PRELIMINARY/FINAL DRAINAGE REPORT

FOR

JUDGE ORR ROAD RV PARK & STORAGE DEVELOPMENT

Prepared For: Prairie Stone, LLC 9476 Dakota Dunes Lane Peyton, CO 80831-4138

Prepared By:
Associated Design Professionals, Inc.
3520 Austin Bluffs Parkway
Colorado Springs, CO 80918
719.266-5212

ADP Project No.160301 June 14, 2019

PCD Project #PPR-16-040

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared

according to	the criteria established by the County for drainage reports, and said report is in
	vith the massion platicof the drainage basin. I accept responsibility for any liability
caused by an	y negligent acts, elipois of omissions on my part in preparing this report.
Mile	
Michael A. Ba	artusek, P.E.#233729
	MANA CHILIPPE
DEVELOPER	'S STATEMENT STATE OF THE STATE
	per, have read and will comply with all of the requirements specified in this ort and plan.
•	^
By: Andrea	ndrea Hunnich
Title: Presid	lent .
Address:	Prairie Stone, LLC 9476 Dakota Dunes Lane Peyton, CO 80831-4138
	ordance the El Paso County Land Development Code, Drainage Criteria Manual nd 2, and the Engineering Criteria Manual, as amended.
Jennifer Irvi	ne, County Engineer/ECM Administrator Date

Conditions:

TABLE OF CONTENTS

General	1
Soils	1
Floodplain Statement	1
Method of Computation	1
Water Quality/Detention Concepts	2
Existing Drainage Conditions	2
Developed Drainage Conditions	4
Water Quality	5
Detention	6
Private Drainage Facilities Estimated Cost	6
Drainage Fees	7
Conclusions	7
References	8
Appendix A – Maps	Α
Appendix B – Calculations	В
Appendix C – Design Charts	C
Back Pocket – Drainage Map	

PRELIMINARY/FINAL DRAINAGE REPORT JUDGE ORR ROAD RV PARK & STORAGE DEVELOPMENT

GENERAL

The Judge Orr Road RV Park & Storage project consists of 35.0 acres located along Judge Orr Road just east of US 24 and approximately two miles northeast of Falcon, Colorado. The project is located within the previously approved Meadowlake Commons Master Plan area. The site is further described as being located in central El Paso County within the Southwest Quarter of Section 33, Township 12 South, Range 64 West of the 6th Principal Meridian, El Paso County, Colorado.

The proposed development lies within the Haegler Ranch Drainage Basin Planning Study area, prepared by URS Corporation in 2007. It is also included in the Meadowlake Commons MDDP, prepared by Springs Engineering in 2008. For this report, the existing flows for this project utilize the findings of the Meadowlake Commons MDDP.

SOILS

The Soil Conservation Service (NRCS) soil survey for El Paso County has identified the soil type in this study area as follows:

Map Symbol No.	Soil Name	Hydrologic Soil Group
19	Columbine Gravelly Sandy Loam	Α

FLOODPLAIN STATEMENT

A small portion of the site is located within a Zone A floodplain as determined by FEMA on the Flood Insurance Rate Map (FIRM) Panel 08041C0575G, dated December 7, 2018.

METHOD OF COMPUTATION

0 - -

The methodology used for this report is in accordance with the *City/County Drainage Criteria Manual*. The Rational Method for computation of runoff was used for local basin design.

Q = cia			
Where	Q	=	a
	С	=	realisti socialisti opi socialisti da alla di sa cital accordica
	i	=	Average rainfall intensity, in inches per hour, for the duration required for the runoff to become established
	a	=	

The overall drainage for the area including off-site flows was calculated using the US Army Corp of Engineers Hydrologic Engineering Center – Hydrologic Modeling System, Version 3.1.0 (HEC-HMS). The Soil Conservation Service (SCS) (since renamed National Resources Conservation Service - NRCS) curve number method was selected for calculating the runoff volumes from the drainage basins per the DCM. Runoff rates for the five-year minor storm and 100-year major design storm were calculated.

Times of concentration were estimated using the SCS procedures described in the DCM based upon the hydrologic soil type, the natural conditions found in the basins and the runoff curve numbers (CN) chart from Table 5-4 of the DCM.

The 100-year, 24-hour storm precipitation selected from the NOAA isopluvial map in Figure 5-4e from the DCM was 4.6 inches. The ten-year, 24-hour storm precipitation selected from the rainfall depth-duration relationship chart in Figure 5-6 from the DCM was 3.1 inches. The five-year, 24-hour storm precipitation was derived from Figure 5-6 of the *City/County Drainage Criteria Manual*. The calculated rainfall amount was 2.6 inches. These numbers, along with SCS information, were used as input.

WATER QUALITY/DETENTION CONCEPTS

In accordance with current NPDES requirements, stormwater quality BMPs will be incorporated into the development of this project. Water quality facilities will be included in all proposed full spectrum detention facilities.

EXISTING DRAINAGE CONDITIONS

The existing site is only minimally developed with some gravel roads and two existing structures. The site is covered with Rangeland grasses and generally drains to the southeast at an average slope of three percent. An existing channel and a Zone A floodplain exist within the far northeastern corner of the project area. An existing, broad swale bisects the site and travels through an abandoned stock pond prior to exiting the site. All flows from Judge Orr Road are intercepted by a roadside ditch which continues past the site to the east.

There are currently two culvert crossings running under US 24. One crossing is a 24-inch CMP culvert located approximately 1,000 feet northeast of the US 24/Judge Orr Road intersection. This pipe is estimated to accommodate flows of 12.9 cfs for the five-year storm and 54.1 cfs for the 100-year storm. The second crossing consists of twin 54-inch CMP culverts. These pipes are located approximately 2,900 ft northeast of the intersection. The twin culverts carry offsite flows of 44.2 cfs for the five-year storm and 192.7 cfs for the 100-year storm and enter the project in the northeast corner, enter the existing channel located in the far northeast corner of the site and cross the property north of the project site.

The existing area located northwest of the parcel is designated as Sub-Basin OS1. This sub-basin drains existing pasture land and produces flows of 3.3 cfs for the 5-year storm and 15.2 cfs for the 100-year storm. These flows are intercepted by an existing ditch which carries the flows south along the property line to a low point from Sub-Basin OS2.

Sub-Basin OS2 drains the area just west of the parcel. This area is currently vacant and produces flows of 4.0 cfs and 28.0 cfs respectively. These flows combine with the flows from Sub-Basin OS1 at DP1 for total flows of 6.4 cfs for the 5-year storm and 39.0 cfs for the 100-year storm. These flows travel east through a broad swale located in Sub-Basin A2 and into an existing stock pond within Sub-Basin A2

Sub-Basin A1 drains the northeastern portion of the site. It is currently vacant and covered with rangeland grasses. This sub-basin produces flows of 2.2 cfs for the 5-year storm and 16.5 cfs for the 100-year storm. These flows leave the site in a southeasterly direction approximately 600 ft north of the main channel. These flows eventually join the main channel about 500 ft east of the site.

Sub-Basin A2 drains the major portion of the site and contains the stock pond and farm residence. The site also contains an existing stock pond which has been breached and is covered with rangeland grasses. This sub-basin produces flows of 3.1 cfs and 24.0 cfs respectively. These flows combine with the flows from DP1 at DP2 to produce total flows of 7.9 cfs for the 5-

year storm and 52.1 cfs for the 100-year storm. These flows leave the site in the southeast area of the site.

Sub-Basin OS3 drains an area west of SH24 and drains to the east into Sub-Basin OS4 through a 24" CMP. This area is currently zoned A-35 and is primarily open range. This sub-basin produces flows of 17.8 cfs and 62.0 cfs respectively.

Sub-Basin OS4 drains an area west of the parcel. The area is vacant and covered with rangeland grasses. It slopes to the southeast and flows east along Judge Orr Road. It produces flows of 8.2 cfs and 36.7 cfs respectively. These flows combine with the flows from OS3 at DP3 to produce flows of 24.8 cfs for the 5-year storm and 94.8 cfs for the 100-year storm.

Sub-Basin A3 drains the southern area of the site and is mostly vacant with a barn and some gravel drives located in the western portion of the site. It produces flows of 1.1 cfs and 5.3 cfs respectively and drains into the roadside ditch. OS5 drains the area between the property line and the center line of Judge Orr Road. This area produces flows of 1.3 and 3.3 respectively, and combines with the flows from A3 at DP4 within the Judge Orr roadside ditch to produce total flows of 2.0 cfs for the 5-year storm and 7.6 cfs for the 100-year storm. These flows combine with the flows from DP3 at DP4 to produce total flows of 23.3 cfs for the 5-year storm and 89.0 cfs for the 100-year storm within the roadside ditch. These flows leave the site in a northeasterly direction and join with the main channel about 300 ft east of the property. These flows eventually combine with the flows from DP2 and Sub-Basin A1 at DP6 to produce total flows in the main channel of 33.3 cfs for the 5-year storm and 156.2 cfs for the 100-year storm.

Sub-Basin B drains a small portion of the site in the northern corner. It produces flows of 0.2 cfs for the 5-year storm and 1.6 cfs for the 100-year storm.

The estimated runoff amounts produced for the project under existing conditions are shown in Table 1 below.

TABLE 1 – EXISTING CONDITIONS						
Sub-Basin	Q₅CFS	Q ₁₀₀ CFS				
OS1	3.3	15.3				
OS2	4.0	28.0				
OS3	17.8	62.0				
OS4	8.2	36.7				
OS5	1.3	3.3				
A1	2.2	16.5				
A2	3.1	24.0				
A3	1.1	5.3				
В	0.2	1.6				
DP1 (OS1 + OS2)	6.4	39.0				
DP2 (DP1 + A2)	7.9	52.1				
DP3 (OS3 + OS4)	24.8	94.8				
DP4 (DP3+OS5 + A3)	23.3	89.0				
DP5 (DP2 + DP4 + A1)	33.3	156.2				

DEVELOPED DRAINAGE CONDITIONS

The development of the site will include an RV storage area in the northern portion of the site with RV pads located in the southern portion of the site. The northern area will be covered by 4 inches of loose gravel. The southern area will have 120 gravel RV pad sites with asphalt roads connecting the sites and vegetated areas between the pads.

Flows amounts from the area west of SH 24 will remain the same as delineated in the existing conditions portion of the report. Currently these flows travel east in a swale toward the RV development. In the future these flows will be intercepted by a storm sewer and routed directly into the Judge Orr Road ditch as delineated on the Developed Conditions Map.

Existing historic flows from the property to the west will be transported through the site by way of a 30" HDPE storm sewer. The proposed 30" HDPE storm sewer will be located near the west property line to facilitate the connection from a future detention facility once the property to the west has been developed. The overflow spillway will also be directed to the 30" storm sewer along the west property line. This design has been coordinated with the current property owner, as has the proposed swale within the west property. OS1 and OS2 will flow down the existing swale on the west property and into a 4' wide swale which outlets at the same location as detention Pond 2. In the future a new detention pond will replace the swale and will tie directly into the 30" private HDPE storm sewer, with the portion of the storm sewer which will run under the future Right of Way constructed with RCP. This storm sewer will direct the flows around the RV storage site and outlet onto the adjacent property to the east adjacent to the Pond 2 outlet and will be maintained by the owner of the west property. The storm sewer will be placed within a drainage easement in the future when the property is platted. A conceptual 4.6 acre foot pond (Pond 1) was calculated for the future neighborhood commercial site with an estimated outflow of 0.1 cfs for the 5-year storm and 50.7 cfs for the 100-year storm, however the current flows are 6.4 cfs and 39.0 cfs respectively.

Sub-Basin A1 will drain the northern part of the site. This area will be used for RV storage and will be covered by 4 inches of loose gravel. This area will produce flows of 12.3 cfs and 26.0 cfs for the five- and 100-year storms. A 12" berm will keep the flows within the sub-basin. The flows will travel along the berm, cross the drive in a concrete pan and flow into a ditch which will take the flows into Pond 2.

Sub-Basin A2A drains the area between the west property line and the RV storage from the north boundary line to a high point in Range Flower Way. This area will contain the future public road. It will produce flows of 5.7 cfs and 12.0 cfs respectively and will flow into Sub-Basin A3 through a 24" RCP storm sewer.

Sub-basin A3 drains the central area of the site between the gravel parking area to the north and the storm sewer to the south. Flows from this RV park area will sheet flow toward a proposed swale. It will produce of 6.9 cfs and 18.0 cfs respectively. These flows will combine with the flows from Sub-Basin A2A at DP2 to produce flows of 11.2 cfs and 27.1 cfs respectively which will be intercepted by a Type D inlet and a 24" private HDPE storm sewer and transported into Pond 2.

Sub-Basin A4 drains the western and southern part of the developed parcel. This area will be developed as an RV park with private streets and gravel parking areas for RV's. The RV Park area will have asphalt roads with natural grass areas between the parking pads. Flows will travel to the southeast and be intercepted by a main road and transported into the detention basin. It will produce flows of 11.8 cfs and 30.0 cfs respectively.

The total flows into Pond 2 at DP3 will be 29.6 cfs and 70.0cfs for the five- and 100-year storms. The proposed 2.53 AF detention basin will release these flows through an outlet structure with a 36 inch RCP pipe at a rate of 0.5 cfs for the 5-year storm and 34.1 cfs for the 100-year storm.

Sub-Basin A2B drains the lower portion of Range Flower Way. This area will contain the future public road. It will produce flows of 2.4 cfs and 4.8 cfs respectively. These flows will be directed into the Judge Orr Road ditch and into Sub-Basin A5.

Sub-Basin A5 drains the western and southernmost area of the site. This area contains a proposed cinder trail and 75 ft future Judge Orr Road right-of-way. This area will produce flows of 0.4 cfs and 2.9 cfs respectively. Sub-Basin OS5 drains the area between the property line and the centerline of Judge Orr Road. This area produces flows of 1.0 cfs and 2.6 cfs respectively and combines with the flows from A5 and DP5 at DP6 to produce total flows in this area of 22.8 cfs for the 5-year storm and 87.5 cfs for the 100-year storm. These flows will combine with the detained flows at DP7 to produce total flows of 28.9 cfs for the 5-year storm and 150.6 cfs for the 100-year storm.

Sub-Basin B in the northeastern portion of the site will contain a landscaped area and produce flows of 0.2 cfs for the 5-year storm and 1.6 cfs for the 100-year storm.

Table 2 shows the estimated runoff which will be produced for the project under developed conditions.

TABLE 2 – PHASE I DEVELOPED CONDITIONS					
Sub-Basin	Q₅CFS	Q ₁₀₀ CFS			
OS1	3.3	15.3			
OS2	7.2	54.9			
OS3	17.8	62.0			
OS4	3.7	10.1			
OS5	1.0	2.6			
A1	12.3	26.0			
A2A	5.7	12.0			
A2B	2.4	4.8			
A3	6.9	18.0			
A4	11.8	30.0			
A5	0.4	2.9			
В	0.2	1.6			
DP1 (OS1+OS2)	9.7	66.4			
DPD1 (Existing DP1)	6.4	39.0			
DP2 (A2A+A3)	11.2	27.1			
DP3 (DP2+A1+A4)	29.6	70.0			
DPD2 (Detained DP2)	0.5	34.1			
DP4(DPD2+DPD1)	6,5	67.4			
DP5 (OS3+OS4 Existing)	24.8	94.8			
DP6 (A2B+A5+OS5+DP5)	22.8	87.5			
DP7 (DP5+DP6)	28.9	150.6			

WATER QUALITY

The water quality basin for this project is incorporated with the detention basin for this project and is designed with current NPDES requirements as provided by the El Paso County Drainage Criteria Manual as amended for an EDB. The required water quality capture volume is 0.470 AC-FT. The basin will be constructed with a 2.5-foot permanent micro-pool and a forebay. Design forms for this basin can be found in Appendix B. The design summary is below.

TABLE 3 -	WATER Q	UALITY DESIGN SUIV	IMARY	
Location	Depth	Size (CF)	Depth (FT)	Size (IN)
Pond 2	2.84	20,470	0,1.99,3.97	2.92,2.92,2.92

DETENTION

Developed flows from this project will be reduced to historic levels by using a privately owned and maintained detention facility. The *UDFCD Design for Full Spectrum Detention Basins* is used for the basin. Since a neighborhood commercial development is proposed for the property to the west, a conceptual detention basin, Pond 1, was designed for the area and routed around the site. The site detention for the RV project was routed through Pond 2 with the flows from Ponds 1 & 2 combined at the outlet structure for Pond 2.

	DE	TABLE 4 TENTION BASIN D	ETAILS	
Location	Size (AF)	Pipe Outlet	Outlet Structure	Riprap Weir Width
2	2.532	36"	Typical Outlet	40'
			Structure OS-2	

Flows from the detention basins drain into a broad grasses swale. The swale is located within an existing pasture area with an existing slope of approximately 1.7%. It has an average bottom width of 8 ft. with 8:1 side slopes. The detention basin outflow of 34.7 cfs plus the future Pond 1 flows of 50.7 cfs will only produce a flow depth of 1.2 ft. and a velocity of 4.1 fps. Once the Judge Orr ditch flows combine with the detained flows, the 150.6 cfs, approximately 300 ft. east of the project, will produce a flow depth of 1.6 ft and a velocity of 4.80 fps. These flows are below the existing condition flows and the existing grassed swale is hydraulically adequate with a Froude number at 0.85. There are no downstream manmade drainage systems in the area to tie into.

Should a 20 ft. breach occur in the detention embankment, the outflow would be approximately 199.5 cfs and would produce an initial wave of approximately 1.7 ft., a velocity of 5.1 fps and a Froude number at 0.86. This wave would dissipate within the 850 ft. prior to flows crossing Judge Orr Road. No structures exist prior to this crossing.

PRIVATE DRAINAGE FACILITIES

Item	Unit	Quantity	Unit Cost	Total Cost
30" HDPE FES	EA	1	\$650	\$650.00
18" HDPE FES	EA	1	\$500	\$500.00
36" RCP FES	EA	1	\$1000	\$1,000.00
24" RCP FES	EA	2	\$750	\$1,500.00
30" HDPE	LF	1607	\$75	\$120,525.00
24" HDPE	LF	120	\$69	\$8,280.00
38" x 24" RCEP	LF	570	\$94	\$53,580.00
24" RCP	LF	250	\$84	\$21,000.00

Concrete HDWL	EA	4	\$2,500	\$10,000.00
Type D Inlet	EA	1	\$3,908	\$3,908.00
Storm MH Type II	EA	4	\$4,575	\$18,300.00
Riprap	CY	380	\$98	\$37,240.00
Detention Outlet Structure	EA	1	\$8,000	\$8,000.00
Emergency Spillway	EA	1	\$2,500	<u>\$2,500.00</u>
			Sub-Total	\$286,983.00
		15% Cont	ingency & Engineering	<u>\$ 43,047.50</u>
			TOTAL	\$330,030.45

DRAINAGE BASIN FEES

The entire project lies within the Haegler Ranch Drainage Basin. However, the parcel is not being platted at this time, so no fees are due. In the future when this site is platted the drainage and bridge fees will be determined based on the percent of imperviousness of the platted subdivision.

CONCLUSION

The proposed development and subsequent lot developments follow the "Four Step Process" as mandated by the EPA as follows:

Step 1: Employ runoff reduction practices

Runoff has been reduced by disconnecting impervious areas where possible, eliminating "unnecessary" impervious areas and encouraging infiltration into suitable soils.

- Impervious areas have been directed to earth swales to encourage infiltration.
- Gravel will be used throughout the site to reduce the impervious of the areas.

Step 2: Stabilize drainageways

All drainageways, ditches and channels have been stabilized by the following methods:

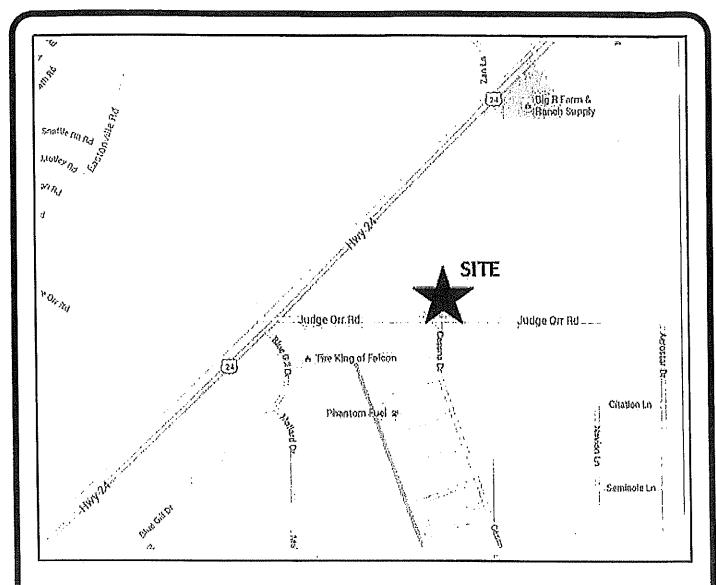
- Tributaries have been left in their relatively natural state where possible.
- New drainageways and swales have been stabilized with either riprap or erosion control fabric depending on the erosion potential.

New roadside ditches have been designed to be stable and handle the design capacity.

Step 3: Provide water quality capture volume (WOCV)

The proposed development will disturb approximately **30** acres, a WQCV of **0.470** ac-ft will be provided.

Step 4: Consider need for industrial and commercial BMP's.


The site is being developed as an RV Park with minimal impervious area therefore no industrial or commercial BMP's are required.

REFERENCES

- 1. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume* 1 (DCM).
- 2. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume II* (DCM).
- 3. Soil Survey of El Paso County Area, Colorado by USDA, NRCS.
- 4. El Paso County (January 2006) Engineering Criteria Manual.
- 5. Urban Drainage and Flood Control District (June 2011). *Urban Storm Drainage Criteria Manual, Volume 1-3*.
- 6. Meadowlake Commons MDDP by Springs Engineering, dated July, 2008.
- 7. Heagler DBPS by URS Corporation dated July, 2007.

APPENDIX A

MAPS

 $\frac{\text{VICINITY MAP}}{\text{\tiny N.T.S.}}$

ADPCIVIL ENGINEERING FOR THE FUTURE

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

 $\frac{\text{SOILS MAP}}{\text{\tiny N.T.S.}}$

ADPCIVILE ENGINEERING FOR THE FUTURE

3520 Austin Bluffs Pkwy, Suite 200 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

National Flood Hazard Layer FIRMette

Legend

FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PAHEL LAYOUT

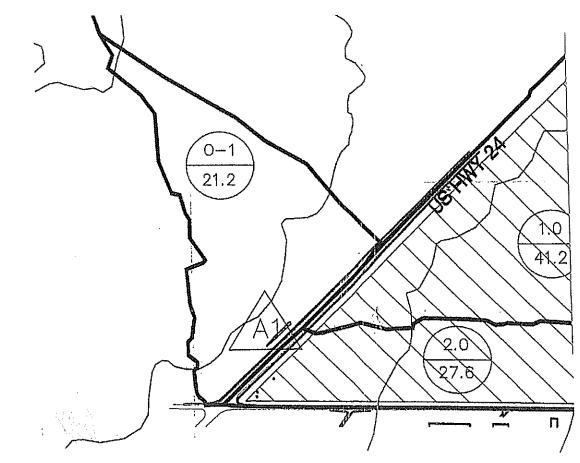
SPECIAL FLOOD HAZARD AREAS OTHER AREAS OF FLOOD HAZARD OTHER AREAS GENERAL STRUCTURES	SPECIAL FLOOD Without Base Flood Elevation (BFE). Zaw A. V. Ass With BFE or Depth Zam AE AO, AN, VE. AR HAZARD AREAS T. Regulatory Floodway	0.2% Annual Chance Flood Hazard, Area of 1% annual chance flood with average depth less than one foot or with drainag areas of less than one square mile Zone. Enture Conditions 1,% Annual	THER AREAS OF THE Area with Flood Risk due to Levee. See Notes. Zono X FLOOD HAZARD Area with Flood Risk due to Levee Zono D	NO SCREEM Area of Minimal Flood Hazard Zone X Effective LOMRs Area of Undetermined Flood Hazard Zone	Channel, Culvert. or Skorm Sewer
	SPECAL FLOOD HAZARD AREAS		OTHER AREAS OF FLOOD HAZARD		

(B) 20.2 Cross Sections with 1% Annual Chance Coastal Transoct Base Flood Elevation Line (BFE) Coastal Transect Baseline No Digital Data Available Water Surface Elevation Jurisdiction Boundary Digital Data Avallable Hydrographic Feature **Profile Baseline** ■ Limit of Study OTHER FEATURES

Unmapped

MAP PANELS

The pin displayed on the map is an approximate point selected by the user and does not represe an authoritative property location.


0-

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown compiles with FEMA's basemap accuracy standards

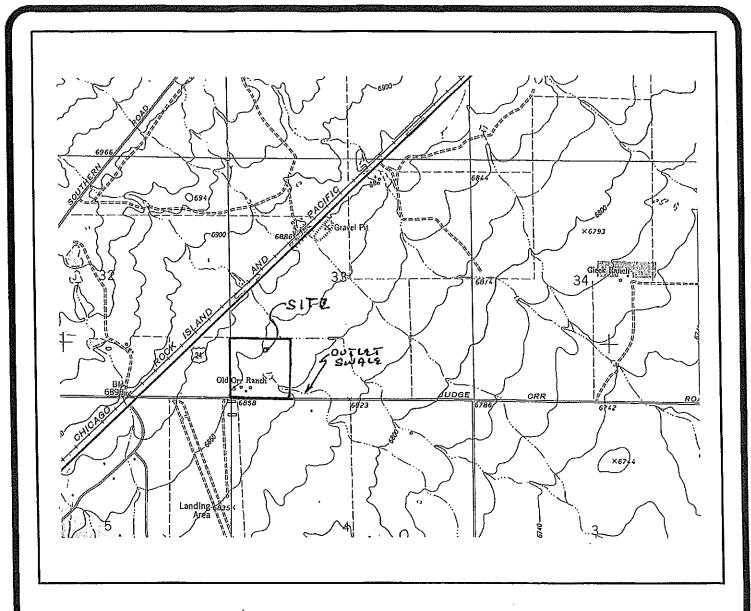
authoritative NFHL web services provided by FEMA. This map was exported on 5/3/2019 at 4:13:20 PM and docs not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. The flood hazard information is derived directly from the

This map image is void if the one or more of the following map elements do not appear, basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers. FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes

APPENDIX B DESIGN CALCULATIONS

NOTE: SUBBASIN O-1 RENAMED AS SUBBASIN OS3 IN THIS REPORT

* FROM MEADOWLAKE COMMONS MDDP BY SPRINGS ENGINEERING, DATED JULY 2008



<u>OFFSITE</u> DRAINAGE MAP

SCALE: 1" = 500'

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

OFFSITE DRAINAGE MAP SCALE; 1'=2000'

ADPCIVIL

ENGINEERING FOR THE FUTURE

3520 Austin Bluffs Pkwy, Suite 102 Colorado Springs, CO 80918 (719) 266-5212 fax: (719) 266-5341

FACTOR CA	LCULATION	SHEET					
			<u> </u>				
RUNOFF CO							-
TYPE A/B S	OILS						
LAND USE			5 YR	100 YR	IMPERV.		
					8		
JNDEV			0.08	0.35	0		
LOOSE GRAV	ļ		0.59	0.7	80		
RAVEL ROP			0.59	0.7	80		
GRAVEL RV			0.59	0.7	80		
PAVED ROAL	OS/BUILDI	NGS	0.9	0.96	100		
Historic Cond	1141						
	TOTAL	SURFACE C			3	CALCULATE	
AREA	AREA	GRASSED	LOOSE	GRAVEL	BUILDINGS	5	100
DEGIO	7	SURFACE	GRAVEL	ROADS	OR PAVED		V/5
DESIG.	(acre)	The state of the s	item paga apa i ite tapa a ari limin araphippi di tapa ri amahara da fi mahar de al		ROADS	YR	YR
***	44.75	44.76	0.00	0.00		0.00	
A1	11.75				1	j	0,3
A2	20.75	}	0.00		I	1	0.3
A3	4.36		0.00	1	1	1 ' 1	0.3
	36.86	36.26	0.00	0.45	0.15	0.09	0.3
0/ 1		00/	000/	900/	4000	-	
% Impervious	i	0%	1		1		
Imp x A	0.51	0	<u> </u>	0.36	0.15		
Total I x A Total Imp	0.51/36.86	1		-			
Total Imp	0.51/30.60	- 1.47 6					······
							m m-c
В	0.87	0.87	0.0	0,00	0.00	0.08	0.3
B	0.07	0.07	0.0	0.00	J	0.00	V.3
OS1	7.81	7,19	0.0	0.0	0 0.62	0.15	0.4
OS2	36.41	J	1	Į.			0.2
OS3		i From Heagi	1	0.0	0,40	0.30	0.0
OS4	13.73			0.0	0 1.36	[0.4
OS5	0.7	1	.			1	0.4
<u> </u>	Ų./·	U,42	U.U	0.0	U.23	0.41	U.1
		1	1	1	ĺ	1	

	TOTAL :	SURFACE CO	NOITION	REAS		CALCULATED	C
AREA	AREA	GRASSED	LOOSE	GRAVEL	PAVED	5	100
		SURFACE	GRAVEL	RV	ROADS		
DESIG.	(acre)			PARKING		YR	YR
A1	8.30	0.61	7.69	0.00	0.00	0.55	0.67
A2A	2.58	0.86	0.00	0.00	1.72	0.63	0.67
A3	6,85	3.88	0.00	1.15	1.82	0.03	0.78
A4	11.92	9.18	0.00	1.49	1.25	l }	0.46
Total @Pond	29.65	14.53	7.69	2.64	4.79	1	0.40
A2B	0.70	0.16	0.00	0.00	0.54	l	0.82
A5	1.80	1.72	0.00	0.00	0.08	l	0.38
% Impervious		0%	80%	80%	100%		
Imp x A		0	6.15	2.11	4.79	1	
Total I x A	13.05						
Total Imp	13.05/29.65	5 = 44.0%					
В	0.87	0.87	0.00	0.00	0.00	0.08	0.35
OS1	7.81	7.19	0.00	0.00	0.62	0.15	0.40
OS2	42.70	1.	0.00	1 1	23.50	1 1	0.40
OS3		From Heagle		0.00	20.00	0.30	0.60
OS4	4.18	J		0.00	1.36	_i	0.55
OS5	0.70	1		1	0.28		0.59
Pond 1					•		***************************************
% Impervious	TOTAL	GRASSED	NEIGHBOR	HOOD			
	AREA		COMMERC				
OS1	7.81	ı	1	1			
OS2	42.70	1		5			
	50.51	1		1			
% Imperviou	s	0%	70%	6			
Imp x A				I			
Total I x A	28.74		·				

فالمعلقات المحالية المتابعة ال

	JUDGE ORR	JUDGE ORR ROAD RV PARK & STORAGE DEVELOPMENT	R & STOR	PAGE DEVE	TUDEMENT																
March Content of Section March Content of Se	PROJ. #16	1301								-											
This continue Cont	DRAINAGE	CALCULATION	SHEET																		
Name	04/25/19																				
This continue Cont																		1			
This continues This								H	1 1	T C	. ⊢	-	+	7.5	1100	05	_	105113	VCT.	Τ	REA
Continue Continue	AREA	AREA	1		უ ჯ	C100 X A	1+#/ 1	STope	┪	(£‡)		+	4	╅			(cfs)	(feet)	╀		ESIG.
Third Conditions Thir	DESIG.	(acre)		(100 yr)					1		╁	4—	1_								-
1,1,1, 1,1,	EXISTING	CONDITIONS																		-	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	A1	11.75	0.08	0.35	0.94	4.11	200	2.00	21.46	+	+		╁		+-+	2.15	16.47			4	e-f
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	***************************************	- WAS E						0	r t		\dashv					3.28	15.27	450	-	\top	Sı
25.14	OS1	7.81	0.15	0.40	1.17	3.12	150	2.00	18.40		-		-	-		4.00	27.97				\$2
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0.52	22.10	0.03	0.35	3.16	11.08	2	8:3		-					1	6.36	38.95	1250	2.10		Pl
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	DF1	17.47	0.08	0.35	1.40	6.11	250	3.20	20.55			T			-	3.14	23.98			* [2	20
25.14 0.16 0.40	DP2	47.38			4.56	17.19							47.7			1.7.	24.35				
25.24 0.15	,						0.00	2 00	18 82					- -	- -	17.76	62.04	1800	╄		53
25.16 0.14 0.15 0.14 0.15	053	27.21	0.30	09-0	8.16	16.33	052	00.4	20.02						-	8.20	36.68	 			S4
55.35	084	25.14	0.16	0.41	4.02	10.31	720	700.2	77.77	╬	┿					24.83	94.79	1050	2.25		P3
115.10 1.08 0.14 0.15 0.15 1.09 1.09 1.00 2.00 14.28 1050 1.25 2.25 7.78 1.20 2.26 4.83 1.08 2.34 1.08 2.34 1.08 2.34 1.08 2.34 1.08 2.34 1.08 2.34	DP3	52.35			12.19	26.63						-		╁	┼┈						
1.5. 1.0		c	2	0 20	95 0	1 09	100	2.00	14.28	╀	╁	╂	┼	-	ļ	1.08	5.27			A I	3
115.10 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.85	A.3	2.80	0.14	0.60	0.34	0.49	10	2.00	3.25	╀	1	⊢	-	Н	┦	1.31	3.34			0 18	S5
115.10 1.15.10 1.	022	20.0			12.91	28.22		***************************************		- 			44.85	\dashv	\dashv		89.02			<u> </u>	# L
Counties Counties	DPS	115.10			18.41	49.52							44.85	-			156.23			2	Ç.
0.87 0.08 0.35 0.07 0.30 80 2.00 12.31 600 1.18 2.35 4.26 21.56 2.01 3.52 4.00 27.97 450 1.67 2.30 2.01 2.35 4.26 21.56 2.01 3.52 4.00 27.97 450 1.67 2.30 27.97 24.01 2.35 4.00 2.01 3.52 4.00 27.97 450 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.3											+	-				0.21	1.62		-	B	
The color of the	В	0.87	0.08	0.35	0.07	0.30	80	2.00	13.57		-+-				+						
This conditions This color This color										-											
The color of the	DEVELOPED																				
7.81 0.15 0.40 1.17 3.12 150 2.00 1.14 1.20			_					i i		-	+				┿	3.28	15.27	450	4.50	Т	S1
22.10 0.09 0.36 1.39 7.90 1.50 2.00 2.00 1.50 <t< td=""><td>051</td><td>7.81</td><td>0.15</td><td>0.40</td><td>1.17</td><td>3.12</td><td>150</td><td>2.00</td><td>16.14</td><td>+</td><td></td><td></td><td>┪</td><td>- </td><td>+</td><td>4.00</td><td>27.97</td><td></td><td></td><td>Т</td><td>52</td></t<>	051	7.81	0.15	0.40	1.17	3.12	150	2.00	16.14	+			┪	-	+	4.00	27.97			Т	52
8.30 0.56 0.68 4.65 5.64 100 2.00 8.03 1150 1.20 15.97 24.01 2.64 4.61 12.26 26.00 650 1.20 1.20 1.597 24.01 2.64 4.61 12.26 26.00 650 1.20	052	22.10	0.09	0.36	3.16	11.08	nerr Ten) 1		2			-}	+	6.36	38.95		10.00	7-7-	TJ.
8.30 0.56 0.68 4.65 5.64 100 2.00 8.03 11.50 1.50 1.59 24.01 2.04 4.04 4.05 2.04 2.04 4.06 1.50 <t< td=""><td>i 33</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>20 01</td><td>00 30</td><td>029</td><td>06</td><td>\neg</td><td> </td></t<>	i 33												-	-	-	20 01	00 30	029	06	\neg	
2.58 0.63 0.76 1.63 1.96 4.14 700 1.50 1.20 9.72 13.86 3.50 6.12 5.69 12.00 675 1.20 9.38 6.88 0.57 2.60 3.90 1.07 1.50 1.20 13.19 23.91 2.64 4.62 6.88 18.03 1.20 3.19 9.43 0.57 4.23 5.87 100 2.00 10.56 1100 1.50 15.28 2.54 4.62 11.18 27.08 23.0 2.64 4.62 11.18 27.08 13.0 2.50 11.20 13.19 23.91 2.64 4.62 11.18 27.08 13.0 2.94 12.0 13.0 23.91 2.64 4.62 11.18 27.0 13.0 12.0 12.0 13.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	A1	8.30	0.56	0.68	4.65	5.64	100	2.00	8.03						+	24.40	20.0			1	
2.58 0.63 0.64 0.65 0.64 0.65 0.68 0.68 1.00 <th< td=""><td></td><td></td><td></td><td>0</td><td></td><td>76 -</td><td>34</td><td>2.00</td><td>4.14</td><td></td><td></td><td></td><td></td><td>+</td><td>╁</td><td>5.69</td><td>12.00</td><td>675</td><td>1,20</td><td>1 1</td><td>2A</td></th<>				0		76 -	34	2.00	4.14					+	╁	5.69	12.00	675	1,20	1 1	2A
9.43 4.23 5.87 100 2.00 1.50 1.20 12.39 23.91 2.64 4.62 11.18 27.08 23.0 1.20 3.18 11.92 0.39 0.57 4.65 6.79 100 2.00 10.56 1100 1.50 1.20 15.28 25.84 2.53 4.42 11.76 30.02 1.00 0.50 29.65 13.53 18.30 18.30 1.05 11.05 1.20 15.28 2.19 3.82 29.60 69.97 15.0 0.50 29.65 3.39 20.01 2.00 18.82 1570 2.90 1.85 1.93 3.35 2.18 9.71 1.80	AZA	2.58	50.0	0.78	2 60	3.90	100	2.00	10.71	+-	╫		╫╌	-		6.88	18.03			ŧ	2
11.92 0.39 0.57 4.65 6.79 100 2.00 10.56 1100 1.50 1.20 15.28 25.84 2.53 4.42 11.76 30.02 3.00 0.50 0.50 29.65	np2	9.43			4.23	5.87	***						23.9.	\dashv	\dashv	11.18	27.08	230	1.20		7.7
11.92 0.39 0.57 4.65 6.79 100 2.00 10.50 10.								3	ų v				-	+	+	11.76	30.02			4	4
29.65 13.53 18.50 *Adjusted C Factor for Detention Basin 13.03 2.19 3.82 0.50 34.10 24.10 25.56 59.65 3.39 20.01 2.00 18.82 1570 2.90 1.80 14.54 33.35 2.18 3.80 17.76 62.04 1800 4.00 7.50 27.21 0.30 0.60 8.16 16.33 25.0 2.00 18.82 15.00 1.80 1.00 2.00 15.00 37.11 2.04 3.56 8.20 36.68 1.00 7.50 22.14 0.16 0.41 4.02 10.31 25.01 1.00 2.01 15.00 1.00 2.00 15.00 1.00 2.00 15.00 2.21 1.00 2.00 15.00 2.00 1.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	A4	11.92	0.39	0.57	4.65	6.79	TOO	2.00	9C . 0T				╁	+	┿	29.60	76.69	150	5.00	Г	53
29.56 8.16 16.33 25.00 18.82 1570 2.90 1.80 14.54 33.35 2.18 3.80 17.76 62.04 1800 4.00 7.50 27.21 0.30 0.41 4.02 10.31 250 2.01 1.80 1.80 14.54 33.35 2.18 3.80 17.76 62.04 1800 4.00 7.50 25.14 0.16 0.41 4.02 10.31 250 2.01 1.00 2.00 15.00 37.11 2.04 3.56 8.20 36.68 7.78 52.35 12.19 26.63 2.00 22.11 1800 1.00 2.00 15.00 37.11 2.04 3.56 2.89 94.79 1050 2.25 7.78	DP3	29.65			13.53	78.30	*Adauste	บ			3asin		33.03	+	-	05.0	34.10			Д	PD2
27.21 0.30 0.60 8.16 16.33 25.0 2.00 18.82 1570 2.90 1.80 14.54 33.35 2.18 3.80 17.76 62.04 1800 4.00 7.50 25.14 0.16 0.41 4.02 10.31 250 2.01 1.00 2.01 15.00 37.11 2.04 3.56 8.20 36.68 7.78 52.35 12.19 26.63 2.00 22.11 1800 1.00 2.00 15.00 15.00 37.11 2.04 3.56 24.83 94.79 1050 2.25 7.78	DPDZ	29.62			2 3 9	LU 02							40.50	⊢		6.54	67.41			Д	P4
27.21 0.30 0.60 8.16 16.33 250 2.00 18.82 1570 2.90 1.80 14.54 33.35 2.18 3.80 17.76 62.04 1800 4.00 7.31 2.04 3.86 8.20 36.68 1.00 4.00 7.00 15.00 37.11 2.04 3.56 8.20 36.68 1.00 7.78 52.35 12.19 26.63 10.00 22.11 1800 1.00 2.00 15.00 37.11 2.04 3.56 24.83 94.79 1050 2.25 7.78	DP4	07.00								 	-	7			H						6
25.14 0.16 0.41 4.02 10.31 25.0 22.11 1800 1.00 2.00 13.11 2.04 3.56 8.20 36.58 7.78 52.35 12.19 26.63 10.50 22.11 12.04 3.56 24.83 94.79 1050 2.25 7.78	0.53	27.21	0.30	09.0	8.16	16.33	250	2.00	18.82	\vdash	╁╼╁		┝╾┼╴			17.76	52.04	1800	4.00		25
52.35	084	25.14	0.16	0.41	4.02	10.31	250	2.00	22.11	-	-	- 1		+		24 83	94 79	1050	- -		
	DPS	52.35			12.19	26.63							7,7	-	-	20.5		2001	4	7	

1.53 AZB	A5	Sec.	DP7		В							***************************************																									100000								
1.20 1.53						-								-		-	ļ				1																			1		-	+	+	
110	_					***************************************	- La Augentina																Ì																						
4.79	2.88	2.63	150 61		1.62																																			1		-			
2.37	0.35	1.04			0.21																					-																			
8.46	4.21	6.33	21.5 21.6	;	5.34																									-				evist	ŧ										
4.84	2.41	3.62	18.1	1 2 2	3.05																													facilities											
6.21	28.14	12.89	44.89	6	18.28																													monmade fac	200			Riprap	used	Type M	туре м	E S	Type M	1750 11	
2.78	7.78	9.63			4.71					Riprap	#Size ftSize in						road						7T asn		Use 12									med arcm						*	*			icure	
1.20	2.25	2.25			2.30					Froude Riprap Riprap	Size Et						asphalt	1				1	0.20		0,38	┸								- Accept	TOWNS CT.			Riprap	Size	Type L*	Type L*	E	Type 1:4	TAPE T	
1.50	\vdash	1.23			1.30	Method Design				Froude						1 0 0	-				0.93		1.25		0.38		_	08.0			0.85		0.86	٤	2				χĘ	0.68	0.8	0	0.68	2	
200	 	1300			620	Method					E V fps	J	١			2 20				5.50			0 4.40		2.80			3.80			4.70		5.10	-	orassas.				ı,	6	2	<u> </u>		**	
3.43	20.36	3.26			13.57	Rational					aloo ft		1.30			1.50				1.70			0.40		2 30			1.10			1.60		1.80		rangerand				φ/a		4.2		8.0		
2.00	2.00	2.00			2.00	into					D ft		3.00	1.50	1.00	2.00	7.00	2		2.00	2.50		2.00		200	٠ ا		6.00		1 1	6.00		6.00		WICH				Invert	6855.5	0.9583	6842.1	6855.4	6841.0	
35	180	10			80	ion Mode					13		3:1	3:1	3:1, 1%	3:1	7 . 7	7 000		3:1/4:1	0.035 3:1/4:1		3:1		1.5			8:1			8:1		8:1		le covered			Critical		2.3	1.24	1.82	1.36	1.36	
0.57	0.68	0.42	27.73	47.74	0.30	Flows from Detention Model		ļ			д		0.035	0.035		0.035	30.0	CTO:O	***	0.035	0.035		0.040		040	Camer Flows	7	0.040			0.040		0.040		ural swale			Pipe	Cap	54.5	15.4	58.1	44	44	
0 49	0.14	0.29	12.62	16.00	0.07						B £t		4.00	00.0	00.0	0.00	4.00	00,0		4.00	4.00		. 40.00	ננ	000	21.00	3505	8.00	r Flows		8.00		8.00		within a natural	ATION SHEE			0010	39.0	12.0	27.1	94.8	87.5	
0 82	0.38	0.59			0.35	ü			L.		* *		1.00	1.00	1.40	1.50	1.40	1.50		1.60	1.60		5.00	from UD-Det	0	0.30	שלוביטט ווויסיו	1.70	Storm Sewer Flows		1.70		1.70		travel wit	VE CALCUL			95 05	6.4	5.7	11.2	24.8	22.8	
7.7	0.08	0.41			80	Adjusted			TION SHEE		100 CFS		39.0	10.0	26.0	26.0	27.1	30.0		8 76	87.5		73.0*					£7 4*	1		28.9 150.6	dsheet	7 99 7		development t	GRADELI		Pipe Slope		1.3	4.0		1.0		
00 0	1.80	0.70	55.54	115.10	7 B 0	‴ไ เ			DITCH CAPACITY CALCULATION SHEET		05 ofe 3100	CX	6.4	3.0	12.3	12.3	11.1	11.8	7,	24 8	22.8			*Undetained Flows		36.1*	*Undecained Flows		ained			rom	q		from the devel	STORM SEWER HYDRAIII IC GRADE INE CALCULATION SHEET		Pipe	Size	30"	24"	24"	(3)38"x24"	(3)38"x24"	
	A S A	0.85	DP6	DP7	p				DITCH CAPAC		Swale	TOCALTON	Swale A	Swale B	Swale C	Swale D	Swale E	Swale F		Judge Orr Ka	Ditch H		Spillwy K 24.6*	1		Swale L		Exist Swale At	भागत तम व	*Swale 300'	E of PL		*Det Breach	A COT	*Flows from	STOPM SEWE	SIONE SENT	Location		DPD1	AZA		DPS		

FOREBAY CALCULATIONS		
Total for Basin		
2% OF WOV		
0 02 X 0 470 = 0.0094 AF = 409 CF		
Total Flows at Forebays = 83.1 CFS (Without Time of Concentration Adjustment)	Time of Concentration Adjustment)	
A+Swale D.D	FOREBAY NOTCH CALCULATIONS	
Flow at Swale D.D = 26.0 CFS	0.02 OF 100YR FLOW	
Eprehay Size = 726 (1/83-1)x409 = 128 CF	0.02 X 26 = 0.52 CFS	
	W =Q/(D^1.5XC)	
	W=0.52/(1X3.0)=0.17 FT	
The state of the s		
A+11p3		
Flow at DP2 = 27.1 CES	0.02 OF 100YR FLOW	
Forebay Size = (27,1/83.8)x409 = 133 CF	0.02 X 27.1 = 0.54 CFS	
	W =Q(D'1.5XC)	
A CONTRACTOR OF THE CONTRACTOR	W=0.54/(1X3.0)=0.18 FT	
At Sub-Basin A4		
Flow at Sub-Basin A4 = 30.0 CFS	0.02 OF 100YR FLOW	
Forebay Size = (30.0/83.1)x409 = 148 CF	0.02 X 30.0 = 0.60 CFS	
	W = G/(D^1.5XC)	
	W. A. CO. O. C.	

manara emanamente de manara de como de como esta de como de co

AZB	AD PER	Seo.	DP7		B																																								
1.53																																													
1.20																										_																			
110										La,														ì															***************************************						
4.79	2.88	2.63	150 61	10:22	1.62							-																		-						Wage									Ì
2.37	0.35	1.04	22.78		0.21																																								
8.46	4.21	6.33	3.15	67:5	5.34																			1			-							px i qt											
4.84	2.41	3.62	1.81	10.1	3.05																													Faci 1:+: 68											
6.21	28.14	12.89	44.89	44.87	18.28																																								
2.78	7.78	9.63			4.71				Riprap							7020	ıL					Use 12"			USE 17		-							openica mod	מיוו יוומיזיוו										
1.20	2.25	2.25			2.30				Froude Riprap	Size ft						Ladro						0.20		1	0.38									# C C C C C C C C C C C C C C C C C C C	COMISCE										
1.50	1.23	1.23			1.30	Design			Fronde	_		0.71			0.84			-		0.93		0 1.25			0.38		0			0.85			0.86	li						Flows					
200	╀	H			650	Method	_			t V fps	1					00.0		0		5.40	<u> </u>	0 4.40			0 2.80			2.50		0 4.70	1.		0 5.10		d grasses					Pond				_	
3.43	20.36	3.26			13.57	Rational Method Design				d100 ft		1.30					2 2	į		1 70		0.40			2.30			7.10		1 60			1.80		гапдетапо					Future			-4	10	
2.00	2.00	2.00			2.00	into				D ft		3.00	1.50	1.00	2.00	1.00	7			2 50		2.00		1 1	3.00		- 1	6.00	-	6.00	• ŧ		6.00		with				d Invert	6855.5	6856.0	6842.1	6855.4	6841.	
35	1.80	10			80	on Mode				N		3:1	3:1	3:1, 1%	3:1	0.42	7:96		2.4/4.1	7.7/7.6	7. 7.	3:1			3:1	4S		8:1		0	0		8:1		e covered			Critical	d J	2.3	1.24	1.82	1.36	1.36	
0.57	0.68	0.42	27.73	47.74	0.50	m Detent:				A		0.035	0.035	0.035	0.035	0.035	0.015		2000	0.050	50.0	0.040			0.040	Storm Sewer Flows		0.040		040	0.0		0.040		ral swale			Pipe			15.4	58.1	44	44	
0.49	0.14	0.29	12.62	16.00	70 0	+ Model Flows from Detention Model	21011			t t		4.00	0.00	0.00	0.00	4.00	00.00			00.4	7	40.00			10.00			8.00	FLOWS	0	3.0		8.00		nin a natural	מונים מינים			0100	50.7	12.0	27.1	94.8	87.5	~
000	38.0	0.59			200			I		ď		1.00	1.00	3.40	1.50	1.40	1.50			1.60	7. PD	5.00	from UD-Det		0.30	from UD-Det+		1.70	Storm Sewer	1	1.70		1.70		travel within		1001K0 I		05 0	0.1	5.7	11.2	24.8	22.8	
	4,00	0.00			000	0.08	Ad Justed	TION SHEE		4000	270 077	39.0		26.0		27.1				94.8		73.0*	1		¥0.601					ĺ	150.6	Spreadsheet	000		development t		C GRAUFLI.	Pine Slope	137	1.3		5.7	0.1	1.0	_
0	0.0	1.00	55.54	115.10			TOTORA O	DITCH CAPACITY CALCULATION SHEET		10	OP CIESTON	6.4	3.0	12.3	12.3	11.1	11.8		Rđ	24.8			tained		36.1*	ainec	e At	5.5*	*Detained Flows +			From	u				STORM SEWER HYDRAULIC GRADELINE CALCULATION STEET	acid	- Art	300	24"	24 =	(3) 38"x24"	(3) 38"x24"	
	AZB	A5	nP6	DP7		Д		DITCH CAPAC		Swale	Location	Swale A	Swale B	Swale C	Swale D	Swale E	Swale F		Judge Orr	Ditch G	Ditch H	Cn:11cn, V 24 6*	A Karrende	Spillway	ļ	T	Exist Swale At	ine		*Swale 300'	E of PL		*Det Breach	* OT 4	*Flows from the		STORM SEW	Tocation	Locarton	nen1	DEDI	MAZA DP2		DP6	_

FOREBAY CALCULATIONS		
Total for Basin		WWW.
2% OF WQV		
0.02 X 0.470 = 0.0094 AF = 409 CF	Fire of Commention Adjustmonth	- Annual
Total Flows at Forebays = 83.1 CFS (Without Time of Concentration Adjustment)	I me of Concettation Advantery	
At Surale D.D	FOREBAY NOTCH CALCULATIONS	THE STATE OF THE S
AL Swale D.D. = 26 0 CFS	0.02 OF 100VR FLOW	
Forebay Size = (26.0/83.1)x409 = 128 CF	0.02 X 26 = 0.52 CFS	
	W =Q/[D^1.5XC)	TAX
A STATE OF THE STA	W=0.52/(1X3.0)=0.17 FT	
A SAME AND		
At DP2		
Flow at DP2 = 27.1 CFS	0.02 OF 100YR FLOW	1111
Forebay Size = (27.1/83.8)x409 = 133 CF	0.02 X 27.1 = 0.54 CFS	
	W =Q/(D^1.5XC)	
	W=0.54/(1X3.0)=0.18 FT	
Add the second		
At Sub-Basin A4		
Flow at Sub-Basin A4 = 30.0 CFS	0.02 OF 100YR FLOW	
Forebay Size = (30,0/83.1)x409 = 148 CF	0.02 X 30.0 = 0.60 CFS	
	W = Q/(D^1.5XC)	
The state of the s	W=0.60/(1X3.0)=0.20 FT	

£		Dot. 1987 Figure 9-44
SHEET OF DESIGN FORM SHEET OF ROADWAY ELEVATION : \$66/00111 ELbd (11) ROADWAY ELEVATION : \$66/00111 ELbd (11) Soi H T T T T ELbd (11) Soi ELgd T T ELbd (11) Soi ELgd T ELbd (11) Soi T Elbd (11) So	HLEST CONTROL HEADWATER CALCILATIONS Legen Leg	The City of Colorado Springs / El Paso County Drainage Criteria Manual
PROJECT: JUDGE ONG RD BY PROKE CULVISCOT AT TOP HYDROLOGICAL DATA	CULVERT DESCRIPTION: MATERIAL - SHAPE - SIZE - ENTRANCE MATERIAL - SHAPE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SHAPE MATERIAL - SHAPE - SIZE - SIZE - SIZE - SIZE - SHAPE MATERIAL - SH	HDR Infrastructure, Inc. A Centorra Company

Hydraulio Design Series No. 5 1985 9-72

		Dete OCT. 1987 Figure 9-44
CULVERT DESIGN FORM DESIGNER/DATE: #/4/6 / 4/56/19 REVIEWER/DATE: // 1/56/19 REVIEWER/DATE: // 1/56/19 AY ELEVATION: (11) Single on 1/2	ELEVATION CULVERT BARREL SELECTED: SIZE: MATERIAL: CHTRANCE: ENTRANCE:	il Paso County
SHEET OF CULVERT SHEET OF REVIEWER/D EL _{bd}	HEADWATER CALCUATIONS INLET CONTROL Laborater CALCUATIONS Laborater CA	The City of Colorado Springs / El Paso County Drainage Criteria Manual
PIPE PIPE OCAR ED RA PERSO OLOGICAL DATA CATTOR ARE ZINES STREAM SIDE. 1/3/L V SHAPE SCARLE V SHAPE SCARLE TOWNER FLOWS/TAILWATER FLOWS/TAILWATER FLOWS/TAILWATER	TRANCE TOTAL FLOW FLOW FEAT 12.00 12	HDR Infrastructure, Inc. A Conjarra Company
PROJECT: D. BRINGE. BREE ADD'LENTE. CHARMELS R.L. (YEAN	CULVERT DESCRIPTION: MATERIAL - SHAPE - SIZE - EHTRANCE Z LL ** RLE P - **	i i i

Hydraulic Design Series No. 5 1985 9-72

		Det. OCT, 1987 Figure 9~44
EL, 6853911) FET OF CULVERT DESIGN FORM DESIGNER, DATE: #14.2 9,125/10.10 EL, 68539111) S=50-FALL/La La 15.00 La 15.00	HEADWATER CALCLEATONS LEL hi TW dc dct D ho ho TW EL ho 55 ch 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	The City of Colorado Springs / El Paso County Drainage Criteria Manual
PROJECT: JUDGE ORIC IZ D. P. P. P. STATION W. S. C. C. L. V. G. T. C. P. L. G. F. T. D. J. C. F. L. J. J. STREAM SLOPE. J.	TRANCE (2) ON FER INLET CONTRO DAME IN STAND OF FALL ON THE CONTROL OF CONTRO	A Conteres Company

Hydraulic Design Series No. 5 1985 9-72 **(**

		Date OCT, 1987	Figure 9-44
SHEET OF CULVERT DESIGN FORM SHEET OF REVIEWER / DATE: M. / U.S.	HEADWATER CALCILATIONS	CULVERT BARREL SELECTED: SIZE: SHAPE: MATERIAL: PRIMANCE: ENTMANCE: Chicked Manual	
HYDROLOGICAL DATA HYDROLOGICAL DATA HYDROLOGICAL DATA GATTONIA SHARE: TOO OTHER: DESIGN FLOWS/TAILWAIER HS3 FLOW(ch) TW(ll) HS3 Z2.8 O.9	ATRANCE (C. LA) HOW, S. ROM BESIGN CHA	SUBSCRIBATIONS: a. APPROXIMATE a. APPROXIMATE i. DELL'YERT FACE No. DESHM MARCHANGE ii. Bull'Control ii. Bull'Control ii. Bull'Control iii. Bull'Control iii. Sull'MARCH iii. Sull'MARC	HDR Infrastructure, Inc. A Centorea Company

Hydraulio Design Series No. 5 1985 9-72 Vet i

Judge Orr Road RV Park & Storage AJL 6/17/2019

Project By Date

Descriptior HGL for the 5-year and 100-year events generated using UD-SEWER 2009, Version 1.4

Slope 0.003 TW = 0.50° 0.013 0.013 0.013 0.013 0.013 0.013												
6.4 30 HDPE 0.012 - 6,833.70 - 6,834.28 0.003 6.4 30 HDPE 0.012 80 6,835.35 6,835.25 6,834.28 6,836.09 0.019 6.4 30 HDPE 0.012 500 6,841.77 6,842.01 6,013 6.4 30 HDPE 0.013 289 6,847.77 6,845.02 6,848.61 0.013 6.4 30 HDPE 0.012 277 6,851.63 6,852.47 0.013 6.4 30 HDPE 0.012 13 6,855.33 6,855.48 6,856.17 0.013 6.4 30 HDPE 0.012 13 6,855.33 6,855.48 6,856.17 0.013	Floment]	DIA (IN)	Material	Manning's n	LENGTH (FT)	DS INV	US INV	DS HGL	US HGL	Slope	Notes
6.4 30 HDPE 0.012 80 6,833.73 6,835.25 6,834.28 6,836.09 6.4 30 HDPE 0.012 448 6,835.35 6,841.17 6,842.01 6,842.01 6.4 30 HDPE 0.012 500 6,841.27 6,847.07 6,842.02 6,848.61 6.4 30 RCP 0.013 289 6,847.87 6,851.63 6,852.47 6.4 30 HDPE 0.012 277 6,855.33 6,855.34 6,856.17 6.4 30 HDPE 0.012 13 6,855.33 6,855.34 6,856.17	ile ile	979	30	HDPF	0.012	1		6,833.70	-		0.003	TW = 0.50°
64 30 HDPE 0.012 448 6,835.35 6,841.17 6,836.10 6,842.01 64 30 HDPE 0.012 500 6,841.27 6,847.77 6,842.02 6,848.61 6.4 30 RCP 0.013 289 6,847.87 6,851.63 6,848.62 6,852.47 6.4 30 HDPE 0.012 277 6,851.73 6,855.33 6,852.48 6,856.17 6.4 30 HDPE 0.012 13 6,855.33 6,855.48 6,856.18	D. D.	64	30	HDPE	0.012	80	6,833.73	6,835,25	6,834.28	6,836.09	0.019	
6.4 30 HDPE 0.012 500 6,841.27 6,847.77 6,842.02 6,848.61 6.4 30 RCP 0.013 289 6,847.87 6,851.63 6,848.62 6,852.47 6.4 30 HDPE 0.012 277 6,851.73 6,855.33 6,852.48 6,856.17 6.4 30 HDPE 0.012 13 6,855.33 6,856.18 6,856.55	. 6	6.4	30	HDPE	0.012	448	6,835.35	6,841.17	6,836.10	6,842.01	0.013	
64 30 RCP 0.013 289 6,847.87 6,851.63 6,848.62 6,852.47 6.4 30 HDPE 0.012 277 6,851.73 6,855.33 6,855.48 6,856.17 6.4 30 HDPE 0.012 13 6,855.33 6,855.50 6,856.18 6,856.55	2.0	64	OE C	HDPE	0.012	200	6,841.27	6,847.77	6,842.02	6,848.61	0.013	
6.4 30 HDPE 0.012 277 6,851.73 6,855.33 6,855.48 6,856.17 6.4 30 HDPE 0.012 13 6,855.33 6,855.50 6,856.18 6,856.55	2 6	3	ç	a d	0.013	289	6,847.87	6,851.63	6,848.62	6,852.47	0.013	
6.4 30 HDPE 0.012 13 6,855.33 6,855.50 6,856.18 6,856.55	ž v	1 2	3 8	FDE	0,012	277	6,851.73	6,855.33	6,852.48	6,856.17	0.013	
	2 8	6.4	8 8	HOE	0.012	13	6,855.33	6,855.50	6,856.18	6,856.55	0.013	
	2	5										

Notes		0.003 TW = 1.83'	0.019	0.013	0.013	0.013	0.013	0.013
_	4	_	_				ļ	6,858.14 (
101100	בים ככו	-	6,835.18 6,837.36	6,837.73	6,843.33 6,849.88	6,850.48	6,854.11	6,858.04
, 1141 Ot 1	US IIN	6,833.70	6,833.73 6,835.25	6,835.35 6,841.17	6,841.27 6,847.77	6.847.87 6.851.63	6,851.73 6,855.33	6,855.50
1041.04	US INV	-	6,833.73	6,835.35	6,841.27	6.847.87	6,851.73	6,855.33
	LENGTH (FI)	-	80	448	500	289	277	13
	Manning's n LENGTH (FI) DS INV OS INV DS HGL OS HGL	0.012	0,012	0.012	0.012	0.013	0.012	0.012
	Material	HDPE	HDPE	HDPE	HDPF	a)a	HDPE	HDPE
	DIA (IN)	e e	30	30	ç	Ç	ş	S (2)
	0100	39.0	39.0	39.0	0 62	0.00	20.00	39.0
	Flement	Outfall	P1	ζď	20		7 20	2 %

Project Judge Orr Road RV Park & Storage By AJL Date 6/17/2019

Description HGL for the 5-year and 100-year events generated using UD-SEWER 2009, Version 1.4

Project

Judge Orr Road RV Park & Storage

Ву

AJL

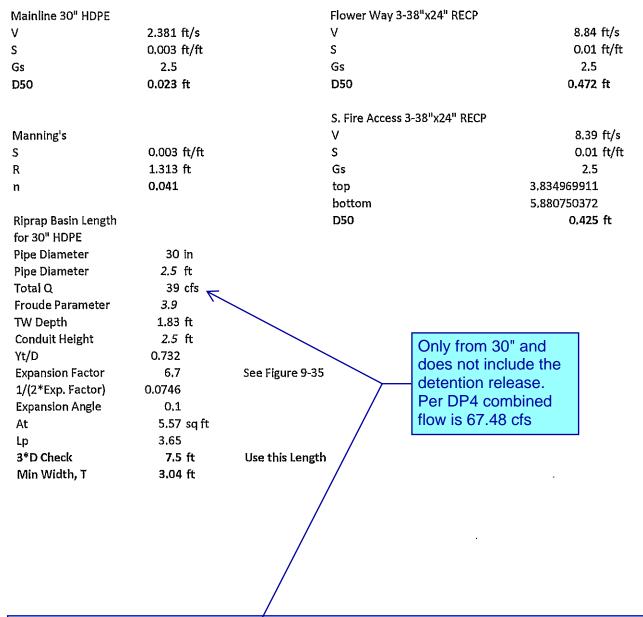
Date

6/17/2019

Description:

HGL for the 5-year and 100-year events generated using HY-8 Version 7.50

Flower Way


Event	Flow	US INV	DS INV	US HGL	DS HGL	Outlet Velocity
Yr	cfs	ft	ft	ft	ft	ft/sec
5	24.8	6855.30	6854.00	6856.38	6855.70	1.75
100	94.8	6855.30	6854.00	6858,13	6855.70	8.84

S. Fire Access Rd

Event	Flow	US INV	DS INV	US HGL	DS HGL	Outlet Velocity
Yr	cfs	ft	ft	ft	ft	ft/sec
5	22.8	6840.45	6839.85	6841.68	6841.55	1.61
100	87.5	6840.45	6839.85	6843.06	6841.11	8.39

24" RCP

Event	Flow	US INV DS IN		US HGL	DS HGL	Outlet Velocity
Yr	cfs	ft	ft	ft	ft	ft/sec
5	5.7	6856.00	6855.00	6857.32	6856.32	4.54 ·
100	12.00	6856.00	6855.00	6858.01	6857.00	5.87

Outlet protection calculation is incomplete.

Show the variables used.

Additionally, this only provides the riprap sizing, but not the required length for the protection. Use the UD-Culvert worksheet. The length of outlet protection appears to be inadequate.

Unresolved. Variables used for Q, D, Yt, D is not provided. Update calculation. This chart is still the same chart from the previous design when the future pond drained into Pond 2 (Pond-in-a-series). Values are unlikely to remain the same. The current drainage has since been revised to discharge this offsite flow separate form Pond 2 at the same spillway location. Riprap sizing must account for the combined flow.

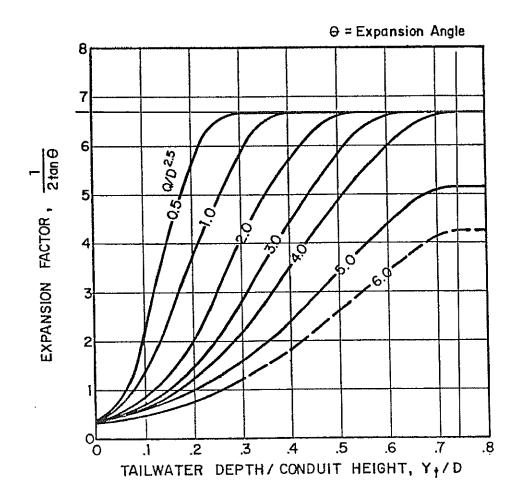


Figure 9-35. Expansion factor for circular conduits

HY-8 Analysis Results

Culvert Summary Table - 24" RCP

Culvert Crossing: Crossing 3

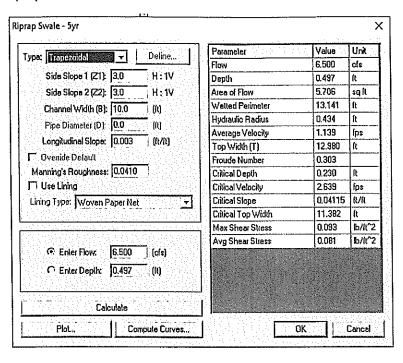
Total Dischar ge (cfs)	Culvert Dischar ge (cfs)	l-		Control	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	-,	Outlet Velocity (ft/s)	Tailwate r Velocity (ft/s)
5.70	5.70	6857.32	1.20	1.32	2-M2c	0.85	0.84	0.84	0.38	4.54	1.94
6.33	6.33	6857.39	1.29	1.39	2-M2c	0.91	0.89	0.89	0.40	4.68	1.99
6.96	6.96	6857.47	1.36	1.47	2-M2c	0.96	0.94	0.94	0.42	4.82	2.05
7.59	7.59	6857.54	1.44	1.54	2-M2c	1.01	0.98	0.98	0.43	4.96	2.09
8.22	8.22	6857.61	1.51	1.61	2-M2c	1.06	1.02	1.02	0.45	5.10	2.14
8.85	8.85	6857.68	1.58	1.68	2-M2c	1.11	1.06	1.06	0.47	5.24	2.18
9.48	9.48	6857.75	1.65	1.75	2-M2c	1.16	1.10	1.10	0.48	5.37	2.22
10.11	10.11	6857.81	1.71	1.81	2-M2c	1.21	1.13	1.13	0.50	5.51	2.26
10.74	10.74	6857.88	1.78	1.88	2-M2c	1.26	1.17	1.17	0.51	5.62	2.30
11.37	11.37	6857.94	1.85	1.94	2-M2c	1.31	1.21	1.21	0.53	5.74	2.33
12.00	12.00	6858.01	1.92	2.01	7-M2c	1.36	1.24	1.24	0.54	5.87	2.37

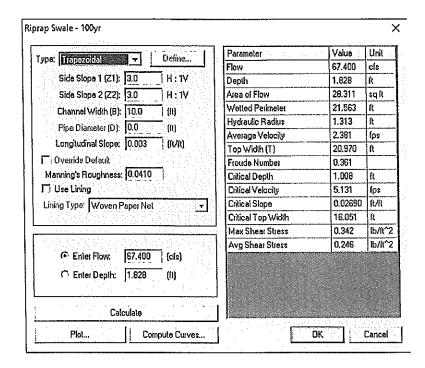
HY-8 Analysis Results

Culvert Summary Table - Flower Way 3-38"x24" RECP

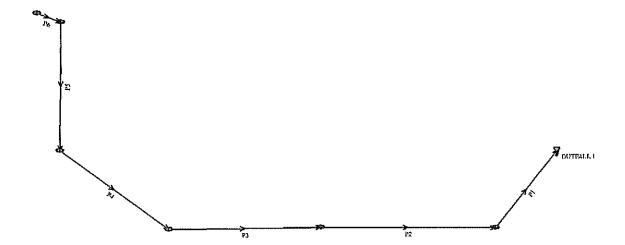
Culvert Crossing: Flower Way

	1	Headwa				Normal	Critical	Outlet	Tailwate		Tailwate
Dischar	1	1	1	Control	Туре	Depth	Depth	Depth		Velocity	r
ge (cfs)	ge (cfs)	Elevatio n (ft)	Depth(ft)	Depth(ft)		(ft)	(ft)	(ft)	(ft)	(ft/s)	Velocity (ft/s)
24.80	24.80	6856.38	1.08	0.51	1-JS1t	0.59	0.78	1.70	1.70	1.75	0.00
31.80	31.80	6856.56	1.26	0.58	1-JS1t	0.67	0.89	1.70	1.70	2.24	0.00
38.80	38.80	6856.73	1.43	0.67	1-JS1t	0.74	0.99	1.70	1.70	2.73	0.00
45.80	45.80	6856.89	1.59	0.77	1-JS1t	0.81	1.08	1.70	1.70	3.23	0.00
52.80	52.80	6857.05	1.75	0.90	1-JS1t	0.88	1.17	1.70	1.70	3.72	0.00
59.80	59.80	6857.21	1.91	1.04	1-S2n	0.94	1.25	0.97	1.70	7.78	0.00
66.80	66.80	6857.37	2.07	1.20	5-S2n	1.00	1.33	1.04	1.70	8.03	0.00
73.80	73.80	6857.54	2.24	1.37	5-S2n	1.06	1.40	1.10	1.70	8.25	0.00
80.80	80.80	6857.73	2.43	1.57	5-S2n	1.12	1.47	1.17	1.70	8.47	0.00
87.80	87.80	6857.92	2.62	1.78	5-S2n	1.18	1.53	1.23	1.70	8.67	0.00
94.80	94.80	6858.13	2.83	2.00	5-S2n	1.24	1.59	1.29	1.70	8.84	0.00


HY-8 Analysis Results


Culvert Summary Table - Fire Access 3-38"x24" RECP

Culvert Crossing: S. Fire Access Rd


		Headwa ter		Outlet Control	Flow Type	Normal Depth	Critical Depth	Outlet Depth	Tailwate r Depth	Outlet Velocity	Tailwate
	ge (cfs)	Elevatio n (ft)				(ft)	(ft)	(ft)	(ft)	(ft/s)	velocity (ft/s)
22.80	22.80	6841.68	1.03	1.23	1-S1t	0.56	0.74	1.70	1.70	1.61	0.00
29.27	29.27	6841.79	1.20	1.34	1-S1t	0.64	0.85	1.70	1.70	2.06	0.00
35.74	35.74	6841.81	1.36	1.27	1-JS1t	0.71	0.95	1.70	1.70	2.52	0.00
42.21	42.21	6841.96	1.51	1.34	1-JS1t	0.77	1.04	1.70	1.70	2.97	0.00
48.68	48.68	6842.10	1.65	1.42	1-JS1t	0.84	1.12	1.70	1.70	3.43	0.00
55.15	55.15	6842.25	1.80	1.51	1-JS1t	0.90	1.20	1.70	1.70	3.89	0.00
61.62	61.62	6842.40	1.95	1.61	1-JS1t	0.96	1.27	1.70	1.70	4.34	0.00
68.09	68.09	6842.55	2.10	1.73	5-S2n	1.01	1.34	1.08	1.70	7.84	0.00
74.56	74.56	6842.71	2.26	1.85	5-S2n	1.07	1.41	1.14	1.70	8.03	0.00
81.03	81.03	6842.88	2.43	1.99	5-S2n	1.13	1.47	1.20	1.70	8.22	0.00
87.50	87.50	6843.06	2.61	2.14	5-S2n	1.18	1.53	1.26	1.70	8.39	0.00

Riprap Swale Calculations

Mainline UD-SEWER Layout

Mainline System Input Summary - 5-Year Event

Rainfall Parameters

Rainfall Return Period: 5

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.00 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.50

Manhole Input Summary:

		Giv	en Flow		S	Sub Basin	Inform	ation		
Elemen t Name	Groun d Elevati on (ft)	1Zma	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	Coeffici	Overla nd Length (ft)	overla nd	er	Gutte r Veloci ty (fps)
OUTFA LL 1	6845.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

P1	6845.3 4	6.50	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
P2	6850,0 0	6.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P3	6860.4 0	6.50	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
P4	6860.4 0	6,50	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
P5	6860.0 0	6.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P6	6860.0 0	6.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	Contri	bution		7	Total Des	ign Flow		
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min)	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Commen t
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	1.50	4.33	1.01	6.50	
P1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	
P2	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	
P3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	
P4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	
P5	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	6.50	
P6	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	6.50	

Sewer Input Summary:

		Ele	vation		Loss C	oeffic	ients	Given Di	mensi	ons
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Slop e (%)	Upstrea m Invert (ft)	Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft

					······································					or in)
P1	80.00	6833,73	1.9	6835,25	0.012	0,03	0.25	CIRCULA R	30.0 0 in	30.0 0 in
P2	448.00	6835.35	1.3	6841.17	0.012	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
Р3	500.00	6841.27	1.3	6847.77	0.012	0,05	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P4	289.00	6847.87	1.3	6851.63	0.013	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P5	277.00	6851.73	1.3	6855.33	0.012	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P6	13.00	6855.33	1.3	6855,50	0.012	0.38	0.00	CIRCULA R	30.0 0 in	30,0 0 in

Sewer Flow Summary:

		Flow		tical low		Nor	mal Flor	×			
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
P1	61.4 2	12.51	10.1	4.46	6.59	8.13	2.31	Supercriti cal	6.5 0	0.00	
P2	50.7 8	10.35	10.1	4.46	7.25	7.11	1.92	Supercriti cal	6.5 0	0.00	
Р3	50.8 0	10.35	10.1	4.46	7.25	7.11	1.92	Supercriti cal	6.5 0	0.00	
P4	46.9 1	9.56	10.1	4.46	7.54	6.72	1.77	Supercriti cal	6.5 0	0.00	
P5	50.7 9	10.35	10.1	4.46	7.25	7.11	1.92	Supercriti cal	6.5	0,00	
P6	50.9 4	10.38	10.1	4.46	7.24	7.12	1.92	Supercriti cal	6.5 0	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
P1	6.50	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30,00 in	4.91	
P2	6.50	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
P3	6.50	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
P4	6.50	CIRCULAR	30,00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
P5	6.50	CIRCULAR	30,00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
P6	6.50	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 0.50

	Invert	Elev.	m M	nstrea anhole sses	HG	L		EGL	
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)

P1	6833.73	6835.25	0,00	0.00	6834.28	6836.09	6835.31	1.10	6836.40
P2	6835.35	6841.17	0.01	0.00	6836.10	6842.01	6836.74	5.58	6842,32
P3	6841.27	6847.77	0.00	0.00	6842.02	6848.61	6842.66	6.26	6848.92
P4	6847.87	6851.63	0.01	0.00	6848,62	6852.47	6849.20	3.58	6852.78
P5	6851.73	6855,33	0.01	0.00	6852.48	6856.17	6853,12	3,36	6856.48
P6	6855,33	6855.50	0.01	0.00	6856.18	6856.55	6856.72	0.00	6856.72

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_fi ^2/(2*g)$ Lateral loss = $V_fo ^2/(2*g)$ Junction Loss K * $V_fi ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2,00 ft

					Do	wnstrea	ım	U	pstrear	n		
Eleme nt Name	Lengt h (ft)	Wa ll (in)	Beddi ng (in)	Botto m Widt h (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Widt	Trenc h Depth (ft)	Cove r (ft)	Volu me (cu. yd)	Comme nt
P1	80.00	3.50	6,00	6.08	21.04	12.06	8.48	18.68	10.88	7.30	348.40	
P2	448.0 0	3.50	6.00	6.08	18.48	10.78	7.20	16.16	9.62	6.04	1559.0 5	
P3	500.0	3.50	6.00	6.08	15.96	9.52	5.94	23.76	13.42	9.84	2241.4 4	
P4	289.0 0	3.50	6.00	6.08	23.56	13.32	9.74	16.04	9.56	5.98	1286.2 8	
P5	277.0	3.50	6.00	6.08	15.84	9.46	5.88	7.84	5.46	1,88	591.73	Sewer Too Shallow
P6	13.00	3.50	6,00	6,08	7.84	5.46	1.88	7.50	5.29	1.71	16.05	Sewer Too Shallow

Total earth volume for sewer trenches = 6043 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - o Four inches for pipes less than 33 inches.
 - o Six inches for pipes less than 60 inches.
 - o Eight inches for all larger sizes.

Mainline System Input Summary – 100-Year Event

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.00 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 1.83

Manhole Input Summary:

		Giv	en Flow		S	Sub Basin	Informa	ation		
Elemen t Name	Groun d Elevati on (ft)	Total Kno wn Flow (cfs)	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	Coeffici	Overla nd Length (ft)	Overla	er	Gutte r Veloci ty (fps)
OUTFA LL 1	6845.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

P1	6845.3 4	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P2	6850.0 0	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
P3	6860.4 0	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P4	6860.4 0	39,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P5	6860.0 0	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P6	6860.0 0	39.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00

Manhole Output Summary:

		Local	Contri	bution			Γotal Des	ign Flow		
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min)	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Comme nt
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	8.47	4.60	0.17	39.0	
P1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.0 0	
P2	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.0 0	
P3	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	39.0 0	
P4	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	39.0 0	
P5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.0 0	
P6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.0 0	

Sewer Input Summary:

		Ele	vation	l	Loss C	oeffic	ents	Given Di	mensi	ons
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Slop e (%)	Upstrea m Invert (ft)	Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft or in)
P1	80.00	6833.73	1.9	6835.25	0.012	0.03	0.25	CIRCULA R	30.0 0 in	30.0 0 in
P2	448.00	6835.35	1.3	6841.17	0.012	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P3	500,00	6841.27	1.3	6847,77	0.012	0.05	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P4	289.00	6847.87	1.3	6851.63	0.013	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P5	277.00	6851.73	1.3	6855.33	0.012	0.38	0.00	CIRCULA R	30.0 0 in	30.0 0 in
P6	13.00	6855.33	1.3	6855,50	0,012	0.38	0.00	CIRCULA R	30.0 0 in	30,0 0 in

Sewer Flow Summary:

		l Flow pacity		tical low		Nor	mal Flov	W			PP-4PP-(Ph-2PP-4PP-4PP-4PP-4PP-4PP-4PP-4PP-4PP-4PP
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
P1	61.4 1	12.51	25.2 8	8.84	17.3 6	13.25	2.14	Supercriti cal	39.0 0	0.00	
P2	50.8 0	10.35	25.2 8	8,84	19.7 0	11.41	1.68	Supercriti cal	39.0 0	0.00	
Р3	50.8 0	10.35	25.2 8	8.84	19.7 0	11.41	1.68	Supercriti cal	39.0 0	0.00	
P4	46.8 9	9.55	25.2 8	8.84	20.8 9	10.69	1.49	Supercriti cal Jump	39,0 0	27.00	The state of the s
P5	50.8 0	10.35	25.2 8	8,84	19.7 0	11.41	1,68	Supercriti cal	39.0 0	0.00	

r										[
P6	50.8 0	10.35	25.2 8	8.84	19.7 0	11.41	1.68	Pressurize d	39.0	13,00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

	······································		Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
P1	39.00	CIRCULAR	30,00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
P2	39.00	CIRCULAR	30.00 in	30.00 in	30,00 in	30.00 in	30.00 in	30.00 in	4.91	
P3	39.00	CIRCULAR	30,00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	The state of the s
P4	39.00	CIRCULAR	30.00 in	30.00 in	30,00 in	30.00 in	30,00 in	30.00 in	4.91	
P5	39.00	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	
P6	39.00	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 1.83

	Invert	Elev.	m Ma	nstrea anhole sses	HG	L	EGL			
Eleme nt Name	Downstre am (ft) (ft) (Ft) (6835,25		Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)	
P1	6833.73	6835.25	0.00	0.00	6835.18	6837.36	6837.90	0.67	6838.57	
P2	6835.35	6841.17	0.37	0.00	6837.73	6843.28	6839,01	5.48	6844.49	
P3	6841.27	6847.77	0.05	0.00	6843.33	6849.88	6844.93	6.16	6851.09	
P4	6847.87	6851.63	0.37	0.00	6850.48	6853.74	6851.46	3.49	6854.95	
P5	6851.73	6855.33	0.37	0.00	6854.11	6857.44	6855.39	3.26	6858.65	
P6	6855.33	6855.50	0.37	0.00	6858.04	6858.14	6859.02	0.10	6859.12	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V_fi ^ 2/(2*g)
 Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g).
 Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2,00 ft

					Do	wnstrea	m	U	pstrear	n		
Eleme nt Name	Lengt h (ft)	Wa ll (in)	Beddi ng (in)	Botto m Widt h (ft)	Widt	Trenc h Depth (ft)	Cove r (ft)	Widt	Trenc h Depth (ft)	Cove r (ft)	Volu me (cu. yd)	Comme nt
Pl	80.00	3.50	6,00	6.08	21.04	12.06	8.48	18.68	10.88	7.30	348.39	
P2	448.0 0	3.50	6.00	6.08	18.49	10.79	7.20	16.16	9.62	6.04	1559,6 9	
Р3	500,0 0	3.50	6.00	6.08	15.96	9.52	5.94	23.76	13.42	9.84	2241.4 4	
P4	289.0 0	3.50	6.00	6.08	23.55	13.32	9.74	16.04	9.56	5,98	1285.9 4	

P5	277.0 0	3,50	6.00	6.08	15.84	9.46	5.88	7.84	5.46	1.88	591.80	Sewer Too Shallow
P6	13.00	3.50	6.00	6.08	7.84	5.46	1,88	7.50	5.29	1.71		Sewer Too Shallow

Total earth volume for sewer trenches = 6043 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - o Four inches for pipes less than 33 inches.
 - o Six inches for pipes less than 60 inches.
 - o Eight inches for all larger sizes.

System Input Summary 24" HDPE – 5-Year Event

Rainfall Parameters

Rainfall Return Period: 5
Rainfall Calculation Method: Formula

One Hour Depth (in): 1.00 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 4.19

Manhole Input Summary:

		Giv	en Flow	Sub Basin Information							
Elemen t Name	d Elevati	Total Kno wn Flow (cfs)	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	5yr Coeffici ent	Overla nd Length (ft)	Overla nd Slope (%)	Gutt er Leng th (ft)	Gutte r Veloci ty (fps)	
OUTFA LL 1	6849.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
P10	6849.0 0	11.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
P11	6848.0 0	11.20	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	

Manhole Output Summary:

		Local	Contri	bution		7	Γotal Des	ign Flow		
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Comme nt
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	2.42	4.64	0.08	11.2 0	
P10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.2 0	
P11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	11.2	

Sewer Input Summary:

	··	Ele	vation	<u> </u>	Loss C	oeffic	ients	Given Di	mensi	ons
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Slop e (%)	Upstrea m Invert (ft)	Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft or in)

P10	17.00	6835.41	5.2	6836.29	0.012	0.03	0.00	CIRCULA R	24.0 0 in	24.0 0 in
P11	113.00	6836.29	5.2	6842.14	0.012	0.38	0.00	CIRCULA R	24.0 0 in	24.0 0 in

Sewer Flow Summary:

		Flow pacity	l .	tical low		Nor	mal Flor	×			
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
P10	55.9 1	17.80	14.4	5.69	7.29	13.90	3,70	Supercriti cal	11.2 0	0.00	
P11	55.9 1	17.80	14.4	5.69	7.28	13.90	3.70	Supercriti cal Jump	11.2 0	12.18	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Hilamant	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
P10	11.20	CIRCULAR	24.00 in	24,00 ⁻ in	18.00 in	18.00 in	24,00 in	24.00 in	3.14	
P11	11.20	CIRCULAR	24,00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 4.19

	Invert :	Elev.	m Ma	nstrea anhole sses	HG	L		EGL	
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)
P10	6835.41	6836.29	0.00	0.00	6836.02	6838,82	6839.02	0.00	6839.02
P11	6836.29	6842.14	0.07	0.00	6838.90	6843.34	6839.09	4.75	6843.84

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend $K * V_fi ^2/(2*g)$
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft
The minimum trench width is 2,00 ft

					Do	wnstrea	ım	U	pstrear	n		
Eleme nt Name	Lengt h (ft)	Wa ll (in)	Beddi ng (in)	Botto m Widt h (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Volu me (cu. yd)	Comme nt
P10	17.00	3.00	4.00	5.50	26.18	14.17	11.3	24.42	13.29	10.4 6	109.39	

P11	113.0 0	3.00	4.00	5.50	24.42	13.29	10.4	10.72	6.44	3.61	428.68	
l		l	l				!	<u> </u>	!	l	l	l

Total earth volume for sewer trenches = 538 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - o Four inches for pipes less than 33 inches.
 - o Six inches for pipes less than 60 inches.
 - o Eight inches for all larger sizes.

System Input Summary 24" HDPE – 100-Year Event

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.00 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6.09

Manhole Input Summary:

		Giv	en Flow		S	Sub Basin	Inform	ation		
Elemen t Name	Groun d Elevati on (ft)	Total Kno wn Flow (cfs)	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	5yr	Overla nd Length (ft)	Overla nd Slope (%)	er	Gutte r Veloci ty (fps)
OUTFA LL 1	6849.0 0	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00

P10	6849.0	7.10 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P11	6848.0	7.10 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	Contri	bution		7	Fotal Des	ign Flow		
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min)	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Comme nt
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	5.82	4.65	0.03	27.1 0	
P10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.1 0	
P11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27,1 0	

Sewer Input Summary:

		Ele	vation		Loss C	oeffici	ients	Given Dir	nensi	ons
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Slop e (%)	Upstrea m Invert (ft)	Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft or in)
P10	17.00	6835.41	5.2	6836.29	0.012	0.03	0.00	CIRCULA R	24.0 0 in	24.0 0 in
P11	113.00	6836.29	5.2	6842.14	0.012	0.38	0.00	CIRCULA R	24.0 0 in	24.0 0 in

Sewer Flow Summary:

Full Flow	Critical	Normal Flow	
Capacity	Flow	Normal Flow	

Eleme nt Name	w	ty	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)		Flow Conditio n	Flo w (cfs)	Tomosth	Comme nt
P10	56.0 4	17.84	21.7	9.06	11.7 7	17.69	3.56	Supercriti cal	27.1 0	0.00	
P11	55.9 1	17.80	21.7	9.06	11.7 8	17.66	3.55	Supercriti cal Jump	27.1 0	9.32	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

		Existing Calculated		Used						
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
P10	27.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
P11	27.10	CIRCULAR	24.00 in	24.00 in	21,00 in	21.00 in	24.00 in	24.00 in	3,14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6.09

	Invert :	Elev.	m M	nstrea anhole sses	HG	L			EGL	
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)	
P10	6835,41	6836.29	0.00	0.00	6836.72	6838.10	6839.10	0.28	6839.38	
P11	6836.29	6842.14	0.44	0.00	6838.66	6843.95	6839,81	5.41	6845.23	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^2/(2*g)$
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft
The minimum trench width is 2.00 ft

					Downstream			U	pstrear		· · · · · · · · · · · · · · · · · · ·	
Eleme nt Name	Lengt h (ft)	Wa ll (in)	Beddi ng (in)	Botto m Widt h (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Top Widt h (ft)	Trenc h Depth (ft)	,,	Volu me (cu. yd)	Comme nt
P10	17.00	3.00				1	, ,	3	13.29		109.42	
P11	113.0	3.00	4.00	5.50	24.42	13.29	10.4	10.72	6.44	3,61	428,68	

Total earth volume for sewer trenches = 538 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:

Four inches for pipes less than 33 inches.
Six inches for pipes less than 60 inches.
Eight inches for all larger sizes.

. . . .

8.1 Riprap Sizing

Procedures for sizing rock to be used in soil riprap, void-filled riprap, and riprap over bedding are the same.

8.1.1 Mild Slope Conditions

When subcritical flow conditions occur and/or slopes are mild (less than 2 percent), UDFCD recommends the following equation (Hughes, et al, 1983):

$$d_{50} \ge \left[\frac{VS^{0.17}}{4.5(G_s - 1)^{0.66}}\right]^2 \qquad \text{For} \quad Q_{100} = 67.4 \text{ cfs}$$
Equation 8-11

Where:

V = mean channel velocity (ft/sec) =
$$2.381$$
 ft/s
S = longitudinal channel slope (ft/ft) = 0.003 ft/ft
 d_{50} = mean rock size (ft) = 0.023 ft \rightarrow Use 0.02 0.02

Gs = specific gravity of stone (minimum = 2.50, typically 2.5 to 2.7), Note: In this equation (Gs -1) considers the buoyancy of the water, in that the specific gravity of water is subtracted from the specific gravity of the rock.

Note that Equation 8-11 is applicable for sizing riprap for channel lining with a longitudinal slope of no more than 2%. This equation is not intended for use in sizing riprap for steep slopes (typically in excess of 2 percent), rundowns, or protection downstream of culverts. Information on rundowns is provided in Section 7.0 of the *Hydraulic Structures* chapter of the USDCM, and protection downstream of culverts is discussed in the *Culverts and Bridges* chapter. For channel slopes greater than 2% use one of the methods presented in 8.1.2.

Rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2.5H:1V (UDFCD 1982). Channel side slopes steeper than 2.5H:1V are not recommended because of stability, safety, and maintenance considerations. See Figure 8-34 for riprap placement specifications. At the upstream and downstream termination of a riprap lining, the thickness should be increased 50% for at least 3 feet to prevent undercutting.

8.1.2 Steep Slope Conditions

Steep slope rock sizing equations are used for applications where the slope is greater than 2 percent and/or flows are in the supercritical flow regime. The following rock sizing equations may be referred to for riprap design analysis on steep slopes:

- CSU Equation, Development of Riprap Design Criteria by Riprap Testing in Flumes: Phase II
 (prepared by S.R. Abt, et al, Colorado State University, 1988). This method was developed for steep
 slopes from 2 to 20 percent.
- USDA- Agricultural Research Service Equations, Design of Rock Chutes (by K.M. Robinson, et al, USDA- ARS, 1998 Transactions of ASAE) and An Excel Program to Design Rock Chutes for Grade

Roughness of Cobble (Rock) Channels and Riprap Areas

There are multiple methods available for determining Manning's n values for cobble/rock lined channels and significant areas of riprap. Two relationships are shown below; it is the responsibility of the designer to evaluate the methods available and determine the approach most appropriate for the specific project conditions.

Determination of Roughness Coefficients for Streams in Colorado (Jarrett 1985)

$$n = 0.39 S^{0.38} R^{-0.16}$$

Equation 8-8

Where:

S = channel slope (ft/ft) =
$$0.003$$
 ft/ft
R = hydraulic radius (ft) = 1.313

The Manning's roughness coefficient, n, for a void-filled or soil riprap-lined channel may be estimated using:

$$n = 0.0395D_{50}^{1/6}$$

Equation 8-9

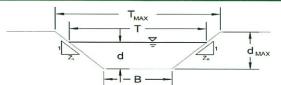
Where:

$$D_{50}$$
 = mean stone size (feet)

This equation is appropriate for computing channel capacity and associated flow depth, but when soil riprap is vegetated, velocity and shear computations should be based on the roughness provided by the vegetation and not the riprap.

This equation does not apply to grouted boulders or to very shallow flow (where hydraulic radius is less than, or equal to 2.0 times the maximum rock size). In those cases the roughness coefficient will be greater than indicated by this equation. The *Hydraulic Structures* chapter covers grouted boulder applications in detail.

7.2.4 Design Storms

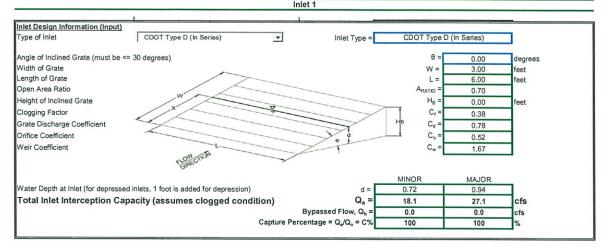

HEC-RAS refers to design storms as "profiles" and allows a designer to add multiple profiles. Boundary conditions are defined for each profile and options consist of known water surface elevation, critical depth, normal depth or rating curve.

It is recommended that the designer evaluate multiple return periods (profiles) when evaluating a stream reach. These may include the "bankfull" event, 2-year, 5-year, 10-year, 100-year, and perhaps larger events. The 2 through 10-year profiles are important when a shared-use path is planned adjacent to the stream to ensure proper elevation of the past. See the *Stream Access and Recreational Channels* chapter for criteria regarding trails including low-flow crossings.

Evaluation of multiple design storms allows the designer to see variations in flow patterns for different storm events and the resulting velocities, flow depths, etc. In some cases it may be appropriate to modify Manning's n values based on the flow depth at a specific design storm to more accurately depict the flow conditions.

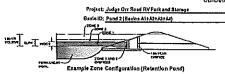
AREA INLET IN A SWALE

Enter Your Project Name Here Inlet 1


This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

S ₀ = B = Z1 = Z2 =	4.00 10.00	ft/ft ft ft/ft	
S ₀ = B = Z1 = Z2 =	0.0140 4.00 10.00 10.00 Choose One:	ft ft/ft	
B = Z1 = Z2 =	4.00 10.00 10.00 Choose One:	ft ft/ft	
Z1 = Z2 =	10.00 10.00 Choose One:	15115	
Z2 =	10.00 Choose One:	15115	
_	Choose One:		
[
- 1			
- 1	© Cohesive		
L	[Paved		
	Minor Storm	Major Storm	
T _{MAX} =	30.00	30.00	feet
d _{MAX} =	1.00	1.00	feet
			_
Q _{allow} =		33.0	cfs
d _{allow} =	1.00	1.00	ft
Q. =	11.2	27.1	cfs
d=	0.72	0.94	feet
	d _{MAX} = Q _{allow} = d _{allow} =	T _{MAX} = 30.00	Minor Storm Major Storm T _{MAX} = 30.00


AREA INLET IN A SWALE

Enter Your Project Name Here Inlet 1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

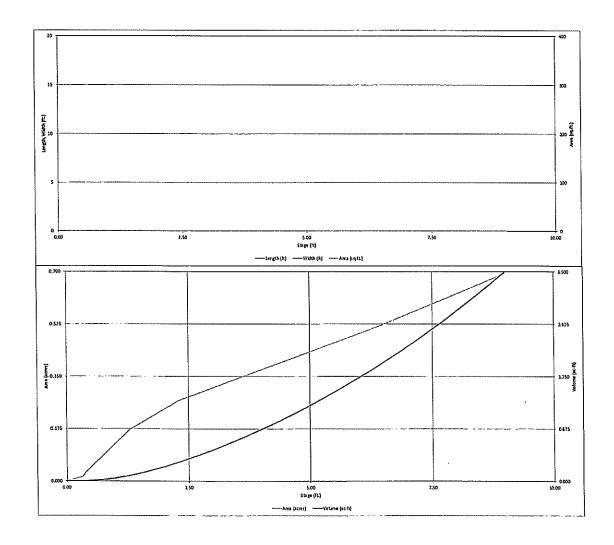
Required '	4.1	A-1	
Regulated.	COLUMN TO S	CERCULAR	ЭΓ

1	EDB	Selected BIAP Type =
ec rea	29.65	Waters leed Area *
ħ	1,600	Waters had Langth *
N/R	0.018	V/elerated Stope =
percent	44.60%	Watershed Imperviousness #
percent	0.0%	Percentage Hydrologia Sall Group A »
percent	100.0%	Percentage Hydrologic Sol Group 8 =
percent	0.0%	Percentaga Hydrologia Soll Groupe C/D =
tours	40.0	Desired WQCV Desir Tkne =
ed Bullin	епис - Свр	Location for 1-fe Rainfall Deptim = D
ne ro-fee	0.470	Weter One-try Centure Volume (WOCVA #

Location for 1 hr Randat Depths =	Demier - Capita	X Busing
Water Quality Capture Volume (WOCV) =	0.470	ecro-feet
Excess Urban Runoff Volume (EURV) =	1.380	acra-feet
7-yr Rusoff Volume (P1 = 1.10 ls.) =	1.000	scre-feet
6-y: Runofi Volume (Pt = 1.6 in.) =	1.517	scra-leet
t0-jπ Runoā Volume (P1 ≈ 1.75 lh,) ≈	2.109	acra-leat
26-yr Runolf Volume (P1 = 2 ks) =	3.007	ocre-feet
60-ys Runoff Volume (Pt = 2.25 in) =	3,729	acro-foet
100 yr Rurolf Volume (P1 = 2.52 in.) =	4,578	acro-feet
500-37 Runoff Volume (P1 = 3.01 in.) +	B 954	acra-loct
Approximate 2-yr Detection Volume =	1.028	sore-feet
Approximate 5-yr Detection Volume =	1.424	ocre-feet
Approximate 10-yr Detertion Volume ×	1.927	acra-feet
Approximate 26 yr Detention Volume >	2,123	acro lost
Approximate 60-yr Delettish Volume =	2.735	ecre-feet
Approximate 100-yr Detention Volume =	2.502	acre-feet
		•

Stage-Storage Calculation

0.470	acra feet
0.010	scro lett
1,152	es re-feet
2.602	acre-feet
10 er	nu uni
шw	a
G BY	A
10 PJ	ft.
1954	t/A
1941	HY
User]
	0.010 \$,152 2.632 10 er 11 er 12 er 13 er 13 er 15 er


R*2	Last	httal Surcharge Area (A _{ev}) = j
e.	user	Surcharge Vokassa Length (L _{en}) =
h	LID EF	Surcharge Volume Width (Was) =
1	TH SL	Depth of Basin Floor (H _{nosi}) =
٦,	uset	Length of Sash Floor (Lesco) =
٦,	(Het	Width of Bas in Floor (Wasses) =
h'2	1860	Area of Barrin Floor (Antar) =
AT.	met	Volume of Basin Floor (Vacca) =
- I	Len	Depth of Lish Basin (Huss) =
ı,	User	Length of Min Basin (Luky) →
- n	tuter	With of Man Barin (Ware)
12	ta et	Area of Main Sasin (Aug.) =
t u	Lisef	Volume of Main Basin (V _{MAIN}) =
7	1947	Calculated Total Basin Voluma (V _{olum}) = [

Depth increment =	0,1	۸.
***************************************	*****	7
	A	ι,

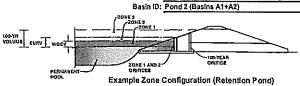
Stage - Storage Description									
Description		Opportsi		115.44		Optional		Volume	Volume
	Stops (f)	Oveniše (d) eget2	Length	With	Area	OvenHe (KT) cash	Area	(6:3)	(ac-R)
	197		(ft)	(h)	(4.3)		(6:0)	2015	(80.40)
Top of Micropool		0.00		*	- 1	30	0.001	BASSAN S	1.5500 (1.550)
	- 1	0.33 [-	- 1	- 1	638	0.015	104	0.002
	-	0.40				1,327	0030	168	0.004
	-	0.60	-		-	2.016	0040.0	326	0.007
1	-	0.60	-	-	_	2,705	0.002	555	0.013
		0.70				3,394	0.078	453	0.020
		0.60				4,062	0.094	1,220	0.028
	- 1	0.00		-		4,771	0,110	1,656	0.038
i"	-	1.00				5,400	0.125	2,161	0,050
		1.10				6,149	0.141	2,734	0.063
		1.20						3,377	0.078
			-			6,638	0.157		
		130	_		-	7,528	0.173	4,088	0.094
i	- 1	1.40			-	7,045	0.1#2	4,657	0.512
		1.50				8,364	0.192	6,550	0.130
	 -+	1.60	-		-			6,522	
						6,783	0,202		0,160
	-	1.70		-		9,202	0211	7,417	6.170
		1.83	_		-	9,821	0.221	8,354	0.192
	-	1.90			-	10,040	0.230	9,333	0.214
		2.00				10,450	0.243	10,353	0.238
		2.10	-	-	**	10,A78	0.260	11,625	0.205
		2.20	-	-		11,297	0.259	12,633	0.290
		2.30			_	11,718	0.269	13,784	0.318
		2.40			-	11.078	0.275	14,000	0.344
·									
		2.60				12,241	0.281	081,61	0.371
		2.50		-	-	12,500	0.287	17,417	9.400
	- 1	2.70				12,768	0.293	18,580	0.429
		2.00	-			13,028	0.298	10,970	0.458
			 	-					
		2.00		<u> </u>	-	13,20[0.385	21,288	0.4\$\$
	- 1	9.00	_			13,653	0211	22,828	0.519
	_	3.10	_		T -	13.815	0317	23,897	0.651
 		3.20			-	14,078	0.323	25,391	0.583
<u> </u>	~			ļ <u>-</u>	<u> </u>				
	P-4	3.30			<u>-</u>	14,341	0.529	20,812	0.616
		3.40	-		l -	14,603	0.335	28,250	0.849
	-	3.50	<u>-</u>			14,866	0.341	29,733	0.683
		3,60	 	├	! 	15,128	0.347	\$1,233	0.717
			ļ		-				
		3.70	-			15,291	0353	\$2,760	0.752
	-	3,60	-	-	-	15,653	0.350	34,311	0.768
		3.90	_			15,016	0.385	35,889	0.824
		4.03		1		18,175	0.371	37,494	183.0
			ļ <u>-</u>	 _	-				
l i		4,10			-	10,441	0.377	39,125	263.0
1	**	4.20	-	-	-	16,703	0.383	40,782	0.938
		4,30	1 -		1	15,056	0.350	47,465	0.075
		4.40	 -	-		17,228	0.300	44,175	1.014
1		4.60		-	l -	17,401	0.402	45,911	1.054
	-	j 4.60	-	-	l	17,753	0,408	47,573	1,094
		4.70	T -		1 2	18,018	0.414	40,482	1.135
		4.50	-		-	18,278	0.420	51,277	1.177
			-	-	-				
		4.00		-		18,541	0.428	63,117	1.219
	-	600	-	1 -	1 -	18,603	0,432	64,985	1,262
	**	£10	-		-	19,060	0.438	Ed #78	1,308
		5.20		· 		19,328	0444	58,798	1,350
		602	-	1 -	·	10,001	0.450	60,744	1,314
 			1	+-	+				
		6.40	1		-	19,653	0.459	62,718	1,440
		6.50	<u> </u>		-	20,118	0.452	64,714	1.450
		5.60	-		-	20,375	D.658	66,739	1.632
ļ		5.70		 		20,641	0.474	65,760	1,679
		5.80	 			20,003	0.480	70,647	1.027
<u> </u>		6.00	+ =	 	 	21,156	0.492	75,100	1.724
		8,10	 	- 	 	21,091	0.658	77,250	1771
	-	820	-	-	1	21,053	0 504	79,439	1.024
		6.30				27,210	0.610	61.047	1,874
		6.40		-	-	22,511	0.617	63.683	1.926
		6.50	-	 	-	22,800	0.624	65,142	1.078
		6.70	-		-	23,101	0,530	25,445	2,030
	-	6.60	+=		 	73,500	0 644	93,124	2.138
H		620		 	 	23,988	D.551	95,508	2,153
———	-	7.50	 	1 -	1 -	21,281	0 657	U7,DZL	2.248
	T -	7.10	-	 	1 -	24,578	0.564	100,364	2301
		7.20		-	•	24,871	0.571	102.838	2.301
		7.30				25,160	0.578	105,338	2.418
	<u> </u>	7.40			<u> </u>	26,481	0.665	107.899	2,478
		7.60	-	-	1 -	25,757	0 691	110,430	2.635
	-	7.60		-	 -	26,052	0 204	113.021	2.165
					1	26,347	0.603	115,641	2,718
	-	7.70					0417		
	==	7.70 7.60	 	-	-	26,512	0612	518,290 120,050	
	-	7.70		-	=	26,642 26,937 27,232	9 0 518	120,050	2.777
	-	7.70 7.50 7.50			=	26,642 26,937 27,232 27,527	061Z 0618 0625 0,632	120,050 123,078	2.777
	-	7.70 7.50 7.50 8.00			-	76,612 26,937 27,232 27,527 27,822	9.518 9.525 9.532 9.539	120,050	2.777
		7.70 7.50 7.50 8.00 8.10 6.20 8.30		- <u>-</u>		26,642 26,937 27,232 27,527	9 618 9 826 9 832 9 839 9 845	120,050 123,078 176,415	2.777 2.839 2.902
		7.70 7.50 7.50 8.00 8.10 6.20		- <u>-</u>		76,612 26,937 27,232 27,527 27,822	9.518 9.525 9.532 9.539	120,050 123,078 179,415 129,183	2.777 2.839 2.902 2.960
	- - - - - - - - - - - - - - - -	7,70 7,60 7,50 8,00 8,10 6,20 8,30 8,40 8,60		- <u>-</u>		26,642 26,937 27,232 27,527 27,822 28,117 26,421 28,726	9 616 9 826 9 832 9 832 9 839 9 845 9 652 9 652	120,059 123,078 175,415 179,183 131,990 134,807 137,584	2.777 2.839 2.902 2.903 3.030 3.030 3.095 3.100
	- - - - - - - - - - - - - - - - - - -	7,70 7,80 7,90 8,00 8,10 8,10 8,20 8,30 8,40 8,60				26,642 26,937 27,232 27,527 27,822 28,117 76,421 28,726 28,930	0.616 0.826 0.832 0.639 0.645 0.652 0.650	120,689 123,678 175,415 179,163 131,980 134,697 137,664 140,552	2.777 2.839 7.902 2.966 3.030 3.035 3.160 3.227
	- - - - - - - - - - - - - - - -	7,70 7,50 7,50 8,00 8,10 6,20 8,30 8,40 8,40 8,60 8,60		- <u>-</u>		26,642 26,937 27,232 27,527 27,822 28,117 76,421 28,776 28,930 29,935	9 516 9 526 9 532 9 539 9 645 9 652 9 650 9 673	120,860 123,678 179,415 179,45 131,960 134,807 137,664 140,552 143,470	2.777 2.839 7.902 2.906 3.030 3.035 3.150 3.227 3.294
	- - - - - - - - - - - - - - - - - - -	7,70 7,50 7,50 8,00 8,10 6,20 8,30 8,40 8,40 8,60 8,70 8,80			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26,642 26,937 27,232 27,527 27,822 28,117 26,421 28,726 29,030 29,335 20,539	9818 9826 9,832 9539 9645 9652 9650 9673	120,050 123,078 175,415 179,183 131,980 134,807 137,584 140,552 143,470	2.777 2.839 7.902 2.908 3.030 3.035 3.150 3.227 3.294 3.361
	- - - - - - - - - - - - - - - - - - -	7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60			1 1 1 1 1 1	76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 659 9 659 9 659 9 659 9 659	120,650 123,678 129,483 131,940 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
	- - - - - - - - - - - - - - - - - - -	7,70 7,50 7,50 8,00 8,10 6,20 8,30 8,40 8,40 8,60 8,70 8,80				26,642 26,937 27,232 27,527 27,822 28,117 26,421 28,726 29,030 29,335 20,539	9818 9826 9,832 9539 9645 9652 9650 9673	120,050 123,078 175,415 179,183 131,980 134,807 137,584 140,552 143,470	2.777 2.839 7.902 2.908 3.030 3.035 3.150 3.227 3.294 3.361
	- - - - - - - - - - - - - - - - - - -	7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 659 9 659 9 659 9 659 9 659	120,650 123,678 129,483 131,940 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
	- - - - - - - - - - - - - - - - - - -	7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 659 9 659 9 659 9 659 9 659	120,650 123,678 129,483 131,940 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
		7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 657 9 669 9 677 9 689 9 687	120,650 123,678 129,483 131,940 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
		7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 657 9 669 9 677 9 689 9 687	120,650 123,678 129,483 131,940 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
		7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 657 9 669 9 677 9 689 9 687	120,650 123,678 129,415 129,483 131,840 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
		7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60				76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 657 9 669 9 677 9 689 9 687	120,650 123,678 129,415 129,483 131,840 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430
		7,70 7,60 7,50 8,00 8,10 6,20 8,40 8,40 8,60 8,60 8,70 8,60			*** *** *** *** *** *** *** *** *** **	76,942 76,937 77,232 27,527 28,147 76,421 78,726 29,930 29,935 20,639 70,944	9 518 9 525 9 532 9 539 9 645 9 652 9 659 9 657 9 669 9 677 9 689 9 687	120,650 123,678 129,415 129,483 131,840 134,807 137,654 140,552 141,470 148,419	2,777 2,839 7,902 2,966 3,630 3,035 3,100 3,227 3,224 3,361 3,430

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

3.02ye On Pond 2.RV 4.30a UD-blantion y3 0 Falam, Basis

•


Update the Basin ID to match the Detention Basin Stage-Storage Table Builder worksheet.

Detention Basin Outlet Structure

UD-Detention, Version 3.07 (February 2

Project: Judge Orr Road RV Park and Storage

Unresolved. See title in pg 29 of 43

	Stage (ft)	Zone Volume (ac-it)	Outlet Type
Zone 1 (WQCV)	2.84	0.470	Orifice Plate
Zone 2 (EURV)	5.27	0,910	Orifice Plate
Zone 3 (100-year)	7.50	1.152	Weir&Pipe (Restrict)
_		2.532	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth # N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain
Underdrain Orifice Area = N/A R²
Underdrain Orifice Centroid = N/A feet

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.99	3.97					
Orifice Area (sq. Inches)	2.92	2.92	2,92					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)	***************************************								
Orifice Area (sq. Inches)									

User Input: Vertical Orlfice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	A/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	Inches

 Calculated Parameters for Vertical Orifice

 Not Selected
 Not Selected

 Vertical Orifice Area =
 N/A
 N/A
 n/A

 Vertical Orifice Centroid =
 N/A
 N/A
 fee

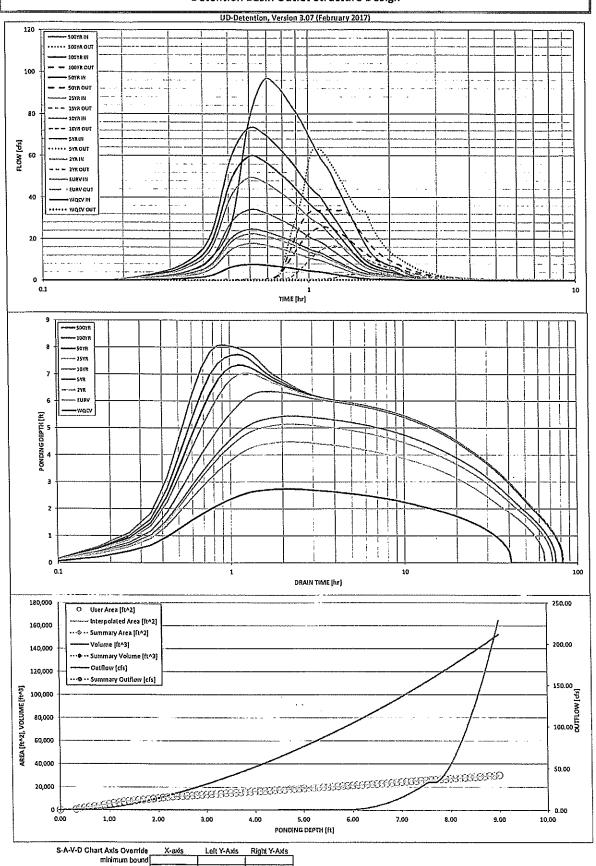
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User input: Overflow Weir (Drophox) and G	rate (Flat or Sloped)		_	Calculated I	Parameters for Ove	rflow Welr	
	Zone 3 Welr	Not Selected		[Zone 3 Weir	Not Selected	
Overflow Welr Front Edge Height, Ho≎	5,95	N/A	ft (relative to basin bottom at Stage = 0 ft)	Height of Grate Upper Edge, H _t =	7.20	N/A	feet
Overflow Welr Front Edge Length =	5.00	N/A	feet	Over Flow Welr Slope Length =	5,15	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)	Grate Open Area / 100-yr Orifice Area =	6.83	N/A	should be≥4
Horiz. Length of Weir 5ides =	5.00	N/A	feet	Overflow Grate Open Area w/o Debris =	18.04	N/A	ft²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	Overflow Grate Open Area w/ Debris =	9.02	N/A	ft²
Debris Clogging % =	50%	N/A]%	•			-

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orlfice Area =	2.64	N/A	ft²
Outlet Pipe Diameter ×	36.00	N/A	Inches	Outlet Orifice Centrold ==	0,70	N/A	feet
Restrictor Plate Height Above Pipe invert =	14.40		Inches Half-Central Angle	of Restrictor Plate on Pipe =	1.37	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)


Splilway Invert Stage≃	7.70	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length ≠	40,00	feet
Spillway End Slopes =	3.00	H:V
Freeboard above Max Water Surface =	1.00	feet

	ted Parameters for S	piliway
Spillway Design Flow Depth=	0.69	feet
Stage at Top of Freeboard =	9.39	feet
Basin Area at Top of Freeboard =	0.69	acres

Routed Hydrograph Results			" 						
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07		1.50	1.75	2.00			
			1.19		-		2.25	2.52	3.01
Calculated Runoff Volume (acre-ft) =	0.470	1.380	1.099	1.517	2.109	3.067	3,720	4,576	6.054
OPTIONAL Override Runoff Volume (acre-ft) =					<u> </u>				
inflow Hydrograph Volume (acre-ft) =	0.476	1.400	1.114	1.538	2.137	3.109	3.770	4.638	6.136
Predevelopment Unit Peak Flow, q (cfs/acro) =	0.00	0.00	0.01	0,02	0.20	0.65	0.91	1.22	1.73
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	0.6	5.9	19.4	26.8	36.1	51.2
Peak Inflow Q (cfs) =	7.7	22,4	17.9	24.6	34.0	49,3	59.6	73.0	95,9
Peak Outflow Q (cfs) =	0.2	0.5	0.4	0.5	3.3	16.3	25.6	34.1	62.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.9	0.5	0.8	1.0	0.9	1.2
Structure Controlling Flow ≖	Plate	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Spiliway	Spillway
Max Velocity through Grate 1 (fps) =		N/A	N/A	N/A	0.1	0.9	1.4	1.8	1.9
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	65	59	68	72	69	67	65	60
Time to Drain 99% of inflow Volume (hours) =	40	69	62	72	78	77	76	75	73
Maximum Ponding Depth (ft) =	2.74	5.14	4.49	5.44	6.35	7.03	7.33	7.72	8,07
Area at Maximum Ponding Depth (acres) =		0.44	0.40	0.46	0.51	0.56	0,58	0.61	0.63
Maxinum Volume Stored (nore-ft) = 2. Revise de	0.438	127	1,050	1.453	1.900	2.259	2.430	2.667	2.883
∠. Revise de	sign so t	ne robyr	goes thic	ougn the	outletpip	€.	and the second s	7*************************************	

Unresolved. The 100yr is still discharging over the emergency spillway. Revise outlet structure design to provide capacity for the 100yr release rate.

Detention Basin Outlet Structure Design

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017)
The user can ovenide the calculated Inflow hydrographs from this workbook with Inflow hydrographs developed in a separate program.

Iser-Defined	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
ime Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year (cfs)	10 Year (cfs)	25 Year [cfs]	50 Year [cfs]	100 Year (cfs)	500 Year (cf:
5.14 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,17 (tai	0:05:08									0.00
	0;10:17	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
Constant	0;15:25	0.60 0.34	0.00	0.00	0,60 1.07	0.00 1.46	0,00 2.08	0,00	0.00	0.00
0.986	0:20:34	0.93	2.65	2.12	2.90	3.99	5,74	2.49 6.90	3,00 8,38	3.82 10,83
V.000	0:25:42	2.38	6,80	5,44	7.45	10.26	14.73	17.71	21,51	27.81
	0:30:50	6.53	18.67	14.96	20.45	28.15	40.42	48.57	58.95	76.18
	0:35:59	7.72	22.41	17.89	24.59	34.04	49.25	59.55	72.96	95.90
	0:41:07	7.36	21,43	17.10	23,52	32.60	47.25	57.22	70.31	92.93
	0:46:16	6.70	19.51	15.57	21.41	29.67	43,00	52,07	64.08	84.90
	0:51:24	5.98	17.49	13.94	19.20	26.65	38.69	46.90	57,74	76.54
	0:56:32	5.15	15.17	12.07	16.57	23.16	33.76	40.99	50,54	67.14
	1:01:41	4.49	13.19	10.50	14.48	20.15	29.42	35.77	44.14	58.70
	1:06:49	4.07	11.96	9.52	13.13	18.26	26.61	32.31	39.82	52.84
	1:11:58	3.35	9.94	7.90	10.93	15.23	22.25	27.06	33.41	44.49
	1:17:06	2.72	8.17	6.48	8.99	12.57	18.40	22.40	27,70	36.94
	1:22:14	2.09	6,37	5.03	7.02	9.86	14.52	17.72	21.98	29,44
	1:27:23	1.55	4.82	3.79	5.32	7.52	11.16	13.67	17,00	22.85
	1:92:31	1.12	3.51	2.75	3.89	5.54	8.28	10.19	12,72	17.18
	1:37:40	0.87	2.69	2,11	2.97	4.20	5.24	7.65	9.52	12.81
	1:42:48 1:47:56	0.72	2,20	1,73	2.42	3,42	5.04	6.16	7.65	10.24
	1:53:05	0.61	1.86	1.47	1.79	2.88	4.25 3.70	5.19 4.52	6.43 5.59	8,60
	1:55:05	0.54				1			 	7.46
	2:03:22	0.45	1.46	1.16	1.61 1.48	2.26	3.32	4.04 3.70	5.00 4.58	6.66
	2:08:30	0.33	0.99	0.78	1.09	1.53	2.25	2.75	3.42	4.59
	2:13:38	0.24	0.72	0.57	0.80	1.11	1.64	2.00	2.47	3,32
	2:18:47	0,18	0.53	0.42	0.58	0.82	1.21	1.47	1.83	2.46
	2:23:55	0.13	0.39	0,31	0.43	0,61	0.90	1.10	1,36	1.83
	2:29:04	0.09	0.28	0.22	0.31	0.44	0.65	0.80	1.00	1.34
	2:34:12	0.07	0,20	0.16	0.22	0.31	0.47	0.58	0.72	0.97
	2;39:20	0.05	0.15	0.11	0.16	0.23	0.34	0.42	0.52	0.70
	2:44:29	0.03	0.10	0.08	0.11	0.16	0.24	0.29	0,36	0.49
	2:49:37	0.02	0,06	0,05	0.07	0,10	0.15	0.19	0.24	0.32
	2:54:46	0.01	0,03	0,02	0.04	0,05	0.08	0,11	0.14	0.19
	2:59:54	0.00	0.01	0.01	0.01	0.02	0,04	0.05	0.06	0,09
	3:05:02	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0,03
	3;10:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	3:15:19	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0,00	0.00
	3:20:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:36 3:30:44	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
	3:35:53	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00
	3:41:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	3:51:18	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
	3:56:26	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
	4:01:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:06:43	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
	4:11:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	4:22;08	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
	4:27:17	0,00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00
	4:32:25 4:37:34	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0,00	0.00
	4:42:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:50	0.00	0,00	0.00	0.00	0,00	0.00	0,00	0.00	0.00
	4:52:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00
	4:58:07 5:03:16	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:41	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0,00	0,00
	5:23:49 5:28:58	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
	5:28:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
	5:39;14	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
	5:44:23	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
	5:49:31	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:54:40	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	5:59:48 6:04:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	6:10:05	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Singe	Are	Airs	Volume	Yeluma	Total Outflow	
Description	(ft)	[ft^2]	[acres]	[ft=3]	[ac-ft]	[ch]	
· · · · · · · · · · · · · · · · · · ·	111					i	
							For best results, Include the
				1	- [stages of all grade slope
					1		changes (e.g. ISV and Floor)
			-				from the S-A-V table on
							Sheet 'Basin'.
				1			Also include the inverts of a
	, i					[outlets (e.g. vertical orifice,
							overflow grate, and spillway
		i	- 1			-	where applicable).
	·						·
				ļ			
	i			i	1		
							
	<u> </u>						
	L	,					
	1						
	<u> </u>		 				
	1						
	 						
	1	l	[]				
	 						
	 						-
	<u> </u>						1
]
					·		1
				***************************************	-		'
	-					***************************************	-
							1
		<u> </u>					
		l .]
	1					•	1
		1	1				1
	+-	 					1
							┪
			ļ				4
		 	 	<u> </u>	<u> </u>		_
		<u> </u>	<u> </u>]
	1	1					
	1						7
			1	1		ĺ	1
		1	 	 	 	 	1
	+		 				4
	 	+	 		-	 	-1
	-	+	 	1	ļ	ļ	-1
			+	1	1	-	4
		1				ļ	-
	1	-	+		·		4
	 	 		<u> </u>	-	1	4
	+	+	 	 	 	 	-
	+			1	 	1	-
		1			 	1	Ⅎ
	1	+	+	1	 	 	Ⅎ
	- 	+	1	1	 	 	╡
	1	+	1	 	 	<u> </u>	1
	1	1		† 	1	†	1
	+	+	1	1	·	 	╡
		1	- 	 	1	†	=
	+			+	1	t	┪
	+	1	 	 		·	┥
	 	_		1	+	 	┪
	~ [1	 	· 	-		~
	- 	-	 	1	1	+	4
	 	+	+	 	+	1	┪
				1	1	1	-
L	1	_ 1		1			

APPENDIX C

DETENTION POND

GEOTECHNICAL RECOMMENDATIONS

July 25, 2018

ENTECH ENGINEERING, INC.

505 ELKTON DRIVE COLOHADO SPRINGS, CO 80807 PHONE (719) 531-5599 FAX (719) 531-5238

William Guman & Associates, Ltd. 731 North Weber Street, Suite 10 Colorado Springs, Colorado 80903

Attn: Bill Guman

Re: Detention Pond

Judge Orr RV Park and Storage PCD File No. PPR-18-040 El Paso County, Colorado

Dear Mr. Guman:

The detention pond referenced above will be constructed within the Judge Orr RV Park and Storage property at the southeastern corner of the proposed facility, north of the intersection of Judge Orr Road and Cessna Drive. Two soil investigations have been conducted on the property in the vicinity of the detention pond; a Soil, Geology, Geologic Hazard, and Wastewater Study dated December 12, 2016, revised July 25, 2018, Job No. 160533 and a Tactile Test Pit Observation & Septic Design Letter dated August 16, 2017, Job No. 160533. The findings and development recommendations are reported under separate covers. This letter should be used in conjunction with our Soil, Geology, Geologic Hazard, and Wastewater Study and Tactile Test Pit Observation & Septic Design Letter. This document provides recommendations for constructing a detention pond based on our investigations, laboratory testing, and requirements specified in the El Paso County Engineering Criteria Manual and the El Paso County Drainage Criteria Manual.

The soils in the vicinity of the pond were recovered from test pits and a profile hole prepared nearby. The location of the test boring/pits and the test boring/pit logs are included in the Soil, Geology, Geologic Hazard, and Wastewater Study and Tactile Test Pit Observation & Septic Design Letter. The soils recovered north of the pond were described as fine to coarse grained clayey sand loam, fine to coarse grained sand loam, and sandy clay loam to depths of 8 to 10 feet. The soils south and west of the pond were described as fine to coarse grained clayey sand loam, fine to coarse grained sand loam, and sandy clay loam to depths of 5.5 to 6 feet with underlying sandy claystone. A test boring drilled west of the pond to a depth of 20-feet encountered clayey sand to a 9-foot depth overlying very clayey sandstone. Groundwater was not encountered in the test pits and encountered at a depth of 17-feet in the test boring.

Grading Plans were not finalized, however discussions pertaining to the pond indicate that the pond embankments will be less than 10-feet with significant cuts likely. Based on the existing site topography, cuts of 6 to 9 feet are likely exposing the underlying sandstone and claystone on the western and southern portions of the pond. Laboratory testing on a sample of sandstone obtained from the test boring determined the soil to contain between approximately 9 and 98 percent of the materials passing a No. 200 sieve (SC and CL) and the bedrock to contain 46.3 percent on one sample.

William Guman and Associates, Ltd. Judge Orr RV Park and Storage PCD File No. PPR-18-040 El Paso County, Colorado Page 2

The detention pond design parameters and geometry shall conform to the requirements specified in the El Paso County Engineering Criteria Manual and the El Paso County Drainage Criteria Manual. Sandstone/Claystone will likely be exposed in the southern portion of the supporting the pond embankment based on the soil investigations referenced herein. The undisturbed sandstone/claystone will provide a soil bearing capacity of 3,500 psf, and soil mitigation will likely not be required. The embankment foundation shall be fully exposed and observed by personnel of Entech to determine mitigation requirements, if any, prior to constructing the embankment. Overexcavation of expansive material may be required for the outlet works which should be field determined. Groundwater is not expected at the proposed excavated depth depending on the time of year the pond is constructed. Seasonally perched groundwater is known to exist in the area and dewatering in conjunction with soil stabilization will likely be required if groundwater is encountered during construction.

The embankment soils shall be compacted to a minimum of 95 percent of the soils maximum dry density as determined by ASTM D-1557 at ±2 percent of the soils optimum moisture content. Periodic observation and density testing will be performed during construction. Based on the suggested compaction efforts for the embankment soils and the expected foundation soils, it is likely that embankment settlement will be less than 3 percent of the embankment height.

We trust this letter has provided you with the Information required to construct the proposed detention pond. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING

Stan C. Culp, P.E. Senior Engineer

SCC/sc

Entech Job No. 181205 F:\AA projects\2018\181205\180205 dp Reviewed By:

Joseph C. Goéde, i President

∠Presideni

APPENDIX D DESIGN CHARTS

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

	Percent Impervious	Funoli Coellidents											
		2-year		5-year		10-усаг		25-year		50-year		JOO-year	
		HSG ALB	HIGCED	HEGALB	KSQ CLD	HEGAEK	HIGCED	RSGALL	HSGCAD	HEGALB	IISG C&D	ILSGA&B	REGUED
usiness													
Commercial Areas	95	0.79	0.80	0,81	0.82	0.83	D.84	0.85	0.97	0,87	0.88	0.88	0.89
Neighborhood Areas	70	0,45	0,49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0,65	0,62	0.68
Residential		 		 	<u> </u>							 	
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4Acre	40	0.23	0.28	0,30	0,35	0.36	0.42	0,42	0.50	0.46	0.54	0.50	0,58
1/3 Acre	30	0,18	0.22	0.25	0.30	0,32	86.0	0.39	0.47	0.43	0,52	0.47	0.57
1/2 Acre	25	0,15	0.20	0.22	Q.2B	0.30	0.36	0.37	0,45	0.41	0.51	0.46	0.56
1Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0,40	0.50	0.44	0.55
Industrial			-	 	+	 	 	 		1	+	 	
Ught Areas	60	0.57	0.60	0.59	0.63	0.63	0.66	0.65	0.70	0.68	0.72	0.70	0.74
Reavy Areas	90	0.71	0,73	0.73	0.75	0,75	0,77	0,78	0.80	0,80	0,82	0,81	0.83
Parks and Cemoteries	7	0.05	0.09	0,12	0.19	0.20	0.29	0.90	0.40	0,34	0.45	0.39	D.52
Playgrounds	13	0.07	0.13	0,16	0.23	0,24	0.31	0.3Z	0,42	0.37	0.48	0.41	0.54
Rallmad Yard Areas	40	0.23	0.28	0.30	0.35	0,35	0.42	0.42	0.50	0.46	0.54	0,50	0.58
Undeveloped Areas	 	-			<u> </u>	+	- 	+	-				
Historic Flow Analysis→ Greenbelts, Agriculture	2	0.03	0.05	0.09	0.10	0,17	0.26	0.26	0.38	0.31	0,45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	- - 0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	030	0.44	0.35	0.50
Exposed Rock	100	0.63	0.09	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.93	0.95	0,98
Olisite Flow Analysis (when landuse is undefined)		0,26	0.31		0.37	0.38	0.44						
Streets		-		+		-	-				_		
Payed	100	0.89	0.89	0.90	0.90	0,92	0.92	0.94	0.94	0.95	0.99	0,96	0.9
Gravel	ध्य	0.57	0.60	0.59	0.63	0.63	0.6	0.66	0.70	0.68	0.72	0.70	0.7
Daye and Walks	100	0.65	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.93	0,90	0.9
Roofs	50	0.71								0,80	0.82	2 0.83	i o.ė
Lawns	0	0.02	0.0	1 aoi	0.1	0,1	0.2	0,2	0.3	7 0.31	0.4	4 0.3	0.5

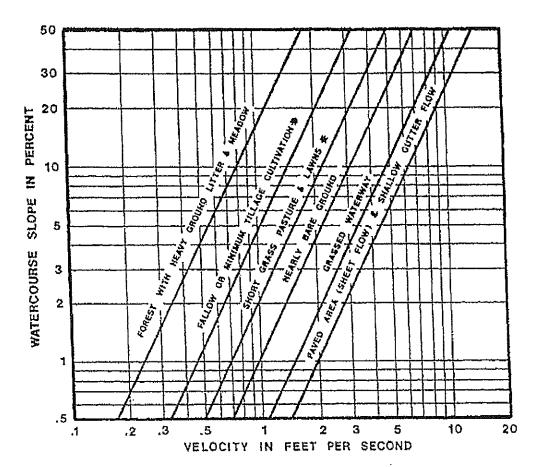


Figure 6-25. Estimate of Average Concentrated Shallow Flow

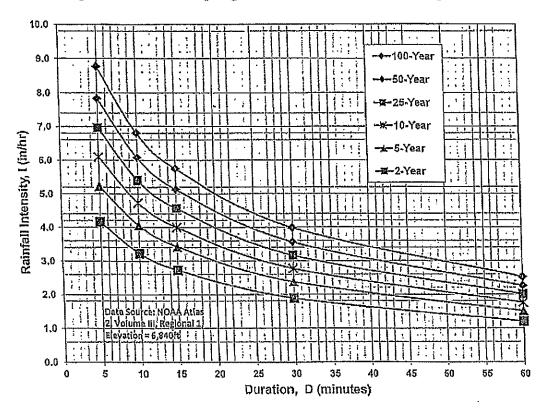
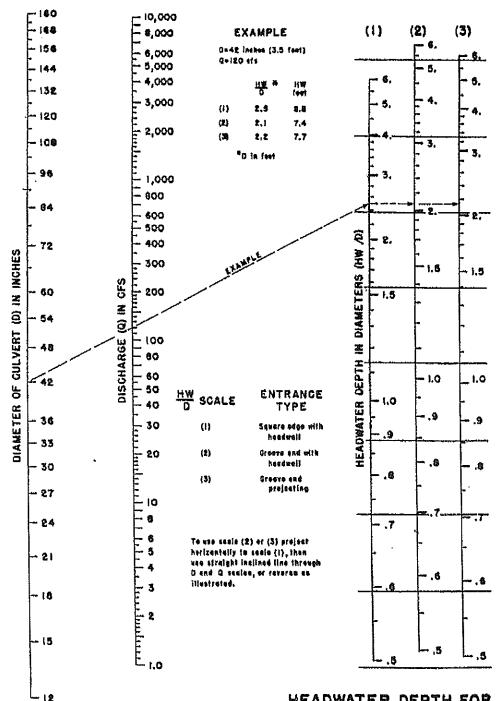


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

DF Equations

 $I_{100} = -2.52 \ln(D) + 12.735$

 $I_{50} = -2.25 \ln(D) + 11.375$


 $I_{25} = -2.00 \ln(D) + 10.111$

 $I_{10} = -1.75 \text{ In(D)} + 8.847$

 $I_s = -1.50 \ln(D) + 7.583$

 $I_2 = -1.19 \ln(D) + 6.035$

Note: Values calculated by equations may not precisely duplicate values read from figure.

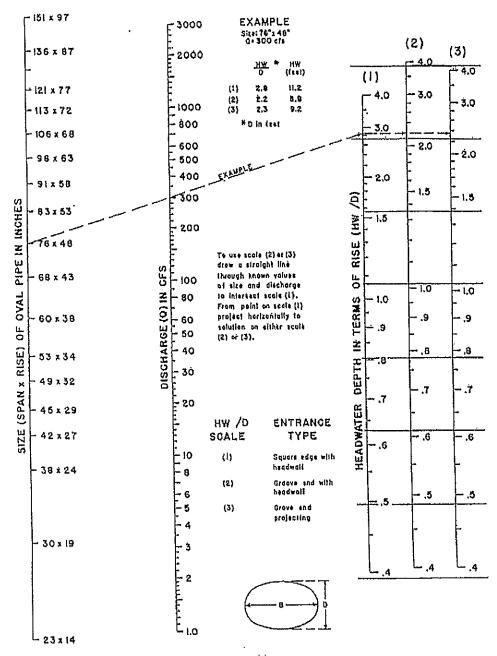
HEADWATER SCALES 283
REVISED MAY 1964

HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL

Bureau of Public Roads Jan 1968

HDR Infrestructure, Inc., A Centerra Company

The City of Colorado Springs / El Paso County Drainage Criteria Manual

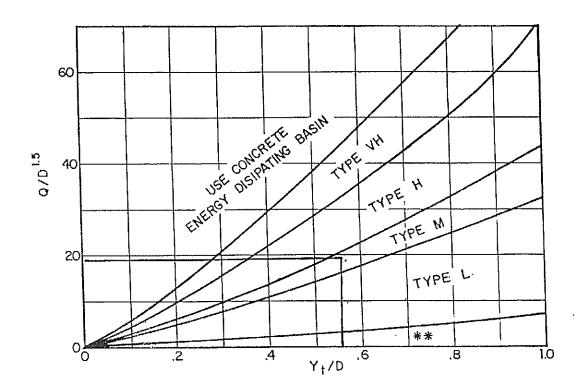

OGT. 1987

Figure

9-34

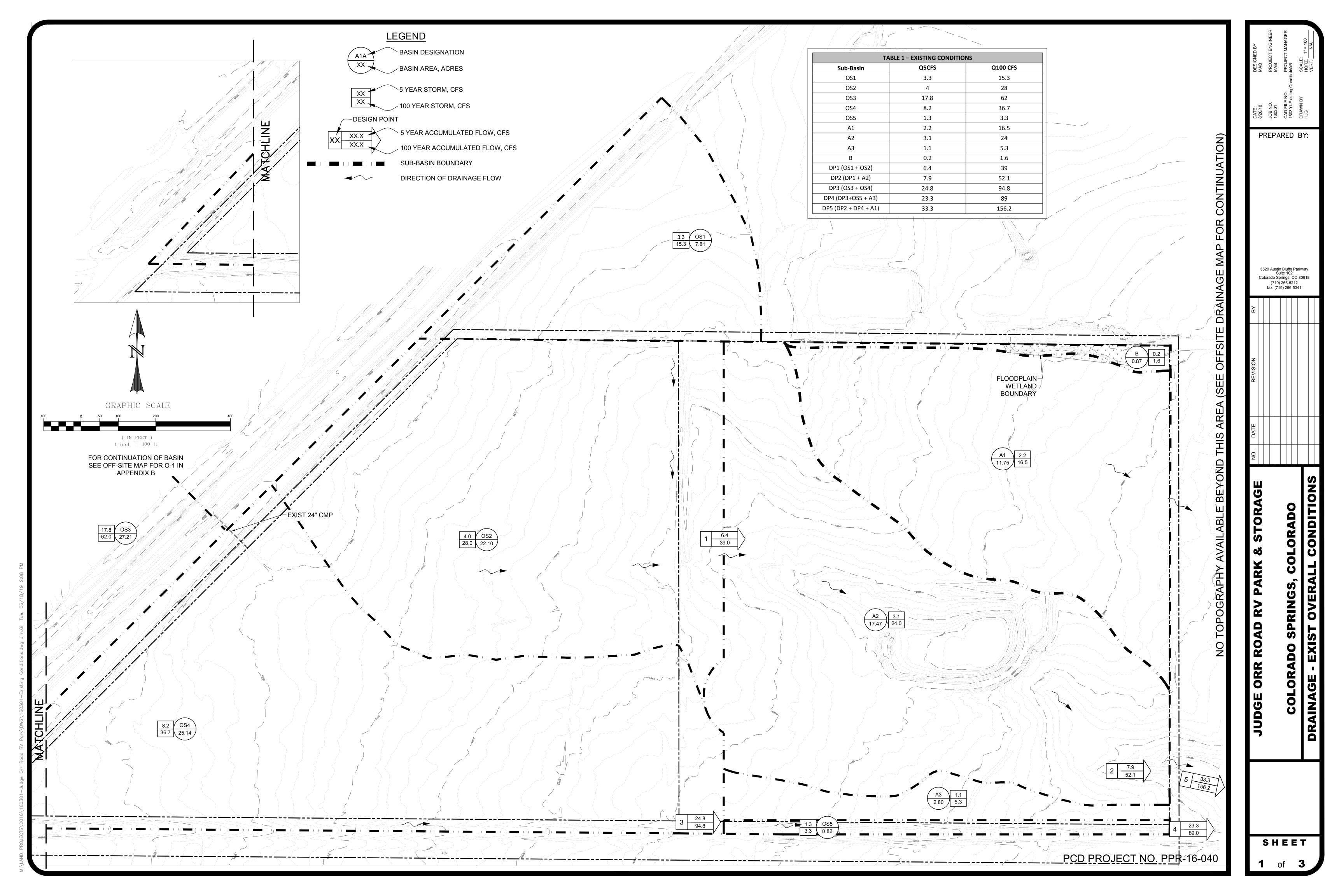
9-62

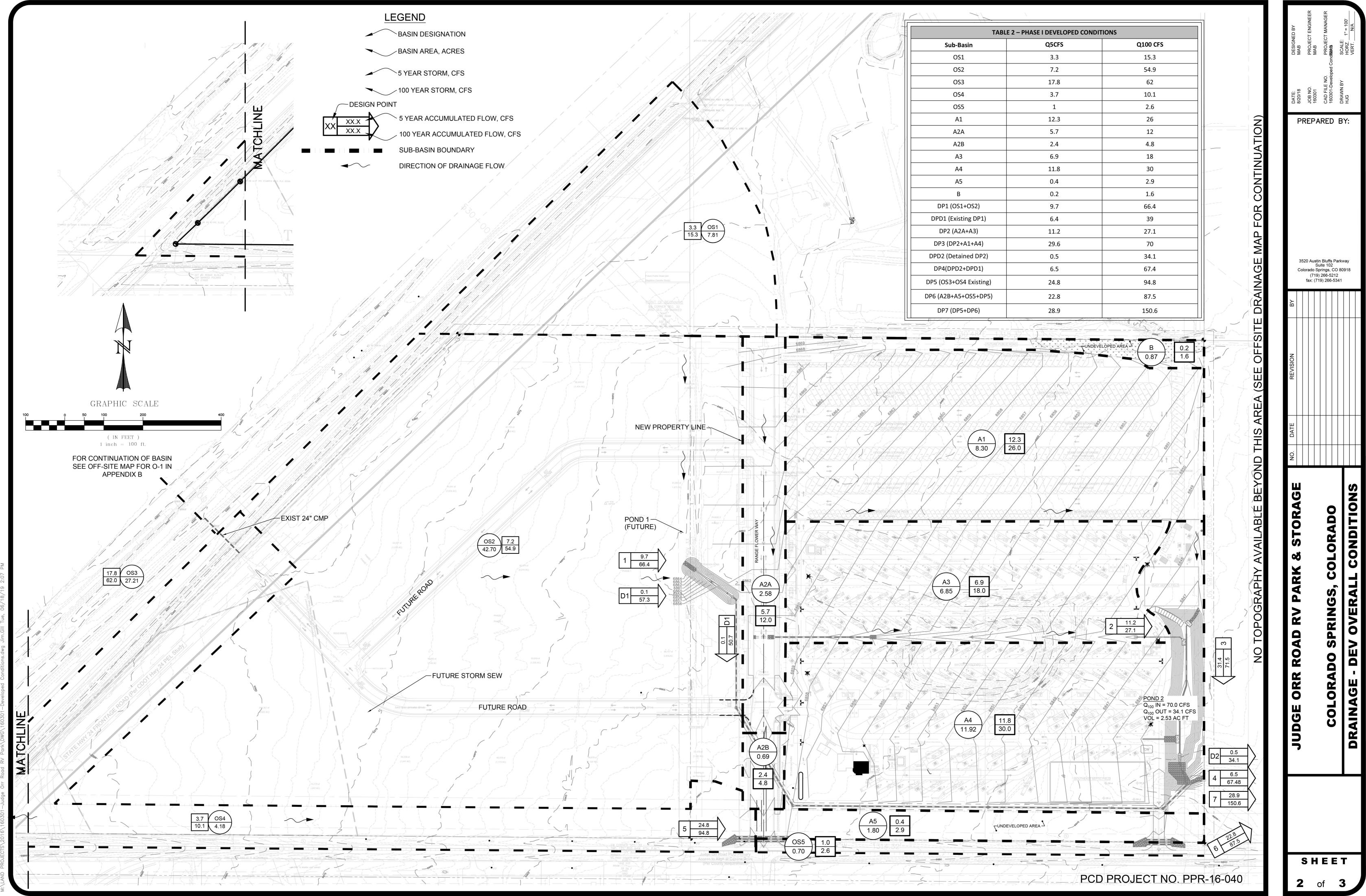
3.4


HEADWATER DEPTH FOR OVAL CONCRETE PIPE CULVERTS LONG AXIS HORIZONTAL WITH INLET CONTROL

BUREAU OF PUBLIC ROADS JAH. 1963

The City of Colorado Springs / El Paso County	Date
Drainage Criteria Manual	9-30-90
•	Figure
964	9-36





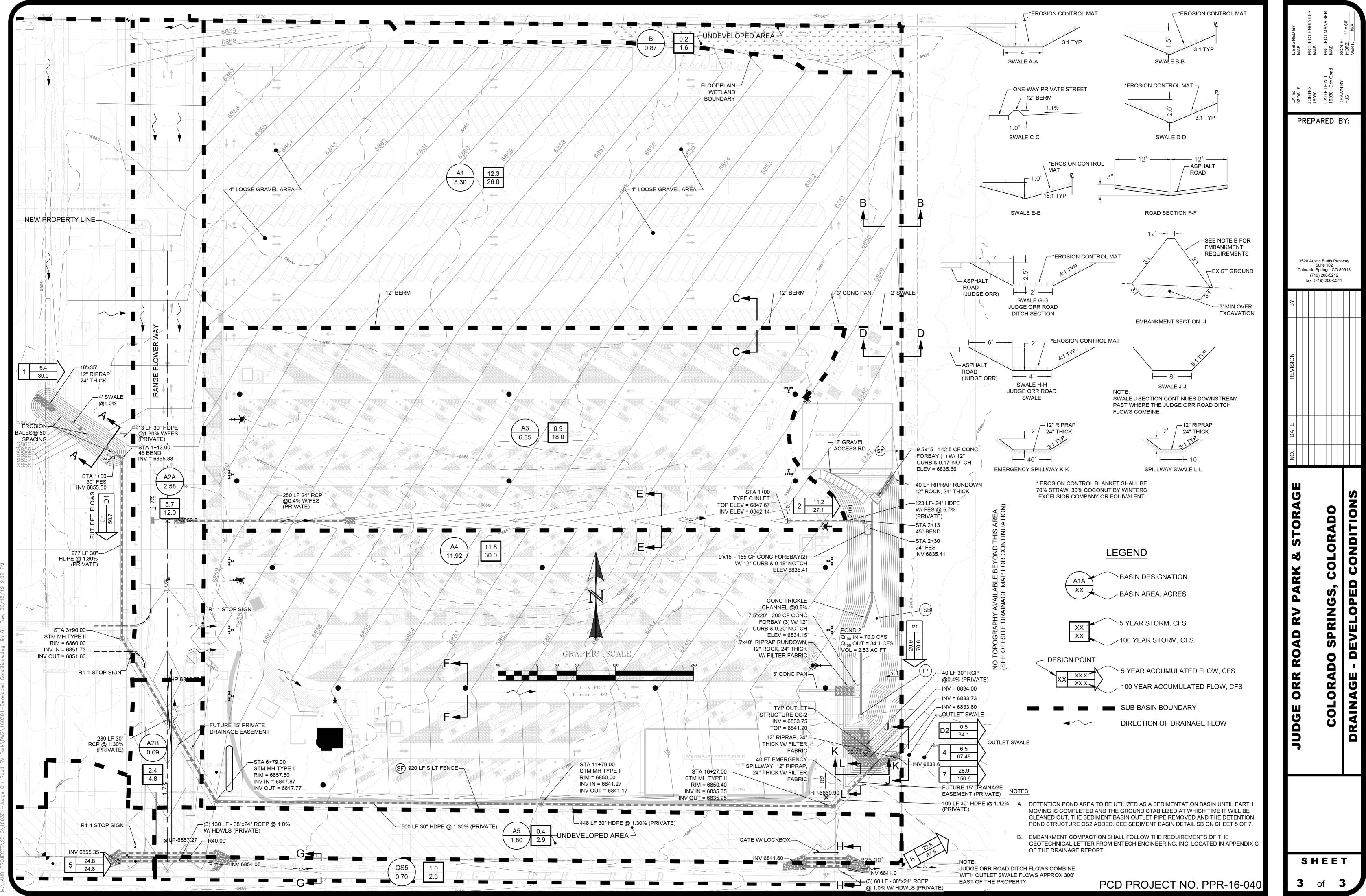

Use $\,D_{\alpha}$ instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream .

FIGURE 5-7. RIPRAP EROSION PROTECTION AT CIRCULAR CONDUIT OUTLET.

11-15-82 URBAN DRAINAGE & FLOOD CONTROL DISTRICT

Markup Summary

dsdlaforce (5)

Subject: Text Box Page Index: 68 Lock: Unlocked Author: dsdlaforce

Date: 7/10/2019 5:17:45 PM

Color:

Update the Basin ID to match the Detention Basin Stage-Storage Table Builder worksheet.

Unresolved. See title in pg 29 of 43

Subject: Text Box Page Index: 33 Lock: Unlocked Author: dsdlaforce

Date: 7/10/2019 5:21:04 PM

Color:

Outlet protection calculation is incomplete. Show the variables used.

Additionally, this only provides the riprap sizing, but not the required length for the protection. Use the UD-Culvert worksheet. The length of outlet

protection appears to be inadequate.

Unresolved. Variables used for Q, D, Yt, D is not provided. Update calculation. This chart is still the same chart from the previous design when the future pond drained into Pond 2 (Pond-in-a-series). Values are unlikely to remain the same. The current drainage has since been revised to discharge this offsite flow separate form Pond 2 at the same spillway location. Riprap sizing must

account for the combined flow.

Subject: Callout
Page Index: 33
Lock: Unlocked
Author: dsdlaforce

Date: 7/10/2019 5:24:07 PM

Color:

Only from 30" and does not include the detention release. Per DP4 combined flow is 67.48 cfs

Subject: Text Box Page Index: 68 Lock: Unlocked Author: dsdlaforce

Date: 7/15/2019 7:42:53 AM

Color:

2. Revise design so the 100yr goes through the outlet pipe.

Unresolved. The 100yr is still discharging over the emergency spillway. Revise outlet structure design to provide capacity for the 100yr release

rate

Subject: Highlight
Page Index: 68
Lock: Unlocked
Author: dsdlaforce

Date: 7/15/2019 7:43:01 AM

Color: