	1	
4.50	N/A	feet	
6.08	N/A	feet	
16.89	N/A	should be >	
17.03	N/A	ft ²	
8.52	N/A	ft ²	
	Zone 3 Weir 4.50 6.08 16.89 17.03	Zone 3 Weir Not Selected 4.50 N/A 6.08 N/A 16.89 N/A 17.03 N/A	

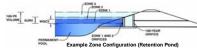
feet radians

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

out: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				Calculated Parameter	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected		
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0	ft) Outlet Orifice Area =	1.01	N/A	ft²	
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.48	N/A	fee	
Restrictor Plate Height Above Pipe Invert =	10.00		inches Half	-Central Angle of Restrictor Plate on Pipe =	1.68	N/A	rac	

oser input. Linergency spinway (Nectangular of Trapezoidal)						
Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)				
Spillway Crest Length =	25.00	feet				
Spillway End Slopes =	4.00	H:V				
Freeboard above Max Water Surface =		feet				

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.90	feet
Stage at Top of Freeboard =	9.90	feet
sin Area at Top of Freeboard =	0.86	acres


Ba

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.360	1.068	0.993	1.378	1.698	2.167	2.541	3.003	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.360	1.068	0.993	1.379	1.700	2.170	2.543	3.006	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	1.86	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	3.1	8.3	18.6	24.6	31.6	0.0
Peak Inflow Q (cfs) =	8.8	25.8	24.0	33.2	40.8	51.9	60.7	71.6	#N/A
Peak Outflow Q (cfs) =	0.2	0.9	0.9	1.6	5.2	9.7	10.3	10.9	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.6	0.5	0.4	0.3	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.2	0.5	0.5	0.6	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	37	46	46	47	46	44	43	41	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	54	54	53	52	52	#N/A
Maximum Ponding Depth (ft) =	1.68	3.10	2.96	3.66	4.01	4.47	4.94	5.54	#N/A
Area at Maximum Ponding Depth (acres) =	0.38	0.49	0.49	0.52	0.54	0.56	0.58	0.61	#N/A
Maximum Volume Stored (acre-ft) =	0.337	0.987	0.913	1.265	1.456	1.707	1.970	2.334	#N/A

UD-Detention, Version 3.07 (February 2017)

Basin ID: Pond D2 - Lorson Blvd at East Tributary of JC

Required Volume Calculation

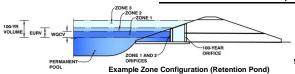
uneu voiume carculation		
Selected BMP Type =	EDB	
Watershed Area =	72.00	acres
Watershed Length =	2,200	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	64.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours

Location for 1-hr Rainfall Depths =	Denver - Capit	tol Building
Water Quality Capture Volume (WQCV) =	1.502	acre-feet
Excess Urban Runoff Volume (EURV) =	4.446	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	4.132	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	5.752	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	7.103	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	9.102	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	10.687	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	12.650	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	17.372	acre-feet
Approximate 2-yr Detention Volume =	3.877	acre-feet
Approximate 5-yr Detention Volume =	5.418	acre-feet
Approximate 10-yr Detention Volume =	6.193	acre-feet
Approximate 25-yr Detention Volume =	6.612	acre-feet
Approximate 50-yr Detention Volume =	6.808	acre-feet
Approximate 100-yr Detention Volume =	7.458	acre-feet
		•

Stage-Storage Calculation

tage-Storage Calculation		
Zone 1 Volume (WQCV) =	1.502	acre-
Zone 2 Volume (EURV - Zone 1) =	2.944	acre-
Zone 3 Volume (100-year - Zones 1 & 2) =	3.012	acre-
Total Detention Basin Volume =	7.458	acre-
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{sv}) =	user	ft^2
Surcharge Volume Length (L _{SV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet


Depth Increment =	0.2	ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool		0.00				1,068	0.025	(11 3)	(ac-it)
5696.33		0.33	-			15,000	0.344	2,503	0.057
5697		1.00	-			48,988	1.125	23,599	0.542
5698		2.00	_			72,821	1.672	84,264	1.934
5699	-	3.00				76,610	1.759	159,706	3.666
5700		4.00	-		-	80,493	1.848	238,258	5.470
5701		5.00	-			84,486	1.940	320,747	7.363
5702	-	6.00	-		-	88,582	2.034	407,281	9.350
5703		7.00	-			92,768	2.130	497,956	11.432
5704		8.00	-		-	97,074	2.229	592,877	13.611
5705		9.00	1			102,033	2.342	692,431	15.896
5706		10.00	-		-	106,000	2.433	796,447	18.284
			-						
	-		-						
	-		-						
			-	-	-				
			-	-	-				
	-		-		-				
			_		-				
	-		-		-				
	-		-		-				
			-		-				
	-		-		-				
	-		-						
	-		-		-				
	-		-						
			-						
			-						
			-						
			-					-	
			-		-				
			-		-				
	-		-		-				
			_		-				
	-								
			-		-				
			-						
			-		-				
			-						
			-		-				
			1						
			-		-				
			-						
			-						
	-		-						
	-		-						
			-						
			-	-				-	
			-		-				
	-		-		-		-		
			-		-				
			-						
			-		-				
			-		-				
			-						
			-		-				
			-		-				
			-		-				
			-						
			-		-				
			-						
				=	-				
			-						
			-						
			-		-				
								-	
				-	-				
			-	-	-				
			-		-				
			-						
			-		-				
			-						
			-		-				
			-		-				
			-						

pond D2, Basin 5/23/2017, 7:49 AM

UD-Detention, Version 3.07 (February 2017)

Project: Lorson Ranch East MDDP

Basin ID: Pond D2 - Lorson Blvd at East Tributary of JCC

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.72	1.502	Orifice Plate
Zone 2 (EURV)	3.44	2.944	Rectangular Orifice
one 3 (100-year)	5.05	3.012	Weir&Pipe (Restrict)
•		7.458	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Un	iderdraii
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

6.215E-02

N/A

N/A

N/A

feet

feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row Depth at top of Zone using Orifice Plate : 1.72 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid 6.70 inches sq. inches (use rectangular openings) Elliptical Slot Area Orifice Plate: Orifice Area per Row = 8.95

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.60	1.20					
Orifice Area (sq. inches)	8.95	8.95	8.95					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	(rton 10 (optional)	rton in (optional)	rton 12 (optional)	rton io (optional)	rtow i i (optional)	rton io (optional)	rton 10 (optional)
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

oran inputs or more (entreme or more gener)						
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected	ı
Invert of Vertical Orifice =	1.72	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area =	0.51	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.44	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =	0.25	N/A	feet
Vertical Orifice Height =	6.00	N/A	inches			
Vertical Orifice Width =	12.22		inches			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir

	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin bottom at Stage = 0 ft)	Height of Grate Upper Edge, H_t =	3.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	Over Flow Weir Slope Length =	14.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)	Grate Open Area / 100-yr Orifice Area =	3.12	N/A	should be ≥ 4
Horiz. Length of Weir Sides =	14.00	N/A	feet	Overflow Grate Open Area w/o Debris =	39.20	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	Overflow Grate Open Area w/ Debris =	19.60	N/A	ft ²
Debris Clogging % =	50%	N/A	l %	•		-	•

User Input: Outlet Pi

3.00

Freeboard above Max Water Surface

put: Outlet Pipe w/ Flow Restriction Plate (Ci	Calculated Parameter	's for Outlet Pipe W/ I	-low Restriction Plat	e			
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	12.57	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	Outlet Orifice Centroid =	2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	60.00		inches Half-Central Angle of	Restrictor Plate on Pipe =	3.14	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= feet 6.00 1.64 Stage at Top of Freeboard Spillway Crest Length 30.00 feet 10 64 feet Spillway End Slopes 4.00 H·V Basin Area at Top of Freeboard 2.43

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	3.14
Calculated Runoff Volume (acre-ft) =	1.502	4.446	4.132	5.752	7.103	9.102	10.687	12.650	17.372
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.503	4.450	4.137	5.758	7.109	9.104	10.696	12.654	17.382
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.14	0.38	0.86	1.14	1.48	2.22
Predevelopment Peak Q (cfs) =	0.0	0.0	1.2	9.9	27.0	62.1	81.9	106.3	160.0
Peak Inflow Q (cfs) =	27.6	80.5	75.0	103.6	127.2	161.8	189.2	222.5	303.4
Peak Outflow Q (cfs) =	0.9	4.1	3.9	12.7	33.6	64.7	89.1	102.8	125.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.3	1.2	1.0	1.1	1.0	0.8
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.7	1.5	2.1	2.5	2.9
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	47	46	46	45	42	41	39	36
Time to Drain 99% of Inflow Volume (hours) =	40	52	52	53	53	51	50	49	47
Maximum Ponding Depth (ft) =	1.65	3.19	3.03	3.72	4.01	4.34	4.55	4.89	6.10
Area at Maximum Ponding Depth (acres) =	1.47	1.78	1.76	1.82	1.85	1.88	1.90	1.93	2.04
Maximum Volume Stored (acre-ft) =	1.385	4.002	3.719	4.938	5.488	6.084	6.481	7.131	9.533

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

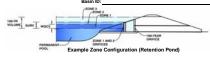
SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4 47	0:00:00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
4.47 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:13:25	1.20	3.32	3.11	4.16	4.96	6.05	6.86	7.77	9.72
1.120	0:17:53	3.26	9.26	8.65	11.74	14.21	17.69	20.35	23.49	30.62
	0:22:21	8.38	23.78	22.21	30.15	36.48	45.43	52.28	60.40	78.83
	0:26:49	23.00	65.18	60.88	82.59	99.85	124.22	142.83	164.84	214.65
	0:31:17	27.65	80.54	74.98	103.62	127.25	161.82	189.15	222.46	301.49
	0:35:46	26.45	77.58	72.14	100.29	123.79	158.57	186.39	220.63	303.35
	0:40:14	24.08	70.69	65.70	91.58	113.26	145.48	171.32	203.24	280.77
	0:44:42	21.59	63.69	59.18	82.55	102.14	131.26	154.63	183.50	253.63
	0:49:10	18.74	55.74	51.77	72.38	89.70	115.50	136.24	161.89	224.33
	0:53:38	16.28	48.68	45.19	63.28	78.48	101.12	119.33	141.85	196.67
	0:58:07	14.77	43.92	40.80	56.98	70.54	90.68	106.84	126.77	175.14
	1:02:35	12.28	36.84	34.19	47.94	59.53	76.84	90.79	108.07	150.22
	1:07:03	10.11	30.54	28.33	39.79	49.46	63.91	75.56	90.00	125.27
	1:11:31	7.89	24.22	22.45	31.69	39.52	51.26	60.76	72.57	101.55
	1:15:59	5.98					39.99			79.78
	1:20:28		18.73	17.34	24.59	30.74		47.48	56.81	
		4.37	14.00	12.95	18.47	23.17	30.26	36.00	43.19	61.04
	1:24:56	3.33	10.49	9.71	13.78	17.22	22.40	26.58	31.87	45.29
	1:29:24	2.72	8.43	7.81	11.02	13.73	17.79	21.05	25.15	35.40
	1:33:52	2.30	7.09	6.57	9.26	11.53	14.91	17.63	21.02	29.42
	1:38:20	2.01	6.17	5.72	8.04	9.99	12.90	15.23	18.14	25.30
	1:42:49	1.81	5.51	5.11	7.18	8.91	11.49	13.56	16.13	22.45
	1:47:17	1.66	5.05	4.68	6.57	8.15	10.49	12.37	14.70	20.40
	1:51:45	1.22	3.77	3.49	4.94	6.17	8.03	9.54	11.43	16.13
	1:56:13	0.89	2.73	2.53	3.57	4.46	5.79	6.87	8.23	11.64
	2:00:41	0.66	2.02	1.87	2.64	3.30	4.30	5.10	6.11	8.61
	2:05:10	0.49	1.50	1.39	1.97	2.46	3.19	3.79	4.53	6.39
	2:09:38	0.35	1.10	1.02	1.44	1.81	2.36	2.80	3.36	4.74
	2:14:06	0.25	0.79	0.73	1.04	1.31	1.70	2.03	2.43	3.44
	2:18:34	0.18	0.57	0.53	0.75	0.95	1.23	1.47	1.76	2.49
	2:23:02	0.12	0.40	0.37	0.53	0.67	0.88	1.05	1.26	1.79
	2:27:31	0.08	0.26	0.24	0.35	0.44	0.58	0.69	0.84	1.21
	2:31:59	0.04	0.15	0.14	0.20	0.26	0.34	0.42	0.51	0.74
	2:36:27	0.02	0.07	0.06	0.10	0.12	0.17	0.21	0.26	0.39
	2:40:55	0.00	0.02	0.02	0.03	0.04	0.05	0.07	0.09	0.15
	2:45:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	2:49:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:54:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:54:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:16							0.00		
		0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	3:07:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:12:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:16:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:21:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:34:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:39:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:43:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:55 4:01:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:01:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:14:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:19:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:23:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:28:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:59:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:26 5:12:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:17:22 5:21:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.41:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.


The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The user should graphically co						rm it captures all	key transition points.
Stage - Storage	Stage	Area	Area	Volume	Volume	Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable).
							where applicable).
							•
							,
							•
							2
							•
						İ	
							•
			 	 			
							,
							·
							,
							,
							,
							•
							•
							•
							•
							,
							,
							•
							·
						1	}
						1	
						1	
						-	
						1	
						1	
						1	•
							•
							•
							,
						-	
		-					
			 	 		 	

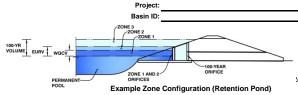
UD-Detention, Version 3.07 (February 2017)

Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013

Basin E1 - E5, Pond "E1"

illed volulle Calculation		
Selected BMP Type =	EDB	
Watershed Area =	56.50	acres
Watershed Length =	1,600	ft
Watershed Slope =	0.038	ft/ft
Watershed Imperviousness =	61.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	6.0%	percent
Percentage Hydrologic Soil Groups C/D =	94.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

Water Quality Capture Volume (WQCV) =	1.128	acre-feet
Excess Urban Runoff Volume (EURV) =	3.339	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	3.067	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	4.293	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	5.354	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	6.949	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	8.194	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	9.743	acre-feet
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	2.877	acre-feet
Approximate 5-yr Detention Volume =	4.044	acre-feet
Approximate 10-yr Detention Volume =	4.650	acre-feet
Approximate 25-yr Detention Volume =	4.978	acre-feet
Approximate 50-yr Detention Volume =	5.136	acre-feet
Approximate 100-yr Detention Volume =	5.664	acre-feet


Zone 1 Volume (WQCV) =	1.128	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.211	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.325	acre-feet
Total Detention Basin Volume =	5.664	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{SV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

Depth Increment =	0.2	ft							
		Optional		1447 841		Optional			16.1
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool		0.00				200	0.005	(11 0)	(uc it)
5728.33			_					444	0.003
		0.33				500	0.011	111	
5729		1.00	-		-	2,550	0.059	1,112	0.026
5730		2.00			-	25,900	0.595	15,104	0.347
5731		3.00				31,341	0.719	43,982	1.010
5732		4.00				33,851	0.777	76,578	1.758
5733		5.00				36,442	0.837	111,725	2.565
5734		6.00	-		-	39,105	0.898	149,498	3.432
5735		7.00	-		-	41,838	0.960	189,970	4.361
5736		8.00			_	44,644	1.025	233,211	5.354
			-		-				
5737		9.00				47,527	1.091	279,296	6.412
5738		10.00				50,487	1.159	328,303	7.537
			-		-				
			-		-				
					-				
				-					
				-					
				-				1	
			-	-	-				
					_				
			-	-	-			-	
					-				
	-		-						
	-		-		-				
	-				-			1	
			-						
			-		-				
		-			_			+	
			-	-	-			-	
					-				
			-		-				
			-		-				
			-		-				
			-		-			1	
			-		-				
			-						
			-		-				
			-		-				
								-	
			-		-			-	
			-						
					-				
					-				
					-				
			-		-				
					-				
			-		-				
			-						
								-	
					-				
					-				
			-		-			-	
	-		-	-	-				
					-			 	
	-		-		-				
				-	-				
			-		-			-	
	-			-	-				
				-	-			+	
					-				
					-			-	
				-	-			-	
					-				
			-	-	-			-	
								-	
	-			-	-				
			-		-				
			-	-					
	-		-		-			-	
					-				
				-	-				
			-		-			 	
			-		-				

5/22/2017, 7:39 AM Copy of 100.013 MDDP-UD-Det 3.07 Pond E1, Basin

UD-Detention, Version 3.07 (February 2017) Lorson Ranch East, MDDP Prelim. Full Spectrum Design, #100.013 Basin E1 - E5, Pond "E1"

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.17	1.128	Orifice Plate
Zone 2 (EURV)	5.90	2.211	Rectangular Orifice
one 3 (100-year)	8.30	2.325	Weir&Pipe (Restrict)
		5 664	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area = N/A Underdrain Orifice Centroid =

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	3.20	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	13.00	inches
Orifice Plate: Orifice Area per Row =	3.90	sq. inches (use rectangular openings)

Calculated Parameters for Plat						
WQ Orifice Area per Row =	2.708E-02	ft ²				
Elliptical Half-Width =	N/A	feet				
Elliptical Slot Centroid =	N/A	feet				
Elliptical Slot Area =	N/A	ft ²				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.10	2.20					
Orifice Area (sq. inches)	3.90	3.90	3.90					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

		_	
	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	3.17	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	5.90	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	6.00	N/A	inches
Vertical Orifice Width =	8.56		inches

Calculated Farameters for Vertical Office						
	Zone 2 Rectangular	Not Selected				
Vertical Orifice Area =	0.36	N/A	ft²			
Vertical Orifice Centroid =	0.25	N/A	fe			

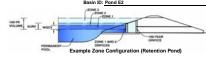
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

mpati overnou ven (proposi) and cite (riat or stoped)							
	Zone 3 Weir	Not Selected					
Overflow Weir Front Edge Height, Ho =	6.00	N/A	ft (relative to basin bottom at Stage = 0 ft)				
Overflow Weir Front Edge Length =	4.00	N/A	feet				
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)				
Horiz. Length of Weir Sides =	10.00	N/A	feet				
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area				
Debris Clogging % =	50%	N/A	%				
Debris Clogging % =	50%	N/A	%				

Calculated Parameters for Overflow Weir						
	Zone 3 Weir	Not Selected				
Height of Grate Upper Edge, H_t =	6.00	N/A	feet			
Over Flow Weir Slope Length =	10.00	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	11.08	N/A	should be >			
Overflow Grate Open Area w/o Debris =	28.00	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	14.00	N/A	ft ²			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

at outlet i pe ny from heat lettor i late (en auta o i mee) heat lettor i late, or heat light a fine)					5 . o. o a a.c pc , .		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.53	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.83	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00	•	inches Half-Central Angle o	f Restrictor Plate on Pipe =	2.09	N/A	radians


ser input: Emergency spinway (nectangular or Trapezoldar)							
Spillway Invert Stage=	10.00	ft (relative to basin bottom at Stage = 0 ft)					
Spillway Crest Length =	75.00	feet					
Spillway End Slopes =	4.00	H:V					
Freeboard above Max Water Surface =		feet					
		=					

Calcula	Calculated Parameters for Spillwa					
Spillway Design Flow Depth=	0.93	feet				
Stage at Top of Freeboard =	10.93	feet				
asin Area at Top of Freeboard =	1.16	acres				

Routed	Hydrograph	Results

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	1.128	3.339	3.067	4.293	5.354	6.949	8.194	9.743	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.126	3.334	3.063	4.287	5.344	6.933	8.178	9.728	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.17	0.47	1.06	1.40	1.81	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	1.2	9.5	26.3	59.9	79.2	102.1	0.0
Peak Inflow Q (cfs) =	25.0	72.9	67.0	93.3	115.8	149.2	175.2	207.3	#N/A
Peak Outflow Q (cfs) =	0.5	3.3	3.1	12.7	29.5	32.0	34.0	36.3	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.3	1.1	0.5	0.4	0.4	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.9	1.0	1.0	1.1	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	38	48	47	48	47	45	44	42	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	53	52	52	51	51	#N/A
Maximum Ponding Depth (ft) =	3.08	5.55	5.26	6.28	6.71	7.74	8.62	9.73	#N/A
Area at Maximum Ponding Depth (acres) =	0.72	0.87	0.85	0.91	0.94	1.01	1.07	1.14	#N/A
Maximum Volume Stored (acre-ft) =	1.060	3.026	2.776	3.677	4.076	5.089	6.002	7.226	#N/A

UD-Detention, Version 3.07 (February 2017)

Project: Lorson Ranch East MDDP

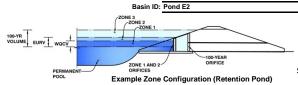
Required Volume Calculation

uireu voiuille Galculation		
Selected BMP Type =	EDB	
Watershed Area =	62.80	acres
Watershed Length =	2,000	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	61.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours

Location for 1-hr Rainfall Depths =	Denver - Capit	tol Building
Water Quality Capture Volume (WQCV) =	1.254	acre-feet
Excess Urban Runoff Volume (EURV) =	3.682	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	3.414	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	4.795	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	5.964	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	7.736	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	9.126	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	10.851	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	14.969	acre-feet
Approximate 2-yr Detention Volume =	3.202	acre-feet
Approximate 5-yr Detention Volume =	4.517	acre-feet
Approximate 10-yr Detention Volume =	5.157	acre-feet
Approximate 25-yr Detention Volume =	5.519	acre-feet
Approximate 50-yr Detention Volume =	5.689	acre-feet
Approximate 100-yr Detention Volume =	6.280	acre-feet

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	1.254	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.429	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.597	acre-feet
Total Detention Basin Volume =	6.280	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
		•


Initial Surcharge Area (A _{SV}) =	user	ft^2
Surcharge Volume Length (L _{isv}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet
		-

Depth Increment =	0.2	ft				Ontinent			
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft) 	(ft)	(ft^2)	Area (ft^2) 100	(acre) 0.002	(ft^3)	(ac-ft)
5694.33	-	0.33				15,000	0.344	2,469	0.057
5695	-	1.00			-	57,500	1.320	26,121	0.600
5696		2.00				60,400	1.387	85,039	1.952
5697		3.00			-	63,400	1.455	147,543	3.387
5698		4.00	-		-	66,500	1.527	212,493	4.878
5699 5700		5.00 6.00	-		-	69,700 72,900	1.600	280,593 351,893	6.442 8.078
5701		7.00		-	-	76,300	1.752	426,493	9.791
5702		8.00			-	79,600	1.827	504,443	11.580
					-				
					-				
			-		-				
				-	-				
				-	-				
				-					
					-				
					-				
			-		-				
			-	-	-				
					-				
	-				-				
					-				
					-			<u> </u>	
			-		-			<u> </u>	
			-	-	-				
					-				
					-				
			-		-				
				-	-				
	-		-		-				
					-				
	-		-		-				
			-		-				
					-				
			-		-				
	-		-		-				
					-				
	-		-		-				
					-				
			-		-				
				-	-				
	-		-		-				
	**								
			=					<u> </u>	
			-	-	-				
			-	-	-				
			-		-				
				-	-				
					-				
	_=		-	H =	-			\vdash	
	-		-	-	-				
			-	-	-			<u> </u>	
					-				
			-	-	-				
			-		-				
	**			-	-				
			=		-				
			-		-				
	**		-	-	-				
			-	-	-				
			-	-	-		_		
	-		-	=	-				
					-				
				-	-				
					-				
					-				
	-		-		-				
					-				
					-				
			-	-	-				
			-					1	

Pond E2, Basin 522/2017, 8:07 AM

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.48	1.254	Orifice Plate
Zone 2 (EURV)	3.21	2.429	Rectangular Orifice
one 3 (100-year)	4.90	2.597	Weir&Pipe (Restrict)
		6.290	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

N/A ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	aerarai
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.48	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	5.90	inches
Orifice Plate: Orifice Area per Row =	7.67	sq. inches (use rectangular openings)

Calculated Parameters for Plate						
WQ Orifice Area per Row =	5.326E-02	ft ²				
Elliptical Half-Width =	N/A	feet				
Elliptical Slot Centroid =	N/A	feet				
Elliptical Slot Area =	N/A	ft ²				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.50	1.00					
Orifice Area (sq. inches)	7.67	7.67	7.67					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	1.48	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.21	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	6.00	N/A	inches
Vertical Orifice Width =	11.16		inches

Calculated	Parameters for Vert	ical Orifice	
	Zone 2 Rectangular	Not Selected	
Vertical Orifice Area =	0.47	N/A	ft²
Vertical Orifice Centroid =	0.25	N/A	fee

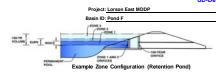
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	16.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated	Parameters for Ove	rflow Weir	
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H_t =	3.00	N/A	feet
Over Flow Weir Slope Length =	16.00	N/A	feet
Grate Open Area / 100-yr Orifice Area =	3.57	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	44.80	N/A	ft ²
Overflow Grate Open Area w/ Debris =	22.40	N/A	ft ²
•			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

put: Outlet Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restri	ctor Plate, or Rectan	gular Orifice)	Calculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla	te
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	12.57	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	Outlet Orifice Centroid =	2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	60.00		inches Half-Cei	ntral Angle of Restrictor Plate on Pipe =	3.14	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	50.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

ted Parameters for S	pillway
1.15	feet
11.15	feet
1.83	acres
	11.15

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	3.14
Calculated Runoff Volume (acre-ft) =	1.254	3.682	3.414	4.795	5.964	7.736	9.126	10.851	14.969
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.254	3.685	3.416	4.798	5.967	7.737	9.132	10.853	14.977
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.15	0.40	0.91	1.20	1.55	2.33
Predevelopment Peak Q (cfs) =	0.0	0.0	1.1	9.2	25.0	57.0	75.2	97.4	146.4
Peak Inflow Q (cfs) =	24.1	69.9	64.9	90.5	112.1	144.3	169.5	200.4	273.1
Peak Outflow Q (cfs) =	0.7	3.7	3.5	20.0	40.6	70.7	86.8	95.8	118.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	2.2	1.6	1.2	1.2	1.0	0.8
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.8	1.5	1.8	2.0	2.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	46	46	45	43	41	39	38	34
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	52	51	50	49	47	45
Maximum Ponding Depth (ft) =	1.42	2.95	2.78	3.32	3.56	3.84	4.06	4.50	5.80
Area at Maximum Ponding Depth (acres) =	1.35	1.45	1.44	1.48	1.50	1.51	1.53	1.56	1.66
Maximum Volume Stored (acre-ft) =	1.160	3.300	3.069	3.857	4.213	4.620	4.955	5.651	7.745

UD-Detention, Version 3.07 (February 2017)

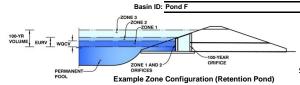
Required Volume Calculation

uired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	33.00	acres
Watershed Length =	1,550	ft
Watershed Slope =	0.026	ft/ft
Watershed Imperviousness =	65.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capi	tol Building
Water Quality Capture Volume (WQCV) =	0.699	acre-feet
Excess Urban Runoff Volume (EURV) =	2.072	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	1.928	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	2.675	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	3.296	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	4.207	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	4.933	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	5.830	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	7.994	acre-feet
Approximate 2-yr Detention Volume =	1.808	acre-feet
Approximate 5-yr Detention Volume =	2.520	acre-feet
Approximate 10-yr Detention Volume =	2.881	acre-feet
Approximate 25-yr Detention Volume =	3.074	acre-feet
Approximate 50-yr Detention Volume =	3.164	acre-feet
Approximate 100-yr Detention Volume =	3.458	acre-feet

Stane-Storage Calculation

Zone 1 Volume (WQCV) =	0.699	acre-fee
Zone 2 Volume (EURV - Zone 1) =	1.373	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	1.386	acre-fee
Total Detention Basin Volume =	3.458	acre-fee
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fee

		ft							
Depth Increment =		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft'2)	(acre)	(ft'3)	(ac-ft)
Top of Micropool	-	0.00	-	-	-	50	0.001		
	-	1.00	-	-	-	5,000	0.115	2,475	0.057
	-	2.00	-	-	-	16,000	0.367	12,865	0.295
		3.00	-		-	17,200	0.395	29,625	0.680
	-	4.00	-	-	-	18,400	0.422	47,425	1.089
		4.00							
	-	5.00				19,600	0.450	66,425	1.525
	-	6.00	-	-	-	20,800	0.478	86,625	1.989
		7.00		-	-	22,000	0.505	108,025	2.480
	-	8.00	-			23,400	0.537	130,725	3.001
	_	9.00	-			24,600	0.565	154,725	3.552
	_	10.00	-	-	-	25,800	0.592	179,925	4.131
		10.00				23,000	0.382	170,020	4.131
			-						
	-								
	-		-	-	-				
	-		-						
				-	-				
	-		-						
	_		_	-	-				
	-		-	-	-				
	-		-						
	-		-						
	-		-	-	-				
	-		-	-	-				1
	-		-	-	-				
	-		-	-	-			l	
	-		-	-					l
					-			ļ	l
	-		-		-				-
	-		-		-				
	-		-	-	-				
	1		1	-	-				
	-		-		-				
	_		_		-				
	_		_	-	-				
	-		-	-	_				
	-		-		-				
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-		-	-	-				
	_		_	-	-				
	-		-	-	_				
	-		-		-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-		-				
	_		_		-				
	-		-	-	-				
	-		-		-				—
	-		-		-				
	-		-	-	-				
	-		-	-	-				
	-			-	-				-
	-		-	-	=			l	
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-			-	
	-		-		-				
	-		-	-	-			-	
	-		-	-	-			-	
	1			-	-				
	-		-	-	-				
	-		-	-	-			ļ	l
	-		-	-	-				
				-	-				
	-		-	-	-				
	-		-		-			-	-
	-		-	-	-			-	
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-		-		-			-	-
	-		-	-	-			-	
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-		-	-	-				-
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-		-	-	-				-
				-	-				
					-				

pord f, Basin 522/2017, 9:42 AM

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.05	0.699	Orifice Plate
Zone 2 (EURV)	6.18	1.373	Rectangular Orifice
one 3 (100-year)	8.84	1.386	Weir&Pipe (Restrict)
•		3 458	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) inches Underdrain Orifice Diameter = N/A

Calculate	ed Parameters for Ur	aerarai
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	3.05	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	12.20	inches
Orifice Plate: Orifice Area per Row =	2.81	sq. inches (diameter = 1-7/8 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	1.951E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.02	2.03					
Orifice Area (sq. inches)	2.81	2.81	2.81					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	3.05	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	6.18	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	2.22		inches

Calculated Parameters for Vertical Orifice					
	Zone 2 Rectangular	Not Selected			
Vertical Orifice Area =	0.03	N/A	ft ²		
Vertical Orifice Centroid =	0.08	N/A	feet		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	6.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	12.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

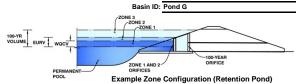
Calculated			
Height of Grate Upper Edge, H_t =	8.50	N/A	feet
Over Flow Weir Slope Length =	12.17	N/A	feet
Grate Open Area / 100-yr Orifice Area =	11.29	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	34.06	N/A	ft ²
Overflow Grate Open Area w/ Debris =	17.03	N/A	ft ²
· · · · · · · · · · · · · · · · · · ·			-

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Zone 3 Restrictor Not Selected

Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage	= 0 ft)
Outlet Pipe Diameter =	24.00	N/A	inches	
Restrictor Plate Height Above Pipe Invert =	22.00		inches H	lalf-Ce
User Input: Emergency Spillway (Rectang	zular or Trapezoidal)			

	Calculated Parameters	s for Outlet Pipe w/	Flow Restriction Pla	ite
		Zone 3 Restrictor	Not Selected	
t)	Outlet Orifice Area =	3.02	N/A	ft ²
	Outlet Orifice Centroid =	0.96	N/A	feet
Central Angl	e of Restrictor Plate on Pipe =	2.56	N/A	radians


oser input. Linergency spinway (nectang	guiai oi Trapezoiuai)	
Spillway Invert Stage=		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =		feet
Spillway End Slopes =		H:V
Freeboard above Max Water Surface =		feet
		='

ed Parameters for S	pillway
	feet
	feet
	acres

Routed Hydrograph Results									_
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	3.14
Calculated Runoff Volume (acre-ft) =	0.699	2.072	1.928	2.675	3.296	4.207	4.933	5.830	7.994
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.699	2.073	1.927	2.675	3.296	4.208	4.934	5.824	7.991
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.13	0.37	0.84	1.11	1.45	2.18
Predevelopment Peak Q (cfs) =	0.0	0.0	0.5	4.4	12.1	27.8	36.7	47.7	71.8
Peak Inflow Q (cfs) =	12.7	37.3	34.7	48.0	58.9	74.9	87.5	102.9	140.1
Peak Outflow Q (cfs) =	0.4	0.9	0.8	3.5	13.2	29.7	39.0	40.9	43.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	1.1	1.1	1.1	0.9	0.6
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.4	0.8	1.1	1.2	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	56	55	60	58	56	55	53	49
Time to Drain 99% of Inflow Volume (hours) =	40	62	60	66	65	64	63	62	60
Maximum Ponding Depth (ft) =	2.92	5.94	5.64	6.90	7.39	7.85	8.16	8.89	10.00
Area at Maximum Ponding Depth (acres) =	0.39	0.48	0.47	0.50	0.52	0.53	0.54	0.56	0.59
Maximum Volume Stored (acre-ft) =	0.649	1.955	1.814	2.425	2.679	2.921	3.087	3.484	4.131

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.19	0.394	Orifice Plate
Zone 2 (EURV)	5.17	0.758	Rectangular Orifice
one 3 (100-year)	8.10	0.824	Weir&Pipe (Restrict)
		1 076	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	iderdrair
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.19	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	8.80	inches
Orifice Plate: Orifice Area per Row =	2.24	sq. inches (diameter = 1-11/16 inches)

Calculated Parameters for Plate				
WQ Orifice Area per Row =	1.556E-02	ft ²		
Elliptical Half-Width =	N/A	feet		
Elliptical Slot Centroid =	N/A	feet		
Elliptical Slot Area =	N/A	ft ²		

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.73	1.46					
Orifice Area (sq. inches)	2.24	2.24	2.24					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.19	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	5.17	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	4.00	N/A	inches
Vertical Orifice Width =	2.34		inches

Calculated Parameters for Vertical Orifice					
	Zone 2 Rectangular	Not Selected			
Vertical Orifice Area =	0.07	N/A	ft ²		
Vertical Orifice Centroid =	0.17	N/A	fee		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.20	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	5.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	10.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir				
Height of Grate Upper Edge, H_t =	8.20	N/A	feet	
Over Flow Weir Slope Length =	10.20	N/A	feet	
Grate Open Area / 100-yr Orifice Area =	12.00	N/A	should be ≥ 4	
Overflow Grate Open Area w/o Debris =	28.55	N/A	ft ²	
Overflow Grate Open Area w/ Debris =	14.28	N/A	ft ²	
•				

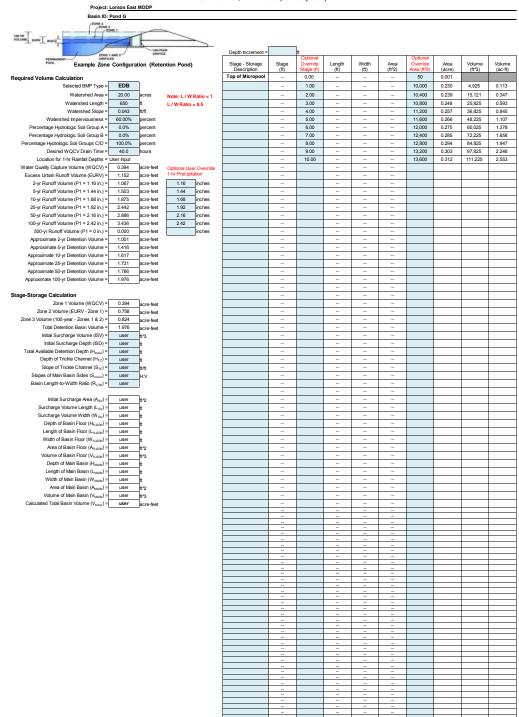
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)
Outlet Pipe Diameter =	24.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	17.00		inches Half-Cen
		="	

	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected				
		Zone 3 Restrictor	Not Selected		
age = 0 ft)	Outlet Orifice Area =	2.38	N/A	ft ²	
	Outlet Orifice Centroid =	0.79	N/A	feet	
Half-Central Angl	e of Restrictor Plate on Pipe =	2.00	N/A	radians	

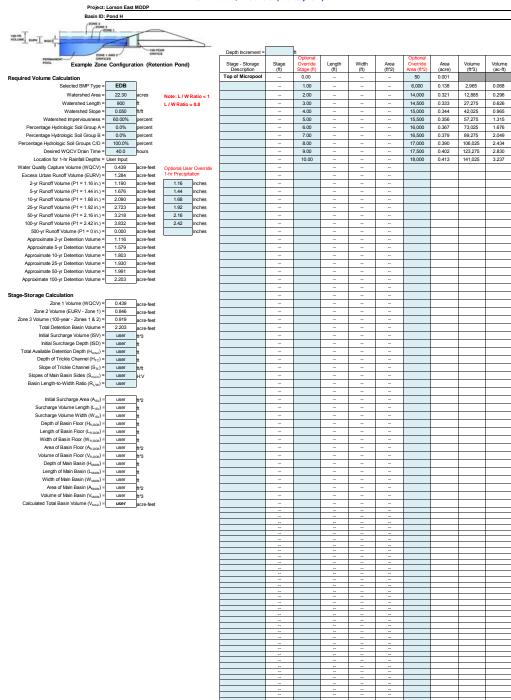
User Input: Emergency Spillway (Rectangular or Trapezoidal)

	Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)
	Spillway Crest Length =	30.00	feet
	Spillway End Slopes =	4.00	H:V
Fr	eeboard above Max Water Surface =	1.00	feet


Calculated Parameters for Spillway ow Depth= 0.98 feet					
0.98	feet				
10.98	feet				
0.31	acres				
	0.98 10.98				

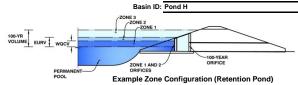
- wacv	Design Storm Return Feriou =
	One-Hour Rainfall Depth (in) =
= 0.394	Calculated Runoff Volume (acre-ft) =
	OPTIONAL Override Runoff Volume (acre-ft) =
= 0.393	Inflow Hydrograph Volume (acre-ft) =

Routed Hydrograph Results


Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.394	1.152	1.067	1.503	1.875	2.442	2.886	3.436	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.393	1.152	1.068	1.505	1.876	2.445	2.889	3.440	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	1.86	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	3.7	9.8	21.9	28.9	37.1	0.0
Peak Inflow Q (cfs) =	11.4	32.9	30.5	42.8	53.2	69.1	81.5	96.8	#N/A
Peak Outflow Q (cfs) =	0.3	1.0	0.9	1.1	7.4	23.7	30.6	32.6	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.3	0.8	1.1	1.1	0.9	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.2	0.8	1.0	1.1	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	38	46	46	48	47	44	42	40	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	52	51	55	55	54	53	51	#N/A
Maximum Ponding Depth (ft) =	2.09	4.89	4.59	6.13	6.87	7.48	7.94	8.87	#N/A
Area at Maximum Ponding Depth (acres) =	0.24	0.27	0.26	0.28	0.28	0.29	0.29	0.30	#N/A
Maximum Volume Stored (acre-ft) =	0.371	1.078	0.999	1.414	1.618	1.796	1.927	2.203	#N/A
!=									

UD-Detention, Version 3.07 (February 2017)

pond g. Basin 5222017, 10:19 AM


UD-Detention, Version 3.07 (February 2017)

pond h, Basin 5/22/2017, 3-17 PM

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.44	0.439	Orifice Plate
Zone 2 (EURV)	4.92	0.846	Rectangular Orifice
one 3 (100-year)	7.41	0.919	Weir&Pipe (Restrict)
•		2.203	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	Calculated Parameters for Undergra					
Underdrain Orifice Area =	N/A	ft ²				
Underdrain Orifice Centroid =	N/A	feet				

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.44	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	9.80	inches
Orifice Plate: Orifice Area per Row =	2.03	sq. inches (diameter = 1-5/8 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	1.410E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.81	1.63					
Orifice Area (sq. inches)	2.03	2.03	2.03					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

oser input: Vertical Orifice (Circ	_		
	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.44	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	4.92	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	2.84		inches

Calculated Parameters for Vertical Orifice							
	Zone 2 Rectangular	Not Selected					
Vertical Orifice Area =	0.04	N/A	ft ²				
Vertical Orifice Centroid =	0.08	N/A	fe				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.50	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	6.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	12.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated	Parameters for Ove		
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H _t =	7.50	N/A	feet
Over Flow Weir Slope Length =	12.17	N/A	feet
Grate Open Area / 100-yr Orifice Area =	12.18	N/A	should be ≥
Overflow Grate Open Area w/o Debris =	34.06	N/A	ft ²
Overflow Grate Open Area w/ Debris =	17.03	N/A	ft ²
-			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	NOL Selected	i
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)
Outlet Pipe Diameter =	24.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	20.00		inches Half-Cen
		='	

	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate						
		Zone 3 Restrictor	Not Selected				
age = 0 ft)	Outlet Orifice Area =	2.80	N/A	ft ²			
	Outlet Orifice Centroid =	0.90	N/A	feet			
Half-Central An	gle of Restrictor Plate on Pipe =	2.30	N/A	radian			

50 Year

100 Year

2.42

3.832

3.835

1.86 41.4

93.2

35.3

500 Year

0.00

0.000

#N/A

0.00

#N/A

#N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Routed Hydrograph Results
Design Storm Return Period =

One-Hour Rainfall Depth (in) =

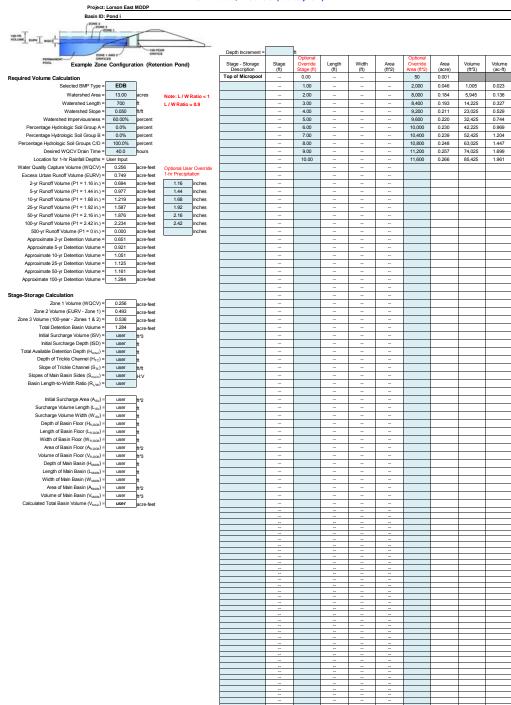
	<u> </u>	_
Spillway Invert Stage		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length :		feet
Spillway End Slopes :		H:V
Freeboard above Max Water Surface		feet

WQCV

EURV

d Parameters for S	pillway
	feet
	feet
	acres
t	

Calculated Runoff Volume (acre-ft) =	0.439	1.284	1.190	1.676	2.090	2.723	3.218	
OPTIONAL Override Runoff Volume (acre-ft) =								
Inflow Hydrograph Volume (acre-ft) =	0.438	1.285	1.190	1.677	2.092	2.725	3.220	***
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	
Predevelopment Peak Q (cfs) =	0.0	0.0	0.5	4.1	10.9	24.4	32.2	
Peak Inflow Q (cfs) =	10.9	31.7	29.4	41.2	51.3	66.5	78.4	
Peak Outflow Q (cfs) =	0.2	0.7	0.7	1.7	9.1	24.5	33.4	
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.8	1.0	1.0	
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outl
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.2	0.7	1.0	
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	


2 Year

Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.8	1.0	1.0	0.9	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.2	0.7	1.0	1.0	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Γime to Drain 97% of Inflow Volume (hours) =	37	52	51	55	54	52	50	48	#N/A
Γime to Drain 99% of Inflow Volume (hours) =	40	58	57	62	62	60	59	58	#N/A
Maximum Ponding Depth (ft) =	2.36	4.73	4.47	5.72	6.23	6.74	7.04	7.78	#N/A
Area at Maximum Ponding Depth (acres) =	0.33	0.35	0.35	0.36	0.37	0.38	0.38	0.39	#N/A
Maximum Volume Stored (acre-ft) =	0.412	1.219	1.128	1.574	1.761	1.948	2.065	2.348	#N/A
•									

5 Year

10 Year

UD-Detention, Version 3.07 (February 2017)

pond i, Basin 5/22/2017, 3:31 PM

UD-Detention, Version 3.07 (February 2017)

Example Zone Configuration (Retention Pond)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.64	0.256	Orifice Plate
Zone 2 (EURV)	5.02	0.493	Rectangular Orifice
one 3 (100-year)	7.34	0.536	Weir&Pipe (Restrict)
•		1 28/	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

N/A ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	iderdrai
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.64	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	10.60	inches
Orifice Plate: Orifice Area per Row =	1.03	sq. inches (diameter = 1-1/8 inches)

Calculated Parameters for Plate					
WQ Orifice Area per Row =	7.153E-03	ft ²			
Elliptical Half-Width =	N/A	feet			
Elliptical Slot Centroid =	N/A	feet			
Elliptical Slot Area =	N/A	ft ²			

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.88	1.76					
Orifice Area (sq. inches)	1.03	1.03	1.03					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.64	N/A	ft (relative to basin bottom at Stage = 0 ft)
pth at top of Zone using Vertical Orifice =	5.02	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	2.00		inches

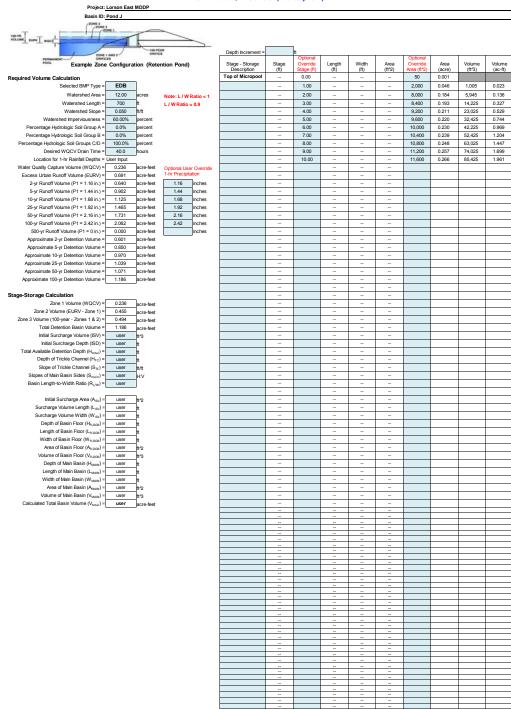
Calculated Parameters for Vertical Orifice						
	Zone 2 Rectangular	Not Selected				
Vertical Orifice Area =	0.03	N/A	ft ²			
Vertical Orifice Centroid =	0.08	N/A	feet			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.60	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	5.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	10.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated			
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H_t =	7.60	N/A	feet
Over Flow Weir Slope Length =	10.20	N/A	feet
Grate Open Area / 100-yr Orifice Area =	17.20	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	28.55	N/A	ft ²
Overflow Grate Open Area w/ Debris =	14.28	N/A	ft ²
			_

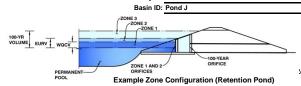
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectan			gular Orifice)	Calculated Parameter	s for Outlet Pipe w/ I	Flow Restriction Plat	e
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.66	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.71	N/A	feet
Restrictor Plate Height Above Pipe Invert =	16.00		inches Half-Central Ang	le of Restrictor Plate on Pipe =	2.46	N/A	radians

er input. Emergency spinway (Rectang	guiai or rrapezoiuai)	
Spillway Invert Stage=		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =		feet
Spillway End Slopes =		H:V
Freeboard above Max Water Surface =		feet
		=

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =		feet
Basin Area at Top of Freeboard =		acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.256	0.749	0.694	0.977	1.219	1.587	1.876	2.234	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.255	0.749	0.693	0.977	1.219	1.588	1.877	2.235	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	1.86	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.3	2.4	6.4	14.2	18.8	24.1	0.0
Peak Inflow Q (cfs) =	6.3	18.4	17.0	23.9	29.7	38.6	45.5	54.1	#N/A
Peak Outflow Q (cfs) =	0.1	0.4	0.4	1.0	5.7	15.1	19.9	21.0	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.4	0.9	1.1	1.1	0.9	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.2	0.5	0.7	0.7	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	37	53	52	57	55	53	52	50	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	59	57	63	62	61	60	59	#N/A
Maximum Ponding Depth (ft) =	2.56	4.85	4.60	5.77	6.21	6.64	6.92	7.60	#N/A
Area at Maximum Ponding Depth (acres) =	0.19	0.22	0.22	0.23	0.23	0.24	0.24	0.24	#N/A
Maximum Volume Stored (acre-ft) =	0.241	0.709	0.657	0.917	1.018	1.116	1.182	1.348	#N/A


UD-Detention, Version 3.07 (February 2017)

pond J. Basin 5/22/2017, 3:37 PM

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.53	0.236	Orifice Plate
Zone 2 (EURV)	4.76	0.455	Rectangular Orifice
one 3 (100-year)	6.93	0.494	Weir&Pipe (Restrict)
		1.100	T-4-I

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	iderdraii
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.64	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	10.60	inches
Orifice Plate: Orifice Area per Row =	0.99	sq. inches (diameter = 1-1/8 inches)

Calculated Parameters for Plate					
WQ Orifice Area per Row =	6.875E-03	ft ²			
Elliptical Half-Width =	N/A	feet			
Elliptical Slot Centroid =	N/A	feet			
Elliptical Slot Area =	N/A	ft ²			

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.88	1.76					
Orifice Area (sq. inches)	0.99	0.99	0.99					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.53	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	4.76	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	2.00		inches

Calculated Parameters for Vertical Orifice						
	Zone 2 Rectangular	Not Selected	1			
Vertical Orifice Area =	0.03	N/A	ft²			
Vertical Orifice Centroid =	0.08	N/A	fe			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.60	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	5.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	10.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

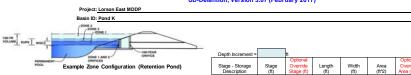
Calculated			
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H_t =	7.60	N/A	feet
Over Flow Weir Slope Length =	10.20	N/A	feet
Grate Open Area / 100-yr Orifice Area =	17.20	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	28.55	N/A	ft ²
Overflow Grate Open Area w/ Debris =	14.28	N/A	ft ²
-			

feet radians

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectang			gular Orifice)	Calculated Parameter	s for Outlet Pipe w/	Flow Restriction Plat	te
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	1
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0	Oft) Outlet Orifice Area =	1.66	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.71	N/A	fee
Restrictor Plate Height Above Pipe Invert =	16.00		inches Hal	f-Central Angle of Restrictor Plate on Pipe =	2.46	N/A	rac

User Input: Emergency Spillway (Rectangular or Trapezo	
	idal)


ser imput. Linergency spinway (nectang	guiai oi Trapezoiuai)	
Spillway Invert Stage=		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =		feet
Spillway End Slopes =		H:V
Freeboard above Max Water Surface =		feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =		feet
in Area at Top of Freeboard =		acres

Routed	Hydrograph	Results

Tr.									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	0.00
Calculated Runoff Volume (acre-ft) =	0.236	0.691	0.640	0.902	1.125	1.465	1.731	2.062	0.000
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.236	0.690	0.639	0.900	1.123	1.463	1.729	2.059	#N/A
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.18	0.49	1.09	1.44	1.86	0.00
Predevelopment Peak Q (cfs) =	0.0	0.0	0.3	2.2	5.9	13.1	17.3	22.3	0.0
Peak Inflow Q (cfs) =	5.7	16.5	15.3	21.5	26.8	34.8	41.0	48.7	#N/A
Peak Outflow Q (cfs) =	0.1	0.4	0.4	0.4	3.4	11.7	18.3	20.3	#N/A
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	0.6	0.9	1.1	0.9	#N/A
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	#N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.4	0.6	0.7	#N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	#N/A
Time to Drain 97% of Inflow Volume (hours) =	37	52	51	57	56	54	53	51	#N/A
Time to Drain 99% of Inflow Volume (hours) =	40	58	57	63	63	62	61	60	#N/A
Maximum Ponding Depth (ft) =	2.46	4.58	4.35	5.50	6.05	6.51	6.75	7.19	#N/A
Area at Maximum Ponding Depth (acres) =	0.19	0.22	0.21	0.22	0.23	0.23	0.24	0.24	#N/A
Maximum Volume Stored (acre-ft) =	0.222	0.653	0.603	0.856	0.981	1.085	1.142	1.247	#N/A

UD-Detention, Version 3.07 (February 2017)

hariunas	Volume	Calcu	latio

Selected BMP Type =	EDB	
Watershed Area =	3.70	acres
Watershed Length =	450	ft
Watershed Slope =	0.070	ft/ft
Watershed Imperviousness =	60.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1 br Painfall Donths =	Donwor Cani	tol Building

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capi	tol Building
Water Quality Capture Volume (WQCV) =	0.073	acre-feet
Excess Urban Runoff Volume (EURV) =	0.213	acre-feet
2-yr Runoff Volume (P1 = 1.16 in.) =	0.197	acre-feet
5-yr Runoff Volume (P1 = 1.44 in.) =	0.278	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.347	acre-feet
25-yr Runoff Volume (P1 = 1.92 in.) =	0.452	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	0.534	acre-feet
100-yr Runoff Volume (P1 = 2.42 in.) =	0.636	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.878	acre-feet
Approximate 2-yr Detention Volume =	0.185	acre-feet
Approximate 5-yr Detention Volume =	0.262	acre-feet
Approximate 10-yr Detention Volume =	0.299	acre-feet
Approximate 25-yr Detention Volume =	0.320	acre-feet
Approximate 50-yr Detention Volume =	0.330	acre-feet
Approximate 100-yr Detention Volume =	0.366	acre-feet

rage otorage oaloalation		
Zone 1 Volume (WQCV) =	0.073	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.140	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.152	acre-feet
Total Detention Basin Volume =	0.366	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

						Optional			
Stage Storage	Stage	Optional	Longth	Width	Area	Override	Arna	Volume	Volume
Stage - Storage	Stage	Override Chann (ft)	Length			Area (ft/2)	Area	Volume (ft/3)	voiume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)		(acre)	(11.2)	(ac-ft)
Top of Micropool		0.00		-	-	20	0.000		
	-	1.00	-		-	200	0.005	108	0.002
				-					
		2.00		-	-	3,000	0.069	1,680	0.039
		3.00	-		-	3,100	0.071	4,760	0.109
	-	4.00	-	-	-	3,200	0.073	7,910	0.182
		5.00	-	-	-	3,300	0.076	11,160	0.256
		6.00	-	-	-	3,400	0.078	14,510	0.333
	-	7.00	-	-	-	3,500	0.080	17,960	0.412
		8.00		-	-	3,600	0.083	21,510	0.494
	-	9.00	-	-		3,700	0.085	25,160	0.578
	-	10.00		-		3,800	0.087	28,910	0.664
			-						
	-		-	-	-				
				-					
			-						
			-	-	-				
				-					
			-	-	-				
	-		-	-	-				
				-					
			-						
			-	-	-			 	
								-	
			-	-	-				
			-						
			-	-	-				
								-	
	-		-	-	-				
			-		-				
			-	-	_			 	
			-	-	-				<u> </u>
			-	-	-				
			-	-	_			-	-
			-	-	-			<u> </u>	<u> </u>
			-	-	-			1	
			-	-	-				
			-	-	-			<u> </u>	<u> </u>
			-	-	-			1	1
			-	-	_			 	
				-	-				
			-		-				
	-		-	-	-				
				-	-				
			-	-	-				
	-		-	-	-				
				-	-				
			-	-	-				
	-		-	-	-				
			-	-	-				
				-	-				
	-		-	-	-				
	-		-	-	-				
			-	-	-				
	-		-		-				
								l	
					-			l	1
	-								
	-		-		-				
			-	-	-				
			-	-	-				
	-		-	-	-			-	-
	-		-	-	-			-	-
				-					
				<u> </u>				 	
			-	-	-				
			-	-	-				
	-		-		-				
			_	_					
			-						
	-			_					
	=								
	-		1 1 1	-	-				
	-		1111	-	-				
	-		1111	- - - -	-				
	-		1 1 1 1 1 1 1		-				
	- - - - - - - - -			-	-				
				-	-				
			-						
			-						
	-			-					
	-			-					
	-			-					
	-			-					
	- - - -		1 1 1	-	-				
	- - - - -		1111		- - - -				
	- - - - -		1111		- - - -				
	-		1 1 1 1 1 1		-				
	 				-				
	 				-				
	 				-				

pond k, Basin 5/22/2017, 4:02 PM

UD-Detention, Version 3.07 (February 2017)

Example Zone Configuration (Retention Pond)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.49	0.073	Orifice Plate
Zone 2 (EURV)	4.43	0.140	Rectangular Orifice
one 3 (100-year)	6.42	0.152	Weir&Pipe (Restrict)
•		0.366	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	ıderdraiı
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.49	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	9.96	inches
Orifice Plate: Orifice Area per Row =	0.25	sq. inches (diameter = 9/16 inch)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	1.736E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60	2.40				
Orifice Area (sq. inches)	0.25	0.25	0.25	0.25				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	2.49	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	4.43	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	0.73		inches

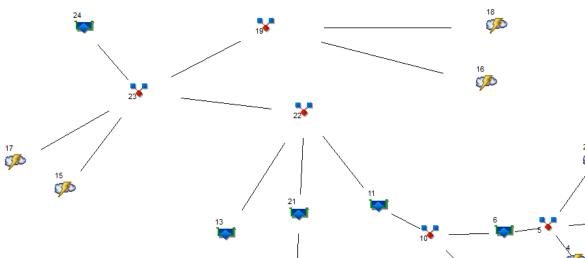
Calculated Parameters for Vertical Orifice					
	Zone 2 Rectangular	Not Selected			
Vertical Orifice Area =	0.01	N/A	ft²		
Vertical Orifice Centroid =	0.08	N/A	fee		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	7.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected			
Height of Grate Upper Edge, H_t =	8.00	N/A	feet		
Over Flow Weir Slope Length =	4.12	N/A	feet		
Grate Open Area / 100-yr Orifice Area =	15.21	N/A	should be ≥ 4		
Overflow Grate Open Area w/o Debris =	11.54	N/A	ft ²		
Overflow Grate Open Area w/ Debris =	5.77	N/A	ft ²		
·-					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectan			gular Orifice)	Calculated Parameter	s for Outlet Pipe w/ I	flow Restriction Plat	e
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.76	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.39	N/A	feet
Restrictor Plate Height Above Pipe Invert =	8.00		inches Half-Central A	Angle of Restrictor Plate on Pipe =	1.46	N/A	radians

ser impact zinci Benet abinitiat (incerant	saidi oi iidperoiddi,	
Spillway Invert Stage=		ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =		feet
Spillway End Slopes =		H:V
Freeboard above Max Water Surface =		feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =		feet
Basin Area at Top of Freeboard =		acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.16	1.44	1.68	1.92	2.16	2.42	3.14
Calculated Runoff Volume (acre-ft) =	0.073	0.213	0.197	0.278	0.347	0.452	0.534	0.636	0.878
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.072	0.213	0.197	0.277	0.347	0.452	0.534	0.636	0.878
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.17	0.45	1.01	1.33	1.71	2.57
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	0.6	1.7	3.7	4.9	6.3	9.5
Peak Inflow Q (cfs) =	1.7	4.9	4.5	6.4	7.9	10.3	12.1	14.4	19.9
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.2	0.5	2.7	5.6	10.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	0.1	0.1	0.5	0.9	1.1
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.0	0.2	0.5	0.9
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	54	53	59	62	66	65	63	59
Time to Drain 99% of Inflow Volume (hours) =	39	58	57	63	68	73	72	72	70
Maximum Ponding Depth (ft) =	2.42	4.26	4.05	5.09	5.96	7.13	7.43	7.66	8.11
Area at Maximum Ponding Depth (acres) =	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08
Maximum Volume Stored (acre-ft) =	0.068	0.201	0.185	0.262	0.329	0.423	0.446	0.466	0.503

APPENDIX E – HYDROGRAPHS

Legend

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	Rational	C8
2	Rational	Basins OS-C9 & C10
3	Reservoir	Pond C4 outflow
4	Rational	Basin C8a
5	Combine	Inflow Pond C3
6	Reservoir	Pond C3 outflow
7	Rational	Basins C5 & C7
8	Rational	Basin C3 & C4
9	Reservoir	Pond C2.1 outflow
10	Combine	Inflow Pond C2.2
11	Reservoir	Pond C2.2 outflow
12	Rational	Basins C1 & C2
13	Reservoir	Pond C1 outflow
14	Rational	Basin C6
15	Rational	Basin C14+C15
16	Rational	Basin C13
17	Rational	C17
18	Rational	Basins C16 & C12
19	Combine	Des.Pt.6c to Pond C5
20	Combine	inflow Pond C2.3
21	Reservoir	Pond C2.3 outflow
22	Combine	Des. Pt 3f
23	Combine	Inflow Pond C5
24	Reservoir	Pond C5 outflow

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	106.80	1	19	121,752				C8
2	Rational	29.21	1	15	26,289				Basins OS-C9 & C10
3	Reservoir	12.40	1	36	24,518	1	5772.03	247,806	Pond C4 outflow
	Rational	20.81	1	12	14,982				Basin C8a
	Combine	44.82	1	15	65,789	2, 3, 4			Inflow Pond C3
	Reservoir	4.568	1	58	20,897	5	5760.24	75,308	Pond C3 outflow
	Rational	48.92	1	25	73,387				Basins C5 & C7
	Rational	83.17	1	25	124,758				Basin C3 & C4
	Reservoir	11.73	1	46	17,691	8	5771.23	210,648	Pond C2.1 outflow
0	Combine	48.92	1	25	94,284	6, 7,			Inflow Pond C2.2
1	Reservoir	6.735	1	49	28,966	10	5750.97	162,116	Pond C2.2 outflow
2	Rational	70.57	1	25	105,861				Basins C1 & C2- Pond C1 inflow
3	Reservoir	2.952	1	49	14,392	12	5750.59	260,656	Pond C1 outflow
4	Rational	31.01	1	14	26,052				Basin C6
5	Rational	65.81	1	23	90,814				Basin C14+C15
6	Rational	6.881	1	30	12,386				Basin C13
7	Rational	46.96	1	16	45,084				C17
8	Rational	79.61	1	31	148,075				Basins C16 & C12
9	Combine	86.26	1	31	160,462	16, 18			Des.Pt.6c to Pond C5
0	Combine	31.01	1	14	43,743	9, 14,			inflow Pond C2.3
1	Reservoir	4.548	1	61	13,634	20	5749.16	64,350	Pond C2.3 outflow
2	Combine	12.37	1	57	56,992	11, 13, 21			Des. Pt 3f
3	Combine	156.57	1	23	353,350	15, 17, 19, 2	22		Inflow Pond C5
24	Reservoir	121.19	1	32	341,003	23	5713.47	566,932	Pond C5 outflow
5yr ponds C1 C2, C3, C4 & C5.gpw				Return Period: 5 Year			Wednesday, May 24 2017, 5:39 AM		

Hydrograph Summary Report

100yr ponds C1 C2, C3, C4 & C5.gpw

lo.	drograph type origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
Ratio	onal	266.64	1	19	303,974				C8
? Ratio	onal	63.71	1	15	57,341				Basins OS-C9 & C10
Res	ervoir	38.34	1	35	298,076	1	5775.34	467,055	Pond C4 outflow
Ratio	onal	51.32	1	12	36,953				Basin C8a
Com	nbine	133.89	1	15	392,370	2, 3, 4			Inflow Pond C3
Res	ervoir	17.79	1	144	367,493	5	5763.93	275,851	Pond C3 outflow
' Rati	onal	121.62	1	25	182,430				Basins C5 & C7
Ratio	onal	206.75	1	25	310,131				Basin C3 & C4
Res	ervoir	65.13	1	42	279,789	8	5773.91	363,096	Pond C2.1 outflow
0 Com	nbine	137.71	1	25	549,923	6, 7,			Inflow Pond C2.2
1 Res	ervoir	40.34	1	45	530,339	10	5753.55	278,207	Pond C2.2 outflow
2 Ratio	onal	175.44	1	25	263,155				Basins C1 & C2
3 Res	ervoir	17.68	1	47	222,974	12	5753.09	445,161	Pond C1 outflow
4 Ratio	onal	76.98	1	14	64,659				Basin C6
5 Ratio	onal	163.99	1	23	226,299				Basin C14+C15
6 Ratio	onal	40.73	1	30	73,322				Basin C13
7 Ratio	onal	108.00	1	16	103,681				C17
8 Ratio	onal	195.70	1	31	363,995				Basins C16 & C12
9 Com	nbine	235.07	1	31	437,317	16, 18			Des.Pt.6c to Pond C5
0 Com	nbine	110.99	1	17	344,448	9, 14,			inflow Pond C2.3
21 Res	ervoir	45.83	1	84	334,262	20	5753.06	188,378	Pond C2.3 outflow
22 Com	nbine	99.75	1	48	1,087,511	11, 13, 21			Des. Pt 3f
23 Com	nbine	484.24	1	23	1,854,809	15, 17, 19, 2	2		Inflow Pond C5
24 Res	ervoir	419.90	1	32	1,757,155	23	5714.32	677,645	Pond C5 outflow

Return Period: 100 Year

Tuesday, May 23 2017, 7:33 AM

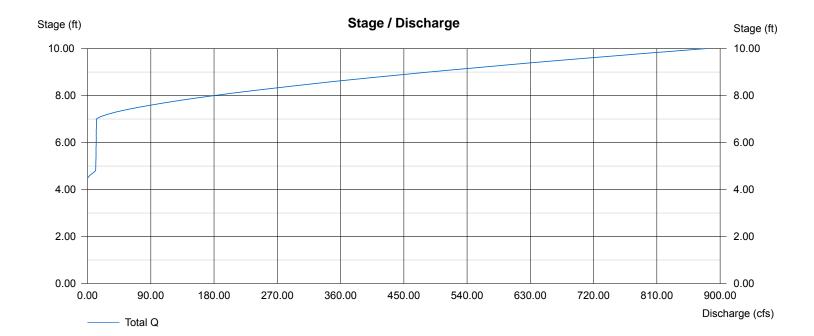
Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 4 - Pond C1

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5746.00	26,303	0	0
1.00	5747.00	53,900	40,102	40,102
2.00	5748.00	57,925	55,913	96,014
3.00	5749.00	62,019	59,972	155,986
4.00	5750.00	66,200	64,110	220,096
5.00	5751.00	70,500	68,350	288,446
6.00	5752.00	74,920	72,710	361,156
7.00	5753.00	78,760	76,840	437,996
8.00	5754.00	80,000	79,380	517,376
9.00	5755.00	82,000	81,000	598,376
10.00	5756.00	85,000	83,500	681,876

Culvert / Orifice Structures

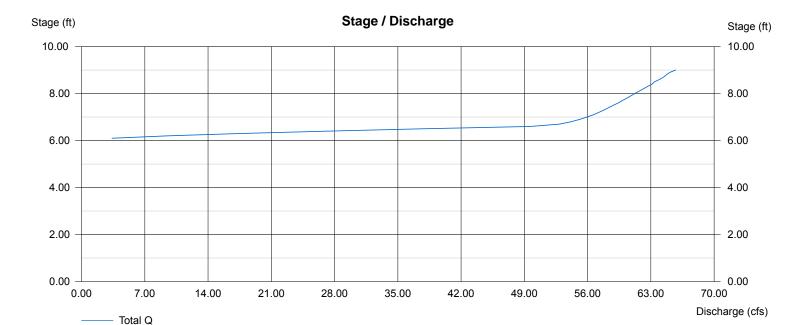
Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 20.00	50.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 5750.47	5753.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5743.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 675.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	ter Elev. =	= 0.00 ft

Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 7 - Pond C2.1


Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5765.00	50	0	0
1.00	5766.00	5,012	2,531	2,531
2.00	5767.00	29,041	17,027	19,558
3.00	5768.00	43,198	36,120	55,677
4.00	5769.00	46,089	44,644	100,321
5.00	5770.00	49,051	47,570	147,891
6.00	5771.00	52,082	50,567	198,457
7.00	5772.00	55,183	53,633	252,090
8.00	5773.00	58,358	56,771	308,860
9.00	5774.00	61,000	59,679	368,539

Culvert / Orifice Structures Weir Structures [B] [C] [D] [A] [B] [C] [D] [A] Rise (in) = 30.000.00 0.00 0.00 Crest Len (ft) = 32.00 50.00 0.00 0.00 Span (in) = 30.000.00 0.00 0.00 Crest El. (ft) = 5771.00 5774.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.333.33 0.00 0.00 = 5765.00 0.00 0.00 0.00 Weir Type = Riser Ciplti Invert El. (ft) = 100.00 0.00 0.00 0.00 Length (ft) Multi-Stage = Yes No No No = 0.500.00 0.00 0.00 Slope (%) = .013 .000 .000 .000 N-Value = 0.60 0.00 0.00 0.00 Orif. Coeff. No Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft Multi-Stage = n/aNo No

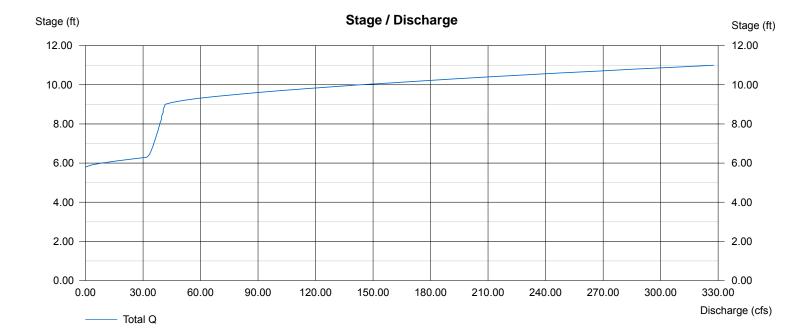
Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 3 - Pond C2.2

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)		
0.00	5745.00	10	0	0		
1.00	5746.00	2,363	1,187	1,187		
2.00	5747.00	31,533	16,948	18,135		
3.00	5748.00	33,850	32,692	50,826		
4.00	5749.00	36,237	35,044	85,870		
5.00	5750.00	38,701	37,469	123,339		
6.00	5751.00	41,268	39,985	163,323		
7.00	5752.00	44,081	42,675	205,998		
8.00	5753.00	47,000	45,541	251,538		
9.00	5754.00	50,000	48,500	300,038		
10.00	5755.00	53,000	51,500	351,538		
11.00	5756.00	56,000	54,500	406,038		

Culvert / Orifice Structures

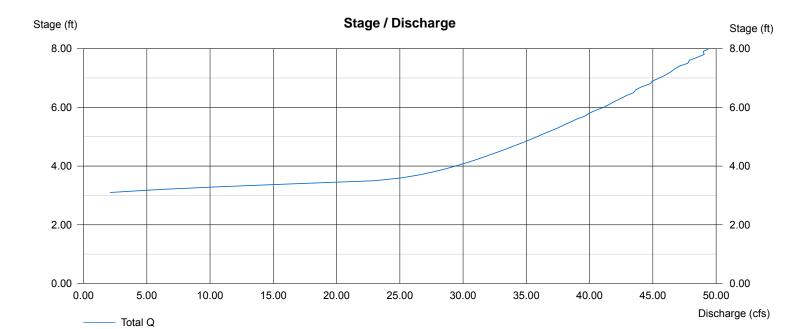
Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 28.00	30.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 5750.80	5754.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5745.00	0.00	0.00	0.00	Weir Type	= Riser	CipIti		
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 6 - Pond C2.3


Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5746.00	100	0	0
1.00	5747.00	22,141	11,121	11,121
2.00	5748.00	24,321	23,231	34,352
3.00	5749.00	26,601	25,461	59,813
4.00	5750.00	28,983	27,792	87,605
5.00	5751.00	31,466	30,225	117,829
6.00	5752.00	34,050	32,758	150,587
7.00	5753.00	36,742	35,396	185,983
8.00	5754.00	38,000	37,371	223,354

Culvert / Orifice Structures Weir Structures [B] [C] [A] [A] [D] [B] [C] [D] 0.00 0.00 Rise (in) = 27.00 0.00 Crest Len (ft) = 20.00 30.00 0.00 0.00 Span (in) = 27.000.00 0.00 0.00 Crest El. (ft) = 5749.00 5754.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.333.33 0.00 0.00 Invert El. (ft) = 5746.00 0.00 0.00 0.00 Weir Type = Riser Ciplti = 100.00 0.00 0.00 0.00 Length (ft) Multi-Stage = Yes No No No = 0.50 0.00 0.00 0.00 Slope (%) N-Value = .013 .000 .000 .000 Orif. Coeff. = 0.600.00 0.00 0.00 Multi-Stage = n/aNo No No Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

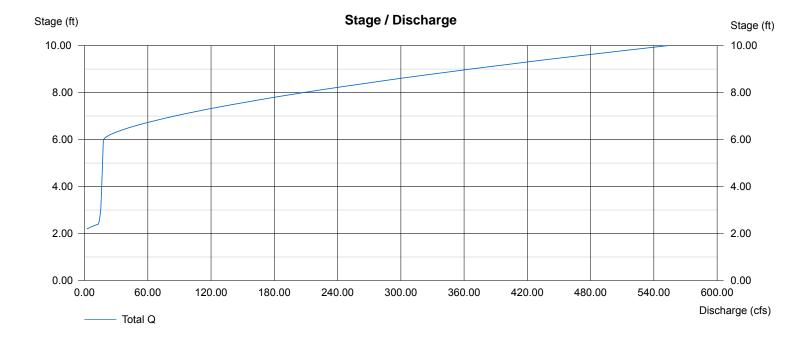
Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 2 - Pond C3

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft) Total storage			
0.00	5758.00	13,580	0	0		
1.00	5759.00	33,254	23,417	23,417		
2.00	5760.00	46,803	40,029	63,446		
3.00	5761.00	50,425	48,614	112,060		
4.00	5762.00	54,123	52,274	164,334		
5.00	5763.00	57,909	56,016	220,350		
6.00	5764.00	61,796	59,853	280,202		
7.00	5765.00	70,319	66,058	346,260		
8.00	5766.00	74,258	72,289	418,548		
9.00	5767.00	78,270	76,264	494,812		
10.00	5768.00	82,343	80,307	575,119		

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 24.00	20.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 5760.10	5764.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5757.00	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 325.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.90	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

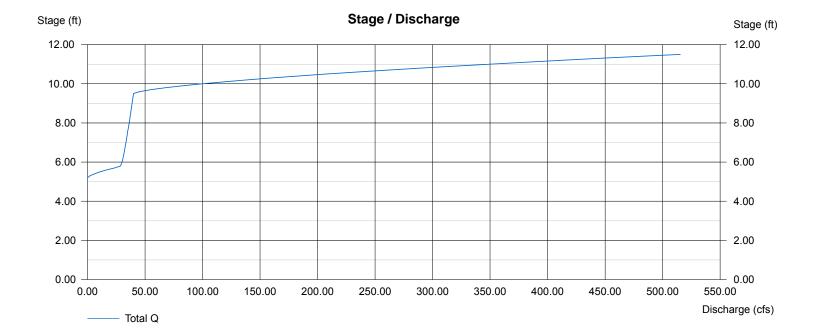
Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:31 AM

Pond No. 1 - Pond C4

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5766.50	500	0	0
0.50	5767.00	5,000	1,375	1,375
1.50	5768.00	48,694	26,847	28,222
2.50	5769.00	51,543	50,119	78,341
3.50	5770.00	54,460	53,002	131,342
4.50	5771.00	57,445	55,953	187,295
5.50	5772.00	60,499	58,972	246,267
6.50	5773.00	63,620	62,060	308,326
7.50	5774.00	66,809	65,215	373,541
8.50	5775.00	70,666	68,738	442,278
9.50	5776.00	73,392	72,029	514,307
10.50	5777.00	76,785	75,089	589,396
11.50	5778.00	80,246	78,516	667,911

Culvert / Orifice Structures

W	air	Stri	icti	ires

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 20.00	50.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 5771.70	5776.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5766.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 150.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.60	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	ter Elev. :	= 0.00 ft

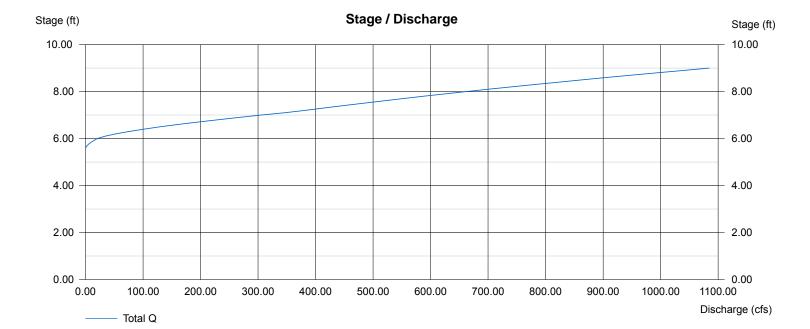
Hydraflow Hydrographs by Intelisolve

Tuesday, May 23 2017, 7:33 AM

Pond No. 5 - Pond C5

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5707.00	1,000	0	0	
1.00	5708.00	18,898	9,949	9,949	
2.00	5709.00	77,432	48,165	58,114	
3.00	5710.00	110,270	93,851	151,965	
4.00	5711.00	115,455	112,863	264,828	
5.00	5712.00	120,720	118,088	382,915	
6.00	5713.00	126,045	123,383	506,298	
7.00	5714.00	131,696	128,871	635,168	
8.00	5715.00	136,745	134,221	769,389	
9.00	5716.00	141,857	139,301	908,690	

Culvert / Orifice Structures

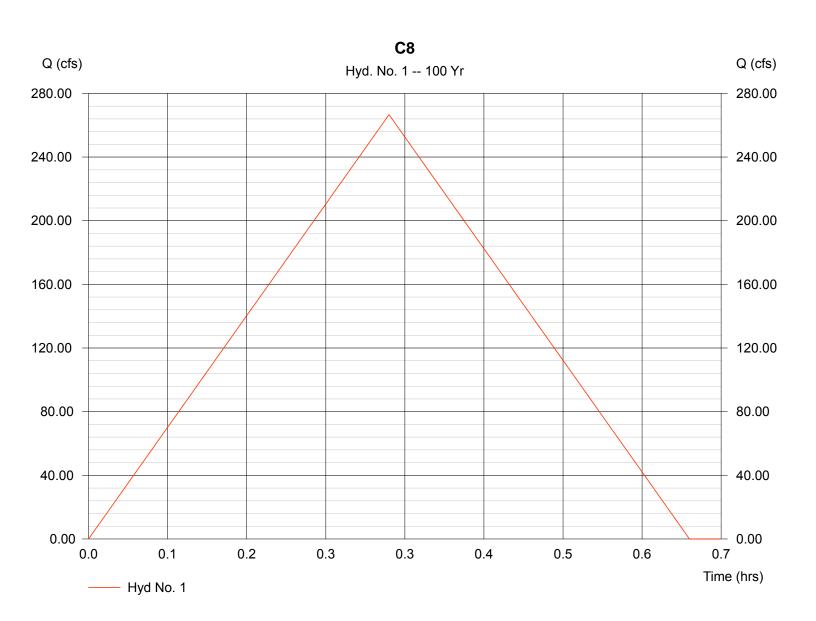
Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	0.00	0.00	0.00	Crest Len (ft)	= 24.00	52.00	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 5712.60	5713.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5704.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 120.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0 .	.000 in/hr (Conto	our) Tailwat	er Elev. =	0.00 ft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 1


C8

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 75.000 ac Intensity = 5.470 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 266.64 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 19.00 min
Asc/Rec limb fact = 1/1

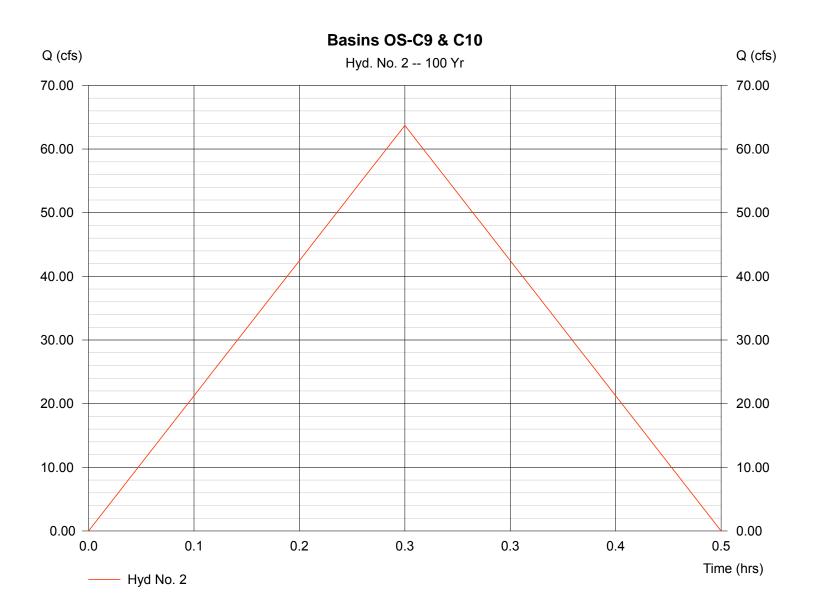
Hydrograph Volume = 303,974 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 2

Basins OS-C9 & C10


Hydrograph type = Rational
Storm frequency = 100 yrs
Drainage area = 18.200 ac
Intensity = 6.142 in/hr

IDF Curve = 2016-idf curves-rls.IDF

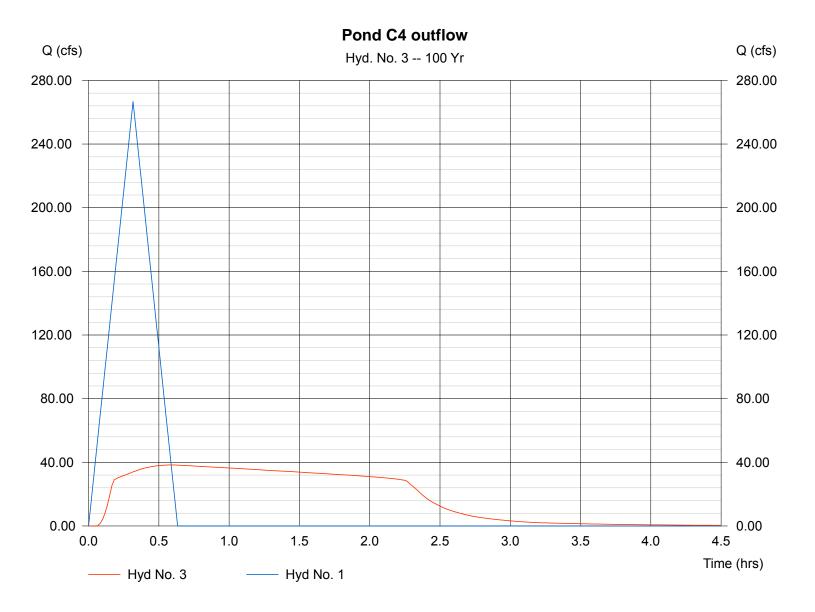
Peak discharge = 63.71 cfs Time interval = 1 min Runoff coeff. = 0.57 Tc by User = 15.00 min

Asc/Rec limb fact = 1/1

Hydrograph Volume = 57,341 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 3

Pond C4 outflow

Hydrograph type = Reservoir Peak discharge = 38.34 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 1 Max. Elevation = 5775.34 ftReservoir name = Pond C4 Max. Storage = 467,055 cuft

Storage Indication method used. Wet pond routing start elevation = 5771.60 ft.

Hydrograph Volume = 298,076 cuft

Hydraflow Hydrographs by Intelisolve

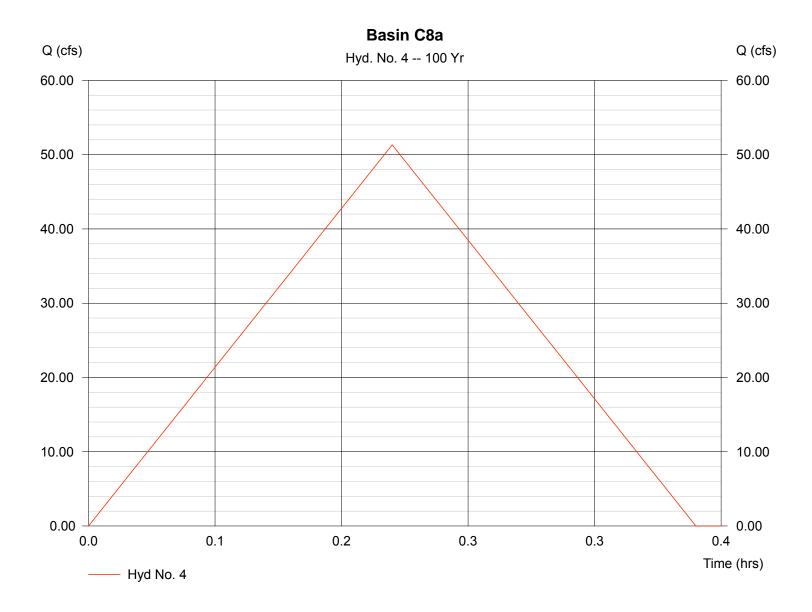
Friday, May 19 2017, 6:32 AM

Hyd. No. 4

Basin C8a

Hydrograph type= RationalPeak dischargeStorm frequency= 100 yrsTime intervalDrainage area= 11.700 acRunoff coeff.Intensity= 6.749 in/hrTc by User

IDF Curve = 2016-idf curves-rls.IDF Asc/Rec limb fact = 1/1


Hydrograph Volume = 36,953 cuft

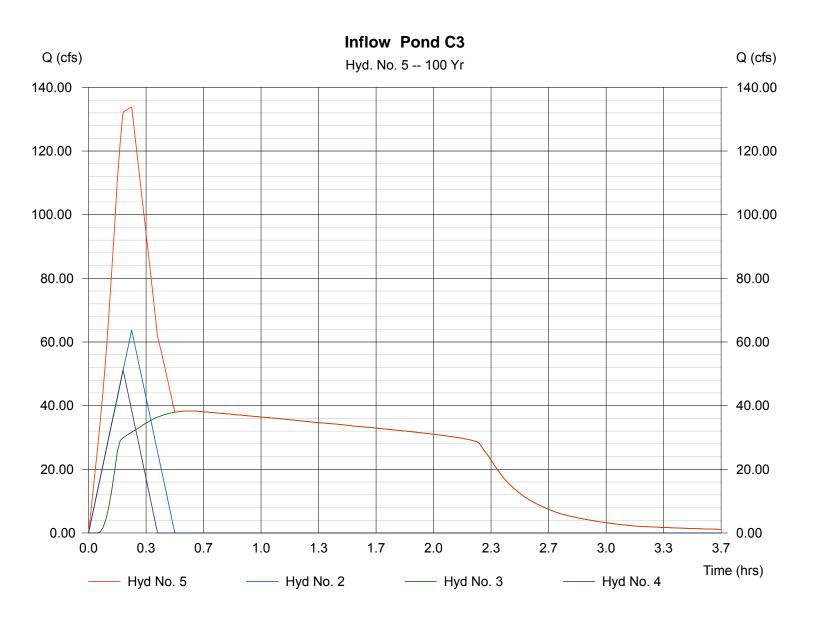
= 51.32 cfs

= 12.00 min

= 1 min

= 0.65

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

Hyd. No. 5

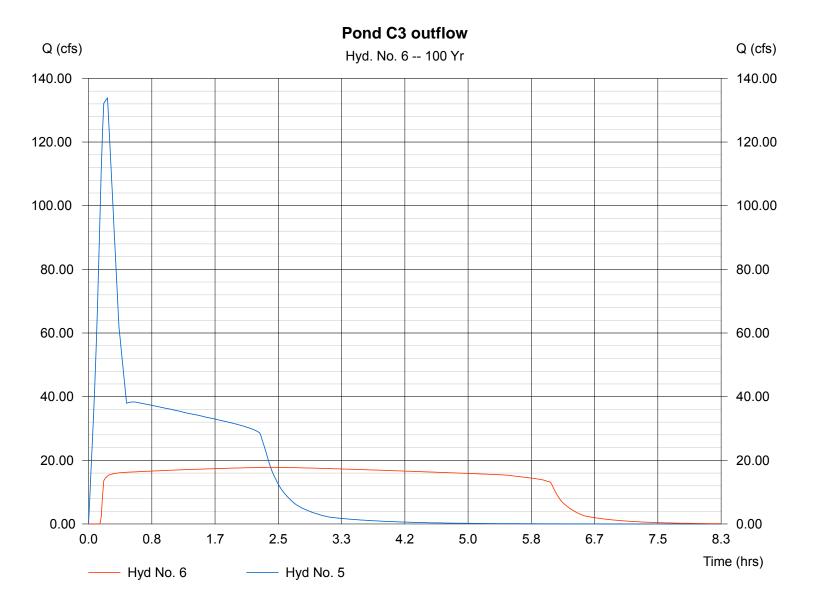
Inflow Pond C3

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 2, 3, 4 Peak discharge = 133.89 cfs Time interval = 1 min

Hydrograph Volume = 392,370 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 6

Pond C3 outflow

Hydrograph type = 17.79 cfs= Reservoir Peak discharge Time interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 5 Max. Elevation = 5763.93 ftReservoir name = Pond C3 Max. Storage = 275,851 cuft

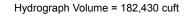
Storage Indication method used. Wet pond routing start elevation = 5759.50 ft.

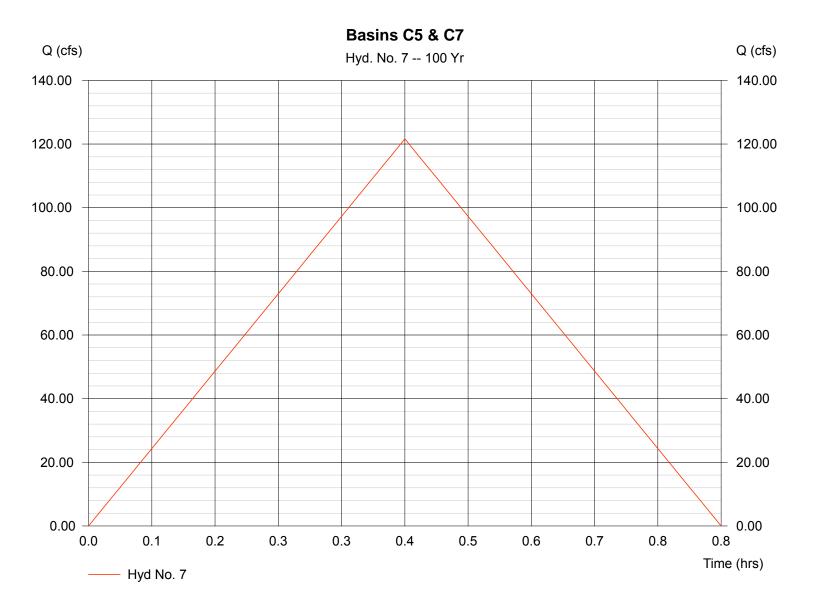
Hydrograph Volume = 367,493 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 7


Basins C5 & C7


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 40.000 ac Intensity = 4.678 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 121.62 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 25.00 min

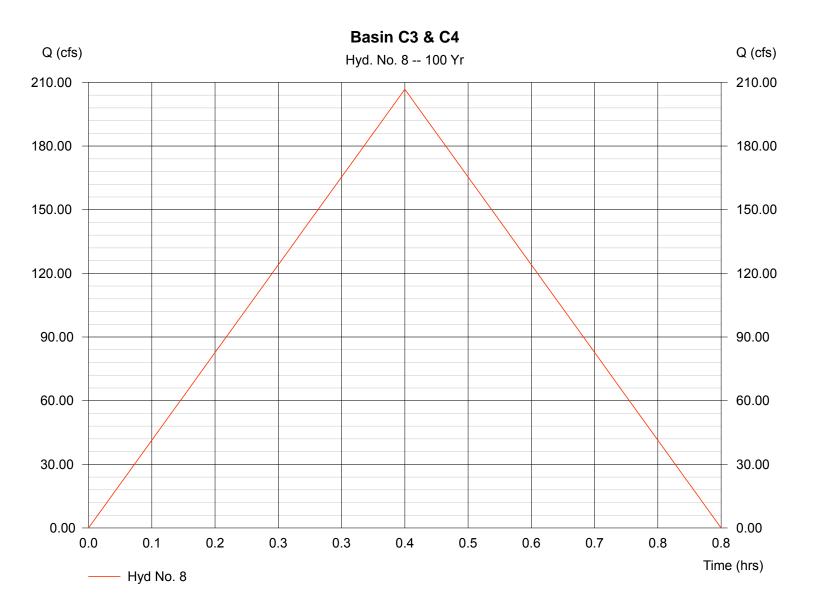
Asc/Rec limb fact = 1/1

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 8

Basin C3 & C4


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 68.000 ac Intensity = 4.678 in/hr

IDF Curve = 2016-idf curves-rls.IDF

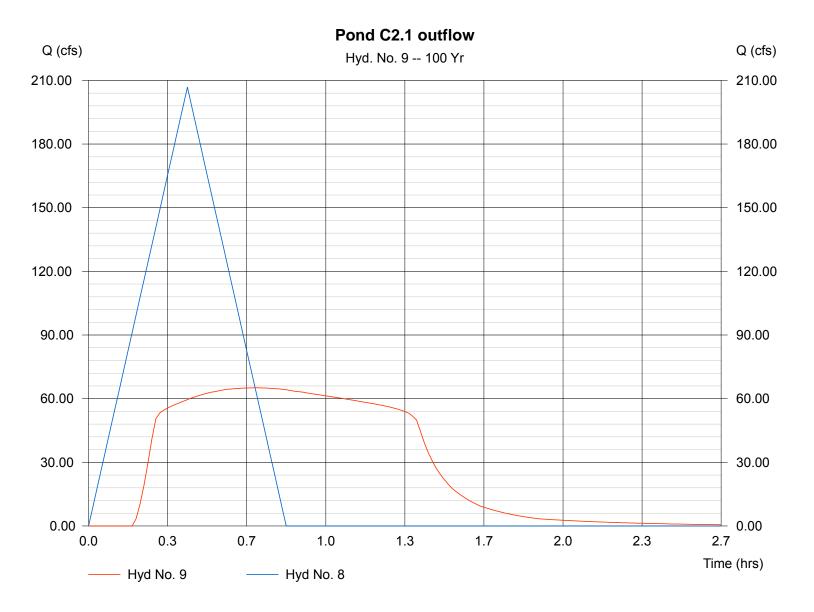
Peak discharge = 206.75 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 25.00 min

Asc/Rec limb fact = 1/1

Hydrograph Volume = 310,131 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 9

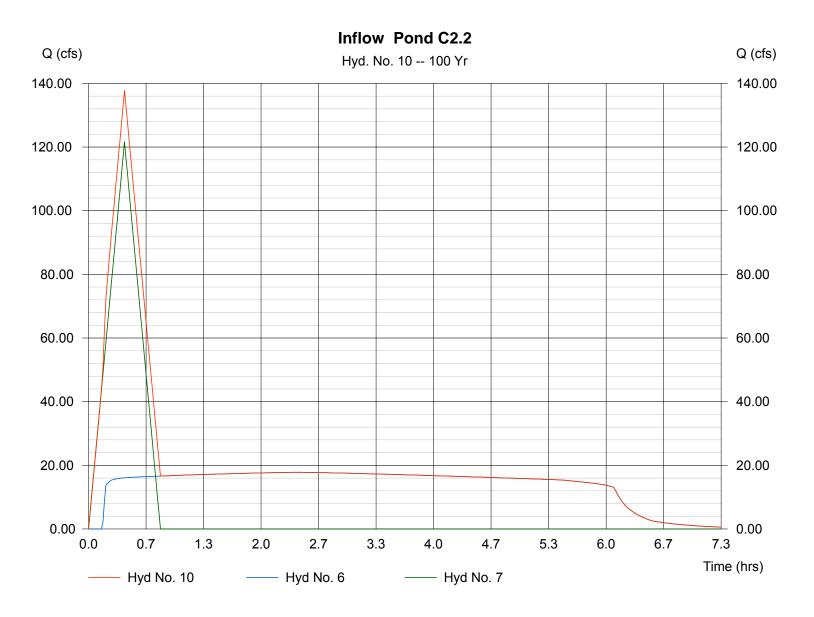
Pond C2.1 outflow

Hydrograph type = Reservoir Peak discharge = 65.13 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 8 Max. Elevation = 5773.91 ftReservoir name = Pond C2.1 Max. Storage = 363,096 cuft

Storage Indication method used. Wet pond routing start elevation = 5770.40 ft.

Hydrograph Volume = 279,789 cuft

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

Hyd. No. 10

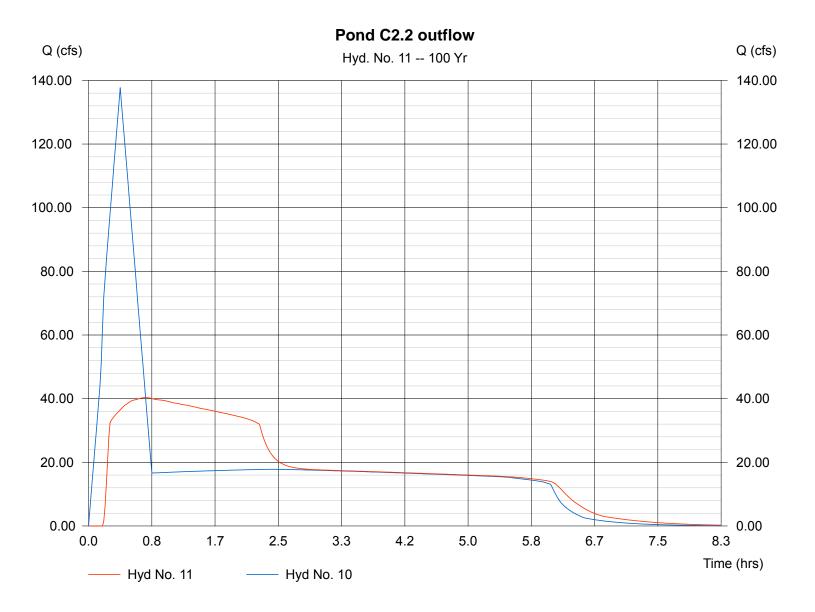
Inflow Pond C2.2

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 6, 7 Peak discharge = 137.71 cfs Time interval = 1 min

Hydrograph Volume = 549,923 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 11

Pond C2.2 outflow

Hydrograph type = Reservoir Peak discharge = 40.34 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 10 Max. Elevation = 5753.55 ftReservoir name = Pond C2.2 Max. Storage = 278,207 cuft

Storage Indication method used. Wet pond routing start elevation = 5750.30 ft.

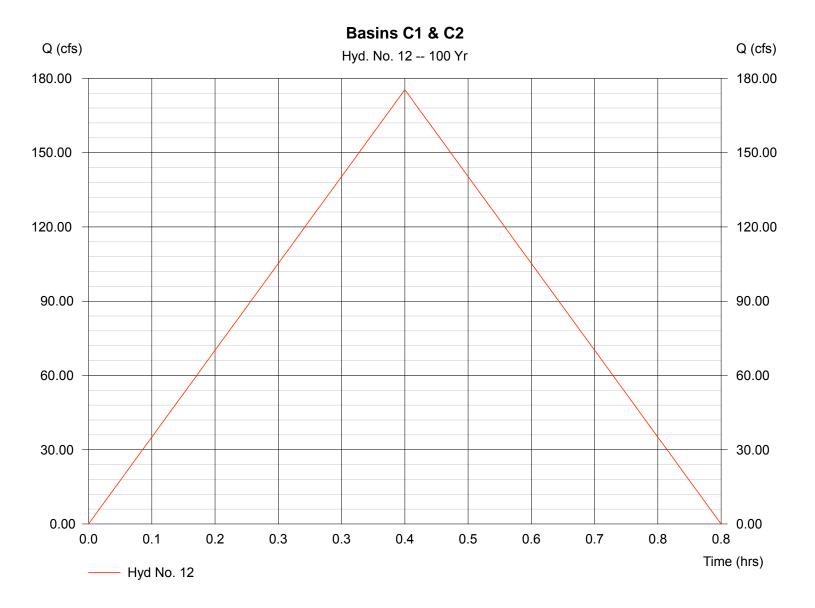
Hydrograph Volume = 530,339 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 12

Basins C1 & C2


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 57.700 ac Intensity = 4.678 in/hr

IDF Curve = 2016-idf curves-rls.IDF

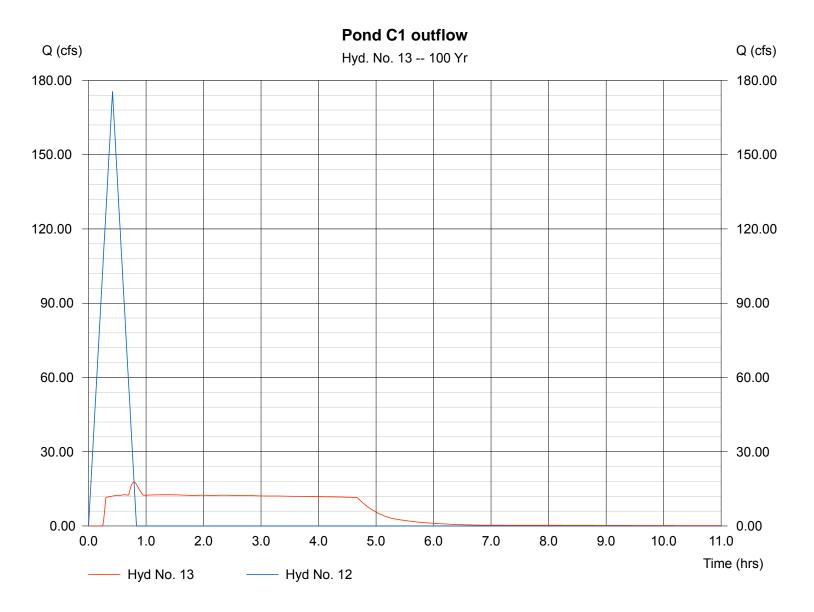
Peak discharge = 175.44 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 25.00 min

Asc/Rec limb fact = 1/1

Hydrograph Volume = 263,155 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 13

Pond C1 outflow

Hydrograph type = Reservoir Peak discharge = 17.68 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 12 Max. Elevation = 5753.09 ftReservoir name = Pond C1 Max. Storage = 445,161 cuft

Storage Indication method used. Wet pond routing start elevation = 5749.80 ft.

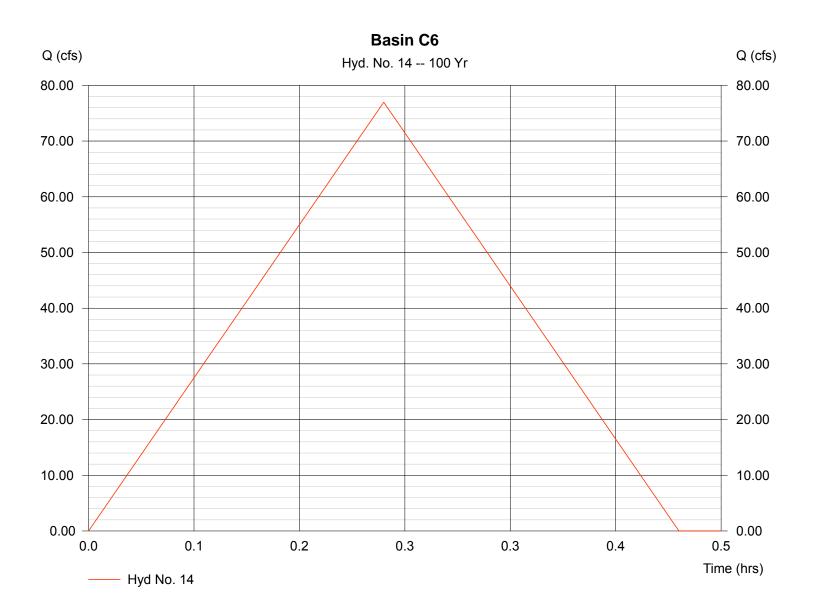
Hydrograph Volume = 222,974 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 14

Basin C6


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 18.700 ac Intensity = 6.333 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 76.98 cfs Time interval = 1 min Runoff coeff. = 0.65 Tc by User = 14.00 min

Asc/Rec limb fact = 1/1

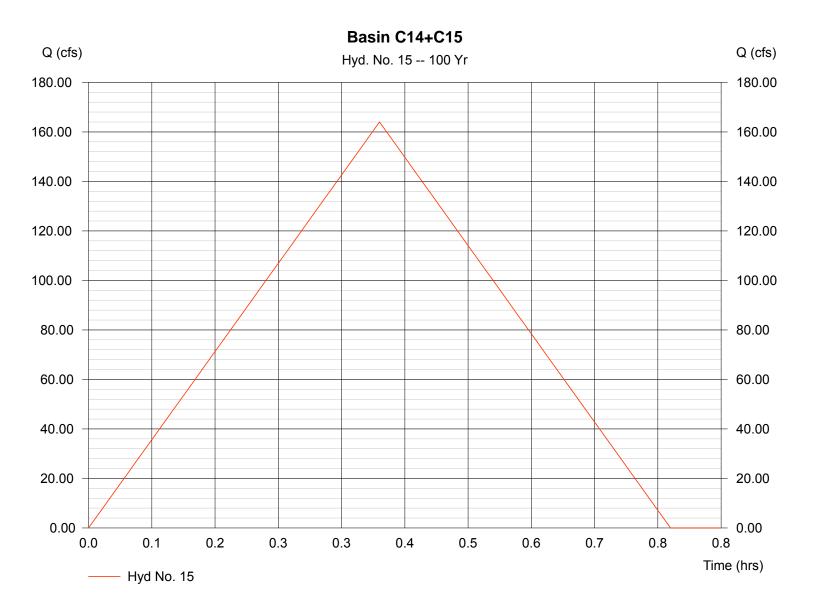
Hydrograph Volume = 64,659 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 15

Basin C14+C15


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 51.300 ac Intensity = 4.918 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 163.99 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 23.00 min

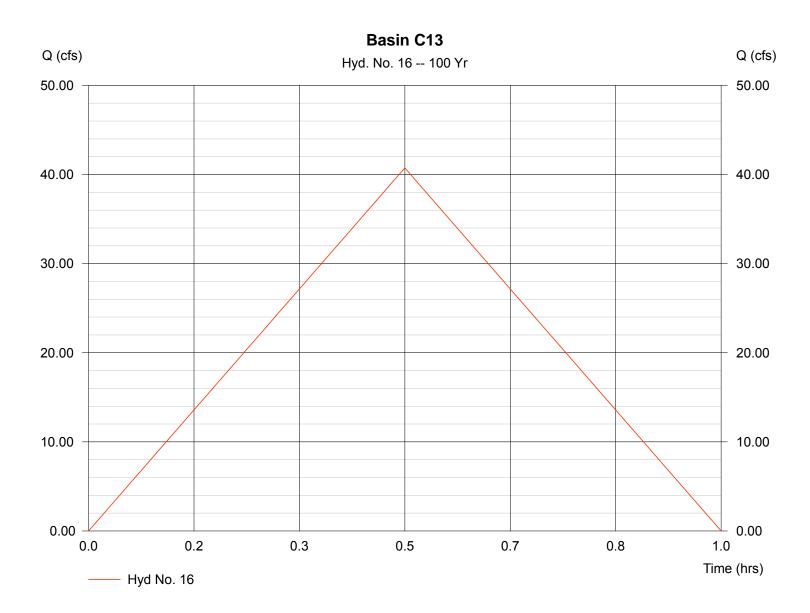
Asc/Rec limb fact = 1/1

Hydrograph Volume = 226,299 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 16


Basin C13

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 19.200 ac Intensity = 4.160 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 40.73 cfs
Time interval = 1 min
Runoff coeff. = 0.51
Tc by User = 30.00 min
Asc/Rec limb fact = 1/1

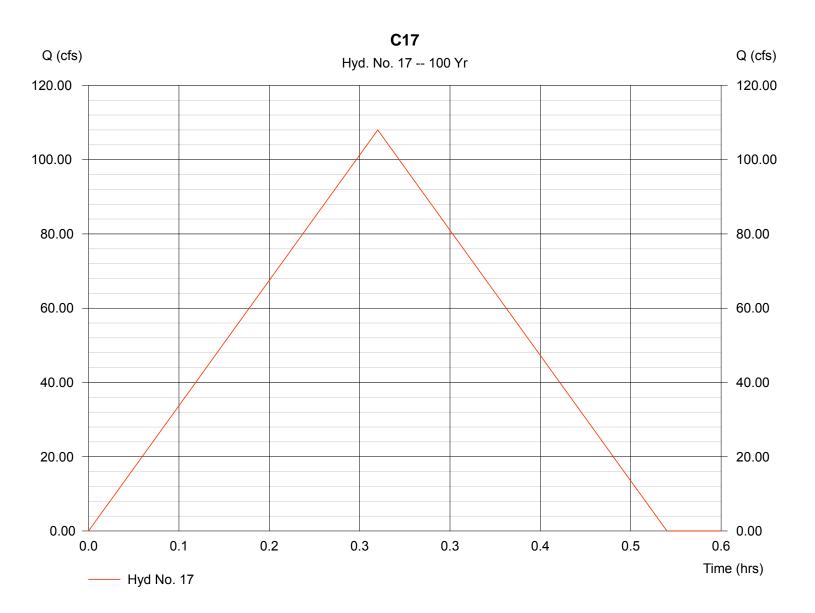
Hydrograph Volume = 73,322 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 17

C17


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 30.200 ac Intensity = 5.960 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 108.00 cfs
Time interval = 1 min
Runoff coeff. = 0.6
Tc by User = 16.00 min

Asc/Rec limb fact = 1/1

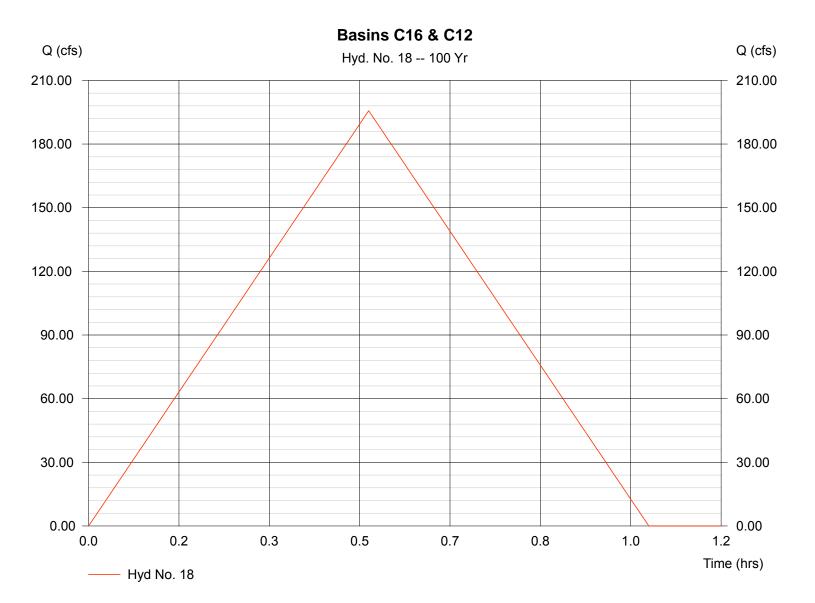
Hydrograph Volume = 103,681 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM

Hyd. No. 18

Basins C16 & C12


Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 74.000 ac Intensity = 4.069 in/hr

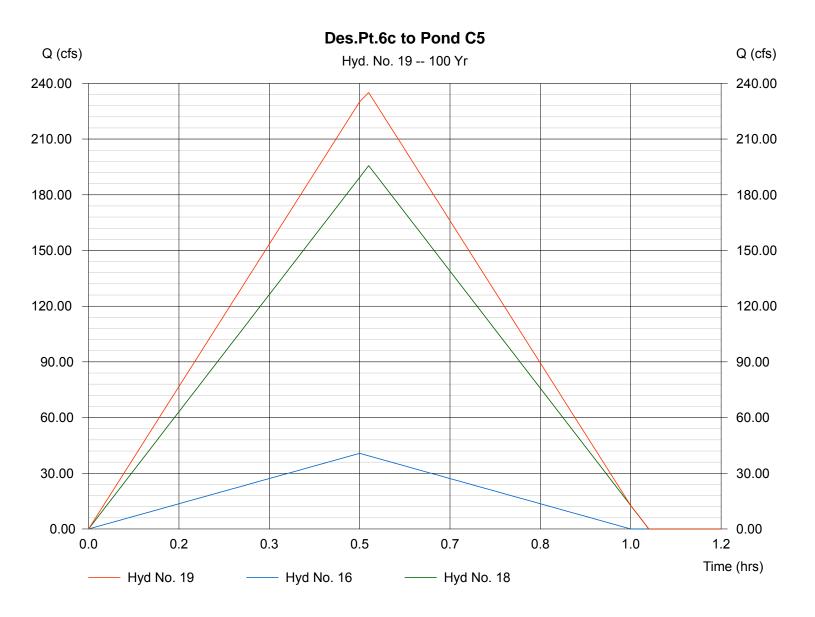
IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 195.70 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 31.00 min

Asc/Rec limb fact = 1/1

Hydrograph Volume = 363,995 cuft

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

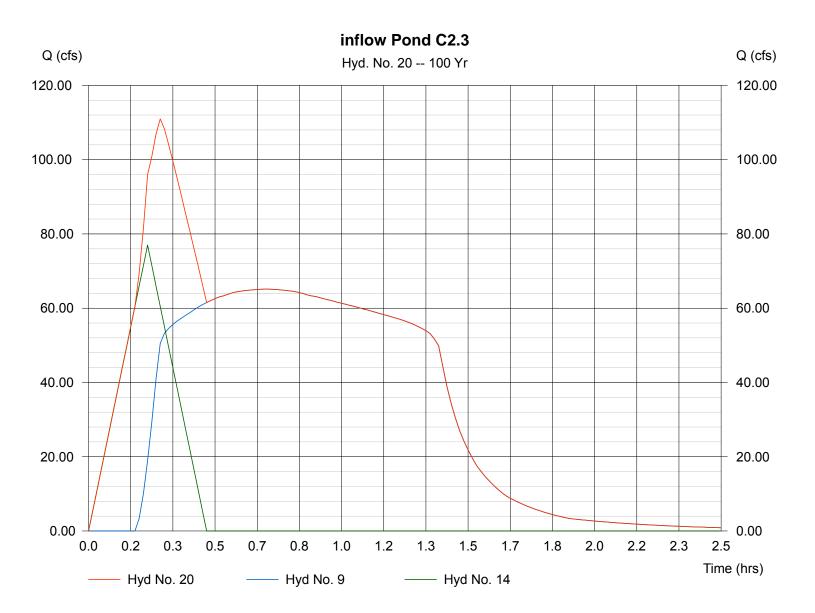
Hyd. No. 19

Des.Pt.6c to Pond C5

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 16, 18 Peak discharge = 235.07 cfs Time interval = 1 min

Hydrograph Volume = 437,317 cuft

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

Hyd. No. 20

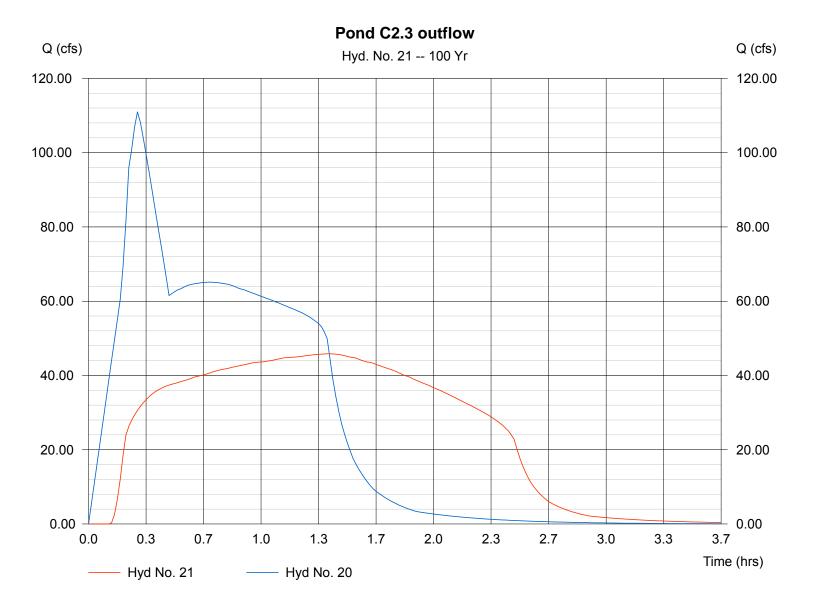
inflow Pond C2.3

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 9, 14 Peak discharge = 110.99 cfs Time interval = 1 min

Hydrograph Volume = 344,448 cuft

Hydraflow Hydrographs by Intelisolve

Friday, May 19 2017, 6:32 AM


Hyd. No. 21

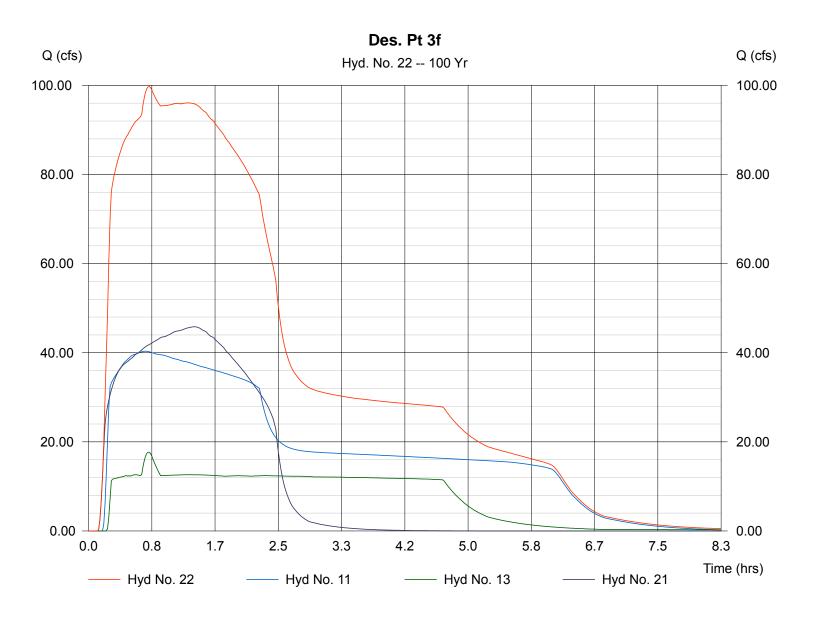
Pond C2.3 outflow

Hydrograph type = Reservoir Peak discharge = 45.83 cfsTime interval Storm frequency = 1 min = 100 yrsInflow hyd. No. = 20 Max. Elevation = 5753.06 ftReservoir name = Pond C2.3 Max. Storage = 188,378 cuft

Storage Indication method used. Wet pond routing start elevation = 5748.60 ft.

Hydrograph Volume = 334,262 cuft

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

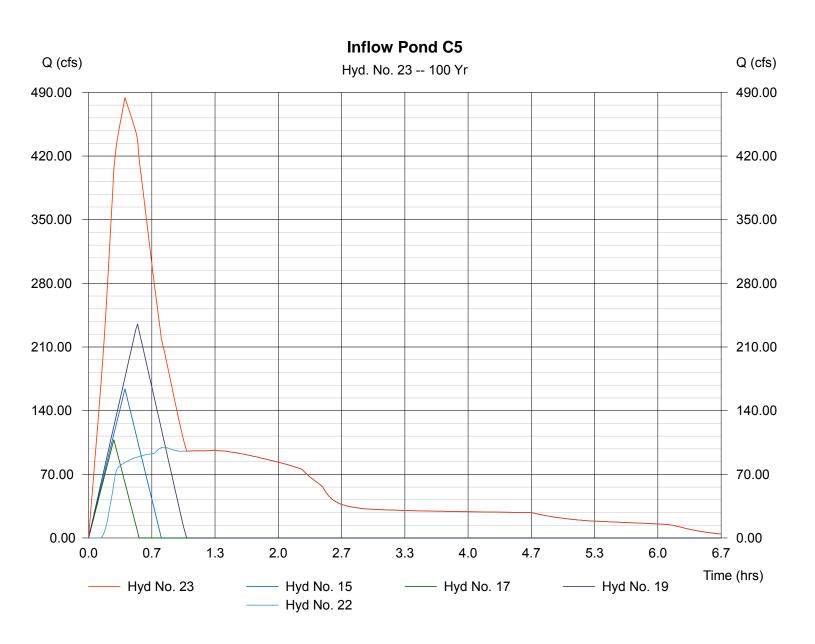
Hyd. No. 22

Des. Pt 3f

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 11, 13, 21 Peak discharge = 99.75 cfs Time interval = 1 min

Hydrograph Volume = 1,087,511 cuft

Hydraflow Hydrographs by Intelisolve


Friday, May 19 2017, 6:32 AM

Hyd. No. 23

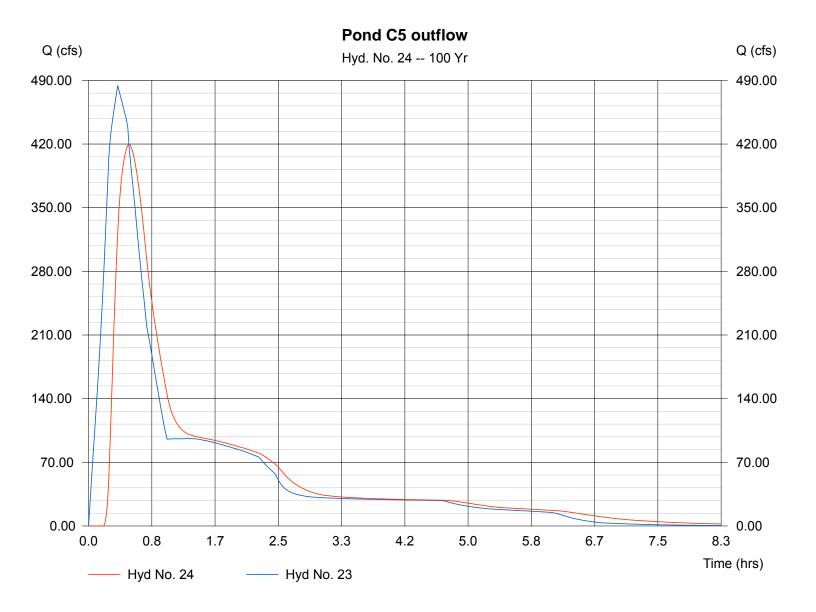
Inflow Pond C5

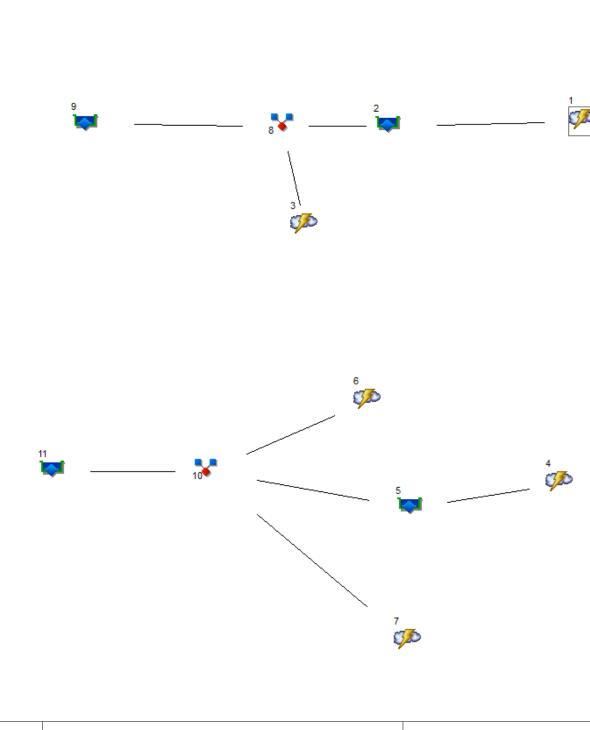
Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 15, 17, 19, 22 Peak discharge = 484.24 cfs Time interval = 1 min

Hydrograph Volume = 1,854,809 cuft

Hydraflow Hydrographs by Intelisolve

Tuesday, May 23 2017, 7:33 AM


Hyd. No. 24


Pond C5 outflow

Hydrograph type = Reservoir Peak discharge = 419.90 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 23 Max. Elevation = 5714.32 ftReservoir name = Pond C5 Max. Storage = 677,645 cuft

Storage Indication method used. Wet pond routing start elevation = 5711.80 ft.

Hydrograph Volume = 1,757,155 cuft

Legend

<u>Hyd.</u>	<u>Origin</u>	Description
1	Rational	Basin D1
2	Reservoir	Pond D1 outflow
3	Rational	Basin D2-D5
4	Rational	Pond E1 Inflow
5	Reservoir	Pond E1 Outflow
6	Rational	Basin E6-E8
7	Rational	Basin E9-E11
8	Combine	Pond D2 Inflow
9	Reservoir	Pond D2 Outflow
10	Combine	Pond E2 Inflow
11	Reservoir	Pond E2 Outflow

Hydrograph Summary Report

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
	Rational	33.48	1	12	36,160				Basin D1
!	Reservoir	1.915	1	35	3,207	1	5754.62	54,571	Pond D1 outflow
3	Rational	106.13	1	22	210,141				Basin D2-D5
ļ	Rational	97.18	1	15	87,458				Pond E1 Inflow
5	Reservoir	9.385	1	29	11,277	4	5734.22	157,054	Pond E1 Outflow
3	Rational	76.79	1	20	92,144				Basin E6-E8
7	Rational	119.99	1	22	158,384				Basin E9-E11
3	Combine	106.13	1	22	213,348	2, 3,			Pond D2 Inflow
)	Reservoir	31.20	1	53	81,085	8	5700.07	244,557	Pond D2 Outflow
10	Combine	189.10	1	22	261,805	5, 6, 7,			Pond E2 Inflow
1	Reservoir	96.43	1	33	224,662	10	5698.66	259,062	Pond E2 Outflow
	; D-E basin	c apw			Peturn	Period: 5	Voor	Monday	Jun 5 2017, 4:16 PM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
	Rational	74.60	1	12	80,573				Basin D1
	Reservoir	10.52	1	33	71,644	1	5756.78	108,212	Pond D1 outflow
	Rational	232.67	1	22	460,692				Basin D2-D5
ļ	Rational	208.33	1	15	187,500				Pond E1 Inflow
5	Reservoir	31.62	1	28	187,499	4	5737.32	293,609	Pond E1 Outflow
3	Rational	165.73	1	20	198,882				Basin E6-E8
7	Rational	242.50	1	22	320,099				Basin E9-E11
3	Combine	242.93	1	22	532,337	2, 3,			Pond D2 Inflow
9	Reservoir	131.19	1	43	508,771	8	5701.75	386,691	Pond D2 Outflow
10	Combine	422.93	1	22	706,480	5, 6, 7,			Pond E2 Inflow
11	Reservoir	257.97	1	31	669,336	10	5700.91	421,789	Pond E2 Outflow
100-	yr; D-E bas	sins.gpv	v		Return	Period: 10	00 Year	Monday, J	Jun 5 2017, 6:15 AM

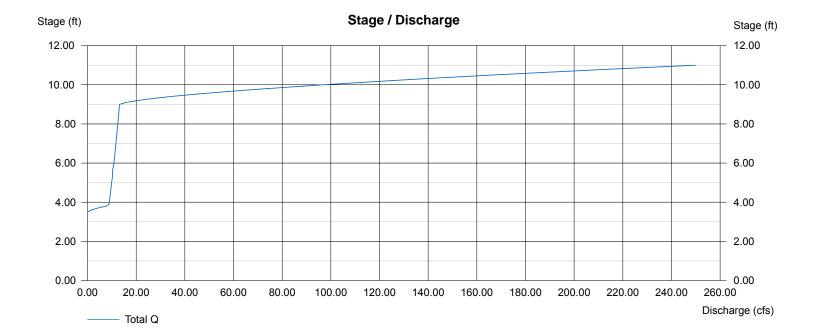
Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:22 AM

Pond No. 1 - Pond D1

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5751.00	00	0	0
1.00	5752.00	10,904	5,452	5,452
2.00	5753.00	19,275	15,090	20,542
3.00	5754.00	21,293	20,284	40,826
4.00	5755.00	23,346	22,320	63,145
5.00	5756.00	25,482	24,414	87,559
6.00	5757.00	27,711	26,597	114,156
7.00	5758.00	30,034	28,873	143,028
8.00	5759.00	32,451	31,243	174,271
9.00	5760.00	37,565	35,008	209,279
10.00	5761.00	40,000	38,783	248,061
11.00	5762.00	43,000	41,500	289,561

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 10.00	0.00	0.00	0.00	Crest Len (ft)	= 14.00	25.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 5754.50	5760.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5750.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 140.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Pond Report

Hydraflow Hydrographs by Intelisolve

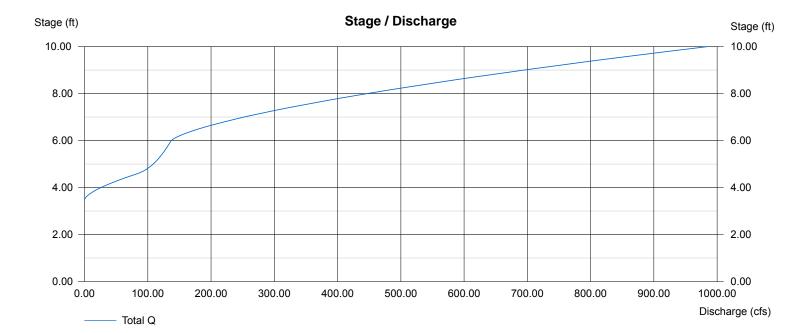
Monday, Jun 5 2017, 6:15 AM

Pond No. 2 - Pond D2

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5696.00	1,068	0	0
1.00	5697.00	48,988	25,028	25,028
2.00	5698.00	72,821	60,905	85,933
3.00	5699.00	76,610	74,716	160,648
4.00	5700.00	80,490	78,550	239,198
5.00	5701.00	84,486	82,488	321,686
6.00	5702.00	88,582	86,534	408,220
7.00	5703.00	92,768	90,675	498,895
8.00	5704.00	97,074	94,921	593,816
9.00	5705.00	102,033	99,554	693,370
10.00	5706.00	106,000	104,017	797,386

Culvert / Orifice Structures

		_		
1/1	air	Ctri	IC+I	Ires

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	0.00	0.00	0.00	Crest Len (ft)	= 22.00	30.00	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 5699.50	5702.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5694.55	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 110.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Pond Report

Hydraflow Hydrographs by Intelisolve

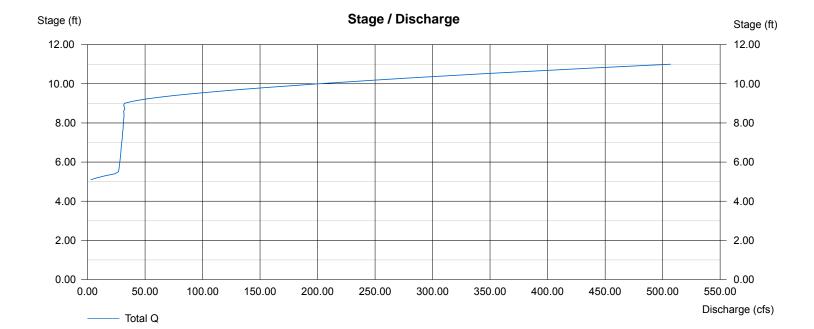
Monday, May 22 2017, 8:22 AM

Pond No. 3 - Pond E1

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5729.00	2,550	0	0
1.00	5730.00	25,900	14,225	14,225
2.00	5731.00	31,341	28,621	42,846
3.00	5732.00	33,851	32,596	75,442
4.00	5733.00	36,442	35,147	110,588
5.00	5734.00	39,105	37,774	148,362
6.00	5735.00	41,838	40,472	188,833
7.00	5736.00	44,644	43,241	232,074
8.00	5737.00	47,527	46,086	278,160
9.00	5738.00	50,487	49,007	327,167
10.00	5739.00	52,120	51,304	378,470
11.00	5740.00	55,072	53,596	432,066

Culvert / Orifice Structures

Weir	Stru	ctures
------	------	--------

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 20.00	0.00	0.00	0.00	Crest Len (ft)	= 28.00	50.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 5734.00	5738.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5727.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 400.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

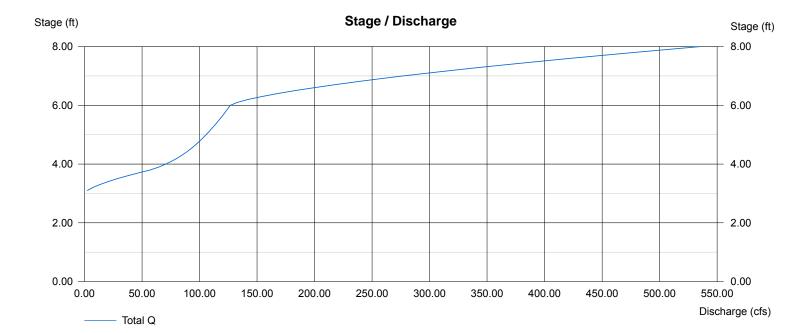
Pond Report

Hydraflow Hydrographs by Intelisolve

Monday, May 22 2017, 8:22 AM

Pond No. 4 - Pond E2

Pond Data


Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5694.00	00	0	0
1.00	5695.00	57,500	28,750	28,750
2.00	5696.00	60,400	58,950	87,700
3.00	5697.00	63,400	61,900	149,600
4.00	5698.00	66,500	64,950	214,550
5.00	5699.00	69,700	68,100	282,650
6.00	5700.00	72,900	71,300	353,950
7.00	5701.00	76,300	74,600	428,550
8.00	5702.00	79,600	77,950	506,500

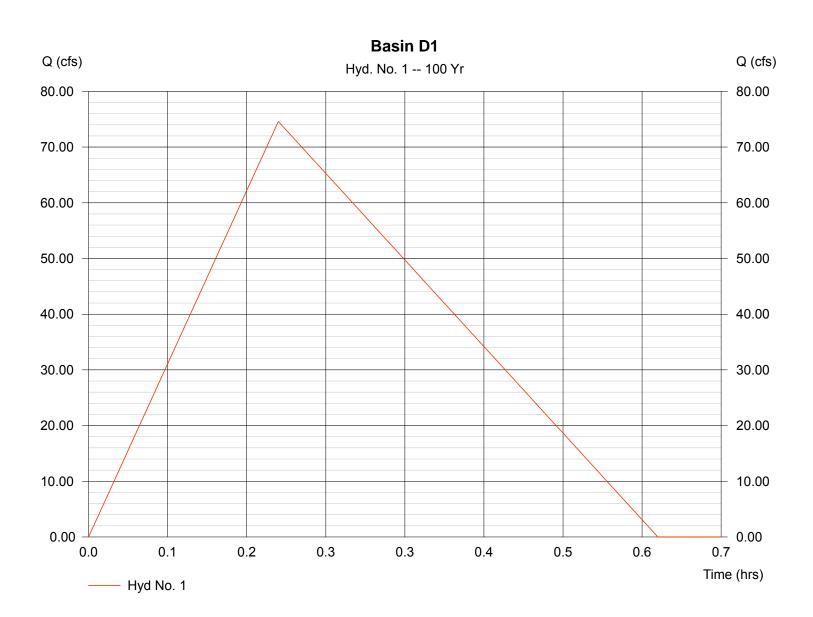
Culvert / Orifice Structures Weir Structures [B] [C] [A] [D] [A] [B] [C] [D] 0.00 0.00 Rise (in) = 48.00 0.00 Crest Len (ft) = 24.00 40.00 0.00 0.00 Span (in) = 48.00 0.00 0.00 0.00 Crest El. (ft) = 5697.00 5700.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.333.33 0.00 0.00 Invert El. (ft) = 5693.10 0.00 0.00 0.00 Weir Type = Riser Ciplti 0.00 0.00 Length (ft) = 160.00 0.00 Multi-Stage = Yes No No No 0.00 0.00 = 0.500.00 Slope (%) N-Value = .013 .013 .013 .013 Orif. Coeff. = 0.600.60 0.60 0.60 Multi-Stage = n/aNo No No Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM

Hyd. No. 1


Basin D1

Hydrograph type = Rational
Storm frequency = 100 yrs
Drainage area = 17.000 ac
Intensity = 6.752 in/hr

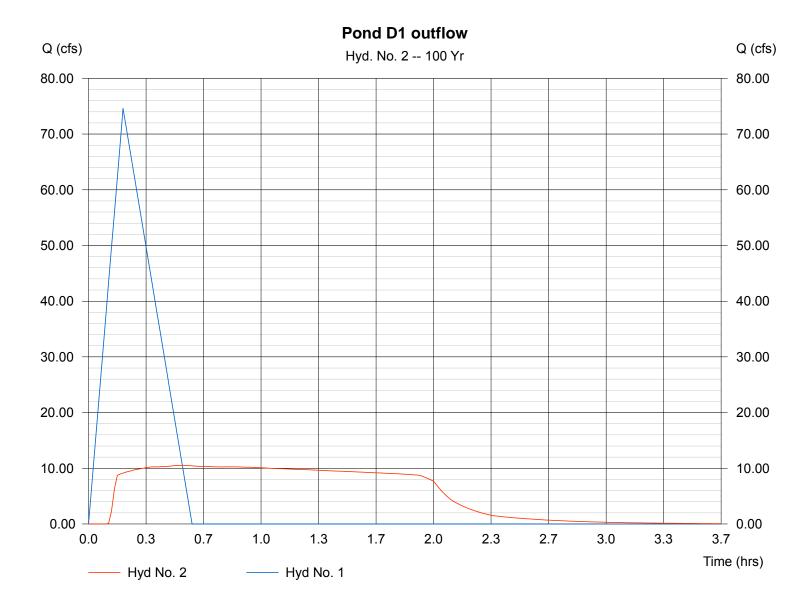
IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 74.60 cfs
Time interval = 1 min
Runoff coeff. = 0.65
Tc by User = 12.00 min
Asc/Rec limb fact = 1/2

Hydrograph Volume = 80,573 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM


Hyd. No. 2

Pond D1 outflow

Hydrograph type = Reservoir Peak discharge = 10.52 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 1 Max. Elevation = 5756.78 ft Reservoir name = Pond D1 Max. Storage = 108,212 cuft

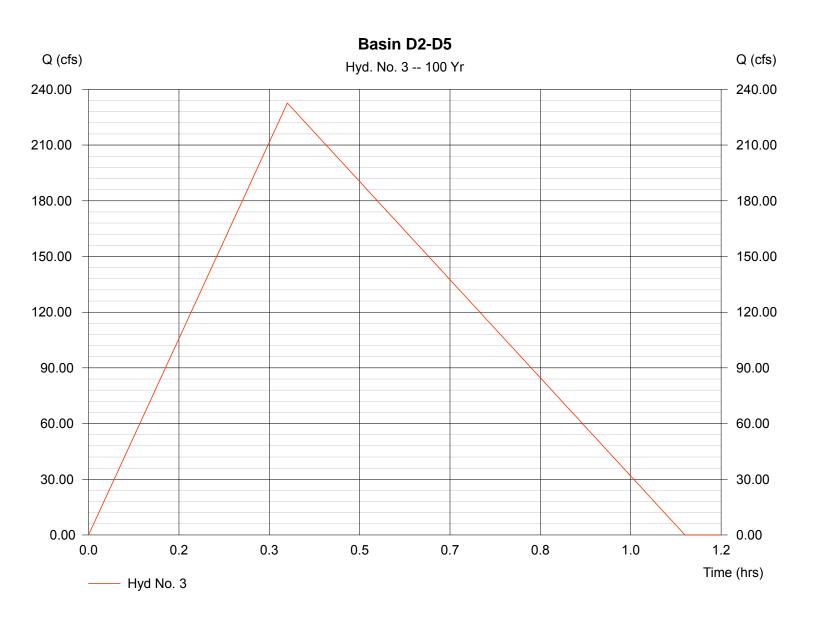
Storage Indication method used. Wet pond routing start elevation = 5754.10 ft.

Hydrograph Volume = 71,644 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM

Hyd. No. 3


Basin D2-D5

Hydrograph type = Rational
Storm frequency = 100 yrs
Drainage area = 72.000 ac
Intensity = 5.049 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 232.67 cfs
Time interval = 1 min
Runoff coeff. = 0.64
Tc by User = 22.00 min
Asc/Rec limb fact = 1/2

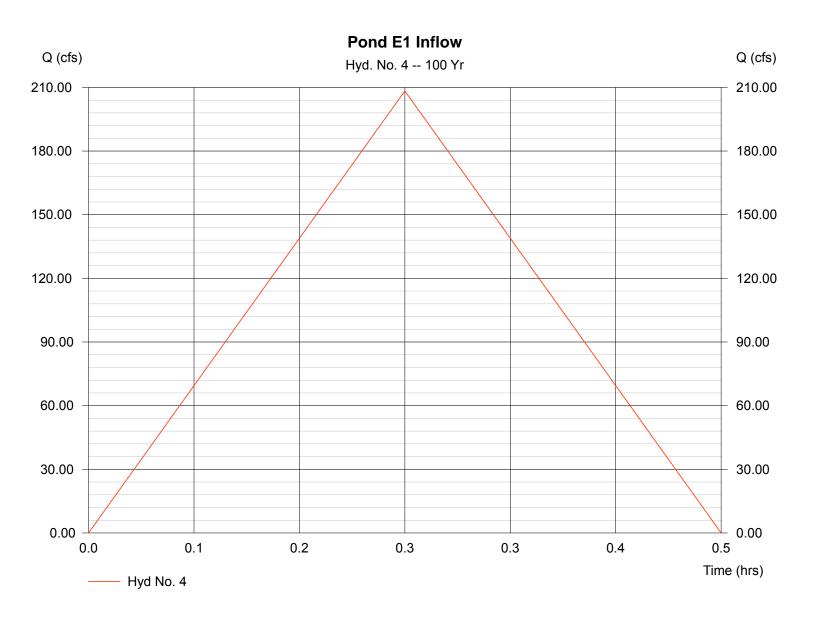
Hydrograph Volume = 460,692 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM

Hyd. No. 4

Pond E1 Inflow


Hydrograph type = Rational Storm frequency = 100 yrsDrainage area = 56.500 acIntensity = 6.146 in/hr

IDF Curve = 2016-idf curves-rls.IDF Peak discharge = 208.33 cfsTime interval = 1 min Runoff coeff. = 0.6

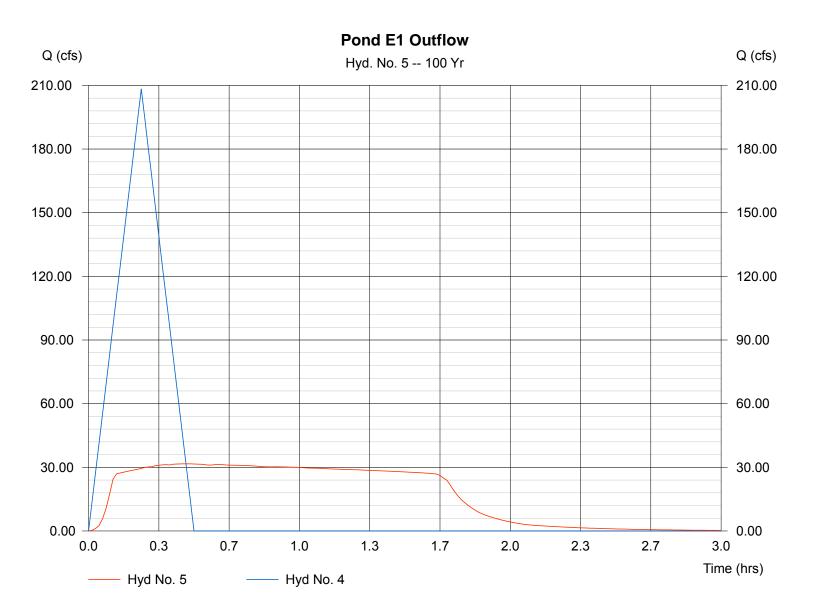
Tc by User = 15.00 min

Asc/Rec limb fact = 1/1

Hydrograph Volume = 187,500 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM


Hyd. No. 5

Pond E1 Outflow

Hydrograph type = Reservoir Peak discharge = 31.62 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 4 Max. Elevation = 5737.32 ftReservoir name = Pond E1 Max. Storage = 293,609 cuft

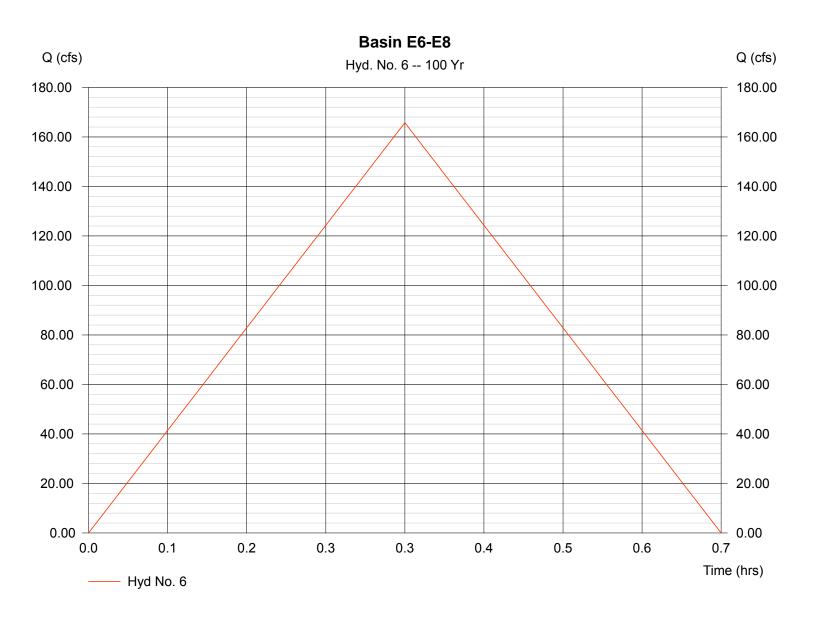
Storage Indication method used. Wet pond routing start elevation = 5734.00 ft.

Hydrograph Volume = 187,499 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM

Hyd. No. 6


Basin E6-E8

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 49.400 ac Intensity = 5.325 in/hr

IDF Curve = 2016-idf curves-rls.IDF

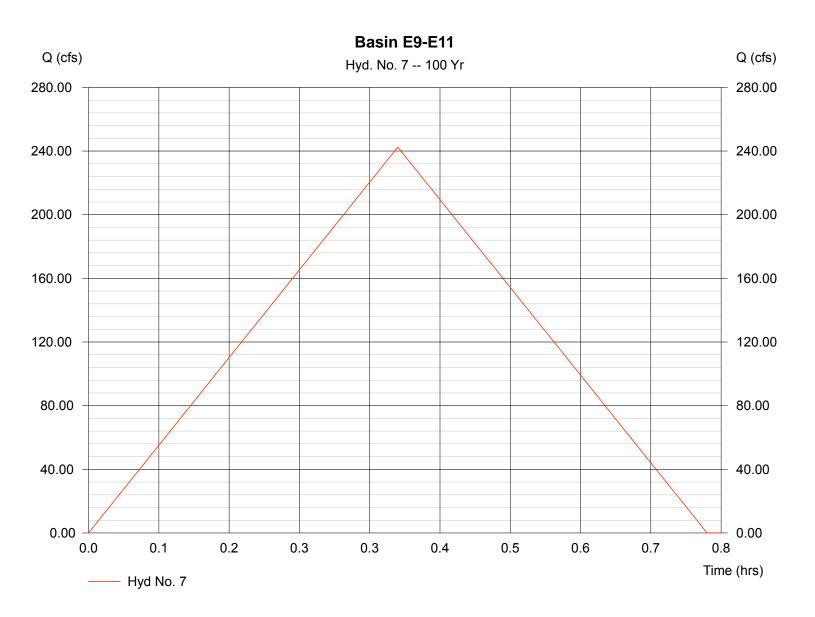
Peak discharge = 165.73 cfs
Time interval = 1 min
Runoff coeff. = 0.63
Tc by User = 20.00 min
Asc/Rec limb fact = 1/1

Hydrograph Volume = 198,882 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM

Hyd. No. 7


Basin E9-E11

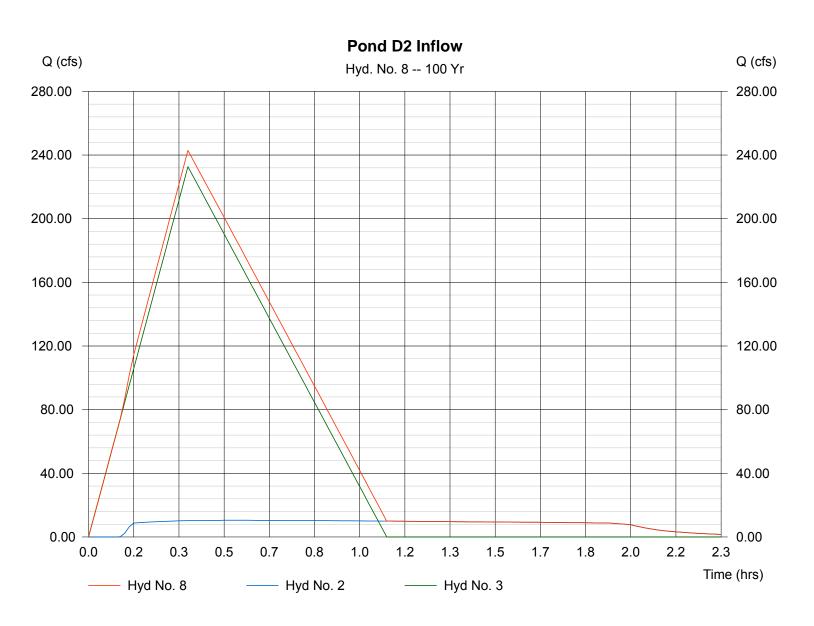
Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 81.400 ac Intensity = 5.049 in/hr

IDF Curve = 2016-idf curves-rls.IDF

Peak discharge = 242.50 cfs
Time interval = 1 min
Runoff coeff. = 0.59
Tc by User = 22.00 min
Asc/Rec limb fact = 1/1

Hydrograph Volume = 320,099 cuft

Hydraflow Hydrographs by Intelisolve


Monday, Jun 5 2017, 6:15 AM

Hyd. No. 8

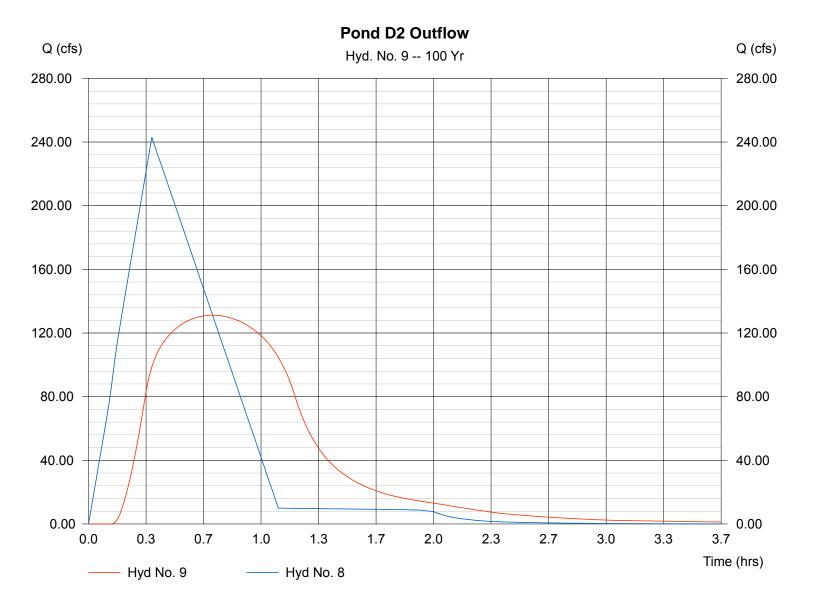
Pond D2 Inflow

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 2, 3 Peak discharge = 242.93 cfs Time interval = 1 min

Hydrograph Volume = 532,337 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM


Hyd. No. 9

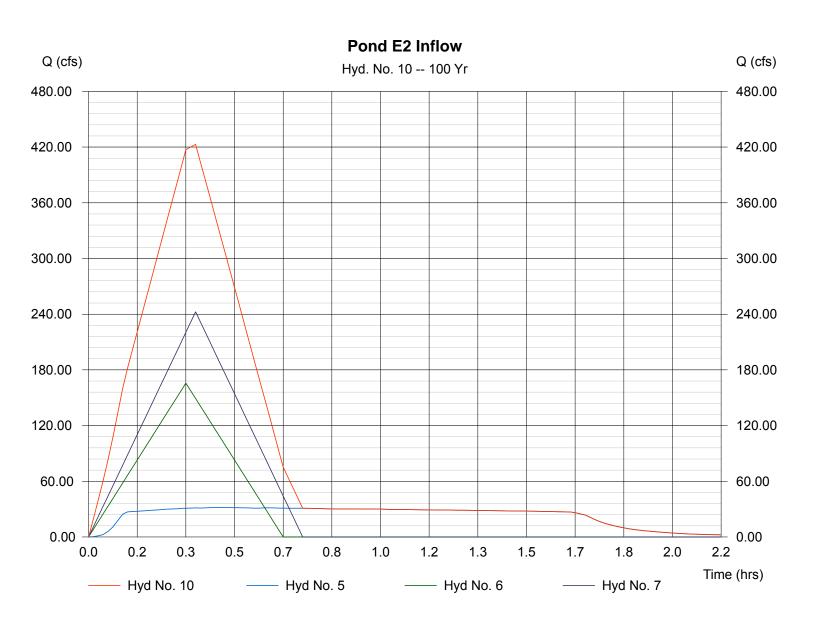
Pond D2 Outflow

Hydrograph type = Reservoir Peak discharge = 131.19 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 8 Max. Elevation = 5701.75 ftReservoir name = Pond D2 Max. Storage = 386,691 cuft

Storage Indication method used. Wet pond routing start elevation = 5699.20 ft.

Hydrograph Volume = 508,771 cuft

Hydraflow Hydrographs by Intelisolve


Monday, Jun 5 2017, 6:15 AM

Hyd. No. 10

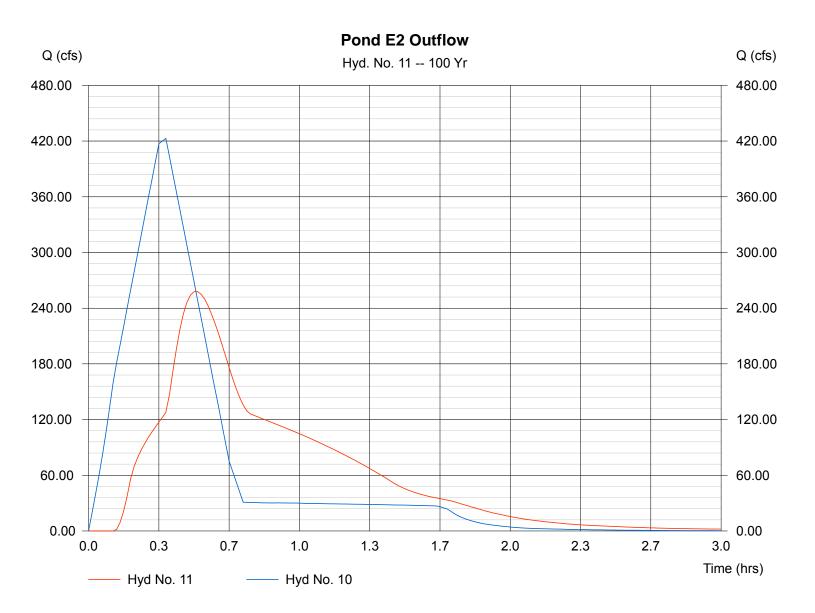
Pond E2 Inflow

Hydrograph type = Combine Storm frequency = 100 yrs Inflow hyds. = 5, 6, 7 Peak discharge = 422.93 cfs Time interval = 1 min

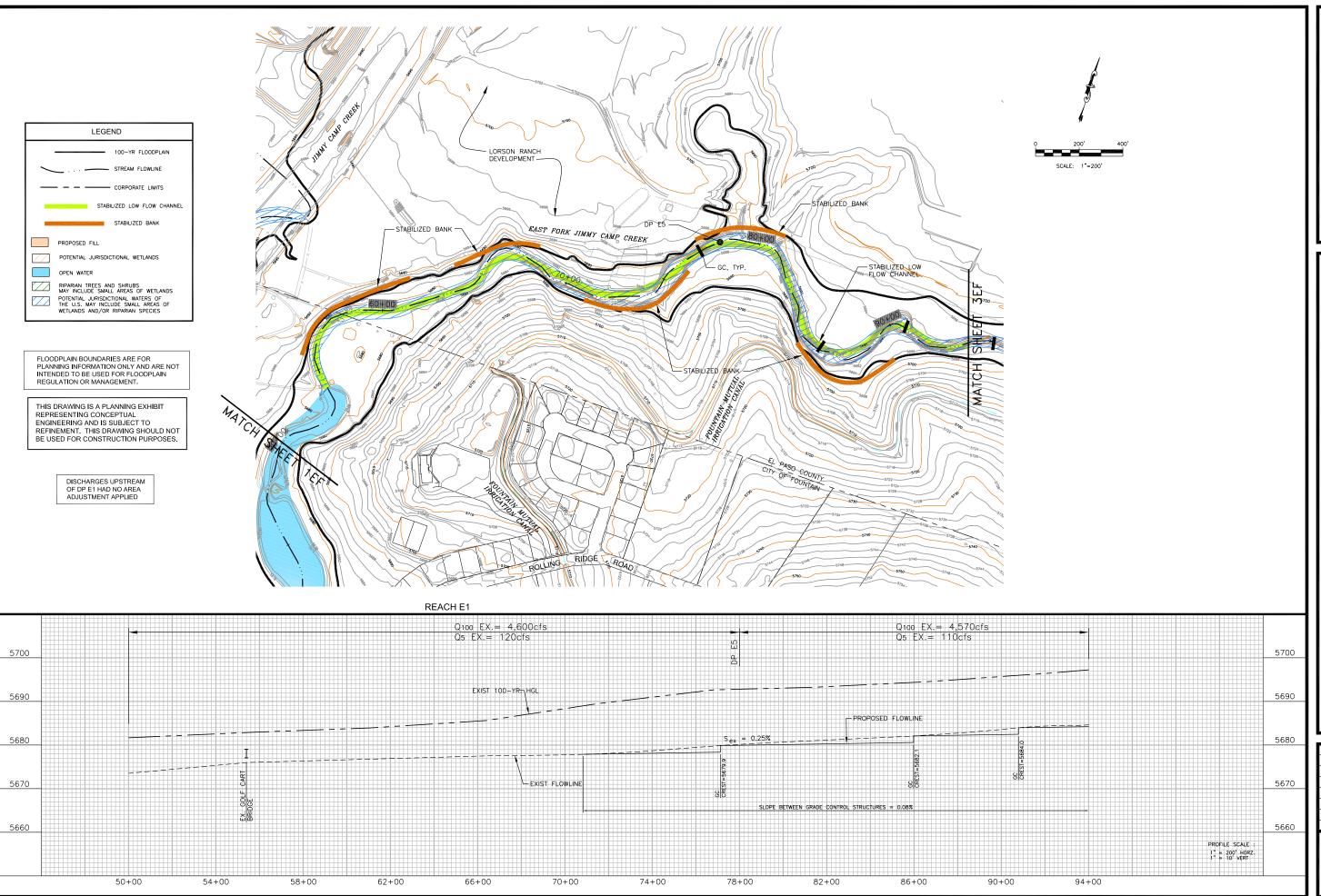
Hydrograph Volume = 706,480 cuft

Hydraflow Hydrographs by Intelisolve

Monday, Jun 5 2017, 6:15 AM


Hyd. No. 11

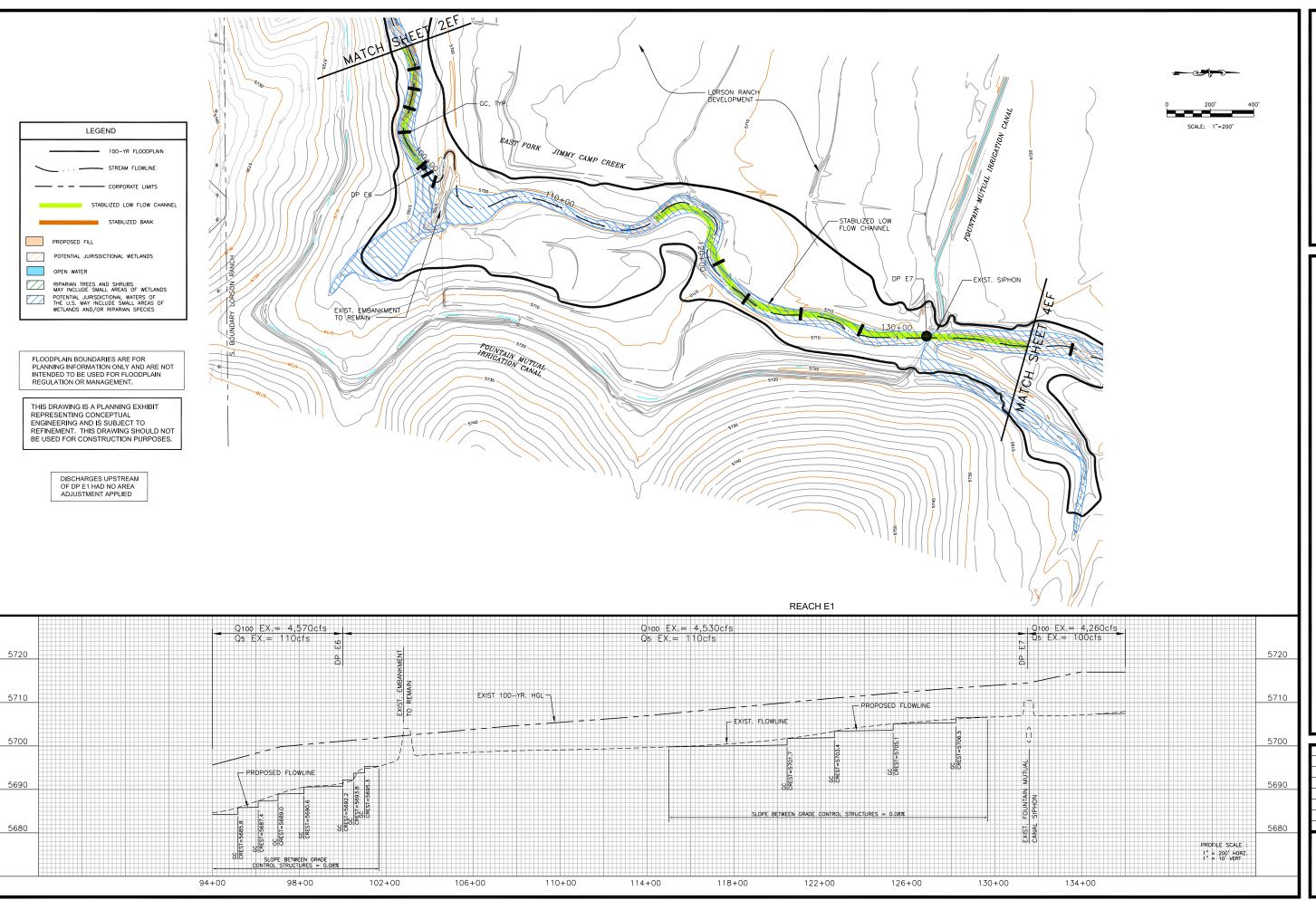
Pond E2 Outflow


Hydrograph type = Reservoir Peak discharge = 257.97 cfsTime interval Storm frequency = 100 yrs= 1 min Inflow hyd. No. = 10 Max. Elevation = 5700.91 ftReservoir name = Pond E2 Max. Storage = 421,789 cuft

Storage Indication method used. Wet pond routing start elevation = 5696.40 ft.

Hydrograph Volume = 669,336 cuft

APPENDIX F – JIMMY CAMP CREEK DBPS – KIOWA ENGINEERING

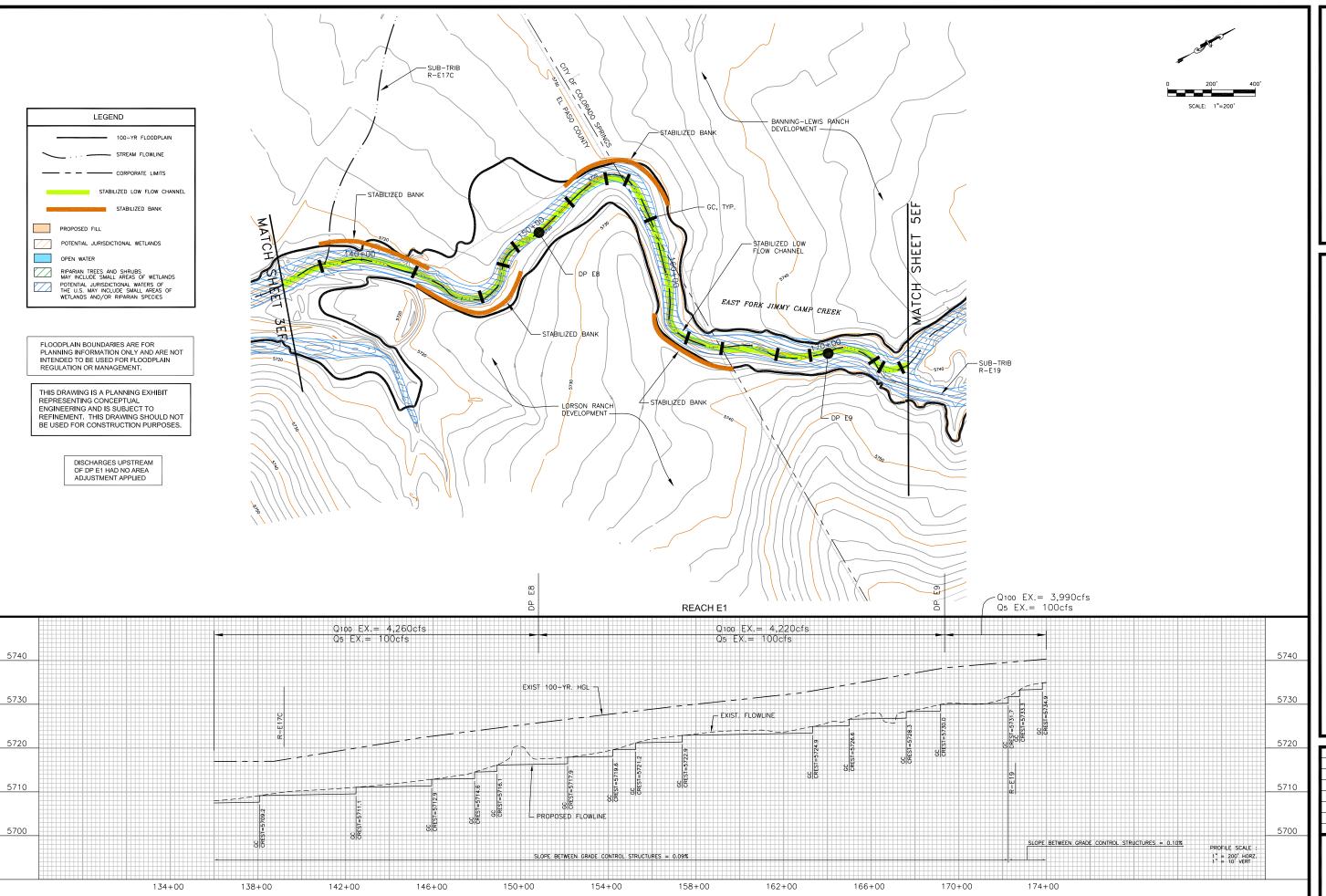


JIMMY CAMP CREEK DRAINAGE BASIN PLANNING STUDY EAST FORK JIMMY CAMP CREEK CONCEPTUAL DESIGN PLAN & PROFILE CITY OF COLORADO SPRINGS, COLORADO

Project No.: 14008
Date: OCTOBER 2014
Design: RNW
Drawn: JLN
Check: RNW
Revisions:

2EF

14008-2EF-736cdpp.dwg/Aug 19, 20



JIMMY CAMP CREEK DRAINAGE BASIN PLANNING STUDY EAST FORK JIMMY CAMP CREEK CONCEPTUAL DESIGN PLAN & PROFILE CITY OF COLORADO SPRINGS, COLORADO

Project No.: 14008
Date: OCTOBER 2014
Design: RNW
Drawn: JLN
Check: RNW
Revisions:

3EF

14008-3EF-251cdpp.dwg/Aug 19, 2

JIMMY CAMP CREEK DRAINAGE BASIN PLANNING STUDY EAST FORK JIMMY CAMP CREEK CONCEPTUAL DESIGN PLAN & PROFILE CITY OF COLORADO SPRINGS, COLORADO

Project No.: 14008
Date: OCTOBER 2014
Design: RNW
Drawn: JLN
Check: RNW
Revisions:

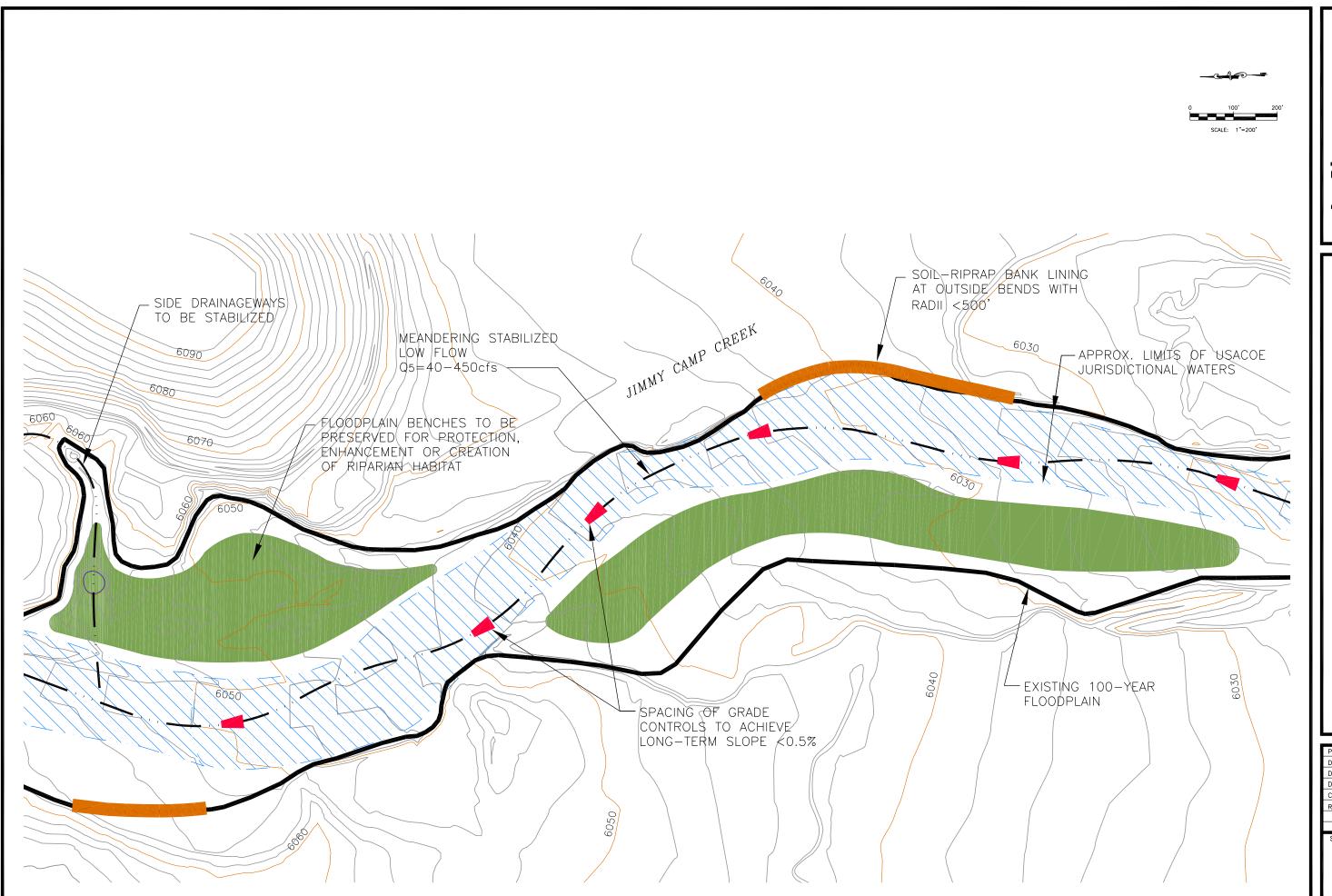
4EF

14008-4EF-766cdpp.dwg/Aug 19, 20

TUDY

Engineering Corpors

JNS & DETAILS

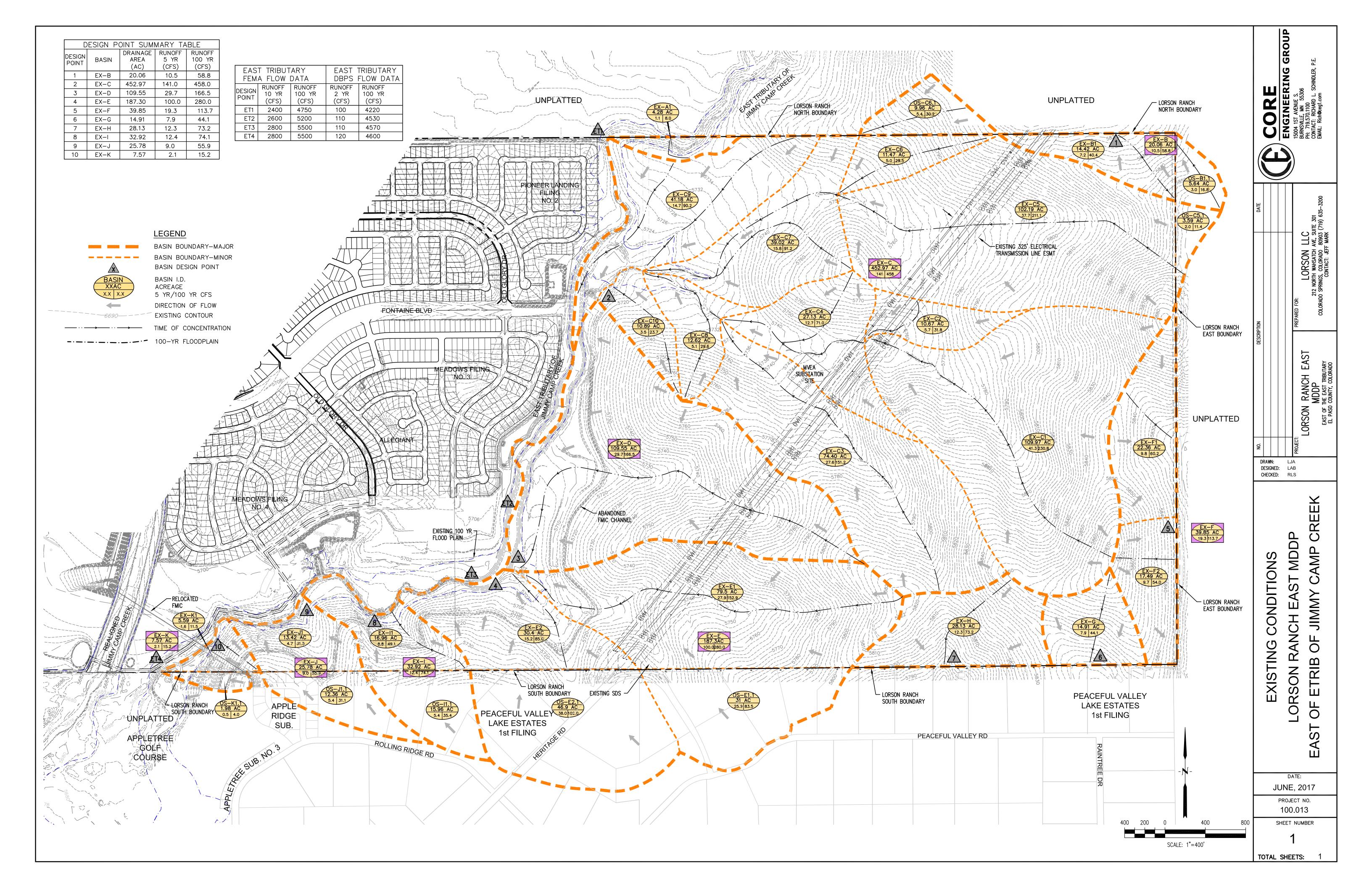

Colorado Springs, 2007404 808

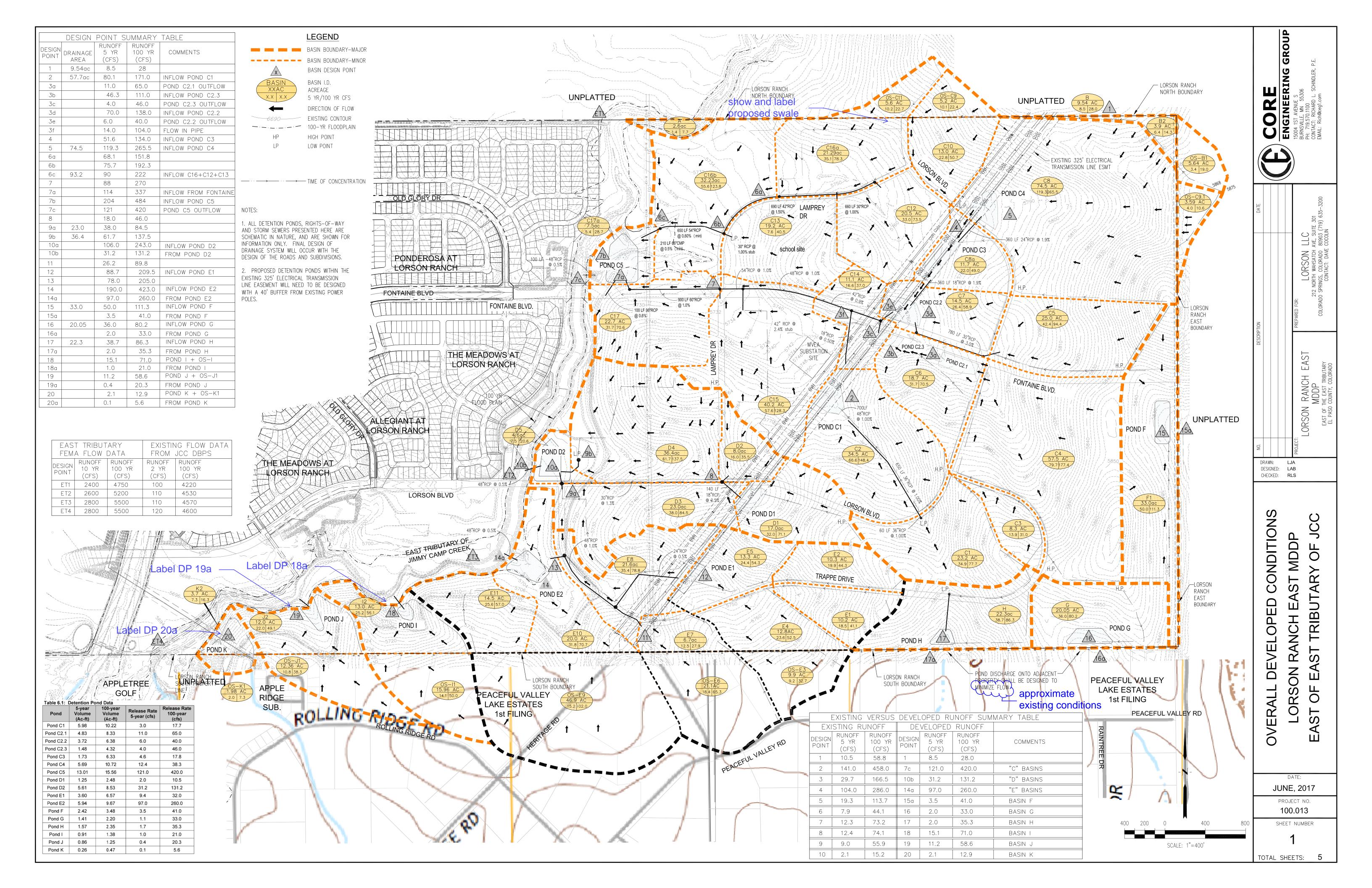
JIMMY CAMP CREEK
DRAINAGE BASIN PLANNING STUDY
TYPICAL FLOODPLAIN PRESERVATION SECTIONS & DETAILS

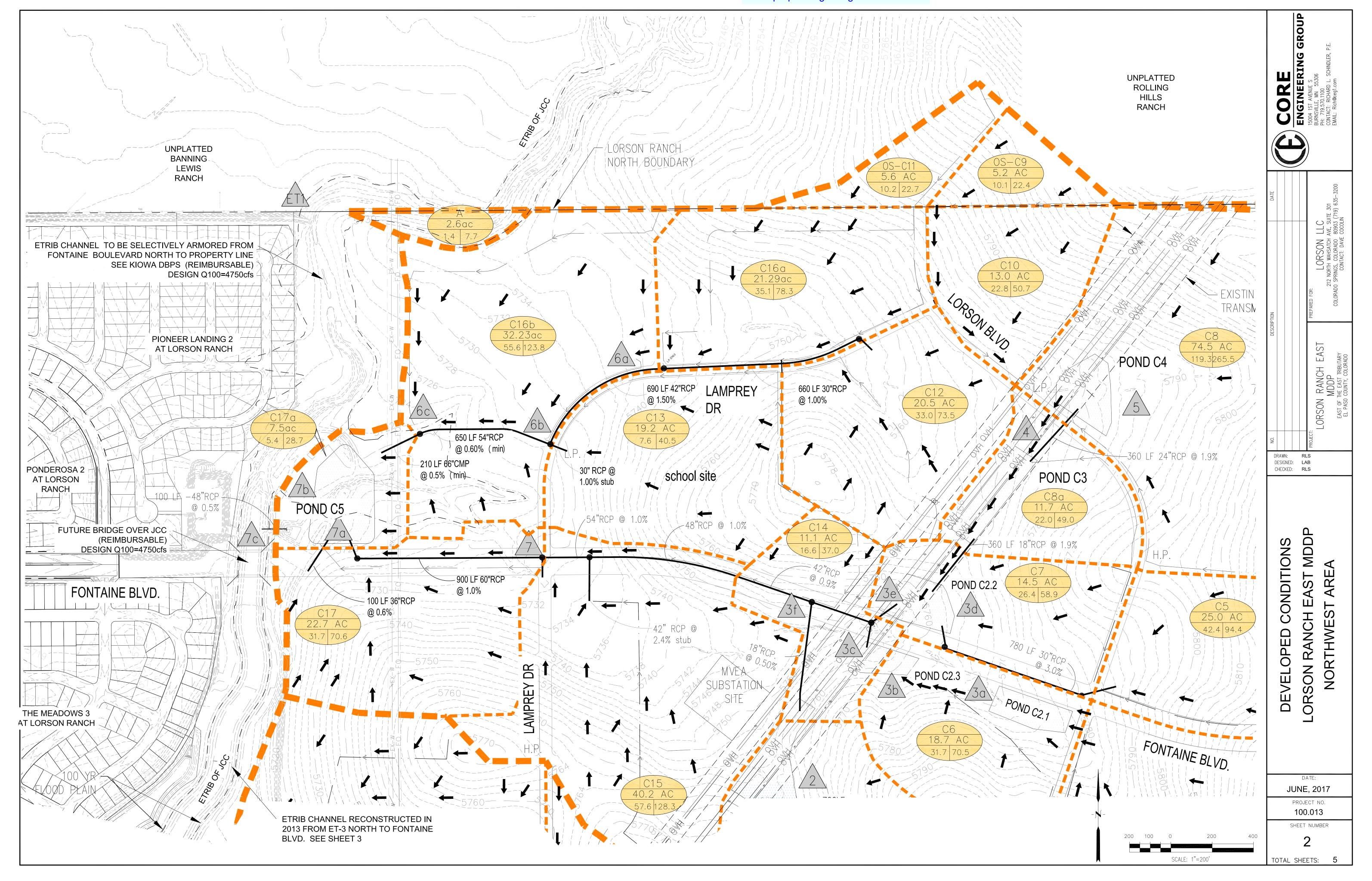
Project No.: 14008
Date: OCTOBER 2014
Design: RNW
Drawn: JLN
Check: RNW
Revisions:

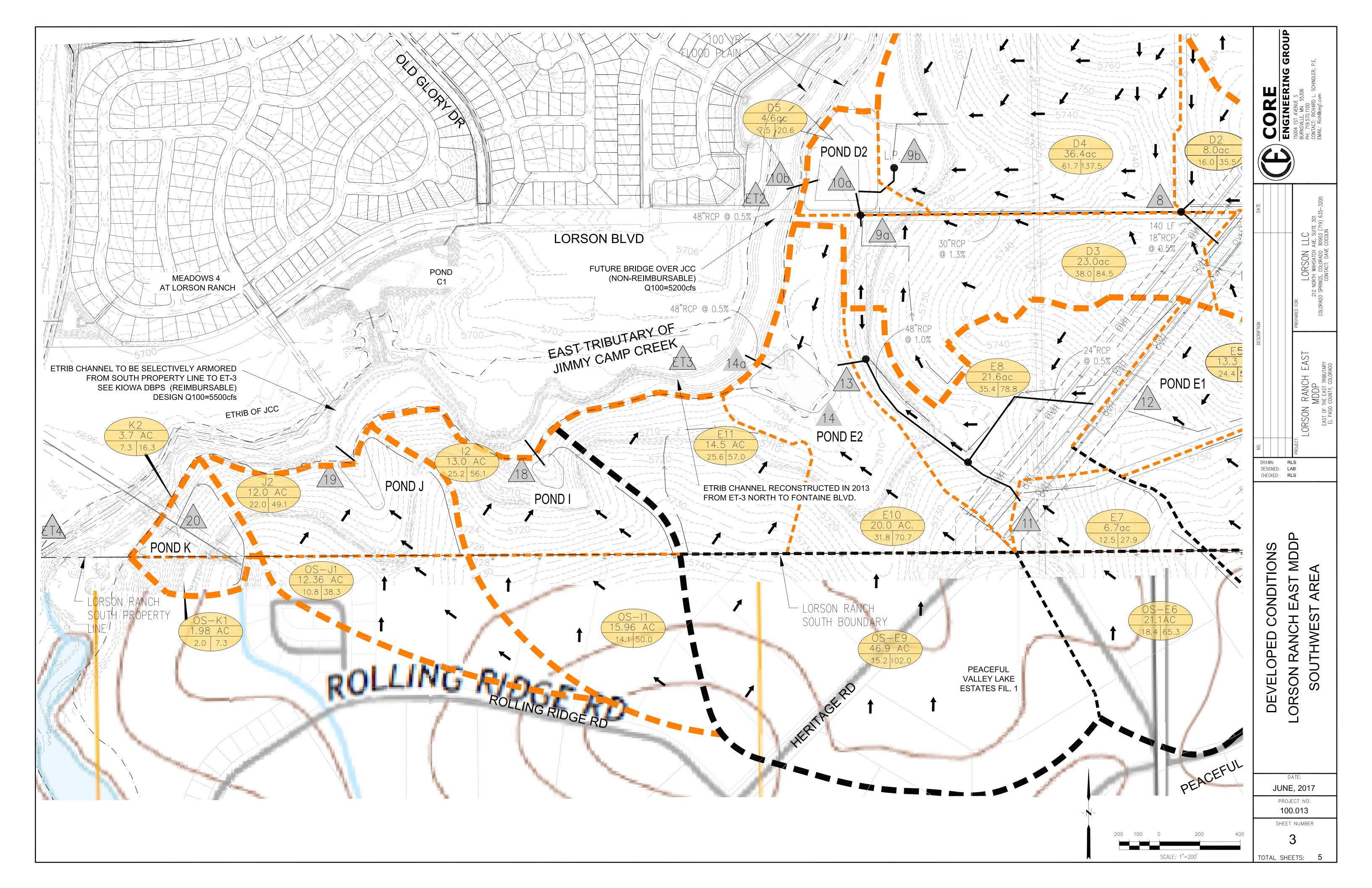
SHEET

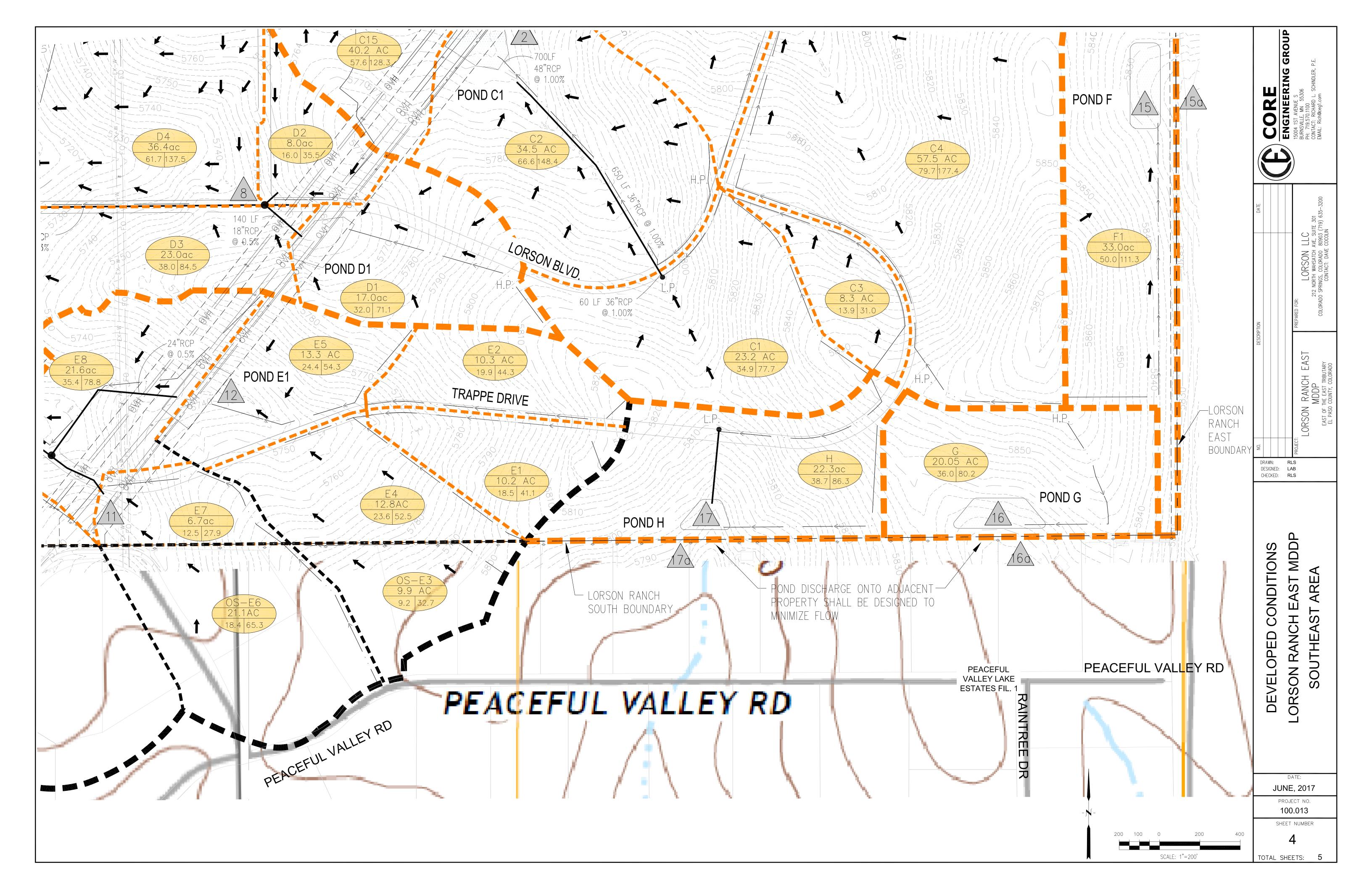
1008-cd-sht2.dwg/Aug 27, 2014

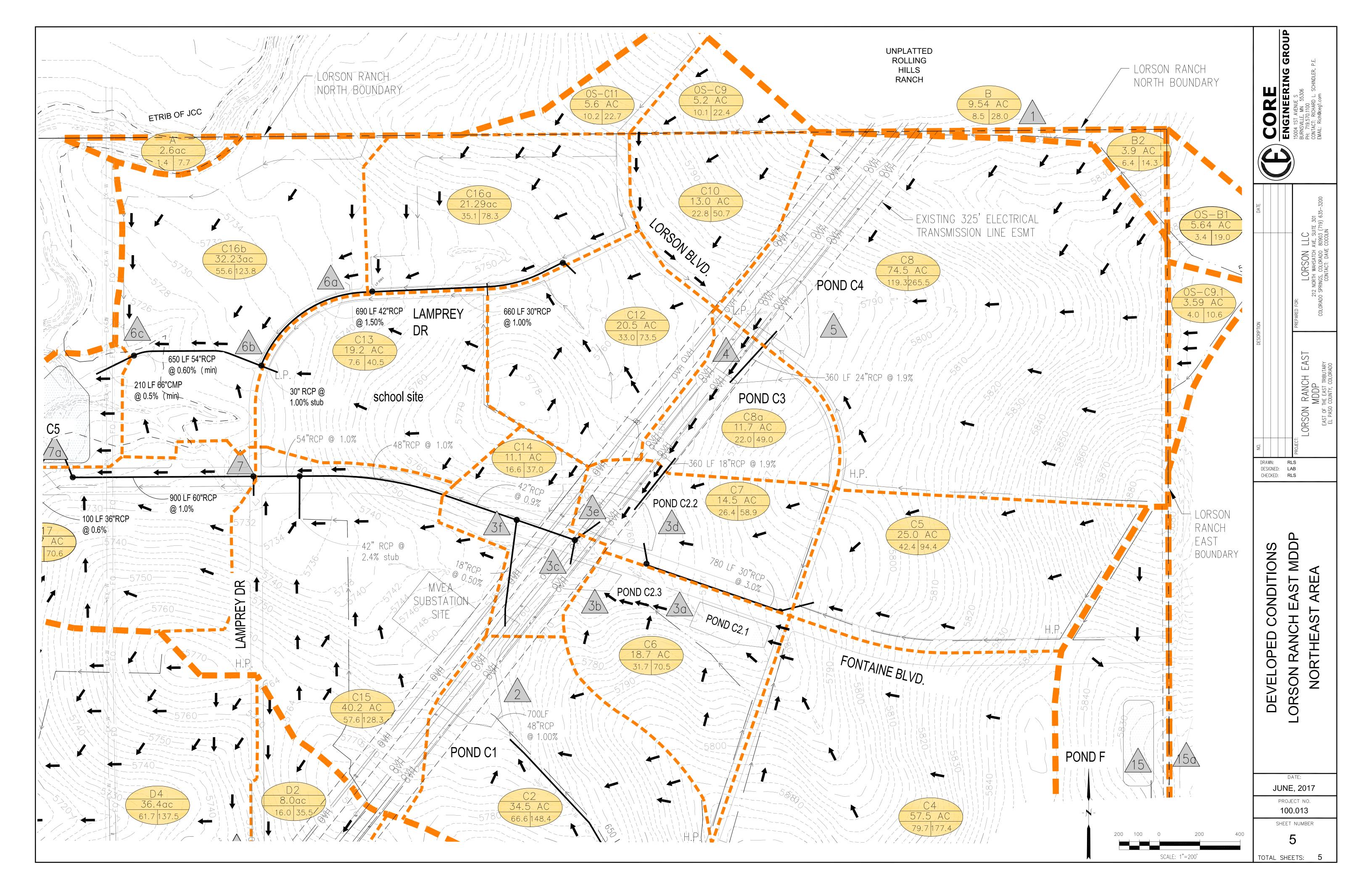

JIMMY CAMP CREEK DRAINAGE BASIN PLANNING STUDY JIMMY CAMP CREEK


JIMMY CAMP CREEK
TYPICAL FLOODPLAIN PRESERVATION PLAN
CITY OF COLORADO SPRINGS, COLORADO


Project No.: 14008
Date: OCTOBER 2014
Design: RNW
Drown: JLN
Check: RNW
Revisions:


SHEET


....



Markup Summary

alex.dabdub (4)

January 29, 2015 . 957 OF 1300 NDEX FOR PANELS NOT PRINTED) Subject: Text Box Page Label: 31 Lock: Unlocked

Status:

Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM

Color:

COLORADO AND INCORPORATED AI REVISED TO REFLECT LOMR EFFECTIVE:

PANEL 957 OF 1300
OCT MAD ANDY FOR BASIS CAN

Subject: LOMR Stamp Page Label: 31 Lock: Unlocked

Status:

Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM

Color:

Lock: Unlocked

MAP WINBER

WAP WINBER

WARNINGENE

WARNIN

Subject: Text Box
Page Label: 32

Janua

Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:48:14 PM

Color:

REVISED TO
REFECTIVE:

Subject: LOMR Stamp Page Label: 32 Lock: Unlocked Status:

Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:48:14 PM

Color:

dsdrice (56)

he north in a southwesterly direction idressed with this report is bounded existing ranch hand and the future the yellow south the yellow south and the future the yellow south southwest was the yellow southwest with the yellow southwest yellow

Subject: Callout Page Label: 4 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 8:29:04 AM

Color:

An extension operation is a second of the second of the size of the second of the seco

Subject: Callout Page Label: 4 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 8:27:39 AM

Color:

January 29, 2015

January 29, 2015

by the developer

in a historic manner

Subject: Cloud+ Page Label: 4 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 2:45:41 PM

Color:

Subject: Callout Page Label: 4 Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 8:26:55 AM

Color:

Subject: Cloud+ Page Label: 5 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 2:45:49 PM

Color:

delete or reword (not partially adopted, but allowed

delete or reword (not partially adopted, but allowed

Other than flows actually conveyed by the East

for concept)

Tributary...

for concept)

mprovements are study area. The ridge for Fontaine Boulevard bridge inty 2060 Major bridge is not Subject: Callout Page Label: 5 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/2/2017 2:55:29 PM

Color:

Subject: Cloud+ Page Label: 5 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 2:54:52 PM

Color:

reimbursable in accordance with adopted DBPS -improvements from the new DBPS need to go

through the process

Subject: Cloud+ Page Label: 5 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 2:48:00 PM

Color:

(fees were not calculated for El Paso County)

Subject: Cloud+ see below Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/2/2017 2:57:03 PM Color: Subject: Callout in conformance with (?) Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 8:33:55 AM Color: Subject: Cloud+ see previous comments Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/2/2017 3:03:34 PM Color: Subject: Cloud+ see previous comments Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/2/2017 3:02:22 PM Color: Subject: Callout bedrock Page Label: 7 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/2/2017 3:09:05 PM Color: Subject: Cloud+ 100 and 280? Page Label: 9

Status: Checkmark: Unchecked

Lock: Unlocked

Author: dsdrice

Date: 8/2/2017 3:19:10 PM

Color:

Point 3 respectively

Ex-D and is 186.30 sin at 186.30 acres Basin 08-E1.1 and uth. Under existing

Subject: Cloud+ Page Label: 9 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 3:18:00 PM

Color:

7

Subject: Highlight Page Label: 9 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 3:29:28 PM

Color:

and design in the northwest corner of the site and includes the East Tributary, open space contributes 1.4 clts and 7.7 clts to the East Tributary at events respectively. This basin comprises of the East Tributary

I Side acres and will flow overland onto Basin R2. Meddan Road long the eastern border of Lorson Ranch in the future which will lon to Basin R2. For this recort the flows are assumed to flow

Subject: Callout Page Label: 10

Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:27:02 AM

Color:

2.1. The total developed flow is vents. flowing to Pond C2.3?

Subject: Text Box Page Label: 12 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Subject: Text Box

Checkmark: Unchecked

Date: 8/14/2017 10:02:04 AM

Page Label: 12

Lock: Unlocked

Author: dsdrice

Date: 8/14/2017 10:02:43 AM

Color:

Status:

Color:

flow overland onto Basin CS. Meridian order of Lorson Ranch in the future which

flow into Basin C10 and Lorson Boulevard. The at 10.1 chu and 22.4 chi for the 5-year and 100-

Subject: Callout Page Label: 12 Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:16:31 AM

Color:

discuss pond concept and design

flowing to Pond C2.3?

Is Pond C2.1 release (65 cfs) flowing through this

pond?

add Pond C4 outflow rates

Subject: Callout add the inflow values Page Label: 13 Lock: Unlocked Status: VEX.22
In past is the local flow in a storm caser in Fundame Boulevard com-location, Fund CE2 outlies, and Point CE outlies. The total develo-and TOLOUS for the 5-year and TOD-year storm events in the pipe. Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 10:13:59 AM Color: Subject: Callout are and at Design Plant 6. The on-site developed flows this basis for fair the 5 year and 100-year events respectively. discuss overflow path for developed flows Page Label: 13 steed at a time point in Lumian Bisserved (width of Fondame Biol.).
Filled CL. Report of this company point is being Bisser CEs, CSLC.

The hillst developed flow is 31,85% and 136,5 th for the System weeks into Celebration Panid CL. When the Subar profession produced the actual climed Davis and stage profession series and a significant point of the Company of the Stage Stage of the Stage Stage Stage of the Stage Stag Lock: Unlocked Status: Side outline from From C.2.2. The total developed outline is the Eventrated TSD water storm events. Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 10:13:32 AM Color: Subject: Callout add the inflow values Page Label: 13 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 10:12:49 AM Color: Subject: Text Box Discuss pond designs and modeling ponds in Page Label: 13 series. Lock: Unlocked Status: ast of the school site and south of is from this basin are 33.0ds and Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 10:32:41 AM Color: Subject: Cloud+ from Lamprey Dr.? Page Label: 14 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/14/2017 10:23:09 AM Color:

Subject: Callout Page Label: 14 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:20:15 AM

Color:

show on plan

Subject: Callout Page Label: 15

Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice Date: 8/14/2017 10:32:05 AM

Color:

Discuss pond design, add contributing acreage

Discuss pond D1 design

Discuss pond D2 design

Discuss pond E2 design

go for the over basis remains of maintening development and Lenam Strukment that page in Paug Sch south of Lenam Strukment. The developed Strukment that have been this basis are \$1.00 and \$1.00 for the Euper and \$10 page are with page are not subjectively. paint Paint 1

The design paint is in Lorson Seniorard just east of Languag Drice. Fines are from again (2) and Print E in outgoe. The description flows from them, the form and thinks are distributed to the Color and the Color Subject: Callout Page Label: 15 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Subject: Callout

Date: 8/14/2017 10:29:52 AM

Color:

.....

is 6.6 are basis that certains Pend CO, posters of Lensen Bauleurel, and ense. The developed flows from this basis are 7 felst and 2016 sh for the 6. 30 pear scents respectively. Flows from this basis will be directed to Pand 4:104 portris the total flow into Pland GD flow Design Paints 8, tie, tie and Basin control flow of this design point is 100.0 of and 241.0 do for the E-pair and entitioning of the Control of the Control of the Control of the entition of the Control of the Cont point is the solidal of Porol III into the East Trinslay. The developed from tigs point are 67-bits, and G1-26s for the Exper and 100-pair servis. I have from shootly strike the existing smallers from this feet facility. The form developes of the East for Table II for a comprehend of shooting resembles developes and the facility.

— C.G.E.S in 1:85 arrows and complete of second from the Preparabil Valley Lake Filtry which is an embring residential large let substitution consisting of lawer bits. The result of the convoluted into Latent Result into Each Ed. (in converged in Pred E3 and the Each Tolonkey, Shored from Resin CG.E3.)

Page Label: 16 Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:31:33 AM

Color:

is braided at a low-point on Toppes Drive where a all'altern wasser will make to Design Point 14 and Point 52. The descripped fisces at this black and 20 Link for the Cyser and 100 year exerts respectively.

Subject: Callout Page Label: 17 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:36:33 AM

Color:

Subject: Callout

DP11?

is located on Trappe Drive where a 45 gn Point 13. The developed flows fro

pasin is located directly north of Basin E7 Checkmark: Unchecked

Author: dsdrice

Subject: Callout

Page Label: 17 Lock: Unlocked

Date: 8/14/2017 10:35:49 AM

Color:

and 12
Med E1 at Design Point I2 from Institute E1 88
of 100 year down months repetitudy.
—— Discussion point E1 Discuss pond E1 design
to 6 leve hanh is inseled deedly such at East O&E and flow seel in Taype
the 6 leve hanh is inseled deedly such at East O&E and flow seel in Taype
they are sizen some not seenly for the see in to legally fine it 13. The descipped
sax hom tin basis are 10.6th and 27.6th for the Eyear and 100-year events
appelledly. Inter Park 11. In deep park is limited on Tappe Drive where a 65° storm sensor all convey the ser used to Design Park 10. The developed flows how this bank are 26 July and 5 July to 10 July and 10 July to 10 July 1 aris 49. In 27-have basin is located directly north of Basin ET and floor wouth and west to appen Drive where a sterm seaso will sorousy the floor west to Design Point IX. The

Page Label: 17 Lock: Unlocked Status: Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:34:24 AM

Color:

Discuss pond E1 design

Subject: Cloud+ Page Label: 18 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:39:41 AM

Color:

property erm. It I Lock: Unlocked

Subject: Highlight Page Label: 18

Status:

evaluated Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:39:47 AM

Color:

spinosery. I have many county money on assuring commons soon, one one was studied, bee Table E2 for a companion of existing versus streading used to the East Souther. This could sell soon involve upon marks for development within East.

Discuss pond F design to be tale soller from Proof F developed force are 3.5 sh and Coper and 100 per memb reporting and force and into the East from strong resident forces for said on 5.5 for East from strong resident forces for the East from strong resident forces from the East from strong resident forces from the East from strong resident forces from the East fr nullhand corner of the shalp areas. It is 20.00 areas in size Delection Plant G is proposed near the southern inschalery stilled to solve the number to take the pro-desting-stilled of the state the number of the pro-sp Plant G at Cassign Point 16 are 26 ok and 80.24% for the Page Label: 18

Status:

Checkmark: Unchecked

Author: dsdrice

Lock: Unlocked Status:

Date: 8/14/2017 10:37:41 AM

is 20.05 acres in size the southern boundary

for to its the total matters from Parel F. The devoluped from are 3.6 sth and in Egenar and 100 pair events requirelying and flow west into the East on from stoody wints the existing conditions finning east. Table 6.2 for

ps Point 17 implies in the southeast comer of the study areas. It is 22.3 areas in size on from albide. The Intel from reaching Ford H at Design Point 17 are IE.3ab to the Espair and 100 per slame earth requestions.

Subject: Callout

Lock: Unlocked

Color:

Subject: Cloud+ where? Page Label: 18

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:38:29 AM

Color:

Subject: Callout Page Label: 18 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:39:02 AM

Color:

Subject: Cloud+ Page Label: 18 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/11/2017 4:21:11 PM

Color:

Discuss pond G design

Discuss pond F design

full-spectrum sizing is based on contributing

impervious area

Subject: Callout Page Label: 19

Lock: Unlocked Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:43:25 AM

Color:

in the in the first from Panel I and in invaled adjacent to the East Tributary, empty, avoid from Easts O, detains, tends, result, and declarages is not in this declary. The pend audies in I claim and 21 this superioral is or the Easts or share names, found from Easts OSLII is revised around Panel I and will not be benefit to retain the Collis in revised around Panel I and will DEST IN A SECURITY OF THE PROPERTY OF THE PROP

Subject: Callout Page Label: 19

Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:41:47 AM

Color:

Subject: Callout Page Label: 20 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:47:58 AM

Color:

Subject: Callout Page Label: 20 Lock: Unlocked

Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:48:54 AM

Color:

Subject: Callout Page Label: 20 Lock: Unlocked

Status: Checkmark: Unchecked

Author: dsdrice Date: 8/14/2017 10:49:00 AM

Color:

Subject: Cloud+ Page Label: 20 Lock: Unlocked Status:

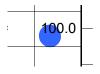
Checkmark: Unchecked Author: dsdrice

Date: 8/14/2017 10:52:30 AM

Color:

how? by swale?

consisting of future residential lots?


consisting of future residential lots?

how? by swale?

how? by swale?

Reword that reimbursement may be requested through the DCM and Drainage Board process.

Subject: Cloud+ This needs to be clarified. Page Label: 21 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 12:55:13 PM Color: Subject: Callout Add contributing area column Page Label: 21 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 12:57:08 PM Color: Subject: Text Box (full-spectrum (?)) Page Label: 21 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 12:56:02 PM Color: Subject: Cloud+ These seem high for existing. Provide land Page Label: 37 use/impervious table and coefficients tables. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:11:42 AM Color:

Subject: Highlight Page Label: 38 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 3:20:11 PM

Color:

Subject: Highlight Page Label: 40 Lock: Unlocked Status:

Checkmark: Unchecked Author: dsdrice

Date: 8/2/2017 3:19:29 PM

Color:

Subject: Callout

Page Label: 166

show and label proposed swale

Page Label: 166 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:20:57 AM

Color:

Label DP 19a

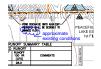
Label DP 20a

Label DP 18a

approximate existing conditions

Subject: Callout Page Label: 166 Lock: Unlocked

Status:


Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:47:24 AM

Color:

Subject: Cloud+ Page Label: 166 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/11/2017 2:15:09 PM

Color:

Lugar, Aven

Subject: Callout Page Label: 166 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:48:20 AM

Color:

.....

Subject: Callout Page Label: 166 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 10:45:04 AM

Color:

.....

Subject: Text Box Page Label: 167 Lock: Unlocked

Status:

Checkmark: Unchecked

Author: dsdrice

Date: 8/14/2017 11:27:22 AM

Color:

Show proposed grading on sheets 2-5

RSchindler (13)

Subject: Polygonal Line

Page Label: 26 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 10:56:22 AM

Color:

Subject: Callout Page Label: 26

Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 10:54:45 AM

Color:

Subject: Text Box Page Label: 29

Lock: Unlocked Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:40:28 AM

Color:

Subject: Polygonal Line

Page Label: 29 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:37:11 AM

Color:

Subject: Polygonal Line

Page Label: 30 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:38:41 AM

Color:

Subject: Text Box Page Label: 30 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:39:46 AM

Color:

STUDY AREA

FLOODPLAIN CHANGED ON THIS PANEL. SEE

LOMR

LOMR

.....

FLOODPLAIN CHANGED ON THIS PANEL. SEE

Subject: Polygonal Line

Page Label: 31 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:43:17 AM

Color:

.....

Subject: Text Box Page Label: 31 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:42:11 AM

Color:

STUDY AREA


Subject: Polygonal Line

Page Label: 32 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:46:42 AM

Color:

Page Label: 32 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 6/5/2017 11:47:03 AM

Color:

Subject: Text Box Page Label: 59

Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 9/2/2016 9:38:55 PM

Color:

42" RCP

AREA

Subject: Stamp Page Label: 107 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 5/19/2017 5:19:42 AM

Color:

Subject: Stamp Page Label: 141 Lock: Unlocked

Status:

Checkmark: Unchecked Author: RSchindler Date: 5/22/2017 7:18:53 AM

Color: