

INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT

MIDTOWN COLLECTION AT HANNAH RIDGE FILINGS 1 AND 2 (A Replat of Tracts AA and BB, Hannah Ridge at Feathergrass Subdivision Filing No. 1) PUDSP-19-004

SF-19-006 SF-19-007 March 2019

Prepared for: ELITE PROPERTIES OF AMERICA, INC. 6385 CORPORATE DRIVE COLORADO SPRINGS, CO 80919

Prepared by: CLASSIC CONSULTING ENGINEERS & SURVEYORS 619 CASCADE AVENUE, SUITE 200 COLORADO SPRINGS, CO 80903 (719) 785-0790

Job no. 1116.30

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILINGS 1 AND 2 (A Replat of Tracts AA and BB, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

DRAINAGE REPORT STATEMENT

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage report and said report is in conformity with the applicable master plan and drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Kyle R. Campbell, Colorado P.E. #29794

Date

OWNERS/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	Feathergrass Investments LLC		
Title:		Date	<u> </u>
Address:	6385 Corporate Dr., Suite 200		
	Colorado Springs, CO 80919		

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code, as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator

Date

Conditions:

FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILINGS 1 AND 2 (A Replat of Tracts AA and BB, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

TABLE OF CONTENTS:

PURPOSE	Page	4	
GENERAL DESCRIPTION	Page	4	
EXISTING DRAINAGE CONDITIONS	Page	5	
DEVELOPED DRAINAGE CONDITIONS	Page	5	
HYDROLOGIC CALCULATIONS	Page	9	
ROCK ISLAND TRAIL (BOX CULVERT)	Page	10	
FLOODPLAIN STATEMENT	Page	11	
EROSION CONTROL PLAN	Page	11	
DRAINAGE FACILITY COST OPINION	Page	11	
DRAINAGE AND BRIDGE FEES	Page	13	
SUMMARY	Page	16	
REFERENCES	Page	17	

APPENDICES

VICINITY MAP SOILS MAP (S.C.S. SURVEY) F.E.M.A. MAP HYDROLOGIC / HYDRAULIC CALCULATIONS SWQ / DETENTION CALCULATIONS DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR MIDTOWN COLLECTION AT HANNAH RIDGE FILINGS 1 AND 2 (A Replat of Tracts AA and BB, Hannah Ridge at Feathergrass Subdivision Filing No. 1)

PURPOSE

This document is the Final Drainage Report for Midtown Collection at Hannah Ridge Filings 1 and 2. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate detention and water quality facilities while releasing storm water at or below historic rates and in accordance with all applicable master drainage plans. This report will discuss the proposed storm system to be built with Filings 1 and 2 and discuss the final construction details, and more specifically, the final design details of the proposed sub-regional public detention/water quality facilities located within Filing 1 that will handle the treatment for Filings 1 and 2. Final design information for the Filings No. 1 and 2 detention/water quality facilities are included in this report.

GENERAL DESCRIPTION

The Hannah Ridge at Feathergrass development is a 121.2 acre residential and commercial district within the south half of Section 32, Township 13 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is located on the west side of Akers Drive just north of Constitution Avenue. The existing abandoned Chicago Rock Island and Pacific Railroad sits directly north and west of the site, with Akers Drive bordering the east side and Constitution adjoining the south side of the site. The development includes a total of 345 single-family residences that will be developed in seven filings, as well as one commercial parcel, Tract CC and the two previously anticipated multi-family parcels, Tracts AA and BB, that are now proposed for a small lot PUD single family development. Midtown Collection at Hannah Ridge Filing No. 1 is 9.123 acres in size and contains 61 small lot, single-family lots. Midtown Collection at Hannah Ridge Filing No. 2 is 3.260 acres in size and contains 28 proposed small lot, single-family lots.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "A" (Blakeland, loamy sand) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The site is located within the Sand Greek Drainage Basin. More specifically, it is situated in the far south portion of the overall Hannah Ridge at Feathergrass development. These two proposed residential filings are comprised of Basin E9 for Filing No. 1 and Basin F5 for Filing No. 2, as shown on the developed drainage map provided by MVE. Inc. (See Appendix). The abandoned railroad bed along the west edge of the development serves as the westerly basin boundary and Hunter Jumper Drive to the north as the northerly basin boundary. The construction of Filing 2, 3 and 4 improvements included the public storm under Shawnee Drive out-falling into the existing 60" RCP storm that runs parallel to Constitution. The 84" RCP public storm from Hunter Jumper Drive to Hannah Ridge Drive was also previously constructed. The on-site pre-development drainage patterns are generally sheet flowing towards Shawnee Drive where existing inlets intercept the flows and transfer them to an existing stormwater quality only facility located on the east side of Shawnee Drive and constructed with Filing No. 4 (Filing No. 2). Filing No. 1 existing flows generally drain as sheet flow in an easterly direction towards the existing drainage channel west of Hannah Ridge Drive.

Provide an Existing conditions drainage plan/map.

DEVELOPED DRAINAGE CONDITIONS

Given some recent changes in City/County Drainage Criteria, the calculations for this development now reflects current criteria for stormwater quality and detention requirements. Proposed Pond 1 will be designed as a full spectrum facility to accommodate the developed flows from the west portion of Filing No. 1 and all of Filing No. 2. Pond 2 will accommodate the easterly portion of Filing No. 1. This will include the design of concrete forebays, concrete trickle channels, concrete micropool and an outlet structure designed to release flows based on full spectrum criteria. The attached developed conditions drainage map contains many design points related to proposed sump conditions. All public Type R inlets have been designed at these various locations to accept both the 5-yr. and 100-yr. developed flows.

All proposed storm facilities within the public Right-of-way will be public with ownership and maintenance by El Paso County. All other proposed storm facilities within easements or tracts and the proposed Pond 1 and Pond 2 will be owned and maintained by the Hannah Ridge HOA.

Design Point 1 ($Q_5 = 4$ cfs and $Q_{100} = 8$ cfs) collect developed flows from Basins A & B. At this sump condition, a 5' Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 1.0' and then be conveyed via a 18" RCP storm sewer in a southerly direction towards Pond 1. The total flow within the pipe at this location is given by **Pipe Run 1 (Q_5 = 4 cfs and Q_{100} = 8 cfs).** The emergency overflow route at this location is in the southerly direction in Tract A directly into a drainage tract that will route the flows towards Constitution Avenue.

Design Point 2 ($Q_5 = 2 \text{ cfs}$ and $Q_{100} = 3 \text{ cfs}$) and **Design Point 3** ($Q_5 = 1 \text{ cfs}$ and $Q_{100} = 2 \text{ cfs}$) collect developed flows from Basins C & D. At this sump condition, a 5' and a 5' Type R sump inlets, respectively, will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 1.0' and then be conveyed via a 18" RCP storm sewer towards Pond 1. The total flow within the pipe at this location is given by **Pipe Run 3** ($Q_5 = 3 \text{ cfs}$ and $Q_{100} = 6 \text{ cfs}$). The emergency overflow route at this location is via Tract A directly and then to Constitution Avenue. **Pipe Run 4** ($Q_5 = 7 \text{ cfs}$ and $Q_{100} = 13 \text{ cfs}$) represents the combined pipe flows from Design Points 1-3. This 24" RCP storm sewer will route these combined developed flows directly into Pond 1. This pond inflow is designated later in this report.

Design Point 4 ($Q_5 = 1$ cfs and $Q_{100} = 2$ cfs) collects developed flows from Basin F. At this sump condition, a 5' Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows being collected have a maximum ponding depth of 1.0' and then be conveyed via a 18" RCP storm sewer towards Pond 1. The total flow within the pipe at this location is given by Pipe Run 5 ($Q_5 = 1$ cfs and $Q_{100} = 2$ cfs). The emergency overflow route at this location is via Tract A directly and then to Shawnee Drive. Pipe Run 6 ($Q_5 = 8$ cfs and $Q_{100} = 15$ cfs) represents the

combined pipe flows from Design Points 1, 2, 3 & 4. This 24" RCP storm sewer will route these combined developed flows directly into Pond 1. This pond inflow is designated later in this report.

Design Point 5 ($Q_5 = 9$ cfs and $Q_{100} = 19$ cfs) collect developed flows from Basins I. At this sump condition, a 15' Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows These flows being collected have a maximum ponding depth of 1.0' and then be conveyed via a 24" RCP storm sewer towards Pond 1. The total flow within the pipe at this location is given by Pipe Run 7 ($Q_5 = 9$ cfs and $Q_{100} = 19$ cfs). The emergency overflow route at this location is via a Tract directly behind the inlet and then to an existing rip rap lined drainage channel. Pipe Run 8 ($Q_5 = 15$ cfs and $Q_{100} = 30$ cfs) represents the combined pipe flows from Design Points 1, 2, 3, 4 & 5. This 30" RCP storm sewer will route these combined developed flows directly into Pond 1. This pond inflow is designated later in this report.

Design Point 6 ($Q_5 = 3$ cfs and $Q_{100} = 6$ cfs) collects developed flows from Basin N. At this sump condition, a 5' Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 1.0' and be conveyed via a 18" RCP storm sewer in a southerly direction towards Pond 2. The total flow within the pipe at this location is given by **Pipe Run 6 (Q_5 = 3 cfs and Q_{100} = 6 cfs).** The emergency overflow route at this location is via a Tract directly behind the inlet and then to an existing rip rap lined drainage channel.

Design Point 7 ($Q_5 = 2 \text{ cfs}$ and $Q_{100} = 3 \text{ cfs}$) collects developed flows from Basin O. At this sump condition, a 5' Type R sump inlet will be installed to completely collect both the 5-year and 100-year developed flows. These flows will have a maximum ponding depth of 1.0' and be conveyed via a 18" RCP storm sewer in a southerly direction towards Pond 2. The total flow within the pipe at this location is given by **Pipe Run 10 (Q_5 = 2 \text{ cfs} and Q_{100} = 3 \text{ cfs}).** The emergency overflow route at this location is in the easterly direction directly into a Hannah Ridge Drive.

Basin E ($Q_5 = 1$ cfs and $Q_{100} = 2$ cfs) consists of flows from the landscaped residential front yards that will sheet flow into Shawnee Drive and be routed to the existing SWQ pond east of the intersection of Shawnee Drive and Constitution Ave.

Basin G ($Q_5 = 1.1$ cfs and $Q_{100} = 2.1$ cfs) consists of flows from the landscaped residential front yards that will sheet flow into existing Hunter Jumper Drive and then to existing Shawnee Drive and be routed to the existing SWQ pond east of the intersection of Shawnee Drive and Constitution Ave.

Basin H ($Q_5 = 1$ cfs and $Q_{100} = 2$ cfs) consists of landscaped flows from an area that contains the existing SWQ pond located at the intersection of Shawnee Drive and Constitution Ave.

Basin J ($Q_5 = 2$ cfs and $Q_{100} = 4$ cfs) consists of flows from the landscaped residential front yards that will sheet flow into existing Hunter Jumper Drive and be routed to the existing SWQ pond south of Hunter Jumper Drive in Basin K.

Basin K ($Q_5 = 1$ cfs and $Q_{100} = 3$ cfs) consists of landscaped flows from an area that contains the existing SWQ pond located south of Hunter Jumper Drive.

Basin L ($Q_5 = 2$ cfs and $Q_{100} = 3$ cfs) consists of landscaped flows from an area that contains Proposed Full Spectrum SWQ Pond 1.

Basin P ($Q_5 = 1$ cfs and $Q_{100} = 1$ cfs) consists of flows from the landscaped residential front yards that will sheet flow into existing Hunter Jumper Drive and be routed to the existing SWQ pond east of Hannah Ridge Drive.

Basin M ($Q_5 = 2$ cfs and $Q_{100} = 4$ cfs) consists of flows from the landscaped tract area that contains an existing rip rap outfall of an existing 90" RCP to an existing box culvert under Hannah Ridge Drive.

Design Point 8 The total inflow into Pond 1 equals $Q_5 = 18$ **cfs and** $Q_{100} = 35$ **cfs**. This facility will be constructed with the proposed Filing 1 development and the downstream flows will remain consistent with the previous filings. This facility will have one inflow point. The inflow ($Q_5 = 18$ cfs and $Q_{100} = 35$ cfs) will be from a 30" RCP into a concrete forebay with a required size of 90 CF based on 3% of the WQCV from this inflow. The forebay is designed with 12" high walls, 4.9" notch and a 30" wide concrete trickle channel routing the flows towards the pond outlet. The outlet structure consists of a 4'x4' concrete box with an integral 100 SF micropool allowing for 6" initial surcharge depth. The micropool total depth of 3.0' provides the required 0.3% of the WQCV. The outlet box will have a height of 3.50'. (See UD-BMP Spreadsheets in Appendix) The orifice plate on the front of the outlet box consists of a series of 4 - 15/16" holes, 10.50" apart. (See UD-Detention Spreadsheets in Appendix) This facility will be owned and maintained by the Hannah Ridge HOA.

Pond 1 has the following design parameters as a full-spectrum facility:

0.094 Ac.-ft. WQCV required 0.137 Ac.-ft. EURV required 0.493 Ac.-ft. 100-yr. storage required

Total In-flow:	Q ₅ = 18 cfs, Q ₁₀₀ = 35 cfs
Pond Design Release:	$Q_5 = 0.07 \text{ cfs}, Q_{100} = 6.7 \text{ cfs}$
Pre-development Release:	Q ₅ = 0.14cfs, Q ₁₀₀ = 8.6 cfs

Design Point 9 The total inflow into Pond 2 equals $Q_5 = 5 \text{ cfs}$ and $Q_{100} = 9 \text{ cfs}$. This facility will be constructed with the proposed Filing 1 development and the downstream flows will remain consistent with the previous filings. This facility will have two inflow points. The west inflow ($Q_5 = 3 \text{ cfs}$ and $Q_{100} = 6 \text{ cfs}$) will be from an 18" RCP into a concrete trickle channel. The north inflow ($Q_5 = 2 \text{ cfs}$ and $Q_{100} = 3 \text{ cfs}$) will be from an 18" RCP into a concrete trickle channel. Per the UD-BMP spreadsheet (see appendix) forebays are not required for this small of a facility. The trick channel will be a 30" wide concrete trickle channel routing the flows towards the pond outlet. The outlet structure consists of a 3'x3' concrete box with an integral 100 SF micropool allowing for 6" initial surcharge depth. The micropool total depth of 3.0' provides the required 0.3% of the WQCV. The outlet box will have a height of 2.35'. (See UD-BMP Spreadsheets in Appendix) The orifice plate on the front of the outlet box consists of a series of 3 holes, 9.40" apart. Two 7/16" diameter holes and 1 15/16" diameter hole. (See UD-Detention Spreadsheets in Appendix) This facility will be owned and maintained by the Hannah Ridge HOA.

Pond 2 has the following design parameters as a full-spectrum facility:

0.023 Ac.-ft. WQCV required 0.044 Ac.-ft. EURV required 0.057 Ac.-ft. 100-yr. storage required

Total In-flow:	Q ₅ = 5 cfs, Q ₁₀₀ = 9 cfs						
Pond Design Release:	$Q_5 = 0.03 \text{ cfs}, Q_{100} = 2.4 \text{ cfs}$						
Pre-development Release:	Q ₅ = 0.038cfs, Q ₁₀₀ = 2.2 cfs						

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Full-Spectrum detention pond modeling developed using UD-Detention spreadsheet ver. 3.07, Urban Drainage and Flood Control District.

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

- 1. Employ Runoff Reduction Practices: Proposed impervious areas (roof tops, patios) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
- 2. **Stabilize Drainageways:** After developed flows utilize the runoff reduction practices through the yards, these flows will travel via curb and gutter within the public streets and eventually public storm systems. These collected flows are then routed directly to the full-spectrum detention facility on-site (Pond 1 and 2).
- 3. **Provide Water Quality Capture Volume (WQCV):** Runoff from this development will be treated through capture and slow release of the WQCV in the proposed full-spectrum permanent Extended Detention Basin (Pond 1) designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific source control construction BMP's as well as permanent BMP's were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C0752G, with effective dates of December 7, 2018 (See Appendix).

EROSION CONTROL PLAN

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and cost estimate be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit.

Midtown Collection at Hannah Ridge at Feathergrass Filing No. 1 and 2 Drainage Improvement Costs

(Non-Reimbursable)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	5' Type R Inlet	6 EACH	\$3,791/EA	\$ 23,400.00
2.	15' Type R Inlet	1 EACH	\$7,923/EA	\$ 4,200.00
3.	18" RCP Storm Drain	690 LF	\$69/LF	\$ 47,610.00
4.	24" RCP Storm Drain	980 LF	\$84/LF	\$ 82,320.00
5.	30" RCP Storm Drain	20 LF	\$94/LF	\$ 1,880.00
6.	Type I MH	1 EACH	\$8,592/EA	\$ 8,592.00
7.	Type II MH	8 EACH	\$4,575/EA	\$ 36,600.00
8.	Pond 1 FSD	1 EACH	\$83,000/EA	\$ 83,000.00
9.	Pond 2 FSD	1 EACH	\$53,000/EA	\$ 53,000.00
SUB-T	OTAL			\$ 340,602.00
10% E		\$ 34,060.20		
5% CO		<u>\$ 17,030.10</u>		
SUB-T	<u>\$ 391,692.30</u>			

Classic Consulting Engineers & Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular.

DRAINAGE & BRIDGE FEES

This site lies within the Sand Creek Drainage Basin. The fees are calculated using the following impervious acreage method approved by El Paso County. All three Filings are re-plats of previously

platted tracts within Filing 1. However, these tracts were designated as future development and no fees were paid at time of original platting. Thus, the percent imperviousness for each Filing is calculated below based on the following acreages:

Filing 1: 9.123 ac.

Filing 2: 3.260 ac.

The total development area for each Filing is broken into different residential uses:

PUD zone (1/8 acre or less SF lots – 65% Impervious)

PUD zone Open space/drainage tracts (Greenbelts - 2% Impervious).

The following calculations are based on the 2019 drainage/bridge fees for the Sand Creek Basin:

FILING 1:

2158 SF avg. lots (1/8 acre or less)

(Per El Paso County Percent Impervious Chart for 1/8 acre or less SF lots: 65%) 5.40 Ac. x 65% = **3.51 Impervious Ac.**

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2%)

3.720 Ac. x 2% = 0.07 Impervious Ac.

Total Impervi	ous Acreage:	3.58 lmp	o. Ac.	
FILING 5 FEE	TOTALS:			
Bridge Fees	\$5,559.00			
\$ 5,210.00 x	3.58 Impervious Ac.	=	1	<u>\$ 18,651.80</u>

Drainage Fees \$18940.00

 $17,751.00 \times 3.58$ Impervious Ac. = $\frac{63,548.58}{1000}$ These Drainage Fees will be paid by developer in the form of cash and/or credits.

FILING 2:

2158 SF avg. lots (1/8 acre or less)

(Per El Paso County Percent Impervious Chart for 1/8 acre or less SF lots: 65%)2.27 Ac. x 65% = 1.48 Impervious Ac.

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2%)

0.99 Ac. x 2% = 0.02 Impervious Ac.

Total Impervious Acreage:	1.50 Imp. Ac.
FILING 6 FEE TOTALS: Bridge Fees ^{\$5559.00}	
\$ 5,210.00 x 1.50 Impervious Ac.	= <u>\$ 7,815.00</u>
Drainage Fees \$18940.00	

 $$17,751.00 \times 1.50$ Impervious Ac. = \$26,626.50These Drainage Fees will be paid by developer in the form of cash and/or credits.

Per the ECM 3.10.4a, this development requests a reduction of drainage fees based on the on-site full spectrum detention/SWQ facility proposed within the Sand Creek Drainage Basin to be constructed with the first Filing developed. The following facility seems to meet the required six criteria as follows:

- 1. No downstream regional facility in place yet.
- 2. Proposed facility is less than 15 ac-ft. in volume
- 3. The proposed on-site facility is not part of a regional plan.
- 4. The proposed outlet is designed to release to full-spectrum criteria.

This request is not allowed, because there is no downstream facility planned.

- 5. Proposed facility is per County criteria and will gain County approval.
- 6. Proposed facility will be private with ownership and maintenance by HOA.

Total Reduction

Detention Pond 1	1.21 ac-ft. full spectrum	\$ 83,000 x 50% =	<u>\$</u>	41,500.00
Detention Pond 1	0.359 ac-ft. full spectrum	\$ 53,000 x 50% =	<u>\$</u>	26,500.00

SUMMARY

This proposed development remains consistent with the previously approved MDDP and Final Drainage Report for Hannah Ridge at Feathergrass Filing No. 1. The existing storm facilities continue to adequately handle both the 5-yr. and 100-yr. developed flows. All proposed detention facilities meet current criteria and provide full spectrum design. The proposed development will not adversely impact surrounding developments.

PREPARED BY: Classic Consulting

Kyle R. Campbell, P.E. Division Manager

Sm/1116.30/REPORTS/PDRdoc

REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.
- 2. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corp, dated March 1996.
- 3. "Master Development Drainage Plan for Hannah Ridge", prepared by MVE, Inc. November 2007
- 4. "Final Drainage Report for Hannah Ridge at Feathergrass Subdivision Filing No. 1", by MVE, Inc. January 2014.
- 5. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.

APPENDIX

.

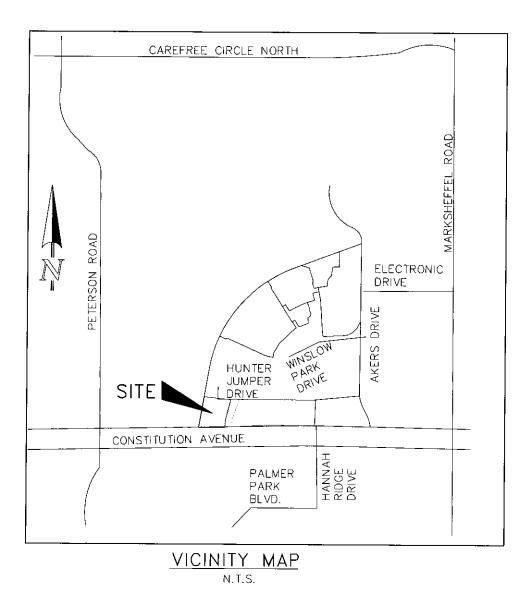
.

-

i

VICINITY MAP

.


÷

.

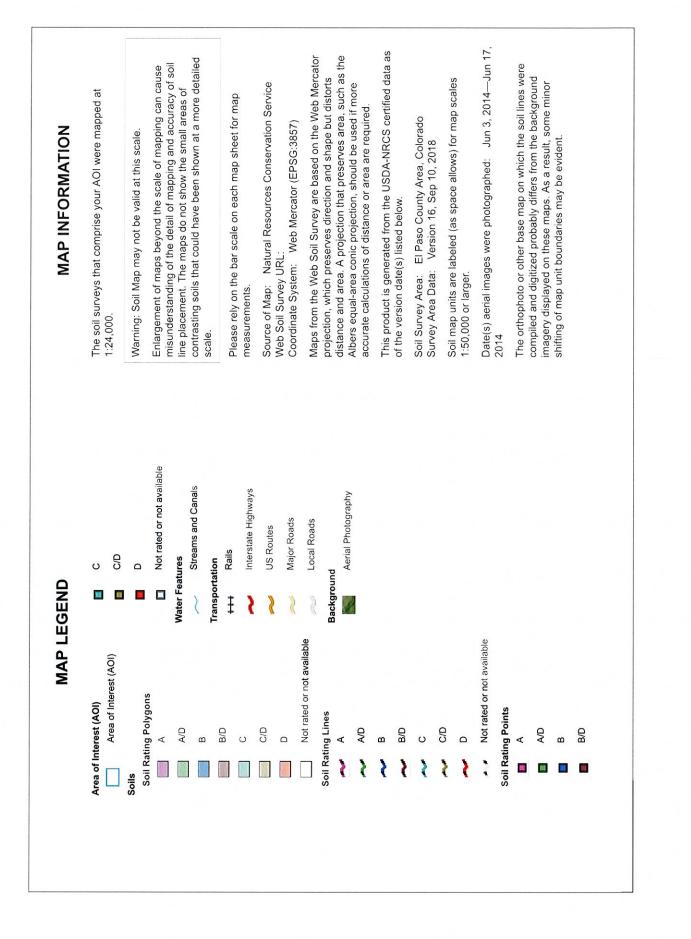
.

-

ŧ

÷

SOILS MAP (S.C.S SURVEY)



.

:

Colorado
y Area,
Count
El Paso (
Group—El
c Soil
lydrologi
Т

12/20/2018 Page 2 of 4

Web Soil Survey National Cooperative Soil Survey

Conservation Service

Natural Resources

USDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
	Blakeland loamy sand, 1 · A to 9 percent slopes	A	57.4	100.0%
Totais for Area of Interest	est		57.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

USDA Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

12/20/2018 Page 3 of 4

;

F.E.M.A. MAP

.

÷

.

!

National Flood Hazard Layer FIRMette

Legend see fis report for detailed legend and index map for firm panel layout

The pin displayed on the map is an approximate 0.2% Annual Chance Flood Hazard, Area depth less than one foot or with drainag point selected by the user and does not represe of 1% annual chance flood with average areas of less than one square mile Zone Area with Flood Risk due to Levee Zone D Area of Undetermined Flood Hazard Zone **Cross Sections with 1% Annual Chance** With BFE or Depth Zone AE, AO, AH, VE, AR Area with Reduced Flood Risk due to NO SCREEN Area of Minimal Flood Hazard Zone X Without Base Flood Elevation (BFE) Zone A, V, A99 authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and Channel, Culvert, or Storm Sewer was exported on 3/24/2019 at 5:51:46 PM and does not **Base Flood Elevation Line (BFE)** time. The NFHL and effective information may change or The flood hazard information is derived directly from the This map complies with FEMA's standards for the use of Future Conditions 1% Annual Chance Flood Hazard Zone X The basemap shown complies with FEMA's basemap digital flood maps if it is not void as described below. an authoritative property location. **Coastal Transect Baseline** No Digital Data Available STRUCTURES IIIIII Levee, Dike, or Floodwall Water Surface Elevation Levee. See Notes. Zone X **Digital Data Available** Hydrographic Feature **Regulatory Floodway** Jurisdiction Boundary become superseded by new data over time. Coastal Transect Effective LOMRs **Profile Baseline** Limit of Study Unmapped 20.2 17.5 - - -

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for estilatory numbers. REFERENCE MATERIAL FROM ADJACENT STUDIES

.

÷

Final Drainage Report

Hannah Ridge at Feathergrass Subdivision Filing No. 1

January 31, 2014 Copyright © MVE, Inc., 2014

Final Drainage Report

for

Hannah Ridge at Feathergrass Subdivision Filing No. 1

ł

ł

Project No. 60970

January 31, 2014

prepared for

Feathergrass Investments, LLC 4715 North Chestnut Street Colorado Springs, CO 80907 719.593.8367

prepared by

MVE, Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 719.635.5736

Copyright © MVE, Inc., 2014 60970 Hennah Ridge Final Drainage Report.odt

HYDROLOGIC / HYDRAULIC CALCULATIONS

.

:

Classic Consulting REV CALCS-MSTR-MIDTOWN FIL 1 AND 2.xlxx

a a torrest for a summerican a second of the second

Page Iof 4

3/28/2019

•

÷

-

		_	1	- 		1		F			T	ê.	J	Т	1-	<u> </u>	<u> </u>		–	r	r	r	1	<u> </u>	m				
	ۍ	ڻ	25	Ś	6.5	~	10	15	07		OWS	Q(100) (cfr)	\vdash		۳ 	e	~	7	21	2.1	~	19	4	~~~	"	4	۵ ۱	2	-
	icient.										TOTAL FLOWS	Q(5)	(2)	-	~	1.8	-	-	5	÷	-	6	~	-	~	2	~	5	-
	e Coell	2		L , ,	180 + 10				swales.		2	Q(2)		-	~	1.4	-	÷	60	60	-	2	5	-	-	-	2	13	9 N
	onexau	d Surfae			≃ -`	^			w paved	100	≻	l(100) (in/hr)		7.56	7.90	8.18	B.18	8.18	8.18	8.18	8.68	6.72	8.18	8.68	8.68	8.68	8.18	8.18	8.18
	-7. Cor	Type of Land Surface	X		ned)	n lawn	ound	way	d shallo		INTENSITY	l(5) liothri		4.50	4.71	4.87	4.87	4.87	4.87	4.87	5.17	4.00	4.87	5.17	5.17	5.17	4.87	4.87	4.87
	Lable 0- /. Conveyance Coefficient, C.	Typ	/ meador	e.field	o (not bu	pastiue :	Nearly bare ground	Grassed waterway	Paved areas and shallow paved swales	to ourse sprage weet by the bases of type of the failer of the		l(2) lin/hrl	/	3 59	375	3 89	389	3 86	3.89	3.89	4.12	3.19	3 89	4 12	4 12	4 12	3.89	3.89	386
			Heary me Tullage, fic Ruprap (m					Paved	MMAF	P	TOTAL		7.8	6.8	6.1	6.1	6.1	6.1	6.1	5.0	10.9	6.1	5.0	5.0	5.0	6.1	6.1	6.1	
							Tc≃LN			F SU	MO			1.7								2.4							
										UNOF	NNEL F	elocity		2.8								2.8	r						
ļ						10 0 V	אין ט			SIN R	/ CHA	Slope Velocity		2.0%								2.0%							
						2	7			FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY	STREET / CHANNEL FLOW	Length (#)		82			<u> </u>					1004							
						1~	1			PORT	-	Tc Le	┢	6.1	6.8	6.1	6.1	6.1	6.1	6.1	2.5	8.5	6 .1	2.2	2.2	2.2	6.1	6.1	6.1
						0.395(1.1 - C, NT				ERE	ę			0.8	-	0.8	0.8	0.8	0.8	0.8	5	0.8	0.8		60	8	0.8	0.8	0.8
2						-1-15	e.035	C		INAG	OVERLAND	I E	┝	40	22	40 04	40	40 0	40 0		40						40 + 0		9
VO. 1		ľ								DRA	0		-	-						3 40		3 60	3 40	3 30	3 30	3 30		6 6	
TING							۲,			FINAL	┝) C(5)	┢	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
IDCE FI												CA(100)		0.34	0.68	0.41	0.28	0.25	0.26	0.26	0.22	2.83	0.50	0.34	0.39	0.50	0.72	0.39	0.18
4NNAH R												CA(50)		0.34	0.67	0.40	0.28	0.25	0.25	0.26	0.21	2.76	0.50	0.32	0.38	0.48	0.70	0.38	0.18
CTION AT HANNAH RIDGE FILING NO. 1 &											НТЕО	CA(25)		0.33	0.65	0.40	0.27	0.24	0.25	0.25	0.20	2.66	0.49	0.31	0.36	0.45	0.68	0.38	0.17
COLLECT		1.									WEIGHTED	CA(10)		0.31	0.63	0.38	0.26	0.23	0.24	0.24	0.18	2.48	0.47	0.28	0.32	0.41	0.65	0.36	0.17
<u>MIDTOWN COLLE</u>	81/10/01	CAMPELL										CA(5)	╞	0.29	0.61	0.37	0.25	0.22	0.23	0.23	0.16	2.34	0.45	0.25	0.30	0.37	0.61	0.35	0.16
			•									CA(2)	╞	0.28	0.59	0.35	0.24	0.21	0.23	0.22	0.15	2.21	0.44	0.23	0.27	0.34	0.59	0.34	0.16
UOB NAME: LIOB NI IMBER:	DATE:										F	BASIN		A	6	U	٥	ш	ш	U	т	-	-	×	L	×	z	0	۵.

Classic Consulting REV CALCS-MSTR-MIDTOWN FIL 1 AND 2.xbx

.

Puge 20f 4

3 28 2019

-

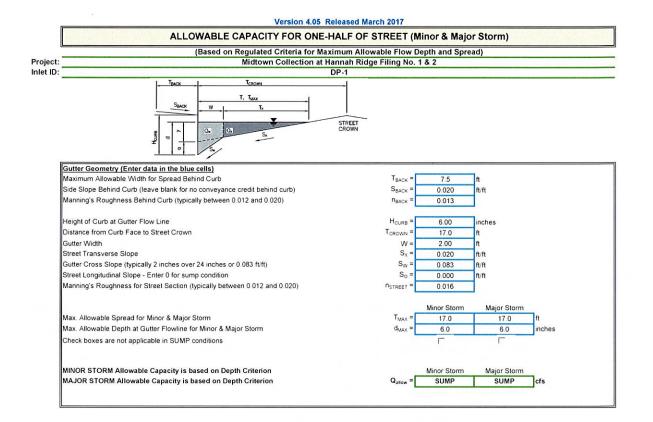
÷

-

JOB NAME: JOB NUMBER:	HANNAH RIDGEAT FEATHE	IERGRASS FI	RGRASS FILING NO. 5, 6 & 7	6 & 7					
DATE:	10/01/18								
CALCULATED BY:	K. CERJAN								
	FINAL DR	RAINAGE I	REPORT ~	AINAGE REPORT ~ SURFACE ROUTING SUMMARY	SOUTING	SUMMAF	×		
					Intensity	sity	Flow	M	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
÷	BASIN A & B	06.0	1.02	7.8	4.50	7.56	4	80	5' Type R Sump
2	BASIN C	0.37	0.41	6.1	4.87	8.18	2	3	5' Type R Sump
3	BASIN D	0.25	0.28	6.1	4.87	8.18	Ţ	2	5' Type R Sump
4	BASIN F	0.23	0.26	6.1	4.87	8.18	4	2	5' Type R Sump
5	BASIN I	2.34	2.83	10.9	4.00	6.72	6	19	15' Type R Sump
9	BASIN N	0.61	0.72	6.1	4.87	8.18	3	9	5' Type R Sump
2	BASIN O	0.35	0.39	6.1	4.87	8.18	2	3	5' Type R Sump
8	POND 1 IN (PIPE 8 AND BASIN L)	4.38	5.20	10.9	4.00	6.72	18	35	N/A
6	POND 2 IN (PIPE 9 & PIPE 10 BASIN	0.96	1.11	6.1	4.87	8.18	5	6	N/A

Classic Consulting REV CALCS-MSTR-MIDTOWN FIL 1 AND 2.xlsx ÷

- - - - -

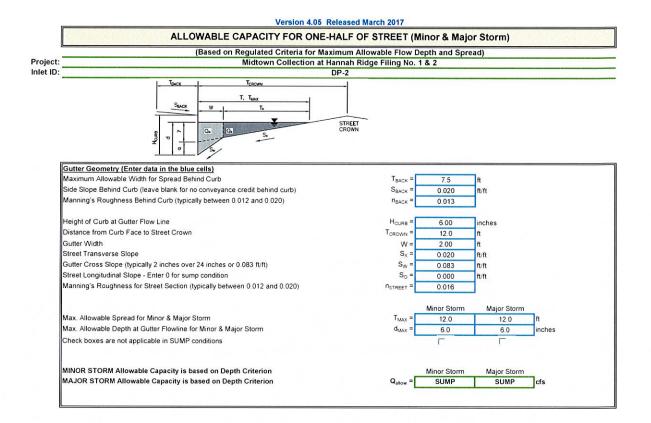

Page 3of 4

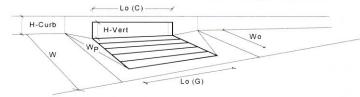
3/28/2019

•

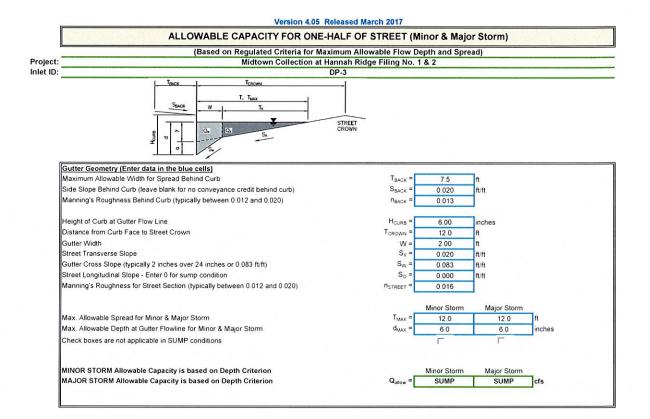
÷

••••

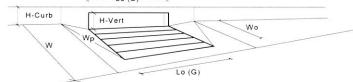


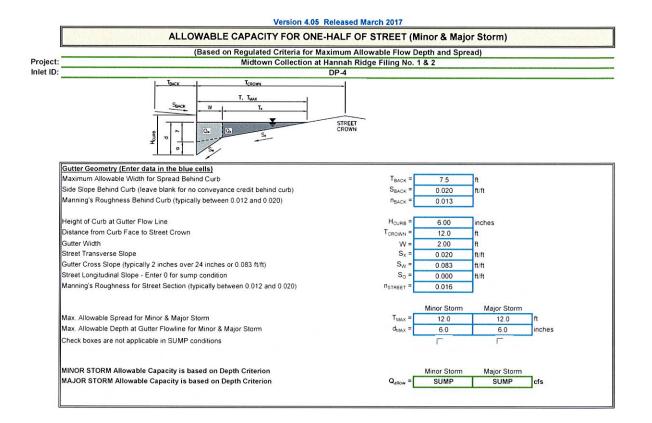

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

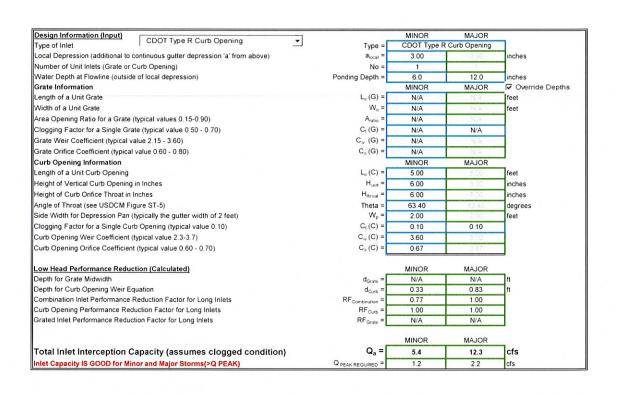


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	t\[/,4,	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	NUA	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	NZA.	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6 00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{t}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	ù.87	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	6.0	cfs

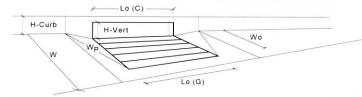



Design Information (Input)	•	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
ength of a Unit Grate	$L{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	NI/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	NIA	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	NIA	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	3.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	\$ 00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.7	3.0	cfs

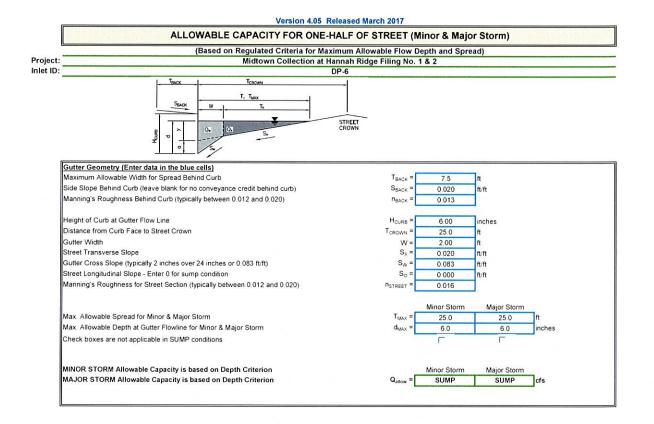
INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017

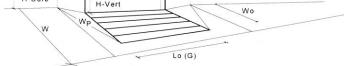


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	5.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63 40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	2.0	cfs

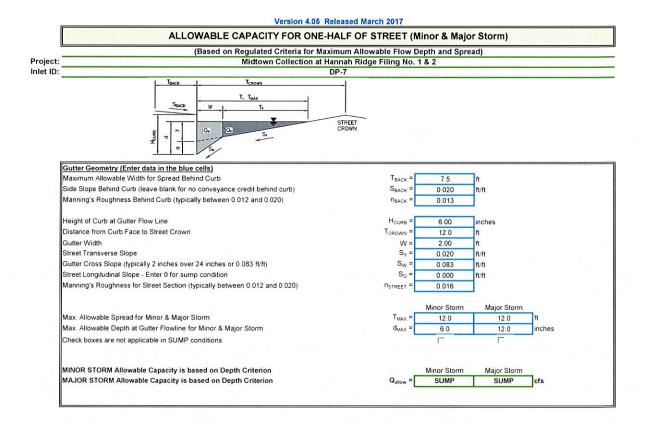

INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017

Lo (G)

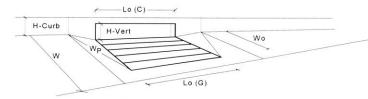


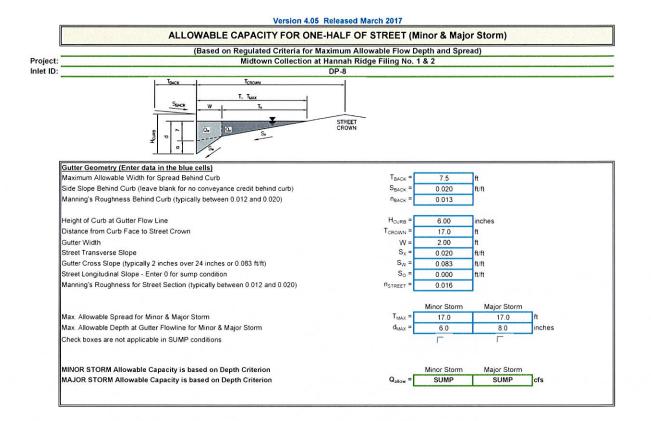

ALLOWABLE CAPACITY FOR ONE-HA (Based on Regulated Criteria for Maxim)				
Midtown Collection at Hanr				
DP	-5			
H C C C C C C C C C C C C C C C C C C C	TREET			
Gutter Geometry (Enter data in the blue cells)	Ŧ _ [1	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	7.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013	1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	50.0	ft	
Sutter Width	VV =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Sutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016	1	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	25.0	50.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Check boxes are not applicable in SUMP conditions	Contraction of the second	Г	F	
Maximum Capacity for 1/2 Street based On Allowable Spread Nater Depth without Gutter Depression (Eq. ST-2)		Minor Storm 6.00	Major Storm 12.00	inches
/ertical Depth between Gutter Lip and Gutter Flowline (usually 2")	y = d _c =	2.0	2.0	inches
Sutter Depression (d_c - (W * S _x * 12))	a =	1.51	1.51	inches
Nater Depth at Gutter Flowline	d =	7.51	13.51	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	23.0	48.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.235	0.113	
Discharge outside the Gutter Section W, carried in Section T_{X}	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W $(Q_T - Q_X)$	Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_T =$	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section /*d Product: Flow Velocity times Gutter Flowline Depth	V = V*d =	0.0	0.0	fps
	v u -	0.0	0.0	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	Т _{тн} =	18.7	43.7	ft
heoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	16.7	41.7	ft
Sutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.130	-
Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	Q _{X TH} =	0.0	0.0	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _X = Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _W = Q _{BACK} =	0.0	0.0	cfs
otal Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	0.0	0.0	cfs
Average Flow Velocity Within the Gutter Section	V =	0.0	0.0	fos
/*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	0.0	0.0	
Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm	R =	SUMP	SUMP	1
Iax Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	SUMP	SUMP	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =			inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =			inches
INOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
AJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	SUMP	SUMP	cfs

INLET IN A SUMP OR SAG LOCATION

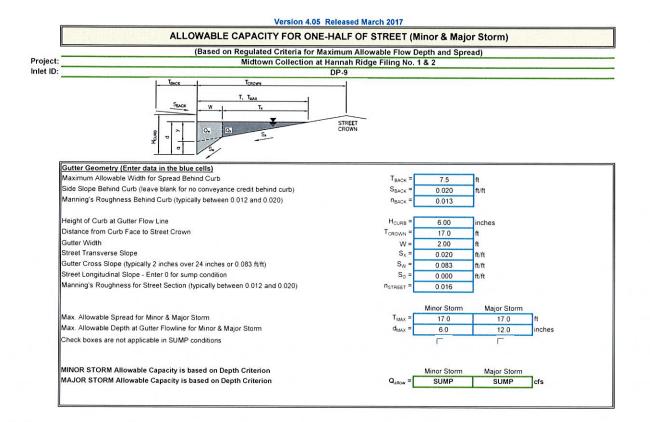


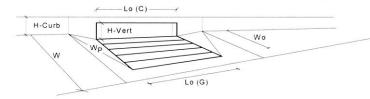
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	C Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	15.00	15:00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	3.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63 40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.50	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.87	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Srated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
VARNING: Inlet Capacity less than Q Peak for Minor Storm	Q PEAK REQUIRED =	13.0	25.0	cfs



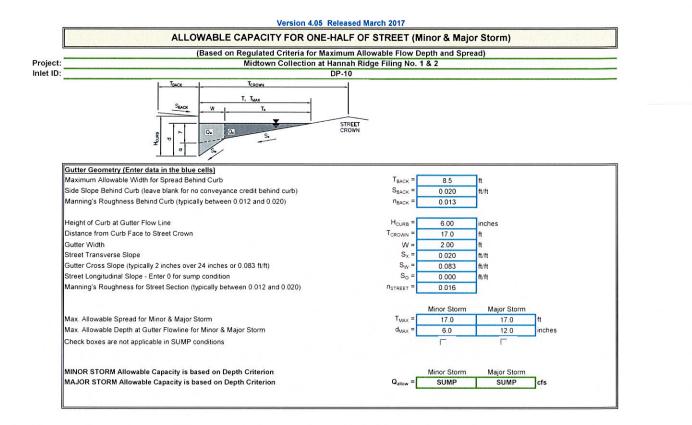

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	何(天	feet
Width of a Unit Grate	W _o =	N/A	NIA	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3,60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	6.0	cfs

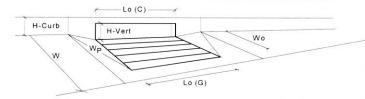
INLET IN A SUMP OR SAG LOCATION


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{1}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5 00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6-50	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{t}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.80	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	3.0	cfs


INLET IN A SUMP OR SAG LOCATION Version 4.05 Released March 2017 ____Lo (C) -1 H-Curb H-Vert Wo WP W . Lo (G)

-


Design Information (Input)	19/4	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	1
Curb Opening Information	-	MINOR	MAJOR	
ength of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	8.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{t}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.57	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	8.3	cfs
WARNING: Inlet Capacity less than Q Peak for Minor and Major Storms	Q PEAK REQUIRED =	13.0	25.0	cfs


INLET IN A SUMP OR SAG LOCATION

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{tocat} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/S	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{t}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/Δ	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63-40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.90	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_t(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.37	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	Q PEAK REQUIRED =	9.0	19.0	cfs

INLET IN A SUMP OR SAG LOCATION

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	11
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	NZA.	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	NGA	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	1
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.60	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{1}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	5.0	cfs

MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 1 & 2 1116.30 03/11/19 K. CAMPBELL

JOB NÄME: JOB NUMBER: DATE: CALCULATED BY:

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.	FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY	Intensity Flow	g Basins Equivalent Equivalent Maximum I(5) I(100) Q(5) Q(100) Pipe Size*	0.90 1.02 7.8 4.50 7.56 4 8 18" RCP	0.37 0.41 6.1 4.87 8.18 2 3 18"RCP	0.61 0.69 6.1 4.87 8.18 3 6 18" RCP	1.51 1.71 7.8 4.50 7.56 7 13 18" RCP	0.23 0.26 6.1 4.87 8.18 1 2 18" RCP	1.74 1.97 7.8 4.50 7.56 8 15 24" RCP	2.34 2.83 10.9 4.00 6.72 9 19 24" RCP	4.08 4.80 10.9 4.00 6.72 16 32 30" RCP	0.61 0.72 6.1 4.87 8.18 3 6 18" RCP	0.35 0.39 6.1 4.87 8.18 2 3 18" RCP
PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCO REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFC FINAL DRAINAGE REPO	FINAL DRAINAGE REP												
			Contributing Basins	DP-1	DP 2	PIPE 2 & DP-3	PIPE 1 & PIPE 3	DP 4	PIPE 4 & PIPE 5	DP 5	PIPE 6 & PIPE 7	DP 6	DP 7
*			Pipe Run	1	2	ю	4	5	Q	7	ω	თ	10

Page 4of 4 Classic Consulting REV CALCS-MSTR-MIDTOWN FIL 1 AND 2.xkx

3/28/2019

•

÷

-

.

ł.

i

ł

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

3/28/2019 7:48:12 AM

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		8.00	ft³/s
Results			
Normal Depth		0.98	ft
Flow Area		1.22	ft²
Wetted Perimeter		2.82	ft
Hydraulic Radius		0.43	ft
Top Width		1.43	ft
Critical Depth		1.10	ft
Percent Full		65.3	%
Critical Slope		0.00743	ft/ft
Velocity		6.54	ft/s
Velocity Head		0.67	ft
Specific Energy		1.64	ft
Froude Number		1.25	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00580	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		65.32	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoluBientI69 FilerwMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

.

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.98	ft
Critical Depth	1.10	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00743	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBientI69: MerwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

.....

3/28/2019 7:48:12 AM

.

.

.

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		3.00	ft³/s
Results			
Normal Depth		0.55	ft
Flow Area		0.59	ft²
Wetted Perimeter		1.95	ft
Hydraulic Radius		0.30	ft
Top Width		1.44	ft
Critical Depth		0.66	ft
Percent Full		36.6	%
Critical Slope		0.00513	ft/ft
Velocity		5.13	ft/s
Velocity Head		0.41	ft
Specific Energy		0.96	ft
Froude Number		1.42	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00082	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		36.58	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoluBienti@enflerwMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

3/28/2019 7:48:20 AM

.

ŧ

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.55	ft
Critical Depth	0.66	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00513	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBientl@enTerwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

.....

3/28/2019 7:48:20 AM

.

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		6.00	ft³/s
Results			
No and Dough		0.04	~
Normal Depth		0.81	ft
Flow Area		0.98 2.48	ft² #
Wetted Perimeter		2.46	ft A
Hydraulic Radius		0.39 1.49	ft A
Top Width		0.95	ft ft
Critical Depth Percent Full		54.2	n %
Critical Slope		0.00622	∽₀ ft/ft
Velocity		6.14	ft/s
Velocity Head		0.14	ft
-		1.40	n ft
Specific Energy Froude Number		1.34	п
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00326	ft/ft
Flow Type	SuperCritical		10.10
	·		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		54.15	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoluBiant/Op FilewMaster V8i (SELECTseries 1) [08.11.01.03]

F. . . .

3/28/2019 7:48:24 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.81	ft
Critical Depth	0.95	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00622	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBienti@efflerwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

.

.....

÷

ŧ

3/28/2019 7:48:24 AM

.

:

ŧ

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Downstream Velocity		Infinity	ft/s
Normal Depth Over Rise		54.36	%
Average End Depth Over Rise		0.00	%
Profile Headloss		0.00	ft
Profile Description			
Upstream Depth		0.00	ft
GVF Output Data			
Number Of Steps		0	
Length		0.00	ft
Downstream Depth		0.00	ft
GVF Input Data			
Flow Type	SuperCritical		
Slope Full	SuperCritical	0.00330	ft/ft
Discharge Full		22.62	ft³/s
Maximum Discharge		24.33	ft³/s
Froude Number		1.40	
Specific Energy		1.95	ft
Velocity Head		0.86	ft
Velocity		7.45	ft/s
Critical Slope		0.00581	ft/ft
Percent Full		54.4	%
Critical Depth		1.30	ft
Top Width		1.99	ft
Hydraulic Radius		0.53	ft
Wetted Perimeter		3.32	ft
Flow Area		1.74	ft²
Normal Depth		1.09	ft
Results			
Discharge		13.00	ft³/s
Diameter		2.00	ft
Channel Slope		0.01000	ft/ft
Roughness Coefficient			

Bentley Systems, Inc. Haestad Methods SoluBienti@efflewMaster V8i (SELECTseries 1) [08.11.01.03]

3/28/2019 7:48:28 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

.

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.09	ft
Critical Depth	1.30	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00581	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBientl@pintlewMaster V8i (SELECTseries 1) [08.11.01.03]3/28/2019 7:48:28 AM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 2 of 2

.....

.

÷

-

1

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		2.00	ft³/s
Results			
Normal Depth		0.44	ft
Flow Area		0.44	ft²
Wetted Perimeter		1.72	ft
Hydraulic Radius		0.25	ft
Top Width		1.37	ft
Critical Depth		0.53	ft
Percent Full		29.6	%
Critical Slope		0.00495	ft/ft
Velocity		4.58	ft/s
Velocity Head		0.33	ft
Specific Energy		0.77	ft
Froude Number		1.43	
/aximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00036	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
^p rofile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		29.57	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoluBientl@pillerwMaster V8i (SELECTseries 1) [08.11.01.03]

3/28/2019 7:48:35 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

.

ŗ

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.44	ft
Critical Depth	0.53	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00495	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBiant/Opinian/Master V8i (SELECTseries 1) [08.11.01.03] 3/28/2019 7:48:35 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

. _____

.

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.00500	ft/ft
Diameter		2.00	ft
Discharge		15.00	ft³/s
Results			
Nesults			
Normal Depth		1.54	ft
Flow Area		2.59	ft²
Wetted Perimeter		4.28	ft
Hydraulic Radius		0.61	ft
Top Width		1.69	ft
Critical Depth		1.40	ft
Percent Full		76.9	%
Critical Slope		0.00632	ft/ft
Velocity		5.79	ft/s
Velocity Head		0.52	ft
Specific Energy		2.06	ft
Froude Number		0.82	
Maximum Discharge		17.21	ft³/s
Discharge Full		16.00	ft³/s
Slope Full		0.00440	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		76.88	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoluBient/By MerwMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

÷

3/28/2019 7:48:40 AM

.

:

Ŧ

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.54	ft
Critical Depth	1.40	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00632	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBientl@pifleewMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

3/28/2019 7:48:40 AM

.

ŧ

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		2.00	ft
Discharge		19.00	ft³/s
Results			
Normal Depth		1.40	ft
Flow Area		2.36	ft²
Wetted Perimeter		3.97	ft
Hydraulic Radius		0.59	ft
Top Width		1.83	ft
Critical Depth		1.57	ft
Percent Full		70.2	%
Critical Slope		0.00769	ft/ft
Velocity		8.07	ft/s
Velocity Head		1.01	ft
Specific Energy		2.41	ft
Froude Number		1.25	
Maximum Discharge		24.33	ft³/s
Discharge Full		22.62	ft³/s
Slope Full		0.00705	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		70.18	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoluBientl@yiflewMaster V8i (SELECTseries 1) [08.11.01.03]

3/28/2019 7:48:45 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

.

÷

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.40	ft
Critical Depth	1.57	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00769	ft/ft

 Bentley Systems, Inc. Haestad Methods SoluBientl@pillewMaster V8i (SELECTseries 1) [08.11.01.03]

 3/28/2019 7:48:45 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

.....

•

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

•				
Roughness Coefficient		0.013		
Channel Slope		0.01000	ft/ft	
Diameter		2.50	ft	
Discharge		32.00	ft³/s	
Results				
Normal Depth		1.66	ft	
Flow Area		3.46	ft²	
Wetted Perimeter		4.76	ft	
Hydraulic Radius		0.73	ft	
Top Width		2.36	ft	
Critical Depth		1.93	ft	
Percent Full		66.4	%	
Critical Slope		0.00688	ft/ft	
Velocity		9.24	ft/s	
Velocity Head		1.33	ft	
Specific Energy		2.99	ft	
Froude Number		1.35		
Maximum Discharge		44.12	ft³/s	
Discharge Full		41.01	ft³/s	
Slope Full		0.00609	ft/ft	
Flow Туре	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		66.44	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SoluBient/89 Filer/Master V8i (SELECTseries 1) [08.11.01.03]

3/28/2019 7:48:49 AM

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

.

:

ŧ

÷

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.66	ft
Critical Depth	1.93	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00688	ft/ft

Bentley Systems, Inc. Haestad Methods SoluBient/GenflerwMaster V8i (SELECTseries 1) [08.11.01.03] M 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

___

. . .. _. __ ____

3/28/2019 7:48:49 AM

.....

.

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		6.00	ft³/s
Results			
Normal Depth		0.81	ft
Flow Area		0.98	ft²
Wetted Perimeter		2.48	ft
Hydraulic Radius		0.39	ft
Top Width		1.49	ft
Critical Depth		0.95	ft
Percent Full		54.2	%
Critical Slope		0.00622	ft/ft
Velocity		6.14	ft/s
Velocity Head		0.59	ft
Specific Energy		1.40	ft
Froude Number		1.34	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00326	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		54.15	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoluBient/By Flew Master V8i (SELECTseries 1) [08.11.01.03]

3/28/2019 7:48:53 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

.

GVF Output Data

---- ----

Upstream Velocity	Infinity	ft/s
Normal Depth	0.81	ft
Critical Depth	0.95	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00622	ft/ft

 Bentley Systems, Inc. Haestad Methods SoluBientl@piflewMaster V8i (SELECTseries 1) [08.11.01.03]

 3/28/2019 7:48:53 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

.....

Worksheet for PIPE RUN 10

.

Ŧ

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient		0.013	
Channel Slope		0.01000	ft/ft
Diameter		1.50	ft
Discharge		3.00	ft³/s
Results			
Normal Depth		0.55	ft
Flow Area		0.59	ft²
Wetted Perimeter		1.95	ft
Hydraulic Radius		0.30	ft
Top Width		1.44	ft
Critical Depth		0.66	ft
Percent Full		36.6	%
Critical Slope		0.00513	ft/ft
Velocity		5.13	ft/s
Velocity Head		0.41	ft
Specific Energy		0.96	ft
Froude Number		1.42	
Maximum Discharge		11.30	ft³/s
Discharge Full		10.50	ft³/s
Slope Full		0.00082	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		36.58	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoluBientl@piFlewMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

3/28/2019 7:48:57 AM

Worksheet for PIPE RUN 10

.

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.55	ft
Critical Depth	0.66	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00513	ft/ft

 Bentley Systems, Inc. Haestad Methods SoluBient/Bg-FilerwMaster V8i (SELECTseries 1) [08.11.01.03]

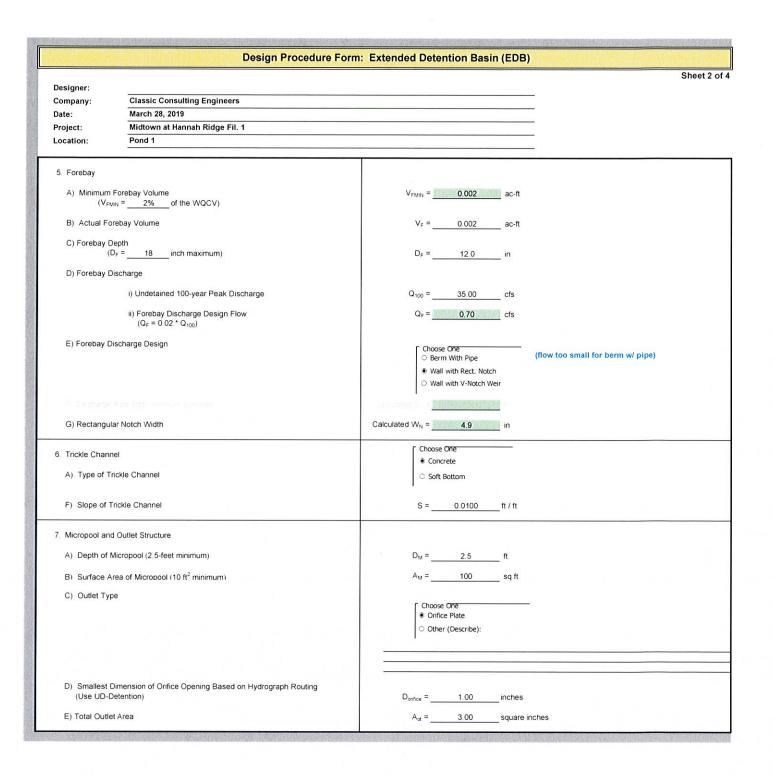
 57 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

.....

3/28/2019 7:48:57 AM

____ .

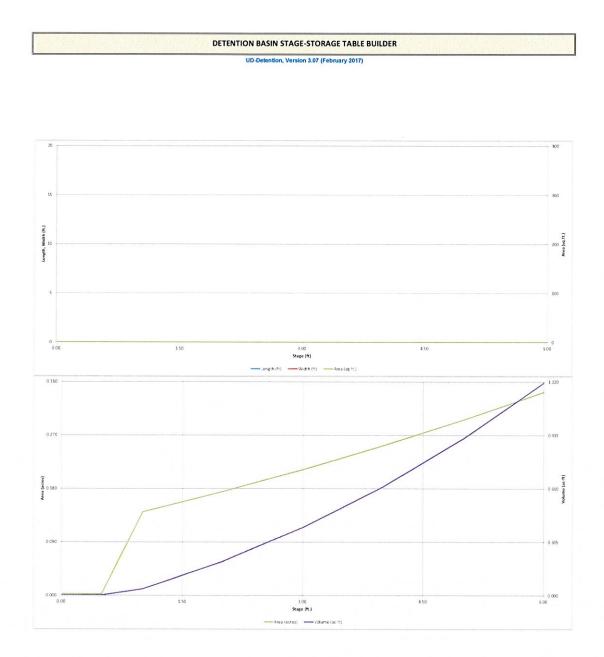
SWQ / DETENTION CALCULATIONS

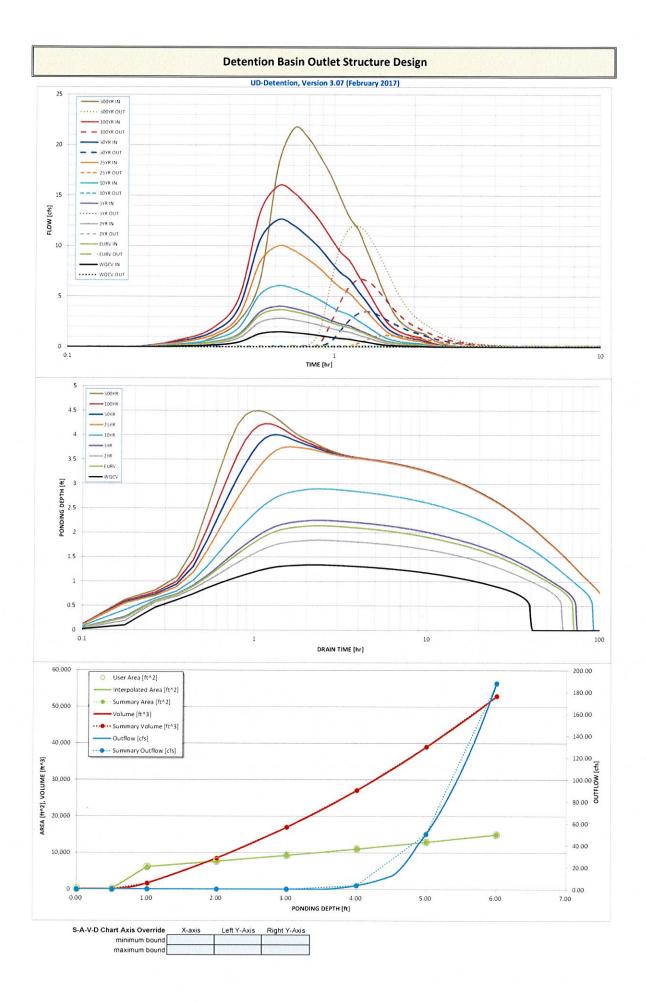

.

[2	_	UD	BMP (Version	3.06, Novem	ber 2016)								
User Input														
Calculated cells				Designer:			-							
	r	1		Company:			nsulting En	gineers						
The second	0.53	inches		Date:		MARCH 26	5 2019 NAT HANN							
••••Major Storm: 1-Hour Rain Depth 3-Year Event	2.52	inches inches		Project: Location:		POND 1		AH RIDGE						
Optional User Defined Storm CUHP		, manes		Looddon										
UHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event	2.52													
for User Defined Storm														
Max Intensity for Optional User Defined Storm 2.51496														
TE INFORMATION (USER-INPUT)														
Sub-basin Identifier	Basin A	Basin B	Basin C	Basin D	Basin F	Basin I	Basin L							
Receiving Pervious Area Soil Type	Sand	Sand	Sand	Sand	Sand	Sand	Sand				1			
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	0.480	0.810	0.510	0.350	0.310	4.180	0.690							
Directly Connected Impervious Area (DCIA, acres)	0.000	0.210	0.150	0.080	0.100	1.150	0.000							
Unconnected Impervious Area (UIA, acres)	0.050	0.050	0.040	0.030	0.030	0.350	0.000							
Receiving Pervious Area (RPA, acres)	0.170	0.200	0.080	0.170	0.140	2.580	0.000							
Separate Pervious Area (SPA, acres)	0.260	0.350	0.240	0.070	0.040	0.100	0.690							
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	C	С	C	С	с	с	C							
LCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	0.480	0.810	0.510	0.350	0.310	4.180	0.690							
Directly Connected Impervious Area (DCIA, %) Unconnected Impervious Area (UIA, %)	0.0%	25.9% 6.2%	29.4% 7.8%	22.9% 8.6%	32.3% 9.7%	27.5% 8.4%	0.0%							
Receiving Pervious Area (RPA, %)	35.4%	24.7%	15.7%	48.6%	45.2%	61.7%	0.0%							
Separate Pervious Area (SPA, %)	54.2%	43.2%	47.1%	20.0%	12.9%	2.4%	100.0%							
A _R (RPA / UIA)	3.400	4.000	2.000	5.667	4.667	7.371	0.000							
I _a Check	0.230	0.200	0.330	0.150	0.180	0.120	1.000							
f / I for WQCV Event:	11.0	11.0	11.0	11.0	11.0	11.0	11.0							
f / I for 5-Year Event: f / I for 100-Year Event:	0.6	0.6	0.6	0.6	0.6	0.6	0.6							
f / I for Optional User Defined Storm CUHP:	0.57	0.57	0.57	0.57	0.57	0.57	0.57							
IRF for WQCV Event:	0.45	0.43	0.51	0.32	0.39	0.26	1.00							
IRF for S-Year Event:	0.80	0.80	0.82	0.60	0.72	0.48	1.00							
IRF for 100-Year Event:	0.82	0.82	0.84	0.61	0.73	0.49	1.00							
IRF for Optional User Defined Storm CUHP:	0.82	0.82	0.84	0.61	0.73	0.49	1.00							
Total Site Imperviousness: I _{local} Effective Imperviousness for WQCV Event:	10.4% 4.7%	32.1% 28.6%	37.3% 33.4%	31.4% 25.6%	41.9% 36.0%	35.9% 29.7%	0.0%							
Effective Imperviousness for 5-Year Event:	8.4%	30.9%	35.9%	23.0%	39.2%	31.5%	0.0%							
Effective Imperviousness for 100-Year Event:	8.6%	31.0%	36.0%	28.1%	39.4%	31.6%	0.0%							
Effective Imperviousness for Optional User Defined Storm CUHP:	8.6%	31.0%	36.0%	28.1%	39.4%	31.6%	0.0%							
D / EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	50.7%	6.9%	6.3%	12.1%	8.6%	10.8%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
This line only for 10-Year Event 100-Year Event CREDIT**: Reduce Detention By:	N/A 22.0%	N/A 3.8%	N/A 3.6%	N/A 11.3%	N/A 6.4%	N/A 12.2%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
User Defined CUHP CREDIT: Reduce Detention By:	10.7%	2.6%	2.6%	7.6%	5.0%	9.0%	0.0%	D(/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total Site Imp		30.6%		Notes:									
		L												
Total Site Effective Imperv Total Site Effective Imperv			25.5% 27.4%				e infiltration				Storage Cha	pter of USDC	м	
Total Site Effective Impervio	usness for 100	-Year Event:	27.5%		••• Method	assumes that	1-hour rainf	all depth is e	quivalent to	1-hour inten	sity for calcul	lation purpos	ed	
Total Site Effective Imperviousness for Optional	User Defined	Storm CUHP:	27.5%											
	1045 PE-12		111122022	New York	C. C. S.	STATES IN	MURANA		A CARE DI	PARTY SURFACT		No. March Street	The second	181.57.0

100

an man avain


		rm: Extended Detention Basin (EDB) 3MP (Version 3.06, November 2016)	Sheet 1 of
Designer:			Sheet 10
Company:	Classic Consulting Engineers		
Date:	March 28, 2019		
Project:	Midtown at Hannah Ridge Fil. 1		
Location:	Pond 1		
1. Basin Storage	Volume		
A) Effective Imp	perviousness of Tributary Area, Ia	l _a = 30.6 %	
B) Tributary Are	ea's Imperviousness Ratio (i = l _a / 100)	i =0.306	
C) Contributing	g Watershed Area	Area =7.330ac	
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in	
		Choose One	
E) Design Con	icept RV when also designing for flood control)	O Water Quality Capture Volume (WQCV)	
(Select EUR	v when also designing for hood control)		
		Excess Urban Runoff Volume (EURV)	
	ime (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.094 ac-ft	
(V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)		
Water Qual	heds Outside of the Denver Region, lity Capture Volume (WQCV) Design Volume $_{\rm ER} = (d_e^*(V_{\rm DESIGIt}/0.43))$	V _{DESIGN OTHER} ≡ 0.091 ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One	
.,		0 A	
		• B	
		0 C / D	
	an Runoff Volume (EURV) Design Volume	- in a distance of the standard state and a distance of the state	
	1.68×10^{128}	EURV = 0.231 ac-f t	
	8: EURV ₈ = 1.36 * i ^{1.08} 2/D: EURV _{0:0} = 1.20 * i ^{1.08}		
FOR HSG C	$V_{C,D} = 1.20 \cdot 1^{-1}$		
	ength to Width Ratio	L : W =: 1	
(A basin length	to width ratio of at least 2:1 will improve TSS reduction.)		
3. Basin Side Slop	bes		
	num Side Slopes	Z = 3.00 ft / ft	
(Horizontal)	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE	
4. Inlet			
A) Describe me	eans of providing energy dissipation at concentrated		
inflow locati		(


Design Procedu	re Form: Extended Detention Basin (EDB)
Designer: Company: Classic Consulting Engineers Date: March 28, 2019 Project: Midtown at Hannah Ridge Fil. 1 Location: Pond 1	Sheet 3 of 4
8. Initial Surcharge Volume	
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) 	D _{IS} = 6 in
C) Initial Surcharge Provided Above Micropool	V _s = <u>50.0</u> cu ft
9. Trash Rack	
A) Water Quality Screen Open Area: At = Aot * 38 5*(e ^{-0.095D})	A _t = <u>105</u> square inches
B) Type of Screen (If specifying an alternative to the materials recommende in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	
Other (Y/N): N	
	use Rato =
D) Total Water Quality Screen Area (based on screen type)	A _{total} = 175 sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	H=feet
F) Height of Water Quality Screen (H_{TR})	H _{TR} = 70 inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended) t	W _{opening} = <u>12.0</u> inches

			Sheet 4 of
Designer:			Sheet 4 of
Company:	Classic Consulting Engineers		
Date:	March 28, 2019		
Project:	Midtown at Hannah Ridge Fil. 1		
Location:	Pond 1		
10. Overflow En	nbankment		
A) Describe	e embankment protection for 100-year and greater overtopping:		
B) Slope of	Overflow Embankment		
	atal distance per unit vertical, 4:1 or flatter preferred)		
		Choose One	
11. Vegetation		 Irrigated 	
		 Not Irrigated 	
12. Access			
A) Describe	e Sediment Removal Procedures		
Notes			

Design 200 - Design 2					
Specific	Optiona		1	Volume	Volu
Selects BP Pipe E00 Wanked Lays E00 Normal Lays End Selects Company	(ft^2) Area (ft*	12) Area (ft*	Area (acre)	(ft^3)	(ac
Water best parts Top Parts Water best parts 0.00 0.01 0.01 0.0 0.0 Precentage inposinges to Groups at the construction of the constr			0.002	19295245	199760
Name of Longe 1000 n n 1000 n Wested genomes 0000 scenes			0.002	49	0.0
Marked sprocessors Dots of several privacy is diversely several privacy is divacy is divacy			0.175	8,395	0.1
Prestrage reprinting to Ging and a series of the			0.212	16,896	0.3
Processory Hydrology Colum Colu	10,996		0.252	27,013 38,952	0.6
Desire Desire <thdesire< th=""> <thdesire< th=""> <thdesire< td="" th<=""><td></td><td></td><td>0.343</td><td>52,853</td><td>1.2</td></thdesire<></thdesire<></thdesire<>			0.343	52,853	1.2
Loss for An Papello Query Loss for An Papello Query Description 2 yrb mort Vuone (Work Query 2031 access <					
Ware Darp Open large for the second of the sec		1000			
Burnel Youne (P+19-16) 2077 South and Youne (P+17-16) 2022 accessed in the second interval i	-	-			
Sympart Vuene (P1 + 25 n) 252 asset 10 <					
100 100 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
Soy Pland? Vulner (P + 22 m) = 0800 resket 228 rehe Soy Pland? Vulner (P + 23 m) = 1386 rehe -	- 18/80	- 18/30			
0000 y fund y using P 3 a) a 0107 rs weld 230 rs weld Approxem 2 by Cleatery Usine a 0108 rs weld -					
Book Pland Young (Pl + 3) n 308 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Approxama 5 yr Obeston Young (Pl - 2) 228 resked Par Orac 2 Voung BUP - Zon P (Pl - 2) 228 resked Tat Deston Dawn (Pl - 2) 000 200 edd Tat Deston Dawn (Pl - 2) 000 200 edd Tat Deston Dawn (Pl - 2) 000 100 edd Dept of Takin Chandi (Pl - 2) 000 100 edd Dept of Takin Chandi (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd Dept of Man Ban (Pl - 2) 000 100 edd <t< td=""><td></td><td></td><td></td><td></td><td>-</td></t<>					-
Approximate Syn Decentery Usine = 0.234 anon-freet	and the second se				
Approx 0.31 sociedet Approx 0.91 sociedet Social (000) 0.93 sociedet 2029 Viewer (000) 0.93 sociedet Instructiones Danx Viewer 0.93 sociedet Instructiones Danx Viewer 0.93 sociedet Social Columed (10) Were 0.93 sociedet Instructiones Danx Viewer 0.93 sociedet 0.93 sociedet Social Columed (10) Were 0.93 sociedet 0.93 sociedet Depoint Visein Baban (Navia) Were 0.93 sociedet 0.93 sociedet Social Viewer (Navia) Were 0.93 sociedet 0.94 0.94 0.94					
Approvinte 200 Dictonito Vuluum = 0.287 souch ded Approvinte 200 Dictonito Vuluum = 0.483 souch ded pe Storage Calculation				-	-
Approve 100/r Debinsky Volume * 0.493 acrefeet -	-	-			
pe Storage Calculation	-	-			
Bit Darge Calculation Image of Department Image of Department <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
Zona 2 Yuwun (EUR) - Zona 1) e 0.222 Jook Add Jook					
Zees 3 Volume (100)-ver - Zmer 1 & 1) = 0.939 sere-feet Inable Stortharge Volume (100) = user n Degin of Track Channel (1) user n Bisn Longth-Channel (1) user n Stortharge Volume (100) = user n Degin of Track Channel (1) user n Stortharge Volume (100) = user n Area of Basin Floor (100) = user n Area of Basin Floor (100) = user n Wolth of Basin Floor (100) = user n Volume of Basin Floor (100) = user n Volume of Basin Flo					
Tail Detention Basin Volume (* 0.49 ard-det metal Surtarge Depth (5D) user metal Surtarge Nume Surtarge Depth (5D) user metal Surtarge Nume Surtarge Depth (5D) user metal Surtarge Nume Surtarge Nu				-	
Initial Subtrage Depth (GD) = user n Case Available Depth of Trickle Channel (H-1) = user n - <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
Test Available Dention Dention (Heg)* user n Biged of Testis Channel (Heg)* user n Sipped facts Channel (Heg)* user n Bisin Length-With Rase (Agu)* user n Sucharge Volme With (Weg)* user n Sucharge Volme With (Weg)* user n Sucharge Volme With (Weg)* user n Length of Basin Row (Neg)* user n With of Basin Row (Neg)* user n With of Basin Row (Neg)* user n Length of Man Basin (Neg)* user n With of Man Basin (Neg)* user n With of Man Basin (Neg)* user n With of Man Basin (Neg)* user n Catculated Total Basin Volume (Neg)* user n Catculated Total Basin Volume (Neg)* user n With of Man Basin (Neg)* user n Catculated Total Basin Volume (Neg)* user n With of Man Basin (Neg)* user n Catculated Total Basin Volume (Neg)* user n UNUme of M					
Depth Thesic Channel (h-1) User (h-1) Iser -					-
Sippes of Man Baun Longh I With Rate (R ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = user Image Surcharge Area (A ₁ ,) = Image Area (A ₁ ,) = <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
Basin Langth - E-With Raso (R ₁ , w) = uer +* - </td <td></td> <td>-</td> <td></td> <td></td> <td></td>		-			
Indai Surcharge Area (Ang) user + - <t< td=""><td>-</td><td>-</td><td></td><td>-</td><td>-</td></t<>	-	-		-	-
Inbal Suchage Are (A ₁₀) user				-	
Surcharge Volume Volume Volume (Museu) = user n <td></td> <td></td> <td></td> <td></td> <td></td>					
Dept Bain Plot (Hund) user n -				-	-
Wordin of Bauin Floor (Munoc) user n -					
Area of Basis Picor (Augua) user way builting of Basis Picor (Augua) user m m3 Depth of Man Basis (Lux, a) user m m m m m m m Lungth of Man Basis (Lux, a) user m m m m m m m m Width of Man Basis (Lux, a) user m m					
Volume d Basin Flor Viscoli * user ng -				-	
Depth of Main Basin (Mux) user n <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
With Man Basin (View) user n - <td>- 03105</td> <td>- 0.310g</td> <td></td> <td></td> <td></td>	- 03105	- 0.310g			
Area of Man Basin (Aux,)* user n°3 Volume of Man Basin (Vux,)* user n°3 Calculated Total Basin Volume (V ₂₀)* stro-feet user stro-feet user n°3 stro-feet user user stro-feet user	-	-	-	-	-
Volume of Man Basin Volume (V ₁₀₀) = user 10 - - - - Calculated Total Basin Volume (V ₁₀₀) = arto-fied - <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
	-	-			
N N N N N N	-	-			
N N N N N N	-	-			
Image Image Image Image Image Image Image Image Ima	-	-			
HO HO HO HO HO HO </td <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	-	-			
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	-	A A A A A A A A A A A A A A A A A A A			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	- 30100			
Image: Provide and the sector of th		-			
HO HO<	**				
NO NO<		-			
HOLE HOLE <th< td=""><td></td><td>-</td><td></td><td></td><td></td></th<>		-			
HOME HOME <th< td=""><td>-</td><td>-</td><td></td><td></td><td></td></th<>	-	-			
Image: Section of the sectio	-	- 122 C			-
HOME HOME <th< td=""><td>-</td><td>-</td><td></td><td></td><td></td></th<>	-	-			
HO HO<	-	-			
	-	-		-	
		-			_
		1.555			
		-			
		•			-
Image: Control of the state of the		-			

	No. Constr.	Det	ention Basin						
		NNAH RIDGE FIL. N		ersion 3.07 (Februa	ary 2017)				
ZONE 3	POND 1								
				Stage (ft)	Zone Volume (ac-ft) Outlet Type			
			Zone 1 (WQCV)		0.094	Orifice Plate	٦		
	100-YE	AR	Zone 2 (EURV)	2.21	0.137	Orifice Plate	-		
PERMANENT ORIFICES		E	lone 3 (100-year)		0.262	Weir&Pipe (Restrict)	-		
POOL Example Zone	e Configuration (R	etention Pond)	.one 5 (100 year)	5.40	0.493	Total	J		
r Input: Orifice at Underdrain Outlet (typically	used to drain WQCV	in a Filtration BMP)			0.455		ed Parameters for U	nderdrain	
Underdrain Orifice Invert Depth =	= N/A	ft (distance below	the filtration media su	rface)	Unde	erdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	= N/A	inches			Underdr	ain Orifice Centroid =	N/A	feet	
r Innuts Orifice Distantiate and a second set									
er Input: Orifice Plate with one or more orifices Invert of Lowest Orifice =	1000 AV / 1000 AV / 1000 AV		bottom at Stage = 0 f			Calci = rifice Area per Row	4.653E-03	r Plate] _{ft} ²	
Depth at top of Zone using Orifice Plate =		The second se	bottom at Stage = 0 f			Elliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	= 10.50	inches				ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	- 0.67	sq. inches (diamete	er = 15/16 inch)			Elliptical Slot Area =	N/A	ft ²	
r Input: Stage and Total Area of Each Orifice	Row (numbered fr	m lowest to higher	t)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)		0.90	1.80	2.70	- ((cpatrial)	(cprostal)]
Orifice Area (sq. inches)	0.67	0.67	0.67	0.67	S. M. Starting]
						-	1 -	1	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Orifice Area (sq. inches)					Series Association				
									1
User Input: Vertical Orifice (Cir)	2			Calculated	Parameters for Ver	tical Orifice	
	Not Selected	Not Selected	4.				Not Selected	Not Selected	
Invert of Vertical Orifice = = Depth at top of Zone using Vertical Orifice	- Bitiso	N/A	ft (relative to basin b			ertical Orifice Area =	N/A	N/A	ft ²
Vertical Orifice Diameter =	N/A N/A	N/A N/A	ft (relative to basin b inches	ottom at stage = 01	rt) Verti	cal Orifice Centroid =	N/A	N/A	feet
User Input: Overflow Weir (Dropbox) and G	State (Elat or Sloped					Calculator	Desemptors for Our	-flow Mais	
oser input: overnow wen (Diopbox) and c	Zone 3 Weir	Not Selected	1			Calculated	Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H. =	4.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet		Over Flow	Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for fl	at grate)		100-yr Orifice Area =	6.53	N/A	should be ≥ 4
Horiz. Length of Weir Sides =	4.00	N/A	feet	14 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		en Area w/o Debris =	11.54	N/A	ft ²
Overflow Grate Open Area % = Debris Clogging % =		N/A N/A	%, grate open area/t	otal area	Overflow Grate Op	pen Area w/ Debris =	5.77	N/A	ft ²
Desirs clobbing in-	50%	11/1	_ 70						
r Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Rest	rictor Plate, or Recta	ngular Orifice)		c	alculated Parameter	rs for Outlet Pipe w/	Flow Restriction Pla	te
	Zone 3 Restrictor	Not Selected]				Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basi	in bottom at Stage = 0		Outlet Orifice Area =	1.77	N/A	ft ²
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	18.00 18.00	N/A	inches	Half.		let Orifice Centroid =	0.75	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00]	inches	Halt-0	Central Angle of Restr	rictor Plate on Pipe =	3.14	N/A	radians
User Input: Emergency Spillway (Rectan	gular or Trapezoidal)					Calcula	ted Parameters for S	Spillway	
Spillway Invert Stage=		ft (relative to basin	bottom at Stage = 0 ft)	Spillway	Design Flow Depth=	0.23	feet	
Spillway Crest Length =	25.00	feet			Stage a	t Top of Freeboard =	5.73	feet	
Spillway End Slopes =	4.00	H:V			Basin Area a	t Top of Freeboard =	0.33	acres	
Freeboard above Max Water Surface =	1.00	feet							
Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =		1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.00
Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =		0.231	0.177	0.252	0.382	0.634	0.800	1.017	1.386
Inflow Hydrograph Volume (acre-ft) =	0.093	0.230	0.177	0.251	0.382	0.634	0.800	1.017	1.386
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.19	0.63	0.87	1.17	1.65
Deadaughter and Death Control of	0.0	0.0	0.1	0.143	1.4	4.6	6.3	8.6	12.1
Predevelopment Peak Q (cfs) =	0.0	3.7 0.1	2.8	4.0	6.1	10.0	12.6 3.5	16.0 6.7	21.7
Peak Inflow Q (cfs) =		N/A	N/A	0.5	0.1	0.3	0.6	0.8	12.0
	N/A			Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A Plate	Plate	Plate						1.0
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	N/A Plate N/A	Plate N/A	N/A	N/A	N/A	0.1	0.3	0.6	1.0
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A Plate N/A N/A	Plate N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A Plate N/A	Plate N/A N/A 66	N/A N/A 58	N/A N/A 69	N/A 85	N/A 96	N/A 93	N/A 90	N/A 86
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A Plate N/A N/A 38	Plate N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A Plate N/A N/A 38 40	Plate N/A N/A 66 70	N/A N/A 58 60	N/A N/A 69 73	N/A 85 90	N/A 96 104	N/A 93 103	N/A 90 101	N/A 86 99

Outflow Hydrograph Workbook Filename:

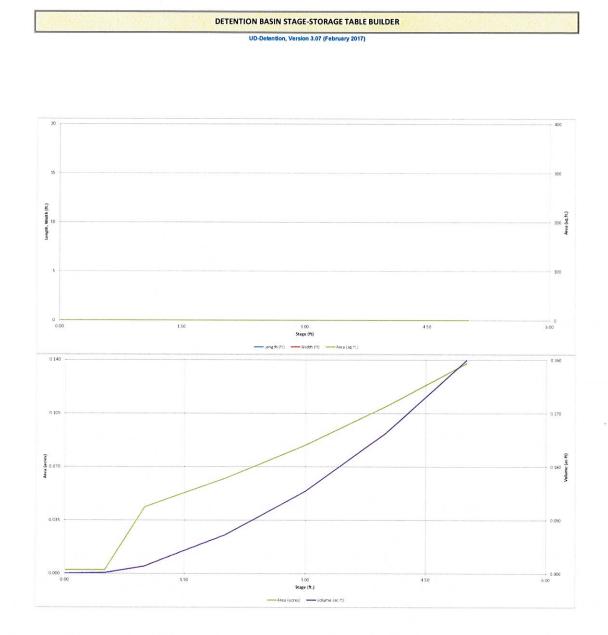
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOO
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cf
5.26 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.20 1111	0:05:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:10:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:15:47	0.07	0.17	0.13	0.18	0.27	0.44	0.56	0.70	0.94
0.951	0:21:02	0.18	0.44	0.34	0.48	0.73	1.19	1.50	1.89	2.56
-	0:26:18	0.47	1.14	0.88	1.24	1.87	3.07	3.85	4.87	6.58
-	0:31:34	1.30	3.14	2.43	3.42	5.15	8.43	10.58	13.37	18.06
ŀ	0:36:49	1.51	3.68 3.50	2.84 2.70	4.01 3.82	6.07 5.78	10.01 9.55	12.60 12.03	15.97	21.68 20.73
H	0:42:00	1.43	3.30	2.45	3.48	5.26	8.69	12.03	15.26 13.89	18.88
F	0:52:36	1.15	2.83	2.17	3.09	4.69	7.76	9.79	12.44	16.92
	0:57:52	0.98	2.43	1.86	2.65	4.03	6.70	8.47	10.77	14.68
Ļ	1:03:07	0.85	2.12	1.63	2.31	3.52	5.84	7.37	9.37	12.76
-	1:08:23	0.77	1.92	1.47	2.09	3.19	5.29	6.68	8.49	11.57
F	1:13:38 1:18:54	0.62	1.57	1.20	1.71	2.62	4.36	5.52	7.04	9.62
F	1:24:10	0.50	1.27 0.96	0.97	1.39 1.05	2.13	3.56 2.74	4.52 3.49	5.77 4.48	7.91 6.16
F	1:29:25	0.26	0.70	0.53	0.77	1.02	2.04	2.61	3.36	4.66
F	1:34:41	0.20	0.51	0.39	0.56	0.87	1.48	1.89	2.43	3.40
	1:39:56	0.16	0.40	0.31	0.44	0.68	1.15	1.46	1.87	2.60
F	1:45:12	0.13	0.33	0.25	0.36	0.56	0.94	1.20	1.54	2.13
F	1:50:28	0.11	0.28	0.22	0.31	0.48	0.80	1.02	1.30	1.80
F	1:55:43 2:00:59	0.10	0.25	0.19	0.27	0.42	0.70	0.89	1.14	1.57
-	2:06:14	0.09	0.22	0.17	0.25	0.38	0.63	0.80	1.03 0.95	1.41 1.30
-	2:11:30	0.06	0.21	0.10	0.17	0.35	0.43	0.74	0.93	0.96
	2:16:46	0.04	0.11	0.09	0.12	0.19	0.31	0.40	0.51	0.70
	2:22:01	0.03	0.08	0.06	0.09	0.14	0.23	0.29	0.37	0.51
L	2:27:17	0.02	0.06	0.05	0.07	0.10	0.17	0.22	0.28	0.38
-	2:32:32	0.02	0.04	0.03	0.05	0.07	0.12	0.15	0.20	0.27
-	2:37:48	0.01	0.03	0.02	0.03	0.05	0.09	0.11	0.14	0.19
H	2:43:04	0.01	0.02	0.02	0.02	0.04	0.06	0.08	0.10	0.14
F	2:53:35	0.00	0.01	0.01	0.01	0.02	0.04	0.03	0.07	0.06
	2:58:50	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03
	3:04:06	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	3:09:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:14:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:19:53 3:25:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	3:30:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:35:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:51:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:56:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:01:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:07:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:23:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ĺ	4:28:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:33:31 4:38:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:58:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:49:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	4:54:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:59:49 5:05:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:20:52 5:26:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:26:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
, [5:41:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:47:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:52:25 5:57:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	6:02:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:08:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:13:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

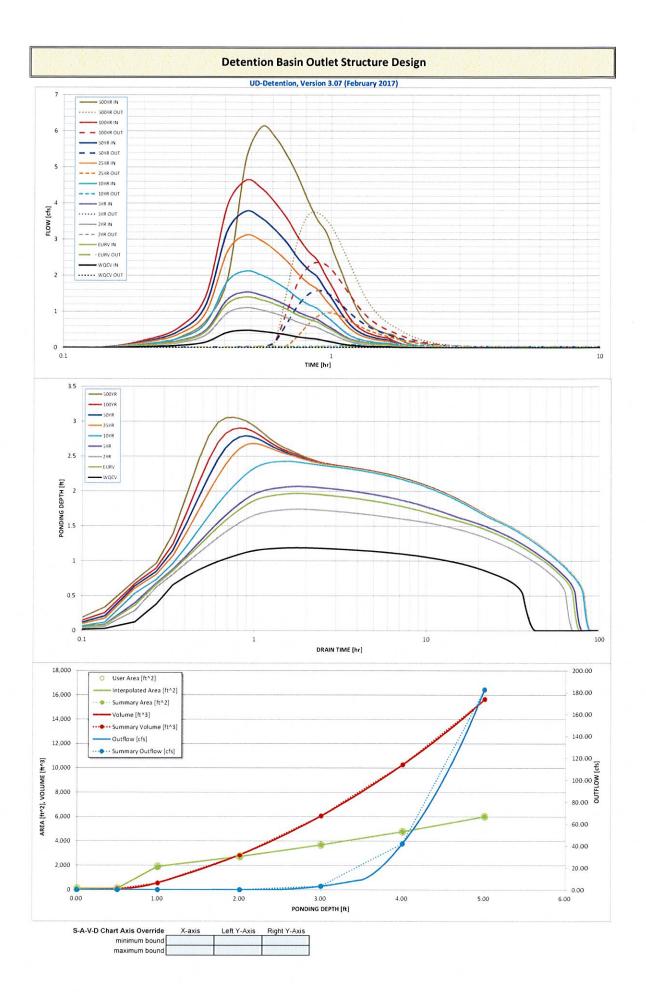
Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition p

Stage - Storage Description	Stage [ft]	Area [ft^2]	Area (acres)	Volume [ft^3]	Volume [ac-ft]	Total Outflow [cfs]	
	0.00	100	0.002	0	0.000	0.00	For best results, include th
	0.50	100	0.002	49	0.001	0.02	stages of all grade slope
NEW COLUMN	1.00	6,000	0.138	1,544	0.035	0.03	changes (e.g. ISV and Floor
NAME OF STREET	2.00	7,597	0.174	8,395	0.193	0.06	from the S-A-V table on
	3.00	9,238	0.212	16,896	0.388	0.11	Sheet 'Basin'.
	4.00	10,996	0.252	27,013	0.620	3.43	Also include the inverts of
	5.00	12,882	0.296	38,952	0.894	50.32	outlets (e.g. vertical orifice
	6.00	14,920	0.343	52,853	1.213	187.93	overflow grate, and spillwa
							where applicable).
esere and the local sector							
	- SEAMORTH AND						4
							4
							4
							-
							-
							-
							4
			/				-
						-	-
							-
							-
							1
							-
	Contraction of the						1
	CONVERSE.						1
	CROSS STREET						1
							1
							1
	TO BE SHOW						1
							1
							1
]
	Sec. Sec.						
a Property and the second							
	Contraction of the						_
							-
							-
							-
							-
							-
							-
							-
							4
							1
							1
	Contraction of the						1
	12000						1
ALCONTRACTOR STREET, ST]
							-
	121001233						4
							4
design of the second							1
	Low Stranger						1
]
	ERECTION OF						-
	740 683 664						-
							-
States and the second second							1
	1000000000						1
	No. Contractor						1
							4
							4
	And the second second second						1

Site-Level		LID Credit				A DATE OF THE OWNER OF THE			ious ca	iculato				
			Carl In a little start	-BMP (Version			(111)11	ctilou			000000000000			
User Input														
Calculated cells				Designer:										
				Company:				IG ENGINE	RS					
WQCV Event WQCV Event WQCV Event S-Year Event	0.53	inches inches		Date: Project:		March 26		NAH RIDGE						
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:		POND 2	a nan	AITRIDGE						
Optional User Defined Storm CUHP	L	-												
HP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event for User Defined Storm 100-Year Event	2.52]												
lax Intensity for Optional User Defined Storm 2.51496														
INFORMATION (USER-INPUT)														
Sub-basin Identifier	Basin N	Basin 0				T		T	T					
Receiving Pervious Area Soil Type	Sand	Sandy Loam												
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) Directly Connected Impervious Area (DCIA, acres)	0.990	0.480 0.150									-			
Unconnected Impervious Area (UCIA, acres)	0.400	0.150												
Receiving Pervious Area (RPA, acres)	0.250	0.150				-								
Separate Pervious Area (SPA, acres)	0.300	0.140												
RPA Treatment Type: Conveyance (C),	с	с												
Volume (V), or Permeable Pavement (PP)		-												
ULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	0.990	0.480												
Directly Connected Impervious Area (DCIA, %)	40.4%	31.3%												
Unconnected Impervious Area (UIA, %)	4.0%	8.3%												
Receiving Pervious Area (RPA, %) Separate Pervious Area (SPA, %)	25.3% 30.3%	31.3% 29.2%												
A ₂ (RPA / UIA)	6.250	3.750												
I, Check	0.140	0.210												-
f / I for WQCV Event:	11.0	2.0												
f / I for 5-Year Event:	0.6	0.5												
f / I for 100-Year Event:	0.6	0.3												
f / I for Optional User Defined Storm CUHP: IRF for WOCV Event:	0.57	0.31 0.45										-		
IRF for 5-Year Event:	0.56	0.85												
IRF for 100-Year Event:	0.57	0.89												
IRF for Optional User Defined Storm CUHP:	0.57	0.89												
Total Site Imperviousness: I _{rota}	44.4%	39.6%												
Effective Imperviousness for WQCV Event: Effective Imperviousness for S-Year Event:	41.6%	35.0% 38.3%												
Effective Imperviousness for 5-Year Event: Effective Imperviousness for 100-Year Event:	42.7%	38.3%												
Effective Imperviousness for Optional User Defined Storm CUHP:	42.7%	38.7%												
EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By:	3.9%	6.9%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
This line only for 10-Year Event	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	3.9% 3.3%	2.4% 1.8%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total Site Imp	erviousness:	42.9%		Notes:									
Total Site Effective Imperv			39.5%		Use Green	Ampt averag	ge infiltration	rate values f	rom Table 3	3.				
Total Site Effective Impervio Total Site Effective Impervio Tetal Site Effective Imperviou	usness for 100	D-Year Event:	41.2%		Flood con	trol detention d assumes that	volume cre	dits based on	empirical eq	uations from	Storage Cha sity for calcu	pter of USDC lation purpos	M. sed	
Total Site Effective Imperviousness for Optional	User Defined	Storm CUHP:	41.4%											


	rm: Extended Detention Basin (EDB)	
UD-E Designer: Company: Date: March 28, 2019 Project: Location:	3MP (Version 3.06, November 2016)	Sheet 1 of
 Basin Storage Volume A) Effective Imperviousness of Tributary Area, I_a B) Tributary Area's Imperviousness Ratio (i = I_a / 100) C) Contributing Watershed Area D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control) F) Design Volume (WQCV) Based on 40-hour Drain Time (V_{DESIGN} = (1.0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area) 	$I_{a} = \underbrace{42.9}_{0.429} \%$ $i = \underbrace{0.429}_{0.429}$ Area = <u>1.470</u> ac $d_{6} = \underbrace{0.42}_{0.12}$ in Choose One \bigcirc Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV) $V_{\text{DESIGN}} = \underbrace{0.023}_{0.023}$ ac-ft	
 G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (V_{WQCV OTHER} = (d_e*(V_{DESIGN}/0.43)) H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV_A = 1.68 * 1²⁸ For HSG B: EURV_B = 1.36 * 1¹⁰⁸ For HSG C/D: EURV_C = 1.20 * 1¹⁰⁸ 	$V_{\text{DESIGN USER}} = \underbrace{0.022}_{\text{ac-ft}} \text{ ac-ft}$ $V_{\text{DESIGN USER}} = \underbrace{\text{ac-ft}}_{\bigcirc A}$	
 Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2.1 will improve TSS reduction.) Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	L : W = <u>2.0</u> : 1 $Z = \frac{3.00}{\text{DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE}}$	
 Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 		

Design Procedure Form	n: Extended Detention Basin (EDB)	
Designer: Company: Date: March 28, 2019 Project: Location:		Sheet 2 of 4
 5. Forebay A) Minimum Forebay Volume (V_{FMIN} = <u>0%</u> of the WQCV) B) Actual Forebay Volume 	V _{FMIN} = <u>0.000</u> ac-ft V _F = 0.000 ac-ft	A FOREBAY MAY NOT BE NECESSARY FOR THIS SIZE SITE
C) Forebay Depth $(D_F = \underline{12}$ inch maximum) D) Forebay Discharge	D _F = in	
 i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow (Q_F = 0.02 * Q₁₀₀) 	Q ₁₀₀ = cfs Q _F = cfs	
E) Forebay Discharge Design	Choose One O Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	(flow too small for berm w/ pipe)
F) Discharge Pipe Size (minimum 8-inches) G) Rectangular Notch Width	Calculated $D_P = $ in Calculated $W_N = $ in	
6. Trickle Channel A) Type of Trickle Channel	Choose One Concrete Soft Bottom	
F) Slope of Trickle Channel	S = <u>0.0100</u> ft / ft	
7. Micropool and Outlet StructureA) Depth of Micropool (2.5-feet minimum)	D _M = ft	
 B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	A _M = <u>100</u> sq ft Choose One	
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	D _{onfice} = inches	
E) Total Outlet Area	A _{ot} = square ir	nches


	Design Procedure Form	n: Extended Detention Basin (EDB)
Designer: Company:		Sheet 3 of
Date: Project: Location:	March 28, 2019 	
8. Initial Surchar	rge Volume	
	nitial Surcharge Volume recommended depth is 4 inches)	D _{IS} =6 in
C) Initial Surch	harge Provided Above Micropool	V _s =50.0 cu ft
9. Trash Rack		
A) Water Qua	ality Screen Open Area: At = Aot * 38.5*(e ^{-0.096D})	A _t = square inches
in the USDCM	reen (If specifying an alternative to the materials recommended 1, indicate "other" and enter the ratio of the total open are to the re for the material specified.)	
	Other (Y/N): N	
		use (Rote 4
D) Total Wate	r Quality Screen Area (based on screen type)	A _{total} = sq. in.
	esign Volume (EURV or WQCV) design concept chosen under 1E)	H=feet
F) Height of W	Vater Quality Screen (H_{TR})	H _{TR} = inches
	/ater Quality Screen Opening (W _{opening}) of 12 inches is recommended)	W _{opening} = inches

		n: Extended Detention Basin (EDB)	Sheet 4 of 4
Designer: Company:			Sheet 4 of
Date:	March 28, 2019		
Project:			
Location:			
10. Overflow Em	bankment		
A) Describe	embankment protection for 100-year and greater overtopping:		
B) Slope of	Overflow Embankment		
	al distance per unit vertical, 4:1 or flatter preferred)	1	
11. Vegetation		Choose One Irrigated	
		 Not Irrigated 	
12. Access			
A) Describe	Sediment Removal Procedures		
Notes			
NOLES.			

		DETENTION E	BASIN STAGE-S	TORAG	E TABLE	BUILDE	R		The second		a pres	
Project MIDTOWN	AT HANNAH		Detention, Version	3.07 (Febr	uary 2017)							
Basin ID: POND 2												
ZONE 3												
	T											
TOTAL T HOCK	6				-							
PERMANENT ONFICES	ORIFE	CE	Depth Increment =	182301	ft Optional		-		Ontinnal			
POOL Example Zone Configura	tion (Retent	ion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Required Volume Calculation			Top of Micropool	(ft)	Stage (ft) 0.00	(ft) 	(ft)	(#^2)	Area (ft*2) 100	(acre) 0.002	(ft^3)	(ac-ft)
Selected BMP Type = EDB			49		0.50		-	-	100	0.002	49	0.001
Watershed Area = 1.47	acres		50		1.00		-		1.896	0.044	530	0.012
Watershed Length = 325	n		61	-	2.00		-		2,713	0.062	2,826	0.065
Watershed Slope = 0.060	ft.ft		62		3.00		-	-	3,667	0 084	6,043	0.139
Watershed Imperviousness = 42.90%	percent		53	-	4.00	-	-		4,760	0 109	10,257	0.235
Percentage Hydrologic Soil Group A = 0.0% Percentage Hydrologic Soil Group B = 100.0%	percent percent		54	-	5.00		-		5,997	0 138	15,635	0.359
Percentage Hydrologic Soil Groups C/D = 0.0%	percent		C. C				-	-				
Desired WQCV Drain Time = 40.0	hours		ALCON STREET		Nechas		-		100000			
Location for 1-hr Rainfall Depths = User Input	_		12000 New Street		Question a		1		(Lassing)			
Water Quality Capture Volume (WQCV) = 0.023	acre-feet	Optional User Override 1-hr Precipitation		-	46.5		-	-				
Excess Urban Runoff Volume (EURV) = 0.067 2-yr Runoff Volume (P1 = 1.19 in) = 0.053	acre-feet acre-feet	1.19 inches	THE REPORT OF ALL OF AL	-			-					-
S-yr Runoff Volume (P1 = 1 15 in.) = 0.073	acre-feet	1.19 inches	All and the second	-	1000		-					
10-yr Runoff Volume (P1 = 1.75 in.) = 0.102	acre-feet	1.75 inches	State State		Conservation of		-	-	1000			1
25-yr Runoff Volume (P1 = 2 in.) = 0.150	acro-feet	2.00 inches			12.36		-		Consectory.			
50-yr Runoff Volume (P1 = 2.25 in.) = 0.182	acre-feet	2.25 inches		-	1000		-					
100-yr Runoff Volume (P1 = 2.52 in.) = 0.225 500-yr Runoff Volume (P1 = 3 in.) = 0.297	acre-feet acre-feet	2.52 inches 3.00 inches					-	-			-	-
Approximate 2-yr Detention Volume = 0.049	acre-feet	s.vo incrios	CONTRACTOR OF	-		-	-		A STREET		+	
Approximate 5-yr Detention Volume = 0.069	acre-feet		A STATE OF	-		-	-		ALC: NO.			
Approximate 10-yr Detention Volume = 0.093	acro-feet		Constant of the second s				-		100			
Approximate 25-yr Detention Volume = 0.104	acro-feet		Constant States	-	Maxes		-		NSPICE!			
Approximate 50-yr Detention Volume = 0.109 Approximate 100-yr Detention Volume = 0.123	acre-feet			-			-					
- 0.123	acre-feet					-	-				-	
age-Storage Calculation				-			-		11736553			
Zone 1 Volume (WQCV) = 0.023	acre-feet		Section 201		Texters.		-		1223710			
Zone 2 Volume (EURV - Zone 1) = 0.044	acro-feet				1235005		-					
Zone 3 Volume (100-year - Zones 1 & 2) = 0.057	acre-feet				1986980		-	-	123-243	_		
Total Detention Basin Volume = 0.123 Initial Surcharge Volume (ISV) = user	acre-feet						-					
Initial Surcharge Depth (ISD) = user	ñ*3 ft			-			-					
Total Available Detention Depth (H _{bbs}) = user	n		Second Contract				-					
Depth of Trickle Channel (H _{TC}) = user	n			-					0.02454			
Slope of Trickle Channel (S-c) = user	n.n		NEW STREET				-	-				
Slopes of Main Basin Sides (S _{-re}) = user Basin Length-to-Width Ratio (R _{u/w}) = user	HV						-					
			and the second second	-			-		1315574			
Initial Surcharge Area (A _{SV}) = user	ñ*2			-	122.55		-					
Surcharge Volume Length (L _{SV}) = user	n		Distantian State				-	-	12.1023			
Surcharge Volume Width (W SV) = user	n			-	STEOLO .		-		1.1.1.1.1.1.1			
Depth of Basin Floor (H _{1100 K}) = user Length of Basin Floor (L _{1100 K}) = user	n			-	C. G.C.	-	-					
Width of Basin Floor (Wr. 504) = user	n n			-			-					
Area of Basin Floor (Ar.oo.t) = user	n n*2		Constant Section 1				-	-	1			
Volume of Basin Floor (V _{FLOO1}) = user	ft*3		Statistics and	-			-					
Depth of Main Basin (H _{UALS}) = user	n		N. Sharparter		Statist.		-	-	1.11			
Length of Main Basin (L _{MAN}) = user	ft			-	1000		-	-				
Width of Main Basin (W _{WAN}) = user Area of Main Basin (A _{WAN}) = user	ft ft*2			-			-	-	1.1.1.1.1.1			
Volume of Main Basin (V _{VA.N}) = user	ft*3			-			-	-				
Calculated Total Basin Volume (V ₂₂) = user	acre-feet		Concession and the	-	1.00		-		20122570			
	e e constant de la spécifica (**			-					
			The second second	-	10000		-					
				-			-					
				-			-					
				-	nender		-		in a start of the			_
				-			-					
							-		100000			
					1000/000		-	**				
							-					
			10.000	-			-					_
			an El Contrata de la		L. Statistics		-		Desire			
							-	-				
							-	-				
			Second Second				-		100000			
			A Test				-					
							-	-				
				**	No.		-					
				-	1000		-					
					10000		-		Service			
							-					
				-	Sector Sector		-					_
			the second s		and the second		-		COLOR DE LOS			
				-			-					
							-	-				
							-					
						 	-	-				

			UD-Detention. Ve	rsion 3.07 (Februa	ry 2017)				
-	MIDTOWN AT HAN	INAH RIDGE FIL. 1	ob betennion, re		1, 2027)				
Basin ID: ZONE 3	POND 1								
				e. (6)	-				
				Stage (ft)	Zone Volume (ac-ft	1	1		
TT MOCAL			Zone 1 (WQCV)	1.23	0.023	Orifice Plate	-		
ZONE 1 AND 2	J 100-YEA		Zone 2 (EURV)	2.02	0.044	Orifice Plate	-		
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	'one 3 (100-year)	2.82	0.057	Weir&Pipe (Restrict)			
					0.123	Total			
er Input: Orifice at Underdrain Outlet (typically u							ed Parameters for U	7	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	he filtration media su	rtace)		erdrain Orifice Area =	N/A	ft ²	
Underdrain Ornice Diameter =	N/A	Jinches			Underdra	ain Orifice Centroid =	N/A	feet	
er Input: Orifice Plate with one or more orifices	or Elliptical Slot Wei	ir (typically used to d	rain WQCV and/or El	JRV in a sedimentat	ion BMP)	Calcu	lated Parameters fo	r Plate	
Invert of Lowest Orifice =	0.00	7	bottom at Stage = 0 ff			rifice Area per Row =	N/A	lft ²	
Depth at top of Zone using Orifice Plate =	2.35	ft (relative to basin	bottom at Stage = 0 fr	t)	E	lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	9.40	inches			Elli	ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
	120 Mar 19 Mar								
ser Input: Stage and Total Area of Each Orifice		1		Row & /and/and	Daw E (anti-or	Dani û da stêre st	Paul 7 / and and	Daw O /anti-	1
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00	Row 2 (optional) 0.80	Row 3 (optional) 1.60	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Orifice Area (sq. inches)		0.80	0.69				Statistical and the		1
Chine Area (sq. intiles)	0.17	0.17	0.00				and shared the Court of the		1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Onfice Centroid (ft)		New Providence]
Orifice Area (sq. inches)				14-10-10-00-00-00-00-00-00-00-00-00-00-00-]
									0.85
User Input: Vertical Orifice (Circ		1	1			Calculated	Parameters for Ver	1	7
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A	ft (relative to basin b			ertical Orifice Area =	N/A N/A	N/A N/A	ft ²
Vertical Orifice Diameter =	N/A N/A	N/A N/A	ft (relative to basin b inches	iottom at stage = 0 i	t) Verta	cal Orifice Centroid =	N/A	N/A	feet
]						
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	_
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.35	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	3.10	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet			Weir Slope Length =	3.09	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for fl	at grate)		100-yr Orifice Area =	2.62	N/A	should be ≥ 4
Horiz. Length of Weir Sides = Overflow Grate Open Area % =	3.00	N/A N/A	feet %, grate open area/t	otal area	Overflow Grate Ope	en Area w/o Debris = ben Area w/ Debris =	4.64	N/A N/A	ft ² ft ²
Debris Clogging % =	50%	N/A	%, grate open area/t	otar area	Overnow drate of	ben Area wy Debris =	2.32	IN/A	Jπ
555115 510 <u>55</u> 11 <u>5</u> 70	5676								
er Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restr	ictor Plate, or Rectar	ngular Orifice)		c	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla	te
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basi	n bottom at Stage = 0	ft)	Outlet Orifice Area =	1.77	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches		Out	et Orifice Centroid =	0.75	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00	J	inches	Half-0	Central Angle of Restr	rictor Plate on Pipe =	3.14	N/A	radians
Lines langet Freedom a 10 /a								- 10	
User Input: Emergency Spillway (Rectang		ft (rolative to be a	hottom at Character	1	e - 11		ted Parameters for S	1	
Spillway Invert Stage= Spillway Crest Length =	3.50 25.00	ft (relative to basin i feet	bottom at Stage = 0 ft	1		Design Flow Depth= t Top of Freeboard =	0.23	feet feet	
Spillway Erest Length = Spillway End Slopes =	4.00	H:V				t Top of Freeboard = t Top of Freeboard =	0.13	acres	
Freeboard above Max Water Surface =	1.00	feet			busin Area a		0.13	Jucies	
		1							
Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	0.53	1.07 0.067	1.19	1.50	1.75	2.00	2.25	2.52	3.00
OPTIONAL Override Runoff Volume (acre-ft) =	0.023	0.067	0.053	0.073	0.102	0.150	0.182	0.225	0.297
Inflow Hydrograph Volume (acre-ft) =	0.022	0.066	0.052	0.073	0.102	0.150	0.183	0.225	0.298
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.03	0.25	0.81	1.11	1.49	2.09
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.038	0.4	1.2	1.6	2.2	3.1
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	0.5	0.0	1.1	1.5 0.030	2.1	3.1	3.8	4.6	6.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.1	0.8	1.0	1.1	1.2
	Plate	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Gra
Structure Controlling Flow =	N/A	N/A	N/A	N/A	0.0	0.2	0.3	0.5	0.8
Max Velocity through Grate 1 (fps) =			N/A	A1/A	A1/A	N/A	N/A	N/A	N/A
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A	N/A		N/A	N/A				
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 38	69	64	71	77	74	71	69	65
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A				77 82	74 81	71 80	69 79	65 78
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A 38 41	69 73	64 67	71 76	77	74	71	69	65

Outflow Hydrograph Workbook Filename:

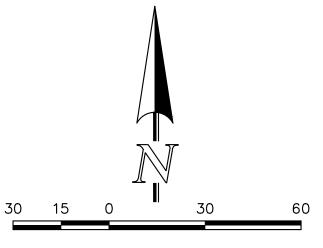
ſ	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	ed in a separate WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs
4.08 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.00 11111	0:04:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:12:14	0.02	0.06	0.05	0.07	0.10	0.14	0.17	0.21	0.28
1.227	0:16:19	0.06	0.17	0.14	0.19	0.26	0.38	0.46	0.56	0.74
	0:20:24	0.15	0.44	0.35	0.48	0.66	0.97	1.17	1.44	1.89
Ļ	0:24:29	0.42	1.21	0.96	1.33	1.82	2.67	3.23	3.96	5.20
ŀ	0:28:34	0.48	1.40	1.11	1.53	2.12	3.11	3.78	4.63	6.12
ŀ	0:32:38	0.45	1.32	1.05	1.45	2.01	2.96	3.59	4.41	5.82
ŀ	0:40:48	0.41	1.20 1.06	0.95	1.32 1.16	1.83 1.61	2.69 2.38	3.26 2.90	4.01	5.30
ŀ	0:44:53	0.30	0.90	0.83	0.99	1.81	2.38	2.90	3.56 3.05	4.71 4.05
Ē	0:48:58	0.26	0.79	0.62	0.87	1.20	1.78	2.45	2.67	3.53
	0:53:02	0.24	0.71	0.56	0.78	1.09	1.61	1.96	2.41	3.20
	0:57:07	0.19	0.57	0.45	0.63	0.88	1.31	1.60	1.97	2.62
Ļ	1:01:12	0.15	0.46	0.36	0.50	0.70	1.05	1.29	1.59	2.12
-	1:05:17	0.11	0.34	0.26	0.37	0.52	0.79	0.97	1.20	1.61
H	1:09:22	0.08	0.24	0.18	0.26	0.38	0.57	0.70	0.88	1.19
H	1:13:26	0.06	0.18	0.14	0.20	0.28	0.42	0.52	0.64	0.87
ŀ	1:17:31 1:21:36	0.05	0.14	0.11	0.16	0.22	0.33	0.41	0.51	0.68
ŀ	1:21:36	0.04	0.12	0.09	0.13	0.18	0.27	0.34	0.42	0.56
t t	1:29:46	0.03	0.09	0.08	0.11	0.16	0.23	0.29	0.36	0.47
F	1:33:50	0.03	0.08	0.06	0.09	0.14	0.19	0.23	0.31	0.42
	1:37:55	0.03	0.08	0.06	0.08	0.12	0.17	0.23	0.26	0.35
	1:42:00	0.02	0.06	0.04	0.06	0.09	0.13	0.16	0.19	0.26
	1:46:05	0.01	0.04	0.03	0.04	0.06	0.09	0.11	0.14	0.19
	1:50:10	0.01	0.03	0.02	0.03	0.05	0.07	0.08	0.10	0.14
	1:54:14	0.01	0.02	0.02	0.02	0.03	0.05	0.06	0.07	0.10
-	1:58:19	0.00	0.01	0.01	0.02	0.02	0.03	0.04	0.05	0.07
-	2:02:24	0.00	0.01	0.01	0.01	0.02	0.02	0.03	0.04	0.05
-	2:06:29	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.03
-	2:10:34	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02
ŀ	2:14:33	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
F	2:22:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
F	2:26:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:39:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:43:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:47:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:51:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:55:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:59:31 3:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:07:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:11:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:24:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:32:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:36:14 3:40:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:56:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:00:43 4:04:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:08:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:17:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:21:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H	4:25:12 4:29:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:29:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:37:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
L	4:49:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition p

Stage - Storage Description	Stage [ft]	Area [ft^2]	Area [acres]	Volume [ft^3]	Volume [ac-ft]	Total Outflow [cfs]	
March Contractor	0.00	100	0.002	0	0.000	0.00	For best results, include the
	0.50	100	0.002	49	0.001	0.00	stages of all grade slope
	1.00	1,860	0.043	530	0.012	0.01	changes (e.g. ISV and Floor)
ANUL STATES STORES	2.00	2,705	0.062	2,826	0.065	0.03	from the S-A-V table on
	3.00	3,667	0.084	6,043	0.139	3.20	Sheet 'Basin'.
	4.00	4,760	0.109	10,257	0.235	41.90	Also include the inverts of a
	5.00	5,997	0.138	15,635	0.359	182.56	outlets (e.g. vertical orifice,
							overflow grate, and spillwa
							where applicable).
· · · · · · · · · · · · · · · · · · ·							
							1
							4
							_
	A LAND AND AND AND A						-
							-
							-
							-
							_
							-
							-
							-
							-
							-
							-
							-
and the second							-
Viele States States							-
Name Parata Carda							1
No. CANES AND							1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1
							1
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	a and a second second						1
							1
and the second]
Second Second Second							
							-
							-
							-
							4
							-
							4
							-
							4
							-
							-
CONTRACTOR OF THE							-
	0.00000000						1
							1
	Second Second						1
]
	a deserverses						4
							-
							1
							1
	Constant Sector			<u></u>			1
]
							4
							-
							-
							1
							1
March 1997	Charles and a second						1
	R CONTRACTOR						1
							1

DRAINAGE MAPS



.

48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	NO. REVISION	DATE	REVIEW:
811 UTILITY NOTIFICATION CENTER OF COLORADO IT'S THE LAW			PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF CLASSIC CONSULTING ENGINEERS AND SURVEYORS, LLC
OCATIONS OF EXISTING UNDERGROUND UTILITIES ARE IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR DETERMINE THE EXACT LOCATION OF ALL EXISTING ES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL			
LY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND RVE ANY AND ALL UNDERGROUND UTILITIES.			KYLE R. CAMPBELL, COLORADO P.E. #29794 DATE

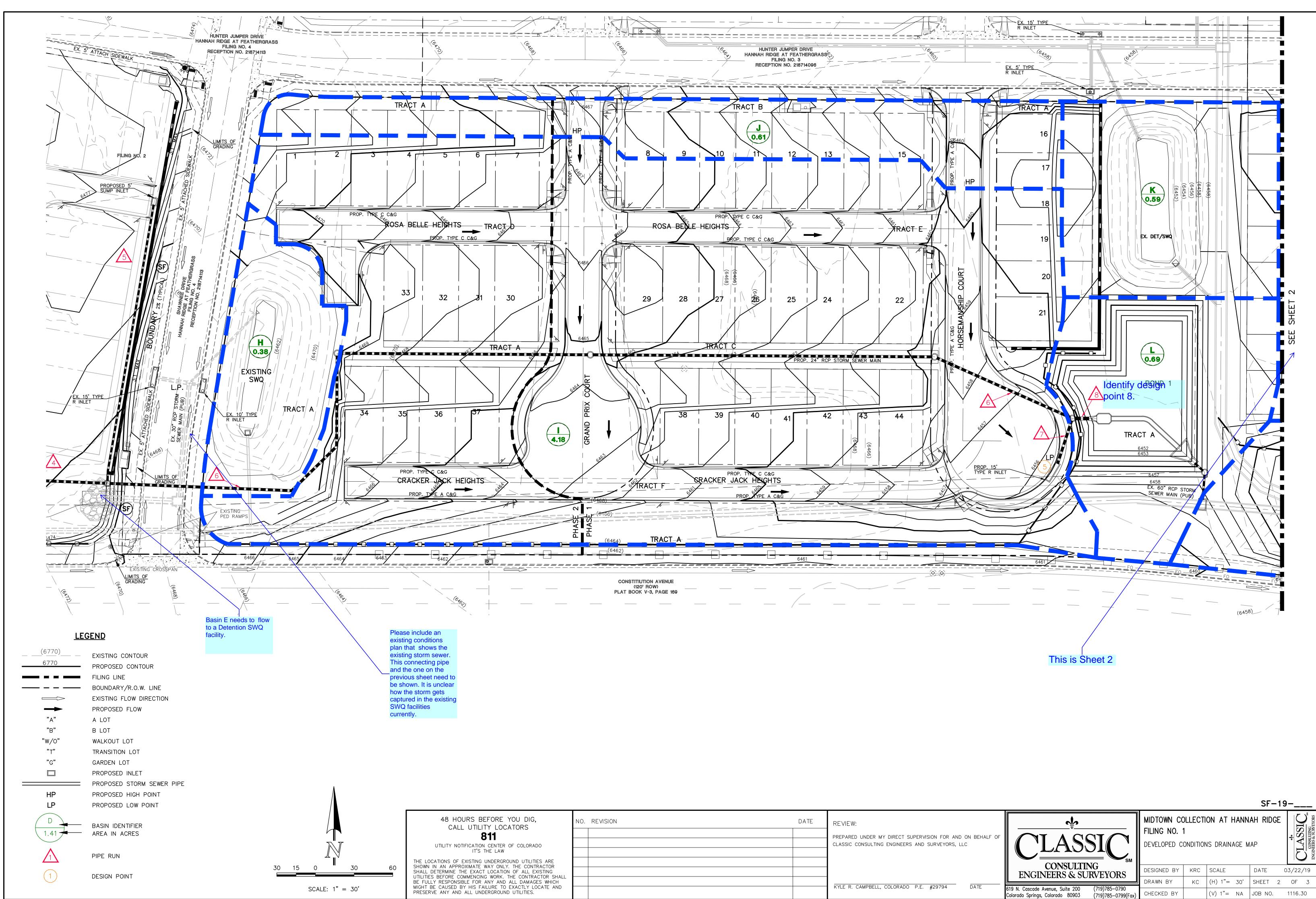
SCALE: 1" = 30'

Please include an existing conditions plan that shows the existing storm sewer. This connecting pipe and the one the next sheet need to be shown. It is unclear how the storm gets captured in the existing SWQ facilities currently.

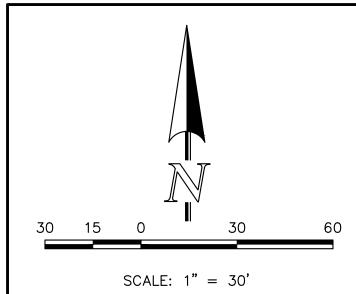
<u>LEGEND</u>

- PROPOSED CONTOUR BOUNDARY/R.O.W. LINE EXISTING FLOW DIRECTION PROPOSED FLOW A LOT B LOT WALKOUT LOT TRANSITION LOT GARDEN LOT PROPOSED INLET PROPOSED STORM SEWER PIPE PROPOSED HIGH POINT PROPOSED LOW POINT

PIPE RUN

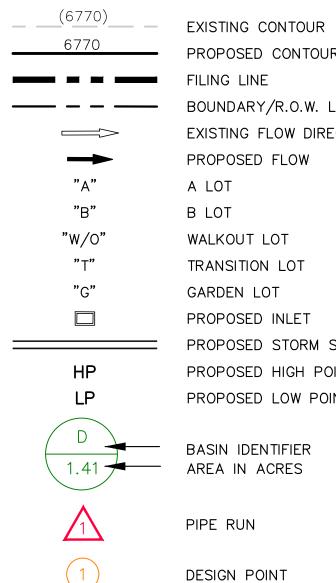

DESIGN POINT

SF-19-___ CLASSIC


CLASSIC
CONSULTING ENGINEERS & SURVEYORS
619 N. Cascade Avenue, Suite 200 (719)785—0790 Colorado Springs, Colorado 80903 (719)785—0799(Fax)

MIDTOWN COLLECTION AT HANNAH RIDGE FILING NO. 1 DEVELOPED CONDITIONS DRAINAGE MAP

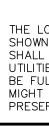
DRAWN BY LDB (H) 1"= 30' SHEET 1 OF 3 A. Cascade Avenue, Suite 200 (719)785–0790	ENGINEERS & SURVEYORS	DESIGNED BY	KRC	SCALE	DATE	03/22/19
		DRAWN BY	LDB	(H) 1"= 30'	SHEET 1	OF 3
	l. Cascade Avenue, Suite 200 (719)785—0790 1do Springs, Colorado 80903 (719)785—0799(Fax)	CHECKED BY		(V) 1"= NA	JOB NO.	1116.30

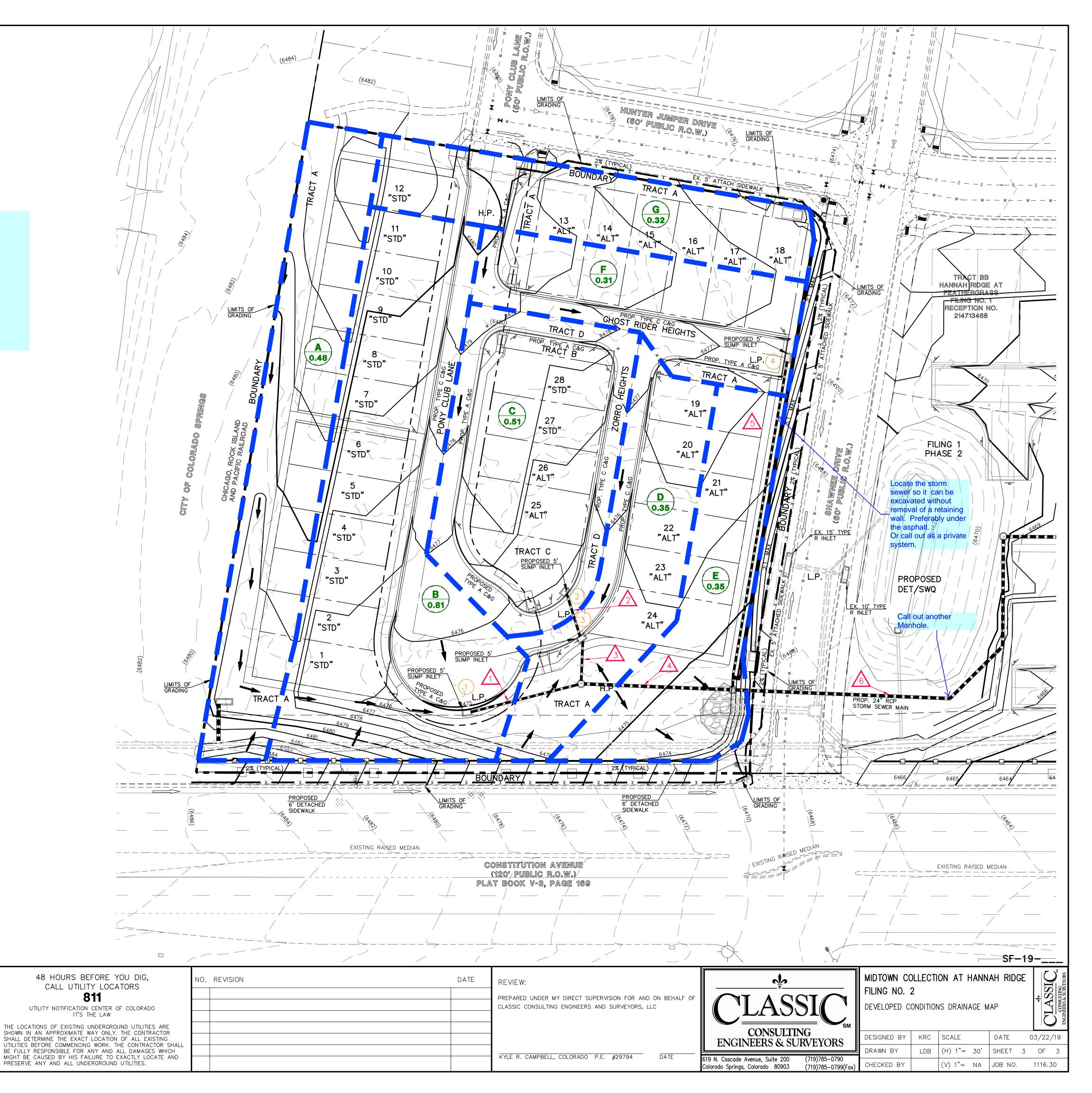

48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	NO. REVISION	DATE	REVIEW:
UTILITY NOTIFICATION CENTER OF COLORADO			PREPARED UNDER MY DIRECT SUF CLASSIC CONSULTING ENGINEERS
IT'S THE LAW			
WN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR L DETERMINE THE EXACT LOCATION OF ALL EXISTING TIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL ULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH			
T BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND SERVE ANY AND ALL UNDERGROUND UTILITIES.			KYLE R. CAMPBELL, COLORADO

Provide a summary of all design points for all design flows. In a table, on these plans. Sheet 33?

Darken design points so they can be identified on a printed version. Basin E needs to flow to a detention/SWQ Facility.

<u>LEGEND</u>




PROPOSED CONTOUR FILING LINE BOUNDARY/R.O.W. LINE EXISTING FLOW DIRECTION PROPOSED FLOW A LOT B LOT WALKOUT LOT TRANSITION LOT GARDEN LOT PROPOSED INLET PROPOSED STORM SEWER PIPE PROPOSED HIGH POINT PROPOSED LOW POINT

BASIN IDENTIFIER AREA IN ACRES

PIPE RUN

DESIGN POINT

