PRELIMINARY DRAINAGE PLAN

LORSON RANCH EAST

JUNE 30, 2017

PUD SP-16-003

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.040

TABLE OF CONTENTS

ENGINEER'S STATEMENT
OWNER'S STATEMENT1
FLOODPLAIN STATEMENT
1.0 LOCATION and DESCRIPTION
2.0 DRAINAGE CRITERIA
3.0 EXISTING HYDROLOGICAL CONDITIONS
4.0 DEVELOPED HYDROLOGICAL CONDITIONS
5.0 HYDRAULIC SUMMARY
6.0 DETENTION and WATER QUALITY PONDS
7.0 DRAINAGE and BRIDGE FEES
8.0 CONCLUSIONS
9.0 REFERENCES

APPENDIX A

VICINITY MAP SCS SOILS INFORMATION FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND AND HYDRAFLOW CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP OVERALL DEVELOPED CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

By Jeff Mark

Title

Manager

Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F and 08041C1000 F, dated March 17, 1997 and modified by modified per LOMR Case No. 14-08-0534P. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine County Engineer/ECM Administrator

Conditions:

Date

Date

1.0 LOCATION and DESCRIPTION

Lorson Ranch East is located east of the East Tributary of Jimmy Camp Creek. The site is located on approximately 275 acres of vacant land. Future plans are to develop this site into single-family residential developments. Also included in this report and plan is the proposed layout for Lorson Ranch East which is located east of the East Tributary of Jimmy Camp Creek. The land is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the West 1/2 of Sections 14 & 23, South ½ of Section 13, and the North ½ of Section 24, Township 15 South and Range 65 West of the 6th Principal Meridian. The property is bounded on the north by un-platted land in Banning Lewis Ranch and Rolling Hills Ranch, on the east by unplatted land and a 325' electric easement in Lorson Ranch, the west by The East Tributary of Jimmy Camp Creek, and the south by unplatted land in Lorson Ranch. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, adopted by El Paso County, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 a portion of the East Tributary was reconstructed from Fontaine Boulevard south 2,800 feet in accordance with the 1987 study. This section of the East Tributary included a trapezoidal channel section with 6:1 side slopes and a sand bottom. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiewa Engineering. The Kiewa Engineering DRBS has been adopted by the City of Calorado Springs and partially adopted by El Paso County for the entire Jimmy Camp Creek Basin, including the East Tributary and the full spectrum detention pond requirements. El Paso county has not approved the drainage fees detailed in the Kiowa DBPS so current county drainage/bridge fees apply to this development. Per the Kiowa DBPS the preferred channel improvements include selective channel armoring with a low flow channel for the East Tributary. All remaining channel improvements are reimbursable against drainage fees for future development within the study area. The only major infrastructure not shown in the Kiowa DBPS is the future bridge for Fontaine Boulevard and Lorson Boulevard on the East Tributary. The Fontaine Boulevard bridge is considered to be reimbursable since it is shown on the El Paso County 2060 Major Thoroughfare Plan as a Principal Arterial roadway. Lorson Boulevard bridge is not considered reimbursable. See MDDP comments

Conformance with applicable Master Development Drainage Plans (MDDP's)

As part of this PUD/Preliminary Plan submittal for Lorson Ranch East a MDDP has been prepared in conjunction with this Preliminary Drainage report. The recommendations in the MDDP for Lorson Ranch East have been incorporated into this drainage report. The main recommendations include full spectrum detention for ponds and the East Tributary of Jimmy Camp Creek must be armored in the northern portion of the preliminary plan.

Reconstruction of the East Tributary of Jimmy Camp Creek

The Kiowa DBPS shows the East Tributary to be protected using selective armoring (soil rip rap) at the outside stream bends (500' minimum radius) and a stabilized low flow channel. The East Tributary can be divided into three different sections, south, middle, and north. The first section (south) is from the south property line east and north to design point ET-3 (see drainage map) and is roughly 2,900 feet in length. The south section is not adjacent to this preliminary plan and will be addressed in the future as adjacent development occurs. The middle section is from Design Point ET-3 north 2,800 feet to the future extension of Fontaine Boulevard. The channel for this section was reconstructed and stabilized in 2014 in accordance with the 1987 Wilson DBPS. The only infrastructure left to construct are the bridges over the creek at Fontaine Boulevard and Lorson Boulevard. LOMR Case No. 14-08-0534P was approved by FEMA for this middle section. The northern section is from Fontaine Boulevard and extends north to the north property line. The north section will be protected per the Kiowa DBPS during the first phase of development east of the East Tributary. The channel consists of a stabilized low flow

constructed?

Include approved report in Appendix. Discuss all actual plan improvements.

channel and soil rip rap armored outer bends. Kiowa Engineering has submitted construction plans and a separate drainage report to El Paso County for this section of creek including bridges for Lorson Boulevard and Fontaine Boulevard. A CLOMR for the creek and bridge construction is currently submitted to FEMA. The 100-year flow rate for design is 4,750cfs for this section. range?

Lorson Ranch East is located within the *"Jimmy Camp Creek Drainage Basin"*, which is a fee basin and is part of the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site. The proposed improvements to the Lorson Ranch Development will be in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development Why?

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

Since the majority of this site will consist of import material, soil type C/D has been assumed for the hydrologic conditions. See Appendix A for SCS Soils Map.

The Soil Conservation Service (SCS) classifies the soils within the Lorson Ranch East property as Ascalon sandy loam (4%); Manzanola clay loam (17%); Midway clay loam (5%): Nelson-Tassel fine Sandy loam (50%); Razor clay loam (10%); and Wiley silt loam (13%) [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered will be encountered beneath some of the site but it can be excavated using conventional techniques.

Table 3.1: SCS Soils Survey

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
2-Ascalon Sandy Loam - (4%)	В	Moderate	Moderate	Slow to Medium	Moderate
3-Ascalon Sandy Loam - (9%)	В	Moderate	Moderate	Slow to Medium	Moderate
52-Manzanola Clay Loam (17%)	С	High	Slow	Medium	Moderate
54-Midway Clay Loam (5%)	С	High	Slow	Medium to Rapid	Moderate to High
56-Nelson – Tassel Fine Sandy Loam (50%)	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam (10%)	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam (13%)	В	Moderate	Moderate	Medium	Moderate

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" [2] are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, within existing transmission towers, runs through the center of this portion of the development and will be set aside as open space. It is the intent of this master development drainage plan to utilize some of the open space under the towers for detention of storm flows.

The FMIC (irrigation canal) that runs parallel with the East Tributary through this site was decommissioned in 2006 and for the purpose of existing drainage calculations the canal was ignored and all flow was assumed to flow to the East Tributary.

Portions of the site are located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C0957 F & 08041C1000 F, effective 17 March 1997 [2]. Floodplain along the East Tributary was modified per LOMR Case No. 14-08-0534P (see appendix). Floodplain designations include Zone AE and Zone X within the property boundary. A portion of this map is provided in *Appendix A* for reference.

The existing basins for this large site were taken from the Lorson Ranch East MDDP East of the East Tributary. A map has been included in the appendix.

Basin EX-A1

This 4.28 acre basin is in the northwest corner of the site and includes part of the East Tributary. Under existing conditions, this area contributes 1.1 cfs and 8.0 cfs to the East Tributary for 5-year and 100-year events respectively. This basin comprises of the East Tributary and will not be developed in the future.

Overall Basin EX-C flows to Design Point 2

This is the largest existing basin at 452.97 acres which includes approximately the northern half of the site. This basin is an overall existing basin including Basins EX-C1 to EX-C10. There are two offsite basins (OS-C6.1 and OS-C5.1) which flow onto the site from the north and east and are included in the flow at Design Point 2. Under existing conditions, this basin contributes 141.0 cfs and 458.0 cfs for the 5-year and 100-year events respectively at Design Point 2. Design Point 2 is located at the East Tributary and all flow is routed to the East Tributary in an existing swale that is eroded and is not armored.

Overall Basin EX-D flows to Design Point 3

Overall Basin EX-D is located adjacent to and southwest of Basin Ex-C and is 109.55 acres in size. This basin is an overall existing on-site basin. The existing runoff of 29.7cfs and 166.5cfs for the 5-year and 100-year events at Design Point 3 respectively and flows directly overland into the East Tributary.

Overall Basin EX-E flows to Design Point 4

Overall Basin EX-E is located adjacent to and southwest of Basin Ex-D and is 186.30 acres in size. Overall Basin EX-E is the second largest historic basin at 186.30 acres and includes on-site flow (Basins EX-E1 to EX-E3) and offsite flows (Basin OS-E1.1 and OS-E2.1) from the Peaceful Valley Estates subdivision to the south. Under existing conditions, this overall basin contributes 104.0 cfs and 286.0 cfs for the 5-year and 100-year events respectively at Design Point 4 and flows directly overland into the East Tributary.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **Lorson Ranch East** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from the City of Colorado Springs/El Paso County Drainage Criteria Manual.

The hydrology analysis necessary for sizing the storm sewer system is preliminary only and will be finalized when the construction documents are prepared.

Drainage concepts for each of the basins are briefly discussed as follow:

Overall Basin C

Overall Basin C includes all of the "C" basins that drain to Pond C5. This basin was included to provide sizing data to design Pond C5 in the full spectrum worksheets. The total size of this basin is 171 acres and comprises of residential development. There is runoff from a future school site which has been included for water quality in Pond C5. The future school site will be required to detain runoff to existing flow rates to several storm outfall points provided on Lamprey Drive and Fontaine Boulevard.

Overall Basin D

Overall Basin D includes all of the "D" basins that drain to Pond D2. This basin was included to provide sizing data to design Pond D2 in the full spectrum worksheets. The total size of this basin is 72 acres and comprises of residential development.

Overall Basin E

Overall Basin E is located south of Lorson Boulevard and comprises of residential development. According to the MDDP this basin drains to Pond E2 and will include more future development in Lorson Ranch. We are recommending that an interim pond be built at Pond E2 to detain runoff from development within the basin. This pond will treat runoff from Overall Basin E for water quality.

<u>Basin A1</u>

Basins A1 consists of flow from backyards and the East Tributary of Jimmy Camp Creek. Runoff is directed north to the East Tributary of Jimmy Camp Creek. See the appendix for detailed calculations

Basin C12

Basin C12 consists of future residential development located South of Tolt Drive and Lamprey Drive. Runoff will be directed north in the future curb/gutter to Design Point 2 in Tolt Drive. The future peak developed flow from this basin is 33.0cfs and 73.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C13

Basin C13 consists of future school site NE of Lamprey Drive and Fontaine Boulevard. Runoff will be directed west internally to a 30" storm sewer stub from Lamprey Drive at Design Point 6c. The peak developed flow from this basin will be required to be detained to pre-development conditions on the school site with a release rate not to exceed 7.6cfs and 40.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C13.1

Basin C13.1 consists of runoff from Lamprey Drive on the south side. Runoff will be directed west in the curb/gutter to Design Point 6b in Lamprey Drive where it will be collected by a Type R inlet. The developed flow from this basin is 6.4cfs and 11.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C14

Basin C14 consists of runoff from Fontaine Bouevard on the north side. Runoff will be directed west in the curb/gutter to Design Point 33 in Lamprey Drive where it will be collected by a Type R inlet. The developed flow from this basin is 6.6cfs and 13.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C14.1

Basin C14.1 consists of runoff from the future school site to Fontaine Bouevard on the north side. Runoff will be directed south internally to Design Point 19c in Fontaine Boulevard where it will be collected by a Type R inlet. The peak developed flow from this basin will be required to be detained to pre-development conditions on the school site with a release rate not to exceed 2.4cfs and 12.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C14.2

Basin C14.2 consists of runoff from Fontaine Bouevard on the north side. Runoff will be directed in the curb/gutter to Design Point 19c in Fontaine Boulevard where it will be collected by a Type R inlet. The developed flow from this basin is 5.8cfs and 11.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.1

Basin C15.1 consists of runoff from areas under the electric easement and residential development. Runoff will be directed west to Design Point 21 in a swale where it will be collected by a storm sewer. The developed flow from this basin is 6.9cfs and 22.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.2

Basin C15.2 consists of runoff from areas under the electric easement, MVEA substation, and residential development. Runoff will be directed west to Design Point 21 in a swale where it will be collected by a storm sewer. The developed flow from this basin is 7.6cfs and 19.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.3-C15.4

These basins consist of runoff from residential development. Runoff will be directed north to Design Point 23 in curb/gutter where it will be collected by a Type R inlet on Tillamook Drive. The developed flow from these basins is 9.0cfs and 20.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.5

This basin consists of runoff from residential development. Runoff will be directed north to Design Point 24 in curb/gutter. The developed flow from these basins is 5.9cfs and 13.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.6

This basin consists of runoff from residential development and Rockcastle Drive. Runoff will be directed west in Rockcastle Drive. The developed flow from these basins is 3.3cfs and 7.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.7

This basin consists of runoff from residential development and Rockcastle Drive. Runoff will be directed west in Rockcastle Drive. The developed flow from these basins is 3.9cfs and 8.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.8

Basin C15.8 consists of runoff from Fontaine Boulevard on the south side, residential lots, Rockcastle Drive, and open space under the existing electric lines. Runoff will be directed north in the curb/gutter to Design Point 20 in Fontaine Boulevard where it will be collected by a Type R inlet. The developed flow from this basin is 5.2cfs and 13.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.9

Basin C15.9 consists of runoff from Fontaine Boulevard on the south side. Runoff will be directed west in the curb/gutter. The developed flow from this basin is 4.9cfs and 11.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.10

Basin C15.10 consists of runoff from Fontaine Boulevard on the south side, and residential lots. Runoff will be directed west in the curb/gutter to Design Point 29 at the SE corner of the Fontaine Boulevard/Lamprey Drive intersection where it will be collected by a Type R inlet. The developed flow from this basin is 1.2cfs and 2.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.11

These basins consist of runoff from residential development and Vedder/Rockcastle Drive. Runoff will be directed north to Design Point 25 in curb/gutter where it will be collected by a Type R inlet on Rockcastle Drive. The developed flow from these basins is 6.1cfs and 13.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.12

This basin consists of runoff from residential development and Rockcastle Drive. Runoff will be directed west in Rockcastle Drive to Design Point 25 where it will be collected by a Type R inlet. The developed flow from these basins is 1.2cfs and 2.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.13

Basin C15.13 consists of runoff from residential development and Vedder/Rockcastle Drive. Runoff will be directed north to Design Point 26 in curb/gutter where it will be collected by a Type R inlet on Rockcastle Drive. The developed flow from this basin is 4.5cfs and 10.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.14

These basins consist of runoff from residential development and Lamprey Drive. Runoff will be directed north to Design Point 29 in curb/gutter where it will be collected by a Type R inlet on Lamprey Drive. The developed flow from this basin is 2.9cfs and 6.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C15.15

These basins consist of runoff from residential development and Lamprey Drive. Runoff will be directed north to Design Point 30 in curb/gutter where it will be collected by a Type R inlet on Lamprey Drive. The developed flow from this basin is 7.2cfs and 16.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.1

Basin C16.1 consists of residential development located NE of Yamhill and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive and then south to Design Point 3 to a proposed Type "R" inlet in Yamhill Drive. The peak developed flow from this basin is 6.0cfs and 13.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.2

Basin C16.2 consists of residential development and Lamprey Drive. Runoff is directed west in curb/gutter in Lamprey Drive and to Design Point 3 to a proposed Type "R" inlet in Yamhill Drive. The peak developed flow from this basin is 3.6cfs and 7.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.3

Basin C16.3 consists of residential development located NE of Shavers Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive and then south to Design Point 6a to a proposed Type "R" inlet in Shavers Drive. The peak developed flow from this basin is 3.6cfs and 7.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.4

Basin C16.4 consists of residential development located east of Shavers Drive on Lamprey Drive. Runoff is directed west in curb/gutter in Lamprey Drive and to Design Point 8 to a proposed Type "R" inlet in Shavers Drive. The peak developed flow from this basin is 1.7cfs and 3.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.5, C16.6, C16.7, C16.8, C16.9, C16.10

Basin C16.5-C16.10 consists of residential development located NE of Yamhill Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive to Design Point 4 in Mumford Drive. See the appendix for detailed calculations for these basins.

Basin C16.11, C16.12, C16.13

Basin C16.11-C16.13 consists of residential development located NE of Napa Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive to Type "R" inlet at Design Point 6 in Mumford Drive. See the appendix for detailed calculations for these basins.

Basin C16.14 & C16.15

Basin C16.14 & C16.15 consist of residential development located north of Shavers Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive to Design Point 6a and Design Point 7 to a proposed Type "R" inlet in Shavers Drive. See the appendix for detailed calculations.

Basin C16.16 & C16.17

Basin C16.16 & C16.17 consist of residential development located NE of Clarion Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Lamprey Drive to a proposed Type "R" inlet in Clarion Drive at Design Point 10. See the appendix for detailed calculations.

Basin C16.18

Basin C16.18 consists of residential development located North of Clarion Drive and Mumford Drive. Runoff is directed south in curb/gutter in Mumford Drive to Design Point 10a to a proposed Type "R" inlet in Mumford Drive. The peak developed flow from this basin is 5.5cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.19

Basin C16.19 consists of residential development located on Clarion Drive. Runoff is directed southwest in curb/gutter in Clarion Drive to Design Point 16 to a proposed Type "R" inlet in Wacissa Drive. The peak developed flow from this basin is 3.1cfs and 6.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.20, C16.21

Basins C16.20 and C16.21 consist of residential development located on Nash and Wacissa Drive. Runoff is directed southwest in curb/gutter in Nash and Wacissa Drive to Design Point 12a to a proposed Type "R" inlet in Nash Drive. See the appendix for detailed calculations

Basin C16.22 & C16.23

Basins C16.22 & C16.23 consist of residential development located on Nash Drive. Runoff is directed southwest in curb/gutter in Nash Drive to Design Point 12 to a proposed Type "R" inlet in Nash Drive. See the appendix for detailed calculations

Basin C16.25

Basins C16.25 consists of residential development located on Wacissa Drive. Runoff is directed south in curb/gutter in Wacissa Drive to Design Point 17 to a proposed Type "R" inlet in Wacissa Drive. See the appendix for detailed calculations

Basin C16.26

Basins C16.26 consists of residential development located on Mumford Drive. Runoff is directed north in curb/gutter in Mumford Drive to Design Point 10b to a proposed Type "R" inlet at Mumford/Clarion Drive. See the appendix for detailed calculations

Basin C16.27

Basins C16.27 consists of residential development located on Mumford Drive. Runoff is directed north in curb/gutter in Mumford Drive to Design Point 10c to a proposed Type "R" inlet at Mumford/Clarion Drive. See the appendix for detailed calculations

Basin C16.28 & C16.29

Basins C16.28 & C16.29 consist of residential development located on Clarion, Wacissa, Zealand, Ballona Drive. Runoff is directed northwest in curb/gutter in Wacissa Drive to Design Point 16 to a proposed Type "R" inlet in Wacissa Drive. See the appendix for detailed calculations

Basin C16.30

Basins C16.30 consists of residential development located on Wacissa and Tarbell Drive. Runoff is directed south in curb/gutter in Wacissa Drive to Design Point 14 to a proposed Type "R" inlet in Wacissa Drive. See the appendix for detailed calculations

Basin C16.31

Basins C16.31 consists of backyards of houses on Wacissa Drive, East Tributary, and open space. Runoff is directed overland to the East Tributary. Water quality for the backyards is provided by the 150' wide existing open space/buffer between the lots and the East Tributary. See the appendix for detailed calculations

Basin C16.32

Basins C16.32 consists of residential development located on Wacissa and Mumford Drive. Runoff is directed north in curb/gutter in Wacissa Drive to Design Point 17 to a proposed Type "R" inlet. See the appendix for detailed calculations

Basin C16.33

Basins C16.33 consist of flow from Lamprey Drive and Fontaine Boulevard. Runoff is directed in curb/gutter in to a proposed Type "R" inlet in the NE corner of Fontaine Boulevard and Lamprey Drive at Design Point 33. See the appendix for detailed calculations

Basin C16.34

Basins C16.34 consists of flow from Lamprey Drive and the adjacent backyards. Runoff is directed south in curb/gutter in to a proposed Type "R" inlet in the NW corner of Fontaine Boulevard and Lamprey Drive at Design Point 34. See the appendix for detailed calculations

Basin C16.35

Basins C16.35 consists of flow from residential development and Fontaine Boulevard. Runoff is directed south and west in curb/gutter in to a proposed Type "R" inlet in the NE corner of Fontaine Boulevard and Edisto Drive at Design Point 35. See the appendix for detailed calculations

Basin C16.36

Basins C16.36 consists of flow from residential development and Pond C5. Runoff is directly tributary to Pond C5. See the appendix for detailed calculations

Basin C17.1

Basin C17.1 consists of residential development located in Weiser and Matta Drives. Runoff is directed northwest in curb/gutter to Design Point 38 to a proposed Type "R" inlet in Matta Drive. The peak developed flow from this basin is 5.9cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.1a

Basin C17.1a consists of residential development located in Weiser, Pigeon, and Aliso Drives. Runoff is directed north in curb/gutter to Design Point 28 to a proposed Type "R" inlet in Weiser Drive. The peak developed flow from this basin is 5.3cfs and 11.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.2

Basin C17.2 consists of residential development located in Chaplin, Pigeon, Aliso, and Matta Drives. Runoff is directed north in curb/gutter to Design Point 39 to a proposed Type "R" inlet in Matta Drive. The peak developed flow from this basin is 8.6cfs and 19.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.3

Basin C17.3 consists of residential development located in Lamine and Matta Drives. Runoff is directed north in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 4.5cfs and 10.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.4

Basin C17.4 consists of residential development located in Matta Drive. Runoff is directed west in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 3.2cfs and 7.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.5

Basin C17.5 consists of residential development and Fontaine Boulevard. Runoff is directed west in curb/gutter to Design Point 40 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 6.7cfs and 22.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.6

Basin C17.6 consists of residential development located in Lamine Drive. Runoff is directed north in curb/gutter to Design Point 41 to a proposed Type "R" inlet in Lamine Drive. The peak developed flow from this basin is 1.9cfs and 6.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.7

Basin C17.7 consists of backyards of houses on Lamine Drive, East Tributary, and open space. Runoff is directed overland to the East Tributary. Water quality for the backyards is provided by the existing open space/buffer between the lots and the East Tributary. See the appendix for detailed calculations

Basin C17.8

Basin C17.8 consists of residential development and Fontaine Boulevard on the north side. Runoff is directed west in curb/gutter to Design Point 42 to a proposed Type "R" inlet in Fontaine Boulevard. The peak developed flow from this basin is 3.2cfs and 7.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C17.9

Basin C17.9 consists of existing residential development in Meadows 3 and Fontaine Boulevard. Runoff is directed in curb/gutter to Design Point 47 to a proposed Type "R" inlet in Fontaine Boulevard on the south side. The peak developed flow from this basin is 7.8cfs and 13.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. This basin will flow north to existing Pond B1. Pond B1 has been sized for this flow per the Pioneer Landing Filing No. 2 Final drainage report.

Basin C17.10

Basin C17.10 consists of existing residential development in Pioneer Landing and Fontaine Boulevard. Runoff is directed in curb/gutter to Design Point 48 to a proposed Type "R" inlet in Fontaine Boulevard on the north side. The peak developed flow from this basin is 8.9cfs and 16.0cfs for the 5/100-year storm event. See the appendix for detailed calculations. This basin will flow north to existing Pond B1. Pond B1 has been sized for this flow per the Pioneer Landing Filing No. 2 final drainage report.

Basin D1.1 & D1.2

Basin D1.1 & D1.2 consists of residential development, Saco Drive, Weiser Drive, and Lamprey Drive. Runoff is directed south and west in curb/gutter to Design Point 50 to a proposed Type "R" inlet in Saco Drive on the south side. See the appendix for detailed calculations.

Basin D1.3

Basin D1.3 consists of residential development, Saco Drive, and Lamine Drive. Runoff is directed west and north in curb/gutter to Design Point 56 to a proposed Type "R" inlet in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 1.7cfs and 3.8cfs for the 5/100-year storm event.

Basin D1.4 & D1.5

Basin D1.4 & D1.5 consists of residential development. Runoff is directed south in curb/gutter to Design Point 52 in Chaplin Drive. See the appendix for detailed calculations.

<u>Basin D1.6</u>

Basin D1.6 consists of residential development, Yuba Drive, and Chaplin Drive. Runoff is directed south and west in curb/gutter to Design Point 53 to a proposed Type "R" inlet in Yuba Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 8.4cfs and 18.7cfs for the 5/100-year storm event.

Basin D1.7

Basin D1.7 consists of residential development and Lamine Drive. Runoff is directed south in curb/gutter to Design Point 54 in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 7.0cfs and 15.5cfs for the 5/100-year storm event.

Basin D1.8

Basin D1.8 consists of residential development, Chaplin Drive, and Yuba Drive. Runoff is directed south and west in curb/gutter to Design Point 53 in Yuba Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 3.2cfs and 7.1cfs for the 5/100-year storm event.

Basin D1.9 & D1.10

Basin D1.9 & D1.10 consists of residential development, Saco Drive, Lamine Drive, and Yuba Drive. Runoff is directed west in curb/gutter to Design Point 55 in Lamine Drive. See the appendix for detailed calculations.

<u>Basin D1.11</u>

Basin D1.11 consists of residential development and Lamine Drive. Runoff is directed south in curb/gutter to Design Point 56 to a proposed Type "R" inlet in Lamine Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 2.6cfs and 5.8cfs for the 5/100-year storm event.

Basin D1.12

Basin D1.12 consists of residential development and Pond D2. Runoff is directly tributary to Pond D2. See the appendix for detailed calculations. The peak developed flow from this basin is 3.9 cfs and 15.4cfs for the 5/100-year storm event.

Basin D2.1 & D2.3

Basin D2.1 & D2.3 consists of residential development, open space under the electric easement, Vedder Drive, Lamprey Drive, and Lorson Boulevard. Runoff is directed south and west in curb/gutter to Design Point 59d in Lamprey Drive. See the appendix for detailed calculations.

Basin D2.2

Basin D2.2 consists of residential development and Tillamook Drive. Runoff is directed south in curb/gutter to Design Point 59a. See the appendix for detailed calculations. The peak developed flow from this basin is 2.1cfs and 4.7cfs for the 5/100-year storm event.

Basin D2.4

Basin D2.4 consists of residential development, Lorson Boulevard, and open space area under the electric easement. Runoff is directed west in curb/gutter in Lorson Boulevard to Design Point 59f. See the appendix for detailed calculations. The peak developed flow from this basin is 3.6cfs and 11.9cfs for the 5/100-year storm event.

Basin D2.5

Basin D2.5 consists of residential development, Skuna Drive, and Witcher Drive. Runoff is directed north in curb/gutter to Lorson Boulevard to Design Point 59f. See the appendix for detailed calculations. The peak developed flow from this basin is 8.8cfs and 19.6cfs for the 5/100-year storm event.

Basin D2.6 & D2.7

Basin D2.6 & D2.7 consists of residential development, Skuna Drive, Abita Drive, Witcher Drive, and Yocona Drive. Runoff is directed west in curb/gutter to Design Point 61 in Witcher Drive. See the appendix for detailed calculations.

Basin D2.8

Basin D2.8 consists of residential development, Volga Drive, and Witcher Drive. Runoff is directed west and south in curb/gutter to Design Point 62 in Volga Drive. The peak developed flow from this basin is 7.7cfs and 17.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.9

Basin D2.9 consists of residential development, Volga Drive, Trappe Drive, and Witcher Drive. Runoff is directed west and north in curb/gutter to Design Point 60 in Trappe Drive. The peak developed flow from this basin is 5.5cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D2.10

Basin D2.10 consists of Trappe Drive and adjacent areas. Runoff is directed north in curb/gutter in Trappe Drive to Design Point 64. See the appendix for detailed calculations. The peak developed flow from this basin is 1.9cfs and 5.0cfs for the 5/100-year storm event.

Basin D2.11

Basin D2.11 consists of runoff from Lorson Boulevard on the south side. Runoff is directed west in curb/gutter to Design Point 65a in Lorson Boulevard. The peak developed flow from this basin is 2.0cfs and 3.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin D2.12</u>

Basin D2.12 consists of runoff from residential development and Lorson Boulevard on the south side. Runoff is directed west in curb/gutter to Design Point 60 in Trappe Drive. The peak developed flow from this basin is 5.4cfs and 12.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin D2.13</u>

Basin D2.13 consists of runoff from Lorson Boulevard on the north side. Runoff is directed west in curb/gutter to Design Point 65b in Lorson Boulevard. The peak developed flow from this basin is 4.0cfs and 9.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.1

Basin E1.1 consists of residential development and Skuna Drive. Runoff is directed south in curb/gutter in Skuna Drive to Design Point 66a. See the appendix for detailed calculations. The peak developed flow from this basin is 3.2cfs and 7.0cfs for the 5/100-year storm event.

Basin E1.2

Basin E1.2 consists of residential development, open space under the electric easement, Horton Drive, and Yocona Drive. Runoff is directed south in curb/gutter to Design Point 66d in Horton Drive. The peak developed flow from this basin is 7.3cfs and 16.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.3

Basin E1.3 consists of residential development and open space under the electric easement. Runoff is directed south in a swale to Design Point 67b next to Trappe Drive. The peak developed flow from this basin is 4.7cfs and 21.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.4

Basin E1.4 consists of residential development, Horton Drive, and Trappe Drive. Runoff is directed southwest in curb/gutter to Design Point 68 in Trappe Drive. The peak developed flow from this basin is 1.3cfs and 2.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.5

Basin E1.5 consists of residential development, Horton Drive, Volga Drive, and Trappe Drive. Runoff is directed southwest in curb/gutter to Design Point 68 in Trappe Drive. The peak developed flow from this basin is 4.1cfs and 9.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.6

Basin E1.6 consists of residential development and Trappe Drive. Runoff is directed north in curb/gutter to Design Point 69 in Trappe Drive. The peak developed flow from this basin is 4.5cfs and 10.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.7

Basin E1.7 consists of residential development and Trappe Drive. Runoff is directed north in curb/gutter to Design Point 70 in Trappe Drive. See the appendix for detailed calculations. The peak developed flow from this basin is 4.7cfs and 13.3cfs for the 5/100-year storm event.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

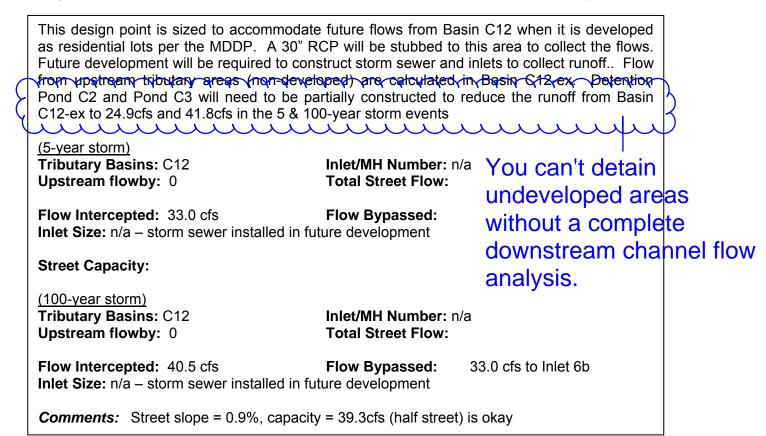
5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	· · · ·		Ly 15 Unity /2 Units	/	Drinaina	المستعا
	Residential Local		Residential Collector		Principal Arterial	
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Table 1: Street Capacities (100-year capacity is only ½ of street)


Note: all flows are in cfs (cubic feet per second)

Design Point 1

Design Point 1 is located at the East Tributary of Jimmy Camp Creek on the north property line. A swale along the north property line will re-direct offsite runoff from Basin OS-C11 westward to the East Tributary so the lots are not burdened with offsite flows. The swale is a "V" swale, 2.5' deep, and at a minimum slope of 1%, and conveys the runoff from the 100-year storm event of 21cfs at a depth of 1.3' deep. The total flow is 9.4cfs and 21cfs in the 5/100-year storm events

Design Point 2

Design Point 2 is located at the south side of the intersection of Tolt Drive and Lamprey Drive.

Design Point 3 Design Point 3 is located at the SE corner of Yamhill Drive and Mumford Drive

(5-year storm) Tributary Basins: C16.1 & C16.2 Upstream flowby: 0cfs	Inlet/MH Number: Inlet DP3 Total Street Flow: 8.9cfs	
Flow Intercepted: 8.9 cfs Inlet Size: 10' Type R Inlet, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs is okay	
(100-year storm) Tributary Basins: C16.1 & C16.2 Upstream flowby: 0	Inlet/MH Number: Inlet DP3 Total Street Flow: 20.1cfs	
Flow Intercepted: 20.1 cfs Inlet Size: 15' Type R Inlet, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 4 Design Point 4 is located at the NW corner of Yamhill and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.5 - C16.10 Upstream flowby: 0	Inlet/MH Number: Inlet DP4 Total Street Flow: 10.47cfs	
Flow Intercepted: 9.67 cfs Inlet Size: 15' Type R Inlet, on-grade	Flow Bypassed: 0.8cfs to Inlet DP6	
Street Capacity: Street slope = 1.0%, cap	acity = 9.0cfs, inlet needed	
<u>(100-year storm)</u> Tributary Basins: C16.5 - C16.10 Upstream flowby: 0	Inlet/MH Number: Inlet DP4 Total Street Flow: 21.88cfs	
Flow Intercepted: 14.98 cfs Inlet Size: 15' Type R Inlet, on-grade	Flow Bypassed: 6.9cfs to Inlet DP6	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 5

Design Point 5 is located at the SW corner of Yamhill and Mumford Drives. This is a small drainage basin that needs a 5' Type R inlet to drain the curb. The total flow is 0.3cfs and 0.6cfs in the 5/100 year storm events. For this report the tributary basin wasn't calculated but will need to be verified in the final drainage report.

Design Point 6 Design Point 6 is located at the NW corner of Napa Drive and Mumford Drive

(<u>5-year storm)</u> Tributary Basins: C16.10-C16.13 Upstream flowby: 0.8cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 12.82cfs	
Flow Intercepted: 11.05cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.77cfs to Inlet DP6a	
Street Capacity: Street slope = 2.5%, cap	pacity = 14.1cfs, inlet needed	
(100-year storm) Tributary Basins: C16.10-C16.13 Upstream flowby: 6.9cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 32.62cfs	
Flow Intercepted: 17.87cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 14.75cfs to Inlet DP6a	
Street Capacity: Street slope = 2.5%, capacity = 40.7cfs (half street) is okay		

<u>Design Point 6a</u> Design Point 6a is located at the SW corner of Shavers Drive and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.15 Upstream flowby: 1.77cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 6.61cfs	
Flow Intercepted: 5.71cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.9 cfs to Inlet DP8	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs, inlet needed	
(100-year storm) Tributary Basins: C16.15 Upstream flowby: 14.75cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 24.87cfs	
Flow Intercepted: 11.17cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 13.7cfs to Inlet DP8	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 6c

Design Point 6c is located at the east side of the intersection of Clarion Drive and Lamprey Drive at a low point. A 30" RCP will be stubbed to the school site to collect the flows from Basin C13 (school site). The school site will be required to construct on-site storm sewer/inlets and on-site detention ponds to collect/detain runoff. Water quality for Basin C13 will be provided in Pond C5. Runoff rates from this basin are required to be reduced to pre-developed flows of 7.6cfs in the 5-year and 40.5cfs in the 100-year storm events to the 30" RCP stub.

Design Point 6b

Design Point 6b is located at the east side of the intersection of Clarion Drive and Lamprey Drive at a low point in Lamprey Drive.

(5-year storm) Tributary Basins: C13.1 Upstream flowby: 0 cfs	Inlet/MH Number: Inlet DP6b Total Street Flow: 6.8cfs
Flow Intercepted: 6.8cfs Inlet Size: 15' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 1.5%, cap	pacity = 11cfs
(100-year storm) Tributary Basins: C13.1 Upstream flowby: 33.0cfs	Inlet/MH Number: Inlet DP6b Total Street Flow: 40.5cfs
Flow Intercepted: 20.3cfs Inlet Size: 15' type R, sump	Flow Bypassed: 20.2cfs to Inlet DP16
Street Capacity: Street slope = 1.5%, cap	pacity = 44.1cfs (half street) is okay

Design Point 7

Design Point 7 is a small drainage basin (C16.14) that needs a 5' Type R inlet to drain the curb in the NW corner of Shavers Drive and Lamprey Drive. The total flow is 0.3cfs and 0.6cfs in the 5/100 year storm events. There are no bypass flows for this inlet.

Design Point 8

Design Point 8 is located at the NE corner of Shavers Drive and Lamprey Drive

(<u>5-year storm)</u> Tributary Basins: C16.3-C16.4 Upstream flowby: 0.9cfs	Inlet/MH Number: Inlet DP8 Total Street Flow: 6.2cfs	
Flow Intercepted: 6.20cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0	0%, capacity = 9.0cfs, inlet needed	
(100-year storm) Tributary Basins: C16.3-C16.4 Upstream flowby: 13.7cfs	Inlet/MH Number: Inlet DP8 Total Street Flow: 25.2cfs	
Flow Intercepted: 16.3cfs Inlet Size: 10' type R, sump	Flow Bypassed: 8.9cfs to Inlet DP10	
Street Capacity: Street slope = 1.0	0%, capacity = 37.3cfs (half street) is okay	

Design Point 9

Design Point 9 is located at the intersection of Shavers Drive and Lamprey Drive and is the flow in the storm sewer. The total flow in the storm sewer is 75.68cfs/105.3cfs in the 5/100 year storm events.

Design Point 10

Design Point 10 is located at the NE corner of Clarion Drive and Mumford Drive

(<u>5-year storm)</u> Tributary Basins: C16.16-C16.17 Upstream flowby: 0 cfs	Inlet/MH Number: Inlet DP10 Total Street Flow: 6.0cfs
Flow Intercepted: 6.0cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0 cfs
Street Capacity: Street slope = 1.0%, cap	acity = 9.0cfs
(100-year storm) Tributary Basins: C16.16-C16.17 Upstream flowby: 8.9cfs	Inlet/MH Number: Inlet DP10 Total Street Flow: 12.5cfs
Flow Intercepted:12.5cfsFlowInlet Size:10' type R, sump	Bypassed: 8.5cfs to Inlet DP10a
Street Capacity: Street slope = 1.0%, cap	acity = 37.3cfs (half street) is okay

Design Point 10a Design Point 10a is located at the NW corner of Clarion Drive and Mumford Drive

(5-year storm) Tributary Basins: C16.18 Upstream flowby:	Inlet/MH Number: Inlet DP10a Total Street Flow: 5.7cfs
Flow Intercepted: 5.7cfs Inlet Size: 15' type R, sump	Flow Bypassed: 0 cfs
Street Capacity: Street slope = 1.0%, ca	apacity = 9.0cfs
(100-year storm) Tributary Basins: C16.18 Upstream flowby: 8.5cfs	Inlet/MH Number: Inlet DP10a Total Street Flow: 20.7cfs
Flow Intercepted: 20.7cfs Flow Inlet Size: 15' type R, sump	v Bypassed: Ocfs
Street Capacity: Street slope = 1.0%, ca	apacity = 37.3cfs (half street) is okay

Design Point 10b Design Point 10b is located at the SE corner of Clarion Drive and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.26 Upstream flowby:	Inlet/MH Number: Inlet DP10b Total Street Flow: 3.2cfs
Flow Intercepted: 3.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.	7%, capacity = 7.5cfs
<u>(100-year storm)</u> Tributary Basins: C16.26 Upstream flowby:	Inlet/MH Number: Inlet DP10b Total Street Flow: 6.9cfs
Flow Intercepted: 6.9cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 0.	7%, capacity = 31.2cfs (half street) is okay

Design Point 10c Design Point 10c is located at the SW corner of Clarion Drive and Mumford Drive

(5-year storm) Tributary Basins: C16.27 Upstream flowby:	Inlet/MH Number: Inlet DP10c Total Street Flow: 0.6cfs
Flow Intercepted: 0.6cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.79	%, capacity = 7.5cfs
(<u>100-year storm)</u> Tributary Basins: C16.27 Upstream flowby: 0	Inlet/MH Number: Inlet DP10c Total Street Flow: 1.3cfs
Flow Intercepted: 1.3cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.7%, capacity = 31.2cfs (half street) is okay	

Design Point 11

Design Point 11 is located at the east side of Clarion Drive and Mumford Drive and is the flow in the storm sewer. The total flow in the storm sewer is 105.5cfs/154.8cfs in the 5/100 year storm events.

Design Point 12 Design Point 12 is located east of Wacissa Drive on the north side of Nash Drive.

(<u>5-year storm)</u> Tributary Basins: C16.22-C16.23 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 8.0cfs	
Flow Intercepted: 6.43cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.6cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs		
<u>(100-year storm)</u> Tributary Basins: C16.22-C16.23 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 16.65cfs	
Flow Intercepted: 9.35cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 7.3cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

<u>Design Point 12a</u> Design Point 12a is located east of Wacissa Drive on the south side of Nash Drive.

<u>(5-year storm)</u> Tributary Basins: C16.20-C16.21 Upstream flowby:	Inlet/MH Number: Inlet DP12a Total Street Flow: 8.78cfs	
Flow Intercepted: 6.78cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.0cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs		
<u>(100-year storm)</u> Tributary Basins: C16.20-C16.21 Upstream flowby:	Inlet/MH Number: Inlet DP12a Total Street Flow: 18.28cfs	
Flow Intercepted: 9.78cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 8.5cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 13 Design Point 13 is located in the SE corner of Wacissa Drive and Nash Drive.

<u>(5-year storm)</u>		
Tributary Basins: C16.24		
Upstream flowby:	3.6cfs	

Inlet/MH Number: Inlet DP13 Total Street Flow: 8.35cfs

Flow Intercepted: 6.55cfs Inlet Size: 10' type R, on-grade Total Street Flow. 0.30015

Flow Bypassed: 1.8cfs to Inlet DP16

Street Capacity: Street slope = 1.0%, capacity = 9.0cfs

(100-year storm) Tributary Basins: C16.24 Upstream flowby: 15.8cfs

Flow Intercepted: 11.28cfs

Inlet Size: 10' type R, on-grade

Inlet/MH Number: Inlet DP13 Total Street Flow: 25.48cfs

Flow Bypassed: 14.2cfs to Inlet DP16

Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay

Design Point 14 Design Point 14 is located in the NW of Wacissa Drive and Nash Drive.

<u>(5-year storm)</u> Tributary Basins: C16.30 Upstream flowby: 0cfs	Inlet/MH Number: Inlet DP14 Total Street Flow: 7.05cfs	
Flow Intercepted: 5.95cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.1cfs to Inlet DP17	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs		
(100-year storm) Tributary Basins: C16.30 Upstream flowby: 0cfs	Inlet/MH Number: Inlet DP14 Total Street Flow: 14.44cfs	
Flow Intercepted: 8.74cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 5.7cfs to Inlet DP17	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 15

Design Point 15 is located in the SW of Wacissa Drive and Nash Drive and is the flow in the storm sewer. The total flow in the storm sewer is 25.69cfs/39.15cfs in the 5/100 year storm events.

Design Point 16 Design Point 16 is located in the SE corner of Wacissa Drive and Clarion Drive.

(<u>5-year storm)</u> Tributary Basins: C16.19, C16.28, C16.2 Upstream flowby: 1.8cfs	9 Inlet/MH Number: Inlet DP16 Total Street Flow: 12.8cfs	
Flow Intercepted: 12.8cfs Inlet Size: 25' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, almost half of street flow is from the south. Capacity okay.		
(100-year storm)Tributary Basins: C16.19, C16.28, C16.29 Inlet/MH Number: Inlet DP16Upstream flowby:34.4cfsTotal Street Flow:57.3cfs		
Flow Intercepted: 37.4cfs Inlet Size: 25' type R, sump	Flow Bypassed: 19.9cfs to Inlet DP17	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street)		

<u>Design Point 17</u> Design Point 17 is located in the SW corner of Wacissa Drive and Clarion Drive.

(5-year storm) Tributary Basins: C16.25+C16.32 Upstream flowby: 1.10cfs	Inlet/MH Number: Inlet DP17 Total Street Flow: 3.9cfs	
Flow Intercepted: 3.9cfs Inlet Size: 25' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs is okay		
(100-year storm) Tributary Basins: C16.25+C16.32 Upstream flowby: 25.6cfs	Inlet/MH Number: Inlet DP17 Total Street Flow: 31.6cfs	
Flow Intercepted: 31.6cfs Inlet Size: 25' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 18

Design Point 18 is located west of Clarion Drive and Wacissa Drive and is the total flow in the pipe into Pond C5. The total pipe flow is 147.9cfs in the 5-year and 230.8cfs in the 100-year. The trapezoidal emergency overflow swale from Wacissa Drive to Pond C5 is 1.0' deep, 27' wide bottom, 4:1 side slopes, 2% slope, velocity of 7.59cfs, and has a flow depth of 0.98 feet, Q100=230cfs.

Design Point 19a

Design Point 19a is located on the south side of Fontaine Boulevard east of Rockcastle Drive and is the outflow pipe for future pond C2.3 located under the electric line easement. This 27" RCP outflow pipe will also function as the outflow pipe for interim Pond C2.3. The total allowed pipe flow is 4.0cfs in the 5-year and 46.0cfs in the 100-year which conforms to the outflow rates in the Lorson Ranch East MDDP for Pond C2.2.

Design Point 19b

Design Point 19b is located on the north side of Fontaine Boulevard east of Rockcastle Drive and is the outflow pipe for future pond C2.2 located under the electric line easement. This 24" RCP outflow pipe will also function as the outflow pipe for interim Pond C2.2. The total allowed pipe flow is 6.0cfs in the 5-year and 41.0cfs in the 100-year which conforms to the outflow rates in the Lorson Ranch East MDDP for Pond C2.2

Design Point 20a

Design Point 20a is located on the south side of Fontaine Boulevard south of Rockcastle Drive and is the outflow pipe for future pond C1 located under the electric line easement. This 18" RCP outflow pipe will also function as the outflow pipe for interim Pond C1. The total allowed pipe flow is 4.0cfs in the 5-year and 18.0cfs in the 100-year which conforms to the outflow rates in the Lorson Ranch East MDDP for Pond C1

Design Point 3f

Design Point 3f is located on the north side of Fontaine Boulevard at Rockcastle Drive and is the outflow pipe for Ponds C2.2, Pond C2.3, and Pond C1. The total allowed pipe flow is 14.0cfs in the 5-year and 105.0cfs in the 100-year which conforms to the outflow rates in the Lorson Ranch East MDDP for the ponds.

<u>Design Point 19c</u> Design Point 19c is located north side of Fontaine Boulevard north of the electric substation.

<u>(5-year storm)</u> Tributary Basins: C14.1, C14.2 Upstream flowby:	Inlet/MH Number: Inlet DP19c Total Street Flow: 5.6cfs	
Flow Intercepted: 5.66cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.8cfs to Inlet DP33	
Street Capacity: Street slope = 1.0%, capacity = 13.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: C14.1, C14.2 Upstream flowby:	Inlet/MH Number: Inlet DP19c Total Street Flow: 18.7 cfs	
Flow Intercepted: 10.62cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 11.5cfs to Inlet DP33	
Street Capacity: Street slope = 1.0%, capacity = 40cfs (half street) is okay		

Design Point 20

Design Point 20 is located south side of Fontaine Boulevard north of the electric substation.

<u>(5-year storm)</u> Tributary Basins: C15.8 Upstream flowby:	Inlet/MH Number: Inlet DP20 Total Street Flow: 5.2cfs	
Flow Intercepted: 5.2cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 13.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: C15.8 Upstream flowby:	Inlet/MH Number: Inlet DP20 Total Street Flow: 13.4cfs	
Flow Intercepted: 11.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 2.1cfs to Inlet DP29	
Street Capacity: Street slope = 1.0%, capacity = 40cfs (half street) is okay		

Design Point 21

Design Point 21 is located west of the electric substation and is the surface runoff collected at a 30" end section (Line 22). The total flow in the storm sewer is from Basin C15.1+Basin C15.2 for a total flow of 13.55cfs/35.92cfs in the 5/100 year storm events in the storm sewer. The trapezoidal overflow swale between the lots is 1.0' deep, 5:1 side slopes, 10' wide bottom, 1% slope, velocity of 4.29cfs, and has a flow depth of 0.76 feet.

Design Point 23 Design Point 23 is located on Tillamook Drive north of Rockcastle Drive

(5-year storm) Tributary Basins: C15.3&C15.4 Upstream flowby:	Inlet/MH Number: Inlet DP23 Total Street Flow: 8.73cfs	
Flow Intercepted: 8.43cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.3cfs to Inlet DP25	
Street Capacity: Street slope = 1.1%, capacity = 9.2cfs, okay		
(100-year storm) Tributary Basins: C15.3&C15.4 Upstream flowby:	Inlet/MH Number: Inlet DP23 Total Street Flow: 18.69cfs	
Flow Intercepted: 13.69cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 5.0cfs to Inlet DP25	
Street Capacity: Street slope = 1.1%, capacity = 38cfs (half street) is okay		

Design Point 24

Design Point 24 is located in the south of Rockcastle Drive on Tillamook Drive and is the flow in the storm sewer. The total flow in the storm sewer is 20.64cfs/51.77cfs in the 5/100 year storm events.

Design Point 25

Design Point 25 is located on the south side of Rockcastle Drive east of Vedder Drive

(5-year storm) Tributary Basins: C15.5,C15.6,C15.11, C15.12 Upstream flowby: 0.3cfs	Inlet/MH Number: Inlet DP25 Total Street Flow: 16.0cfs	
Flow Intercepted: 16.0cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay since half flow from each side		
(100-year storm) Tributary Basins: C15.5,C15.6,C15.11, C15.12 Upstream flowby:	Inlet/MH Number: Inlet DP25 Total Street Flow: 38.9cfs	
Flow Intercepted: 31.7cfs Inlet Size: 20' type R, sump	Flow Bypassed: 7.2cfs to Inlet DP26	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay since half flow from each side		

<u>Design Point 26</u> Design Point 26 is located on the north side of Rockcastle Drive east of Vedder Drive.

(<u>5-year storm</u>) Tributary Basins: C15.7, C15.13 Upstream flowby:	Inlet/MH Number: Inlet DP26 Total Street Flow: 8.4cfs	
Flow Intercepted: 8.4cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay since half of flow is from each side.		
(100-year storm) Tributary Basins: C15.7, C15.13 Upstream flowby: 7.2cfs	Inlet/MH Number: Inlet DP26 Total Street Flow: 26.0cfs	
Flow Intercepted: 26.0cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 27

Design Point 27 is located in the north of Rockcastle Drive and Design Point 26 and is the flow in the storm sewer. The total flow in the storm sewer is 38.11cfs/92.58cfs in the 5/100 year storm events. The trapezoidal overflow swale between the lots is 1.0' deep, 4:1 side slopes, 15' wide bottom, 1% slope, velocity of 5.41cfs, and has a flow depth of 1.0 feet.

Design Point 32

Design Point 32 is located in the north of Rockcastle Drive and Design Point 27 on Fontaine Boulevard and is the flow in the storm sewer. The total flow in the storm sewer is 23.58cfs/137.5cfs in the 5/100 year storm events.

Design Point 32a

Design Point 32a is located in the west of Design Point 32 on Fontaine Boulevard and is the flow in the storm sewer. The total flow in the storm sewer is 59.01cfs/226.9cfs in the 5/100 year storm events.

Design Point 28 Design Point 28 is located on Weiser Drive north of Pigeon Drive.

(5-year storm) Tributary Basins: C17.1a Upstream flowby:	Inlet/MH Number: Inlet DP28 Total Street Flow: 5.3cfs
Flow Intercepted: 5.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:
Street Capacity: Street slope = 1.0%, c	capacity = 9.0cfs, okay
(100-year storm) Tributary Basins: C17.1a Upstream flowby:	Inlet/MH Number: Inlet DP28 Total Street Flow: 11.56cfs
Flow Intercepted: 10.36cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.2cfs to Inlet DP38
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay	

Design Point 29 Design Point 29 is located SE corner of Fontaine Boulevard and Lamprey Drive.

(<u>5-year storm)</u> Tributary Basins: C15.9, C15.10, C15.14 Upstream flowby:	Inlet/MH Number: Inlet DP29 Total Street Flow: 8.6cfs	
Flow Intercepted: 8.6cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay		
(100-year storm) Tributary Basins: C15.9, C15.10, C15.14 Upstream flowby: 2.1cfs	Inlet/MH Number: Inlet DP29 Total Street Flow: 20.8cfs	
Flow Intercepted: 16.3cfs Inlet Size: 10' type R, sump	Flow Bypassed: 4.5cfs to Inlet DP30	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 30 Design Point 30 is located on Lamprey Drive south of Fontaine Boulevard in the SW corner

(<u>5-year storm)</u> Tributary Basins: C15.15 Upstream flowby:	Inlet/MH Number: Inlet DP30 Total Street Flow: 7.2cfs	
Flow Intercepted: 7.2cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Lamprey Drive Street slope = 1.8%, capacity = 18.4cfs, okay		
(100-year storm) Tributary Basins: C15.15 Upstream flowby: 4.5cfs	Inlet/MH Number: Inlet DP30 Total Street Flow: 20.1cfs	
Flow Intercepted: 20.1cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Lamprey Drive Street slope = 1.8%, capacity = 50.4cfs (half street) is okay		

Design Point 31

Design Point 31 is located downstream of Design Point 30 in Fontaine Boulevard and is the flow in the storm sewer. The total flow in the storm sewer (Line 12) is a total flow of 19.36cfs/42.12cfs in the 5/100 year storm events in the storm sewer.

<u>Design Point 33</u> Design Point 33 is located in the northeast corner of Lamprey Drive and Fontaine Boulevard.

(<u>5-year storm)</u> Tributary Basins: Upstream flowby:	C16.33, C14 0.8cfs	Inlet/MH Number: Inlet DP33 Total Street Flow: 8.2cfs
Flow Intercepted: 8 Inlet Size: 15' type F		Flow Bypassed:
Street Capacity: Fo	ontaine street slope = 7	1.0%, capacity = 13.5cfs, okay
(100-year storm) Tributary Basins: Upstream flowby:	C16.33, C14 11.5cfs	Inlet/MH Number: Inlet DP33 Total Street Flow: 26.3cfs
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 6.0cfs to Inlet DP34
Street Capacity: Fontaine street slope = 1.0%, capacity = 40cfs (half street) is okay		

Design Point 34 Design Point 34 is located northwest corner of Lamprey Drive and Fontaine Boulevard

(5-year storm) Tributary Basins: C16.34 Upstream flowby:	Inlet/MH Number: Inlet DP34 Total Street Flow: 0.9cfs
Flow Intercepted: 0.9cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Lamprey Drive street	slope = 0.8%, capacity = 12.0cfs, okay
(100-year storm) Tributary Basins: C16.34 Upstream flowby: 6.0cfs	Inlet/MH Number: Inlet DP34 Total Street Flow: 8.0cfs
Flow Intercepted: 8.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Lamprey Drive street slope = 0.8%, capacity = 37.0cfs (half street) is okay	

Design Point 34a

Design Point 34a is located downstream of Design Point 34 in Fontaine Boulevard and is the flow in the storm sewer. The total flow in the storm sewer (Line 3) is a total flow of 77.65cfs/272.7cfs in the 5/100 year storm events in the storm sewer.

Design Point 35 Design Point 35 is located in the NE corner of Edisto Drive and Fontaine Boulevard.

(<u>5-year storm)</u> Tributary Basins: C16.35 Upstream flowby:	Inlet/MH Number: Inlet DP35 Total Street Flow: 2.8cfs
Flow Intercepted: 2.8cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Fontaine Boulevard stre	et slope = 1.0 %, capacity = 13.5cfs, okay
(100-year storm) Tributary Basins: C16.35 Upstream flowby:	Inlet/MH Number: Inlet DP35 Total Street Flow: 6.1cfs
Flow Intercepted: 6.1cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Fontaine Boulevard strokay	eet slope = 1.0%, capacity = 40.0cfs (half street) is

Design Point 36

Design Point 36 is a small drainage basin that needs a 5' Type R inlet to drain the curb in the NW corner of Edisto Drive and Fontaine Boulevard. The total flow is 0.3cfs and 0.6cfs in the 5/100 year storm events. There are no bypass flows for this inlet.

Design Point 37

Design Point 37 is located downstream of Design Point 36 in Fontaine Boulevard just west of Edisto Drive and is the flow in the storm sewer. The total flow in the storm sewer (Line 2) is 77.41cfs/275.5cfs in the 5/100 year storm events in the storm sewer.

Design Point 38

Design Point 38 is located in the SE corner of Chaplin Drive and Matta Drive.

(5-year storm) Tributary Basins: C17.1 Upstream flowby:	Inlet/MH Number: Inlet DP38 Total Street Flow: 5.9cfs
Flow Intercepted: 5.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:
Street Capacity: Street slope = 1.0%	, capacity = 9.0cfs is okay
(100-year storm) Tributary Basins: C17.1 Upstream flowby: 1.2cfs	Inlet/MH Number: Inlet DP39 Total Street Flow: 14.43cfs
Flow Intercepted: 11.83cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 2.6cfs to Inlet DP39
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay	

Design Point 39

Design Point 39 is located in the SW corner of Chaplin Drive and Matta Drive.

(5-year storm) Tributary Basins: C17.2 Upstream flowby:	Inlet/MH Number: Inlet DP39 Total Street Flow: 8.61cfs	
Flow Intercepted: 8.41cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.2cfs to Inlet DP40	
Street Capacity: Street slope = 3.5%, capacity = 16.7cfs is okay		
(100-year storm) Tributary Basins: C17.2 Upstream flowby: 24.0cfs	Inlet/MH Number: Inlet DP39 Total Street Flow: 21.53cfs	
Flow Intercepted: 14.93cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 6.6cfs to Inlet DP40	
Street Capacity: Street slope = 3.5%, capacity = 37.2cfs (half street) is okay		

Design Point 40 Design Point 40 is located at a low point in the SE corner of Lamine Drive and Fontaine Boulevard.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP40 Total Street Flow: 12.9cfs
Flow Intercepted: 7 Inlet Size: 20' type F		Flow Bypassed:
Street Capacity: St	reet slope = 2.8%, cap	oacity = 14.4cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C17.3-C17.5 6.6cfs	Inlet/MH Number: Inlet DP40 Total Street Flow: 39.4cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 13.4cfs to Inlet DP41
Street Capacity: St	reet slope = 2.8%, cap	bacity = 40.7cfs (half street) is okay

Design Point 41 Design Point 41 is located at a low point in the SW corner of Lamine Drive and Fontaine Boulevard.

(5-year storm) Tributary Basins: C17.6 Upstream flowby:	Inlet/MH Number: Inlet DP41 Total Street Flow: 2.0cfs	
Flow Intercepted: 2.0cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, c	capacity = 9.0cfs, okay	
<u>(100-year storm)</u>		
Tributary Basins: C17.6	Inlet/MH Number: Inlet DP41	
Upstream flowby: 13.4cfs	Total Street Flow: 19.3cfs	
Flow Intercepted: 19.3cfs Inlet Size: 20' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 42

Design Point 42 is located on the north side of Fontaine Boulevard just east of the East Tributary of JCC north of Lamine Drive.

<u>(5-year storm)</u> Tributary Basins: C17.8 Upstream flowby:	Inlet/MH Number: Inlet DP43 Total Street Flow: 3.2cfs	
Flow Intercepted: 2.3cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 13.0cfs, okay		
(100-year storm) Tributary Basins: C17.8 Upstream flowby:	Inlet/MH Number: Inlet DP43 Total Street Flow: 7.2cfs	
Flow Intercepted: 7.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 40cfs (half street) is okay		

Design Point 43

Design Point 43 is located downstream of Design Point 42 in Fontaine Boulevard just east of Lamine Drive and is the flow in the storm sewer. The total flow in the storm sewer (Line 33) is 27.33cfs/65.94cfs in the 5/100-year storm events in the storm sewer.

Design Point 44

Design Point 44 is located on the south side of Pond C5 and is the total storm sewer flow from the south into Pond C5. The flow into Pond C5 from the south is from (Line 1+Line 33) and is 102.5cfs/339.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 45

Design Point 45 is the total developed flow into Pond C5. We did not use the flow rates from the storm sewer system as in other design points because the storm system flows used fixed release rates (no hydrographs used) from the upstream ponds which results in much larger flows than using the actual hydraulic model of the ponds/storm. Therefore, we used the flow amount from the Lorson Ranch East MDDP Hydraflow hydraulic model of the storm ponds and sewer system. The hydraflow model from the MDDP has not changed and is the best representation of the actual flow entering the Pond C5. The flow into Pond C5 is 157.0cfs/484.0cfs in the 5/100-year storm events in the storm sewer.

Design Point 46

Design Point 46 is the total developed flow from Pond C5 into the East Tributary. This flow rate was taken from the Lorson Ranch East MDDP Hydraflow hydraulic model of the storm ponds and sewer system. The hydraflow model from the MDDP has not changed and is the best representation of the actual flow from Pond C5. The flow from Pond C5 are 121.0cfs/420.0cfs in the 5/100-year storm events in the storm sewer (Design Pt 7c in MDDP). The pre-developed flows entering the East Tributary at this design point are 141.0cfs/458.0cfs in the 5/100-year storm events in the storm sewer (Design Pt 2 in MDDP). The developed discharge is slightly below pre-developed conditions which conforms to the design criteria (90% of pre-developed) set by El Paso County. See Pond C5 for additional information.

Design Point 47

Design Point 47 is located in a low point in Fontaine Boulevard west of the East Tributary on the south side of Fontaine. Flows from this basin have already been included in the pond modeling (including water quality) of Pond B1 which was constructed as part of Pioneer Landing 2.

<u>(5-year storm)</u> Tributary Basins: C17.9 Upstream flowby:	Inlet/MH Number: Inlet DP47 Total Street Flow: 7.8cfs
Flow Intercepted: 7.8cfs Inlet Size: 10' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.6%, cap	acity = 10.4cfs, okay
(100-year storm) Tributary Basins: C17.9 Upstream flowby:	Inlet/MH Number: Inlet DP47 Total Street Flow: 13.9cfs
Flow Intercepted: 13.9cfs Inlet Size: 10' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.6%, capacity = 31.2cfs (half street) is okay	

Design Point 48

Design Point 48 is located in a low point in Fontaine Boulevard west of the East Tributary on the north side of Fontaine. Flows from this basin have already been included in the pond modeling (including water quality) of Pond B1 which was constructed as part of Pioneer Landing 2.

٦

(5-year storm) Tributary Basins: C17.10 Upstream flowby:	Inlet/MH Number: Inlet DP48 Total Street Flow: 8.9cfs
Flow Intercepted: 8.9cfs Inlet Size: 10' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.6%, capacity = 10.4cfs, okay	
(100-year storm) Tributary Basins: C17.10 Upstream flowby:	Inlet/MH Number: Inlet DP48 Total Street Flow: 16.0cfs
Flow Intercepted: 16.0cfs Inlet Size: 10' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.6%, capacity = 31.2cfs (half street) is okay	

Design Point 49

Design Point 49 is located northeast of Design Point 48 in Fontaine Boulevard and is the total flow from the Fontaine Boulevard storm sewer system entering Pond B1. According to the final drainage report for Fontaine Boulevard prepared by Pentacor Engineering in 2006 the flow in the existing 42" storm sewer (P-40) is 37.6cfs in the 5-year and 62.1cfs in the 100 year storm events. The 42" has a constructed slope of 0.4%. When combined with the flow from the two new inlets the total pipe flow will be 54.3cfs in the 5-year and 92.0cfs in the 100-year storm events downstream to Pond B1. The proposed storm sewer into Pond B1 will be a 48" RCP at 0.5% slope with a capacity of 99cfs.

Design Point 50

Design Point 50 is located on the south side of Saco Drive just east of Willapa Drive.

(5-year storm) Tributary Basins: D1.1 & D1.2 Upstream flowby:	Inlet/MH Number: Inlet DP50 Total Street Flow: 10.01cfs	
Flow Intercepted: 7.34cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.7cfs to DP56	
Street Capacity: Street slope = 2.2%, capacity = 13.3cfs is okay		
(100-year storm) Tributary Basins: D1.1 & D1.2 Upstream flowby:	Inlet/MH Number: Inlet DP50 Total Street Flow: 22.27cfs	
Flow Intercepted: 10.77cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 11.5cfs to DP56	
Street Capacity: Street slope = 2.2%, capacity = 42.8cfs (half street) is okay		

Design Point 51

Design Point 51 is located downstream of Design Point 50 in Saco Drive just west of Willapa Drive and is the flow in the storm sewer. The total flow in the storm sewer (Line 3) is 14.68cfs/21.60cfs in the 5/100-year storm events in the storm sewer.

Design Point 52 Design Point 52 is located on the east side of Chaplin Drive north of Yuba Drive

<u>(5-year storm)</u> Tributary Basins: D1.4+D1.5 Upstream flowby:	Inlet/MH Number: Inlet DP52 Total Street Flow: 15.44cfs	
Flow Intercepted: 12.44cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 3.0cfs to DP53	
Street Capacity: Street slope = 3.8%, capacity = 16.9cfs is okay		
<u>(100-year storm)</u> Tributary Basins: D1.4+D1.5 Upstream flowby:	Inlet/MH Number: Inlet DP52 Total Street Flow: 34.7cfs	
Flow Intercepted: 18.8cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 15.9cfs to DP53	
Street Capacity: Street slope = 3.8%, capacity = 36cfs (half street) is okay		

Design Point 53 Design Point 53 is located at Chaplin Drive and Yuba Drive on the north side of the street.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	D1.6, D1.8 3.0cfs	Inlet/MH Number: Inlet DP53 Total Street Flow: 14.65cfs
Flow Intercepted: 1 Inlet Size: 20' type F		Flow Bypassed: 0.6cfs to DP-55
Street Capacity: St	reet slope = 3.5%, cap	oacity = 16.7cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	D1.6, D1.8 15.9cfs	Inlet/MH Number: Inlet DP53 Total Street Flow: 41.47cfs
Flow Intercepted: 20 Inlet Size: 20 type		Flow Bypassed: 15.50cfs to DP55
Street Capacity: Street slope = 3.5%, capacity = 37.2cfs (half street) flow tops crown		

Design Point 54 Design Point 54 is located at Lamine Drive and Yuba Drive on the northeast corner

(5-year storm) Tributary Basins: D1.7 Upstream flowby:	Inlet/MH Number: Inlet DP54 Total Street Flow: 7.0cfs	
Flow Intercepted: 7.0cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.2%, capacity = 10 cfs, okay		
(100-year storm) Tributary Basins: D1.7 Upstream flowby:	Inlet/MH Number: Inlet DP54 Total Street Flow: 15.5cfs	
Flow Intercepted: 12.6cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 3.0cfs to DP55	
Street Capacity: Street slope = 1.2%, capacity = 37cfs (half street)		

Design Point 55a Design Point 55a is located on the north side of Saco Drive west of Willapa Drive

(5-year storm) Tributary Basins: D1.10 Upstream flowby:	Inlet/MH Number: Inlet DP55a Total Street Flow: 10.18cfs	
Flow Intercepted: 7.38cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.8cfs to DP55	
Street Capacity: Street slope = 2.5%, capacity = 14.0cfs, okay		
(100-year storm) Tributary Basins: D1.10 Upstream flowby:	Inlet/MH Number: Inlet DP55a Total Street Flow: 22.63cfs	
Flow Intercepted: 10.83cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 11.80cfs to DP55	
Street Capacity: Street slope = 2.5%, capacity = 40.0cfs (half street) is okay		

Design Point 55 Design Point 55 is located on the east side of Lamine Drive at a low point south of Yuba Drive.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP55 Total Street Flow: 7.8cfs
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: Street slope = 1.9%, capacity = 12.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	D1.9 30.3cfs	Inlet/MH Number: Inlet DP55 Total Street Flow: 40.0cfs
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed: 8.3cfs to Inlet DP56
Street Capacity: Street slope = 1.9%, capacity = 45cfs (half street) is okay		

Design Point 56

Design Point 56 is located on the west side of Lamine Drive at a low point south of Yuba Drive.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP56 Total Street Flow: 7.2cfs
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: Street slope = 1.9%, capacity = 12.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP56 Total Street Flow: 29.7cfs
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed:
Street Capacity: Street slope = 1.9%, capacity = 45cfs (half street) is okay		
The trapezoidal overflow swale between the lots is sized for 150cfs, 2.0' deep, 4:1 side slopes, 8' wide bottom, 2% slope, velocity of 8.38cfs, and has a flow depth of 1.34 feet.		

Design Point 57

Design Point 57 is located in the SW corner of Lamine Drive and Saco Drive in the knuckle and is the flow in the pipe to Pond D2. The total pipe flow is 63.6cfs/121.1cfs in the 5/100 year storm events.

Design Point 58

Design Point 58 is the total flow into Pond D2 from the south (Design Pt. 65c on Lorson Blvd) and the storm sewer from Lamine Drive (Design Pt. 57). The total pond inflow is 130.39cfs/241.0cfs in the 5/100-year storm events when adding the pipe flow.

Design Point 59a

Design Point 59a is located at the south end of Tillamook Drive in a cul-de-sac

(5-year storm) Tributary Basins: D2.2 Upstream flowby:	Inlet/MH Number: Inlet DP59a Total Street Flow: 2.2cfs	
Flow Intercepted: 2.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay		
(100-year storm) Tributary Basins: D2.2 Upstream flowby:	Inlet/MH Number: Inlet DP59a Total Street Flow: 4.8cfs	
Flow Intercepted: 4.8cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 59b

Design Point 59b is located south of Lorson Boulevard under the electric easement and is the flow in the pipe from future Pond D1. The total future pipe flow (Line 27) is allowed to be 2.0/11.0cfs in the 5/100-year storm events. The pipe flow for future Pond D1 is detailed in the Lorson Ranch East MDDP.

Design Point 59c

Design Point 59c is located east of Lorson Boulevard and Lamprey Drive and is the flow in the pipe to Design Point 59e. The total pipe flow is 4.19cfs/15.61cfs in the 5/100 year storm events.

Design Point 59d Design Point 59d is located in the northeast corner of Lorson Boulevard and Lamprey Drive.

(<u>5-year storm)</u> Tributary Basins: D2.1 & D2.3 Upstream flowby:	Inlet/MH Number: Inlet DP59d Total Street Flow: 10.7cfs	
Flow Intercepted: 10.7cfs Inlet Size: 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, cap	acity = 11.5cfs, okay	
(100-year storm) Tributary Basins: D2.1 & D2.3 Upstream flowby:	Inlet/MH Number: Inlet DP59d Total Street Flow: 23.7cfs	
Flow Intercepted: 20.3cfs Flow I Inlet Size: 15' type R, sump	Bypassed: 3.7cfs to Inlet DP65b	
Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay		

Design Point 59e

Design Point 59e is located west of Lorson Boulevard and Lamprey Drive and is the flow in the pipe (Line 24) in Lorson Boulevard flowing west to Trappe Drive. The total pipe flow is 14.85cfs/36.14cfs in the 5/100 year storm events.

٦

<u>Design Point 59f</u>

Design Point 59f is located at the SW corner of Lorson Boulevard and Skuna Drive.

(5-year storm) Tributary Basins: D2.4 & D2.5 Upstream flowby:	Inlet/MH Number: Inlet DP59f Total Street Flow: 13.68cfs	
Flow Intercepted: 8.58cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 5.1cfs to Inlet DP60	
Street Capacity: Street slope = 1.9%, capacity Lorson Blvd.= 18.4cfs, okay		
(100-year storm) Tributary Basins: D2.4 & D2.5 Upstream flowby:	Inlet/MH Number: Inlet DP59f Total Street Flow: 30.47cfs	
Flow Intercepted: 12.37cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 18.1cfs to Inlet DP60	
Street Capacity: Street slope = 1.9%, capacity Lorson Blvd. = 50.4cfs (half street) is okay		

Design Point 59g

Design Point 59g is located on Lorson Boulevard west of Skuna Drive and is the flow in the pipe (Line 23) in Lorson Boulevard flowing west to Trappe Drive. The total pipe flow is 23.43cfs/47.7cfs in the 5/100 year storm events.

Design Point 60

Design Point 60 is located in the SE corner of Lorson Boulevard and Trappe Drive

(5-year storm)		
Tributary Basins: D2.9, D2.12	Inlet/MH Number: Inlet DP60	
Upstream flowby: 6.1cfs	Total Street Flow: 15.8cfs	
Flow Intercepted: 15.8cfs	Flow Bypassed:	
Inlet Size: 25' type R, sump		
Street Capacity: Street slope = 1.8%, c	anacity = 18 4cfs_okay	
	apacity = 10.4013, 01ay	
(100-year storm)		
	Inlet/MH Number: Inlet DP60	
Tributary Basins: D2.9, D2.12		
Upstream flowby: 32.1cfs	Total Street Flow: 55.9cfs	
Flow Interconted. 21 Zefe	Flow Dynasody 24 Jofe to Design Deint 64	
Flow Intercepted: 31.7cfs	Flow Bypassed: 24.2cfs to Design Point 64	
Inlet Size: 25' type R, sump		
Street Capacity: Street slope = 1.8%, capacity = 50.4cfs (half street) is okay since half is		
from Lorson Blvd and half is from Trappe Drive.		
<u>Design Point 61</u>		
Design Point 61 is located on Witcher Driv	vo just wast of Vacana Driva	

Design Point 61 is located on Witcher Drive just west of Yocona Drive.

(5-year storm) Tributary Basins: D2.6 & D2.7 Upstream flowby:	Inlet/MH Number: Inlet DP61 Total Street Flow: 10.57cfs	
Flow Intercepted: 7.57cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 3.0cfs to Design Point 62	
Street Capacity: Street slope = 3.1%, cap	pacity = 15.5cfs, okay	
(100-year storm) Tributary Basins: D2.6 & D2.7 Upstream flowby:	Inlet/MH Number: Inlet DP61 Total Street Flow: 23.68cfs	
Flow Intercepted: 11.07cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 12.6cfs to Design Point 62	
Street Capacity: Street slope = 3.1%, capacity = 39.0cfs (half street) is okay		

Design Point 62 Design Point 62 is located on the east side of Volga Drive at Magothy Drive.

<u>(5-year storm)</u> Tributary Basins: D2.8 Upstream flowby:	Inlet/MH Number: Inlet DP62 Total Street Flow: 10.1cfs			
Flow Intercepted: 10.1cfs Inlet Size: 10' type R, sump	Flow Bypassed:			
Street Capacity: Street slope =	1.0%, capacity = 9.0cfs, okay			
(100-year storm) Tributary Basins: D2.8 Upstream flowby:	Inlet/MH Number: Inlet DP62 Total Street Flow: 30.3cfs			
Flow Intercepted: 16.3cfs Inlet Size: 10' type R, sump	Flow Bypassed: 14.0cfs to Design Point 60			
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay				

Design Point 63

Design Point 63 is located in the SE corner of Magothy Drive and Volga Drive and is the flow in the pipe (Line 35) in Magothy Drive flowing west to Trappe Drive. The total pipe flow is 18.63cfs/27.38cfs in the 5/100 year storm events.

Design Point 64 Design Point 64 is located in the SW corner of Lorson Boulevard and Trappe Drive

(5-year storm) Tributary Basins: D2.10 Upstream flowby:	Inlet/MH Number: Inlet DP64 Total Street Flow: 3.2cfs			
Flow Intercepted: 3.0cfs Inlet Size: 25' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.8%, cap	pacity = 18.4cfs, okay			
(100-year storm) Tributary Basins: D2.10 Upstream flowby: 24.2cfs	Inlet/MH Number: Inlet DP64 Total Street Flow: 29.2cfs			
Flow Intercepted: 29.2cfs Inlet Size: 25' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.8%, capacity = 50.4cfs, okay				

Design Point 65

Design Point 65 is located at the SW corner of Lorson Boulevard and Trappe Drive and is the flow in the pipe north (Line 30) to Design Point 65c. The total pipe flow is 37.54cfs/88.31cfs in the 5/100 year storm events.

Design Point 65a

Design Point 65a is located on the south side of Lorson Boulevard west of Trappe Drive

(<u>5-year storm)</u> Tributary Basins: D2.11 Upstream flowby:	Inlet/MH Number: Inlet DP65a Total Street Flow: 2.0cfs			
Flow Intercepted: 2.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.66%, ca	apacity = 10.6 cfs, okay			
(100-year storm) Tributary Basins: D2.11 Upstream flowby:	Inlet/MH Number: Inlet DP65a Total Street Flow: 4.0cfs			
Flow Intercepted: 4.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 0.66%, capacity = 32.1cfs (half street) is okay				

Design Point 65b Design Point 65b is located on the north side of Lorson Boulevard west of Trappe Drive

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	D2.13	Inlet/MH Number: Inlet DP65b Total Street Flow: 4.2cfs		
Flow Intercepted: 4 Inlet Size: 5' type R,		Flow Bypassed:		
Street Capacity: St	reet slope = 0.66%, c	apacity = 10.6cfs, okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP65b Total Street Flow: 12.7cfs		
Flow Intercepted: Inlet Size: 5' type F		Flow Bypassed:		
Street Capacity: Street slope = 0.66%, capacity = 32.1cfs (half street) is okay				

Design Point 65c

Design Point 65c is located west of Lorson Boulevard and Trappe Drive and is the flow in the pipe (Line 17) north to Pond D2. The total pipe flow is 66.80cfs/119.9cfs in the 5/100 year storm events.

Design Point 66a

Design Point 66a is located at the south end of Skuna Drive in the cul-de-sac

(<u>5-year storm)</u> Tributary Basins: E1.1 Upstream flowby:	Inlet/MH Number: Inlet DP66a Total Street Flow: 3.3cfs			
Flow Intercepted: 3.3cfs Inlet Size: 5' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 2.5%, cap	oacity = 14cfs, okay			
(100-year storm) Tributary Basins: E1.1 Upstream flowby:	Inlet/MH Number: Inlet DP66a Total Street Flow: 7.3cfs			
Flow Intercepted:7.3cfsFlow Bypassed:Inlet Size:5' type R, sump				
Street Capacity: Street slope = 2.5%, capacity = 40cfs (half street) is okay				

Design Point 66b

Design Point 66b is located east of Horton Drive/Yocona Drive knuckle and is the flow in the pipe from future Pond E1. The total future pipe flow (Line 15) is allowed to be 12.8cfs in the 5-year and 36.3cfs in the 100-year storm events. The pipe flow is greater than the release rate of Pond E1 as detailed in the Lorson Ranch East MDDP so the pipes will be sized adequately for any possible future flows.

Design Point 66c

Design Point 66c is located east of the Horton Drive/Yocona Drive knuckle and is the flow in the pipe as it discharges into a swale flowing west to Trappe Drive. The total pipe flow (Line 14) is 16.11cfs/43.59cfs in the 5/100-year storm events.

<u>Design Point 66d</u> Design Point 66d is located on the south side of the Horton Drive/Volga Drive intersection.

(<u>5-year storm)</u> Tributary Basins: E1.2 Upstream flowby:	Inlet/MH Number: Inlet DP66d Total Street Flow: 7.57cfs			
Flow Intercepted: 6.27fs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.3cfs to Design Pt. 68			
Street Capacity: Street slope = 2.5%, cap	pacity = 14.0cfs, okay			
(100-year storm) Tributary Basins: E1.2 Upstream flowby:	Inlet/MH Number: Inlet DP66d Total Street Flow: 16.78cfs			
Flow Intercepted: 9.48cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 7.3cfs to Design Pt. 68			
Street Capacity: Street slope = 2.5%, capacity = 40.7cfs (half street) is okay				

<u>Design Point 67a</u>

Design Point 67a is located at the east end of Trappe Drive on the south side at the electric easement. Flow at this design point is from Basin E2-ex which includes offsite flows. A 30" storm sewer (Line 13) will extend to the ROW where the flow will be collected in double Type D inlets and swale. The total flow is 26.0cfs/92cfs in the 5/100-year storm events to the end section. The storm sewer system will collect 26.0cfs and 70.0cfs in the 5/100-year storm events and 22.0cfs in the 100-year storm event will flow to Trappe Drive and then west to Design Point 70 in the street. The diversion swale at this design point is 3.0' deep, 4:1 side slopes, 0' wide bottom, 2.0% slope, velocity of 8.08cfs, and has a flow depth of 1.88 feet.

Design Point 67b

Design Point 67b is located on the east end of Trappe Drive on the north side. Flow at this design point is from Basin E1.3 and Design Point 66c. A 30" storm (Line 8) will collect this area and convey it to Trappe Drive. The total flow at the end section is 20.0cfs/64.10cfs in the 5/100 year storm events. The storm sewer system will collect 20.0cfs and 42.0cfs in the 5/100-year storm events and 22.1cfs in the 100-year storm event will flow to Trappe Drive and then west to Design Point 68 in the street. The Basin E1.3 swale is sized for 210cfs which is the future emergency overflow from Pond E1. The swale is 3.0' deep, 4:1 side slopes, 0' wide bottom, 2.5% slope, velocity of 10.1cfs, and has a flow depth of 2.3 feet.

Design Point 68 Design Point 68 is located in the NE corner of Trappe Drive and Horton Drive.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	E1.4 & E1.5 1.3cfs	Inlet/MH Number: Inlet DP68 Total Street Flow: 6.7cfs			
Flow Intercepted:6.7cfsFlow Bypassed:Inlet Size:15' type R, on-grade					
Street Capacity: St	Street Capacity: Street slope = 1.15%, capacity = 14.0cfs, okay				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP68 Total Street Flow: 41.7cfs			
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 21.8cfs to Design Pt. 69			
Street Capacity: Street slope = 1.15%, capacity = 43cfs (half street) is okay					

Design Point 69

Design Point 69 is located on the east side of Trappe Drive south of Magothy Drive at a low point.

(<u>5-year storm)</u> Tributary Basins: E1.6 Upstream flowby:	Inlet/MH Number: Inlet DP69 Total Street Flow: 5.7cfs			
Flow Intercepted: 5.7cfs Inlet Size: 30' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.15%, ca	apacity = 14.0cfs, okay			
(100-year storm) Tributary Basins: E1.6 Upstream flowby: 21.8cfs	Inlet/MH Number: Inlet DP69 Total Street Flow: 32.2cfs			
Flow Intercepted:32.2cfsFlow Bypassed:Inlet Size:30' type R, sump				
Street Capacity: Street slope = 1.15%, capacity = 43cfs (half street) is okay				

<u>Design Point 70</u> Design Point 70 is located on the west side of Trappe Drive south of Magothy Drive at a low point.

(5-year storm) Tributary Basins: E1.7 Upstream flowby:	Inlet/MH Number: Inlet DP70 Total Street Flow: 4.9cfs			
Flow Intercepted: 4.9cfs Inlet Size: 30' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.15%, ca	ipacity = 14.0cfs, okay			
(100-year storm) Tributary Basins: E1.7 Upstream flowby: 22.0cfs	Inlet/MH Number: Inlet DP70 Total Street Flow: 35.7cfs			
Flow Intercepted: 35.7cfs Inlet Size: 30' type R, sump	Flow Bypassed:			
Street Capacity: Street slope = 1.15%, capacity = 43.0cfs (half street)				

Design Point 71

Design Point 71 is located East of Trappe Drive and is the flow into Interim Point E2. The total pipe flow (Line1) is 69.2cfs/209.3cfs in the 5/100 year storm events. This flow will need to be detained to release at 90% of pre-development rates. See Interim Point E2 for flow rates.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for Lorson Ranch East is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Lorson Ranch East per the Denver Urban Drainage Districts specifications. There are two permanent full spectrum ponds proposed for this development. Invaddition to permanent ponds there are several interim detention ponds proposed under the electric transmission line easement. These interim ponds will detain existing runoff from the east to rates that can be accommodated by drainage infrastructure constructed as part of Lorson Ranch East. The interim detention ponds do not have full spectrum or water quality features and are strictly to reduce the upstream existing runoff from large tributary basins. The two full spectrum ponds (Pond C5 and Pond D2) incorporate storm water quality features and comply with the Lorson Ranch East MDDF.

downstream conveyances need to accommodate developed flows.

Interim pond construction is only for rough grading as detailed on the Early Grading plans for Lorson Ranch East included in the Preliminary Plan submittal. Interim ponds include a 10' wide gravel access road on a 15' wide bench at a maximum 10% slope to the pond bottom. Interim pond outlets consist of a storm sewer and flared end section with a rip rap berm to prevent erosion from entering the pipe. Interim Pond E2 includes a water quality outlet structure and a sediment forebay. All interim ponds include a storm sewer outfall and an emergency overflow weir. Soil borings, embankment, key-in slope, and compaction requirements can be found in the geotechnical report for the Lorson Ranch East Preliminary Plan.

Full Spectrum Pond Construction Requirements

Full spectrum Ponds C5 and D2 only include rough grading of the pond shown on the Early Grading plans for Lorson Ranch East which are included in the Preliminary Plan submittal. Final construction plans for full spectrum Ponds C5 and D2 will be included in the first filing of a final plat in Lorson Ranch East. The final design will include a 10' wide gravel access road on a 15' wide bench at a maximum

How many

with Phase 1?

10% slope to the pond bottom. The final design of the full spectrum ponds consist of an outlet structure, storm sewer outfall to the East Tributary, low flow channel, sediment forebays, and overflow weirs. Soil borings, embankment, key-in, slope, and compaction requirements can be found in the geotechnical report for the Lorson Ranch East Preliminary Plan.

Interim Detention Pond C1

This is an interim detention pond located east of the electric substation and detains runoff from Basin C15-ex which is a large 55-acre existing basin. Interim Pond C1 is needed in Phase 2 when lots east of Lamprey Drive, south of Fontaine Boulevard, near the substation and Rockcastle Drive are graded/developed. Timing the construction of Interim Pond C1 will be provided in the final drainage report for the adjacent lots. Interim Pond C1 reduces the size of storm sewer necessary to convey drainage east to the East Tributary of JCC. This pond was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 24cfs/134cfs in the 5-year and 100-year storm event
- Detained flows: 3.0cfs/10.0cfs in the 5-year and 100-year storm event
- Pipe Outlet: 18" RCP at 0.5%
- 5-yr WSEL= 5746.80, 100-yr WSEL=5749.60
- Volume: 0.64 ac-ft storage in 5-year, 3.67 acre-ft storage in 100-year
- Spillway sized for future developed flow = 175cfs, Inv=5753.00, 50' wide, 3' deep, see MDDP
- Spillway swale to Fontaine: 205cfs, 55' btm, 0.3% slope, 2' deep, 4:1 sides, velocity=3.3cfs, flow depth=1.05'

Interim Detention Pond C2.2 + Pond C2.3

These are interim detention ponds located east on Fontaine Boulevard and detains runoff from Basin C14-ex which is a large 119-acre existing basin. Interim Pond C2 reduces the size of storm sewer necessary to convey drainage east to the East Tributary of JCC in Fontaine Boulevard. Interim Ponds C2.2+C2.3 are connected by an overflow swale at an elevation of 5752.50. Both the north and south portions of the pond each have 24" outlet pipes so runoff can enter either pond for detention. This pond was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 52cfs/271cfs in the 5-year and 100-year storm event
- Detained flows: 26cfs/74.2cfs in the 5-year and 100-year storm event
- Pipe Outlet: 24" RCP at 0.5% for both the north and south basins.
- 5-yr WSEL= 5747.22, 100-yr WSEL=5752.01
- Volume: 0.82ac-ft storage in 5-year, 7.12acre-ft storage in 100-year
- Pond C2.2 spillway sized for future developed flow = 500cfs, Inv=5754.00, 60' wide, 2' deep, flow depth=1.82', see MDDP
- Pond C2.3 spillway sized for future developed flow = 280cfs, Inv=5754.00, 30' wide, 3' deep, flow depth=1.85', see MDDP

Interim Detention Pond C3

This is an interim detention pond located north of Fontaine Boulevard and detains runoff from Basin C12-ex which is a large 100-acre existing basin. Interim Pond C3 flows to Pond C2 and reduces the size of storm sewer necessary to convey drainage east to the East Tributary of JCC in Fontaine Boulevard. Interim Pond C3 is connected by an 18" storm sewer to Pond C2. This pond was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 45cfs/250cfs in the 5-year and 100-year storm event
- Detained flows: 7.6cfs/19.67cfs in the 5-year and 100-year storm event
- Pipe Outlet: 18" RCP draining to Pond C2
- 5-yr WSEL= 5759.56, 100-yr WSEL=5764.10
- Volume: 1.06ac-ft storage in 5-year, 6.6 acre-ft storage in 100-year
- Spillway sized for future developed flow = 380cfs, Inv=5764.00, 20' wide, 4' deep, see MDDP

This is not acceptable. Reference DCM 2.3, 2.5.3 and Table 6-1.

Fontaine Boulevard Emergency Overflow

This section of the drainage report addresses a possible emergency overflow condition on Fontaine Boulevard in which all the upstream future ponds (Future Ponds C1, C2.1, C2.2, C2.3, C2.4, C3, C4) fail. This condition would result in all the emergency overflows discharging at the undetained developed rates to Fontaine Boulevard including the C14/C15 basins and then west downstream to the East Tributary. This condition would result in 1,260cfs of undetained developed runoff in Fontaine Boulevard has been designed for this scenario which includes a 5:1 slope in the 5' wide landscape tract next to the ROW that allows the flow to remain outside the adjacent lots. This flow condition as a non-residential collector in a 130'ROW. The principal arterial section results in a flow depth of 1.76' at the curb flow line. The non-residential collector section results in a flow depth of 1.70' at the curb flow line.

Interim Detention Pond D1

Interim Detention Pond D1 is located south of Lorson Boulevard at the electric easement and detains runoff from Basin D1-ex which is a 17-acre existing basin. Interim Pond D1 reduces the size of storm sewer necessary to convey drainage east to the East Tributary of JCC in Lorson Boulevard. Interim Pond D1 has an 18" outlet pipe draining east to the East Tributary of JCC. This pond was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 8cfs/47cfs in the 5-year and 100-year storm event
- Detained flows: 3.5cfs/11.7cfs in the 5-year and 100-year storm event
- Pipe Outlet: 18" RCP at 0.5%
- 5-yr WSEL= 5751.89, 100-yr WSEL=5753.67
- Volume: 0.11ac-ft storage in 5-year, 0.8acre-ft storage in 100-year
- Spillway sized for future developed flow = 75cfs, Inv=5760.00, 25' wide, 2' deep, flow depth=0.9', see MDDP

Interim Detention Pond E1

This is an interim detention pond located south of Lorson Boulevard and detains runoff from Basin E1ex which is a 57-acre existing basin. Interim Pond E1 reduces the size of storm sewer necessary to convey drainage east to the East Tributary of JCC in Trappe Drive. Pond E1 has an 18" outlet pipe draining east to the East Tributary of JCC. This pond was modeled in Hydraflow and does not include water quality features.

- Incoming flows: 25cfs/142cfs in the 5-year and 100-year storm event
- Detained flows: 6.7cfs/19.0cfs in the 5-year and 100-year storm event
- Pipe Outlet: 24" RCP at 0.5%
- 5-yr WSEL= 5730.45, 100-yr WSEL=5734.21
- Volume: 0.71ac-ft storage in 5-year, 3.47acre-ft storage in 100-year
- Spillway sized for future developed flow = 210cfs, Inv=5738.00, 40' wide, 2' deep, flow depth=1.33', see MDDP

Interim Detention Pond E2

This is an interim water quality pond located south of Lorson Boulevard and west of Trappe Drive and treats runoff from the developed "E" basins which is 21acres. Interim Pond E2 is only a water quality pond. All developed upstream flows will be allowed to flow undetained through this pond because Interim Pond E1 detains existing flows significantly lower than existing rates. Pond E2's water quality will outlet into a 48" pipe draining to the East Tributary. All storm events above water quality flows will flow over an emergency overflow into existing swales flowing west to the East Tributary. This will result in developed flows entering the East Tributary slightly lower than the pre-developed conditions. Futher development within the "E" basins will match the pre-developed rates. The water quality features were modeled in the Exel spreadsheets for full spectrum for the "E" basin (21 acres) only.

- Incoming flows: 51cfs/183cfs in the 5-year and 100-year storm event
- Detained flows: 51cfs/183cfs in the 5-year and 100-year storm event. No detention required.
- Zone 1 WQCV: 1.385ac-ft, WSEL: 5695.85, Top WQ outlet structure set at 5696.20
- Pipe Outlet: 48" RCP at 0.5%,
- Outlet Structure: From full spectrum worksheets
- Spillway set at 5698, Cipoleti Wier, 15' wide, 4:1 side slopes, 5698.00 invert

Detention Pond C5 (Full Spectrum Design)

This is an on-site permanent full spectrum detention pond that includes water quality and discharges directly into the East Tributary. Pond C5 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes only. The 5-year and 100-year flow rates are taken from the Lorson East MDDP. See MDDP (Table 6.2) for pre/post development release rates into the East Tributary at this location. Pond C5 is required to release runoff (5-yr/100-yr) so it closely mimics the pre-developed flow rates into the East Tributary. The outlet structure is a triple CDOT type D outlet in parallel and the overflow spillway is a wier set slightly above the outlet structure so it releases the 5yr/100yr storm events quickly to match pre-developed rates. The full spectrum print outs are in the appendix of this report as well as the MDDP hydraflow pond sheets. See map in appendix for watershed areas.

- Watershed Ares: 171 acres
- Watershed Imperviousness: 65%
- Hydrologic Soils Group C/D
- Zone 1 WQCV: 3.298ac-ft, WSEL: 5709.92
- Zone 2 EURV: 9.524ac-ft, WSEL: 5712.27, Top outlet structure set at 5712.60, 3'x18' triple CDOT Type D outlets in parallel.
- (5-yr): 13.01ac-ft, WSEL: 5713.47, 121cfs
- Zone 3 (100-yr): 15.56ac-ft, WSEL: 5714.32, 420cfs
- Pipe Outlet: 48" RCP at 0.5%
- Overflow Spillway: 52' wide bottom, elevation=5713, 4:1 side slopes, flow depth=1.77', 420cfs
- Pre-development release rate into East Tributary=141cfs/458cfs in the 5yr/100 yr storm at this pond outfall (Design Pt. 2, Table 6.2 in MDDP)

Detention Pond D2 (Full Spectrum Design)

This is an on-site permanent full spectrum detention pond that includes water quality and discharges directly into the East Tributary. Pond D2 is designed in the UDCF Full Spectrum spreadsheets but the pond release rates for the 5-yr.100-yr storms are taken from the Hydraflow model in the Lorson East MDDP because of the additional flow from Pond D1 entering this system and the excel spreadsheet cannot account for that flow. The full spectrum and MDDP release rates are close but the MDDP is a more accurate representation. Pond D2 is required to release runoff (5-yr/100-yr) so it closely mimics the pre-developed flow rates into the East Tributary. See MDDP (Table 6.2) for pre/post development release rates into the East Tributary at this location. The outlet structure is a standard 4'x14' full spectrum outlet structure and the overflow spillway is a weir set above the outlet structure so it releases the 5yr/100yr storm events to match pre-developed rates. The full spectrum print outs are in the

appendix of this report as well as the MDDP hydraflow pond sheets. See map in appendix for watershed areas.

- Watershed Ares: 72 acres
- Watershed Imperviousness: 65%
- Hydrologic Soils Group C/D
- Zone 1 WQCV: 1.385ac-ft, WSEL: 5697.65
- Zone 2 EURV: 4.00ac-ft, WSEL: 5699.19, Top outlet structure set at 5699.50, 4'x14' outlet.
- (5-yr): 5.61ac-ft, WSEL: 5700.07, 31.2cfs
- Zone 3 (100-yr): 8.53ac-ft, WSEL: 5701.75, 131.2cfs
- Pipe Outlet: 48" RCP at 0.5%
- Overflow Spillway: 30' wide bottom, elevation=5702.00, 4:1 side slopes, flow depth=1.96', 307cfs
- Pre-development release rate into East Tributary 29.7cfs/166.5cfs in the 5yr/100 yr storm at this pond outfall (Design Pt. 3, Table 6.2 in MDDP)

Which basins? BMP maint. agreement will

Water Quality Design be required. Address maintenance entity. Water Quality for the "C" and "D" basins is provided in the two on-site full spectrum ponds Pond C5 and Pond D2. Pond E2 is an interim pond that will provide water quality treatment for the development of the "E" basins. Backyards draining directly to the East Tributary include a grass buffer for water quality treatment prior to entering the channel.

7.0 DRAINAGE AND BRIDGE FEES

Lorson Ranch East is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process. Lorson Ranch Metro District will be constructing the major drainage infrastructure as part of the district improvements.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats, and shall show all credits they have received for the same yearly time frame.

Lorson East contains 274.585 acres. The 274.585 acres will be assessed Drainage, Bridge and Surety fees. The 2017 drainage fees are \$15,720, bridge fees are \$735 and Drainage Surety fees are \$7,000 per impervious acre. The drainage and bridge fees are calculated when the final plat is submitted. The fees are due at plat recordation and are calculated as follows: The drainage costs

				ne dramage
Table 7.1: Public Drain	imbursable) a	nticipated?		
ltem	Quantity	Unit	Unit Cost	Item Total
Rip Rap	200	CY	\$50/CY	\$10,000
Inlets/Manholes	103	EA	\$3000/EA	\$309,000
18" Storm	3492	LF	\$35	\$122,220
24" Storm	2402	LF	\$40	\$96,080
30" Storm	3461	LF	\$45	\$155,745
36" Storm	1775	LF	\$55	\$97,625
42" Storm	1120	LF	\$65	\$72,800

48" Storm	2443	LF	\$85	\$207,655
54" Storm	710	LF	\$100	\$71,000
60" Storm	756	LF	\$110	\$83,160
66" Storm	396	LF	\$130	\$51,480
			Subtotal	\$1,276,765
			Eng/Cont (15%)	\$191,514
			Total Est. Cost	\$1,468,279

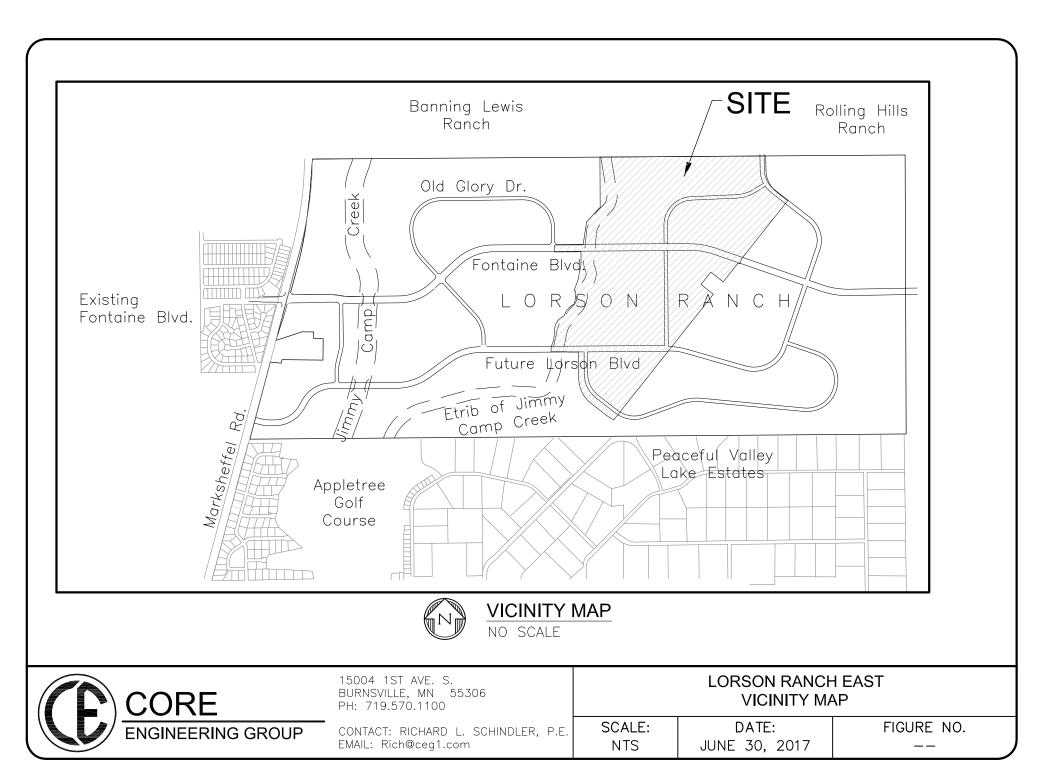
Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

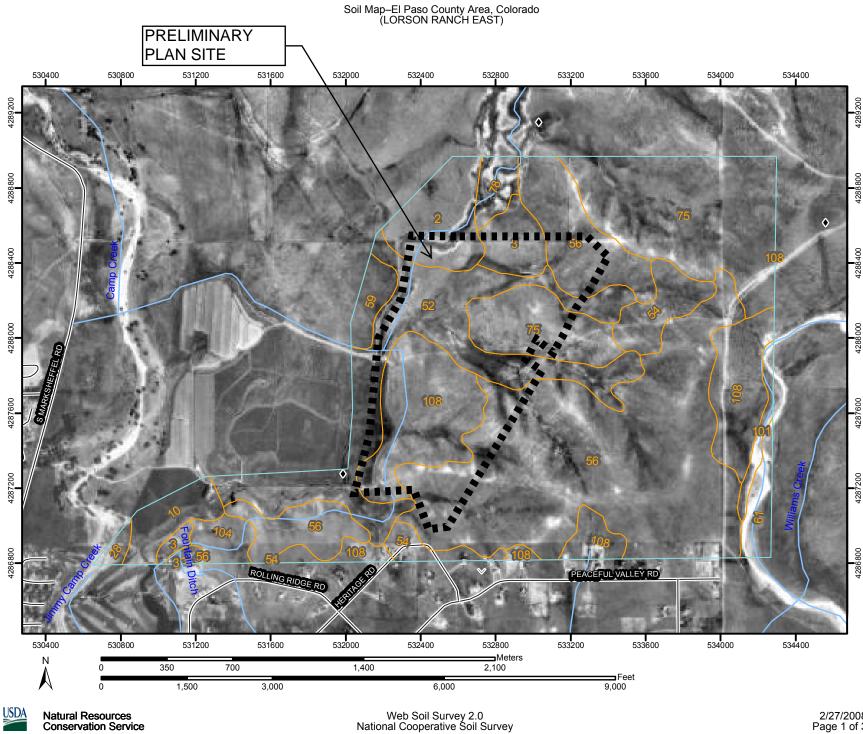
ltem	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	2	LS	\$150,000	\$300,000
Lorson Blvd. Bridge Over East Tributary	1	LS	\$1,000,000	\$1,000,000
			Subtotal	\$1,300,000
			Eng/Cont (15%)	\$195,000
			Total Est. Cost	\$1,495,000

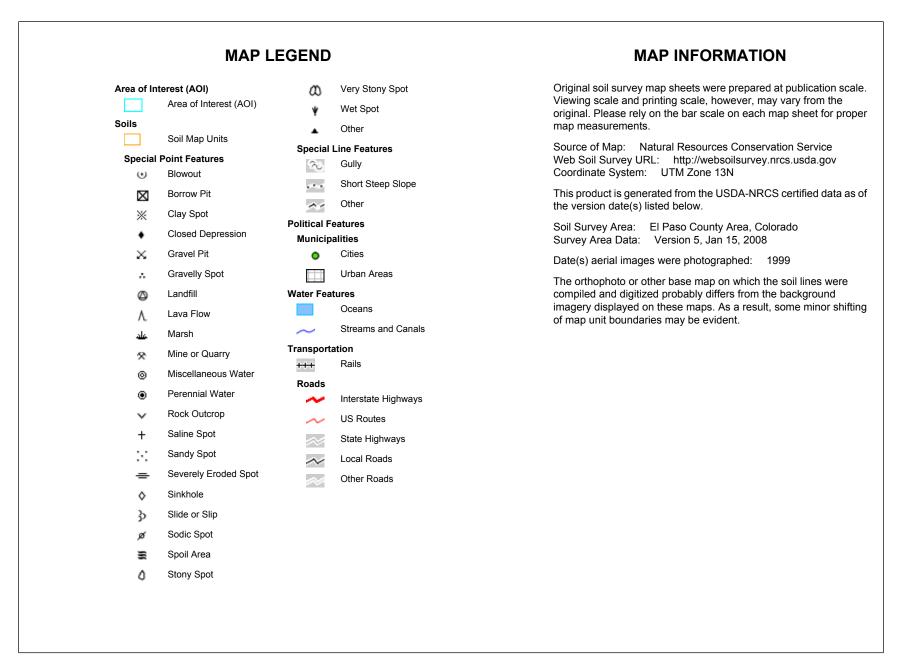
Table 7.3: Lorson Ranch Metro District Drainage Facility Costs (Reimbursable)

	CII Metio Dist	acinty costs Artennou sable					
Item	Quantity	Unit	Unit Cost	Item Total			
E. Tributary Channel Improvements-Kiowa	1	LS	\$1,000,000	\$1,000,000			
Fontaine Blvd. Bridge Over East Tributary- Kiowa	1	LS	\$1,200,000	\$1,200,000			
			Subtotal	\$2,200,000			
Potentially (three	. .		Eng/Cont (15%)	\$330,000			
required proces	SS)		Total Est. Cost	\$2,530,000			

8.0 CONCLUSIONS

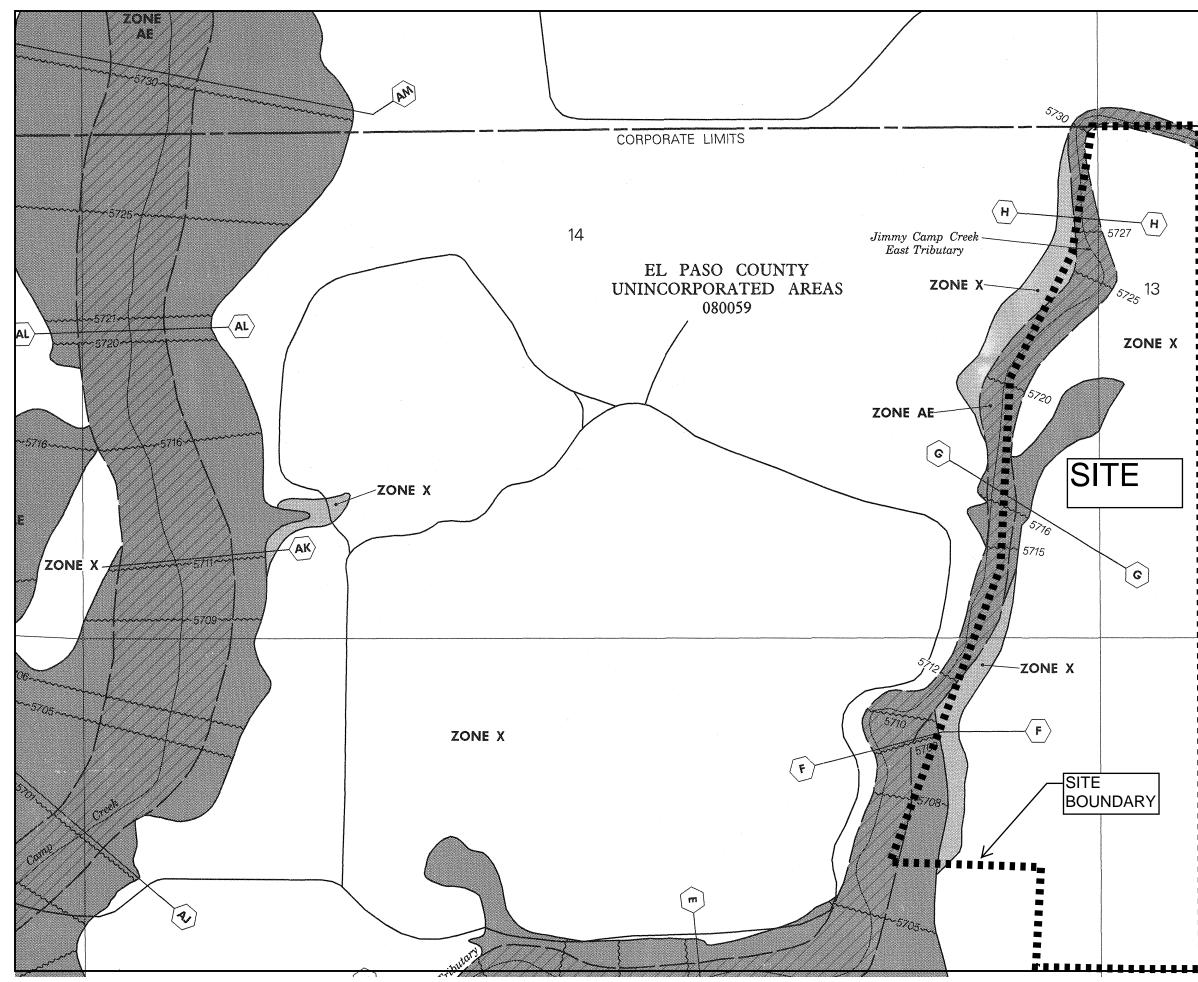

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

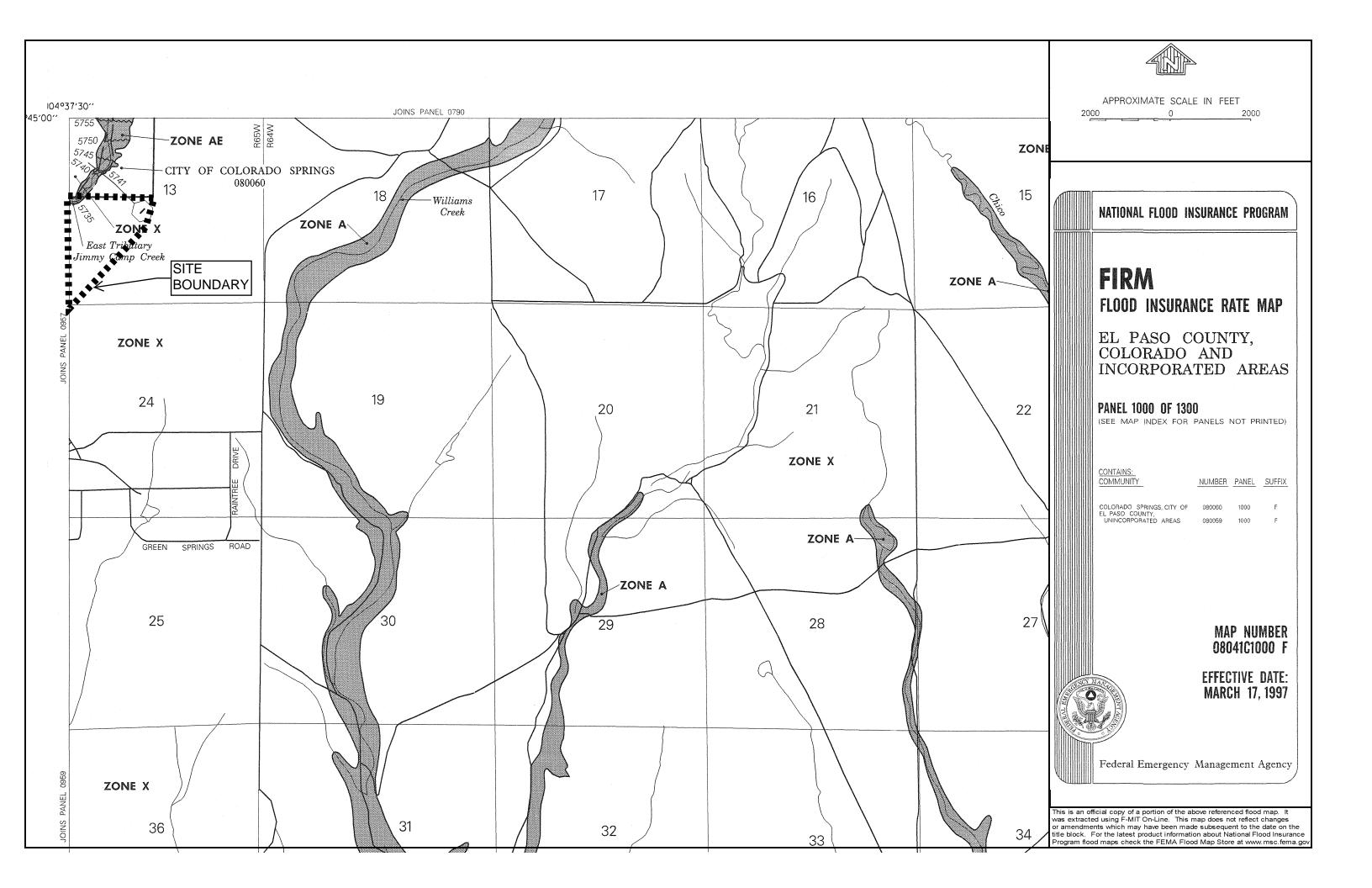

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek will be reconstructed within this study area north of Fontaine Boulevard.
- Bridges over the East Tributary will be required at Lorson Boulevard and Fontaine Boulevard
- Detention and water quality for this preliminary plan area will be provided in two permanent ponds and one interim pond.

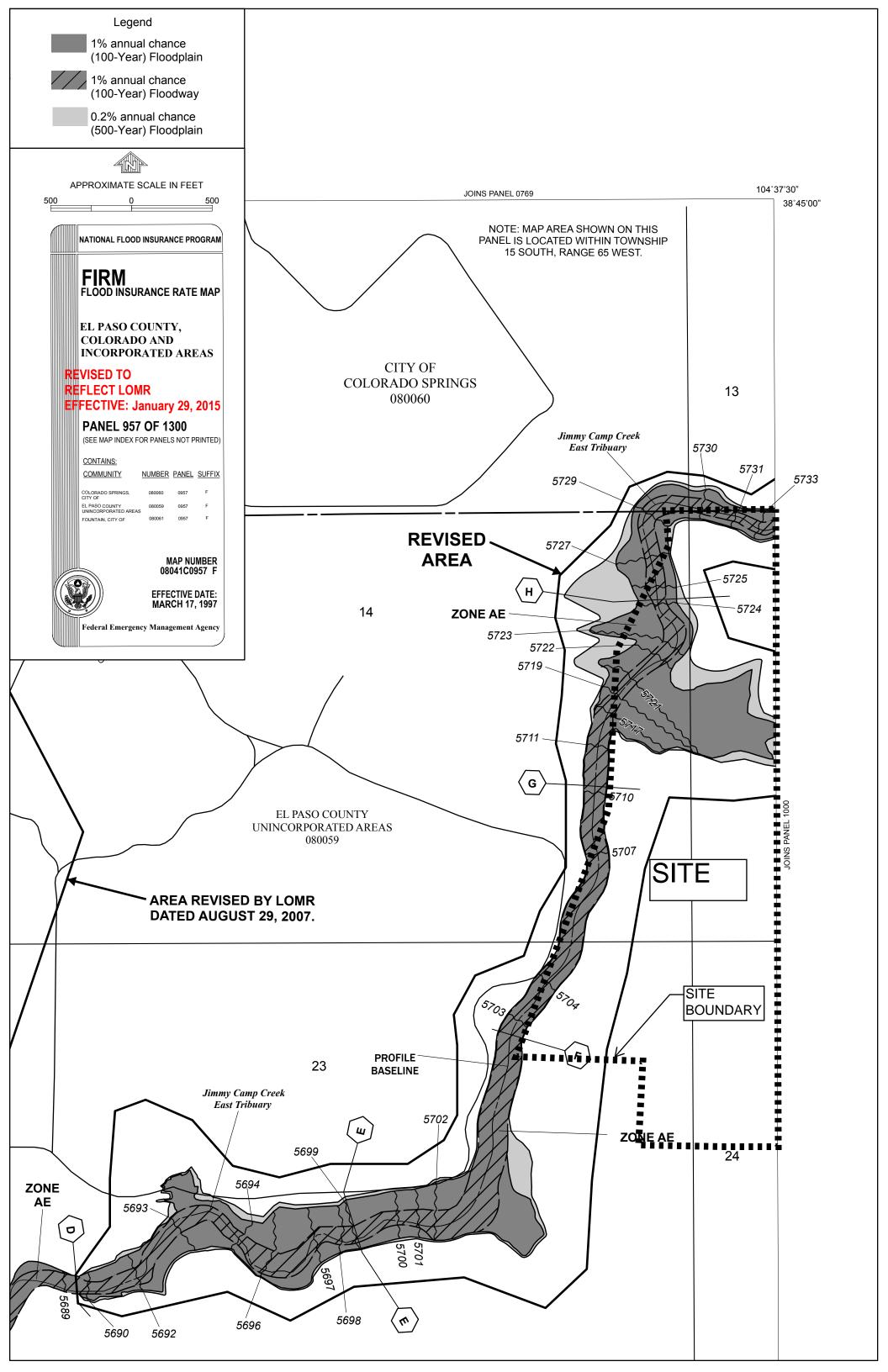

9.0 REFERENCES

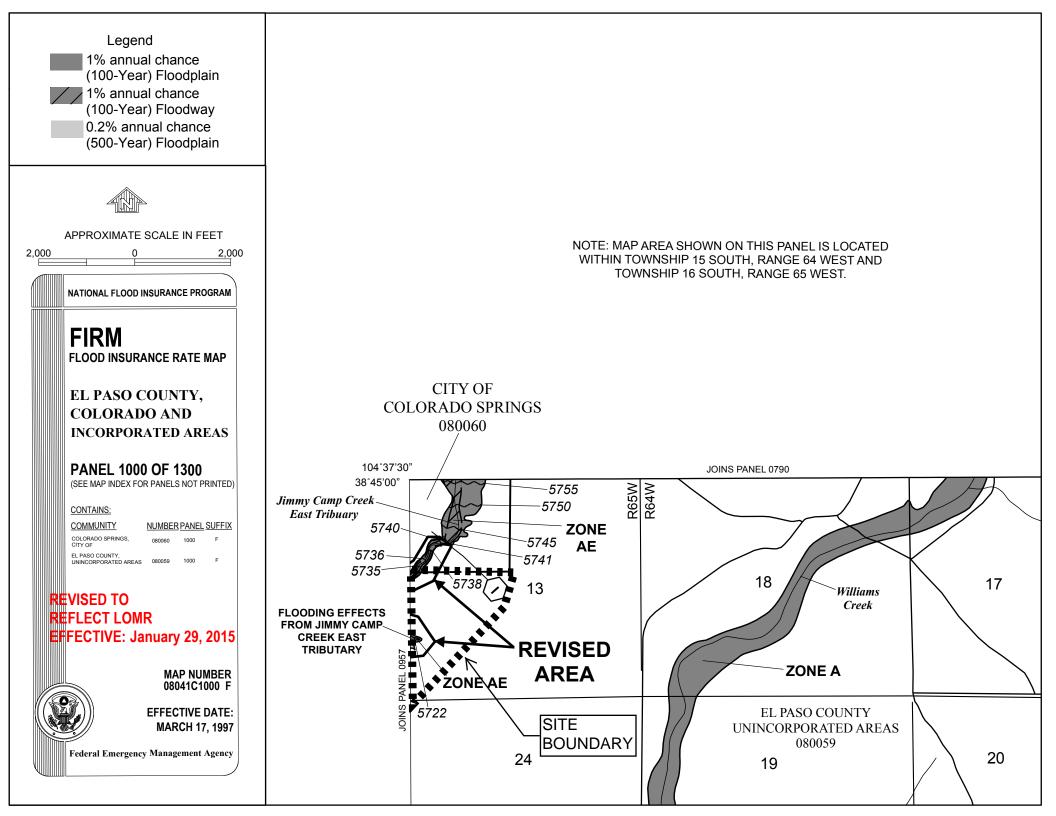
- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
- 8. Final construction plans "Fontaine Boulevard and East Fork Jimmy Camp Creek Channel Design", Dated March 10, 2017, by Kiowa Engineering Corporation
- 9. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP





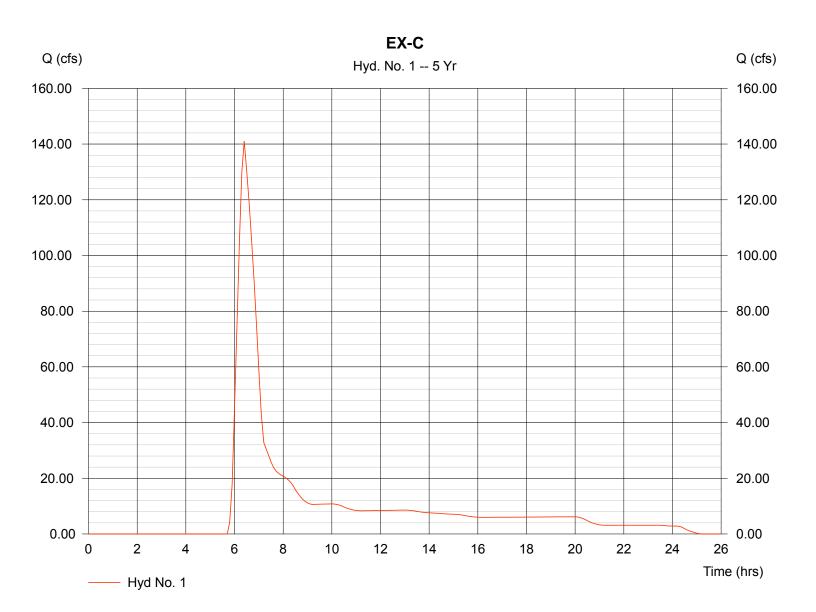

Map Unit Legend


	El Paso County Area, C	Colorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2	Ascalon sandy loam, 1 to 3 percent slopes	54.4	4.2%
3	Ascalon sandy loam, 3 to 9 percent slopes	32.6	2.5%
10	Blendon sandy loam, 0 to 3 percent slopes	29.0	2.2%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	5.5	0.4%
52	Manzanola clay loam, 1 to 3 percent slopes	180.3	14.0%
54	Midway clay loam, 3 to 25 percent slopes	46.2	3.6%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	476.6	37.0%
59	Nunn clay loam, 0 to 3 percent slopes	16.8	1.3%
61	Olney sandy loam, 3 to 5 percent slopes	18.8	1.5%
75	Razor-Midway complex	213.9	16.6%
78	Sampson loam, 0 to 3 percent slopes	16.4	1.3%
101	Ustic Torrifluvents, loamy	11.3	0.9%
104	Vona sandy loam, 1 to 3 percent slopes	17.4	1.4%
108	Wiley silt loam, 3 to 9 percent slopes	170.2	13.2%
Totals for Area of Interest (A	OI)	1,289.3	100.0%

NATIONAL FLOOD INSURANCE PROGRAM
FIRM Flood insurance rate map
EL PASO COUNTY, COLORADO AND INCORPORATED AREAS
PANEL 957 OF 1300 (see map index for panels not printed)
CONTAINS: NUMBER PANEL SUFFIX COLORADO SPRINGS, CITY OF 080060 0957 F EL PASO COUNTY, UNINCORPORATED AREAS 080059 0957 F FOUNTAIN, CITY OF 080061 0957 F F
MAP NUMBER 08041C0957 F
EFFECTIVE DATE: MARCH 17, 1997
Federal Emergency Management Agency

		NG GRC		Calcula Date: <u>Ji</u>	ated By: June, 20 ⁻	: Leonard	rd Beasle	ley	<u>Draina</u>				Job No Project	o: <u>100.01</u> t: <u>Lorso</u>	0 <u>13</u> on Ran	nch Eas	ast MDDI		Conditio	ons	
,,	L L				rect Run	off				Total ^r	Runoff			reet		Pipe			ravel Tim		
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		Ø	Slope		Design Flow	.,	Pipe Size	Length	Velocity	tt	Remarks
<u>ا</u>			ac.	''	min.		in/hr	cfs	min	'	in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	↓ '
EX-A1	1	· '	4.28	0.08	18.6	0.34	3.20	1.1	1 '		1	1 I	┣───	·'	-		·'	 		·	 '
EX-C	DP-2	 	452.97	CN	= 67		 			SC	S =	141.0								L	<u> </u>
	-																				
EX-D	DP-3	 	109.55	0.12	34.7	13.15	2.26	29.7													
EX-E	DP-4	 	187.30	CN	=73					SC	S =	100.0			\square				<u> </u>		

		IG GRO		Date: <u>A</u> Checke	ated By: April 28, ed By: <u>L</u>	<u>Leonar</u> 2016 eonard	d Beasl	ey	Draina				Job Nc Project Design	: <u>100.0</u> :: <u>Lorsc</u> Storm:	<u>13</u> on Rar	<u>ich Ea</u> Year	st MDD Event, I	Existin	g Condi		
	Direct Rupoff								Total I	Runoff		Str	reet		Pipe	;	Т	ravel Tin	ne		
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	_	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-A1			4.28	0.35	18.6	1.50	5.37	8.0													
EX-C	DP-2		452.97	152.97 CN = 67					SCS = 458.0												
		_		_			_														$\left - \right $
EX-D	DP-3		109.55	0.40	34.7	43.82	3.80	166.5													
EX-E	DP-4		187.30	CN	= 73					SC	S =	280.0					ļ				


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX-C

Hydrograph type	 SCS Runoff 5 yrs 452.970 ac 0.0 % USER 2.80 in 	Peak discharge	= 140.99 cfs
Storm frequency		Time interval	= 6 min
Drainage area		Curve number	= 69
Basin Slope		Hydraulic length	= 7400 ft
Tc method		Time of conc. (Tc)	= 49.50 min
Total precip.		Distribution	= Custom
Total precip.	= 2.80 in= CSpring_IIA-6min.cds	Distribution	= Custom
Storm duration		Shape factor	= 484

Hydrograph Volume = 905,484 cuft

1


Hydraflow Hydrographs by Intelisolve

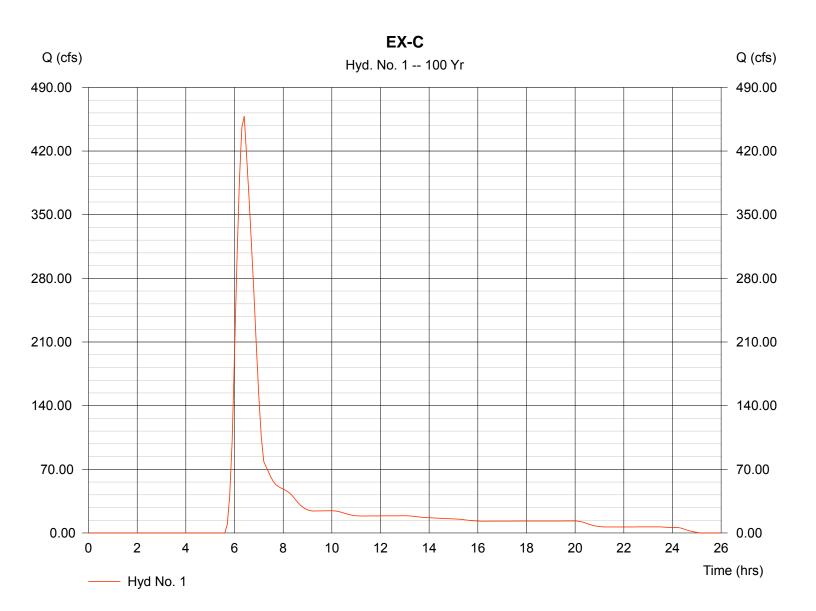
Hyd. No. 2

EX-E

Hydrograph type	= SCS Runoff	Peak discharge	= 100.11 cfs
Storm frequency	= 5 yrs	Time interval	= 6 min
Drainage area	= 187.300 ac	Curve number	= 73
Basin Slope	= 3.0 %	Hydraulic length	= 4150 ft
Tc method	= USER	Time of conc. (Tc)	
Total precip.	= 2.80 in	Distribution	= Custom
Storm duration	= CSpring_IIA-6min.cds	Shape factor	= 484

Hydrograph Volume = 513,793 cuft

2


Hydraflow Hydrographs by Intelisolve

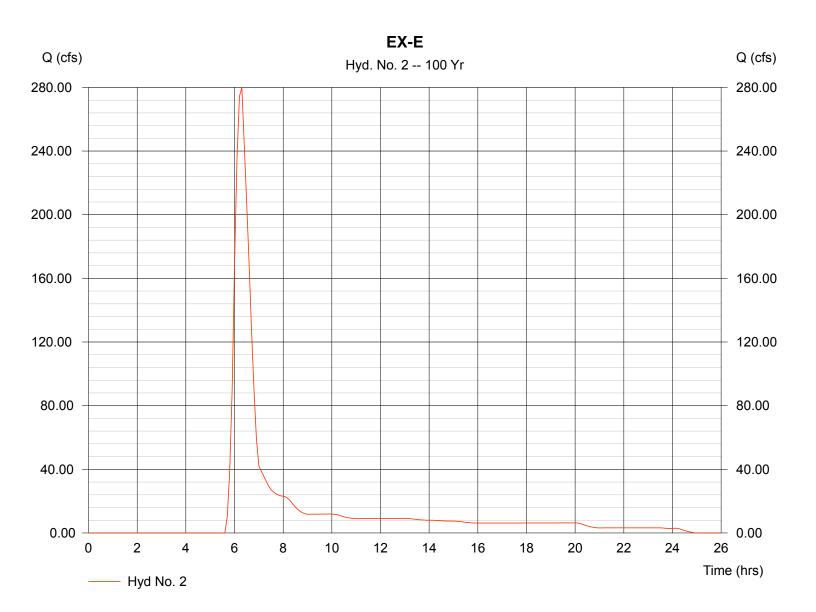
Hyd. No. 1

EX-C

Hydrograph type	= SCS Runoff	Peak discharge	= 458.13 cfs
Storm frequency	= 100 yrs	Time interval	= 6 min
Drainage area	= 452.970 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 7400 ft
Tc method	= USER	Time of conc. (Tc)	= 49.50 min
Total precip.	= 4.40 in	Distribution	= Custom
Storm duration	= CSpring_IIA-6min.cds	Shape factor	= 484

Hydrograph Volume = 2,456,980 cuft

3


Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

EX-E

Hydrograph type	= SCS Runoff	Peak discharge Time interval	= 279.84 cfs = 6 min
Storm frequency	= 100 yrs		-
Drainage area	= 187.300 ac	Curve number	= 73
Basin Slope	= 3.0 %	Hydraulic length	= 4150 ft
Tc method	= USER	()	
Total precip.	= 4.40 in	Distribution	= Custom
Storm duration	= CSpring_IIA-6min.cds	Shape factor	= 484

Hydrograph Volume = 1,267,200 cuft

Provide runoff coefficients tables and land use/impervious

percentages table used for Dealeulation Sectional Method Procedure)

	GINEERI	NG GRO	UP	Date: A	ated By: August 1 ed By: <u>L</u>	6, 2016	, June (30, 201	7_				Project	o: <u>100.04</u> t: <u>Lorso</u> Storm:	n Rancl	h East F	Prelimin	ary Dra	inage ondition	6	
	Ħ			Dire	ect Rund	off	Deasie	2		Total	Runoff			reet	<u>5 - Tea</u>	Pipe		T	ravel Tir	<u>s</u> 1e	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	
	Ō	Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-C9			5.24	0.49	11.09	2.57	3.97	10.2													
C10			12.92	0.49	17.87	6.33	3.26	20.6													
OS-C11			6.48	0.49	21.69	3.18	2.97	9.4													
C12			20.52	0.49	17.56	10.05	3.28	33.0													
C13			19.21	0.16	30.35	3.07	2.46	7.6													
C13.1			1.63	0.90	8.57	1.47	4.36	6.4													
C14			2.36	0.66	9.25	1.56	4.25	6.6													
C14.1			4.10	0.16	13.89	0.66	3.64	2.4					_								
C14.2			1.65	0.68	5.12	1.12	5.13	5.8													
C16.1			2.68	0.49	7.55	1.31	4.55	6.0													
C16.2			1.82	0.49	10.97	0.89	3.99	3.6					-								
C16.3			1.78	0.49	10.35	0.87	4.08	3.6					-								
C16.4			0.81	0.49	8.40	0.40	4.39	1.7					_								
C16.5			0.50	0.49	5.63	0.25	4.99	1.2					_								
C16.6			1.43	0.49	10.27	0.70	4.09	2.9					_								
C16.7			0.54	0.49	7.60	0.26	4.54	1.2					_								
C10.7			0.53	0.49	6.43	0.20	4.79	1.2					_								
C16.9			1.60	0.49	7.62	0.78	4.54	3.6					_								
C16.10			0.52	0.49	6.35	0.25	4.81	1.2					_								
C16.11			0.38	0.49	9.76	0.19	4.17	0.8													
C16.12			1.82	0.49	6.89	0.89	4.69	4.2					_								
C16.13			3.62	0.49	11.45	1.77	3.93	7.0					_								
C16.14			0.10	0.49	5.01	0.05	5.17	0.3					_								
C16.15			2.28	0.49	9.77	1.12	4.16	4.7													
C16.16			1.29	0.49	13.31	0.63	3.70	2.3													
C16.17			1.64	0.49	12.39	0.80	3.81	3.1													
C16.18			2.96	0.49	12.69	1.45	3.77	5.5													
C16.19			1.65	0.49	11.98	0.81	3.86	3.1													
C16.20			2.84	0.49	10.38	1.39	4.07	5.7													
C16.21			1.78	0.49	13.36	0.87	3.69	3.2					 								
C16.22			2.88	0.49	14.17	1.41	3.61	5.1													
C16.23			1.46	0.49	14.05	0.72	3.62	2.6													
C16.24			2.79	0.49	17.10	1.37	3.32	4.5					_								
C16.25			0.43	0.49	11.04	0.21	3.98	0.8													

	GINEERI	NG GRO	UP	Date: <u>A</u> Checke	<u>ugust 1</u> d By: <u>L</u>	6, 2016 eonard	d Beasl 5. June : Beasley	30, 201	7				Project Desigr	Storm:	n Ranc	r Event	Prelimin t, Prop e	osed C	ondition	<u>IS</u>	_
Chroat	oint	ц	2		ect Runo	off					Runoff			reet		Pipe	e		ravel Tir	ne	- 0
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)		CA		Ø	с,	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
C16.26		∢	ac. 1.42	0.49	min. 11.66	0.70	in/hr 3.90	cfs 2.7	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	-
													-								
C16.27			0.23	0.49	5.95	0.11	4.91	0.6					-								
C16.28			2.09	0.49	12.65	1.02	3.78	3.9					-								
C16.29			2.01	0.49	12.98	0.98	3.74	3.7													
C16.30			4.54	0.49	20.36	2.22	3.06	6.8													1
C16.31			9.90	0.23	20.56	2.28	3.05	6.9													1
C16.32			0.97	0.49	12.20	0.48	3.83	1.8													+
C16.33			0.21	0.90	5.00	0.19	5.17	1.0													
C16.34			0.38	0.49	6.95	0.19	4.67	0.9													-
C16.35			1.46	0.49	11.60	0.72	3.91	2.8													\vdash
C16.36			7.70	0.23	14.79	1.77	3.54	6.3													+
																					-
C15.1			7.10	0.30	18.04	2.13	3.24	6.9													-
C15.2			4.63	0.42	11.51	1.94	3.92	7.6													+
C15.3			3.60	0.49	13.83	1.76	3.64	6.4													-
C15.4			1.25	0.49	9.05	0.61	4.28	2.6													-
C15.5			2.90	0.49	9.86	1.42	4.15	5.9													
C15.6			1.80	0.49	12.88	0.88	3.75	3.3													-
C15.7			2.07	0.49	11.73	1.01	3.89	3.9					-								-
C15.8			3.76	0.40	15.51	1.50	3.47	5.2					-								
C15.9			2.27	0.49	8.22	1.11	4.42	4.9					-								
C15.10			0.60	0.49	9.85	0.29	4.15	1.2					-								<u> </u>
C15.11			3.20	0.49	11.58	1.57	3.91	6.1					-								
C15.12			0.61	0.49	11.47	0.30	3.92	1.2					_								
C15.13			2.35	0.49	11.49	1.15	3.92	4.5					-								
C15.14			1.32	0.49	8.11	0.65	4.44	2.9													
C15.15			4.02	0.49	13.72	1.97	3.65	7.2					-								
													-								
C17.1a			2.81	0.49	12.11	1.38	3.84	5.3													
C17.1			2.68	0.49	7.69	1.31	4.52	5.9													
C17.2			4.11	0.49	9.19	2.01	4.26	8.6													
C17.3			2.21	0.49	9.78	1.08	4.16	4.5													T
C17.4			1.98	0.49	17.58	0.97	3.28	3.2					-					1			1
C17.5			3.72	0.49	13.41	1.82	3.69	6.7						1		1	1		1	1	\vdash

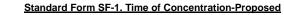
	1	NG GROI	JP	Date: <u>/</u> Checke	August 1	6, 2016 eonard	d Beasl 5, June : Beasley	30, 201	<u>7</u>	Total	Runoff		Projec Desigr	o: <u>100.0</u> t: <u>Lorso</u> n Storm: reet	n Ranc	<u>h East f</u> i r Even t Pipe	⁻ relimin t, Prop	osed Co	<u>iinage</u> onditior ravel Tii	1 <u>s</u>	T
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)		CA		Ø	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	ţţ	Remarks
C17.6		Ā	ac. 1.04	0.49	min. 13.89	0.51	in/hr 3.64	cfs 1.9	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C17.7			2.68	0.49	7.62	1.31	4.54	6.0					-								
C17.8			1.52	0.49	12.41	0.84	3.81	3.2					-								
C17.9			1.72	0.90	5.65	1.56	4.99	7.8					-								
C17.10			2.34	0.90	9.34	2.11	4.99	8.9													
D1.1			5.09	0.49	18.38	2.49	3.22	8.0					-								
D1.2			1.10	0.49	6.86	0.54	4.69	2.5													
D1.3			0.86	0.49	10.65	0.42	4.03	1.7													
D1.4			2.80	0.49	12.39	1.37	3.81	5.2					-								
D1.5			5.15	0.49	9.43	2.52	4.22	10.6													
D1.6			5.10	0.49	16.74	2.50	3.36	8.4													
D1.7			3.50	0.49	10.40	1.72	4.07	7.0													
D1.8			1.70	0.49	12.37	0.83	3.81	3.2													
D1.9			2.20	0.49	12.70	1.08	3.77	4.1													
D1.10			5.50	0.49	13.39	2.70	3.69	9.9													
D1.11			1.40	0.49	12.38	0.69	3.81	2.6													
D1.12			4.45	0.24	14.08	1.07	3.62	3.9													
D2.1			3.14	0.49	14.87	1.54	3.53	5.4													
D2.2			1.11	0.49	11.93	0.54	3.86	2.1													
D2.3			2.80	0.27	14.09	0.76	3.61	2.7													
D2.4			3.33	0.29	13.48	0.97	3.68	3.6													
D2.5			3.93	0.49	7.40	1.93	4.58	8.8													
D2.6			2.13	0.49	10.37	1.04	4.07	4.3													
D2.7			2.98	0.49	7.22	1.46	4.62	6.7		5.11											
D2.8			3.70	0.49	9.24	1.81	4.25	7.7													
D2.9			3.15	0.49	14.83	1.54	3.54	5.5													
D2.10			0.80	0.49	6.24	0.39	4.84	1.9													
D2.11			0.40	0.90	3.68	0.36	5.63	2.0													
D2.12			2.78	0.49	11.27	1.36	3.95	5.4													
D2.13			2.51	0.49	17.67	1.23	3.28	4.0													
E1.1			1.41	0.49	7.40	0.69	4.58	3.2													

	ORE				<u>Standa</u>	ard Forr	<u>n SF-2.</u>	Storm	Draina	ge Syst	em Des	sign (R	ational	Method	Proced	<u>lure)</u>					
		NG GROI	JP	Date: A	August 1	Leonar 6, 2016 eonard	, June 3	30, 201	<u>7</u>				Projec	o: <u>100.0</u> t: <u>Lorsc</u> n Storm:	n Ranch	n East F r Event	Prelimin t. Propo	ary Dra	inage ondition	s	
	t			Dire	ect Runo	off		L		Total	Runoff			reet	1	Pipe		T	ravel Tin	ne	
Street or Basin	Design Point	Area Design	`	Runoff Coeff. (C)	tc	СА		σ	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope -	Pipe Size	Length	Velocity	ţţ	Remarks
		∢	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
E1.2			3.61	0.49	10.20	1.77	4.10	7.3													
E1.3			6.81	0.20	15.70	1.36	3.45	4.7		0.25											
E1.4			0.65	0.49	9.92	0.32	4.14	1.3													
E1.5			1.95	0.49	8.86	0.96	4.31	4.1					-								
E1.6			2.32	0.49	10.94	1.14	3.99	4.5													
E1.7			3.50	0.38	14.72	1.33	3.55	4.7													
C12a-ex			27	0.15	15.69	4.05	3.45	14													
C12-ex			73	0.15	24.19	10.95	2.80	31													
C14-ex			119	0.15	29.17	17.85	2.52	45													
C15-ex			55	0.15	22.61	8.25	2.91	24					_								
D1-ex			17	0.15	17.78	2.55	3.27	8													
E1-ex			57	0.15	21.72	8.55	2.97	25													
E2-ex			30	0.26	16.78		3.35	26					_								
			50	0.20	10.70	1.01	5.55	20	<u> </u>												

			OUP		ated By:	: Leonar	rd Beasl	ley		<u>10 37516</u>	em Desi	ign (Rat	Job No	o: <u>100.0</u> 4	<u>40</u>			_			
				Checke	August 1 ced By: <u>L</u>	eonard	<u>i, June</u> : Beasle	<u>30, 2017</u> <u>Y</u>	<u>7</u>				Desigr		n Rancl 100 - Y	ear Eve	Prelimin Prelimin	posed	Conditi		
Ctroot	oint				rect Řun	off			F		Runoff			reet		Pipe	e		ravel Tin	ne	s
Street or Basin	Design Point	Area Design	B Area (A)	Runoff Coeff. (C)		CA		a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope %	Fipe Size	≄ Length	Velocity	tt tt	Remarks
OS-C9		_ <	ac. 5.24	0.65	min. 11.09	3.41	in/hr 6.67	cfs 22.7	min		in/hr	cfs	%	cfs	cfs	70	in	ft	ft/sec	min	
C10		<u> </u>	12.92		17.87		5.47	45.9													<u> </u>
OS-C11			6.48	0.65	21.69	4.21	4.98	21.0													
C12		<u> </u>	20.52	0.65	17.56	13.34	5.51	73.5												 	
C13			19.21	0.51	30.35	9.80	4.13	40.5												 	\square
C13.1			1.63	0.96	8.57	1.56	7.32	11.5					-								<u> </u>
C14			2.36	0.81	9.25	1.91	7.13	13.6					-								<u> </u>
C14.1			4.10	0.51	13.89	2.09	6.10	12.8					-								\square
C14.2			1.65	0.82	5.12	1.35	8.62	11.7					-								\square
C16.1			2.68	0.65	7.55	1.74	7.64	13.3					-							 	\vdash
C16.2			1.82	0.65	10.97	1.18	6.70	7.9					-								\vdash
C16.3			1.78	0.65	10.35	1.16	6.85	7.9													\vdash
C16.4			0.81	0.65	8.40	0.53	7.37	3.9		 I			- 								\vdash
C16.5			0.50	0.65	5.63	0.33	8.38	2.7												 	├ ──
C16.6			1.43	0.65	10.27	0.93	6.87	6.4					- 								\vdash
C16.7			0.54	0.65	7.60	0.35	7.62	2.7					-								
C16.8			0.53	0.65	6.43	0.34	8.05	2.8												L	\vdash
C16.9			1.60	0.65	7.62	1.04	7.62	7.9													\square
C16.10			0.52	0.65	6.35	0.34	8.08	2.7													├ ──
C16.11			0.38	0.65	9.76	0.25	6.99	1.7													├ ──
C16.12			1.82	0.65	6.89	1.18	7.87	9.3													
C16.13			3.62	0.65	11.45	2.35	6.59	15.5													
C16.14			0.10	0.65	5.01	0.07	8.67	0.6													
C16.15			2.28	0.65	9.77	1.48	6.99	10.4													
C16.16			1.29	0.65	13.31	0.84	6.21	5.2													
C16.17			1.64	0.65	12.39	1.07	6.39	6.8													<u> </u>
C16.18			2.96	0.65	12.69	1.92	6.33	12.2													
C16.19			1.65	0.65	11.98	1.07	6.48	6.9													
C16.20			2.84	0.65	10.38	1.85	6.84	12.6													<u> </u>
C16.21			1.78	0.65	13.36	1.16	6.20	7.2					- 								<u> </u>
C16.22			2.88	0.65	14.17	1.87	6.05	11.3					- 								
C16.23			1.46	0.65	14.05	0.95	6.08	5.8					-								
C16.24			2.79	0.65	17.10	1.81	5.58	10.1		-											

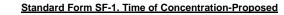
	GINEERI	.ng gru	JF	Date: A	ated By: <u>I</u> August 16	5, 2016	, June (30, 201	<u>7</u>				Projec	o: <u>100.04</u> t: <u>Lorso</u>	n Ranc						
				Checke	ed By: <u>Le</u> ect Runc	eonard	Beasley	(Total	Runoff		Desigr					posed	Conditi ravel Tir		Ţ
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	et ruite	CA		a	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length -	Velocity	tt	
	De	Area	ac.	0	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	-
C16.25			0.43	0.65	11.04	0.28	6.68	1.9													-
C16.26			1.42	0.65	11.66	0.92	6.55	6.0													1
C16.27			0.23	0.65	5.95	0.15	8.24	1.2													
C16.28			2.09	0.65	12.65	1.36	6.34	8.6													
C16.29			2.01	0.65	12.98	1.31	6.28	8.2													
C16.30			4.54	0.65	20.36	2.95	5.14	15.2													
C16.31			9.90	0.54	20.56	5.35	5.12	27.4													
C16.32			0.97	0.65	12.20	0.63	6.43	4.1					-								
C16.33			0.21	0.96	5.00	0.20	8.68	1.7													_
C16.34			0.38	0.65	6.95	0.25	7.85	1.9													_
C16.35			1.46	0.65	11.60	0.95	6.56	6.2					-								_
C16.36			7.70	0.54	14.79	4.16	5.95	24.7					-								
													_								
C15.1			7.10	0.57	18.04	4.05	5.45	22.0													
C15.2			4.63	0.63	11.51	2.92	6.58	19.2													
C15.3			3.60	0.65	13.83	2.34	6.12	14.3													
C15.4			1.25	0.65	9.05	0.81	7.18	5.8													
C15.5			2.90	0.65	9.86	1.89	6.97	13.1					_								
C15.6			1.80	0.65	12.88	1.17	6.29	7.4						1			1		1		
C15.7			2.07	0.65	11.73	1.35	6.53	8.8													
C15.8			3.76	0.61	15.51	2.29	5.83	13.4					_								
C15.9			2.27	0.65	8.22	1.48	7.43	11.0													
C15.10			0.60	0.65	9.85	0.39	6.97	2.7													
C15.10			3.20	0.65	11.58	2.08	6.56	13.7													
C15.12			0.61	0.65	11.47	0.40	6.59	2.6													
C15.12			2.35	0.65	11.47	1.53	6.58	10.1													
C15.13								6.4													
			1.32	0.65	8.11	0.86	7.46						-								1
C15.15			4.02	0.65	13.72	2.61	6.14	16.0													-
047.4			0.01	0.07	40.41	4.00	0.4-	44.0													1
C17.1a			2.81	0.65	12.11	1.83	6.45	11.8					-								-
C17.1			2.68	0.65	7.69	1.74	7.59	13.2													-
C17.2			4.11	0.65	9.19	2.67	7.15	19.1					-								1
C17.3			2.21	0.65	9.78	1.44	6.99	10.0													-

	GINEERI	NG GRO	UP	Date: A	ated By: August 1	6, 2016	3, June 3	30, 201	<u>7</u>				Projec	o: <u>100.0</u> t: <u>Lorso</u>	n Rancl	n East F	Prelimin	ary Dra	inage		
ı				Checke	ed By: <u>L</u> ect Run	eonard off	Beasley	Ý	1	Total	Runoff			n Storm: reet	<u> 100 - Y</u>	ear Eve Pipe	ent, Pro		Condition ravel Tin		T
Street	Design Point	sign	(A)	Runoff Coeff. (C)	tc t			a	tc			a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length -	Velocity	tt	-
or Basin	Desigr	Area Design	Area (A)	Rur Coef		CA		a		Σ (CA)											ſ
C17.4		∢	ac. 1.98	0.65	min. 17.58	1.29	in/hr 5.51	cfs 7.1	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	+
C17.5			3.72	0.96	13.41	3.57	6.19	22.1													
C17.6			1.04	0.96	13.89	1.00	6.10	6.1						1			1				╞
C17.7			2.68	0.65	7.62	1.74	7.62	13.3													_
C17.8			1.52	0.74	12.41	1.12	6.39	7.2					_								
C17.9			1.73	0.96	5.65	1.66	8.37	13.9													
C17.10			2.34	0.96	9.34	2.25	7.10	16.0					_								
													_								_
D1.1			5.09	0.65	18.38	3.31	5.40	17.9													-
D1.2			1.10	0.65	6.86	0.72	7.88	5.6													-
D1.3			0.86	0.65	10.65	0.56	6.77	3.8													-
D1.4			2.80	0.65	12.39	1.82	6.39	11.6			33.03										-
D1.5			5.15	0.65	9.43	3.35	7.08	23.7													+
D1.6			5.10	0.65	16.74	3.32	5.63	18.7			47.79										-
D1.7			3.50	0.65	10.40	2.28	6.83	15.5													+
D1.8			1.70	0.65	12.37	1.11	6.40	7.1													-
D1.9			2.20	0.65	12.70	1.43	6.33	9.1													\vdash
D1.10			5.50	0.65	13.39	3.58	6.20	22.2													+
D1.11			1.40	0.65	12.38	0.91	6.39	5.8													-
D1.12			4.45	0.57	14.08	2.54	6.07	15.4													+
																					-
D2.1			3.14	0.65	14.87	2.04	5.93	12.1													┢
D2.2			1.11	0.65	11.93	0.72	6.49	4.7													╞
D2.3			2.80	0.57	14.09	1.60	6.07	9.7													╞
D2.4			3.33	0.58	13.48	1.93	6.18	11.9													╞
D2.5			3.93	0.65	7.40	2.55	7.69	19.6													╞
D2.6			2.13	0.65	10.37	1.38	6.84	9.5													╞
D2.7			2.98	0.65	7.22	1.94	7.75	15.0													╞
D2.8			3.70	0.65	9.24	2.41	7.13	17.2													╞
D2.9			3.15	0.65	14.83	2.05	5.94	12.2													╞
D2.10			0.95	0.65	6.24	0.62	8.12	5.0													╞
D2.11			0.40	0.96	3.68	0.38	9.45	3.6													╞
D2.12			2.78	0.65	11.27	1.81	6.63	12.0													╞
D2.13			2.51	0.65	17.67	1.63	5.50	9.0													\vdash


	GINEERI		JP	Date: <u>A</u> Checke	August 1	<u>Leonar</u> 6, 2016 eonard off	, June 3	30, 201	<u>7</u>	Total	Runoff		Projec Desigr	o: <u>100.0</u> t: <u>Lorso</u> n Storm: reet	n Rancl			posed	<u>inage</u> Conditi ravel Tin	ons ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	<u>د</u>	CA		a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Damarke
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	<u> </u>
E1.1			1.41	0.65	7.40	0.92	7.69	7.0													
E1.2			3.61	0.65	10.20	2.35	6.88	16.1													
E1.3			6.81	0.55	15.70	3.75	5.80	21.7		0.57			-								
E1.4			0.65	0.65	9.92	0.42	6.95	2.9					_								
E1.5			1.95	0.65	8.86	1.27	7.24	9.2													
E1.6			2.32	0.65	10.94	1.51	6.71	10.1					_								
E1.7			3.50	0.64	14.72		5.96	13.3													
													_								
C12a-ex			27	0.50	15.69	13.50	5.80	78													
C12-ex			73	0.50	24.19		4.71	172					_								
C12-ex			119	0.50	29.17	59.50	4.23	252													
C14-ex			55	0.50	29.17		4.23	134					-								
			17				5.48	47					-								
D1-ex				0.50	17.78								-								
E1-ex E2-ex			57 30	0.50	21.72 16.78		4.98 5.63	142 91					_								

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u>


		-			Checked	By: <u>Leona</u>	rd Beasle	<u>¥</u>					t: Check	(urbanized	Final t
	Sub-Ba	sin Data	1		tial Overla	•	,			avel Time			Ba	sins)	Final tc
BASIN or	C ₅	AREA (A)	NRCS Convey.	LENGTH (L)	SLOPE (S)	VELOCITY (V)	ti	LENGTH (L)	SLOPE (S)	VELOCITY (V)	t t	Computed tC	TOTAL LENGTH	Regional tc tc=(L/180)+10	USDCM Recommended
DESIGN	0.40	acres	15.0	feet	% 4.100/	ft/sec	minutes	feet	%	ft/sec 3.07	minutes 4.22	Minutes	(L) feet	minutes	tc=ti+tt (min) 11.09
OS-C9	0.49	5.24	15.0	100.00	4.18%	0.24	6.87	777.0	4.18%			11.09	877.00	14.87	11.09
C10	0.49	12.92	15.0	100.00	2.00%	0.19	8.76	904.0	4.98%	3.35	4.50	17.07		10.17	(= 0=
			20.0					466.0	0.71%	1.69	4.61	17.87	1470.00	18.17	17.87
OS-C11	0.49	6.48	15.0	100.00	3.00%	0.22	7.66	2005.0	2.51%	2.38	14.06	21.73	2105.00	21.69	21.69
C12	0.49	20.52	15.0	100.00	3.00%	0.22	7.66	969.0	1.34%	1.74	9.30				
			20.0					292.0	0.60%	1.55	3.14	20.11	1361.00	17.56	17.56
C13	0.16	24.54	15.0	100.00	1.00%	0.10	16.97	1620.0	2.90%	2.55	10.57	27.54	1720.00	19.56	19.56
C13.1	0.90	1.70	20.0	55.00	15.04%	0.84	1.09	1232.0	1.65%	2.57	7.99	9.09	1287.00	17.15	9.09
C14	0.66	2.36	20.0	55.00	12.00%	0.35	2.59	1083.0	1.51%	2.46	7.34	9.94	1138.00	16.32	9.94
C14.1	0.16	4.10	15.0	100.00	1.00%	0.10	16.97	544.0	3.49%	2.80	3.24	20.21	644.00	13.58	13.58
C14.2	0.66	1.65	15.0	52.00	1.92%	0.19	4.62	807.0	1.80%	2.01	6.68	11.30	859.00	14.77	11.30
C16.1	0.49	2.68	15.0	30.00	18.33%	0.22	2.31	150.0	2.67%	2.45	1.02				
			20.0					850.0	2.82%	3.36	4.22	7.55	1030.00	15.72	7.55
C16.2	0.49	1.82	20.0	27.00	3.00%	0.11	3.98	1332.0	2.52%	3.17	6.99	10.97	1359.00	17.55	10.97
C16.3	0.49	1.78	20.0	89.00	3.37%	0.21	6.96	530.0	1.70%	2.61	3.39	10.35	619.00	13.44	10.35
C16.4	0.49	0.81	20.0	45.00	3.33%	0.15	4.97	563.0	1.87%	2.73	3.43	8.40	608.00	13.38	8.40
C16.5	0.49	0.50	20.0	30.00	3.33%	0.12	4.06	370.0	3.85%	3.92	1.57	5.63	400.00	12.22	5.63
C16.6	0.49	1.43	15.0	98.00	5.10%	0.26	6.37	238.0	3.78%	2.92	1.36				
			20.0					437.0	2.06%	2.87	2.54	10.27	773.00	14.29	10.27
C16.7	0.49	0.54	15.0	85.00	4.24%	0.22	6.30	110.0	3.18%	2.67	0.69				
			20.0					123.0	2.85%	3.38	0.61	7.60	318.00	11.77	7.60
C16.8	0.49	0.53	20.0	25.00	4.00%	0.12	3.49	488.0	1.91%	2.76	2.94	6.43	513.00	12.85	6.43
C16.9	0.49	1.60	15.0	59.00	4.24%	0.19	5.25	108.0	2.31%	2.28	0.79				
			20.0					330.0	3.03%	3.48	1.58	7.62	497.00	12.76	7.62
C16.10	0.49	0.52	20.0	28.00	2.14%	0.10	4.53	397.0	3.32%	3.64	1.82	6.35	425.00	12.36	6.35
C16.11	0.49	0.38	15.0	89.00	2.00%	0.18	8.27	75.0	2.80%	2.51	0.50				
			20.0					120.0	1.00%	2.00	1.00	9.76	284.00	11.58	9.76
C16.12	0.49	1.82	20.0	18.00	2.22%	0.08	3.59	603.0	2.32%	3.05	3.30	6.89	621.00	13.45	6.89
C16.13	0.49	3.62	15.0	30.00	18.33%	0.22	2.31	150.0	2.67%	2.45	1.02				
			20.0					1326.0	1.85%	2.72	8.12	11.45	1506.00	18.37	11.45
C16.14	0.49	0.10	20.0	33.00	2.84%	0.12	4.48	71.0	1.28%	2.26	0.52	5.01	104.00	10.58	5.01
C16.15	0.49	2.28	15.0	100.00	7.30%	0.29	5.72	183.0	4.48%	3.17	0.96				
			20.0					443.0	1.42%	2.38	3.10	9.77	726.00	14.03	9.77
C16.16	0.49	1.29	20.0	90.00	2.22%	0.19	8.03	731.0	1.33%	2.31	5.28	13.31	821.00	14.56	13.31
C16.17	0.49	1.64	20.0	84.00	2.50%	0.19	7.46	703.0	1.41%	2.37	4.93	12.39	787.00	14.37	12.39
C10.17	0.49	1.04	20.0	07.00	2.0070	0.10	7.40	100.0	1	2.01	-1.00	12.00	, 37.00	14.57	12.00

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u>

		•		1	Checked	By: <u>Leona</u>	rd Beasle	Y					+ 0h h	(
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (1	ti)			avel Time ((t t)			(urbanized sins)	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C16.18	0.49	2.96	15.0	70.00	2.71%	0.18	6.63	112.0	2.14%	2.19	0.85				
			20.0					724.0	1.34%	2.32	5.21	12.69	906.00	15.03	12.69
C16.19	0.49	1.65	15.0	100.00	2.37%	0.20	8.28	98.0	2.37%	2.31	0.71				
			20.0					358.0	1.00%	2.00	2.98	11.98	556.00	13.09	11.98
C16.20	0.49	2.84	20.0	37.00	2.00%	0.12	5.33	786.0	1.68%	2.59	5.05	10.38	823.00	14.57	10.38
C16.21	0.49	1.78	15.0	100.00	2.43%	0.20	8.22	48.0	2.43%	2.34	0.34				
			20.0					621.0	1.16%	2.15	4.80	13.36	769.00	14.27	13.36
C16.22	0.49	2.88	15.0	100.00	2.50%	0.20	8.14	138.0	2.55%	1.41	1.63				
			20.0					512.0	0.88%	1.88	4.55	14.32	750.00	14.17	14.17
C16.23	0.49	1.46	15.0	91.00	2.09%	0.18	8.24	153.0	1.76%	1.41	1.81				
			20.0					526.0	1.20%	2.19	4.00	14.05	770.00	14.28	14.05
C16.24	0.49	2.79	20.0	89.00	2.00%	0.18	8.27	1189.0	1.14%	2.14	9.28	17.55	1278.00	17.10	17.10
C16.25	0.49	0.43	20.0	100.00	2.00%	0.19	8.76	269.0	0.97%	1.97	2.28	11.04	369.00	12.05	11.04
C16.26	0.49	1.42	20.0	84.00	2.00%	0.17	8.03	380.0	0.76%	1.74	3.63	11.66	464.00	12.58	11.66
C16.27	0.49	0.23	20.0	28.00	2.00%	0.10	4.64	132.0	0.70%	1.67	1.31	5.95	160.00	10.89	5.95
C16.28	0.49	2.09	20.0	100.00	2.30%	0.20	8.37	485.0	0.89%	1.89	4.28	12.65	585.00	13.25	12.65
C16.29	0.49	2.01	20.0	100.00	2.00%	0.19	8.76	480.0	0.90%	1.90	4.22	12.98	580.00	13.22	12.98
C16.30	0.49	4.54	15.0	100.00	8.00%	0.30	5.55	168.0	2.86%	1.41	1.99				
			20.0					1658.0	1.16%	2.15	12.83	20.36	1926.00	20.70	20.36
C16.31	0.23	9.90	10.0	100.00	3.30%	0.16	10.59	334.0	3.80%	1.41	3.95				
			15.0					1467.0	1.16%	1.62	15.13	29.67	1901.00	20.56	20.56
C16.32	0.49	0.97	20.0	60.00	2.00%	0.15	6.79	570.0	0.77%	1.75	5.41	12.20	630.00	13.50	12.20
C16.33	0.90	0.21	20.0	18.00	2.22%	0.25	1.18	194.0	0.92%	1.92	1.69	2.86	212.00	11.18	2.86
C16.34	0.49	0.38	20.0	32.00	2.00%	0.11	4.96	200.0	0.70%	1.67	1.99	6.95	232.00	11.29	6.95
C16.35	0.49	1.46	15.0	100.00	2.00%	0.19	8.76	30.0	2.00%	2.12	0.24				
			20.0					337.0	1.16%	2.15	2.61	11.60	467.00	12.59	11.60
C16.36	0.23	7.70	10.0	100.00	2.30%	0.14	11.93	111.0	0.72%	0.85	2.18				
			10.0					34.0	32.35%	5.69	0.10				
			15.0					617.0	0.50%	1.06	9.70	23.91	862.00	14.79	14.79
C15.1	0.30	7.10	15.0	100.00	4.50%	0.19	8.79	747.0	3.41%	1.41	8.83				
			15.0					600.0	1.92%	2.08	4.81	22.43	1447.00	18.04	18.04
C15.2	0.42	4.63	15.0	100.00	6.20%	0.25	6.72	604.0	1.97%	2.11	4.78	11.51	704.00	13.91	11.51
C15.3	0.49	3.60	15.0	100.00	2.05%	0.19	8.69	161.0	3.35%	1.41	1.90				
			20.0					658.0	2.87%	3.39	3.24	13.83	919.00	15.11	13.83
i	1	1	1	1		1			1	1	1				

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u>

	<u></u>				Checked			<u>Y</u>					tc Check	(urbanized	Final tc
	Sub-Ba	sin Data	NDOG		tial Overla			LENGTH		avel Time	(t t)		Ba	sins)	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C15.4	0.49	1.25	15.0	91.00	7.14%	0.28	5.49	100.0	2.60%	1.41	1.18				
			20.0					406.0	2.02%	2.84	2.38	9.05	597.00	13.32	9.05
C15.5	0.49	2.90	20.0	35.00	2.00%	0.11	5.18	979.0	3.04%	3.49	4.68	9.86	1014.00	15.63	9.86
C15.6	0.49	1.80	15.0	59.00	1.36%	0.13	7.64	100.0	2.00%	2.12	0.79				
			20.0					731.0	1.87%	2.73	4.45	12.88	890.00	14.94	12.88
C15.7	0.49	2.07	20.0	39.00	2.05%	0.12	5.43	966.0	1.63%	2.55	6.31	11.73	1005.00	15.58	11.73
C15.8	0.40	3.76	15.0	100.00	7.00%	0.25	6.65	89.0	11.35%	5.05	0.29				
			15.0					463.0	0.60%	1.16	6.64				
			20.0					240.0	1.08%	2.08	1.92	15.51	892.00	14.96	15.51
C15.9	0.49	2.27	15.0	53.00	1.20%	0.12	7.55	96.0	3.02%	2.61	0.61				
			20.0					8.6	1.61%	2.54	0.06	8.22	157.55	10.88	8.22
C15.10	0.49	0.60	15.0	100.00	2.20%	0.20	8.49	37.0	2.20%	2.22	0.28				
			20.0					160.0	1.51%	2.46	1.09	9.85	297.00	11.65	9.85
C15.11	0.49	3.20	20.0	74.00	4.19%	0.21	5.90	1105.0	2.63%	3.24	5.68	11.58	1179.00	16.55	11.58
C15.12	0.49	0.61	15.0	100.00	2.16%	0.20	8.54	34.0	2.16%	2.20	0.26				
			20.0					321.0	1.00%	2.00	2.68	11.47	455.00	12.53	11.47
C15.13	0.49	2.35	20.0	52.00	2.12%	0.14	6.20	967.0	2.32%	3.05	5.29	11.49	1019.00	15.66	11.49
C15.14	0.49	1.32	20.0	33.00	1.82%	0.11	5.19	595.0	2.89%	3.40	2.92	8.11	628.00	13.49	8.11
C15.15	0.49	4.02	20.0	100.00	2.88%	0.21	7.77	1111.0	2.42%	3.11	5.95	13.72	1211.00	16.73	13.72
C17.1a	0.49	2.81	20.0	90.00	2.00%	0.18	8.31	733.0	2.58%	3.21	3.80	12.11	823.00	14.57	12.11
C17.1	0.49	2.68	15.0	28.00	18.57%	0.21	2.22	160.0	2.88%	2.55	1.05				
			20.0					530.0	1.00%	2.00	4.42	7.69	718.00	13.99	7.69
C17.2	0.49	4.11	20.0	33.00	2.00%	0.11	5.03	903.0	3.27%	3.62	4.16	9.19	936.00	15.20	9.19
C17.3	0.49	2.21	15.0	100.00	8.40%	0.31	5.46	152.0	4.47%	3.17	0.80				
			20.0					416.0	0.97%	1.97	3.52	9.78	668.00	13.71	9.78
C17.4	0.49	1.98	20.0	36.00	2.00%	0.11	5.26	1579.0	1.14%	2.14	12.32	17.58	1615.00	18.97	17.58
C17.5	0.49	3.72	15.0	66.00	7.73%	0.24	4.56	77.0	4.63%	3.23	0.40				
			20.0					1050.0	1.07%	2.07	8.46	13.41	1193.00	16.63	13.41
C17.6	0.49	1.04	20.0	94.00	1.06%	0.15	10.47	527.0	1.65%	2.57	3.42	13.89	621.00	13.45	13.89
C17.7	0.49	2.68	15.0	90.00	4.44%	0.23	6.39	107.0	0.93%	1.45	1.23	7.62	197.00	11.09	7.62
C17.8	0.55	1.52	20.0	100.00	3.00%	0.24	6.91	643.0	0.95%	1.95	5.50	12.41	743.00	14.13	12.41
C17.9	0.90	1.73	20.0	31.00	2.00%	0.32	1.60	464.0	0.91%	1.91	4.05	5.65	495.00	12.75	5.65
C17.10	0.90	2.34	20.0	45.00	2.00%	0.39	1.93	723.0	0.66%	1.62	7.42	9.34	768.00	14.27	9.34
D1.1	0.49	5.09	20.0	100.00	1.50%	0.17	9.63	1484.0	2.00%	2.83	8.74	18.38	1584.00	18.80	18.38
D1.2	0.49	1.10	15.0	65.00	7.85%	0.24	4.50	81.0	2.72%	2.47	0.55				

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u>

BASIN AREA NRCS LENGTH SLOPE VELOCITY LENGTH SLOPE VELOCITY Computed TOTAL Regional tc USDCM or C ₅ (A) Convey. (L) (S) (V) Ti (L) (S) (V) Tt tc LENGTH tc=(L/180)+10			·				By: <u>Leona</u>		Y					tc Check	(urbanized	Final tc
m c L M b C L M b C L M C L M C L M C L M C L M D C L <th< td=""><td></td><td>Sub-Ba</td><td></td><td>NIDCC</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td>(tt)</td><td>Commuted</td><td>Ba</td><td>sins)</td><td></td></th<>		Sub-Ba		NIDCC			•					(tt)	Commuted	Ba	sins)	
D13 0.48 0.28 100.00 2.60% 0.21 8.03 4200 1.79% 2.68 2.82 10.65 520.00 12.89 10.65 D14 0.40 2.80 15.0 100.00 1.60% 0.18 9.43 33.0 2.42% 2.33 0.24 1.239 715.00 13.87 12.39 D15 0.40 5.15 20.0 9.00 1.44% 0.16 9.21 1210 2.51% 3.17 7.47 16.74 151.00 18.39 16.49 D1.6 0.49 5.10 2.00 9.00 1.44% 0.11 71.47 16.74 16.40 978.00 15.33 16.40 D1.7 0.49 1.70 2.00 45.00 1.11% 0.11 71.41 10.40 2.59 5.23 12.37 10.40.00 15.83 12.37 D1.10 0.49 2.00 4.00% 0.20 7.00% 13.60 14.45 3.10 1.50 1.11	or	C ₅	(A)		(L)	(S)	(V)	ti	(L)	(S)	(∨)		tc	LENGTH	tc=(L/180)+10	Recommended tc=ti+tt (min)
D14 0.49 2.80 15.0 1000 1.80% 0.18 9.43 33.0 2.42% 2.33 0.24 1.50 0.50 1.44% 0.16 9.26 1.421 2.51% 3.17 7.47 16.74 1.510 1.60 1.74 0.17 0.43 5.0 0.00 1.23% 0.33 4.56 107.0 3.74% 2.49 0.61 4.40 978.00 158.3 10.40 0.18 0.49 1.70 2.00 4500 1.11% 0.11 7.14 1040 2.65% 1.20 1.33 10.40 1.63 12.37 0.10 0.49 5.00 2.00 7.00 1.35 14.23 1.00.00 1.55% 12.39				20.0					309.0	2.01%	2.84	1.82	6.86	455.00	12.53	6.86
Image: bord bord bord bord bord bord bord bord	D1.3	0.49	0.86	20.0	100.00	2.60%	0.21	8.03	420.0	1.79%	2.68	2.62	10.65	520.00	12.89	10.65
D15 0.49 5.15 2.00 36.00 4.2% 0.15 4.11 1132.0 31.4% 3.84 5.32 9.43 1168.00 16.49 9.43 D1.6 0.49 5.10 20.0 90.00 1.44% 0.16 9.26 1421.0 2.51% 3.17 7.47 16.74 1511.00 16.39 16.74 D1.7 0.49 3.50 15.0 90.00 12.33% 0.33 4.56 107.0 3.74% 2.90 0.61 7 16.74 10.49 57.3 12.37 1049.00 15.33 11.40 D1.8 0.49 1.70 2.00 50.00 2.00% 0.13 6.20 156.0 2.23 10.49 14.83 11.82.03 10.43 50.0 10.00 2.45% 0.20 1.84 3.12 7.80 13.35 150.70 11.33 13.50 17.11 12.30 D1.10 0.49 1.40 50.0 7.16% 0.20 7.80 1.64 </td <td>D1.4</td> <td>0.49</td> <td>2.80</td> <td>15.0</td> <td>100.00</td> <td>1.60%</td> <td>0.18</td> <td>9.43</td> <td>33.0</td> <td>2.42%</td> <td>2.33</td> <td>0.24</td> <td></td> <td></td> <td></td> <td></td>	D1.4	0.49	2.80	15.0	100.00	1.60%	0.18	9.43	33.0	2.42%	2.33	0.24				
D16 0.49 5.10 20.0 90.00 1.44% 0.16 9.26 14210 2.51% 3.17 7.47 16.74 151.100 16.39 16.74 0.17 0.49 3.50 15.0 90.00 12.33% 0.33 4.56 107.0 3.74% 2.90 0.61 10.40 978.00 15.43 10.40 0.18 0.49 1.70 2.00 45.00 1.11% 0.11 7.41 10040 2.50 2.32 10.40 978.00 15.83 12.37 0.10 0.49 2.20 2.00 500 2.00% 0.13 6.20 12.65% 3.24 6.50 12.70 1315.00 17.11 12.70 0.110 0.49 3.40 2.00 2.49% 0.44 5.50 16.80 13.80 100100 15.83 13.30 107.00 16.84 14.08 0.112 0.24 4.44 15.0 0.00 2.32% 0.20				20.0					582.0	3.18%	3.57	2.72	12.39	715.00	13.97	12.39
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D1.5	0.49	5.15	20.0	36.00	4.22%	0.15	4.11	1132.0	3.14%	3.54	5.32	9.43	1168.00	16.49	9.43
Image: Probability of the state of	D1.6	0.49	5.10	20.0	90.00	1.44%	0.16	9.26	1421.0	2.51%	3.17	7.47	16.74	1511.00	18.39	16.74
D1.8 0.49 1.70 200 45.00 1.11% 0.11 7.14 1004.0 2.58% 3.20 5.23 12.37 1049.00 15.83 12.37 D1.9 0.49 2.00 200 500 2.00% 0.13 6.20 1265 2.63% 3.24 6.50 12.70 13.500 17.31 12.70 D1.10 0.49 5.50 2.00 47.00 2.49% 0.14 5.59 160.0 2.4% 3.12 7.80 13.39 150.00 18.37 13.39 D1.11 0.49 1.40 2.00 5.00 7.0% 0.20 7.90 17.0 6.7% 3.91 0.76 1.2 1.00.0 1.6.0 14.08 1	D1.7	0.49	3.50	15.0	90.00	12.33%	0.33	4.56	107.0	3.74%	2.90	0.61				
D19 0.49 2.20 200 50.0 20.0% 0.13 6.20 1265.0 2.63% 3.24 6.50 12.70 1315.00 17.31 12.70 D1.10 0.49 5.50 20.0 47.00 2.4% 0.14 5.59 1460.0 2.4% 3.12 7.80 13.39 1507.00 18.37 13.39 D1.11 0.49 3.14 15.0 50.00 2.0% 0.13 6.20 951.0 1.64% 2.56 6.19 12.38 1001.00 15.56 12.38 D1.12 0.24 4.45 15.0 95.00 7.16% 0.20 7.90 17.0 6.7% 3.91 0.76 14.08				20.0					781.0	1.55%	2.49	5.23	10.40	978.00	15.43	10.40
D1.100.495.502.0047.002.49%0.145.5914002.43%3.127.8013.391507.0018.3713.39D1.110.491.402.006.002.00%0.136.20951.018.4%2.566.1912.38100.0015.5612.38D1.120.244.4515.095.007.16%0.207.90177.06.76%3.910.7677 <td>D1.8</td> <td>0.49</td> <td>1.70</td> <td>20.0</td> <td>45.00</td> <td>1.11%</td> <td>0.11</td> <td>7.14</td> <td>1004.0</td> <td>2.56%</td> <td>3.20</td> <td>5.23</td> <td>12.37</td> <td>1049.00</td> <td>15.83</td> <td>12.37</td>	D1.8	0.49	1.70	20.0	45.00	1.11%	0.11	7.14	1004.0	2.56%	3.20	5.23	12.37	1049.00	15.83	12.37
D1.110.491.402.006.002.00%0.136.2095.016.4%2.566.1912.38100.0015.5612.38D1.120.244.451.5095.007.16%0.207.90177.06.78%3.910.767.8335.0014.0814.08D2.10.493.141.5010002.32%0.208.3490.02.32%2.280.667.8337.0014.0814.08D2.10.493.141.5010002.32%0.208.3490.02.32%2.280.667.8318.8716.87.014.0814.87D2.20.491.111.5010001.70%0.189.2416.703.47%2.791.007.8318.87.0016.0414.87D2.20.491.111.5010001.70%0.189.2416.703.47%2.791.007.8318.87.0016.0414.87D2.30.491.111.5010001.70%0.1411.7334.404.7%3.281.751.9345.0012.6913.84D2.40.293.331.5010002.10%1.113.441.752.16%3.843.7614.0914.09D2.40.293.331.5010.004.5%0.198.903.606.3%3.761.711.67.7014.047.601.40%D2.50.49<	D1.9	0.49	2.20	20.0	50.00	2.00%	0.13	6.20	1265.0	2.63%	3.24	6.50	12.70	1315.00	17.31	12.70
D1.12 0.24 4.45 15.0 95.00 7.16% 0.20 7.90 17.0 6.76% 9.91 0.76 1	D1.10	0.49	5.50	20.0	47.00	2.49%	0.14	5.59	1460.0	2.43%	3.12	7.80	13.39	1507.00	18.37	13.39
1 1 1 1 1 1 4 4 6 1	D1.11	0.49	1.40	20.0	50.00	2.00%	0.13	6.20	951.0	1.64%	2.56	6.19	12.38	1001.00	15.56	12.38
D2.1 0.49 3.14 15.0 100.00 2.32% 0.20 8.34 90.0 2.32% 2.28 0.66 1 3 1 1 1 1 3 4 0 1	D1.12	0.24	4.45	15.0	95.00	7.16%	0.20	7.90	177.0	6.78%	3.91	0.76				
n n				15.0					463.0	0.50%	1.06	7.28	15.93	735.00	14.08	14.08
D2.20.491.1115.0100.001.70%0.189.24167.03.47%2.791.001.001.001.0012.6911.33D2.30.272.8015.0100.002.10%0.1411.73344.04.77%3.281.751.001.0014.0914.09D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711.48736.0014.0914.09D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711.48736.0015.4113.48D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.6416.477.0015.4113.48D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.647.607.7014.047.40D2.60.492.1315.0100.003.0%0.227.6620.02.50%2.370.147.22665.0013.647.22656.0013.647.22D2.80.492.791.5035.0015.71%0.222.63162.02.34%3.712.847.22656.0013.647.22D2.40.492.9820.025.002.00%0.104.38631.03.44%3.712.847.22656.	D2.1	0.49	3.14	15.0	100.00	2.32%	0.20	8.34	90.0	2.32%	2.28	0.66				
$1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3$				20.0					897.0	1.62%	2.55	5.87	14.87	1087.00	16.04	14.87
D2.30.272.8015.0100.002.10%0.1411.73344.04.77%3.281.75 $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	D2.2	0.49	1.11	15.0	100.00	1.70%	0.18	9.24	167.0	3.47%	2.79	1.00				
Image: bit				20.0					218.0	1.15%	2.14	1.69	11.93	485.00	12.69	11.93
D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.7111111D2.40.293.3315.0100.004.50%0.198.90386.06.30%3.761.711111111D2.50.493.9315.061.0014.75%0.293.54219.02.19%2.221.641114.047.40D2.60.492.1315.0100.003.00%0.227.6620.02.50%2.370.1411<	D2.3	0.27	2.80	15.0	100.00	2.10%	0.14	11.73	344.0	4.77%	3.28	1.75				
Image: boot boot boot boot boot boot boot boo				20.0					292.0	3.20%	3.58	1.36	14.84	736.00	14.09	14.09
D2.5 0.49 3.93 15.0 61.00 14.75% 0.29 3.54 219.0 2.19% 2.22 1.64 1	D2.4	0.29	3.33	15.0	100.00	4.50%	0.19	8.90	386.0	6.30%	3.76	1.71				
Image: Constraint of the state of				20.0					487.0	2.00%	2.83	2.87	13.48	973.00	15.41	13.48
D2.6 0.49 2.13 15.0 100.00 3.00% 0.22 7.66 20.0 2.50% 2.37 0.14 Image: Constraint of the co	D2.5	0.49	3.93	15.0	61.00	14.75%	0.29	3.54	219.0	2.19%	2.22	1.64				
1 1				20.0					447.0	2.82%	3.36	2.22	7.40	727.00	14.04	7.40
D2.7 0.49 2.98 20.0 25.00 2.00% 0.10 4.38 631.0 3.44% 3.71 2.84 7.22 656.00 13.64 7.22 D2.8 0.49 3.70 15.0 35.00 15.71% 0.22 2.63 162.0 2.34% 2.29 1.18	D2.6	0.49	2.13	15.0	100.00	3.00%	0.22	7.66	20.0	2.50%	2.37	0.14				
D2.8 0.49 3.70 15.0 35.00 15.71% 0.22 2.63 162.0 2.34% 2.29 1.18 Image: Constraint of the				20.0					528.0	2.94%	3.43	2.57	10.37	648.00	13.60	10.37
Image: Note of the local base of th	D2.7	0.49	2.98	20.0	25.00	2.00%	0.10	4.38	631.0	3.44%	3.71	2.84	7.22	656.00	13.64	7.22
D2.9 0.49 3.15 20.0 75.00 1.87% 0.16 7.76 1342.0 2.50% 3.16 7.07 14.83 1417.00 17.87 14.83 D2.10 0.49 0.80 20.0 17.00 2.00% 0.08 3.61 392.0 1.54% 2.48 2.63 6.24 409.00 12.27 6.24 D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.8	0.49	3.70	15.0	35.00	15.71%	0.22	2.63	162.0	2.34%	2.29	1.18				
D2.10 0.49 0.80 20.0 17.00 2.00% 0.08 3.61 392.0 1.54% 2.48 2.63 6.24 409.00 12.27 6.24 D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27 J				20.0					665.0	1.04%	2.04	5.43	9.24	862.00	14.79	9.24
D2.11 0.90 0.40 20.0 10.00 2.00% 0.18 0.91 278.0 0.70% 1.67 2.77 3.68 288.00 11.60 3.68 D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.9	0.49	3.15	20.0	75.00	1.87%	0.16	7.76	1342.0	2.50%	3.16	7.07	14.83	1417.00	17.87	14.83
D2.12 0.49 2.78 20.0 100.00 5.20% 0.26 6.39 1009.0 2.97% 3.45 4.88 11.27 1109.00 16.16 11.27	D2.10	0.49	0.80	20.0	17.00	2.00%	0.08	3.61	392.0	1.54%	2.48	2.63	6.24	409.00	12.27	6.24
	D2.11	0.90	0.40	20.0	10.00	2.00%	0.18	0.91	278.0	0.70%	1.67	2.77	3.68	288.00	11.60	3.68
D2.13 0.49 2.51 20.0 20.00 2.00% 0.09 3.92 2334.0 2.00% 2.83 13.75 17.67 2354.00 23.08 17.67	D2.12	0.49	2.78	20.0	100.00	5.20%	0.26	6.39	1009.0	2.97%	3.45	4.88	11.27	1109.00	16.16	11.27
	D2.13	0.49	2.51	20.0	20.00	2.00%	0.09	3.92	2334.0	2.00%	2.83	13.75	17.67	2354.00	23.08	17.67

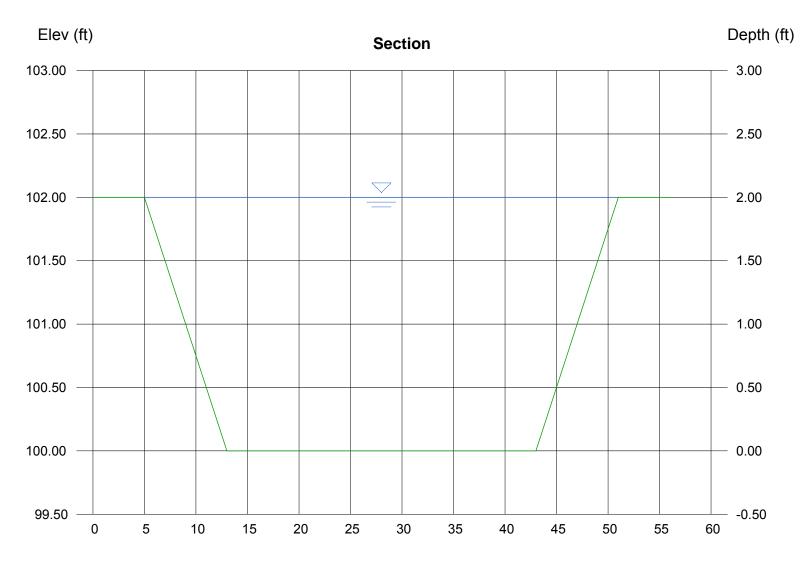
Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>August 16, 2016, June 30, 2017</u> Checked By: <u>Leonard Beasley</u>

					Checkeu	Бу. <u>Leona</u>	rd Beasle	<u>y</u>							
:	Sub-Ba	sin Data			tial Overla	nd Time (ti)		Tr	avel Time ((t t)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
E1.1	0.49	1.41	15.0	92.00	9.24%	0.30	5.07	145.0	2.75%	2.49	0.97				
			20.0					296.0	3.31%	3.64	1.36	7.40	533.00	12.96	7.40
E1.2	0.49	3.61	15.0	100.00	6.60%	0.28	5.91	203.0	5.22%	3.43	0.99				
			20.0					563.0	2.01%	2.84	3.31	10.20	866.00	14.81	10.20
E1.3	0.20	6.81	15.0	100.00	4.80%	0.17	9.68	763.0	5.22%	3.43	3.71				
			20.0					415.0	2.24%	2.99	2.31	15.70	1278.00	17.10	15.70
E1.4	0.49	0.65	15.0	100.00	2.00%	0.19	8.76	20.0	2.00%	2.12	0.16				
			20.0					165.0	1.87%	2.73	1.01	9.92	285.00	11.58	9.92
E1.5	0.49	1.95	20.0	30.00	2.00%	0.10	4.80	729.0	2.24%	2.99	4.06	8.86	759.00	14.22	8.86
E1.6	0.49	2.32	20.0	100.00	5.12%	0.26	6.42	566.0	1.09%	2.09	4.52	10.94	666.00	13.70	10.94
E1.7	0.38	3.50	15.0	100.00	4.50%	0.21	7.91	155.0	7.95%	4.23	0.61				
			20.0					769.0	1.07%	2.07	6.20	14.72	1024.00	15.69	14.72
C12a-ex	0.15	27	7.0	300.00	4.00%	0.27	18.80	725.0	4.97%	1.56	7.74	26.54	1025.00	15.69	15.69
C12-ex	0.15	73	7.0	300.00	5.33%	0.29	17.10	2250.0	4.53%	1.49	25.17	42.27	2550.00	24.17	24.17
C14-ex	0.15	119	7.0	300.00	3.00%	0.24	20.67	3150.0	3.37%	1.29	40.86	61.53	3450.00	29.17	29.17
D15-ex	0.15	55	7.0	300.00	3.83%	0.26	19.07	1970.0	2.61%	1.13	29.03	48.11	2270.00	22.61	22.61
D1-ex	0.15	17	7.0	300.00	2.67%	0.23	21.48	1100.0	4.55%	1.49	12.28	33.76	1400.00	17.78	17.78
E1-ex	0.15	57	7.0	300.00	4.67%	0.28	17.87	1810.0	3.73%	1.35	22.31	40.18	2110.00	21.72	21.72
E2-ex	0.26	29.50	15.0	100.00	2.70%	0.15	10.93	200.0	2.70%	1.41	2.36				
C17.2	0.49	4.11	20.0	33.00	2.00%	0.11	5.03	903.0	3.27%	3.62	4.16	9.19	936.00	15.20	9.19

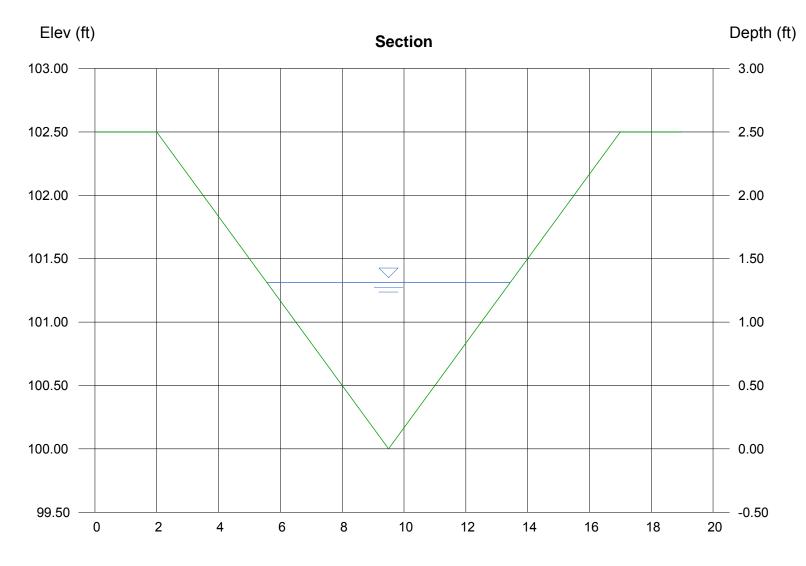
Phase 1 bypass swale to Des. Pt. 18

Trapezoidal


Inapozoidai	
Botom Width (ft)	= 30.00
Side Slope (z:1)	= 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 100.00
Slope (%)	= 0.10
N-Value	= 0.025

Calculations

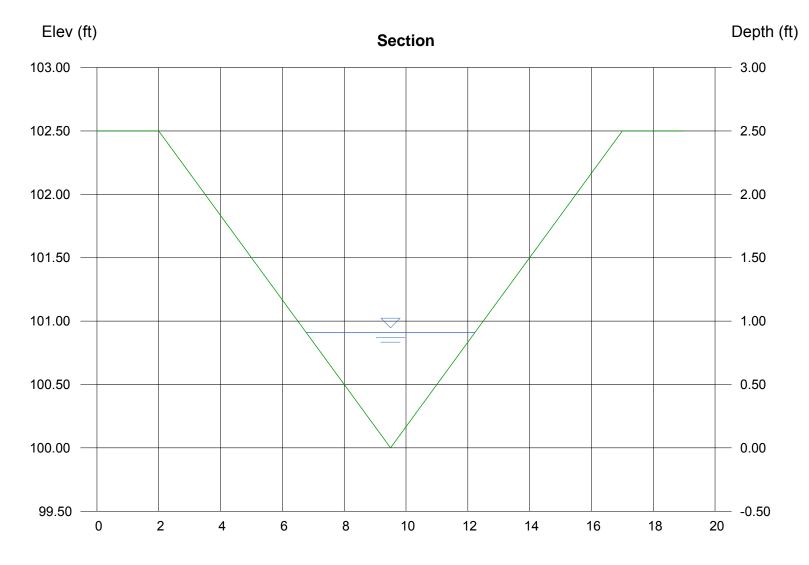
Compute by: Q vs Depth No. Increments = 10


Highlighted

Depth (ft)	=	2.00
Q (cfs)	=	198.27
Area (sqft)	=	76.00
Velocity (ft/s)	=	2.61
Wetted Perim (ft)	=	46.49
Crit Depth, Yc (ft)	=	0.94
Top Width (ft)	=	46.00
EGL (ft)	=	2.11
. ,		

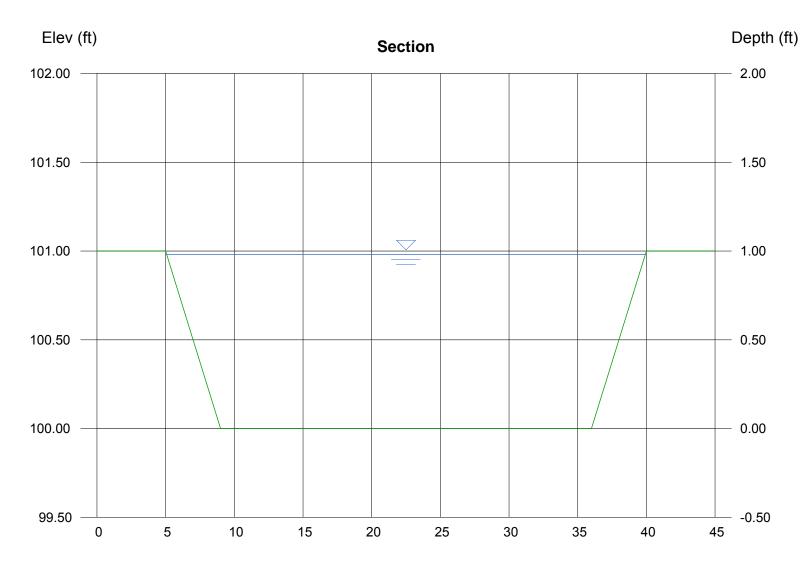
Basin OS-C11 Swale - North Diversion Swale

Triangular		Highlighted	
Side Slope (z:1)	= 3.00	Depth (ft)	= 1.31
Total Depth (ft)	= 2.50	Q (cfs)	= 22.39
• • • •		Area (sqft)	= 5.17
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.33
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.30
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.22
		Top Width (ft)	= 7.88
Calculations		EGL (ft)	= 1.60
Compute by:	Q vs Depth	ζ,	
No. Increments	= 40		


Reach (ft)

Highlighted

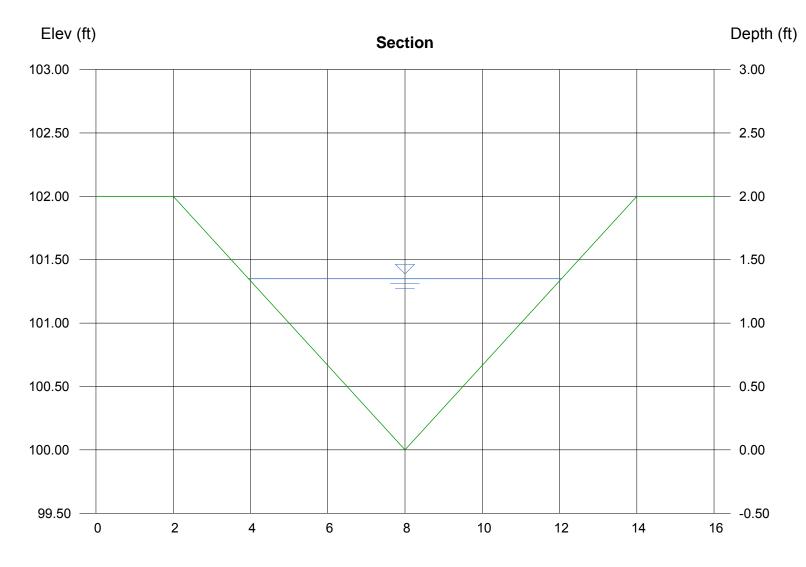
North Diversion Swale @ 7.0% slope


Triangular

Side Slope (z:1)	= 3.00	Depth (ft)	= 0.91
Total Depth (ft)	= 2.50	Q (cfs)	= 22.00
		Area (sqft)	= 2.48
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.86
Slope (%)	= 7.00	Wetted Perim (ft)	= 5.76
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.28
		Top Width (ft)	= 5.46
Calculations		EGL (ft)	= 2.13
Compute by:	Known Q		
Known Q (cfs)	= 22.00		

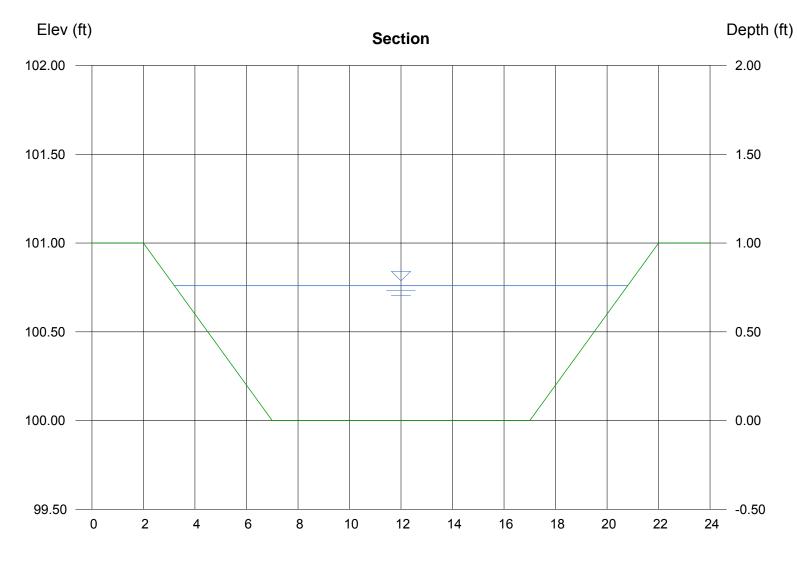
Overflow on Wacissa Drive to Pond C5 at Design Pt. 18

Trapezoidal		Highlighted	
Botom Width (ft)	= 27.00	Depth (ft)	= 0.98
Side Slope (z:1)	= 4.00	Q (cfs)	= 230.00
Total Depth (ft)	= 1.00	Area (sqft)	= 30.30
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.59
Slope (%)	= 2.00	Wetted Perim (ft)	= 35.08
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.00
		Top Width (ft)	= 34.84
Calculations		EGL (ft)	= 1.88
Compute by:	Known Q		
Known Q (cfs)	= 230.00		

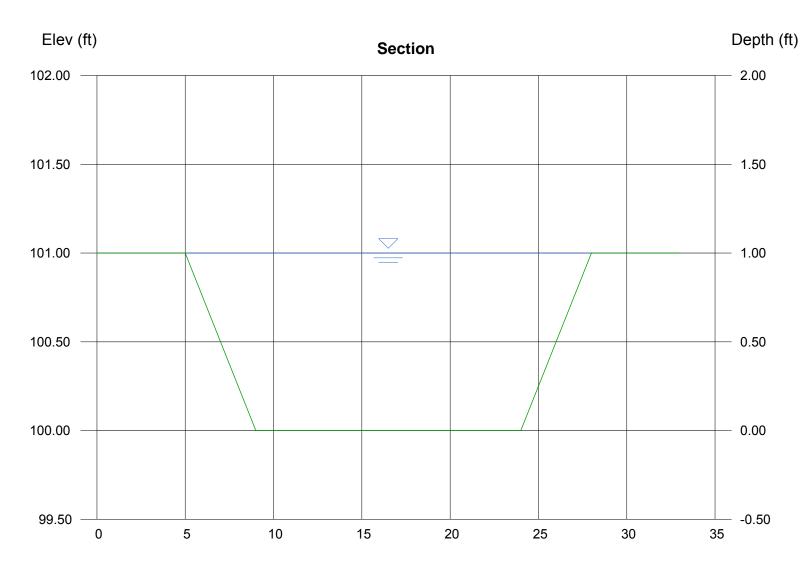

Reach (ft)

Highlighted

Substation Swale 2 - Design Point 21

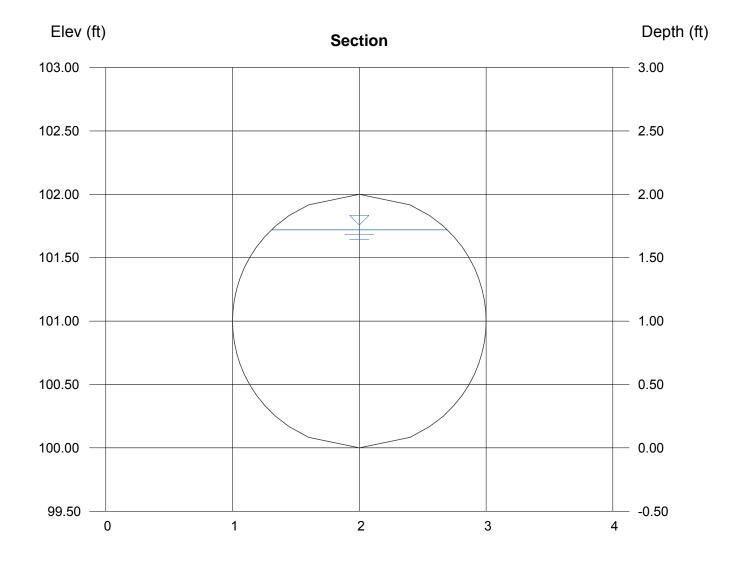

Triangular

Side Slope (z:1)	= 3.00	Depth (ft)	= 1.35
Total Depth (ft)	= 2.00	Q (cfs)	= 24.14
,		Area (sqft)	= 5.47
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.42
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.54
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.33
		Top Width (ft)	= 8.10
Calculations		EĠL (ft)	= 1.65
Compute by:	Known Depth		
Known Depth (ft)	= 1.35		

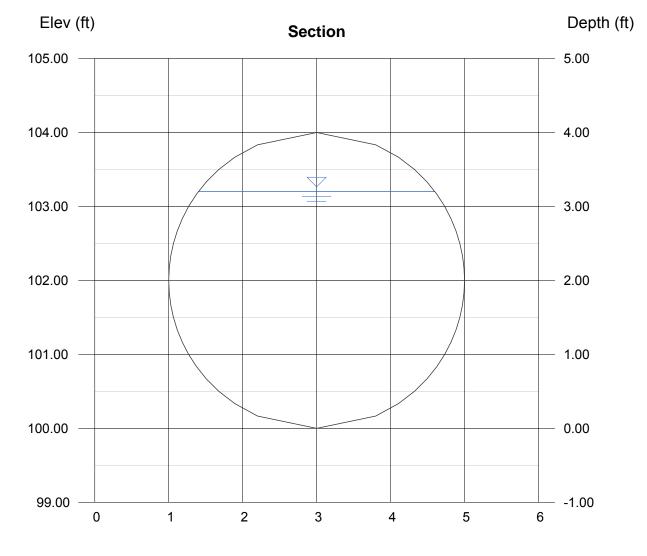

Overflow Swale Substation to Tilllamook - Design Point 21

Trapezoidal		Highlighted	
Botom Width (ft)	= 10.00	Depth (ft)	= 0.76
Side Slope (z:1)	= 5.00	Q (cfs)	= 45.00
Total Depth (ft)	= 1.00	Area (sqft)	= 10.49
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.29
Slope (%)	= 1.00	Wetted Perim (ft)	= 17.75
N-Value	= 0.024	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 17.60
Calculations		EGL (ft)	= 1.05
Compute by:	Known Q		
Known Q (cfs)	= 45.00		

Overflow from Rockcastle to Fontaine - Design Point 27

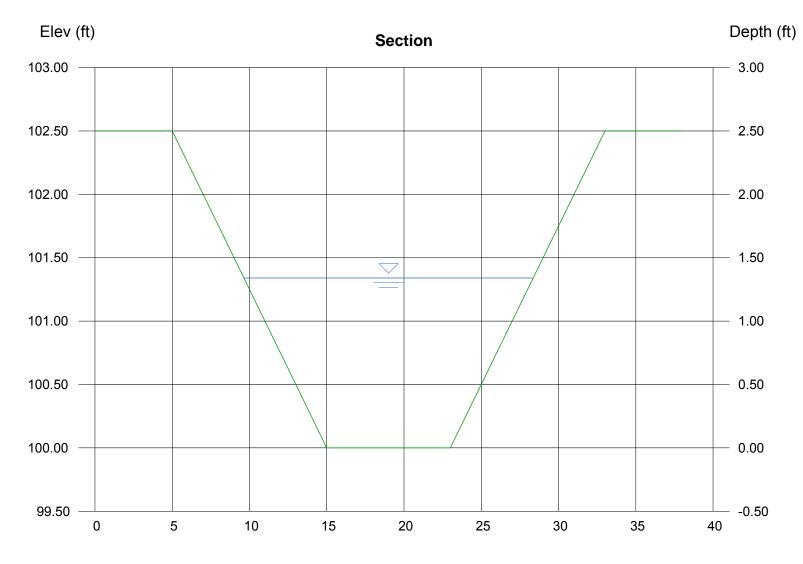

Trapezoidal		Highlighted	
Botom Width (ft)	= 15.00	Depth (ft)	= 1.00
Side Slope (z:1)	= 4.00	Q (cfs)	= 102.83
Total Depth (ft)	= 1.00	Area (sqft)	= 19.00
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.41
Slope (%)	= 1.00	Wetted Perim (ft)	= 23.25
N-Value	= 0.024	Crit Depth, Yc (ft)	= 0.01
		Top Width (ft)	= 23.00
Calculations		EGL (ft)	= 1.46
Compute by:	Q vs Depth		
No. Increments	= 1		

Reach (ft)


24-inch from Des.Pt 47 to Des.Pt.48

Circular		Highlighted	
Diameter (ft)	= 2.00	Depth (ft)	= 1.72
		Q (cfs)	= 16.60
		Area (sqft)	= 2.87
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.77
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.75
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.47
		Top Width (ft)	= 1.39
Calculations		EGL (ft)	= 2.24
Compute by:	Known Q		
Known Q (cfs)	= 16.60		

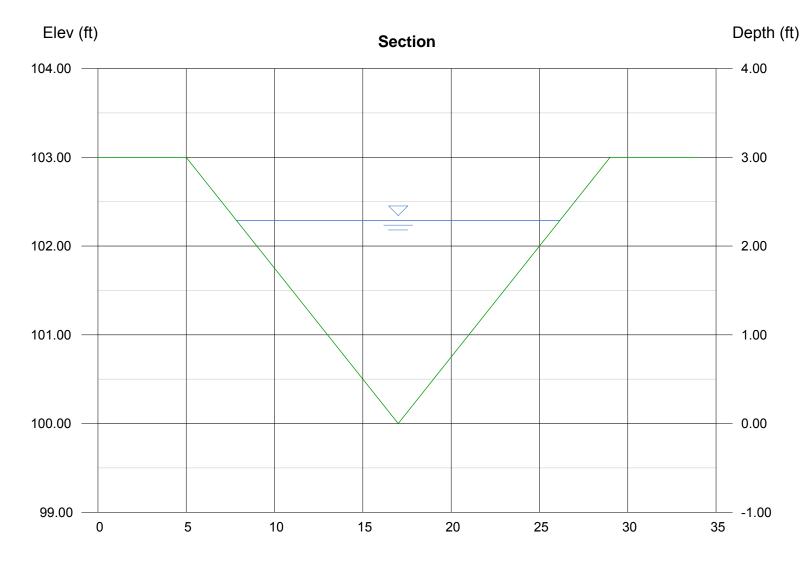
48-inch storm sewer at Des.Pt. 49 into Pond B1


Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 3.20
		Q (cfs)	= 99.32
		Area (sqft)	= 10.78
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.21
Slope (%)	= 0.50	Wetted Perim (ft)	= 8.86
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.80
		Top Width (ft)	= 3.20
Calculations		EGL (ft)	= 4.52
Compute by:	Q vs Depth		
No. Increments	= 10		

Wednesday, Mar 8 2017, 6:4 AM

Lamine low point to Pond D2 Overflow Swale - Design Point 56

Trapezoidal		Highlighted	
Botom Width (ft)	= 8.00	Depth (ft)	= 1.34
Side Slope (z:1)	= 4.00	Q (cfs)	= 150.00
Total Depth (ft)	= 2.50	Area (sqft)	= 17.90
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.38
Slope (%)	= 2.00	Wetted Perim (ft)	= 19.05
N-Value	= 0.024	Crit Depth, Yc (ft)	= 1.68
		Top Width (ft)	= 18.72
Calculations		EGL (ft)	= 2.43
Compute by:	Known Q		
Known Q (cfs)	= 150.00		

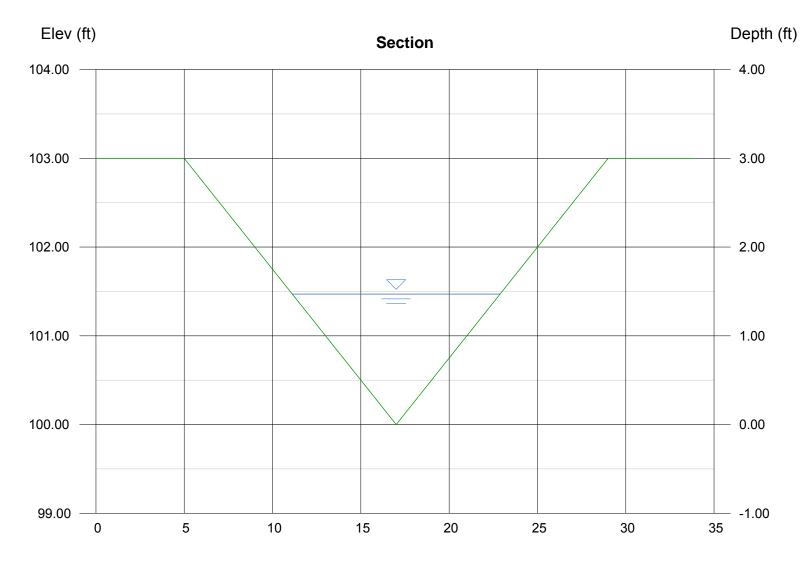


Highlighted

Basin E1.3 Swale at Design Pt. 67b

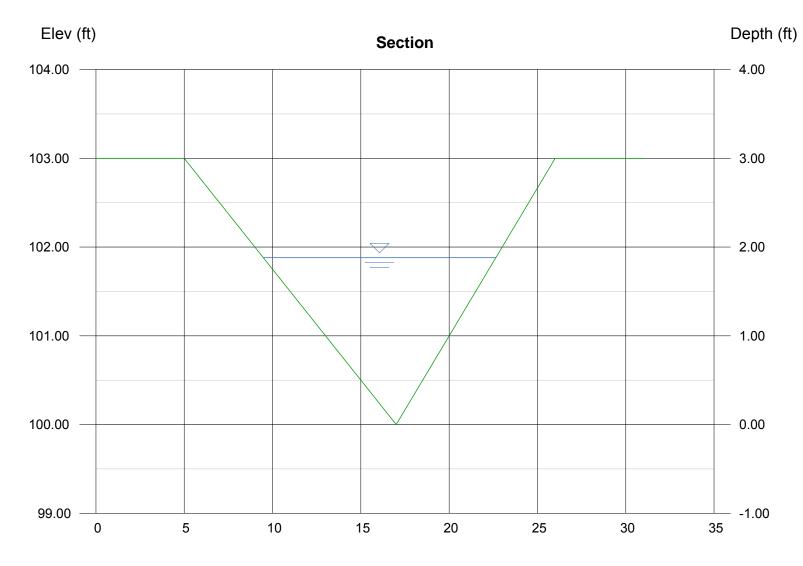
Triangular

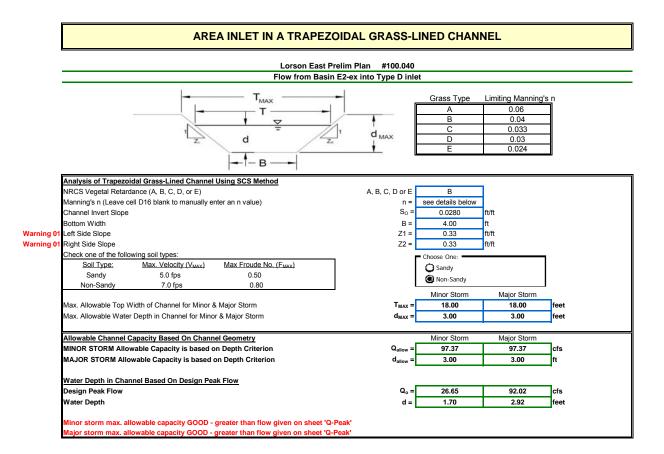
Side Slope (z:1)	= 4.00	Depth (ft)	= 2.29
Total Depth (ft)	= 3.00	Q (cfs)	= 210.00
		Area (sqft)	= 20.98
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.01
Slope (%)	= 2.50	Wetted Perim (ft)	= 18.88
N-Value	= 0.025	Crit Depth, Yc (ft)	= 2.80
		Top Width (ft)	= 18.32
Calculations		EGL (ft)	= 3.85
Compute by:	Known Q		
Known Q (cfs)	= 210.00		

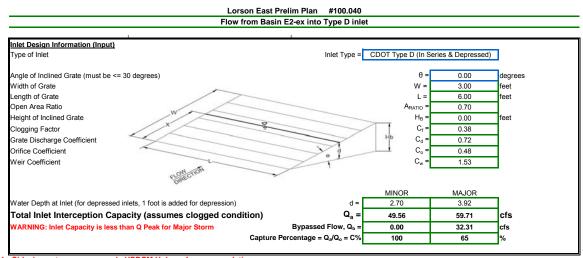


Highlighted

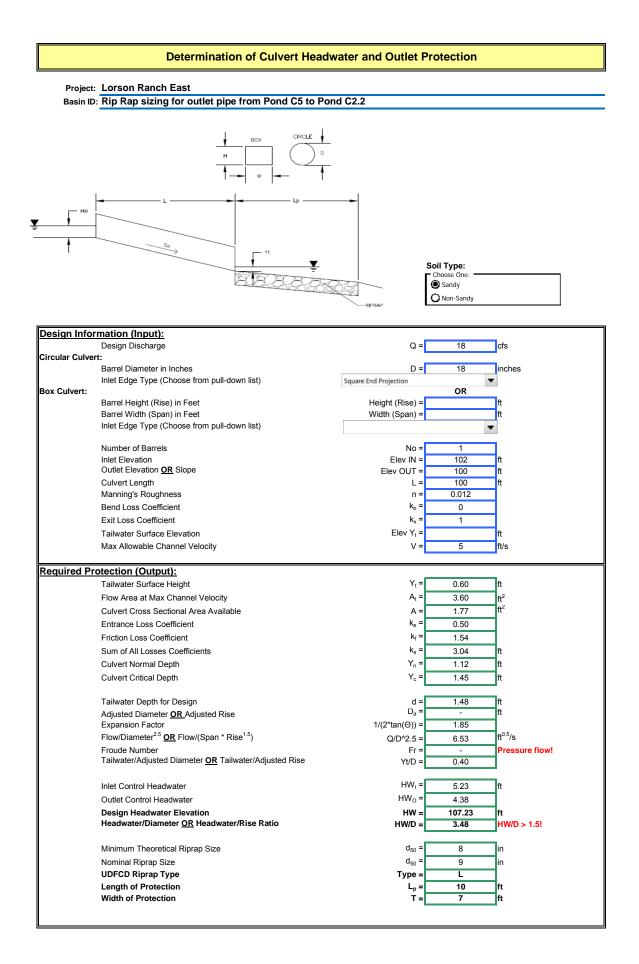
Basin E1.3 Swale at Design Pt. 67b


Triangular


Side Slope (z:1)	= 4.00	Depth (ft)	= 1.47
Total Depth (ft)	= 3.00	Q (cfs)	= 64.10
		Area (sqft)	= 8.64
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.42
Slope (%)	= 2.50	Wetted Perim (ft)	= 12.12
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.75
		Top Width (ft)	= 11.76
Calculations		EGL (ft)	= 2.33
Compute by:	Known Q		
Known Q (cfs)	= 64.10		

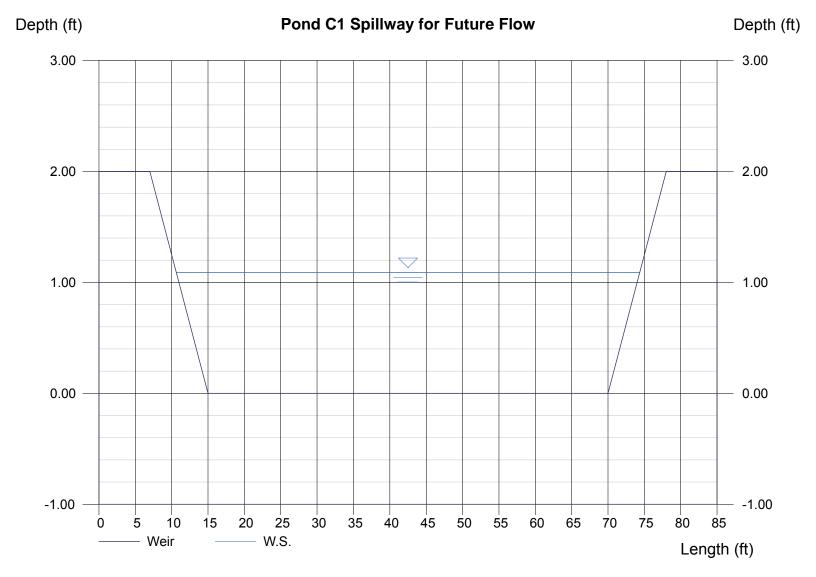

Basin E2-ex Diversion Channel at Design Point 67a

Triangular		Highlighted	
Side Slope (z:1)	= 4.00	Depth (ft)	= 1.88
Total Depth (ft)	= 3.00	Q (cfs)	= 100.00
,		Area (sqft)	= 12.37
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.08
Slope (%)	= 2.00	Wetted Perim (ft)	= 13.70
N-Value	= 0.024	Crit Depth, Yc (ft)	= 2.20
		Top Width (ft)	= 13.16
Calculations		EGL (ft)	= 2.90
Compute by:	Known Q	. ,	
Known Q (cfs)	= 100.00		

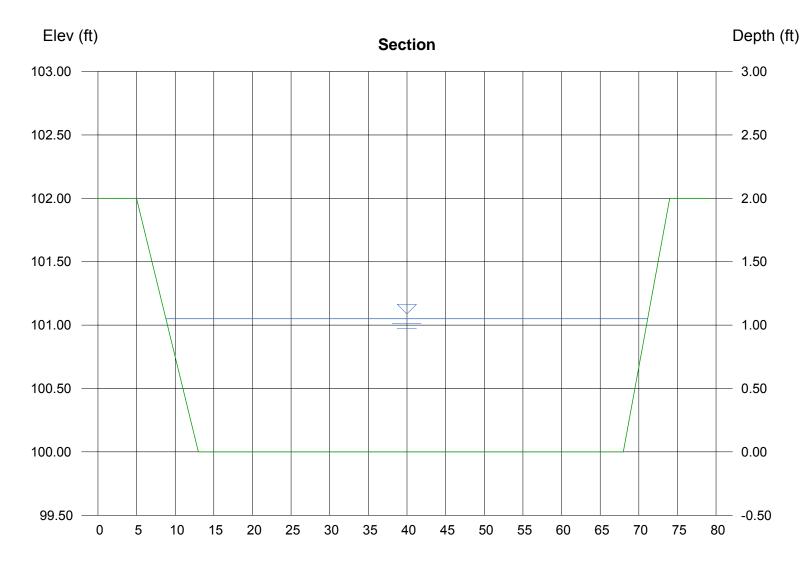


AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

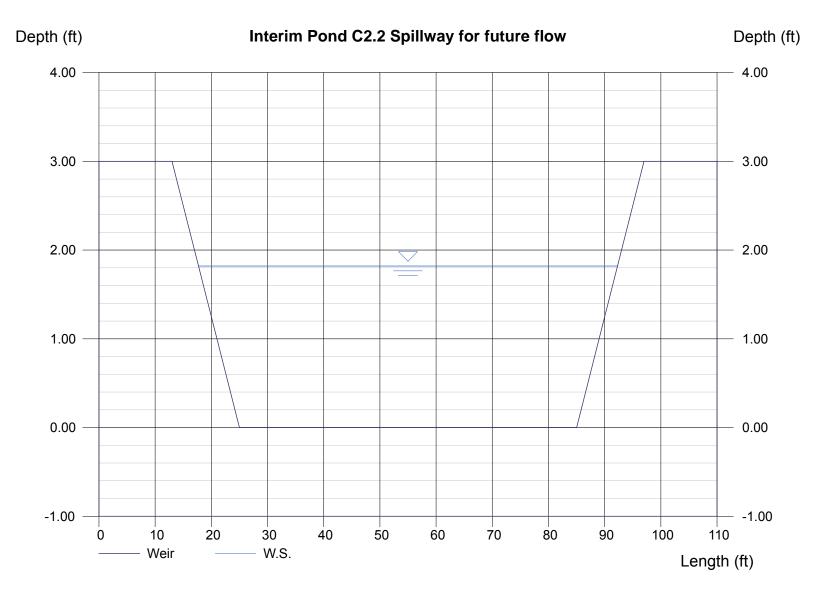
 Warning 01:
 Sideslope steepness exceeds USDCM Volume I recommendation.


 Warning 02:
 Depth (d) exceeds USDCM Volume I recommendation.

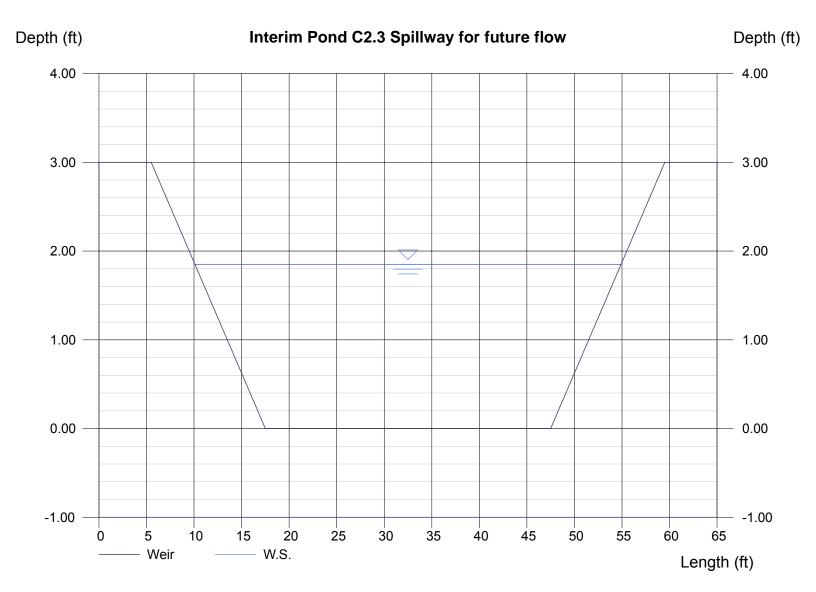
APPENDIX D – POND AND ROUTING CALCULATIONS


Pond C1 Spillway for Future Flow

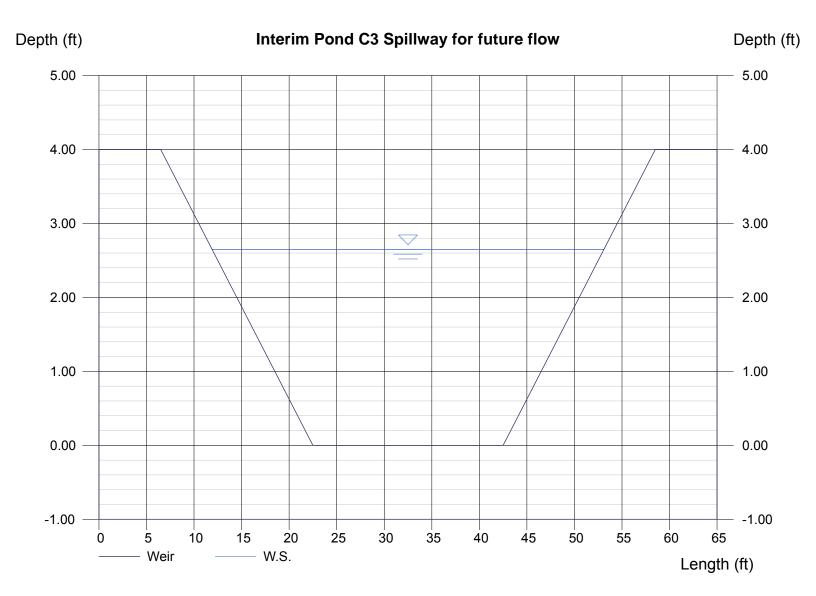
Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.09
Bottom Length (ft)	= 55.00	Q (cfs)	= 205.00
Total Depth (ft)	= 2.00	Area (sqft)	= 64.70
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 3.17
		Top Width (ft)	= 63.72
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 205.00		


Overflow Swale from Interim Pond C1 to Fontaine

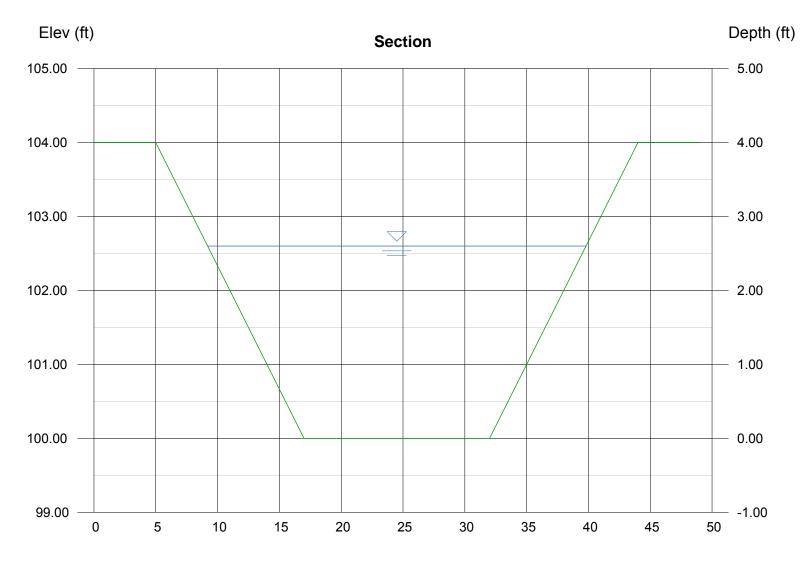
Trapezoidal		Highlighted	
Botom Width (ft)	= 55.00	Depth (ft)	= 1.05
Side Slope (z:1)	= 4.00	Q (cfs)	= 205.00
Total Depth (ft)	= 2.00	Area (sqft)	= 61.61
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.33
Slope (%)	= 0.30	Wetted Perim (ft)	= 62.65
N-Value	= 0.024	Crit Depth, Yc (ft)	= 0.75
		Top Width (ft)	= 62.35
Calculations		EGL (ft)	= 1.22
Compute by:	Known Q		
Known Q (cfs)	= 205.00		


Interim Pond C2.2 Spillway for future flow

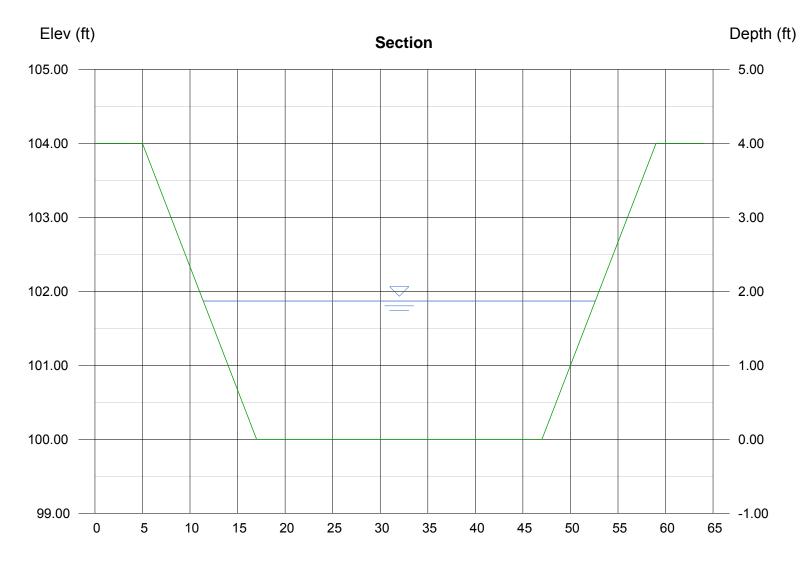
Trapezoidal Weir		Highlighted
Crest	= Sharp	Depth (ft) = 1.82
Bottom Length (ft)	= 60.00	Q(cfs) = 500.00
Total Depth (ft)	= 3.00	Area (sqft) = 122.45
Side Slope (z:1)	= 4.00	Velocity (ft/s) = 4.08
• 、 ,		Top Width (ft) = 74.56
Calculations		
Weir Coeff. Cw	= 3.10	
Compute by:	Known Q	
Known Q (cfs)	= 500.00	


Interim Pond C2.3 Spillway for future flow

Trapezoidal Weir		Highlighted
Crest	= Sharp	Depth (ft) = 1.85
Bottom Length (ft)	= 30.00	Q(cfs) = 280.00
Total Depth (ft)	= 3.00	Area (sqft) = 69.19
Side Slope (z:1)	= 4.00	Velocity $(ft/s) = 4.05$
		Top Width (ft) = 44.80
Calculations		,
Weir Coeff. Cw	= 3.10	
Compute by:	Known Q	
Known Q (cfs)	= 280.00	

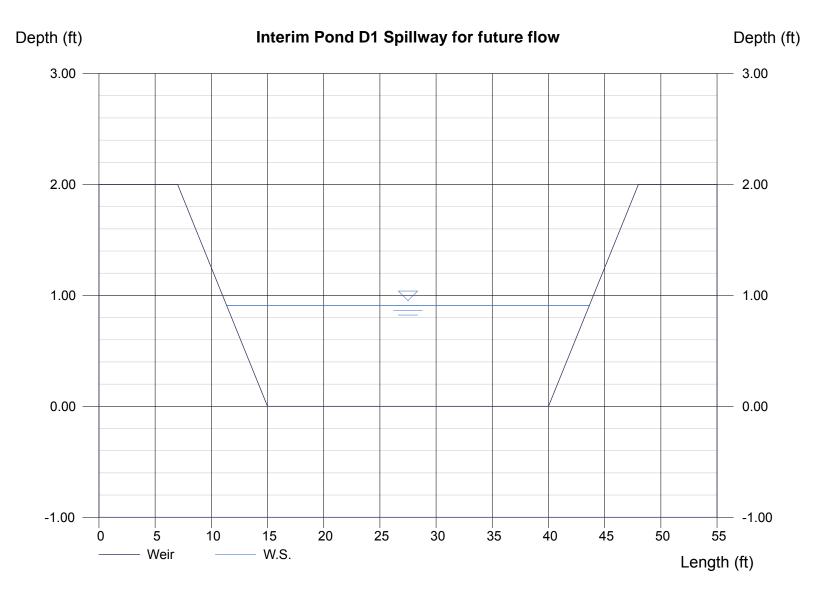

Interim Pond C3 Spillway for future flow

Trapezoidal Weir		Highlighted
Crest	= Sharp	Depth (ft) = 2.65
Bottom Length (ft)	= 20.00	Q(cfs) = 380.00
Total Depth (ft)	= 4.00	Area (sqft) = 81.09
Side Slope (z:1)	= 4.00	Velocity (ft/s) = 4.69
		Top Width (ft) = 41.20
Calculations		
Weir Coeff. Cw	= 3.10	
Compute by:	Known Q	
Known Q (cfs)	= 380.00	

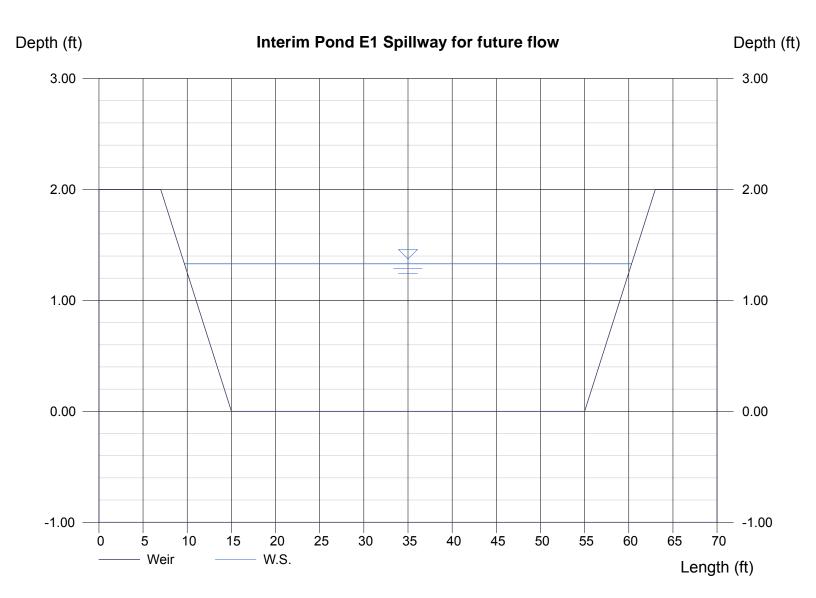

Pond C3 Overflow Swale for Future Flow

Trapezoidal		Highlighted	
Botom Width (ft)	= 15.00	Depth (ft)	= 2.60
Side Slope (z:1)	= 3.00	Q (cfs)	= 380.00
Total Depth (ft)	= 4.00	Area (sqft)	= 59.28
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.41
Slope (%)	= 0.50	Wetted Perim (ft)	= 31.44
N-Value	= 0.025	Crit Depth, Yc (ft)	= 2.31
		Top Width (ft)	= 30.60
Calculations		EGL (ft)	= 3.24
Compute by:	Known Q		
Known Q (cfs)	= 380.00		

Pond C3 Overflow Swale for Future Flow


Trapezoidal		Highlighted	
Botom Width (ft)	= 30.00	Depth (ft)	= 1.87
Side Slope (z:1)	= 3.00	Q (cfs)	= 380.00
Total Depth (ft)	= 4.00	Area (sqft)	= 66.59
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.71
Slope (%)	= 0.50	Wetted Perim (ft)	= 41.83
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.62
		Top Width (ft)	= 41.22
Calculations		EGL (ft)	= 2.38
Compute by:	Known Q		
Known Q (cfs)	= 380.00		

Reach (ft)


Interim Pond D1 Spillway for future flow

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.91
Bottom Length (ft)	= 25.00	Q (cfs)	= 75.00
Total Depth (ft)	= 2.00	Area (sqft)	= 26.06
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 2.88
		Top Width (ft)	= 32.28
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 75.00		

Interim Pond E1 Spillway for future flow

Trapezoidal Weir		Highlighted
Crest	= Sharp	Depth (ft) = 1.33
Bottom Length (ft)	= 40.00	Q (cfs) = 210.00
Total Depth (ft)	= 2.00	Area (sqft) = 60.28
Side Slope (z:1)	= 4.00	Velocity (ft/s) = 3.48
		Top Width (ft) = 50.64
Calculations		
Weir Coeff. Cw	= 3.10	
Compute by:	Known Q	
Known Q (cfs)	= 210.00	

	Friday, Sep 23 2016, 8:44 AM
Pond E2 not used in 5-yr or 100-year	Project: interim pond-elec esmt-100yr.gpw
E2 C2	4 Rational Basin D1-ex 5 Reservoir Interim Pond D1 Hydraflow Hydrographs Model
	14 Rational 15 Reservoir Hydraflow Hy

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	44.09	1	21	55,558				Basin C12-ex
2	Rational	44.48	1	28	74,723				Basin C14-ex
3	Rational	23.64	1	22	31,199				Basin C15-ex
4	Rational	25.13	1	21	31,668				Basin E1-ex
5	Reservoir	3.024	1	41	30,719	3	5746.81	27,990	Interim Pond C1
6	Reservoir	7.637	1	38	55,432	1	5759.56	46,200	Interim Pond C3
7	Combine	51.30	1	28	130,155	2, 6			Flow into Interim Pond C2
8	Reservoir	25.80	1	44	130,152	7	5747.22	35,855	Interim Pond C2.2+C2.3
9	Reservoir	6.659	1	36	31,640	4	5730.45	23,700	Interim Pond E1
10	Rational	25.73	1	16	24,704				Basin E2-ex
11	Rational	23.94	1	17	24,423				Basin E
12	Combine	50.69	1	17	80,767	9, 10, 11			Flow into Interim Pond E2
13	Rational	7.858	1	17	8,015				Basin D1-ex
14	Reservoir	3.500	1	26	8,005	13	5751.89	5,103	Interim Pond D1
inter	im pond-el	ec esmt	:-5yr.gp\	N	Return	Period: 5	Year	Tuesday,	Jun 27 2017, 8:49 PM

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	251.79	1	21	317,251				Basin C12-ex
2	Rational	253.98	1	28	426,689				Basin C14-ex
3	Rational	134.97	1	22	178,154				Basin C15-ex
4	Rational	143.52	1	21	180,833				Basin E1-ex
5	Reservoir	9.980	1	42	178,153	3	5749.61	159,899	Interim Pond C1
6	Reservoir	19.67	1	40	317,065	1	5764.10	287,041	Interim Pond C3
7	Combine	271.88	1	28	743,753	2, 6			Flow into Interim Pond C2
8	Reservoir	74.13	1	50	743,749	7	5752.01	310,503	Interim Pond C2.2+C2.3
9	Reservoir	18.97	1	39	180,806	4	5734.21	151,403	Interim Pond E1
10	Rational	92.91	1	17	94,770				Basin E2-ex
11	Rational	76.86	1	17	78,401				Basin E
12	Combine	182.82	1	17	353,976	9, 10, 11			Flow into Pond E2
13	Rational	47.86	1	17	48,821				Basin D1-ex
14	Reservoir	11.79	1	30	48,810	13	5753.67	34,909	Interim Pond D1
inter	im pond-el	ec esmt	-100yr.ç	Jpw	Return	Period: 10	00 Year	Tuesday,	Jun 27 2017, 8:50 PM

Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Interim Pond C1

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5746.00	25,887	0	0
1.00	5747.00	43,215	34,551	34,551
2.00	5748.00	46,801	45,008	79,559
3.00	5749.00	50,458	48,630	128,189
4.00	5750.00	54,187	52,323	180,511
5.00	5751.00	57,989	56,088	236,599
6.00	5752.00	61,862	59,926	296,525
7.00	5753.00	65,807	63,835	360,359
8.00	5754.00	69,824	67,816	428,175
9.00	5755.00	73,914	71,869	500,044
10.00	5756.00	78,000	75,957	576,001

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]	
Rise (in)	= 18.00	18.00	0.00	0.00	Crest Le
Span (in)	= 18.00	18.00	0.00	0.00	Crest El
No. Barrels	= 1	1	0	0	Weir Co
Invert El. (ft)	= 5745.00	5745.00	0.00	0.00	Weir Ty
Length (ft)	= 250.00	0.00	0.00	0.00	Multi-St
Slope (%)	= 0.50	0.00	0.00	0.00	
N-Value	= .013	.013	.000	.000	
Orif. Coeff.	= 0.60	0.60	0.00	0.00	
Multi-Stage	= n/a	Yes	No	No	Exfiltrat

Weir Structures

	[A]	[B]	[C]	[D]
est Len (ft)	= 50.00	0.00	0.00	0.00
est El. (ft)	= 5753.00	0.00	0.00	0.00
eir Coeff.	= 3.33	3.33	0.00	0.00
eir Type	= Ciplti			
ulti-Stage	= Yes	No	No	No

Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft

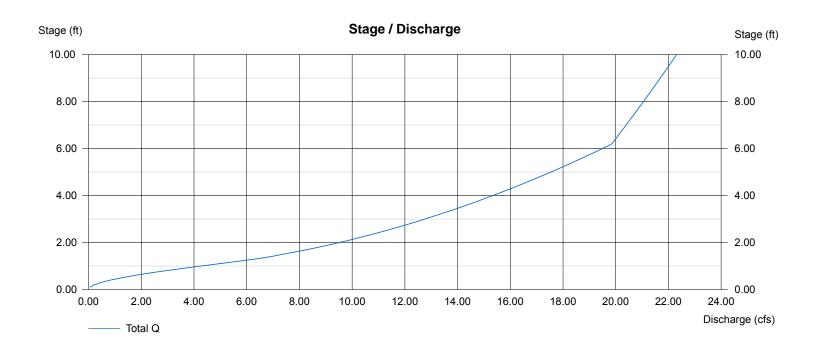
Hydraflow Hydrographs by Intelisolve

Pond No. 4 - Interim Pond C3

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5758.00	13,996	0	0
1.00	5759.00	33,578	23,787	23,787
2.00	5760.00	47,030	40,304	64,091
3.00	5761.00	50,549	48,790	112,881
4.00	5762.00	54,144	52,347	165,227
5.00	5763.00	57,811	55,978	221,205
6.00	5764.00	61,549	59,680	280,885
7.00	5765.00	65,000	63,275	344,159
8.00	5766.00	68,000	66,500	410,659
9.00	5767.00	72,000	70,000	480,659
10.00	5768.00	75,000	73,500	554,159

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 5758.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 325.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 3.00	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Con	tour) Tailw	ater Elev. =	• 0.00 ft

Weir Structures

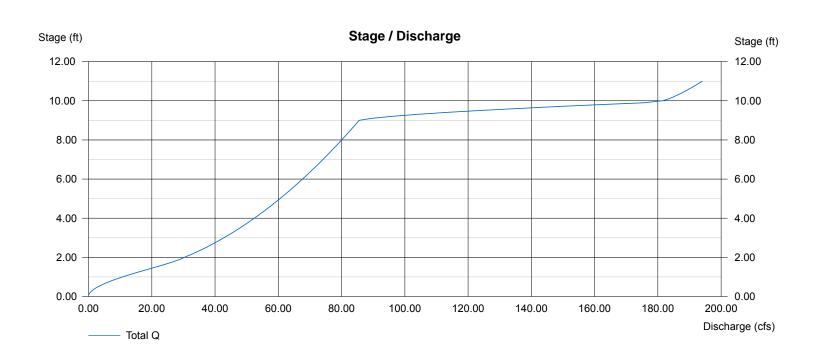
Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydraflow Hydrographs by Intelisolve

Pond No. 2 - Interim Pond C2.2+C2.3

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5745.00	00	0	0	
1.00	5746.00	2,500	1,250	1,250	
2.00	5747.00	45,993	24,247	25,497	
3.00	5748.00	50,108	48,051	73,547	
4.00	5749.00	54,456	52,282	125,829	
5.00	5750.00	58,975	56,716	182,545	
6.00	5751.00	63,696	61,336	243,880	
7.00	5752.00	68,762	66,229	310,109	
8.00	5753.00	73,742	71,252	381,361	
9.00	5754.00	78,000	75,871	457,232	
10.00	5755.00	83,000	80,500	537,732	
11.00	5756.00	88,000	85,500	623,232	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	24.00	0.00	0.00	Crest Len (ft)	= 30.00	0.00	0.00	0.00
Span (in)	= 24.00	24.00	0.00	0.00	Crest El. (ft)	= 5754.00	0.00	0.00	0.00
No. Barrels	= 2	2	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 5744.00	5745.00	0.00	0.00	Weir Type	= Ciplti			
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conte	our) Tailw	ater Elev. =	= 0.00 ft
-									

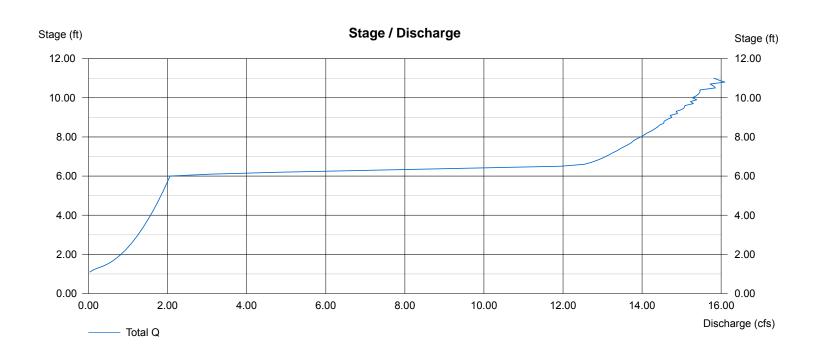
Weir Structures

Hydraflow Hydrographs by Intelisolve

Pond No. 3 - Interim Pond E1

Pond Data

Pond storage is based on known contour areas. Average end area method used.


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5729.00	100	0	0	
1.00	5730.00	23,061	11,581	11,581	
2.00	5731.00	31,126	27,094	38,674	
3.00	5732.00	33,495	32,311	70,985	
4.00	5733.00	35,937	34,716	105,701	
5.00	5734.00	38,452	37,195	142,895	
6.00	5735.00	41,040	39,746	182,641	
7.00	5736.00	43,700	42,370	225,011	
8.00	5737.00	46,434	45,067	270,078	
9.00	5738.00	49,241	47,838	317,916	
10.00	5739.00	52,120	50,681	368,596	
11.00	5740.00	55,072	53,596	422,192	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	6.00	0.00	0.00	Crest Len (ft)	= 9.40	0.00	0.00	0.00
Span (in)	= 18.00	6.00	0.00	0.00	Crest El. (ft)	= 5735.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 5729.00	5730.00	0.00	0.00	Weir Type	= Riser			
Length (ft)	= 400.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00	-				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	Yes	No	No	Exfiltration = 0	.000 in/hr (Conte	our) Tailw	ater Elev. =	= 0.00 ft

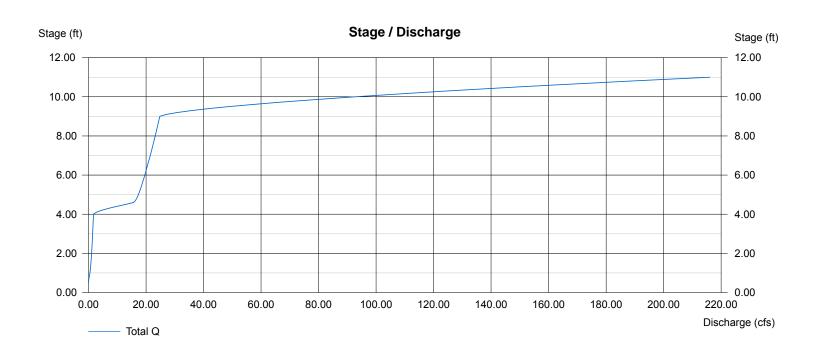
Weir Structures

Hydraflow Hydrographs by Intelisolve

Pond No. 6 - Interim Pond D1

Pond Data

Pond storage is based on known contour areas. Average end area method used.

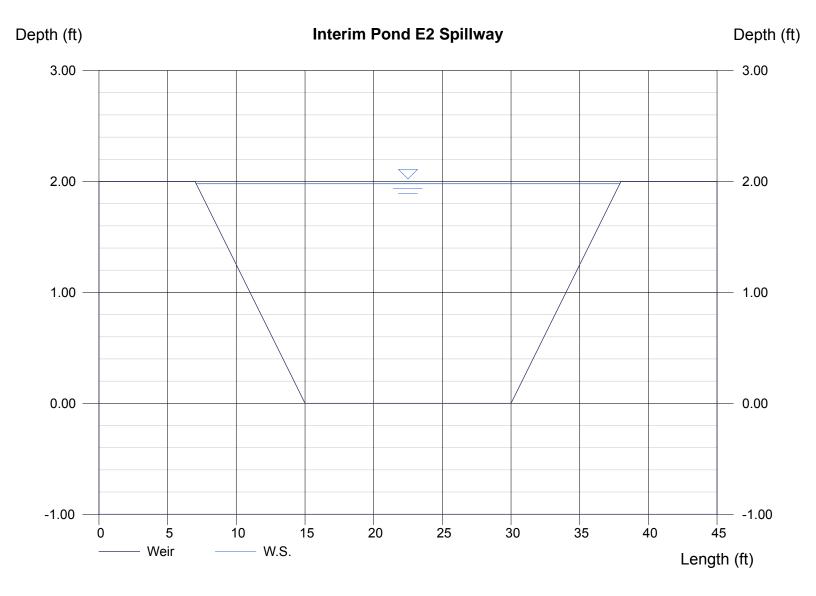

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5751.00	00	0	0	
1.00	5752.00	11,500	5,750	5,750	
2.00	5753.00	19,436	15,468	21,218	
3.00	5754.00	21,337	20,387	41,605	
4.00	5755.00	23,300	22,319	63,923	
5.00	5756.00	25,329	24,315	88,238	
6.00	5757.00	27,423	26,376	114,614	
7.00	5758.00	29,583	28,503	143,117	
8.00	5759.00	31,809	30,696	173,813	
9.00	5760.00	34,100	32,955	206,767	
10.00	5761.00	37,200	35,650	242,417	
11.00	5762.00	40,200	38,700	281,117	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	6.00	0.00	0.00	Crest Len (ft)	= 9.40	20.00	0.00	0.00
Span (in)	= 18.00	6.00	0.00	0.00	Crest El. (ft)	= 5755.00	5760.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5751.00	5751.50	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 100.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00	-				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0.	.000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Weir Structures


Project:			UD-Det	ention, Version 3	.07 (Feb	E TABLE							
				rson Ranch East	, Prelim D	rainage F	ull Spect	rum Desi	gn, #100.0	040			
Basin ID:					In	terim Pon	d E2						
20ME 2 20ME 2 20ME 2	et	-	_										
VOLUME EUNY WOOV	1	T											
20ME 1A		100-11	AN E	Depth Increment =	0.2	ft							
POOL Example Zone	5	tion (Rete	ntion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	
	oomigara			Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft)	(ft)	(ft'2)	Area (ft [*] 2) 50	(acre) 0.001	(ft/3)	
Required Volume Calculation Selected BMP Type =	EDB	h		5694.33	-	0.00			-	10,245	0.001	1,597	
Watershed Area =	21.00	acres		5695		1.00			-	10,700	0.246	8,608	
Watershed Length =	1,500	ft		5696		2.00		-	-	11,163	0.256	19,534	
Watershed Slope = Watershed Imperviousness =	0.035 65.00%	ft/ft percent		5697 5698	-	3.00 4.00			-	11,635 15,441	0.267	31,045 44,583	
Percentage Hydrologic Soil Group A =	0.0%	percent		5699		5.00			-	17,153	0.394	60,880	
Percentage Hydrologic Soil Group B =	0.0%	percent		5700		6.00		-	-	18,960	0.435	78,937	
Percentage Hydrologic Soil Groups C/D = Desired WQCV Drain Time =	100.0% 40.0	percent hours		5701		7.00			-	20,000	0.459	98,417	
Location for 1-hr Rainfall Depths = U		nouro											
Water Quality Capture Volume (WQCV) =	0.445	acre-feet	Optional User Override		-							1	Τ
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.16 in.) =	1.319 1.227	acre-feet acre-feet	1-hr Precipitation 1.16 inches										+
5-yr Runoff Volume (P1 = 1.44 in.) =	1.703	acre-feet	1.44 inches					-	-				L
10-yr Runoff Volume (P1 = 1.68 in.) =	2.097	acre-feet	1.68 inches					-	-			-	T
25-yr Runoff Volume (P1 = 1.92 in.) = 50-yr Runoff Volume (P1 = 2.16 in.) =	2.677 3.139	acre-feet acre-feet	1.92 inches 2.16 inches		-								+
100-yr Runoff Volume (P1 = 2.42 in.) =	3.710	acre-feet	2.42 inches										t
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet	inches		-								
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	1.151 1.604	acre-feet acre-feet			-								+
Approximate 10-yr Detention Volume =	1.834	acre-feet			-								
Approximate 25-yr Detention Volume =	1.956	acre-feet						-	-				1
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	2.014 2.201	acre-feet acre-feet			-			-	-			-	+
								-	-				t
Stage-Storage Calculation Zone 1 Volume (WQCV) =	0.445	.							-				+
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.445	acre-feet acre-feet			-		-	-	-				+
Zone 3 Volume (100-year - Zones 1 & 2) =	0.882	acre-feet							-				
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	2.201 user	acre-feet						-	-			+	-
Initial Surcharge Volume (ISV) =	user	ft*3 ft			-		-	-	-				+
Total Available Detention Depth (H _{total}) =	user	ft			-			-	-				
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user	ft ft/ft							-				+
Slopes of Main Basin Sides (S _{main}) =	user	пл H:V							-				L
Basin Length-to-Width Ratio (R _{L/W}) =	user								-				F
Initial Surcharge Area (A _{ssy}) =	user	ft*2							-			+	+
Surcharge Volume Length (L _{ISV}) =	user	ft						-	-				t
Surcharge Volume Width (W _{ISV}) =	user	ft							-				
Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) =	user	rt ft			-		-	-	-				+
Width of Basin Floor (W _{FLOOR}) =	user	ft							-				L
Area of Basin Floor (A _{FLOOR}) =	user	ft*2			-							<u> </u>	+
Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{MAIN}) =	user	ft*3 ft			-		-	-	-			1	+
	user	ft							-				1
Length of Main Basin (L _{MAIN}) =		ft			-				-				+
Width of Main Basin (W _{MAIN}) =	user	L.				1	-	-	-			1	+
	user user user	ft/2 ft/3			-								
Width of Main Basin (W _{MAIN}) = Area of Main Basin (A _{MAIN}) =	user	n ft*2 ft*3 acre-feet			1			-	-				
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3					-		-				
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3							-				
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											
$ Width of Main Basin (W_{MAIN}) = \\ Area of Main Basin (A_{MAIN}) = \\ Volume of Main Basin (V_{MAIN}) = $	user	ft*3											

		Dete	ntion Basin (Dutlet Struct	ure Design				
				rsion 3.07 (Februar	, , , , , , , , , , , , , , , , , , ,				
Project			Lorse	on Ranch East, P			0.040		
Basin ID	:				Interim Pond E2				
ZONE 3									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURV WQCV			Zone 1 (WQCV)	1.98	0.445	Orifice Plate			
	100-YEA ORIFICE	R	Zone 2 (EURV)	4.80	0.874	Rectangular Orifice			
ZONE 1 AND 2 PERMANENT ORIFICES									
POOL Example Zone	e Configuration (Re	etention Pond)			2.201	Total			
User Input: Orifice at Underdrain Outlet (typically u	used to drain WQCV i	n a Filtration BMP)				Calculate	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices	or Elliptical Slot Weir	(typically used to dr	ain WQCV and/or EU	RV in a sedimentatio	n BMP)	Calcu	lated Parameters for	r Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	-			rifice Area per Row =	1.674E-02	ft²	
Depth at top of Zone using Orifice Plate =	2.20	+ ·	oottom at Stage = 0 ft)		lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	8.00	inches			Elli	ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	2.41	sq. inches (diameter	= 1-3/4 inches)			Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)		0.70	1.40						
Orifice Area (sq. inches)) 2.41	2.41	2.41						J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									-
User Input: Vertical Orifice (Cir		1	1			Calculated	Parameters for Vert		7
	Zone 2 Rectangular	Not Selected	6. (,		Zone 2 Rectangular	Not Selected	ft ²
= Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice	1.98 4.80	N/A N/A		oottom at Stage = 0 ft oottom at Stage = 0 ft		ertical Orifice Area = cal Orifice Centroid =	0.09	N/A N/A	π feet
Vertical Orifice Height =	2.00	N/A N/A	inches	occom at stage – o it) Verti		0.08	IN/A	leet
Vertical Orifice Width =	6.29		inches						
User Input: Overflow Weir (Dropbox) and (Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.00	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	5.00	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet						
Overflow Weir Slope =						Weir Slope Length =	6.00	N/A	feet
	0.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /	100-yr Orifice Area =	5.80	N/A	feet should be <u>></u> 4
Horiz. Length of Weir Sides =	6.00	N/A	feet		Grate Open Area / Overflow Grate Ope	100-yr Orifice Area = en Area w/o Debris =	5.80 12.60	N/A N/A	feet should be <u>></u> 4 ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % =	= 6.00 = 70%	N/A N/A			Grate Open Area / Overflow Grate Ope	100-yr Orifice Area =	5.80	N/A	feet should be <u>></u> 4
Horiz. Length of Weir Sides =	6.00	N/A	feet		Grate Open Area / Overflow Grate Ope	100-yr Orifice Area = en Area w/o Debris =	5.80 12.60	N/A N/A	feet should be <u>></u> 4 ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	= 6.00 = 70% = 50%	N/A N/A N/A	feet %, grate open area/t %		Grate Open Area / Overflow Grate Ope Overflow Grate Op	100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.80 12.60	N/A N/A N/A	feet should be \geq 4 ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	= 6.00 = 70% = 50%	N/A N/A N/A	feet %, grate open area/t %		Grate Open Area / Overflow Grate Ope Overflow Grate Op	100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.80 12.60 6.30	N/A N/A N/A	feet should be \geq 4 ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	= 6.00 = 70% = 50% Circular Orifice, Restri	N/A N/A N/A ctor Plate, or Rectan	feet %, grate open area/t % gular Orifice)		Grate Open Area / Overflow Grate Ope Overflow Grate Op	100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.80 12.60 6.30 s for Outlet Pipe w/	N/A N/A N/A Flow Restriction Pla	feet should be \geq 4 ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A ictor Plate, or Rectan Not Selected	feet %, grate open area/t % gular Orifice)	otal area	Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op	100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A Flow Restriction Pla Not Selected	feet should be \geq 4 ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	= <u>6.00</u> = <u>70%</u> = <u>50%</u> Circular Orifice, Restri Zone 3 Restrictor = <u>0.00</u>	N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi	otal area n bottom at Stage = 0 f	Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op	100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17	N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be \geq 4 ft ² ft ² te ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00	N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches	otal area n bottom at Stage = 0 f	Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	100-yr Orifice Area = an Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	feet should be \geq 4 ft ² ft ² te ft ² fteet
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches	otal area n bottom at Stage = 0 f Half-(Grate Open Area / Overflow Grate Ope Overflow Grate Op (t) Out Central Angle of Rest	100-yr Orifice Area = an Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² te ft ² fteet
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 gular or Trapezoidal)	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi jinches inches	otal area n bottom at Stage = 0 f Half-(Grate Open Area / Overflow Grate Ope Overflow Grate Op (t) Central Angle of Rest Spillway	100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway	feet should be \geq 4 ft ² ft ² te ft ² fteet
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 squar or Trapezoidal) = 7.00	N/A N/A N/A Not Selected N/A N/A ft (relative to basin b	feet %, grate open area/t % gular Orifice) ft (distance below basi jinches inches	otal area n bottom at Stage = 0 f Half-(Grate Open Area / Overflow Grate Ope Overflow Grate Op (C t) Central Angle of Rest Spillway Stage a	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² te ft ² fteet
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length =	= 6.00 = 70% = 50% Sircular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 11.00 = 7.00 = 7.00 = 20.00	N/A N/A N/A ictor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	feet %, grate open area/t % gular Orifice) ft (distance below basi jinches inches	otal area n bottom at Stage = 0 f Half-(Grate Open Area / Overflow Grate Ope Overflow Grate Op (C t) Central Angle of Rest Spillway Stage a	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet should be ≥ 4 ft ² ft ² te ft ² ft ²
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	= 6.00 = 70% = 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 11.00 = 20.00 = 4.00 = 4.00	N/A N/A N/A Not Selected N/A N/A ft (relative to basin t feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft	otal area n bottom at Stage = 0 f Half-4)	Grate Open Area / Overflow Grate Ope Overflow Grate Op () () ()) ()))))))))))	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet should be \geq 4 ft ² ft ² te ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	= 6.00 = 70% = 50% Sircular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 20.00 = 20.00 = 4.00 =	N/A N/A N/A NOT Selected N/A N/A ft (relative to basin t feet H:V feet H:V	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches pottom at Stage = 0 ft 2 Year	otal area n bottom at Stage = 0 f Half-() 5 Year	Grate Open Area / Overflow Grate Ope Overflow Grate Op () () () () () () () () () (100-yr Orifice Area = an Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 sular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 4.00 = 0.00 = 0	N/A N/A N/A N/A NOT Selected N/A N/A ft (relative to basin t feet H:V feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16	otal area n bottom at Stage = 0 f Half-0) <u>5 Year</u> 1.44	Grate Open Area / Overflow Grate Ope Overflow Grate Op () () () () ()) () () () ()	100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres	feet should be ≥ 4 ft ² ft ² te fet feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	= 6.00 = 70% = 50% Sircular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 20.00 = 20.00 = 4.00 =	N/A N/A N/A NOT Selected N/A N/A ft (relative to basin t feet H:V feet H:V	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches pottom at Stage = 0 ft 2 Year	otal area n bottom at Stage = 0 f Half-() 5 Year	Grate Open Area / Overflow Grate Ope Overflow Grate Op () () () () () () () () () (100-yr Orifice Area = an Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 sular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 4.00 = 0.00 = 0	N/A N/A N/A N/A NOT Selected N/A N/A ft (relative to basin t feet H:V feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16	otal area n bottom at Stage = 0 f Half-0) <u>5 Year</u> 1.44	Grate Open Area / Overflow Grate Ope Overflow Grate Op () () () () ()) () () () ()	100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres	feet should be ≥ 4 ft ² ft ² te fet feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = OPTIONAL. Override Runoff Volume (acre-ft) = OPTIONAL. Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 20.00 = 20.00 = 4.00 = 0.53 = 0.443 = 0.443 = 0.00	N/A N/A N/A N/A N/A N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.319	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.227 1.225 0.01	otal area n bottom at Stage = 0 f Half-1) 5 Year 1.44 1.703 	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Out Central Angle of Resti Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33	100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A feet feet feet acres 100 Year 2.42 3.710 3.706 1.33	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Clow, q (cfs/acre) =	= 6.00 = 70% 50% Sircular Orifice, Restri Zone 3 Restrictor 0.00 = 48.00 = 11.00 sular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 0.53 0.445 = 0.443 = 0.00 = 0.00	N/A N/A N/A N/A NOT Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.319 1.317 0.00 0.0	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.16 1.227 1.225 0.01 0.3	otal area n bottom at Stage = 0 f Half-4 1.44 1.703 1.701 0.12 2.5	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Control Control Spillway Stage a Basin Area a Basin Area a 1.68 2.097 2.095 0.33 7.0	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77 16.2	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 SO Year 2.16 3.139 3.136 1.02 21.4	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.42 3.710 3.706 1.33 2.7.9	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000 4N/A 0.00 0.00
Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Exet Length = Spillwa	= 6.00 = 70% = 50% Sircular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 20.00 = 4.00 = 0.53 = 0.445 = 0.443 = 0.443 = 0.00 = 0.0 = 0.00 = 1.00 = 1.00 = 1.00 = 0.00 = 1.00 = 0.00 = 1.00 = 0.00 = 1.00 = 0.00 = 1.00 = 0.00 = 0.53 = 0.00 = 0.00 = 0.00 = 0.53 = 0.00 = 0.00 = 0.75 = 0.00 = 0.00 = 0.75 = 0.00 = 0.00	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 1.319 1.317 0.00 0.0 22.1	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.227 0.01 0.3 20.6	otal area n bottom at Stage = 0 f Half-0) 5 Year 1.44 1.703 	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33 7.0 35.0	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 25 Year 1.92 2.674 0.77 16.2 44.5	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 2.1.4 52.1	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 3.710 1.33 27.9 61.4	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Clow, q (cfs/acre) =	= 6.00 = 70% 50% Sircular Orifice, Restri Zone 3 Restrictor 0.00 = 48.00 = 11.00 sular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 0.53 0.445 = 0.443 = 0.00 = 0.00	N/A N/A N/A N/A NOT Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.319 1.317 0.00 0.0	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.16 1.227 1.225 0.01 0.3	otal area n bottom at Stage = 0 f Half-4 1.44 1.703 1.701 0.12 2.5	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Control Control Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33 7.0	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> <u>1.92</u> 2.677 <u>2.674</u> 0.77 16.2	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 SO Year 2.16 3.139 3.136 1.02 21.4	N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.42 3.710 3.706 1.33 2.7.9	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 0.00 0.000 4N/A 0.00 0.00
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 48.00 = 11.00 gular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 0.53 = 0.443 = 0.443 = 0.443 = 0.443 = 0.00 = 7.5 = 0.2	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin the feet H:V feet H:V feet 1.07 1.319 	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.227 1.225 0.01 0.3 20.6 1.1	otal area n bottom at Stage = 0 f Half-0) 5 Year 1.44 1.703 0.12 2.5 2.8.5 3.8	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33 7.0 3.5.0 11.7	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77 16.2 2.44.5 2.1.9	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3	N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet 2.42 3.706 1.33 27.9 61.4 25.7	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity Ihrough Grate 1 (fps) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 48.00 = 11.00 gular or Trapezoidal) = 7.00 = 20.00 = 4.00 = 4.00 = 0.53 = 0.443 = 0.443 = 0.443 = 0.443 = 0.443 = 0.2 N/A Plate N/A	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin the feet H:V feet H:V feet 1.07 1.319 1.317 0.00 0.0 0.0 0.0 0.0 1.317 0.00 0.0 0.0 1.317 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.227 0.01 0.3 20.6 1.1 N/A Vertical Orifice 1 N/A	otal area n bottom at Stage = 0 f Half-0) 5 Year 1.44 1.703 0.12 2.5 2.8.5 3.8 1.5 Overflow Grate 1 0.2	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33 7.0 35.0 111.7 1.7 0.8	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 1.6.2 2.674 0.77 1.6.2 2.674 0.77 1.6.2 2.1.9 1.4 Overflow Grate 1 1.7	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3 1.1 Outlet Plate 1 1.8	N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet 3.706 1.33 27.9 61.4 25.7 0.9 Outlet Plate 1 1.9	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Cone-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Ratio Peak Outflow to Predevelopment Q Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 = 20.00 = 20.00 = 20.00 = 4.00 = 0.53 = 0.443 = 0.443 = 0.443 = 0.443 = 0.443 = 0.00 = 0.2 = N/A = N/A = N/A = N/A	N/A N/A N/A N/A N/A N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 1.319 EURV 1.07 1.319 0.00 0.00 2.2.1 1.1 N/A Vertical Orifice 1 N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 1.16 1.227 1.225 0.01 1.227 1.225 0.01 0.3 20.6 1.1 N/A Vertical Orifice 1 N/A N/A	otal area n bottom at Stage = 0 f Half-0) 5 Year 1.44 1.703 0.12 2.5 28.5 3.8 1.5 Overflow Grate 1 0.2 N/A	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Coverflow Grate 1 0.8 N/A	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77 1.6.2 44.5 2.1.9 1.4 Overflow Grat 1 1.7 N/A	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3 1.1 Outlet Plate 1 1.8 N/A	N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 3.710 3.706 1.33 27.9 61.4 25.7 0.9 Outlet Plate 1 1.9 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians #N/A #N/A #N/A #N/A #N/A
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Ratio Peak Outflow to Predevelopment Piwe Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	= 6.00 = 70% 50% Sircular Orifice, Restri Zone 3 Restrictor 0.00 = 48.00 = 11.00 = 20.00 = 4.00 = 0.53 0.445 = 0.443 = 0.443	N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V feet 1.07 1.319 1.317 0.00 0.0 22.1 1.1 N/A Vertical Orifice 1 N/A 58	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.16 1.227 1.225 0.01 0.3 20.6 1.1 N/A Vertical Orifice 1 N/A V/A 58	otal area n bottom at Stage = 0 f Half-4 1.44 1.703 1.701 0.12 2.5 2.8.5 2.8.5 3.8 1.5 Overflow Grate 1 0.2 N/A 58	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 2.097 2.095 0.33 7.0 35.0 11.7 0.8 35.0 11.7 0.8 N/A 55	100-yr Orifice Area = an Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77 16.2 44.5 21.9 1.4 Overflow Grate 1 1.7 N/A 51	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3 1.1 Outlet Plate 1 1.8 N/A 48	N/A N/A N/A N/A Not Selected N/A Spillway feet feet acres 100 Year 2.42 3.706 1.33 27.9 61.4 25.7 0.9 Outlet Plate 1 1.9 N/A 45	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Invert Stages Spillway End Slopes Freeboard above Max Water Surface = Spillway End Slopes Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (Sfsacre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Ratio Peak Outflow forate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 99% of Inflow Volume (hours) =	= 6.00 = 70% 50% Circular Orifice, Restri Zone 3 Restrictor = 0.00 = 48.00 = 11.00 Sultar or Trapezoidal) = 7.00 = 20.00 = 4.00 = 0.04 = 0.443 = 0.443	N/A N/A N/A N/A stor Plate, or Rectan Not Selected N/A n/A n/A n/A ft (relative to basin the feet H:V feet H:V feet 1.07 1.319 0.00 0.0 22.1 1.1 N/A V/A Vertical Orifice 1 N/A N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.227 0.01 0.3 20.6 1.1 N/A Vertical Orifice 1 N/A N/A S8 65	otal area n bottom at Stage = 0 f Half-0) 5 Year 1.44 1.703 1.701 0.12 2.5 28.5 3.8 1.5 Overflow Grate 1 0.2 N/A 58 67	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope C C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 2.097 2.095 0.33 7.0 35.0 11.7 0.7 0 35.0 11.7 0.7 0.7 0 35.0 11.7 0.7 0 35.0 11.7 0.7 0 35.0 11.7 0.7 0 35.0 11.7 0.7 0 35.0 1.5 5 5 66	100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 25 Year 1.92 2.674 0.77 16.2 44.5 21.9 1.4 Overflow Grate 1 1.7 N/A 51 64	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3 1.1 Outlet Plate 1 1.8 N/A 48 63	N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 3.706 1.33 27.9 61.4 25.7 0.9 Outlet Plate 1 1.9 N/A 45 61	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Ratio Peak Outflow to Predevelopment Piwe Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	= 6.00 = 70% 50% Sircular Orifice, Restri Zone 3 Restrictor 0.00 = 48.00 = 11.00 = 20.00 = 4.00 = 0.53 0.445 = 0.443 = 0.443	N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V feet 1.07 1.319 1.317 0.00 0.0 22.1 1.1 N/A Vertical Orifice 1 N/A 58	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 1.16 1.227 1.225 0.01 0.3 20.6 1.1 N/A Vertical Orifice 1 N/A V/A 58	otal area n bottom at Stage = 0 f Half-4 1.44 1.703 1.701 0.12 2.5 2.8.5 2.8.5 3.8 1.5 Overflow Grate 1 0.2 N/A 58	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 2.097 2.095 0.33 7.0 35.0 11.7 0.8 35.0 11.7 0.8 N/A 55	100-yr Orifice Area = an Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 2.677 2.674 0.77 16.2 44.5 21.9 1.4 Overflow Grate 1 1.7 N/A 51	5.80 12.60 6.30 s for Outlet Pipe w/ Zone 3 Restrictor 2.17 0.54 1.00 ted Parameters for S 1.13 8.13 0.46 50 Year 2.16 3.139 3.136 1.02 21.4 52.1 24.3 1.1 Outlet Plate 1 1.8 N/A 48	N/A N/A N/A N/A Not Selected N/A Spillway feet feet acres 100 Year 2.42 3.706 1.33 27.9 61.4 25.7 0.9 Outlet Plate 1 1.9 N/A 45	feet should be ≥ 4 ft ² ft ² ft ² feet radians

Tuesday, Jun 27 2017, 9:9 PM

Interim Pond E2 Spillway

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.98
Bottom Length (ft)	= 15.00	Q (cfs)	= 183.00
Total Depth (ft)	= 2.00	Area (sqft)	= 45.38
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 4.03
		Top Width (ft)	= 30.84
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 183.00		

Design Proce	dure Form: Extended Detention Basin (EDB)
Designer: Richard Schindler Company: Core Engineering Group Date: July 6, 2017 Project: Lorson Ranch East PDR - Pond c5 forebay desig Location: Tributary area =171ac, use 1/2 in north forebay a	
 Basin Storage Volume A) Effective Imperviousness of Tributary Area, I_a B) Tributary Area's Imperviousness Ratio (i = I_a/ 100) C) Contributing Watershed Area D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control) F) Design Volume (WQCV) Based on 40-hour Drain Time 	$I_{a} = \underbrace{63.0}_{} \%$ $i = \underbrace{0.630}_{}$ Area = $\underbrace{171.000}_{} ac$ $d_{6} = \underbrace{171.000}_{} in$ Choose One $\underbrace{Choose One}_{}$ Water Quality Capture Volume (WQCV) $\underbrace{Ctrue Cuality Capture Volume (EURV)}_{} Caption Runoff Volume (EURV)}$ $\underbrace{V_{DESIGN} = \underbrace{3.515}_{} ac-ft$
 (V_{DESIGN} = (1.0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area) G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (V_{WQCV OTHER} = (de[*](V_{DESIGN}/0.43)) H) User Input of Water Quality Capture Volume (WQCV) Design Volum (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group 	V _{DESIGN OTHER} = ac-ft
J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.68 * i ^{1.28} For HSG B: EURV _B = 1.36 * i ^{1.08} For HSG C/D: EURV _{C/D} = 1.20 * i ^{1.08}	OB Oc / D EURV =ac-ft
2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction. 3. Basin Side Slopes) L:W = <u>2.0</u> :1
 A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = <u>0.33</u> ft / ft TOO STEEP (< 3)
 Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 	

Design Procedure Form: Extended Detention Basin (EDB)

			Sheet 2 of 4
Designer:	Richard Schindler		_
Company:	Core Engineering Group		_
Date:	July 6, 2017		_
Project:	Lorson Ranch East PDR - Pond c5 forebay design (south and r	north forebay same size)	-
Location:	Pond C5 forebay design (1/2 of total pond forebay)		-
5. Forebay			
A) Minimum Fo (V _{FMIN}	orebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.050</u> ac-ft	
B) Actual Fore	bay Volume	V _F = <u>0.050</u> ac-ft	
C) Forebay Dep (D _F		D _F =30.0 in	
D) Forebay Dis	charge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>242.00</u> cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 4.84$ cfs	
E) Forebay Dise	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	ROUND UP TO NEAREST PIPE SIZE
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated $D_P = 12$ in	
G) Rectangular	Notch Width	Calculated $W_N =$ in	
6. Trickle Channel	1	Choose One	
A) Type of Tric	kle Channel	Soft Bottom	
F) Slope of Trie	ckle Channel	S = <u>0.0040</u> ft / ft	
7. Micropool and 0	Dutlet Structure		
A) Depth of Mi	cropool (2.5-feet minimum)	D _M = ft	
B) Surface Are	a of Micropool (10 ft ² minimum)	A _M =345 sq ft	
C) Outlet Type		Choose One Orifice Plate Other (Describe):	
D) Smallest Di (Use UD-Dete	mension of Orifice Opening Based on Hydrograph Routing ention)	D _{orifice} = <u>3.03</u> inches	
E) Total Outlet	Area	A _{ot} = <u>27.63</u> square in	nches

Design Procedure Form	Extended Detention Basin (EDB)
-----------------------	----------------------------	------

					Sheet 3 of 4
Designer:	Richard Schindler				
Company:	Core Engineering Group July 6, 2017				
Date: Project:	Lorson Ranch East PDR - Pond c5 forebay design (south and r	north forebay same si	ze)		
Location:	Tributary area =171ac, use 1/2 in north forebay and 1/2 in south)		
8. Initial Surcharge	e Volume				
	tial Surcharge Volume	D _{IS} =	4	in	
(Minimum re	commended depth is 4 inches)				
	ial Surcharge Volume	V _{IS} =	431.2	cu ft	
(Minimum vo	lume of 0.3% of the WQCV)				
C) Initial Surcha	arge Provided Above Micropool	V _s =	115.0	cu ft	
9. Trash Rack					
A) Water Quali	ty Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t =	798	square inches	
B) Type of Scre	en (If specifying an alternative to the materials recommended	Aluminum An	nico-Klemn SR Ser	ries with Cross Rods 2" O.C.	
	indicate "other" and enter the ratio of the total open are to the	Adminiant Ad		103 Will 01033 11003 2 0.0.	-
total screen are	for the material specified.)				_
	Other (Y/N): N				-
		Hara Datia			-
C) Ratio of Lota	al Open Area to Total Area (only for type 'Other')	User Ratio =			
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =	1123	sq. in.	
E) Depth of Des	sign Volume (EURV or WQCV)	H=	2.12	feet	
(Based on de	sign concept chosen under 1E)	_		_	
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} =	53.44	inches	
				_	
	ter Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} =	21.0	inches	
(WINITITUTI OF					

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project:	Lorson East	MDDP (100.	.013)		,	
Basin ID:						
ZOWE 3	201					
	SNE 1	-	~			
VOLUME EUNY WOOV		-	_	~		
	_	-100-YEA	AR .		Depth Increment =	0.2
PERMANENT ORUS	T AND 2	ONITO	6			
Pool Example Zone	e Configurat	tion (Reter	ntion Pond)		Stage - Storage Description	Stage (ft)
Required Volume Calculation					Top of Micropool	
Selected BMP Type =	EDB	٦			5706.33	
Watershed Area =	171.00	acres			5707	
Watershed Length =	3,200	ft			5708	
Watershed Slope =	0.018	ft/ft			5709	
Watershed Imperviousness =	63.00%	percent			5710	
Percentage Hydrologic Soil Group A =	0.0%	percent			5711	
Percentage Hydrologic Soil Group B =	0.0%	percent			5712	1
Percentage Hydrologic Soil Groups C/D =		percent			5713	
Desired WQCV Drain Time =		hours			5714	
Location for 1-hr Rainfall Depths =					5715	
Water Quality Capture Volume (WQCV) =		acre-feet	Optional Use 1-hr Precipit	er Override	5716	
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.16 in.) =		acre-feet acre-feet	1.16	inches		
2-yr Runoff Volume (P1 = 1.16 in.) = 5-yr Runoff Volume (P1 = 1.44 in.) =	9.641	acre-feet	1.16	inches		-
10-yr Runoff Volume (P1 = 1.68 in.) =		acre-feet	1.68	inches		
25-yr Runoff Volume (P1 = 1.92 in.) =		acre-feet	1.92	inches		
50-yr Runoff Volume (P1 = 2.16 in.) =		acre-feet	2.16	inches		
100-yr Runoff Volume (P1 = 2.42 in.) =	29.878	acre-feet	2.42	inches		
500-yr Runoff Volume (P1 = 3.14 in.) =	41.092	acre-feet		inches		
Approximate 2-yr Detention Volume =	9.045	acre-feet		-		1
Approximate 5-yr Detention Volume =		acre-feet				
Approximate 10-yr Detention Volume =		acre-feet				-
Approximate 25-yr Detention Volume =		acre-feet				
Approximate 50-yr Detention Volume =		acre-feet				
Approximate 100-yr Detention Volume =	17.508	acre-feet				
Stage-Storage Calculation						-
Zone 1 Volume (WQCV) =	3.515	acre-feet				
Zone 2 Volume (EURV - Zone 1) =		acre-feet				
Zone 3 Volume (100-year - Zones 1 & 2) =		acre-feet				
Total Detention Basin Volume =	17.508	acre-feet				-
Initial Surcharge Volume (ISV) =	user	ft*3				
Initial Surcharge Depth (ISD) =	user	ft				1
Total Available Detention Depth (H _{total}) =	user	ft				
Depth of Trickle Channel (H _{TC}) =	user	ft				
Slope of Trickle Channel (S _{TC}) =	user	ft/ft				-
Slopes of Main Basin Sides (Smain) =	user	H:V				
Basin Length-to-Width Ratio (R _{L/W}) =	user	J				-
Initial Surcharge Area (A _{ISV}) =	user	ft*2				
Surcharge Volume Length (L _{15V}) =	user	ft 2				
Surcharge Volume Width (W _{15/}) =	user	ft				
Depth of Basin Floor (H _{FLOOR}) =	user	ft				-
Length of Basin Floor (L _{FLOOR}) =	user	ft				
Width of Basin Floor (W _{FLOOR}) =	user	ft				1
Area of Basin Floor (A _{FLOOR}) =	user	ft*2				
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3				
Depth of Main Basin (H _{MAIN}) =	user	ft				
Length of Main Basin (L _{MAIN}) =	user	ft				
Width of Main Basin (W _{MMN}) = Area of Main Basin (A _{MMN}) =	user	ft				
Volume of Main Basin (V _{MAN}) =	user	ft*2 ft*3				-
Calculated Total Basin Volume (V _{total}) =		ntr3 acre-feet				-
		Jaci e-idel				
						-

Depth Increment =	0.2	ft		n	r			r	
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
Top of Micropool		0.00			-	50	0.001		
5706.33		0.33			-	100	0.002	24	0.001
5707		1.00			-	1,000	0.023	383	0.009
5708		2.00			-	18,898	0.434	10,154	0.233
5709		3.00			-	77,432	1.778	58,507	1.343
5710		4.00	-		-	110,270	2.531 2.650	152,358	3.498
5711 5712		5.00 6.00	-		-	115,455 120,720	2.650	265,220 383,308	6.089 8.800
5712	-	7.00	-	-	-	126,045	2.894	506,690	11.632
5714		8.00			-	131,696	3.023	635,561	14.590
5715		9.00				136,745	3.139	769,781	17.672
5716		10.00				141,857	3.257	909,082	20.870
	-		-		-				
	-		-		-				
			-						
			-						
	-		-	-	-				
			-		-				
	-		-	-	-				
-			-						_
			-						
			-	-	-				
			-		-				
	-		-	-	-				
	-		-	-	-				
					-				
					-				
					-				
					-				
					-				
			-		-				
			-		-				
	-		-	-	-				
					-				
					-				
	-		-		-				
					-				
					-				
			-		-				
			-		-				
	-		-	-	-				
					-				
					-				
					-				
			-		-				
	-		-		-				
			-	-	-				
	-		-		-				
					-				
	-				-				_
	-		-	-	-				
			-		-				
	-		-	-	-				
			-						_
			-		-				
			-		-				
	~		-		-				
			-		-				
			-						
			-	-	-				
	-		-		-				
			-	-	-				
					-				
			-		-				
	-		-		-				
			-		-				
	~		-		-				
				-	-				
			-		-				
	-			-	-				
			-		-				

Detention Basin Outlet Structure Design									
				y 2017)	rsion 3.07 (Februar	UD-Detention, Ve			
				!!!	00-yr Storm Event!!!	RV) Do not use for 1		Lorson East MDDP Pond C5 (only used	
					•	*			ZONE 3
			Outlet Type	Zone Volume (ac-ft)	Stage (ft)				00-YR COLUME FURY WOOL
			Orifice Plate	3.515	4.01	Zone 1 (WQCV)			
			Rectangular Orifice	6.868	6.57	Zone 2 (EURV)		100-YEA ORIFICE	ZONE 1 AND 2
			Weir&Pipe (Restrict)	7.126	8.95	'one 3 (100-year)	tention Dand)		PERMANENT ORIFICES
			Total	17.508				Configuration (Re	Example 2016
	derdrain ft ²	ed Parameters for Un N/A	Calculate erdrain Orifice Area =	Unda	f=)	ne filtration media sur	7	sed to drain WQCV i N/A	ser Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =
	feet	N/A N/A	ain Orifice Centroid =		Tace)	le intration media sui	inches	N/A N/A	Underdrain Ornice Invert Depth -
							1		
		lated Parameters for	Calcu	n BMP)	RV in a sedimentatio	ain WQCV and/or EU	(typically used to dr		ser Input: Orifice Plate with one or more orifices
	ft ²	6.396E-02	rifice Area per Row =			oottom at Stage = 0 ft		0.00	Invert of Lowest Orifice =
	feet feet	N/A N/A	lliptical Half-Width = ptical Slot Centroid =)	oottom at Stage = 0 ft	ft (relative to basin l inches	4.01 16.00	Depth at top of Zone using Orifice Plate =
	ft ²	N/A N/A	Elliptical Slot Area =	EIII		ngular openings)	sq. inches (use recta	9.21	Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =
		,				0	1 .,		
	Devis (1 1 1	D	During (11 11		Devid (11 11	D			ser Input: Stage and Total Area of Each Orifice
	Row 8 (optional)	Row 7 (optional)	Row 6 (optional)	Row 5 (optional)	Row 4 (optional)	Row 3 (optional) 2.67	Row 2 (optional) 1.34	Row 1 (required) 0.00	Stage of Orifice Centroid (ft)
						9.21	9.21	9.21	Orifice Area (sq. inches)
									(-4. 100.005)
	Row 16 (optional)	Row 15 (optional)	Row 14 (optional)	Row 13 (optional)	Row 12 (optional)	Row 11 (optional)	Row 10 (optional)	Row 9 (optional)	
									Stage of Orifice Centroid (ft)
									Orifice Area (sq. inches)
	cal Orifice	Parameters for Vert	Calculated					cular or Rectangular)	User Input: Vertical Orifice (Cir
	Not Selected	Zone 2 Rectangular					Not Selected	Zone 2 Rectangular	
ft ²	N/A	0.78	ertical Orifice Area =		oottom at Stage = 0 ft		N/A	4.01	Invert of Vertical Orifice =
feet	N/A	0.25	cal Orifice Centroid =) Vertio	oottom at Stage = 0 ft	ft (relative to basin t inches	N/A N/A	6.57	Depth at top of Zone using Vertical Orifice = Vertical Orifice Height =
						inches	N/A	18.68	Vertical Orifice Width =
							1		
	flow Weir	Parameters for Ove	Calculated			1		arate (Flat or Sloped)	User Input: Overflow Weir (Dropbox) and O
e .	Not Selected	Zone 3 Weir					Not Selected	Zone 3 Weir	
feet feet	N/A N/A	6.60 3.00	ate Upper Edge, H _t = Weir Slope Length =		ttom at Stage = 0 ft)	ft (relative to basin bo feet	N/A N/A	6.60 18.00	Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =
should be ≥ 4	N/A N/A	3.01		Grate Open Area /	at grate)	H:V (enter zero for f	N/A N/A	0.00	Overflow Weir Hont Edge Length -
ft ²	N/A	37.80	-	Overflow Grate Ope	,	feet	N/A	3.00	Horiz. Length of Weir Sides =
ft ²	N/A	18.90	oen Area w/ Debris =	Overflow Grate Op	otal area	%, grate open area/1	N/A	70%	Overflow Grate Open Area % =
						%	N/A	50%	Debris Clogging % =
	low Postriction Plat	s for Outlot Bino w/	alculated Parameter			gular Orifica)	ictor Plata, or Poctan	incular Orifica Postr	Isor Input: Outlat Pino w/ Flow Postriction Plate (C
(Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate				e e		guidi Office,	Not Selected	Zone 3 Restrictor	
e	Not Selected	Zone 3 Restrictor	Outlet Orifice Area =		n bottom at Stage = 0 f	ft (distance below basi	N/A	0.00	Depth to Invert of Outlet Pipe =
e ft²		12.57	Outlet Office Area -	L)					
	N/A	2.00	let Orifice Centroid =		-	inches	N/A	48.00	Outlet Pipe Diameter =
ft²			let Orifice Centroid =		Half-0		N/A		
ft² feet	N/A N/A	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe =	Outl	Half-0	inches	l	48.00 48.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =
ft² feet	N/A N/A	2.00	et Orifice Centroid = rictor Plate on Pipe = Calcula	Outl Central Angle of Restr		inches inches	<u> </u>	48.00 48.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan
ft² feet	N/A N/A	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe =	Outl Central Angle of Restr Spillway		inches	<u> </u>	48.00 48.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =
ft² feet	N/A N/A pillway feet	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Outi Central Angle of Restr Spillway Stage a		inches inches	ft (relative to basin l	48.00 48.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=
ft² feet	N/A N/A pillway feet feet	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Outi Central Angle of Restr Spillway Stage a		inches inches	ft (relative to basin l feet	48.00 48.00 gular or Trapezoidal)	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =
ft² feet	N/A N/A pillway feet feet	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Outi Central Angle of Restr Spillway Stage a		inches inches	ft (relative to basin l feet H:V	48.00 48.00 gular or Trapezoidal)	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =
ft² feet	N/A N/A pillway feet feet	2.00 3.14	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Outi Central Angle of Restr Spillway Stage a		inches inches	ft (relative to basin l feet H:V	48.00 48.00 gular or Trapezoidal)	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =
ft ² feet radians 500 Year 3.14	N/A N/A pillway feet feet acres 100 Year 2.42	2.00 3.14 ted Parameters for S 50 Year 2.16	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.68) <u>5 Year</u> 1.44	inches inches pottom at Stage = 0 ft <u>2 Year</u> 1.16	ft (relative to basin l feet H:V feet EURV 1.07	48.00 48.00 gular or Trapezoidal	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =
ft ² feet radians	N/A N/A sillway feet feet acres 100 Year	2.00 3.14 ted Parameters for S	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year) 5 Year	inches inches pottom at Stage = 0 ff 2 Year	ft (relative to basin l feet H:V feet EURV	48.00 48.00 gular or Trapezoidal)	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (n) = Calculated Runoff Volume (acre-ft) =
ft ² feet radians 500 Year 3.14	N/A N/A pillway feet feet acres 100 Year 2.42	2.00 3.14 ted Parameters for S 50 Year 2.16	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.68) <u>5 Year</u> 1.44	inches inches pottom at Stage = 0 ft <u>2 Year</u> 1.16	ft (relative to basin l feet H:V feet EURV 1.07	48.00 48.00 gular or Trapezoidal	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19	N/A N/A n/A pillway feet feet acres 100 Year 2.42 29.878 29.902 1.46	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.68 16.659 16.663 0.37	5 Year 1.44 13.459 13.467 0.14	inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 	ft (relative to basin l feet H:V feet 1.07 10.382 10.386 0.00	48.00 48.00 gular or Trapezoidal WQCV 0.53 3.515 3.517 0.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =
ft ² feet radians 500 Year 3.14 41.092 41.092 41.123 2.19 374.8	N/A N/A N/A billway feet feet acres 100 Year 2.42 29.878 29.902 1.46 249.0	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.885 145.3	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.68 16.659 16.663 0.37 63.2	5 Year 1.44 13.459 13.467 0.14 23.2	inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 9.641 9.640 0.02 2.8	ft (relative to basin l feet H:V feet 1.07 10.382 10.386 0.00 0.0	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19	N/A N/A n/A pillway feet feet acres 100 Year 2.42 29.878 29.902 1.46	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.68 16.659 16.663 0.37	5 Year 1.44 13.459 13.467 0.14	inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 	ft (relative to basin l feet H:V feet 1.07 10.382 10.386 0.00	48.00 48.00 gular or Trapezoidal WQCV 0.53 3.515 3.517 0.00	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19 374.8 660.8 660.8 171.1 0.5	N/A N/A N/A billway feet feet acres 100 Year 2.42 29.907 1.46 249.0 497.8 163.7 0.7	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 145.3 364.1 132.6 0.9	Outl Central Angle of Restri Spillway Stage a Basin Area a 10 Year 1.68 16.659 16.663 0.37 63.2 286.9 77.5 1.2	5 Year 1.44 13.459 13.467 0.14 23.2 233.0 30.7 1.3	inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 9.640 0.02 2.8 168.8 7.0 N/A	ft (relative to basin I feet H:V feet 1.07 10.382 10.386 0.00 0.0 181.4 7.3 N/A	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Created Hydrograph Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q(cfs) = Peak Unflow Q (cfs) = Peak Outflow to Predevelopment Q =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19 374.8 660.8 171.1 0.5 N/A	N/A N/A N/A illway feet feet acres 29.878 29.902 1.46 249.0 497.8 163.7 0.7 Outlet Plate 1	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8 Outlet Plate 1	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 145.3 364.1 132.6 0.9 Overflow Grate 1	Outl Central Angle of Restri- Spillway Stage a Basin Area a Marce a 10 Year 1.68 16.659 16.663 0.37 6.3.2 286.9 77.5 1.2 Overflow Grate 1	5 Year 1.44 1.3.459 1.3.467 0.14 2.3.2 2.33.0 30.7 1.3 Overflow Grate 1	inches inches cottom at Stage = 0 ft 2 Year 1.16 9.641 9.640 0.02 2.8 168.8 7.0 N/A Vertical Orifice 1	ft (relative to basin l feet H:V feet 1.07 10.382 0.00 0.0 181.4 7.3 N/A Vertical Orifice 1	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Nesults Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Poak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19 374.8 666.8 171.1 0.5 N/A 4.2	N/A N/A N/A pillway feet feet acres 2.42 29.878 29.902 1.46 249.0 497.8 163.7 0.7 0.7 0.0ttlet Plate 1 4.0	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8 Outlet Plate 1 3.8	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 145.3 364.1 132.6 0.9 Overflow Grate 1 3.3	Outl Central Angle of Restri Spillway Stage a Basin Area a Monometric 16.663 16.659 16.663 0.37 63.2 286.9 77.5 1.2 Overflow Grate 1 1.8	5 Year 1.44 13.459 13.467 0.14 23.2 233.0 30.7 1.3 Overflow Grate 1 0.6	inches inches 2 Year 1.16 9.641 9.640 0.02 2.8 168.8 7.0 N/A Vertical Orifice 1 N/A	ft (relative to basin l feet H:V feet 1.07 10.382 10.386 0.00 0.0 181.4 7.3 N/A Vertical Orifice 1 N/A	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate N/A	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Predevelopment Peak Q (drs) Peak Inflow Q (drs) = Peak Outflow Q (crs) = Ratio Peak Outflow to Predevelopment Flow Structure Controlling Flow Max Velocity through Grate 1 (fps) =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19 374.8 660.8 171.1 0.5 N/A	N/A N/A N/A illway feet feet acres 29.878 29.902 1.46 249.0 497.8 163.7 0.7 Outlet Plate 1	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8 Outlet Plate 1	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 145.3 364.1 132.6 0.9 Overflow Grate 1	Outl Central Angle of Restri- Spillway Stage a Basin Area a Marce a 10 Year 1.68 16.659 16.663 0.37 6.3.2 286.9 77.5 1.2 Overflow Grate 1	5 Year 1.44 1.3.459 1.3.467 0.14 2.3.2 2.33.0 30.7 1.3 Overflow Grate 1	inches inches cottom at Stage = 0 ft 2 Year 1.16 9.641 9.640 0.02 2.8 168.8 7.0 N/A Vertical Orifice 1	ft (relative to basin l feet H:V feet 1.07 10.382 0.00 0.0 181.4 7.3 N/A Vertical Orifice 1	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Pleak Cl (cfs) = Predevelopment Pleak (Cfs) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =
ft ² feet radians 500 Year 3.14 41.092 41.123 2.19 374.8 660.8 171.1 0.5 N/A 4.2 N/A 4.2 N/A 4.5 56	N/A N/A N/A illway feet feet acres 29.878 29.902 1.46 249.0 497.8 163.7 0.7 0.7 Outlet Plate 1 4.0 N/A 48 57	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8 Outlet Plate 1 3.8 N/A 50 50 58	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 1.45.3 364.1 132.6 0.9 Overflow Grate 1 3.3 N/A 52 58	Outl Central Angle of Restri Spillway Stage a Basin Area a Morea 10 Year 1.68 16.659 16.663 0.37 63.2 286.9 77.5 1.2 Overflow Grate 1 1.8 N/A N/A 54 59	5 Year 1.44 1.3459 13.467 0.14 23.2 233.0 30.7 1.3 Overflow Grate 1 0.6 N/A 55 60	inches inches oottom at Stage = 0 ff 2 Year 1.16 9.641 9.640 0.02 2.8 168.8 7.0 N/A Vertical Orifice 1 N/A VA N/A S3 57	ft (relative to basin l feet H:V feet 1.07 10.382 0.00 0.0 1.81.4 7.3 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 54 58	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate N/A N/A N/A 38 40	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =
ft ² feet radians 500 Year 3.14 4.1.092 41.092 3.14 4.1.092 3.14 4.1.092 3.14 4.1.092 0.5 N/A 4.2 N/A 4.5	N/A N/A N/A illway feet feet acres 29.878 29.902 1.46 249.0 497.8 163.7 0.7 Outlet Plate 1 4.0 N/A 48	2.00 3.14 ted Parameters for S 50 Year 2.16 25.205 25.222 1.12 191.8 424.6 154.2 0.8 Outlet Plate 1 3.8 N/A 50	et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 21.433 21.449 0.85 145.3 364.1 132.6 0.9 Overflow Grate 1 3.3 N/A 52	Outl Central Angle of Restri Spillway Stage a Basin Area a Markov 10 Year 1.68 16.663 0.37 63.2 286.9 77.5 1.2 Overflow Grate 1 1.8 N/A 54	5 Year 1.44 13.459 13.467 0.14 23.2 233.0 30.7 1.3 Overflow Grate 1 0.6 N/A 55	inches inches bottom at Stage = 0 ft 2 Year 1.16 9.641 0.02 2.8 168.8 7.0 N/A Vertical Orifice 1 N/A N/A 53	ft (relative to basin l feet H:V feet 1.07 10.382 10.386 0.00 0.0 181.4 7.3 N/A Vertical Orifice 1 N/A V/A 54	48.00 48.00 gular or Trapezoidal) WQCV 0.53 3.515 3.517 0.00 0.0 63.1 1.4 N/A Plate N/A N/A 38	Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =

This table (for all ponds that receive flow from upstream ponds) needs to be recreated with Hydraflow output

Pond C5 Spillway - btm=5713.00

Trapezoidal Weir

Crest	= Sharp
Bottom Length (ft)	= 52.00
Total Depth (ft)	= 4.00
Side Slope (z:1)	= 4.00

Calculations

Weir Coeff. Cw	= 3.10
Compute by:	Known Q
Known Q (cfs)	= 420.00

Highlighted

1.77
420.00
104.57
4.02
66.16

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Lorson East MDDP Basin ID: Pond D2 - Lorson Blvd at East Tributary of JCC

>

mm T	ROME 1	
VOLUME EUNY WOCY	4	
	,	ONVICE
PERMANENT-	OHIFICES	10-1108
POOL	Example Zone Configura	tion (Retention Pond)

•	-			
Required Volume Calculation				
Selected BMP Type =	EDB			
Watershed Area =	72.00	acres		
Watershed Length =	2,200	ft		
Watershed Slope =	0.025	ft/ft		
Watershed Imperviousness =	64.00%	percent		
Percentage Hydrologic Soil Group A =	0.0%	percent		
Percentage Hydrologic Soil Group B =	0.0%	percent		
Percentage Hydrologic Soil Groups C/D =	100.0%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	Denver - Capit	tol Building		
Water Quality Capture Volume (WQCV) =	1.502	acre-feet	Optional User	
Excess Urban Runoff Volume (EURV) =	4.446	acre-feet	1-hr Precipita	tion
2-yr Runoff Volume (P1 = 1.16 in.) =	4.132	acre-feet	1.16	inches
5-yr Runoff Volume (P1 = 1.44 in.) =	5.752	acre-feet	1.44	inches
10-yr Runoff Volume (P1 = 1.68 in.) =	7.103	acre-feet	1.68	inches
25-yr Runoff Volume (P1 = 1.92 in.) =	9.102	acre-feet	1.92	inches
50-yr Runoff Volume (P1 = 2.16 in.) =	10.687	acre-feet	2.16	inches
100-yr Runoff Volume (P1 = 2.42 in.) =	12.650	acre-feet	2.42	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	17.372	acre-feet		inches
Approximate 2-yr Detention Volume =	3.877	acre-feet		
Approximate 5-yr Detention Volume =	5.418	acre-feet		
Approximate 10-yr Detention Volume =	6.193	acre-feet		
Approximate 25-yr Detention Volume =	6.612	acre-feet		
Approximate 50-yr Detention Volume =	6.808	acre-feet		
Approximate 100-yr Detention Volume =	7.458	acre-feet		

Stage-Storage Calculation		
Zone 1 Volume (WQCV) =	1.502	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.944	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	3.012	acre-feet
Total Detention Basin Volume =	7.458	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A _{5v}) =	user	ft^2

$\begin{array}{c c} Surcharge Volume Width (W_{0,0}) & user \\ P = 0 \\ Depth of Basin Floor (H_{10,00}) & user \\ R \\ Width of Basin Floor (M_{10,00}) & user \\ Width of Basin Floor (M_{10,00}) & user \\ Area of Basin Floor (M_{10,00}) & user \\ Depth of Main Basin (M_{10,00}) & user \\ Length of Main Basin (M_{20,00}) & user \\ Width of Main Basin (M_{20,00}) & user \\ Area of Main$	Surcharge Volume Length (L _{SV}) =	user	ft
Length of Basin Floor (H ₁₀₀₀) user n Width of Basin Floor (H ₁₀₀₀) user n Area of Basin Floor (H ₁₀₀₀) user n² Volume of Basin Floor (H ₁₀₀₀) user n² Doption floor (H ₁₀₀₀) user n² Utime of Basin Floor (H ₁₀₀₀) user n² Uption floor fl	Surcharge Volume Width (W _{ISV}) =	user	ft
	Depth of Basin Floor (H _{FLOOR}) =	user	ft
$\label{eq:response} \begin{array}{c} Area of Basin Floor (A_{LOD}) & user \\ Volume of Basin Floor (A_{LOD}) & user \\ Problem of Main Basin (A_{UAD}) & user \\ Length of Main Basin (A_{UAD}) & user \\ Width of Main Basin (A_{UAD}) & user \\ Area of Main Basin (A_{UAD}) & user \\ Area of Main Basin (A_{UAD}) & user \\ Problem of Main Basin$	Length of Basin Floor (L _{FLOOR}) =	user	ft
Volume of Basin Floor (V _{FLOO}) = user #*3 Depth of Wain Basin (H _{Munk}) = user # Length of Main Basin (H _{Munk}) = user # Width of Main Basin (H _{Munk}) = user # Area of Main Basin (A _{Munk}) = user #	Width of Basin Floor (W _{FLOOR}) =	user	ft
Depth of Main Basin (H_{MANN}) = user ft Length of Main Basin (L_{MANN}) = user ft Width of Main Basin (W_{MANN}) = user ft Area of Main Basin (A_{MANN}) = user ft ⁺²	Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Length of Main Basin (L _{MARN}) = user ft Width of Main Basin (W _{MARN}) = user ft Area of Main Basin (A _{MARN}) = user ft^2	Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Width of Main Basin (W _{MAN}) = user ft Area of Main Basin (A _{MAN}) = user ft^2	Depth of Main Basin (H _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) = user ft^2	Length of Main Basin (L _{MAIN}) =	user	ft
	Width of Main Basin (W _{MAIN}) =	user	ft
Volume of Main Basin (V _{MAN}) = user ft^3	Area of Main Basin (A _{MAIN}) =	user	ft^2
	Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) = user acre-feet	Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Stage - Storage	0.2 Stage	ft Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volum
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft ²)	(acre)	(ft^3)	(ac-ft
Top of Micropool		0.00				1,068	0.025		
5696.33		0.33				15,000	0.344	2,503	0.057
5697		1.00				48,988	1.125	23,599	0.542
5698		2.00				72,821	1.672	84,264	1.93
5699		3.00				76,610	1.759	159,706	3.66
5700		4.00				80,493	1.848	238,258	5.470
5701		5.00			-	84,486	1.940	320,747	7.36
5702		6.00	-			88,582	2.034	407,281	9.350
5703		7.00	-		-	92,768	2.130	497,956	11.43
5704		8.00	-		-	97,074	2.229	592,877	13.61
5705		9.00	-		-	102,033	2.342	692,431	15.89
5706		10.00	-			102,000	2.433	796,447	18.28
5700		10.00				100,000	2.433	180,441	10.20
				-					
				-					
					-				
					-				
			-						
			-						
			-						
			-			-			
						-		l	
			-						
			-						
						-		l	
						-		l	
						-		l	
						-		l	
						-		l	
						-		l	
						-			
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-					I	
			-					I	
								I	
						_			
					-			1	
			-		-				
			-					1	
			-		-				
			-		-				
			-		-				
			-			-		-	
					-			1	
			-						
					-			1	
						-			
			-		-				
								I	
			-		-	-			
		1			-			1	I

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	UD-BMF Core Engineering Group July 6, 2017 Lorson Ranch East PDR - Pond D2 forebay design	(Version 3.06, November 2016) Sheet 1 o
 B) Tributary Area C) Contributing D) For Watersh Runoff Produ E) Design Conc (Select EUR) F) Design Volur 	erviousness of Tributary Area, I _a a's Imperviousness Ratio (i = I _a / 100) Watershed Area eds Outside of the Denver Region, Depth of Average ucing Storm rept / when also designing for flood control) me (WQCV) Based on 40-hour Drain Time	$l_{a} = \underbrace{63.0}_{} \%$ $i = \underbrace{0.630}_{}$ Area = $\underbrace{72.000}_{} ac$ $d_{6} = \underbrace{in}_{}$ Choose One $\underbrace{\text{@ Water Quality Capture Volume (WQCV)}}_{\text{@ Excess Urban Runoff Volume (EURV)}}$ $V_{\text{DESIGN}} = \underbrace{1.480}_{} ac-ft$
G) For Watersh Water Qualit (V _{WQCV OTHEF} H) User Input of (Only if a diff	I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area) eds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume a = (d _e *(V _{DESIGN} /0.43)) f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired) Watershed NRCS Soil Group	V _{DESIGN OTHER} = ac-ft V _{DESIGN USER} = <u>1.390</u> ac-ft Choose One WQCV selected. Soil group not required. B Q C / D
For HSG A: For HSG B:	n Runoff Volume (EURV) Design Volume EURV _A = $1.68 * i^{1.28}$ EURV _B = $1.36 * i^{1.08}$ D: EURV _{CD} = $1.20 * i^{1.08}$	EURV = ac-f t
	ength to Width Ratio o width ratio of at least 2:1 will improve TSS reduction.)	L : W = <u>2.0</u> : 1
 Basin Side Slope A) Basin Maxim (Horizontal d 		Z = <u>0.33</u> ft / ft TOO STEEP (< 3)
 Inlet A) Describe me inflow location 	ans of providing energy dissipation at concentrated	

Design Procedure Form: Extended Detention Basin (EDB)

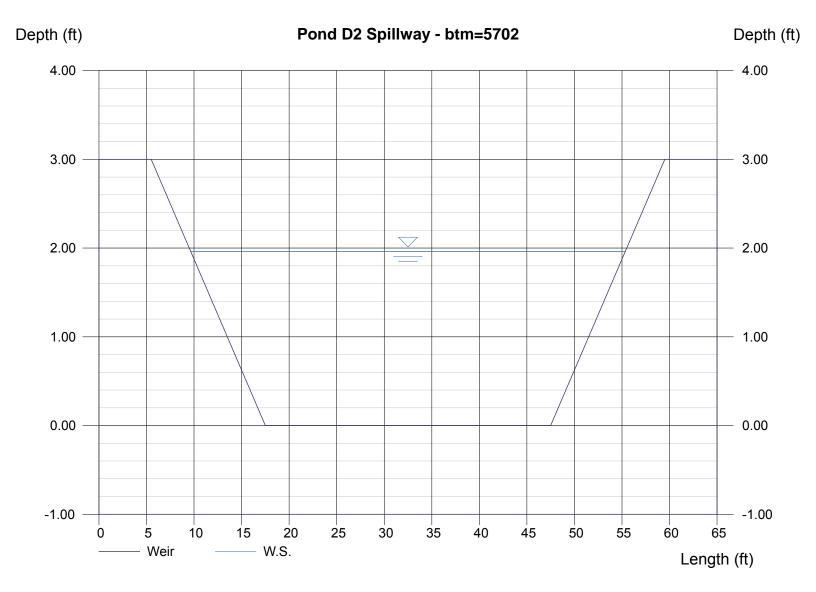
			Sheet 2 of 4
Designer:	Richard Schindler		-
Company:	Core Engineering Group		-
Date: Project:	July 6, 2017 Lorson Ranch East PDR - Pond D2 forebay design		-
Location:	LUISUII Nanchi Last FDR - FUlla D2 Torebay acaign		-
Loounon			
5. Forebay			
A) Minimum For (V _{FMIN} :	orebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.042</u> ac-ft	
B) Actual Foreb	bay Volume	V _F = <u>0.045</u> ac-ft	
C) Forebay Dep (D _F :		D _F = in	
D) Forebay Disc	sharge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ =243.00 cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 4.86$ cfs	
E) Forebay Disc	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	ROUND UP TO NEAREST PIPE SIZE
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated $D_P = 12$ in	
G) Rectangular	Notch Width	Calculated W _N =	
6. Trickle Channel		Choose One	
A) Type of Trick	kle Channel	O Soft Bottom	
F) Slope of Tric	xle Channel	S = <u>0.0040</u> ft / ft	
7. Micropool and C	Dutlet Structure		
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = ft	
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = <u>121</u> sq ft	
C) Outlet Type		Choose One Orifice Plate Other (Describe):	
D) Smallest Din (Use UD-Dete	mension of Orifice Opening Based on Hydrograph Routing ention)	D _{orifice} = <u>3.00</u> inches	
E) Total Outlet A	Area	A _{ot} = <u>26.85</u> square in	nches

	Design Procedure Form	: Extended Det	ention Basir	ו (EDB)	
Designer: Richard Schi Company: Core Engine Date: July 6, 2017 Project: Lorson Ranc Location:					Sheet 3 of 4
8. Initial Surcharge Volume					
 A) Depth of Initial Surcharge Vo (Minimum recommended deptility) 		D _{IS} =	4	in	
B) Minimum Initial Surcharge Vo (Minimum volume of 0.3% of		V _{IS} =	181.6	cu ft	
C) Initial Surcharge Provided Ab	ove Micropool	V _s =	40.3	cu ft	
9. Trash Rack					
A) Water Quality Screen Open	Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t =	777	square inches	
	an alternative to the materials recommended and enter the ratio of the total open are to the specified.)	Aluminum Al	nico-Klemp SR Ser	ries with Cross Rods 2" O.C.	
Ot	her (Y/N): N				
C) Ratio of Total Open Area to	Fotal Area (only for type 'Other')	User Ratio =			
D) Total Water Quality Screen A	area (based on screen type)	A _{total} =	1095	sq. in.	
E) Depth of Design Volume (EU (Based on design concept che		H=_	1	feet	
F) Height of Water Quality Scree	en (H _{TR})	H _{TR} =	40	inches	
G) Width of Water Quality Scree (Minimum of 12 inches is reco		W _{opening} =	27.4	inches	

Detention Basin Outlet Structure Design													
			UD-Detention, Ve	rsion 3.07 (Februa	ry 2017)								
	Lorson Ranch East Pond D2 - Lorson E		prof ICC										
ZONE 3	Folia D2 - Loison E		y of JCC										
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type							
VOLUME EURV WOCV			Zone 1 (WQCV)	1.72	1.502	Orifice Plate	1						
÷ ÷ ∓	100-YEA	8	Zone 2 (EURV)	3.44	2.944	Rectangular Orifice							
ZONE 1 AND 2 ORIFICES	ORIFICE		Zone 3 (100-year)	5.05	3.012	Weir&Pipe (Restrict)							
	Configuration (Re	tention Pond)	100-year)	5.05	7.458	Total	J						
lser Input: Orifice at Underdrain Outlet (typically u	sed to drain WOCV in	a Filtration BMP)			7.436	1	ed Parameters for Un	derdrain					
Underdrain Orifice Invert Depth =	N/A		e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²					
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet					
ser Input: Orifice Plate with one or more orifices of		1					lated Parameters for						
Invert of Lowest Orifice =	0.00		oottom at Stage = 0 ft			rifice Area per Row =	6.215E-02	ft ²					
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	1.72 6.70	inches	oottom at Stage = 0 ft)		Iliptical Half-Width = ptical Slot Centroid =	N/A N/A	feet feet					
Orifice Plate: Orifice Area per Row =	8.95	sq. inches (use recta	ngular openings)		Liii	Elliptical Slot Area =	N/A	ft ²					
			0					1					
ser Input: Stage and Total Area of Each Orifice	Row (numbered from Row 1 (required)	m lowest to highest Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	7				
Stage of Orifice Centroid (ft)	0.00	0.60	1.20	(optional)	(optional)	(optional)		(optional)	1				
Orifice Area (sq. inches)	8.95	8.95	8.95						1				
									-				
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-				
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									-				
Office Area (sq. Inches)													
User Input: Vertical Orifice (Cir	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice					
	Zone 2 Rectangular	Not Selected					Zone 2 Rectangular	Not Selected					
Invert of Vertical Orifice =	1.72	N/A		oottom at Stage = 0 ft		ertical Orifice Area =	0.51	N/A	ft ²				
Depth at top of Zone using Vertical Orifice =	3.44	N/A		in bottom at Stage = 0 ft) Vertical Orifice Centroid = 0.25 N/A feet									
Vertical Orifice Height = Vertical Orifice Width =	6.00 12.22	N/A	inches										
vertical Office Width -	12.22		inches										
User Input: Overflow Weir (Dropbox) and O	Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir					
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected]				
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.50	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	-	rate Upper Edge, H _t =	Zone 3 Weir 3.50	Not Selected N/A	feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 3.50 4.00	N/A N/A	feet		Over Flow	rate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 3.50 14.00	Not Selected N/A N/A	feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 3.50 4.00 0.00	N/A N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 3.50 14.00 3.12	Not Selected N/A N/A N/A	feet should be <u>></u> 4				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 3.50 4.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 3.50 14.00	Not Selected N/A N/A	feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes =	Zone 3 Weir 3.50 4.00 0.00 14.00	N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Op	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 3.50 14.00 3.12 39.20	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²				
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz, Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrice	N/A N/A N/A N/A N/A tor Plate, or Rectang	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be ≥ 4 ft ² ft ²				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (Cl	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice)	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ² te				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57	Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be ≥ 4 ft ² ft ² te ft ²				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (Cl	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice)	at grate) :otal area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ² te				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict 20ne 3 Restrictor 0.00 48.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % (ular Orifice) ft (distance below bas inches	at grate) :otal area in bottom at Stage = 0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft)	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 To for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal)	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below bas inches inches	at grate) iotal area in bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ti) Out Central Angle of Rest	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t	feet H:V (enter zero for fl feet %, grate open area/t % (ular Orifice) ft (distance below bas inches	at grate) iotal area in bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((ft) Central Angle of Rest Spillway	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth=	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Cone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below bas inches inches	at grate) iotal area in bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((ft) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64	Not Selected N/A	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below bas inches inches	at grate) iotal area in bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((ft) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula v Design Flow Depth=	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet	feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below bas inches inches	at grate) iotal area in bottom at Stage = 0 Half-	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((ft) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 Sofor Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64	Not Selected N/A	feet should be ≥ 4 ft ² ft ² ft ² feet				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A tr (relative to basin t feet H:V feet	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches oottom at Stage = 0 ft	at grate) otal area in bottom at Stage = 0 Half-)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches oottom at Stage = 0 ft 2 Year	at grate) iotal area in bottom at Stage = 0 Half-) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O ((ft) Out Central Angle of Rest Spillway Stage a Basin Area a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= at Top of Freeboard = tt Top of Freeboard =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 19.60 20ne 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A tr (relative to basin t feet H:V feet	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches oottom at Stage = 0 ft	at grate) otal area in bottom at Stage = 0 Half-)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres	feet should be \geq 4 ft ² ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Cone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the fet H:V feet EURV 1.07 4.446	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.16 4.132	at grate) iotal area in bottom at Stage = 0 Half-) <u>5 Year 1.44 5.752</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard = th Top of Freeboard = 1.92 9.102	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 20ne 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687	Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ² ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloges Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 4.446 4.450	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.16 4.132 4.137	at grate) iotal area in bottom at Stage = 0 Half-) 5 Year 1.44 5.752 5.758	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103 7.109	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= at Top of Freeboard = top of Freeboard = 1.92 9.102 9.104	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 rted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.42 12.650 12.654	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 17.372 17.382				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Cone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the fet H:V feet EURV 1.07 4.446	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>4.132</u>	at grate) iotal area in bottom at Stage = 0 Half-) <u>5 Year 1.44 5.752</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard = th Top of Freeboard = 1.92 9.102	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 20ne 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687	Not Selected N/A	feet should be \geq 4 ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) Predevelopment Plak Q (cfs) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503 0.00 0.0 27.6	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V feet 0.07 4.446 0.00 0.01 80.5	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 4.132 4.137 0.02 1.2 75.0	at grate) iotal area in bottom at Stage = 0 Half-) 5.752 5.758 0.14 9.9 103.6	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103 7.109 0.38 27.0 127.2	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= at Top of Freeboard = tt Top of Freeboard = 1.92 9.102 9.104 0.86 62.1 161.8	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 19.60 20ne 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2	Not Selected N/A Ioo O Year 2.42 12.654 1.48 106.3 222.5	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 17.372 2.22 160.0 303.4				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 4.00 5.02 5	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A It (relative to basin the feet H: V feet LOT 4.446 0.00 0.0 80.5 4.1	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>4.132</u> <u>4.137</u> 0.02 <u>1.2</u> 75.0 <u>3.9</u>	at grate) iotal area in bottom at Stage = 0 Half- 1.44 5.752 5.758 0.14 9.9 103.6 12.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103 7.109 0.38 27.0 127.2 33.6	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= at Top of Freeboard = 1.92 9.102 9.104 0.86 62.1 161.8 64.7	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2 89.1	Not Selected N/A Italian Italian Italian Italian <t< td=""><td>feet should be ≥ 4 ft² ft² ft² feet radians 500 Year 3.14 17.372 2.22 160.0 303.4 125.3</td></t<>	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 17.372 2.22 160.0 303.4 125.3				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neesign Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503 0.00 0.0 0.9 N/A	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A there is the selected N/A ft (relative to basin the feet H:V feet H:V feet 0.00 0.00 0.00 0.00 0.00 0.00 4.1 N/A	feet H:V (enter zero for fi feet %, grate open area/t % vular Orifice) If (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>4.132</u> <u>4.137</u> 0.02 <u>1.2</u> 7.5.0 <u>3.9</u> N/A	at grate) otal area in bottom at Stage = 0 Half-) 5 Year 1.44 5.752 5.758 0.14 9.9 103.6 12.7 1.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103 0.38 27.0 127.2 33.6 1.2	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.92 9.102 9.102 9.104 0.86 62.1 161.8 64.7 1.0	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2 89.1 1.1	Not Selected N/A I.0	feet should be ≥ 4 ft^2 ft^2 ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 4.00 5.02 5	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A It (relative to basin the feet H: V feet LOT 4.446 0.00 0.0 80.5 4.1	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>4.132</u> <u>4.137</u> 0.02 <u>1.2</u> 75.0 <u>3.9</u>	at grate) iotal area in bottom at Stage = 0 Half- 1.44 5.752 5.758 0.14 9.9 103.6 12.7	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.68 7.103 7.109 0.38 27.0 127.2 33.6	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat v Design Flow Depth= at Top of Freeboard = 1.92 9.102 9.104 0.86 62.1 161.8 64.7	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2 89.1	Not Selected N/A Italian Italian Italian Italian <t< td=""><td>feet should be ≥ 4 ft² ft² ft² feet radians 500 Year 3.14 17.372 2.22 160.0 303.4 125.3</td></t<>	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 17.372 2.22 160.0 303.4 125.3				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Noted Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow (cfs) = Peak Outflow (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 3.00 4.00 5.05 5	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A fet feet H:V feet L:O7 4.446 0.00 0.00 80.5 4.1 N/A Vertical Orifice 1 N/A	feet H:V (enter zero for fi feet %, grate open area/t % vular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.16 4.132 4.137 0.02 1.2 75.0 3.9 N/A Vertical Orifice 1 N/A N/A	at grate) otal area in bottom at Stage = 0 Half- 1.44 5.752 5.758 0.14 9.9 103.6 12.7 1.3 Overflow Grate 1 0.2 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate 1 10 Year 1.68 7.103 7.109 0.38 27.0 127.2 33.6 1.2 Overflow Grate 1 0.7 N/A	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula <i>v</i> Design Flow Depth= th Top of Freeboard = at Top of Freeboard = 1.92 9.102 9.102 9.104 0.86 62.1 161.8 64.7 1.0 Overflow Grate 1 1.5 N/A	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 rs for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2 89.1 1.1 Overflow Grate 1 2.1 N/A	Not Selected N/A Selected N/A N/A 100 Year 2.42 12.650 12.654 1.48 106.3 222.5 102.8 1.0 Qutlet Plate 1 2.5 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year a.14 17.372 2.22 160.0 303.4 125.3 0.8 Spillway 2.9 N/A				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Calculated Runoff Volume (acreft) = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (dsface) = Peak Inflow Q (dsf) = Peak Unflow Q (dsf) = Ratio Peak Outflow O Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict 20ne 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503 0.00 0.0 27.6 0.9 N/A Plate N/A Plate N/A 37	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet 0.07 4.446 0.00 0.00 0.00 0.00 0.00 0.0 80.5 4.1 N/A Vertical Orifice 1 N/A 47	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 4.132 4.137 0.02 1.2 75.0 3.9 N/A Vertical Orifice 1 N/A N/A 46	at grate) iotal area in bottom at Stage = 0 Half-) 5 Year 1.44 5.752 0.14 9.9 103.6 12.7 1.3 Overflow Grate 1 0.2 N/A 46	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Contral Angle of Rest Spillway Stage a Basin Area a Doverflow Grate 1 0.7 N/A 45	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.92 9.102 9.102 9.102 9.104 0.86 62.1 1.61.8 64.7 1.0 Overflow Grate 1 1.5 N/A 42	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 2008 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 2.16 10.687 1.14 81.9 1.89.2 89.1 1.1 Overflow Grate 1 2.1 N/A 41	Not Selected N/A Spillway feet feet acres 100 Year 2.42 12.650 12.654 1.48 106.3 222.5 102.8 1.0 Outlet Plate 1 2.5 N/A 39 <td>feet should be ≥ 4 ft² ft² ft² ft² feet radians</td>	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloges Overflow Grate Open Area % = Debris Clogging % = Ster Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Plate (Cfs) Predevelopment Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 93% of Inflow Volume (hours) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503 0.00 0.0 27.6 0.9 N/A Plate N/A Plate N/A 37 40	N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V feet MA 0.00 80.5 4.1 N/A Vertical Orifice 1 N/A YA	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 4.132 4.137 0.02 1.2 75.0 3.9 N/A Vertical Orifice 1 N/A N/A N/A A 46 52	at grate) iotal area in bottom at Stage = 0 Half- 1.44 5.752 5.758 0.14 9.9 103.6 12.7 1.3 Overflow Grate 1 0.2 N/A 46 53	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillway Stage a Basin Area a 10 Year 1.68 7.103 7.109 0.38 27.0 127.2 33.6 1.2 Overflow Grate 1 0.7 N/A 45 53	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula r Design Flow Depth= at Top of Freeboard = th Top of Freeboard = 1.92 9.102 9.104 0.86 62.1 161.8 64.7 1.0 Overflow Grate 1 1.5 N/A 42 51	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 19.60 20ne 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 50 Year 2.16 10.687 10.696 1.14 81.9 189.2 89.1 1.1 Overflow Grate 1 2.1 N/A N/A 50	Not Selected N/A Illoo Year 2.42 12.650 12.654 1.48 106.3 222.5 102.8 1.0 Outlet Plate 1 2.5 N/A 39 49	feet should be ≥ 4 ft ² ft ² feet radians				
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ster Input: Outlet Pipe w/ Flow Restriction Plate (Cl Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Cheelong Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfsiacre) = Peak Unflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 3.50 4.00 0.00 14.00 70% 50% rcular Orifice, Restrict 20ne 3 Restrictor 0.00 48.00 60.00 gular or Trapezoidal) 6.00 30.00 4.00 3.00 WQCV 0.53 1.502 1.503 0.00 0.0 27.6 0.9 N/A Plate N/A Plate N/A 37	N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet 0.07 4.446 0.00 0.00 0.00 0.00 0.0 80.5 4.1 N/A Vertical Orifice 1 N/A 47	feet H:V (enter zero for fi feet %, grate open area/t % (ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 4.132 4.137 0.02 1.2 75.0 3.9 N/A Vertical Orifice 1 N/A N/A 46	at grate) iotal area in bottom at Stage = 0 Half-) 5 Year 1.44 5.752 0.14 9.9 103.6 12.7 1.3 Overflow Grate 1 0.2 N/A 46	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Contral Angle of Rest Spillway Stage a Basin Area a Doverflow Grate 1 0.7 N/A 45	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.92 9.102 9.102 9.102 9.104 0.86 62.1 1.61.8 64.7 1.0 Overflow Grate 1 1.5 N/A 42	Zone 3 Weir 3.50 14.00 3.12 39.20 19.60 2008 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 1.64 10.64 2.43 2.16 10.687 1.14 81.9 1.89.2 89.1 1.1 Overflow Grate 1 2.1 N/A 41	Not Selected N/A Spillway feet feet acres 100 Year 2.42 12.650 12.654 1.48 106.3 222.5 102.8 1.0 Outlet Plate 1 2.5 N/A 39 <td>feet should be ≥ 4 ft² ft² ft² ft² feet radians</td>	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians				

Pond D2 Spillway - btm=5702

Trapezoidal Weir

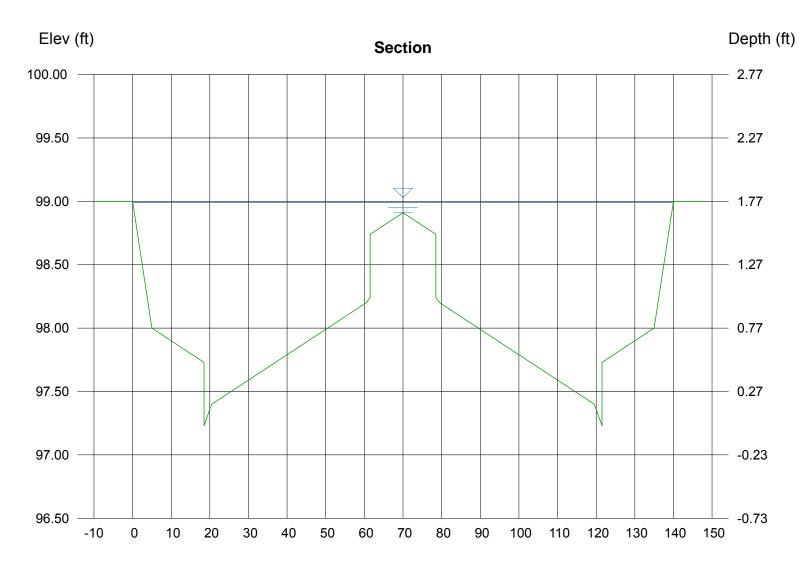

= Sharp
= 30.00
= 3.00
= 4.00

Calculations

Weir Coeff. Cw	= 3.10
Compute by:	Known Q
Known Q (cfs)	= 307.00

Highlighted

Depth (ft)	= 1.96
Q (cfs)	= 307.00
Area (sqft)	= 74.17
Velocity (ft/s)	= 4.14
Top Width (ft)	= 45.68

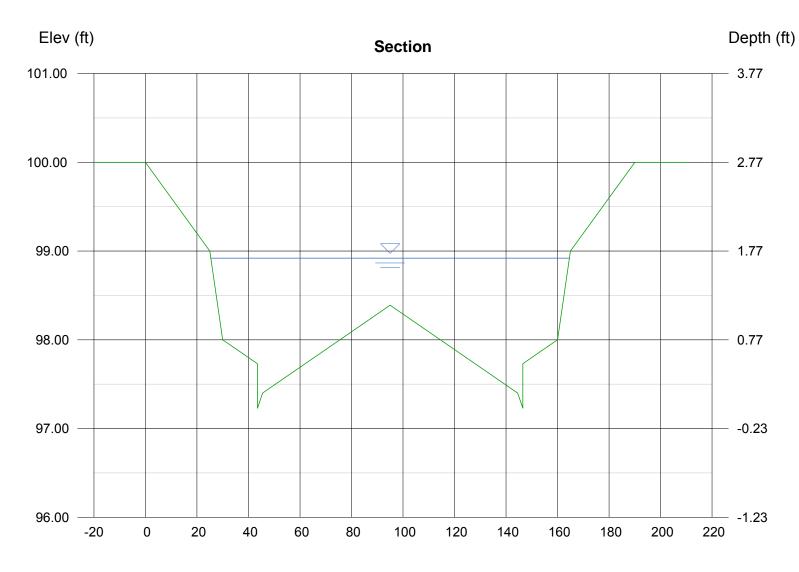

Thursday, Jun 29 2017, 5:19 PM

Fontaine Blvd, 130' ROW-principal arterial

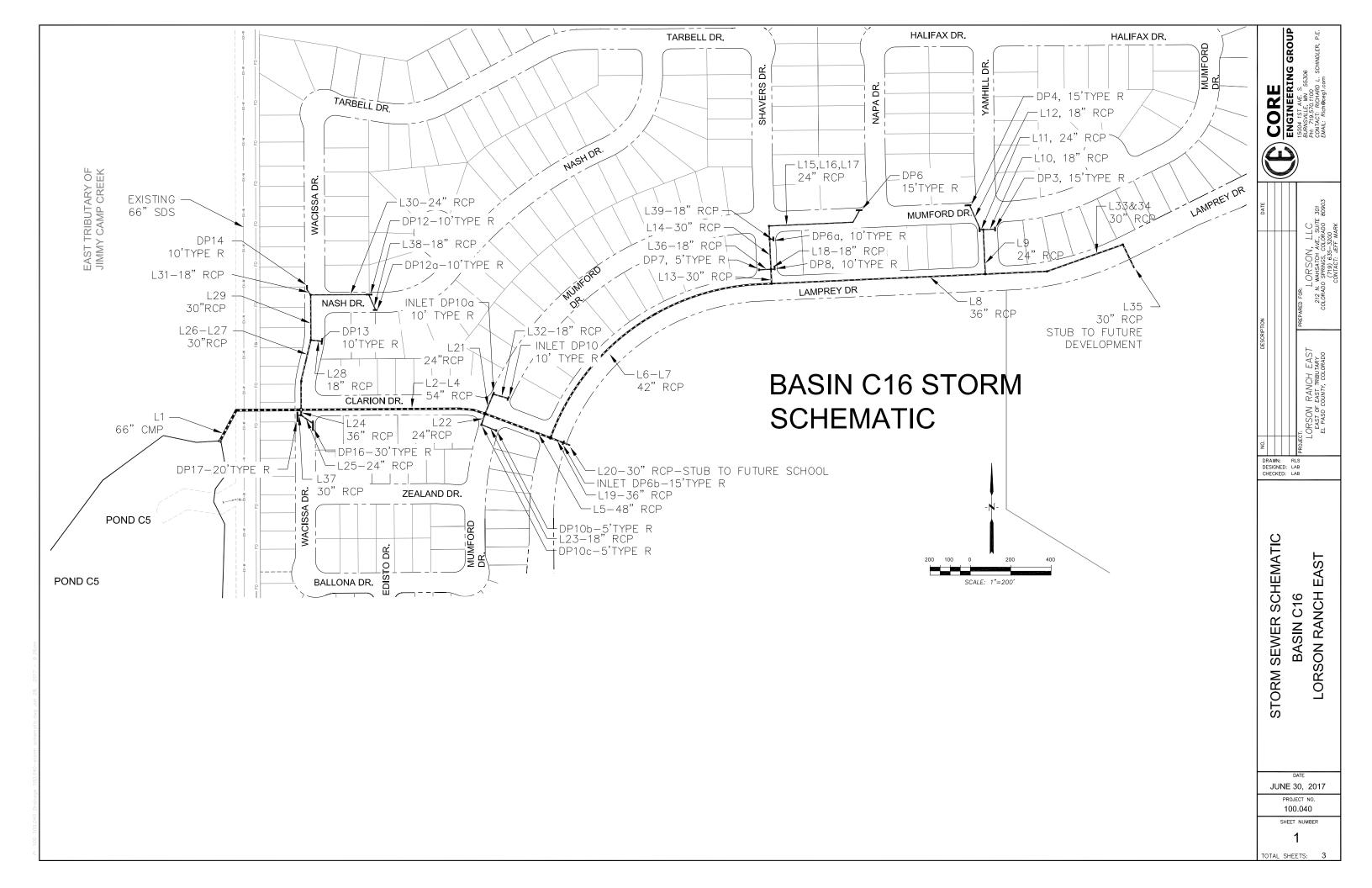
User-defined		Highlighted	
Invert Elev (ft)	= 97.23	Depth (ft)	= 1.76
Slope (%)	= 1.05	Q (cfs)	= 1260.00
N-Value	= 0.017	Area (sqft)	= 141.52
		Velocity (ft/s)	= 8.90
Calculations		Wetted Perim (ft)	= 142.13
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.77
Known Q (cfs)	= 1260.00	Top Width (ft)	= 139.89
		EGL (ft)	= 2.99

(Sta, El, n)-(Sta, El, n)...

(0.00, 99.00)-(0.01, 99.00, 0.024)-(5.00, 98.00, 0.024)-(18.50, 97.73, 0.024)-(18.50, 97.23, 0.013)-(20.50, 97.40, 0.013)-(60.50, 98.20, 0.016) -(61.50, 98.24, 0.013)-(61.50, 98.74, 0.013)-(70.00, 98.91, 0.013)-(78.50, 98.74, 0.013)-(78.50, 98.24, 0.013)-(79.50, 98.20, 0.013)-(119.50, 97.40, 0.016) -(121.50, 97.23, 0.013)-(121.50, 97.73, 0.013)-(129.00, 97.88, 0.024)-(135.00, 98.00, 0.013)-(140.00, 99.00, 0.012)



Fontaine Blvd. 52' F-F, 130' ROW (non-res collector)


User-defined		Highlighted	
Invert Elev (ft)	= 97.23	Depth (ft)	= 1.69
Slope (%)	= 1.05	Q (cfs)	= 1260.00
N-Value	= 0.017	Area (sqft)	= 140.61
		Velocity (ft/s)	= 8.96
Calculations		Wetted Perim (ft)	= 140.42
Compute by:	Known Q	Crit Depth, Yc (ft)	= 2.08
Known Q (cfs)	= 1260.00	Top Width (ft)	= 139.20
		EGL (ft)	= 2.94

(Sta, El, n)-(Sta, El, n)...

(0.00, 100.00)-(25.00, 99.00, 0.024)-(30.00, 98.00, 0.024)-(36.00, 97.88, 0.013)-(43.50, 97.73, 0.024)-(43.50, 97.23, 0.013)-(45.50, 97.40, 0.013) -(95.00, 98.39, 0.016)-(144.50, 97.40, 0.016)-(146.50, 97.23, 0.013)-(146.50, 97.73, 0.013)-(154.00, 97.88, 0.024)-(160.00, 98.00, 0.013)-(165.00, 99.00, 0.012) -(190.00, 100.00, 0.012)

APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	147.9	66 c	249.0	5710.00	5711.25	0.502	5715.50*	5717.15*	0.30	5717.45	End
2	2	105.5	54 c	380.6	5714.10	5717.91	1.001	5717.45	5720.86	n/a	5720.86	1
3	3	105.5	54 c	42.5	5717.91	5718.34	1.011	5721.59	5721.29	n/a	5721.29	2
4	4	105.5	54 c	37.8	5718.54	5718.92	1.005	5722.02	5721.87	n/a	5721.87	3
5	5	90.12	48 c	174.0	5720.30	5722.04	1.000	5722.60	5724.85	n/a	5724.85	4
6	6	75.68	42 c	397.2	5722.60	5727.37	1.201	5725.31	5730.03	0.29	5730.03	5
7	7	75.68	42 c	300.0	5727.67	5731.27	1.200	5730.51	5733.93	0.72	5733.93	6
8	8	52.52	36 c	531.0	5732.23	5739.66	1.399	5734.52	5741.97	0.50	5741.97	7
9	9	18.79	24 c	109.2	5740.66	5741.53	0.796	5742.67	5743.31	0.25	5743.56	8
10	10	8.87	18 c	26.3	5742.03	5742.29	0.990	5743.80*	5743.99*	0.20	5744.18	9
11	11	9.92	24 c	9.8	5741.73	5741.83	1.025	5744.04*	5744.06*	0.03	5744.09	9
12	12	9.67	18 c	62.3	5742.63	5743.23	0.964	5744.09	5744.44	0.31	5744.75	11
13	13	23.16	30 c	33.6	5732.73	5733.02	0.864	5734.63	5734.63	n/a	5734.63 j	7
14	14	16.76	30 c	65.0	5733.02	5733.41	0.600	5734.90	5734.89	0.05	5734.94	13
15	15	11.05	24 c	43.0	5733.91	5734.17	0.604	5735.22	5735.35	0.20	5735.56	14
16	16	11.05	24 c	210.8	5734.47	5738.22	1.779	5735.87	5739.40	n/a	5739.40 j	15
17	17	11.05	24 c	31.9	5738.25	5738.89	2.005	5739.72	5740.07	n/a	5740.07	16
18	18	6.15	24 c	7.0	5733.52	5733.59	0.997	5735.30	5735.30	0.04	5735.33	13
19	19	14.44	36 c	23.0	5723.04	5723.27	1.000	5726.19	5726.20	0.03	5726.23	5
20	20	7.62	30 c	20.0	5723.77	5723.97	1.001	5726.24	5726.25	0.02	5726.27	19
21	21	11.62	24 c	50.5	5721.42	5721.92	0.991	5723.08	5723.13	n/a	5723.13 j	4
22	22	3.79	24 c	29.2	5721.42	5721.71	0.992	5723.25	5723.25	0.02	5723.26	4
23	23	3.21	18 c	35.8	5722.21	5722.57	1.004	5723.26	5723.26	n/a	5723.39 j	22
24	24	16.68	36 c	15.3	5715.75	5716.21	3.006	5717.68	5717.51	0.20	5717.51	1
25	25	12.81	24 c	33.7	5717.21	5717.55	1.007	5718.29	5718.90	0.25	5719.15	24
26	26	25.69	30 c	69.5	5716.10	5716.80	1.007	5717.63	5718.49	n/a	5718.49	1
27	27	25.69	30 c	103.6	5717.00	5718.04	1.004	5718.89	5719.73	n/a	5719.73	26
28	28	6.55	18 c	25.1	5719.54	5719.79	0.995	5720.40	5720.77	0.22	5721.00	27
29	29	19.14	30 c	112.8	5718.04	5719.17	1.002	5720.32	5720.63	n/a	5720.63 j	27
30	30	13.19	24 c	135.3	5719.97	5721.19	0.901	5721.10	5722.48	n/a	5722.48	29
31	31	5.95	18 c	16.1	5720.88	5721.04	0.997	5721.69	5722.05	0.35	5722.39	29
32	32	5.97	18 c	36.2	5722.42	5722.75	0.911	5723.48	5723.68	n/a	5723.68 j	21
Lorso	n East PDR-C16 basin	s					Nun	nber of line	s: 39	Run	Date: 06-22	2-201

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
33	33	33.73	30 c	152.0	5740.16	5742.14	1.303	5742.49	5744.08	n/a	5744.08 j	8
34	34	33.73	30 c	197.6	5742.44	5745.01	1.301	5744.40	5746.95	n/a	5746.95 j	33
35	35	33.73	30 c	65.3	5745.31	5746.29	1.500	5747.27	5748.23	n/a	5748.23 j	34
36	36	0.25	18 c	26.6	5734.20	5734.34	0.525	5735.37	5735.37	0.00	5735.37	13
37	37	3.87	30 c	8.3	5717.21	5717.34	1.568	5718.00	5718.00	n/a	5718.00 j	24
38	38	6.76	18 c	31.4	5721.69	5722.00	0.989	5722.84	5722.99	n/a	5722.99	30
39	39	5.71	18 c	9.3	5734.41	5734.51	1.068	5735.25	5735.43	0.20	5735.62	14
orso	n East PDR-C16 basi	ns					Nur	nber of line	s: 39	Run I	Date: 06-22	-201

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	t				Gutter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
1	MH #19	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
2		0.00	0.00	0.00	0.00	None	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
3		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
4		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
5		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
6		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
7		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
8		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
9		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
10	Inlet DP-3, 15'	8.87	0.00	8.87	0.00	Curb	6.0	15.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.000	0.46	16.85	0.59	16.85	3.00	Off
11	Inlet DP-5 (5')	0.25	0.00	0.25	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.000	0.17	2.70	0.30	2.70	3.00	Off
12	Inlet DP-4 (15')	10.43	0.00	9.67	0.76	Genr	0.0	0.00	0.00	0.00	0.00	0.010	2.00	0.080	0.020	0.013	0.43	15.45	0.43	15.45	0.00	17
13		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
14		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
15		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
16		0.00	0.00	0.00	0.00	None	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
17	Inlet DP-6 (15')	12.07	0.76	11.05	1.78	Genr	0.0	0.00	0.00	0.00	0.00	0.025	2.00	0.083	0.020	0.013	0.40	13.90	0.40	13.90	0.00	39
18	Inlet DP-8 (10')	5.28	0.87	6.15	0.00	Curb	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.000	0.46	16.81	0.50	16.81	2.00	Off
19	Inlet DP6b, 15'	6.81	0.00	6.81	0.00	Curb	6.0	15.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.40	14.11	0.53	14.11	3.00	Off
20	C13-DP6c	7.62	0.00	7.62	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.55	9.81	0.55	9.81	0.00	Off
21	Inlet DP-10a, 15'	5.65	0.00	5.65	0.00	Curb	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.44	15.89	0.57	15.89	3.00	Off
22	Inlet DP-10c, 5'	0.58	0.00	0.58	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.15	1.93	0.34	1.97	3.00	Off
Lorso	on East PDR-C16 bas	sins												Number	of lines:	39		R	un Date:	06-22-20	17	
	-S: Inlet N-Values = (0.016 · Int	oncity -	503.00 /	(Inlot tim	0 ± 28 2	0) \ 1 3	1. Potur	n poriod	- 5 Vr		icatos Ki		addad								

NOTES: Inlet N-Values = 0.016; Intensity = 503.90 / (Inlet time + 28.20) ^ 1.31; Return period = 5 Yrs.; * Indicates Known Q added

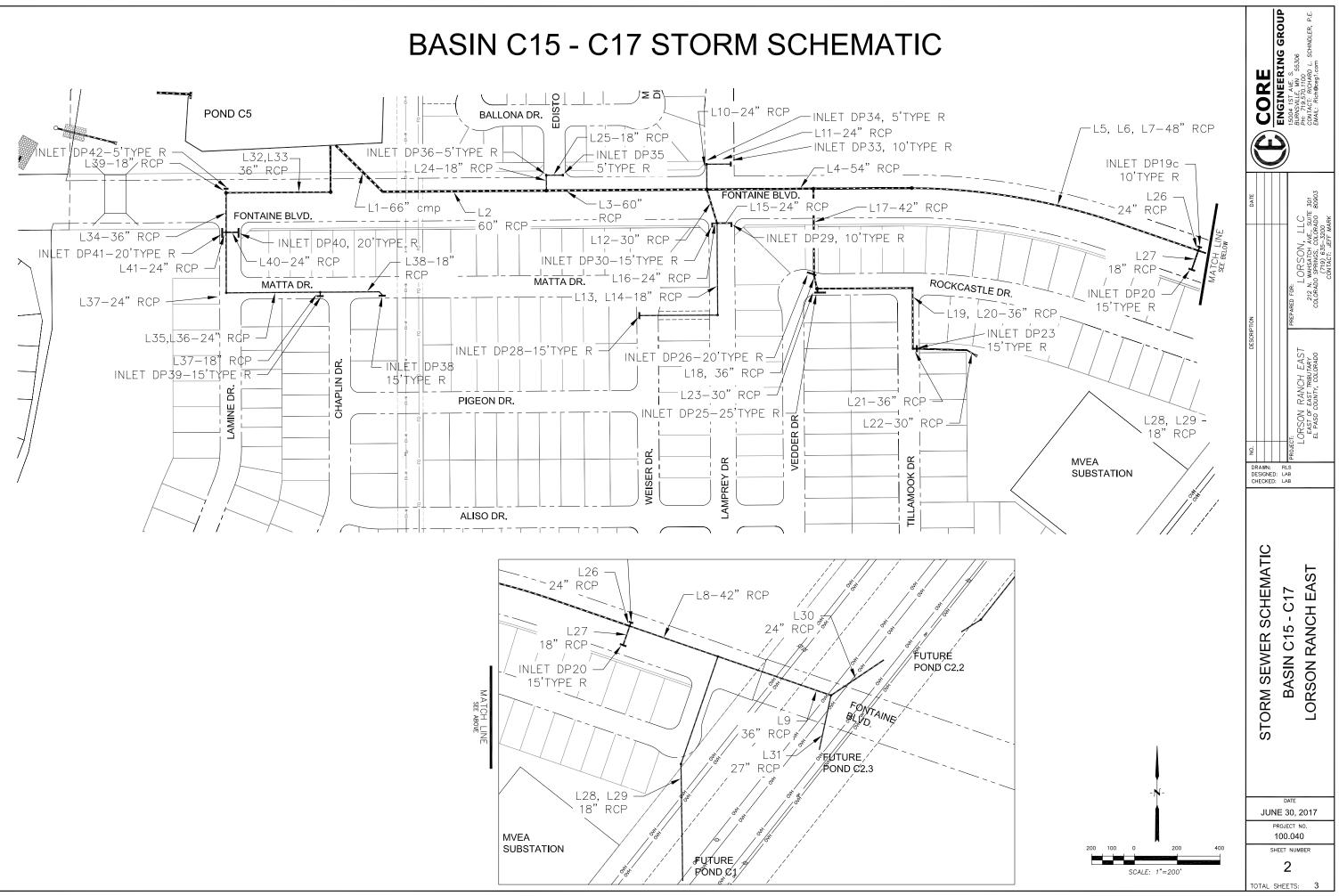
Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curt	o Inlet	G	irate Inle	ət				Gutter						Byp	
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
23	Inlet DP-10b, 5'	3.21	0.00	3.21	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.000	0.42	14.79	0.55	14.79	3.00	Off
24		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
25	Inlet DP-16, 30'	10.98	1.83	12.81	0.00	Curb	6.0	30.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.39	13.54	0.52	13.54	3.00	Off
26		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
27		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
28	Inlet DP-13, 10'	4.72	3.66	6.55	1.83	Genr	6.0	6.00	0.00	0.00	0.00	0.010	2.00	0.080	0.020	0.013	0.40	14.10	0.40	14.10	0.00	25
29		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
30	Inlet DP-12, 10'	8.03	0.00	6.43	1.60	Genr	6.0	10.00	0.00	0.00	0.00	0.012	2.00	0.080	0.020	0.013	0.39	13.35	0.39	13.35	0.00	28
31	Inlet DP-14, 10'	7.06	0.00	5.95	1.11	Genr	6.0	10.00	0.00	0.00	0.00	0.010	2.00	0.080	0.020	0.013	0.38	13.15	0.38	13.15	0.00	37
32	Inlet DP10, 10'	5.97	0.00	5.97	0.00	Curb	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.39	6.59	0.58	6.59	3.00	Off
33		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
34		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
35	Inlet DP-2	33.73	0.00	33.73	0.00	Curb	6.0	20.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.000	0.80	33.99	0.85	33.99	2.00	Off
36	Inlet DP-7 (5')	0.25	0.00	0.25	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.11	1.42	0.22	1.65	2.00	Off
37	Inlet DP-17, 25'	2.76	1.11	3.87	0.00	Curb	6.0	25.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.26	6.86	0.39	6.86	3.00	Off
38	Inlet DP-12a, 10'	8.82	0.00	6.76	2.06	Genr	6.0	10.00	0.00	0.00	0.00	0.012	2.00	0.080	0.020	0.013	0.40	13.90	0.40	13.90	0.00	28
39	Inlet DP-6a (10')	4.81	1.78	5.71	0.87	Genr	0.0	0.00	0.00	0.00	0.00	0.010	2.00	0.080	0.020	0.013	0.37	12.75	0.37	12.75	0.00	18
Lorso	on East PDR-C16 bas	sins												Number	of lines	39		F	Run Date:	06-22-20	17	
				500 00 <i>i</i>	(h-1, 1, 1)		0) 4 4 5															
NOTE	:5: Inlet N-Values =	0.016 ; Int	ensity =	503.90/	(iniet tin	ne + 28.2	0) ^ 1.3	i; Retu	m perioc	1 = 5 Yr	s.; ^ Ind	* Indicates Known Q added										

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	230.8	66 c	249.0	5710.00	5711.25	0.502	5714.95*	5718.89*	0.73	5719.62	End
2	2	154.4	54 c	380.6	5714.10	5717.91	1.001	5719.62	5721.48	0.30	5721.79	1
3	3	154.6	54 c	42.5	5717.91	5718.34	1.011	5722.34	5722.45	0.56	5723.01	2
4	4	154.8	54 c	37.8	5718.54	5718.92	1.005	5723.01	5723.15	0.62	5723.77	3
5	5	136.5	48 c	174.0	5720.30	5722.04	1.000	5723.77	5725.52	n/a	5725.52	4
6	6	103.9	42 c	397.2	5722.60	5727.37	1.201	5725.86	5730.49	0.41	5730.49	5
7	7	105.3	42 c	300.0	5727.67	5731.27	1.200	5730.67	5734.40	1.05	5734.40	6
8	8	71.50	36 c	531.0	5732.23	5739.66	1.399	5734.90	5742.34	0.71	5742.34	7
9	9	35.63	24 c	109.2	5740.66	5741.53	0.796	5742.66*	5745.37*	0.80	5746.17	8
10	10	20.05	18 c	26.3	5742.03	5742.29	0.990	5746.17*	5747.13*	1.00	5748.13	9
11	11	22.22	24 c	9.8	5741.73	5741.83	1.025	5747.39*	5747.49*	0.16	5747.64	9
12	12	14.98	18 c	62.3	5742.63	5743.33	1.125	5747.64*	5748.91*	0.56	5749.47	11
13	13	44.84	30 c	33.6	5732.73	5733.02	0.864	5735.23*	5735.63*	0.52	5736.15	7
14	14	34.17	30 c	65.0	5733.02	5733.41	0.600	5736.70*	5737.15*	0.08	5737.22	13
15	15	17.18	24 c	43.0	5733.91	5734.17	0.604	5737.51*	5737.76*	0.19	5737.94	14
16	16	17.78	24 c	210.8	5734.47	5738.22	1.779	5737.94	5739.71	n/a	5739.71 j	15
17	17	17.87	24 c	31.9	5738.15	5738.79	2.008	5739.99	5740.29	0.39	5740.29	16
18	18	16.30	24 c	7.0	5733.52	5733.59	0.997	5737.03*	5737.07*	0.21	5737.28	13
19	19	53.54	36 c	23.0	5723.04	5723.27	1.000	5726.78*	5726.93*	0.36	5727.28	5
20	20	38.21	30 c	20.0	5723.77	5723.97	1.001	5727.28*	5727.46*	0.47	5727.93	19
21	21	32.25	24 c	50.5	5721.42	5721.92	0.991	5723.77*	5724.79*	0.82	5725.61	4
22	22	7.98	24 c	29.2	5721.42	5721.71	0.992	5725.21*	5725.25*	0.05	5725.30	4
23	23	6.92	18 c	35.8	5722.21	5722.57	1.004	5725.30*	5725.46*	0.12	5725.58	22
24	24	54.37	36 c	15.3	5715.75	5716.21	3.006	5720.17*	5720.27*	0.37	5720.64	1
25	25	22.80	24 c	33.7	5717.31	5717.95	1.897	5720.74*	5721.08*	0.41	5721.49	24
26	26	38.85	30 c	69.5	5716.10	5716.80	1.007	5720.11*	5720.74*	0.19	5720.93	1
27	27	39.15	30 c	103.6	5717.00	5718.04	1.004	5720.93*	5721.88*	0.40	5722.27	26
28	28	9.70	18 c	25.1	5719.54	5719.79	0.995	5722.79*	5723.01*	0.23	5723.24	27
29	29	27.87	30 c	112.8	5718.04	5719.17	1.002	5722.76*	5723.28*	0.15	5723.43	27
30	30	19.15	24 c	135.3	5719.97	5721.19	0.901	5723.43*	5724.40*	0.87	5725.27	29
31	31	8.74	18 c	16.1	5720.88	5721.04	0.997	5723.55*	5723.66*	0.38	5724.04	29
32	32	12.53	18 c	36.2	5722.62	5723.05	1.186	5726.47*	5726.98*	0.39	5727.38	21
32												
orson East PDR- C16 basins							Nun	Date: 06-22	2-201			

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.


Storm Sewer Summary Report

.ine lo.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.	
3	33	39.85	30 c	152.0	5740.16	5742.14	1.303	5743.10	5744.29	0.25	5744.53	8	
4	34	40.32	30 c	197.6	5742.44	5745.01	1.301	5744.71	5747.13	n/a	5747.13 j	33	
5	35	40.47	30 c	65.3	5745.31	5746.29	1.500	5747.36	5748.43	n/a	5748.43	34	
6	36	0.57	18 c	26.6	5734.20	5734.34	0.525	5737.45*	5737.45*	0.00	5737.45	13	
57	37	31.86	30 c	8.3	5717.21	5717.34	1.568	5720.90*	5720.95*	0.65	5721.61	24	
8	38	9.82	18 c	31.4	5721.69	5722.10	1.308	5725.37*	5725.64*	0.48	5726.12	30	
9	39	10.16	18 c	9.3	5734.41	5734.51	1.068	5737.46*	5737.55*	0.26	5737.81	14	
orson East PDR- C16 basins							Number of lines: 39				Run Date: 06-22-201		

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
1	MH #19	29.20*	16.68	0.00	45.88	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
2	2	9.00*	21.30	0.00	30.30	None	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	1
3		9.00*	12.30	0.00	21.30	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	2
4		9.00*	3.30	0.00	12.30	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	3
5		9.00*	-5.70	0.00	3.30	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	4
6		0.00	-5.70	0.00	-5.70	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	5
7		0.00	-5.70	0.00	-5.70	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	6
8		0.00	-5.70	0.00	-5.70	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	7
9		-5.70	0.00	0.00	-5.70	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
10	Inlet DP-3, 15'	20.05	0.00	20.05	0.00	Curb	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.016	0.70	29.09	0.83	29.09	3.00	19
11	Inlet DP-5, 5'	0.57	0.00	0.57	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.21	4.65	0.34	4.65	3.00	9
12	Inlet DP-4 , 15'	14.98	0.00	14.98	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.48	17.85	0.48	17.85	0.00	17
13		0.00	0.00	0.00	0.00	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	7
14		0.00	0.00	0.00	0.00	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	13
15		-7.84	-7.84	0.00	-15.68	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
16		-7.84	0.00	0.00	-7.84	None	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	15
17	Inlet DP-6, 15'	17.87	0.00	17.87	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.025	2.00	0.083	0.020	0.013	0.44	15.95	0.44	15.95	0.00	39
18	Inlet DP-8, 10'	16.30*	0.00	16.30	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.015	2.00	0.080	0.020	0.013	0.46	17.05	0.46	17.05	0.00	21
19	Inlet DP6b, 20'	20.68*	0.17	20.30	0.56	Genr	6.0	20.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.53	20.40	0.53	20.40	0.00	25
20	C13-DP6c	38.21	0.00	38.21	0.00	Curb	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	4.76	93.97	4.76	93.97	0.00	19
21	Inlet DP-10a, 10'	20.64*	0.00	20.64	0.00	Genr	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	28
22	Inlet DP-10c, 5'	1.31	0.00	1.31	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.22	3.25	0.41	3.25	3.00	4
Lorso	on East PDR- C16 ba	isins		1	1		<u> </u>	1	1	1	1			Number	of lines:	39	<u> </u>	F	lun Date:	06-22-20	17	L
	S: Inlet N-Values =	0.016 · Int	oncity -	59 / 9 / (Inlot time	x + 7 70)	A 0 75·	Poturn	noriod -	100 Vr	e : * Inc	licatos K		addod				I				

NOTES: Inlet N-Values = 0.016; Intensity = 58.48 / (Inlet time + 7.70) ^ 0.75; Return period = 100 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
23	Inlet DP-10b, 5'	6.92	0.00	6.92	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.61	24.74	0.74	24.74	3.00	24
24		26.10*	0.00	0.00	26.10	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	1
25	Inlet DP-16, 30'	22.80	0.56	23.35	0.00	Genr	6.0	30.00	2.00	4.00	2.00	0.020	2.00	0.080	0.020	0.013	0.49	18.60	0.49	18.60	0.00	37
26		-12.29	-27.43	0.00	-39.72	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	1
27		-12.29	-15.14	0.00	-27.43	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	26
28	DP-13, 10'	9.70	0.04	9.73	0.00	Genr	6.0	6.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.42	15.00	0.42	15.00	0.00	25
29		-15.14	0.00	0.00	-15.14	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	27
30	DP-12, 10'	1.46	0.00	1.46	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.012	2.00	0.080	0.020	0.013	0.24	5.90	0.24	5.90	0.00	28
31	Inlet DP-14, 10'	8.74	0.00	8.74	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.41	14.35	0.41	14.35	0.00	37
32	Inlet DP10, 10'	12.53	0.00	12.53	0.00	Curb	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.60	10.84	0.79	10.84	3.00	25
33		0.00	0.00	0.00	0.00	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
34		0.00	0.00	0.00	0.00	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	33
35	Inlet DP-2	40.47	0.00	40.30	0.17	Genr	6.0	6.00	2.00	4.00	2.00	0.015	2.00	0.080	0.050	0.013	0.75	13.84	0.75	13.84	0.00	19
36	Inlet DP-7, 5'	0.57	0.00	0.57	0.00	Curb	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.15	1.83	0.25	1.90	2.00	13
37	Inlet DP-17, 20'	31.86*	0.00	31.86	0.00	Curb	6.0	20.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.77	32.72	0.90	32.72	3.00	24
38	Inlet DP-12a, 10'	9.82	0.00	9.78	0.04	Genr	6.0	10.00	2.00	4.00	2.00	0.012	2.00	0.080	0.020	0.013	0.41	14.50	0.41	14.50	0.00	28
39	Inlet DP-6a, 10'	10.16	0.00	10.16	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.43	15.30	0.43	15.30	0.00	18
Lorso	on East PDR- C16 ba	isins	1				I					1		Number	of lines:	39	1	F	Run Date:	06-22-20	17	L
NOTE	S: Inlet N-Values =	0.016 ; Int	ensity =	58.48 / (Inlet time	e + 7.70)	^ 0.75;	Return	period =	100 Yr	rs.; * Inc	licates K	nown Q	added								

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	75.19	66 c	147.3	5709.00	5709.88	0.597	5713.23	5713.19	0.00	5713.19	End
2	L2	77.41	60 c	383.5	5710.55	5714.37	0.996	5713.34	5716.83	n/a	5716.83	1
3	L3	77.65	60 c	373.9	5714.67	5718.40	0.998	5717.59	5720.86	0.00	5720.86	2
4	L4	59.01	54 c	249.3	5718.90	5721.40	1.003	5721.66	5723.60	n/a	5723.60 j	3
5	L5	23.58	48 c	228.8	5721.90	5726.20	1.879	5724.45	5727.64	n/a	5727.64 j	4
6	L6	24.74	48 c	494.6	5726.50	5733.90	1.496	5728.10	5735.37	n/a	5735.37 j	5
7	L7	25.27	48 c	194.1	5734.00	5736.00	1.030	5735.85	5737.49	n/a	5737.49 j	6
8	L8	14.00	42 c	219.8	5736.50	5738.40	0.864	5738.00	5739.55	n/a	5739.55 j	7
9	L9	10.00	36 c	279.0	5739.90	5742.70	1.004	5740.69	5743.71	n/a	5743.71	8
10	L10	8.18	24 c	58.7	5721.70	5723.68	3.373	5722.30	5724.70	0.00	5724.70	3
11	L11	7.49	24 c	52.4	5724.38	5724.94	1.069	5725.16	5725.92	0.00	5725.92	10
12	L12	19.36	30 c	84.4	5721.30	5723.52	2.629	5722.22	5725.13	0.00	5725.13	3
13	L13	5.14	18 c	214.7	5724.72	5728.81	1.905	5725.52	5729.68	0.00	5729.68	12
14	L14	5.32	18 c	182.2	5729.11	5734.84	3.145	5729.90	5735.72	0.00	5735.72	13
15	L15	8.63	24 c	31.0	5725.08	5725.61	1.711	5725.82	5726.92	0.00	5726.92	12
16	L16	7.21	24 c	13.1	5724.61	5725.10	3.742	5725.57	5726.05	n/a	5726.05 j	12
17	L17	38.11	42 c	202.3	5722.50	5727.36	2.403	5724.26	5729.25	0.00	5729.25	4
18	L18	31.82	36 c	30.7	5728.15	5728.46	1.011	5729.74	5730.27	0.00	5730.27	17
19	L19	20.19	36 c	223.4	5728.50	5730.75	1.007	5730.94	5732.18	n/a	5732.18 j	18
20	L20	20.64	36 c	141.8	5730.95	5732.40	1.021	5732.62	5733.85	n/a	5733.85 j	19
21	L21	20.68	36 c	11.2	5732.70	5732.79	0.805	5734.29	5734.25	n/a	5734.25 j	20
22	L22	13.55	30 c	139.3	5733.40	5735.50	1.508	5734.70	5736.73	n/a	5736.73 j	21
23	L23	15.69	30 c	10.8	5729.21	5729.48	2.506	5730.90	5730.81	n/a	5730.81	18
24	L24	2.96	18 c	35.8	5719.93	5720.92	2.768	5720.35	5721.58	0.00	5721.58	2
25	L25	2.82	18 c	41.0	5721.22	5721.63	0.998	5721.78	5722.27	n/a	5722.27	24
26	L26	6.51	24 c	13.2	5741.12	5742.52	10.617	5741.52*	5745.41*	0.00	5745.41	7
27	L27	5.20	18 c	45.8	5742.58	5743.07	1.070	5743.31	5743.94	0.00	5743.94	7
28	L28	4.00	18 c	264.9	5740.45	5741.80	0.509	5741.23	5742.58	0.00	5742.58	8
29	L29	4.00	18 c	273.9	5741.90	5743.30	0.511	5742.79	5744.06	n/a	5744.06	28
30	L30	6.00	24 c	149.2	5743.71	5744.50	0.529	5744.55	5745.37	0.00	5745.37	9
31	L31	4.00	27 c	116.9	5743.49	5744.10	0.521	5744.14	5744.79	0.00	5744.79	9
32	L32	26.54	36 c	104.3	5709.00	5709.63	0.604	5711.10	5711.27	n/a	5711.27 j	En
28 29 30 31	L28 L29 L30 L31		4.00 4.00 6.00 4.00	4.00 18 c 4.00 18 c 6.00 24 c 4.00 27 c	4.0018 c264.94.0018 c273.96.0024 c149.24.0027 c116.9	4.0018 c264.95740.454.0018 c273.95741.906.0024 c149.25743.714.0027 c116.95743.49	4.0018 c264.95740.455741.804.0018 c273.95741.905743.306.0024 c149.25743.715744.504.0027 c116.95743.495744.10	4.0018 c264.95740.455741.800.5094.0018 c273.95741.905743.300.5116.0024 c149.25743.715744.500.5294.0027 c116.95743.495744.100.521	4.0018 c264.95740.455741.800.5095741.234.0018 c273.95741.905743.300.5115742.796.0024 c149.25743.715744.500.5295744.554.0027 c116.95743.495744.100.5215744.14	4.0018 c264.95740.455741.800.5095741.235742.584.0018 c273.95741.905743.300.5115742.795744.066.0024 c149.25743.715744.500.5295744.555745.374.0027 c116.95743.495744.100.5215744.145744.79	4.0018 c264.95740.455741.800.5095741.235742.580.004.0018 c273.95741.905743.300.5115742.795744.06n/a6.0024 c149.25743.715744.500.5295744.555745.370.004.0027 c116.95743.495744.100.5215744.145744.790.00	4.0018 c264.95740.455741.800.5095741.235742.580.005742.584.0018 c273.95741.905743.300.5115742.795744.06n/a5744.066.0024 c149.25743.715744.500.5295744.555745.370.005745.374.0027 c116.95743.495744.100.5215744.145744.790.005744.79
n	East PDR - C15 bas	sins		1			Nun	nber of line	s: 41	Run	Date: 06-22	2-20

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

27.33 36 c 24.96 36 c 13.90 24 c 14.34 24 c 8.69 18 c 6.03 18 c 12.59 24 c 1.85 24 c	90.4 5711.80 571 142.7 5713.55 571 220.6 5717.70 572 7.0 5724.10 572 145.3 5714.35 571 27.1 5713.55 571	11.30 0.605 5711.74 12.55 0.829 5713.49 17.40 2.699 5714.51 12.360 2.675 5719.02 12.418 1.144 5725.20 12.003 5725.40 14.58 1.340 5714.88 13.76 0.776 5714.70 13.70 1.303 5714.79	5712.97 n/a 5714.14 0.00 5718.72 n/a 5724.94 n/a 5725.31 0.00 5715.35 0.00 5715.03 0.00 5714.78 0.00	5712.97 j 5714.14 5718.72 5724.94 5725.31 5727.95 j 5715.35 5715.03 5714.78	32 33 34 35 36 33 34 34 34
13.90 24 c 14.34 24 c 8.69 18 c 6.03 18 c 3.20 18 c 12.59 24 c	142.7 5713.55 571 220.6 5717.70 572 7.0 5724.10 572 145.3 5714.35 571 17.2 5713.55 571 27.1 5713.55 571	17.402.6995714.5123.602.6755719.0224.181.1445725.2027.012.0035725.4014.581.3405714.8813.760.7765714.70	5718.72n/a5724.94n/a5725.310.005727.95n/a5715.350.005715.030.00	5718.72 5724.94 5725.31 5727.95 j 5715.35 5715.03	34 35 36 36 33 34
14.34 24 c 8.69 18 c 6.03 18 c 3.20 18 c 12.59 24 c	220.6 5717.70 572 7.0 5724.10 572 145.3 5724.10 572 17.2 5714.35 571 27.1 5713.55 571	23.602.6755719.0224.181.1445725.2027.012.0035725.404.581.3405714.8813.760.7765714.70	5724.94n/a5725.310.005727.95n/a5715.350.005715.030.00	5724.94 5725.31 5727.95 j 5715.35 5715.03	35 36 36 33 34
8.69 18 c 6.03 18 c 3.20 18 c 12.59 24 c	7.05724.10572145.35724.1057217.25714.3557127.15713.55571	24.181.1445725.2027.012.0035725.4044.581.3405714.8813.760.7765714.70	5725.310.005727.95n/a5715.350.005715.030.00	5725.31 5727.95 j 5715.35 5715.03	36 36 33 34
6.03 18 c 3.20 18 c 12.59 24 c	145.35724.1057217.25714.3557127.15713.55571	27.012.0035725.4014.581.3405714.8813.760.7765714.70	5727.95n/a5715.350.005715.030.00	5727.95 j 5715.35 5715.03	36 33 34
3.20 18 c 12.59 24 c	17.25714.3557127.15713.55571	14.581.3405714.8813.760.7765714.70	5715.350.005715.030.00	5715.35 5715.03	33 34
12.59 24 c	27.1 5713.55 571	13.76 0.776 5714.70	5715.03 0.00	5715.03	34
1.85 24 c	11.5 5713.55 571	1.303 5714.79	5714.78 0.00	5714.78	34
				Number of lines: 41	

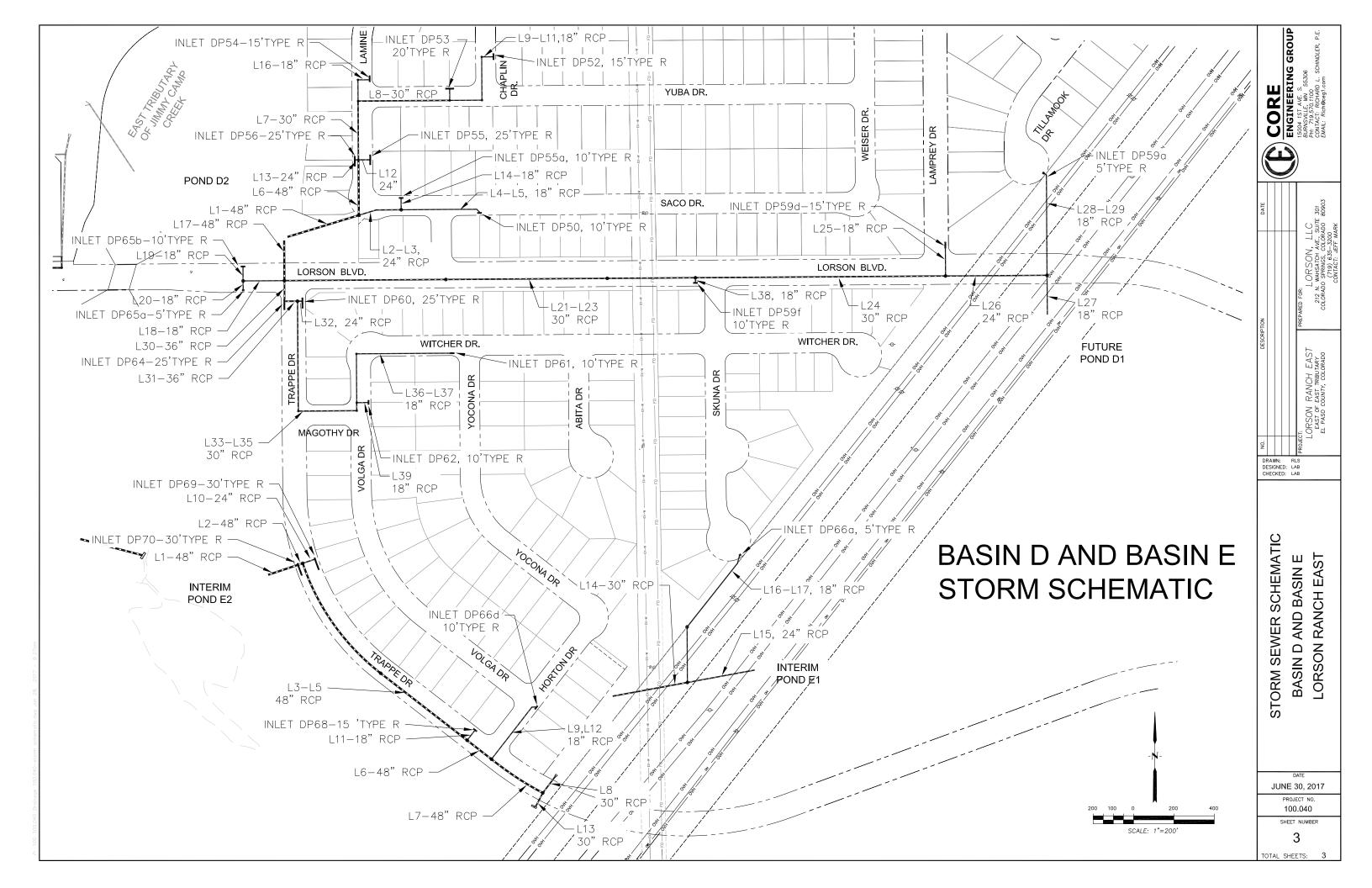
NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Byp line
NO		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
3		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
4		0.00	0.00	0.00	0.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
5		0.00	0.00	0.00	0.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
6		0.00	0.00	0.00	0.00	MH	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	5
7		0.00	0.00	0.00	0.00	MH	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	6
8		0.00	0.00	0.00	0.00	MH	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	7
9		0.00	0.00	0.00	0.00	MH	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
10	Inlet DP-34 - 5'	0.88	0.00	0.88	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.24	6.23	0.37	6.23	3.00	Off
11	Inlet DP-33 - 10'	7.49	0.81	8.30	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.58	10.38	0.69	10.38	2.00	Off
12		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
13		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
14	Inlet DP-28 - 15'	5.32	0.00	5.30	0.02	Genr	6.0	15.00	0.00	0.00	0.00	0.026	2.00	0.080	0.020	0.013	0.31	9.40	0.31	9.40	0.00	38
15	Inlet DP-29 - 10'	8.63	0.00	8.63	0.00	Curb	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.54	21.10	0.67	21.10	3.00	Off
16	Inlet DP-30 - 15'	7.21	0.00	7.21	0.00	Curb	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.49	18.70	0.62	18.70	3.00	Off
17	Inlet DP-26, 20'	8.49	0.00	8.49	0.00	Genr	6.0	15.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.30	4.80	0.30	4.80	0.00	Off
18		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
19		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
20	Inlat DD 22, 15'	0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
21 22	Inlet DP-23, 15'	8.68 13.55	0.00	8.43 13.55	0.25	Genr	6.0 0.0	15.00 0.00	0.00 15.00	0.00	0.00	0.011	2.00	0.080	0.020	0.013	0.40	14.05 0.00	0.40	14.05 0.00	0.00	23 Off
22		13.55	0.00	10.00	0.00	Hdwl	0.0	0.00	13.00	0.00	0.00	Sag	2.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	
Lorso	on East PDR - C15 b	asins												Number	of lines:	41		F	Run Date:	06-22-20	17	

NOTES: Inlet N-Values = 0.016; Intensity = 68.28 / (Inlet time + 13.10) ^ 0.89; Return period = 5 Yrs.; * Indicates Known Q added

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
NO		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
23	INLET DP-25- 25'	15.69	0.25	15.94	0.00	Genr	6.0	48.21	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	Off
24	Inlet DP-36, 5'	0.25	0.00	0.25	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.17	2.71	0.30	2.71	3.00	2
25	Inlet DP-35, 5'	2.82	0.00	2.82	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.39	13.55	0.52	13.55	3.00	24
26	Inlet DP-19c, 10'	6.51	0.00	5.70	0.81	Genr	6.0	15.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.37	12.70	0.37	12.70	0.00	11
27	Inlet DP-20, 15'	5.20	0.00	5.20	0.00	Genr	6.0	15.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.35	11.55	0.35	11.55	0.00	15
28		0.00	0.00	0.00	0.00	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
29		4.00*	0.00	4.00	0.00	Grate	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.30	4.85	0.30	4.85	0.00	28
30		6.00*	0.00	6.00	0.00	Genr	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.30	4.80	0.30	4.80	0.00	9
31		4.00*	0.00	4.00	0.00	Genr	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.30	4.80	0.30	4.80	0.00	9
32		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
33		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	32
34		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
35		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
36		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	35
37	Inlet DP-39, 15'	8.69	0.00	8.41	0.28	Genr	6.0	15.00	2.00	4.00	2.00	0.038	2.00	0.080	0.020	0.013	0.34	10.80	0.34	10.80	0.00	40
38	Inlet DP-38, 15'	6.03	0.02	6.05	0.00	Genr	6.0	15.00	0.00	0.00	0.00	0.011	2.00	0.080	0.020	0.013	0.36	12.05	0.36	12.05	0.00	37
39	Inlet DP-42, 10'	3.20	0.00	3.20	0.00	Curb	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.33	5.48	0.44	5.48	2.00	33
40	Inlet DP-40, 20'	12.59	0.28	12.87	0.00	Curb	6.0	20.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.42	7.13	0.52	7.13	2.00	34
41	Inlet DP-41, 20'	1.85	0.00	1.85	0.00	Curb	6.0	20.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.16	1.97	0.26	1.98	2.00	34
Lorso	on East PDR - C15 ba	asins	1					1	1	1		1		Number	of lines:	41		R	un Date:	06-22-20	17	
NOTE	S: Inlet N-Values = (0.016 ; Inte	ensity = (68.28 / (Inlet time	e + 13.10) ^ 0.89	; Returr	n period :	= 5 Yrs	.; *Indi	cates Kno	own Q a	dded				I				

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	273.3	66 c	147.3	5709.00	5709.88	0.597	5713.89	5714.74	0.00	5714.74	End
2	L2	275.5	60 c	383.5	5710.55	5714.37	0.996	5714.99	5719.35	0.00	5719.35	1
3	L3	272.7	60 c	373.9	5714.67	5718.40	0.998	5719.42	5723.40	0.00	5723.40	2
4	L4	226.9	54 c	249.3	5718.90	5721.40	1.003	5723.40*	5726.72*	0.00	5726.72	3
5	L5	137.5	48 c	228.8	5721.90	5726.20	1.879	5728.03	5729.77	0.00	5729.77	4
6	L6	138.3	48 c	494.6	5726.50	5733.90	1.496	5729.98	5737.40	n/a	5737.40	5
7	L7	138.6	48 c	194.1	5734.00	5736.00	1.030	5737.70	5739.50	n/a	5739.50	6
8	L8	105.0	42 c	219.8	5736.50	5738.40	0.864	5740.00*	5742.40*	0.00	5742.40	7
9	L9	87.00	36 c	279.0	5739.90	5742.70	1.004	5742.90*	5747.65*	0.00	5747.65	8
10	L10	16.66	24 c	58.7	5721.70	5723.68	3.373	5725.96*	5726.28*	0.00	5726.28	3
11	L11	15.03	24 c	52.4	5724.38	5724.94	1.069	5726.36	5726.38	0.00	5726.38	10
12	L12	42.12	30 c	84.4	5721.30	5723.52	2.629	5725.25*	5726.15*	0.00	5726.15	3
13	L13	11.36	18 c	214.7	5724.72	5728.81	1.905	5726.65	5730.10	n/a	5730.10 j	12
14	L14	11.56	18 c	182.2	5729.11	5734.84	3.145	5730.20	5736.14	n/a	5736.14	13
15	L15	18.67	24 c	31.0	5725.08	5725.61	1.711	5726.74	5727.14	n/a	5727.14	12
16	L16	15.39	24 c	13.1	5724.61	5725.10	3.742	5726.85	5726.84	0.00	5726.84	12
17	L17	92.58	42 c	202.3	5722.50	5727.36	2.403	5728.45	5730.31	n/a	5730.31	4
18	L18	78.29	36 c	30.7	5728.15	5728.46	1.011	5731.15*	5731.57*	0.00	5731.57	17
19	L19	51.29	36 c	223.4	5728.50	5730.75	1.007	5732.66*	5733.98*	0.00	5733.98	18
20	L20	51.77	36 c	141.8	5730.95	5732.40	1.022	5733.98	5734.69	0.00	5734.69	19
21	L21	51.81	36 c	11.2	5732.70	5732.79	0.805	5735.10	5735.11	0.00	5735.11	20
22	L22	35.92	30 c	139.3	5733.40	5735.50	1.508	5735.49	5737.50	n/a	5737.50 j	21
23	L23	33.74	30 c	10.8	5729.21	5729.48	2.506	5732.75*	5732.82*	0.00	5732.82	18
24	L24	6.37	18 c	35.8	5719.93	5720.92	2.768	5722.14	5722.23	0.00	5722.23	2
25	L25	6.01	18 c	41.0	5721.22	5721.63	0.998	5722.29	5722.57	n/a	5722.57 j	24
26	L26	22.01	24 c	13.2	5741.12	5742.52	10.617	5741.87*	5748.38*	0.00	5748.38	7
27	L27	13.06	18 c	45.8	5742.58		1.070	5744.08*	5744.79*	0.00	5744.79	7
28	L28	18.00	18 c	264.9	5740.45		0.509	5742.63*		0.00	5750.42	8
29	L29	18.00	18 c	273.9	5741.90	5743.30	0.511	5750.42*	5758.47*	0.00	5758.47	28
30	L30	41.00	24 c	149.2	5743.71	5744.50	0.529	5747.65*	5752.56*	0.00	5752.56	9
31	L31	46.00	27 c	116.9	5743.49	5744.10	0.521	5747.92*	5750.51*	0.00	5750.51	9
32	L32	65.12	36 c	104.3	5709.00	5709.63	0.604	5711.81*	5712.81*	0.00	5712.81	End
Lorso	n East PDR - C15 basiı	ns					Nun	nber of line:	s: 41	Run	Date: 06-22	2-2017


NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
33	L33	65.94	36 c	243.0	5709.83	5711.30	0.605	5712.83*	5715.21*	0.00	5715.21	32
34	L34	60.45	36 c	90.4	5711.80	5712.55	0.829	5715.42*	5716.17*	0.00	5716.17	33
35	L35	31.08	24 c	142.7	5713.55	5717.40	2.699	5716.17	5719.28	n/a	5719.28 j	34
36	L36	31.58	24 c	220.6	5717.70	5723.60	2.675	5719.31	5725.49	n/a	5725.49	35
37	L37	19.13	18 c	7.0	5724.10	5724.18	1.144	5725.60*	5725.83*	0.00	5725.83	36
38	L38	13.06	18 c	145.3	5724.10	5727.01	2.003	5726.28	5728.51	0.00	5728.51	36
39	L39	7.04	18 c	17.2	5714.35	5714.58	1.340	5716.31*	5716.39*	0.00	5716.39	33
40	L40	32.43	24 c	27.1	5713.55	5713.76	0.776	5716.17*	5716.72*	0.00	5716.72	34
41	L41	5.88	24 c	11.5	5713.55	5713.70	1.303	5717.25*	5717.26*	0.00	5717.26	34
Lorso	n East PDR - C15 basi	ns					Nun	nber of line:	s: 41	Run I	Date: 06-22	-201

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
NO		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	- line No
1		105.00*	0.00	0.00	105.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		105.00*	0.00	0.00	105.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
3		105.00*	0.00	0.00	105.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
4		105.00*	0.00	0.00	105.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
5		105.00*	525.00	0.00	630.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
6		105.00*	420.00	0.00	525.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	5
7		105.00*	315.00	0.00	420.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	6
8		105.00*	210.00	0.00	315.00	ΜΗ	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	7
9		87.00*	87.00	0.00	174.00	МН	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
10	Inlet DP-34 - 5'	1.94	6.12	8.06	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.67	27.40	0.80	27.40	3.00	Off
11	Inlet DP-33 - 10'	15.03	11.39	20.30	6.12	Genr	6.0	6.00	0.00	0.00	0.00	0.020	2.00	0.080	0.050	0.013	0.62	11.12	0.62	11.12	0.00	10
12		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
13		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
14	Inlet DP-28 - 15'	11.56	0.00	10.36	1.20	Genr	6.0	15.00	0.00	0.00	0.00	0.026	2.00	0.080	0.020	0.013	0.38	13.25	0.38	13.25	0.00	38
15	Inlet DP-29 - 10'	18.67	1.73	16.30	4.10	Genr	6.0	10.00	0.00	0.00	0.00	0.020	2.00	0.080	0.020	0.013	0.47	17.60	0.47	17.60	0.00	16
16	Inlet DP-30 - 15'	15.39	4.10	19.49	0.00	Genr	6.0	10.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	Off
17	Inlet DP-26, 20'	18.18	6.91	25.10	0.00	Genr	6.0	15.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.30	4.80	0.30	4.80	0.00	Off
18		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
19		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
20		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
21	Inlet DP-23, 15'	18.56	0.00	13.69	4.87	Genr	6.0	15.00	0.00	0.00	0.00	0.011	2.00	0.080	0.020	0.013	0.50	19.10	0.50	19.10	0.00	23
22		35.92	0.00	35.92	0.00	Hdwl	0.0	0.00	15.00	6.00	3.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
Lorso	n East PDR - C15 ba	asins												Number	of lines:	41		F	Run Date:	06-22-20	17	

NOTES: Inlet N-Values = 0.016; Intensity = 58.48 / (Inlet time + 7.70) ^ 0.75; Return period = 100 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
Νο		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
23	INLET DP-25- 25'	33.74	4.87	31.70	6.91	Genr	6.0	48.21	0.00	0.00	0.00	0.020	2.00	0.080	0.020	0.013	0.57	22.65	0.57	22.65	0.00	17
24	Inlet DP-36, 5'	0.57	0.00	0.57	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.21	4.65	0.34	4.65	3.00	2
25	Inlet DP-35, 5'	6.01	0.00	6.01	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.57	22.50	0.70	22.50	3.00	24
26	Inlet DP-19c, 10'	22.01	0.00	10.62	11.39	Genr	6.0	15.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.54	20.80	0.54	20.80	0.00	11
27	Inlet DP-20, 15'	13.06	0.00	11.33	1.73	Genr	6.0	15.00	2.00	4.00	2.00	0.010	2.00	0.080	0.020	0.013	0.46	16.90	0.46	16.90	0.00	15
28		18.00*	18.00	0.00	36.00	None	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
29		18.00*	0.00	0.00	18.00	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	28
30		41.00*	0.00	0.00	41.00	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	9
31		46.00*	0.00	0.00	46.00	МН	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	9
32		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
33		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	32
34		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
35		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
36		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	35
37	Inlet DP-39, 15'	19.13	2.43	14.93	6.62	Genr	6.0	15.00	2.00	4.00	2.00	0.038	2.00	0.080	0.020	0.013	0.44	15.80	0.44	15.80	0.00	40
38	Inlet DP-38, 15'	13.06	1.20	11.83	2.43	Genr	6.0	15.00	0.00	0.00	0.00	0.011	2.00	0.080	0.020	0.013	0.46	17.20	0.46	17.20	0.00	37
39	Inlet DP-42, 10'	7.04	0.00	7.04	0.00	Curb	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.52	9.30	0.63	9.30	2.00	33
40	Inlet DP-40, 20'	32.43	6.62	26.00	13.06	Genr	6.0	20.00	2.00	4.00	2.00	0.020	2.00	0.080	0.050	0.013	0.71	12.92	0.71	12.92	0.00	41
41	Inlet DP-41, 20'	5.88	13.06	18.94	0.00	Curb	6.0	20.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.52	9.24	0.63	9.24	2.00	34
Lorso	n East PDR - C15 ba	isins												Number	of lines:	41		R	un Date:	06-22-20	17	
NOTE	S: Inlet N-Values = (0.016 ; Inte	ensity = {	58.48 / (Inlet time	e + 7.70)	^ 0.75;	Return	period =	100 Yrs	s.; * Ind	icates K	nown Q	added								

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	63.56	48 c	185.0	5697.00	5702.09	2.751	5699.36	5704.45	n/a	5704.45	End
2	L2	14.68	24 c	45.0	5704.99	5706.84	4.106	5705.77*	5709.07*	0.07	5709.14	1
3	L3	14.68	24 c	62.6	5706.84	5709.42	4.119	5709.14	5710.78	n/a	5710.78 j	2
4	L4	7.34	18 c	186.4	5710.17	5715.01	2.597	5711.16	5716.04	0.10	5716.04	3
5	L5	7.34	18 c	10.0	5715.11	5715.38	2.700	5716.27	5716.41	0.45	5716.41	4
6	L6	48.88	48 c	137.0	5702.59	5704.23	1.197	5705.27	5706.30	n/a	5706.30 j	1
7	L7	33.79	30 c	146.0	5705.83	5708.17	1.603	5707.30	5710.11	0.42	5710.11	6
8	L8	26.49	30 c	226.5	5708.37	5713.87	2.428	5710.72	5715.59	n/a	5715.59 j	7
9	L9	12.44	18 c	78.4	5714.92	5718.39	4.425	5715.73	5719.73	0.26	5719.73	8
10	L10	12.44	18 c	83.9	5718.68	5720.50	2.168	5719.83	5721.84	0.26	5721.84	9
11	L11	12.44	18 c	24.9	5720.70	5720.98	1.123	5722.20*	5722.55*	0.00	5722.55	10
12	L12	7.80	24 c	26.0	5706.33	5707.11	2.999	5707.07	5708.10	0.00	5708.10	6
13	L13	7.29	24 c	6.0	5707.13	5707.37	4.004	5707.67*	5709.45*	0.00	5709.45	6
14	L14	7.34	18 c	26.6	5710.44	5710.86	1.577	5711.24	5712.07	0.32	5712.39	3
15	L15	14.05	18 c	29.2	5715.08	5716.06	3.360	5716.03*	5718.00*	0.00	5718.00	8
16	L16	7.30	18 c	58.9	5709.75	5710.83	1.832	5710.91	5711.86	n/a	5711.86 j	7
17	L17	66.79	48 c	100.0	5697.00	5699.50	2.500	5699.42	5701.92	n/a	5701.92	End
18	L18	5.82	18 c	101.3	5701.90	5702.93	1.017	5702.85	5703.85	n/a	5703.85 j	17
19	L19	4.16	18 c	30.6	5703.13	5703.45	1.048	5704.17	5704.23	n/a	5704.23 j	18
20	L20	1.65	18 c	20.0	5703.33	5703.73	1.995	5704.24	5704.22	n/a	5704.22 j	18
21	L21	23.43	30 c	400.0	5701.25	5715.50	3.563	5702.66	5717.12	n/a	5717.12	17
22	L22	23.43	30 c	400.0	5715.80	5726.20	2.600	5717.52	5727.82	n/a	5727.82 j	21
23	L23	23.43	30 c	217.3	5726.50	5732.50	2.762	5728.22	5734.12	n/a	5734.12 j	22
24	L24	14.85	30 c	621.3	5732.50	5743.76	1.812	5734.73	5745.05	n/a	5745.05 j	23
25	L25	10.66	18 c	67.0	5745.16	5745.96	1.192	5746.31	5747.21	0.00	5747.21	24
26	L26	4.19	24 c	248.8	5744.36	5749.00	1.865	5745.55	5749.73	n/a	5749.73 j	24
27	L27	2.00	18 c	82.0	5749.50	5749.99	0.598	5750.01	5750.53	n/a	5750.53	26
28	L28	2.19	18 c	249.0	5752.72	5762.38	3.879	5753.05	5762.94	n/a	5762.94	26
29	L29	2.19	18 c	10.0	5762.38	5762.68	3.003	5763.12	5763.25	n/a	5763.25 j	28
30	L30	37.54	36 c	51.0	5700.50	5702.03	3.000	5702.58	5703.98	n/a	5703.98 j	17
31	L31	34.39	36 c	32.0	5702.33	5702.97	2.000	5704.54	5704.84	n/a	5704.84	30
32	L32	15.76	24 c	10.0	5703.97	5704.17	1.997	5705.31	5705.58	0.00	5705.58	31
Lorso	n East PDR - D Basins						Nun	nber of line	s: 39	Run I	Date: 06-22	-2017

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
33	L33	18.63	24 c	274.1	5703.97	5707.51	1.291	5705.23	5709.04	0.33	5709.04	31
34	L34	18.63	24 c	143.3	5707.81	5710.70	2.017	5709.30	5712.23	0.33	5712.23	33
35	L35	18.63	24 c	19.4	5711.00	5711.30	1.548	5712.50	5712.83	0.33	5712.83	34
36	L36	7.57	18 c	120.7	5711.80	5713.30	1.242	5713.36	5714.35	n/a	5714.35 j	35
37	L37	7.57	18 c	219.8	5713.60	5719.23	2.562	5714.58	5720.28	0.00	5720.28	36
38	L38	8.58	18 c	13.6	5733.60	5733.93	2.430	5734.51	5735.05	0.00	5735.05	23
39	L39	11.06	18 c	28.3	5711.80	5712.09	1.023	5713.09	5713.38	0.00	5713.38	35
	n East PDR - D Basiı							nber of line		L	Date: 06-22	L

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Byp
NO		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	1
3		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	2
4		0.00	0.00	0.00	0.00	None	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	3
5	Inlet DP-50, 10'	10.18	0.00	7.34	2.84	Genr	6.0	10.00	2.00	4.00	2.00	0.026	2.00	0.080	0.020	0.013	0.37	12.55	0.37	12.55	0.00	13
6		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	1
7		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	6
8		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	7
9		0.00	0.00	0.00	0.00	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
10		0.00	0.00	0.00	0.00	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	11
11	Inlet DP-52, 15'	15.67	0.00	12.44	3.23	Genr	6.0	15.00	2.00	4.00	2.00	0.030	2.00	0.080	0.020	0.013	0.41	14.60	0.41	14.60	0.00	15
12	Inlet DP-55, 25'	4.20	3.60	7.80	0.00	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	13
13	Inlet DP-56, 25'	4.46	2.84	7.29	0.00	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	Off
14	Inlet DP55a, 10'	10.18	0.00	7.34	2.84	Genr	6.0	10.00	2.00	4.00	2.00	0.021	2.00	0.080	0.020	0.013	0.38	13.10	0.38	13.10	0.00	12
15	Inlet DP-53, 20'	11.50	3.23	14.05	0.69	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	12
16	Inlet DP-54, 15'	7.38	0.00	7.30	0.08	Genr	6.0	10.00	2.00	4.00	2.00	0.013	2.00	0.080	0.020	0.013	0.37	12.65	0.37	12.65	0.00	12
17		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
18		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	17
19	Inlet DP-65b, 10'	4.16	0.00	4.16	0.00	Curb	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.38	12.95	0.38	12.95	0.00	Off
20	Inlet DP-65a, 5'	1.65	0.00	1.65	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.31	9.48	0.31	9.48	0.00	18
21		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	17
22		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	21
	n East PDR - D Bas	ins												Number	of lines:	30				06-22-20	17	

NOTES: Inlet N-Values = 0.016; Intensity = 501.75 / (Inlet time + 28.20) ^ 1.31; Return period = 5 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
23		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	22
24		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	23
25	Inlet DP-59d, 10'	10.66	0.00	10.66	0.00	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	19
26		0.00	0.00	0.00	0.00	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	24
27	From Pond D1	2.00*	0.00	2.00	0.00	Hdwl	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	26
28		0.00	0.00	0.00	0.00	None	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	26
29	DP-59a	2.19	0.00	2.19	0.00	Curb	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.29	8.41	0.29	8.41	0.00	28
30	Inlet DP64, 25'	3.15	0.00	3.15	0.00	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	20
31		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	30
32	Inlet DP60, 25'	10.70	5.06	15.76	0.00	Genr	6.0	20.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	30
33		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	31
34		0.00	0.00	0.00	0.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	33
35		0.00	0.00	0.00	0.00	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	32
36		0.00	0.00	0.00	0.00	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	35
37	Inlet DP61, 10'	10.62	0.00	7.57	3.05	Genr	6.0	10.00	2.00	4.00	2.00	0.026	2.00	0.080	0.020	0.013	0.37	12.75	0.37	12.75	0.00	39
38	Inlet DP- 59f, 10'	13.64	0.00	8.58	5.06	Genr	6.0	6.00	2.00	4.00	2.00	0.020	2.00	0.080	0.050	0.013	0.49	8.60	0.49	8.60	0.00	32
39	Inlet DP62, 10'	8.01	3.05	11.06	0.00	Genr	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.30	4.80	0.30	4.80	0.00	35
Lorso	on East PDR - D Basi	ins												Number	of lines:	39		F	Run Date:	06-22-20	17	<u> </u>
NOTE	S: Inlet N-Values = (0.016 ; Int	ensity =	501.75 /	(Inlet tin	ne + 28.2	0) ^ 1.3	1; Retu	rn period	= 5 Yr	s.; * Inc	licates Ki	nown Q	added								

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	121.1	48 c	185.0	5697.00	5702.09	2.751	5700.27	5705.35	0.76	5705.35	End
2	L2	21.57	24 c	45.0	5704.99	5706.84	4.108	5706.51	5708.49	0.19	5708.49	1
3	L3	21.60	24 c	62.6	5706.84	5709.42	4.119	5708.70	5711.07	n/a	5711.07 j	2
4	L4	10.76	18 c	186.4	5710.17	5715.01	2.597	5711.44	5716.26	n/a	5716.26 j	3
5	L5	10.77	18 c	10.0	5715.11	5715.38	2.700	5716.41	5716.63	0.65	5716.63	4
6	L6	118.4	48 c	137.0	5702.59	5704.23	1.197	5705.87	5707.45	0.74	5707.45	1
7	L7	57.12	30 c	146.0	5705.83	5708.17	1.603	5708.33*	5711.16*	0.84	5712.01	6
8	L8	44.77	30 c	226.5	5708.37	5713.87	2.428	5712.82	5716.10	n/a	5716.10	7
9	L9	18.80	18 c	78.4	5714.92	5718.39	4.425	5716.10	5719.85	0.54	5719.85	8
10	L10	18.80	18 c	83.9	5718.68	5720.50	2.168	5720.18*	5722.87*	0.53	5723.40	9
11	L11	18.80	18 c	24.9	5720.70	5720.98	1.123	5723.40*	5724.20*	0.00	5724.20	10
12	L12	31.70	24 c	26.0	5706.33	5707.11	2.999	5707.72*	5709.63*	0.00	5709.63	6
13	L13	29.70	24 c	6.0	5707.13	5707.37	4.004	5708.31*	5710.76*	0.00	5710.76	6
14	L14	10.83	18 c	26.6	5710.44	5710.86	1.577	5711.48	5712.28	0.55	5712.83	3
15	L15	25.53	18 c	29.2	5715.08	5716.06	3.360	5716.58*	5718.31*	0.00	5718.31	8
16	L16	12.63	18 c	58.9	5709.75	5710.83	1.832	5713.32*	5714.17*	0.00	5714.17	7
17	L17	119.9	48 c	100.0	5697.00	5699.50	2.500	5700.26	5702.74	0.75	5702.74	End
18	L18	15.99	18 c	101.3	5701.50	5702.63	1.115	5703.35*	5705.70*	0.51	5706.21	17
19	L19	12.70	18 c	30.6	5702.93	5703.25	1.046	5706.68*	5707.12*	0.00	5707.12	18
20	L20	3.29	18 c	20.0	5702.93	5703.33	2.000	5707.42*	5707.44*	0.00	5707.44	18
21	L21	47.52	30 c	400.0	5701.25	5715.50	3.563	5703.16	5717.77	0.32	5717.77	17
22	L22	47.63	30 c	400.0	5715.80	5726.20	2.600	5717.91	5728.47	0.00	5728.47	21
23	L23	47.70	30 c	217.3	5726.50	5732.50	2.762	5728.61	5734.77	0.48	5734.77	22
24	L24	36.14	30 c	621.3	5732.50	5743.76	1.812	5735.54	5745.77	n/a	5745.77 j	23
25	L25	20.30	18 c	67.0	5745.06	5745.96	1.343	5746.56*	5749.07*	0.00	5749.07	24
26	L26	15.61	24 c	251.2	5744.56	5749.20	1.847	5746.52	5750.60	n/a	5750.60 j	24
27	L27	11.00	18 c	82.0	5750.00	5750.49	0.598	5751.50*	5752.40*	0.00	5752.40	26
28	L28	4.84	18 c	249.0	5752.72	5762.38	3.879	5753.21	5763.22	n/a	5763.22	26
29	L29	4.85	18 c	10.0	5762.38	5762.68	3.003	5763.45	5763.52	n/a	5763.52 j	28
30	L30	88.31	36 c	51.0	5700.30	5701.83	3.001	5702.74	5704.67	1.01	5704.67	17
31	L31	58.94	36 c	32.0	5701.93	5702.57	1.999	5706.12*	5706.37*	0.43	5706.80	30
32	L32	31.70	24 c	10.0	5703.97	5704.17	1.997	5706.80*	5707.00*	0.00	5707.00	31
Lorso	n East PDR - D Basins						Nun	nber of line	s: 39	Run	Date: 06-22	2-2017

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
33	L33	27.33	24 c	274.1	5703.87	5707.51	1.328	5706.80*	5710.81*	0.35	5711.16	31
34	L34	27.37	24 c	143.3	5707.81	5710.40	1.807	5711.16*	5713.26*	0.35	5713.61	33
35	L35	27.38	24 c	19.4	5710.70	5711.20	2.581	5713.61*	5713.90*	0.47	5714.37	34
36	L36	11.08	18 c	120.7	5711.70	5714.00	1.905	5714.94*	5716.28*	0.18	5716.47	35
37	L37	11.08	18 c	219.8	5714.20	5719.23	2.288	5716.47	5720.50	n/a	5720.50 j	36
38	L36	30.24	18 c	13.6	5733.60	5733.93	2.430	5735.10*	5736.23*	0.00	5736.23	23
39	L39	20.30	18 c	28.3	5711.80	5712.09	1.023	5714.37*	5715.43*	0.00	5715.43	35
										<u> </u>		

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Byp
NO		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		0.00	-53.15	0.00	-53.15	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		-19.72	-31.38	0.00	-51.10	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	1
3		-19.87	-11.51	0.00	-31.38	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	2
4		-11.51	0.00	0.00	-11.51	None	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	3
5	Inlet DP-50, 10'	10.77	0.00	10.77	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.026	2.00	0.080	0.020	0.013	0.38	12.85	0.38	12.85	0.00	13
6		34.77*	-36.82	0.00	-2.05	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	1
7		-10.54	-26.28	0.00	-36.82	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	6
8		-10.56	-15.72	0.00	-26.28	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	7
9		-15.72	0.00	0.00	-15.72	MH	6.0	6.00	2.00	4.00	2.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	8
10		-15.86	0.00	0.00	-15.86	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	11
11	Inlet DP-52, 15'	18.80	-15.86	2.94	0.00	Genr	6.0	15.00	2.00	4.00	2.00	0.030	2.00	0.080	0.020	0.013	0.26	6.75	0.26	6.75	0.00	15
12	Inlet DP-55, 25'	31.70*	0.00	31.70	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.020	2.00	0.080	0.020	0.013	0.54	20.95	0.54	20.95	0.00	13
13	Inlet DP-56, 25'	29.70*	0.00	26.00	3.70	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	Off
14	Inlet DP55a, 10'	10.83	0.00	10.83	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.021	2.00	0.080	0.020	0.013	0.39	13.45	0.39	13.45	0.00	12
15	Inlet DP-53, 20'	25.53	0.00	25.53	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.020	2.00	0.080	0.020	0.013	0.50	19.25	0.50	19.25	0.00	12
16	Inlet DP-54, 15'	12.63	0.00	12.63	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.013	2.00	0.080	0.020	0.013	0.44	15.85	0.44	15.85	0.00	12
17		0.00	5.53	0.00	5.53	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	Off
18		4.59*	0.00	0.00	4.59	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	17
19	Inlet DP-65b, 10'	12.70*	0.00	12.70	0.00	Curb	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.67	27.33	0.67	27.33	0.00	Off
20	Inlet DP-65a, 5'	3.29	0.00	3.29	0.00	Curb	6.0	5.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.42	15.04	0.42	15.04	0.00	18
21		-5.20	6.14	0.00	0.94	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	17
22		-6.23	12.37	0.00	6.14	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	21
Lorso	n East PDR - D Bas	ins												Number	of lines:	39			Run Date:	06-22-20	17	

NOTES: Inlet N-Values = 0.016; Intensity = 1020.33 / (Inlet time + 30.10) ^ 1.34; Return period = 100 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	et				Gutter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	line No
23		-6.79	19.16	0.00	12.37	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	22
24		8.16*	11.00	0.00	19.16	МН	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	23
25	Inlet DP-59d, 10'	20.30	0.00	20.30	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.025	2.00	0.080	0.020	0.013	0.46	16.80	0.46	16.80	0.00	19
26		11.00*	0.00	0.00	11.00	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	24
27	From Pond D1	11.00*	0.00	11.00	0.00	Hdwl	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	26
28		0.00	0.00	0.00	0.00	None	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	26
29	Inlet DP-59a, 10'	4.85	0.00	4.85	0.00	Curb	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.41	14.33	0.41	14.33	0.00	28
30	Inlet DP64, 25'	30.96*	-23.46	7.50	0.00	Genr	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.30	9.00	0.30	9.00	0.00	20
31		0.00	-23.46	0.00	-23.46	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	30
32	Inlet DP60, 25'	31.70*	-2.03	29.67	0.00	Genr	6.0	20.00	2.00	4.00	2.00	0.020	2.00	0.080	0.020	0.013	0.53	20.45	0.53	20.45	0.00	30
33		-11.57	-11.89	0.00	-23.46	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	31
34		-11.89	0.00	0.00	-11.89	MH	6.0	10.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	33
35		-11.93	-11.97	0.00	-23.90	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	32
36		-11.97	0.00	0.00	-11.97	MH	6.0	15.00	2.00	4.00	2.00	Sag	2.00	0.080	0.020	0.013	0.00	0.00	0.00	0.00	0.00	35
37	Inlet DP61, 10'	11.08	0.00	11.08	0.00	Genr	6.0	10.00	2.00	4.00	2.00	0.026	2.00	0.080	0.020	0.013	0.38	13.00	0.38	13.00	0.00	39
38	Inlet DP- 59f, 10'	30.24	0.00	12.37	17.87	Genr	6.0	6.00	2.00	4.00	2.00	0.020	2.00	0.080	0.050	0.013	0.65	11.72	0.65	11.72	0.00	32
39	Inlet DP62, 10'	20.30*	0.00	16.30	4.00	Genr	6.0	6.00	2.00	4.00	2.00	0.020	2.00	0.080	0.050	0.013	0.56	10.04	0.56	10.04	0.00	32
Lorso	on East PDR - D Basi	ins												Number	oflines	39			Run Date:	06-22-20	17	
																				50-22-20		
NOTE	S: Inlet N-Values =	0.016 ; Int	ensity =	1020.33	/ (Inlet ti	me + 30.	10) ^ 1.	34; Ret	urn perio	d = 100) Yrs.;	* Indicate	es Know	n Q adde	d							

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	69.17	48 c	76.0	5700.00	5701.90	2.500	5702.64	5704.36	0.00	5704.36	End
2	L2	64.30	48 c	15.0	5702.20	5702.58	2.533	5705.08	5704.95	n/a	5704.95	1
3	L3	58.57	48 c	169.5	5702.68	5704.38	1.003	5705.68	5706.64	n/a	5706.64 j	2
4	L4	58.57	48 c	169.5	5704.58	5706.30	1.015	5707.30	5708.56	n/a	5708.56 j	3
5	L5	58.57	48 c	269.4	5706.50	5709.20	1.002	5709.22	5711.46	n/a	5711.46 j	4
6	L6	52.75	48 c	76.4	5709.30	5710.10	1.047	5712.18	5712.25	n/a	5712.25 j	5
7	L7	46.48	48 c	152.3	5710.30	5711.83	1.005	5712.95	5713.85	n/a	5713.85 j	6
8	L8	20.00	30 c	52.5	5713.89	5716.03	4.072	5714.73*	5718.59*	0.00	5718.59	7
9	L9	6.27	18 c	149.4	5712.40	5716.67	2.859	5713.02	5717.63	n/a	5717.63	6
10	L10	5.72	24 c	29.3	5705.76	5706.34	1.981	5706.33	5707.39	0.00	5707.39	2
11	L11	5.82	18 c	31.3	5712.00	5713.31	4.180	5712.53	5714.71	0.00	5714.71	5
12	L12	6.27	18 c	21.4	5716.75	5717.46	3.315	5717.86	5718.42	n/a	5718.42 j	9
13	L13	26.48	30 c	35.2	5713.30	5713.66	1.025	5714.75	5715.62	0.00	5715.62	7
14	L14	16.11	30 c	189.0	5724.00	5726.29	1.212	5725.42	5727.63	n/a	5727.63 j	End
15	L15	12.80	24 c	165.6	5726.90	5727.90	0.604	5728.17	5729.17	0.17	5729.34	14
16	L16	3.31	18 c	142.8	5727.30	5728.90	1.120	5728.14	5729.59	n/a	5729.59 j	14
17	L17	3.31	18 c	220.3	5728.90	5739.48	4.802	5729.81	5740.17	n/a	5740.17 j	16
Lorso	n East PDR - E Basins						Nun	nber of line:	s: 17	Run	Date: 06-22	2-2017

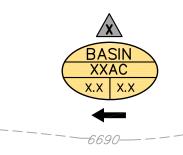
NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curk	Inlet	G	irate Inle	et				Gutter					Inlet		Byp
		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	Inlet DP70, 30'	4.87	0.00	4.87	0.00	Genr	0.0	0.00	0.00	0.00	0.00	0.020	2.00	0.080	0.020	0.013	0.31	9.60	0.31	9.60	0.00	Off
2		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
3	Pipe Curve	0.00	0.00	0.00	0.00	None	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
4		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
5		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
6		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
7		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
8	Basin E1.3 + Pond	20.00*	0.00	20.00	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
9		1.00*	0.00	0.00	1.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
10	Inlet DP-69, 30'	4.73	1.00	5.72	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.46	8.10	0.57	8.10	2.00	Off
11	Inlet DP68, 10'	5.48	1.34	5.82	1.00	Genr	0.0	0.00	0.00	0.00	0.00	0.012	2.00	0.080	0.050	0.013	0.42	7.22	0.42	7.22	0.00	10
12	Inlet DP66d, 10'	7.61	0.00	6.27	1.34	Genr	0.0	0.00	0.00	0.00	0.00	0.020	2.00	0.080	0.050	0.013	0.40	6.82	0.40	6.82	0.00	11
13	from Basin E2-ex	26.48	0.00	26.48	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
14		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
15	from Pond E1	12.80*	0.00	12.80	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
16		1.00*	0.00	0.00	1.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
17	Inlet 66a, 5'	3.31	0.00	3.31	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.34	5.60	0.45	5.60	2.00	Off
Lores	on East PDR - E Basi	ns												Number	oflines	17		 		06-22-20	17	
Lorso	DI East FUR - E Basi	115												Inditioel	or lines:	17			Kun Date:	00-22-20		
NOTE	S: Inlet N-Values = 0	0.016 ; Int	ensity =	501.75 /	(Inlet tin	ne + 28.2	0) ^ 1.3	1; Retu	rn period	l = 5 Yr	s.; * Inc	licates Ki	nown Q	added								

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	L1	209.3	48 c	76.0	5700.00	5701.90	2.500	5703.88	5705.77	n/a	5705.77	End
2	L2	173.6	48 c	15.0	5702.20	5702.58	2.533	5707.20*	5707.42*	0.00	5707.42	1
3	L3	141.4	48 c	169.5	5702.78	5704.48	1.002	5708.42*	5710.06*	0.00	5710.06	2
4	L4	141.4	48 c	169.5	5704.48	5706.20	1.015	5710.06*	5711.71*	0.00	5711.71	3
5	L5	141.4	48 c	269.4	5706.40	5709.10	1.002	5711.71*	5714.32*	0.79	5715.10	4
6	L6	121.5	48 c	76.4	5709.30	5710.07	1.009	5715.62*	5716.16*	0.58	5716.74	5
7	L7	112.0	48 c	152.3	5710.30	5711.83	1.005	5716.96*	5717.89*	0.49	5718.38	6
8	L8	42.00	30 c	52.5	5714.93	5715.46	1.008	5718.48*	5719.03*	0.00	5719.03	7
9	L9	9.48	18 c	149.4	5712.40	5716.67	2.859	5717.75*	5718.97*	0.09	5719.06	6
10	L10	32.20	24 c	29.3	5705.76	5706.34	1.981	5708.75*	5709.35*	0.00	5709.35	2
11	L11	19.88	18 c	31.3	5712.00	5713.31	4.180	5715.10*	5716.23*	0.00	5716.23	5
12	L12	9.48	18 c	21.4	5716.75	5717.46	3.315	5719.06*	5719.23*	0.00	5719.23	9
13	L13	70.00	30 c	35.2	5713.33	5713.69	1.015	5718.38*	5719.41*	0.00	5719.41	7
14	L14	43.59	30 c	189.0	5724.00	5726.30	1.216	5726.21	5728.50	n/a	5728.50	End
15	L15	36.30	24 c	165.6	5726.90	5727.90	0.604	5728.90*	5733.17*	0.62	5733.79	14
16	L16	7.29	18 c	142.8	5727.30	5728.90	1.120	5729.65	5730.27	0.00	5730.27	14
17	L17	7.29	18 c	220.3	5728.90	5739.48	4.802	5730.29	5740.51	n/a	5740.51 j	16
Lorso	n East PDR - E Basins	s					Nun	nber of line:	s: 17	Run I	Date: 06-22	-201

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	o Inlet	G	rate Inle	et				Gutter					Inlet		Byp
NO		(cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1	Inlet DP70, 30'	13.72	22.02	35.74	0.00	Genr	0.0	0.00	0.00	0.00	0.00	0.020	2.00	0.080	0.020	0.013	0.56	21.95	0.56	21.95	0.00	Off
2		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
3	Pipe Curve	0.00	0.00	0.00	0.00	None	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
4		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
5		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
6		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
7		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
8	Basin E1.3	64.16*	0.00	42.00	22.16	Genr	0.0	0.00	0.00	0.00	0.00	0.012	2.00	0.080	0.020	0.013	0.73	30.40	0.73	30.40	0.00	11
9		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
10	Inlet DP-69, 30'	10.46	21.74	32.20	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	2.47	48.22	2.58	48.22	2.00	Off
11	Inlet DP68, 10'	12.12	29.50	19.88	21.74	Genr	0.0	0.00	0.00	0.00	0.00	0.012	2.00	0.080	0.050	0.013	0.79	14.60	0.79	14.60	0.00	10
12	Inlet DP66d, 10'	16.82	0.00	9.48	7.34	Genr	0.0	0.00	0.00	0.00	0.00	0.020	2.00	0.080	0.050	0.013	0.53	9.34	0.53	9.34	0.00	11
13	From Basin E2-ex	92.02	0.00	70.00	22.02	Genr	0.0	0.00	0.00	0.00	0.00	0.010	2.00	0.080	0.050	0.013	1.08	20.42	1.08	20.42	0.00	1
14		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
15	from Pond E1	36.30*	0.00	36.30	0.00	Hdwl	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
16		0.00	0.00	0.00	0.00	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
17	Inlet 66a, 5'	7.29	0.00	7.29	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.000	0.54	9.52	0.64	9.52	2.00	Off
Lorso	n East PDR - E Basi	ns												Number	of lines:	17		R	un Date:	06-22-20	17	

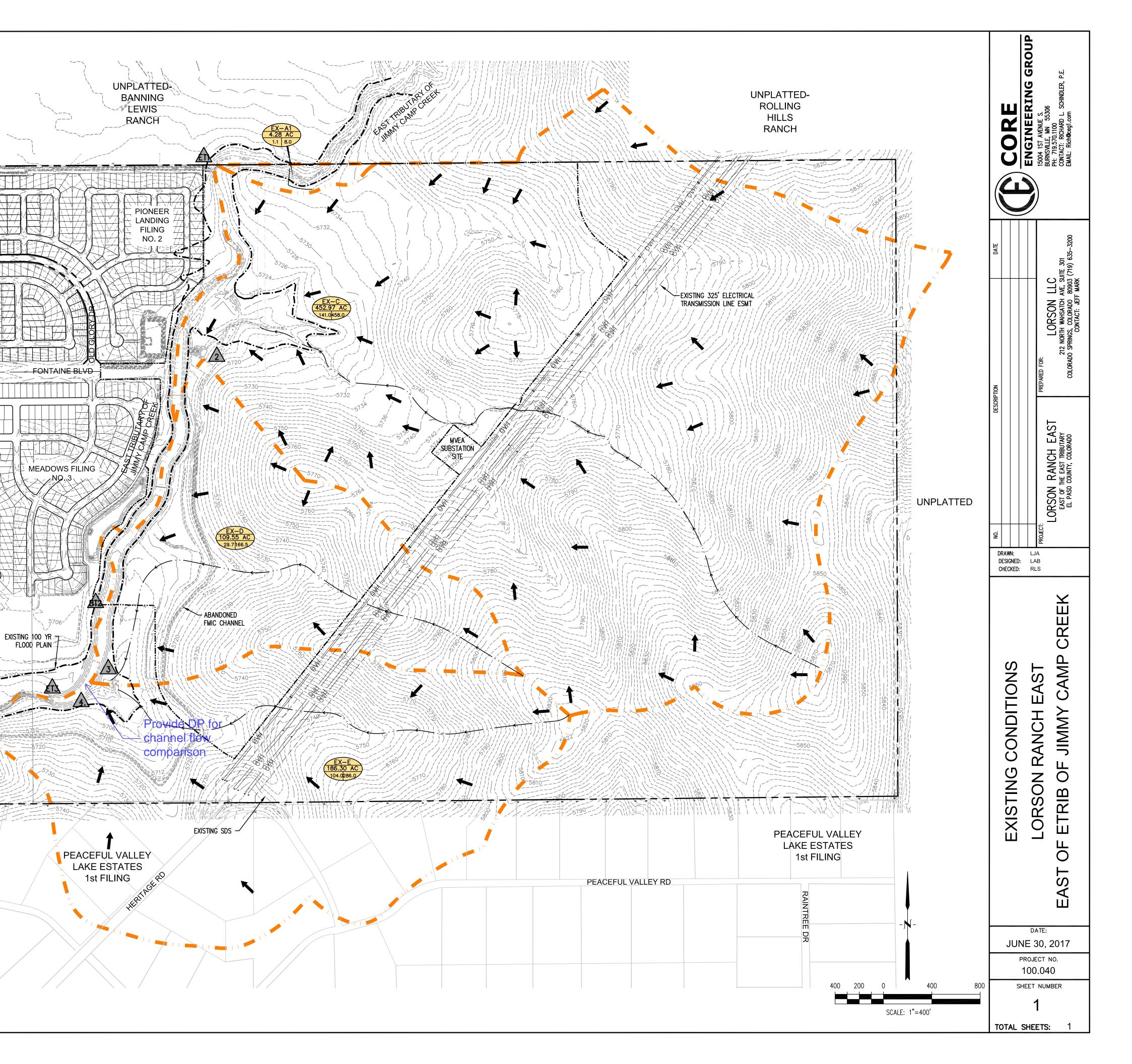

D	ESIGN P	DINT SUMI	MARY TA	BLE
DESIGN POINT	BASIN	DRAINAGE AREA (AC)	RUNOFF 5 YR (CFS)	RUNOFF 100 YR (CFS)
2	EX-C	452.97	206.3	571.6
3	EX-D	109.55	26.2	168.4
4	EX-E	186.30	91.8	266.5

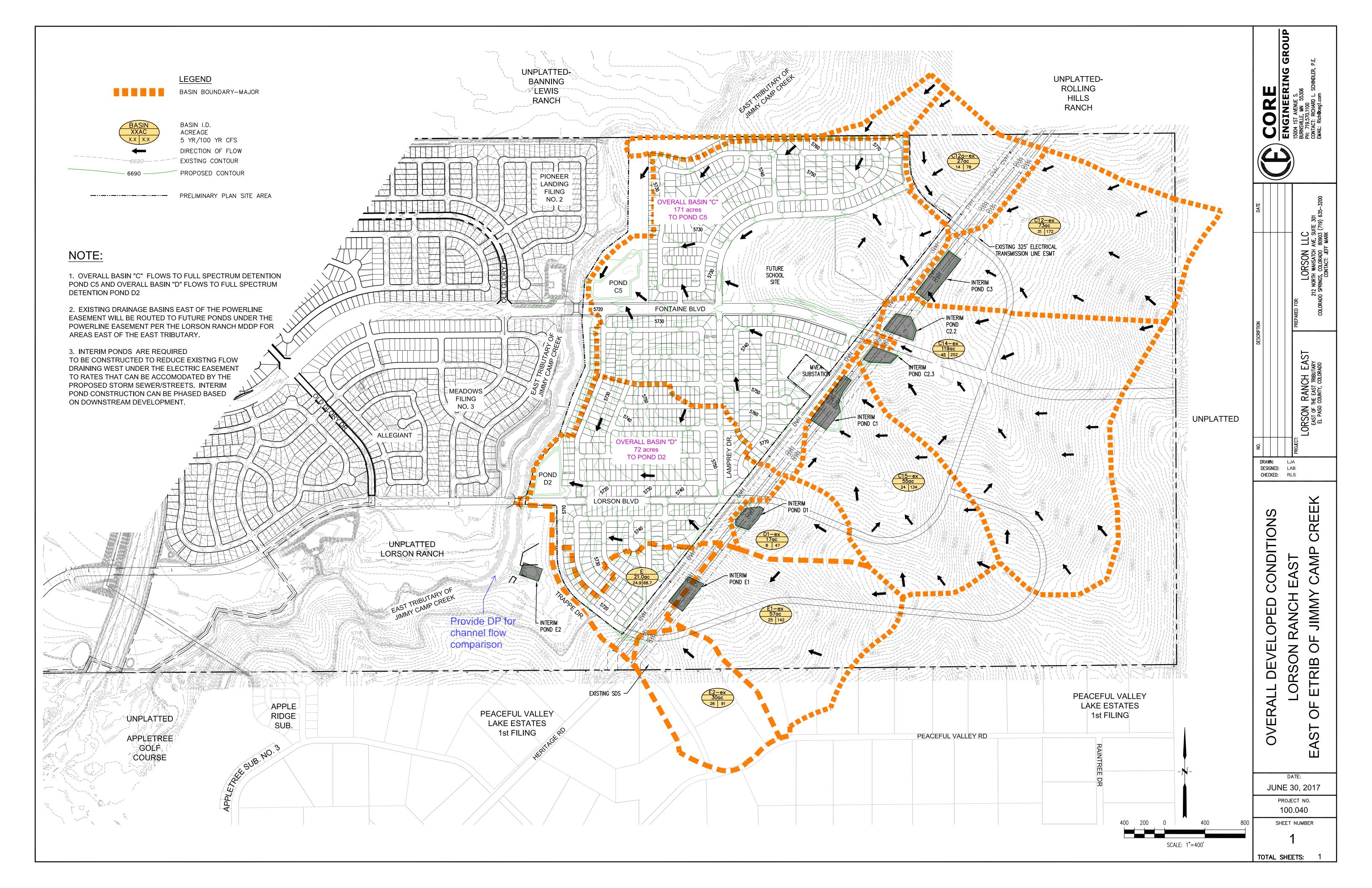
			-	
EAS	T TRIBUT	ARY	EAST ⁻	TRIBUTARY
FEM	A FLOW	DATA	DBPS	FLOW DATA
DESIGN POINT	RUNOFF 10 YR (CFS)	RUNOFF 100 YR (CFS)	RUNOFF 2 YR (CFS)	RUNOFF 100 YR (CFS)
ET1	2400	4750	100	4220
ET2	2600	5200	110	4530
ET3	2800	5500	110	4570
ET4	2800	5500	120	4600

ALLEGIANT

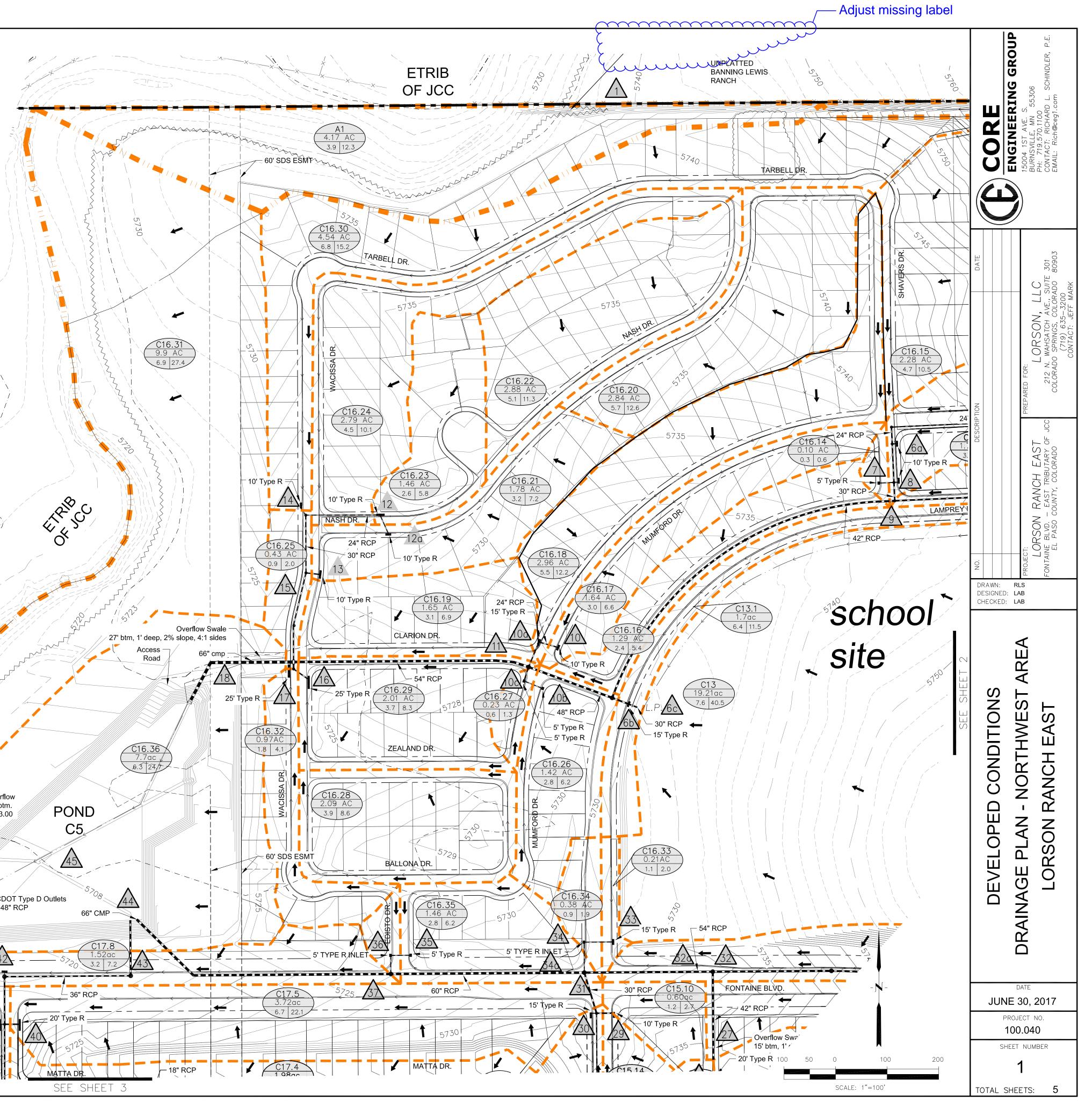
<u>LEGEND</u> BASIN BOUNDARY-MAJOR

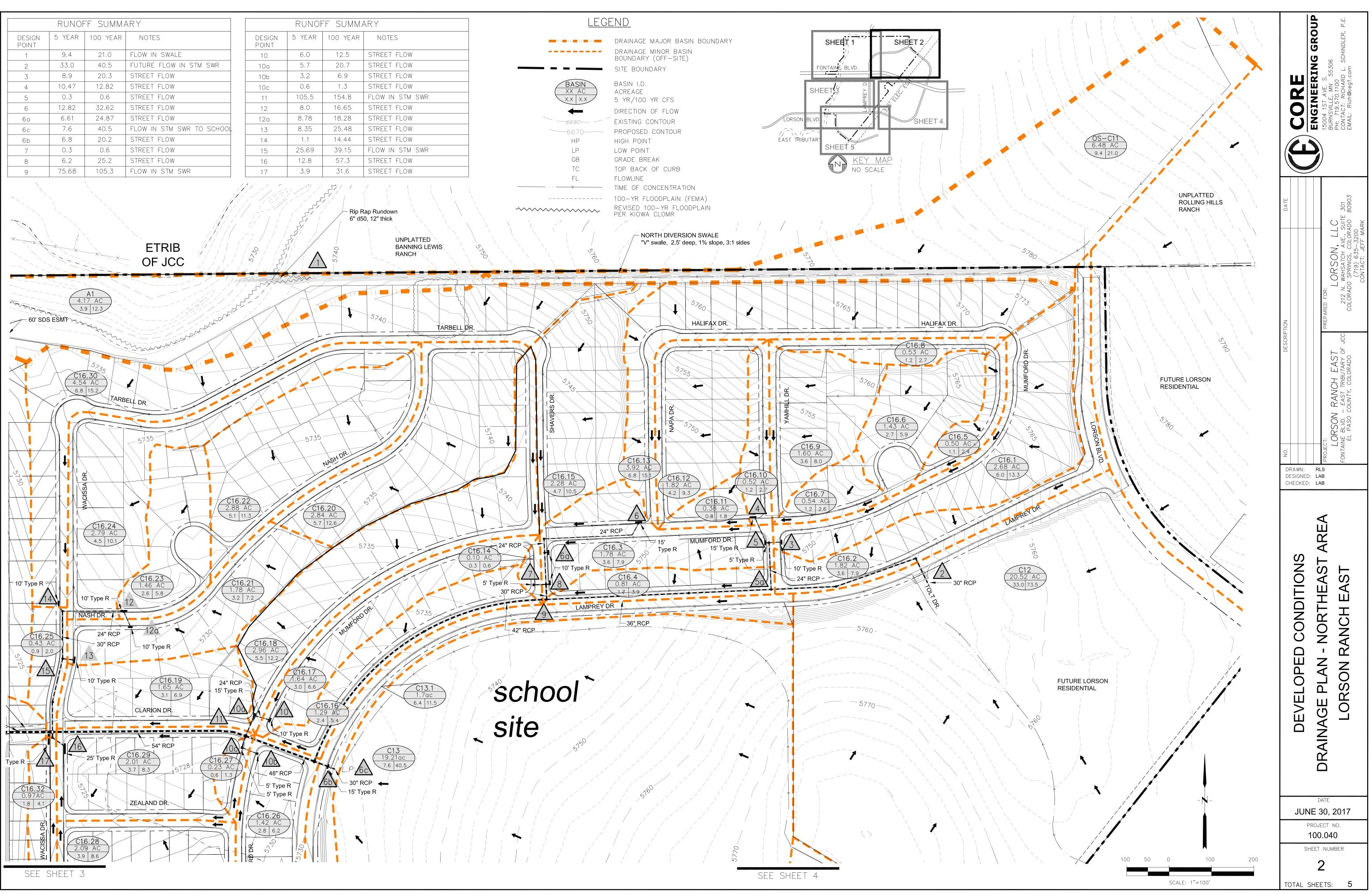
BASIN DESIGN POINT

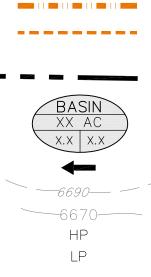

ÚNPLATTEC


BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR TIME OF CONCENTRATION PRELIMINARY PLAN SITE AREA 100-YR FLOODPLAIN

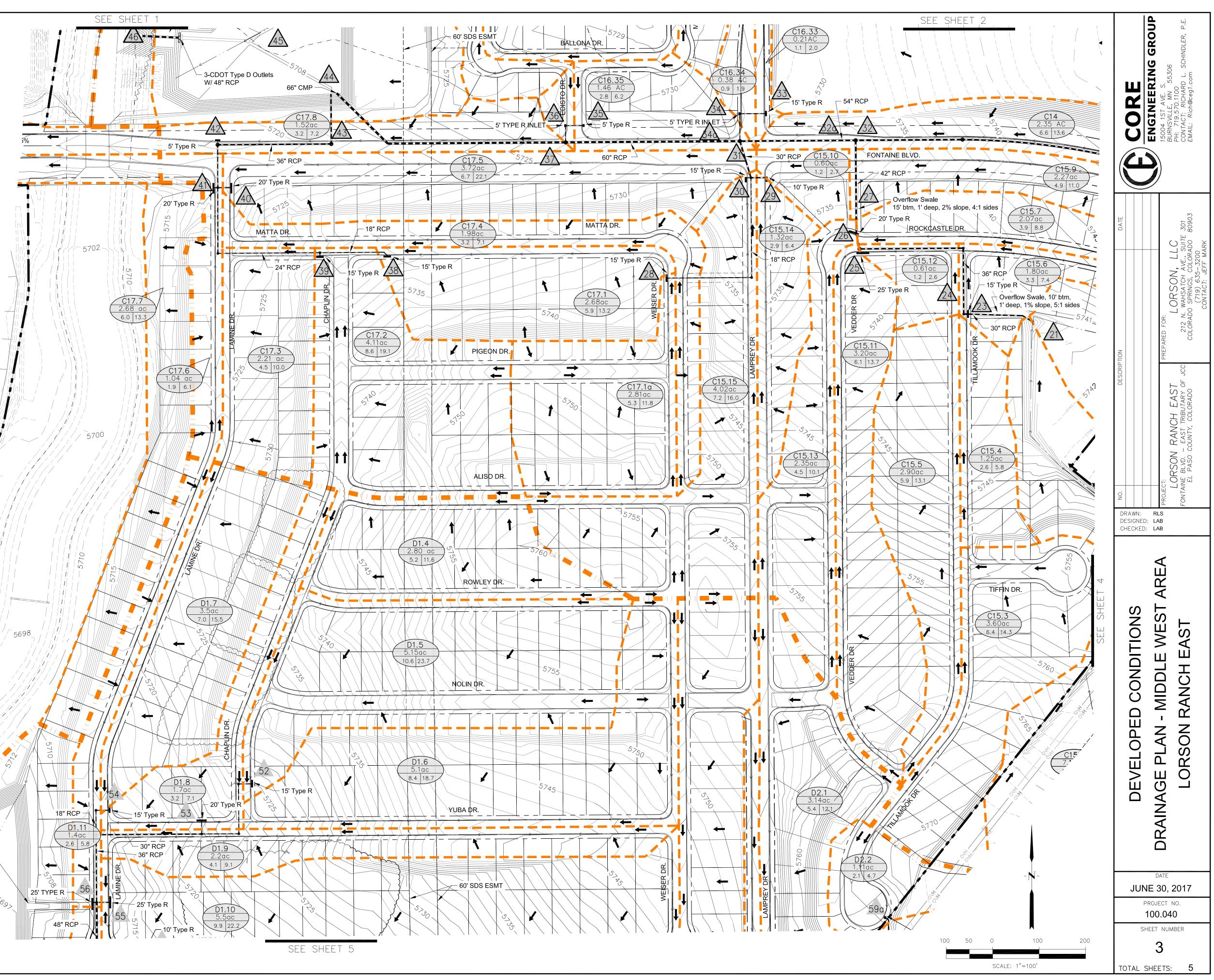
MEADOWSFILMG

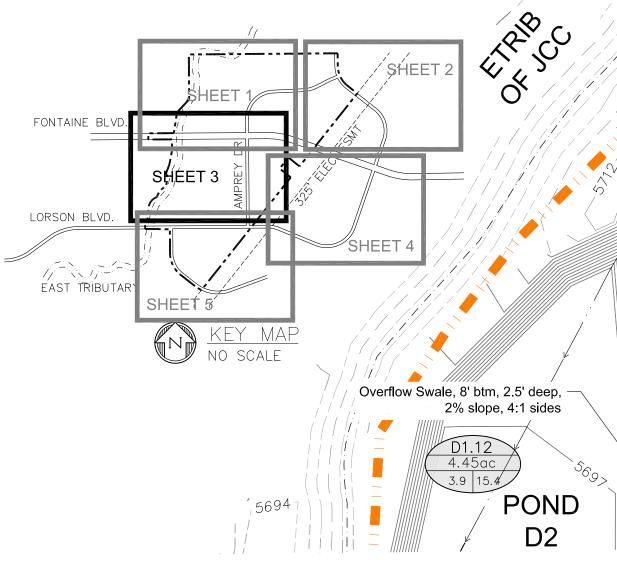

APPLE RIDGE SUB.

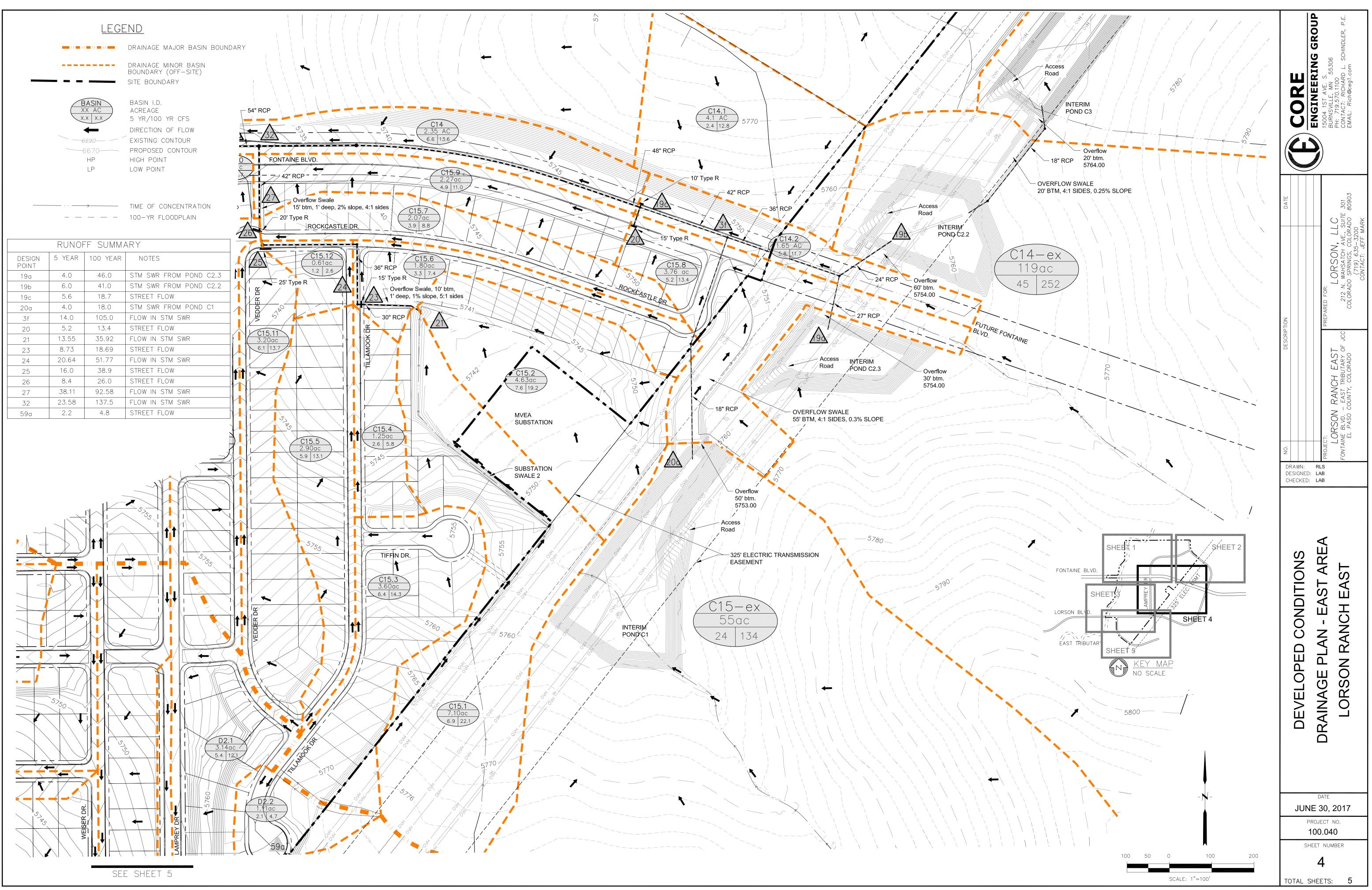

LESUB. NO. 3

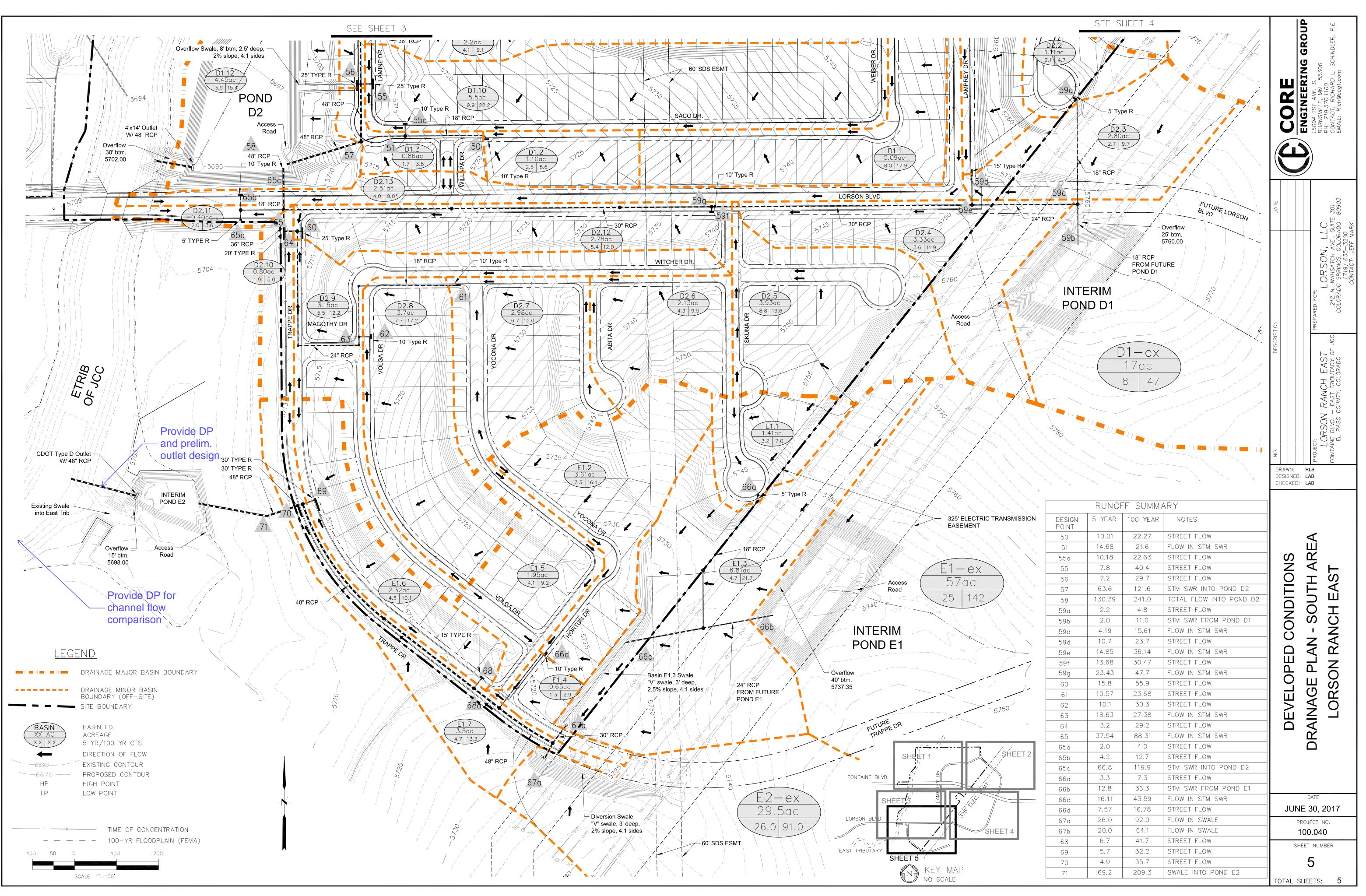


				7
	1	FF SUMM,		
DESIGN POINT	5 YEAR	100 YEAR	NOTES	LEGEND
1	9.4	21.0 24.87	FLOW IN SWALE STREET FLOW	DRAINAGE MAJOR BASIN BOUNDARY
6a 6c	7.6	40.5	FLOW IN STM SWR TO SCHOOL	DRAINAGE MINOR BASIN
6b	6.8	20.2	STREET FLOW	BOUNDARY (OFF-SITE)
7 8	0.3	0.6	STREET FLOW STREET FLOW	- XX AC ACREAGE
9	75.68	105.3	FLOW IN STM SWR	X.X X.X 5 YR/100 YR CFS DIRECTION OF FLOW
10	6.0	12.5	STREET FLOW	EXISTING CONTOUR
10a 10b	5.7	20.7 6.9	STREET FLOW STREET FLOW	6670 PROPOSED CONTOUR HP HIGH POINT
10b 10c	0.6	1.3	STREET FLOW	LP LOW POINT
11	105.5	154.8	FLOW IN STM SWR	TIME OF CONCENTRATION
12 12a	8.0	16.65 18.28	STREET FLOW STREET FLOW	SITE BOUNDARY
13	8.35	25.48	STREET FLOW	REVISED 100-YR FLOODPLAIN
14	1.1	14.44 39.15	STREET FLOW FLOW IN STM SWR	PER KIOWA CLOMR
15	25.69 12.8	57.3	STREET FLOW	
17	3.9	31.6	STREET FLOW	
18	147.9	230.8	STM SWR INTO POND C5	
27 29	38.11 8.6	92.58 20.8	FLOW IN STM SWR STREET FLOW	
30	7.2	20.1	STREET FLOW	
31 32	19.36 23.58	42.12	FLOW IN STM SWR FLOW IN STM SWR	
32 32a	59.01	226.9	FLOW IN STM SWR	
33	8.2	26.3	STREET FLOW	
34 34a	0.9	8.0	STREET FLOW FLOW IN STM SWR	
35	2.8	6.1	STREET FLOW	
36	0.3	0.6	STREET FLOW	
37 40	77.41	275.5 39.4	STM SWR INTO POND C5 STREET FLOW	
41	2.0	19.3	STREET FLOW	
42	3.2 27.33	7.2	STREET FLOW STM SWR INTO POND C5	
43	102.5	339.2	FLOW INTO POND C5 FROM SOUTH	
45	157.0	484.0	TOTAL FLOW INTO POND C5	
46	7.8	420.0	FLOW INTO EAST TRIBUTARY STREET FLOW	
48	8.9	16.0	STREET FLOW	
			1	
	Γ		SHEET 2	
		SHEET		
FONT	AINE BLVD.	- <u></u> !/		
	SHEE			
		T 3 A		
LORSO	DN BL\D.			
			SHEET 4	
EAST	TRIBUTARY	SHEET 5		
		KEY	<u>MAP</u>	
			SCALE	
+		<u> </u>		POND 52' btm 5713.0
			PIONEER	B1
×				
			FILING	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OLD GLORY DR	NØ.2	
		GLOR		3-CD
j.				W/48
			C17.10 1.73ac 10' TYPE R	49
			3.9 16.0 INLET	
		5>1	5>76 existing 42" RCF	← 48" RCP @ 0.5% ←
			@0.4%	5' Type R
	C17	.9	► FONTAINE BLVD. ► 5716	24" RCP @ 0.5%
	7.8			
			4	2-5' TYPE R INLETS 20' Type R
I	ı	i · I		




DRAINAGE MAJOR BASIN BOUNDARY


SITE BOUNDARY BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR PROPOSED CONTOUR HIGH POINT LOW POINT TIME OF CONCENTRAT


			100-yr floodplain (fema)
	RUNO	FF SUMM/	ARY
DESIGN POINT	5 YEAR	100 YEAR	NOTES
21	13.55	35.92	FLOW IN STM SWR
23	8.73	18.69	STREET FLOW
24	20.64	51.77	FLOW IN STM SWR
25	16.0	38.9	STREET FLOW
26	8.4	26.0	STREET FLOW
27	38.11	92.58	FLOW IN STM SWR
28	5.3	11.56	STREET FLOW
29	8.6	20.8	STREET FLOW
30	7.2	20.1	STREET FLOW
31	19.36	42.12	FLOW IN STM SWR
32	23.58	137.5	FLOW IN STM SWR
32a	59.01	226.9	FLOW IN STM SWR
33	8.2	26.3	STREET FLOW
34	0.9	8.0	STREET FLOW
34a	77.65	272.7	FLOW IN STM SWR
35	2.8	6.1	STREET FLOW
36	0.3	0.6	STREET FLOW
37	77.41	275.5	STM SWR INTO POND C5
38	5.9	14.43	STREET FLOW
39	8.61	21.53	STREET FLOW
40	12.9	39.4	STREET FLOW
41	2.0	19.3	STREET FLOW
42	3.2	7.2	STREET FLOW
43	27.33	65.94	STM SWR INTO POND C5
44	102.5	339.2	FLOW INTO POND C5 FROM SOUTH
45	157.0	484.0	TOTAL FLOW INTO POND C5
52	15.44	34.7	STREET FLOW
53	14.65	41.47	STREET FLOW
54	7.0	15.5	STREET FLOW
55a	10.18	22.63	STREET FLOW
55	7.8	40.4	STREET FLOW
56	7.2	29.7	STREET FLOW
59a	2.2	4.8	STREET FLOW

□ 100 □ 100.040 □Drainage □ 00.040−DevConditions.dwg Jun 29, 2017 - 5:

Markup Summary

alex.dabdub (4)		
January 29, 2015 . 957 OF 1300 NDEX FOR PANELS NOT PRINTED)	Subject: Text Box Page Label: 63 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM Color:	January 29, 2015
COLUKADO AND INCORPORATED AI REVISED TO REFLECT LOMR EFFECTIVE: PANEL 957 OF 1300 REF MAP MARY AND DAME IS NO	Subject: LOMR Stamp Page Label: 63 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:47:49 PM Color:	
January 29, 2015 MAP NUMBER 05041C1000 F	Subject: Text Box Page Label: 64 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:48:14 PM Color:	January 29, 2015
REVISED TO REFLECT LOMR EFFECTIVE:	Subject: LOMR Stamp Page Label: 64 Lock: Unlocked Status: Checkmark: Unchecked Author: alex.dabdub Date: 9/16/2014 1:48:14 PM Color:	
dsdrice (26)		
Sector and the sector	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 9:48:03 AM Color:	constructed?
	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 9:46:25 AM Color:	See MDDP comments

 A first objective or advective interactive data can be appreciated on the state interactive and the state of the state interactive and the state of the state of the state of the state interactive of the state of t	Subject: Cloud+ Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 8:51:23 AM Color:	range?
Including Statistical Conference on Conferen	Subject: Callout Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 8:57:01 AM Color:	Include approved report in Appendix. Discuss all actual plan improvements.
EI Pata Courty states the 1 distortion is to design, based on this criteria. Full Spectrum Why? (gram on criteria) and moderatin to also (gram on criteria) and moderatin to also (gram on criteria). (gram on c	Subject: Cloud+ Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 9:56:13 AM Color:	Why?
basin are assumed ph the perifer of this nemt (p this master or detention of storm up DDR ough this site was e canal was ignored	Subject: Cloud+ Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 9:59:06 AM Color:	PDR
Weight provide the state of the	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 8:54:39 AM Color:	canal to be filled
4. A start of bar of a start of bar to the start of bar of the start of the star	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 8:55:23 AM Color:	CLOMR in progress

	Subject: Cloud+ Page Label: 18 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:23:23 AM Color:	You can't detain undeveloped areas without a complete downstream channel flow analysis.
<text><text><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></text></text>	Subject: Cloud+ Page Label: 49 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 11:44:06 AM Color:	sediment
had sheet)	Subject: Cloud+ Page Label: 49 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:33:12 AM Color:	? will be?
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Subject: Cloud+ Page Label: 49 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 11:48:37 AM Color:	not found
<text></text>	Subject: Cloud+ Page Label: 49 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 1:14:12 PM Color:	How many with Phase 1?
	Subject: Cloud+ Page Label: 49 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 1:14:22 PM Color:	The outlets need to accommodate historic flows; spillways and downstream conveyances need to accommodate developed flows.

_____ Subject: Text Box This is not acceptable. Reference DCM 2.3, 2.5.3 Page Label: 51 and Table 6-1. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 11:50:17 AM Color: Subject: Cloud+ Which basins? BMP maint. agreement will be Page Label: 53 required. Address maintenance entity. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 1:04:56 PM Color: -----..... Subject: Cloud+ The drainage costs anticipated? Page Label: 53 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 1:09:10 PM Color: _____ Subject: Cloud+ Potentially (through the required process) Page Label: 54 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 1:07:17 PM Color: Subject: Text Box Provide runoff coefficients tables and land Page Label: 72 use/impervious percentages table used for Lock: Unlocked calculations. Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:12:24 AM Color: 📃 _____ _____ Subject: Cloud+ This table (for all ponds that receive flow from Page Label: 127 upstream ponds) needs to be recreated with Lock: Unlocked Hydraflow output Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 3:29:49 PM

Color:

Subject: Text Box Page Label: 135 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 11:29:28 AM Color:

Subject: Callout

Page Label: 169 Lock: Unlocked

Author: dsdrice

Checkmark: Unchecked

Date: 8/15/2017 10:37:10 AM

Status:

Color:

This is not acceptable. Reference DCM 2.3, 2.5.3 and Table 6-1.

Provide DP for channel flow comparison

Subject: Callout Page Label: 170 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:36:01 AM Color:

Provide DP for channel flow comparison

.....

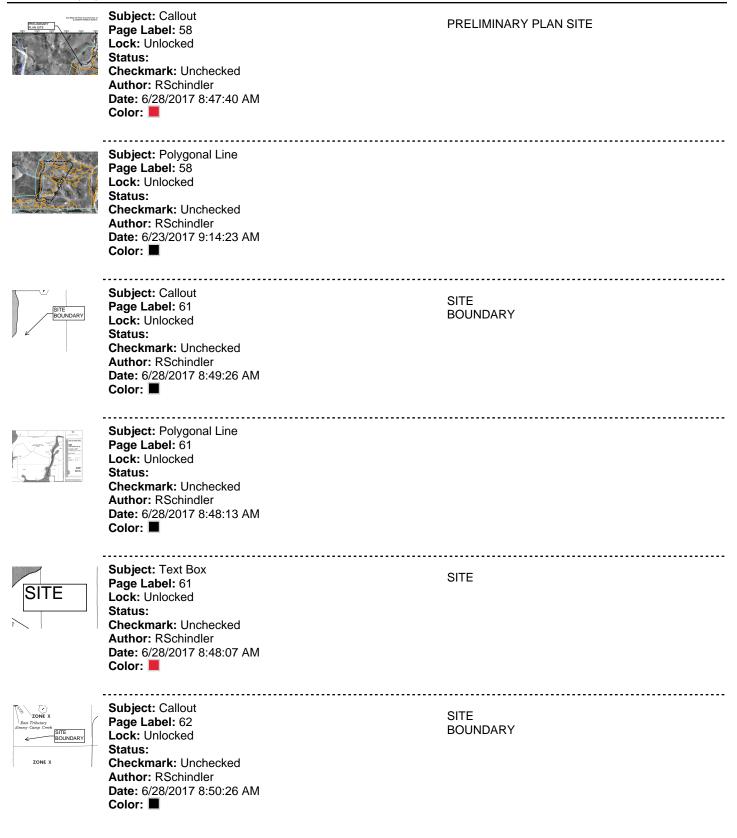
Subject: Cloud+ Page Label: 171 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:15:29 AM Color:

Adjust missing label

LEGEND

Subject: Callout Page Label: 175 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:34:37 AM Color:

Provide DP for channel flow comparison



Subject: Callout Page Label: 175 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 8/15/2017 10:33:51 AM Color:

Provide DP and prelim. outlet design.

RSchindler (14)

-----Subject: Polygonal Line Page Label: 62 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:50:35 AM Color: Subject: Callout SITE Page Label: 63 BOUNDARY Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:52:23 AM Color: _____ Subject: Polygonal Line Page Label: 63 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:51:48 AM Color: Subject: Text Box SITE Page Label: 63 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:52:33 AM Color: Subject: Callout REVISED SITE Page Label: 64 AREA BOUNDARY Lock: Unlocked SITE BOUNDARY Status: Checkmark: Unchecked Author: RSchindler Date: 6/28/2017 8:53:23 AM Color: Subject: Polygonal Line Page Label: 64 Lock: Unlocked REVISE AREA Status: Checkmark: Unchecked Author: RSchindler

24

ΤE

Date: 6/28/2017 8:53:15 AM Color:

Subject: Line
 Page Label: 112
 Lock: Unlocked
 Status:
 Checkmark: Unchecked
 Author: RSchindler
 Date: 6/27/2017 7:31:49 PM
 Color:

Subject: Callout Page Label: 112 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 6/27/2017 7:48:18 PM Color:

Pond E2 not used in 5-yr or 100-year
