

LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430

E-mail: lsc@lsctrans.com

Website: http://www.lsctrans.com

New Breed Ranch
Filing No. 3
Transportation Memorandum
PCD File No.: SF247
(LSC #S224230)
September 25, 2024

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Million

22 Dec 2A

New Breed Ranch Transportation Memorandum

Prepared for: Jim Scott New Breed Ranch, Inc. 12750 Oak Cliff Way Colorado Springs CO, 80908-3734

SEPTEMBER 25, 2024

LSC Transportation Consultants, Inc. Prepared by: Jeffrey C. Hodsdon, P.E.

LSC #S234230

PCD File No.: SF247

CONTENTS

REPORT CONTENTS	1
LIST OF OTHER TRAFFIC REPORTS USED IN THE PREPARATION OF THIS REPORT	2
LAND USE AND ACCESS	2
Proposed Land Use	2
Proposed Site-Access Locations	2
SIGHT DISTANCE	2
ROAD AND TRAFFIC CONDITIONS AND MTCP CLASSIFICATION	3
Existing Traffic Volumes	3
PEDESTRIAN AND BICYCLE FACILITIES	3
TRIP GENERATION	3
TRIP DISTRIBUTION AND ASSIGNMENT	4
Trip Directional Distribution	4
Site-Generated Traffic	4
Existing + Site-Generated Traffic Volumes	5
2043 Background Traffic Volumes	5
2043 Total Traffic Volumes	5
LEVEL OF SERVICE ANALYSIS	5
Shoup Road/New Breed Drive	6
Meadow Run Circle/New Breed Drive	6
ROADWAY IMPROVEMENTS	6
Auxiliary Turn Lanes	6
Eastbound Left-Turn Deceleration Lane	6
Westbound Right-Turn Deceleration Lane	7
Westbound-Right-Turn Acceleration Lane	7
ROADWAY CLASSIFICATIONS	7
COUNTY ROAD IMPROVEMENT FEE PROGRAM	7
Transportation Impact Fees	7
Reimbursable Improvements	8
MULTI-MODAL TRANSPORTATION AND TDM OPPORTUNITIES	8
DEVIATIONS	8
FINDINGS AND CONCLUSIONS	

Enclosu	ures:	S
	Table 5	
	Figures 1-8	
	Traffic Count Reports	
	Synchro LOS Reports	
	Striping Exhibits 1-4	

LSC TRANSPORTATION CONSULTANTS, INC. 2504 E. Pikes Peak Ave., Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430

E-mail: lsc@lsctrans.com

Website: http://www.lsctrans.com

September 25, 2024

Jim Scott New Breed Ranch, Inc. 12750 Oak Cliff Way Colorado Springs CO, 80908-3734

RE: New Breed Ranch Filing No. 3

El Paso County, CO

Transportation Memorandum

PCD File No.: SF247 LSC #S224230

Dear Mr. Scott,

LSC Transportation Consultants, Inc. has prepared this Transportation Memorandum for the proposed New Breed Ranch Filing No. 3 subdivision in El Paso County, Colorado. The site is located generally northeast of the intersection of State Highway 83 and Shoup Road. Figure 1 shows the site location relative to the adjacent and nearby roadways. Access to the site is proposed to Meadow Run Circle via New Breed Drive and the existing Shoup Road/New Breed Drive intersection.

This report has been prepared for submittal to El Paso County.

REPORT CONTENTS

The preparation of this report included the following:

- An inventory of existing roadway and traffic conditions on major thoroughfares adjacent to the site, including surface conditions, functional classification, widths, pavement markings, traffic-control signs, posted speed limits, intersection and access spacing, roadway and intersection alignments, roadway grades, and auxiliary turn lanes;
- Weekday peak-hour turning-movement traffic counts Shoup Road/New Breed;
- Estimated average daily traffic (ADT) volumes on the study-area roadway segments;
- Projections of 20-year background traffic volumes on the study-area roadways adjacent to the site;
- The proposed site land use and access plan;

- Estimates of average weekday and weekday peak-hour trip generation for the proposed development and the estimated directional distribution of site-generated vehicle trips on roadways and intersections adjacent to and in the vicinity of the site;
- Projected site-generated and resulting total peak-hour intersection traffic volumes at the study-area intersections;
- Projected total daily and peak-hour traffic volumes at the study-area intersections;
- Intersection level of service (LOS) analysis at the study-area intersections;
- Evaluation of short- and long-term projected intersection volumes to determine potential requirements for any new auxiliary right-/left-turn lanes at the proposed site-access points, based on the criteria in El Paso County's *Engineering Criteria Manual (ECM)*. Also included are potential long-term lane requirements; and
- Findings and recommendations for submittal to El Paso County.

LIST OF OTHER TRAFFIC REPORTS USED IN THE PREPARATION OF THIS REPORT

The following previously-completed traffic report was referenced in preparation of this study:

• New Breed Ranch Traffic Impact Study – by LSC, dated November 5, 1999

LAND USE AND ACCESS

Proposed Land Use

Seven (7) single-family residential dwelling units are proposed for New Breed Ranch Filing No. 3 subdivision. The site plan is shown in Figure 2.

Filing No. 3 is the next phase of development within the greater New Breed Ranch development, which is planned to consist of 90 single-family dwelling units at buildout. To date, 21 residential lots have been developed with single-family, detached dwelling units within New Breed Ranch.

Proposed Site-Access Locations

Figure 2 also shows the proposed access plan for the site. Access to/from the site is proposed with a new public street connection to Meadow Run Circle about 345 feet east of New Breed Drive. The Meadow Run Circle/New Breed Drive intersection is about 600 feet north of Shoup Road. The New Breed Drive/Shoup Road intersection is currently a full-movement, stop-sign-controlled intersection.

SIGHT DISTANCE

Intersection sight distance will need to be maintained at the proposed site-access intersection with Meadow Run Circle, by keeping the lines of sight for both access points clear of any sight-distance obstructions. This includes landscaping, signage, fencing, and other site improvements associated with the development.

With the 30-mph posted speed limit/design speed on Meadow Run Circle, the *ECM*-prescribed intersection sight distance, as shown in *ECM* Table 2-21, is 335 feet to the east and west along Meadow Run Circle.

ROAD AND TRAFFIC CONDITIONS AND MTCP CLASSIFICATION

Figure 1 shows the roads adjacent to and in the vicinity of the site. Adjacent roads serving the site are identified below followed by a brief description of each:

Shoup Road is a two-lane paved rural Minor Arterial that extends east-to-west route through the Black Forest area. The posted speed limit in the vicinity of the Shoup Road/New Breed Drive intersection is 45 miles per hour (mph). An eastbound left-turn deceleration lane exists on Shoup Road approaching New Breed Drive as it was previously constructed.

New Breed Drive is a Rural Local roadway extending north-to-south for 600 feet between Shoup Road Meadow Run Circle. The posted speed limit along this paved road is 30 mph. The southbound approach at Shoup Road is stop-sign controlled and the northbound approach at Meadow Run Circle is yield-sign controlled.

Meadow Run Circle is a Rural Local roadway extending generally east-to-west for 0.6 miles between Oak Cliff Way (to the west) and its terminus to the east. The speed limit along this paved road is assumed 30 mph, as this is the speed limit for this roadway classification. The overall New Breed Ranch Preliminary Plan shows Meadow Run Circle ultimately extended from each end to form a loop road serving the entire New Breed Ranch development.

Existing Traffic Volumes

Vehicular turning-movement counts were conducted at the intersection of Shoup Road/New Breed Drive. Raw count data are attached, for reference.

PEDESTRIAN AND BICYCLE FACILITIES

New Breed Drive and Meadow Run Circle do not currently have sidewalks or separate, striped, on-street bicycle lanes. This is consistent with the Rural Local criteria. Sidewalks would **not** be required along any study-area roadways following site buildout. The proposed subdivision road will also be a Rural Local roadway and, per *ECM* criteria, would not require sidewalks or separate bicycle lanes.

TRIP GENERATION

Estimates of the vehicle trips projected to be generated by the proposed New Breed Ranch Filing No. 3 residential subdivision have been made using the nationally published trip-generation rates from *Trip Generation*, 11th Edition, 2021 by the Institute of Transportation Engineers (ITE).

Corresponding trip-generation rates from ITE Land Use Category "210 – Single-Family (Detached) Housing" have been used to develop the trip-generation estimates for the proposed 7-dwelling-unit residential site.

Table 1 below presents a summary of the estimated external site trip generation. A detailed trip-generation estimate for the site, including ITE rates for the proposed land uses, is presented in Table 3 (attached).

The proposed subdivision is projected to generate about 71 total vehicle trips on the average weekday during a 24-hour period, with approximately half entering and half exiting the site. During the morning peak hour, approximately 1 entering vehicle and 4 exiting vehicles are estimated to be generated. Approximately 4 entering and 3 exiting vehicles are estimated to be generated by the site during the afternoon peak hour.

Weekday **Analysis Period** Out Total ln Morning Peak Hour 1 4 5 7 4 3 Afternoon Peak Hour Daily/24-hour 36 36 71

Table 1: Estimated Site Vehicle-Trip Generation

TRIP DISTRIBUTION AND ASSIGNMENT

Trip Directional Distribution

The directional-distribution estimate of site-generated vehicle trips to the study-area roads and intersections is a necessary component in determining the site's traffic impacts. Figure 4 shows the percentages of the site-generated vehicle trips projected to be oriented to and from the site's major approaches. Estimates have been based on the following factors: the original traffic impact study, the traffic count data, the proposed land use, the area roadway system serving the site, and the site's geographic location relative to the overall greater El Paso County/Colorado Springs area.

Site-Generated Traffic

Site-generated traffic volumes have been estimated at the following intersections:

- Shoup Road/New Breed Drive
- New Breed Drive/Meadow Run Circle

These site-generated volumes have been calculated by applying directional-distribution percentages estimated by LSC (from Figure 4) to the trip-generation estimates (from Table 3). Figure 5 shows the projected short-term site-generated traffic volumes for the weekday morning and afternoon peak hours.

Existing + Site-Generated Traffic Volumes

Figure 6 shows the sum of the existing background traffic volumes (from Figure 3) and site-generated peak-hour traffic volumes (shown in Figure 5). These volumes represent the projected short-term total traffic following site buildout.

2043 Background Traffic Volumes

Long-term background traffic volumes are estimates by LSC, based on projected 2043 volumes adjacent to the site, shown in Map 9 of the *Major Transportation Corridors Plan (MTCP)*. Additionally, estimated traffic at buildout for the overall 90-dwelling-unit New Breed Ranch residential development has been included in 2043 background traffic volumes. Please refer to Figure 7 for estimated long-term background volumes and assumed laneage at the study-area intersections.

2043 Total Traffic Volumes

Figure 8 shows the sum of 2043 background traffic volumes (from Figure 7) plus site-generated traffic volumes (from Figure 5).

LEVEL OF SERVICE ANALYSIS

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection and is indicated on a scale from "A" to "F." LOS A is indicative of little congestion or delay. LOS F indicates a high level of congestion or delay. Table 2 shows the level of service delay ranges for signalized and unsignalized intersections.

Table 2: Intersection Levels of Service Delay Ranges

	Signalized Intersections	Unsignalized Intersections
	Average Control Delay	Average Control Delay
Level of Service	(seconds per vehicle)	(seconds per vehicle) ⁽¹⁾
А	10.0 sec or less	10.0 sec or less
В	10.1-20.0 sec	10.1-15.0 sec
С	20.1-35.0 sec	15.1-25.0 sec
D	35.1-55.0 sec	25.1-35.0 sec
Е	55.1-80.0 sec	35.1-50.0 sec
F	80.1 sec or more	50.1 sec or more

⁽¹⁾ For unsignalized intersections, if V/C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.

LOS values have been included in each figure for each turning movement/approach during the weekday morning and afternoon peak hours for the proposed site-access intersections and off-site intersections in the study area:

- Figure 3: 2022 Existing Traffic, Lane Geometry, Traffic Control, and LOS
- Figure 6: 2022 Existing + Site Traffic, Lane Geometry, Traffic Control, and LOS
- Figure 7: 2042 Background Traffic, Lane Geometry, Traffic Control, and LOS
- Figure 8: 2042 Background + Site Traffic, Lane Geometry, Traffic Control, and LOS

LOS calculations for long-term scenarios were based upon the recommended lane geometries and traffic controls outlined in the figures above.

Shoup Road/New Breed Drive

All movements at this intersection currently operate at and are projected to remain at LOS C or better during both peak hours through the long-term horizon year with the addition of site-generated traffic. No modifications would be required to this intersection.

Meadow Run Circle/New Breed Drive

All movements at this intersection currently operate at and are projected to remain at LOS A during both peak hours through the long-term horizon year with the addition of site-generated traffic. No modifications would be required to this intersection.

ROADWAY IMPROVEMENTS

Auxiliary Turn Lanes

A design speed of 50 mph has been assumed for Shoup Road.

Eastbound Left-Turn Deceleration Lane

According to the El Paso County *Engineering Criteria Manual (ECM)*, exclusive left-turn lanes shall be provided for any access on a Minor Arterial with a projected peak-hour ingress turning volume of 25 vehicles per hour (vph) or greater. The existing eastbound left-turn lane on Shoup Road approaching New Breed Drive is about 810 feet, consisting of a striped 275-foot lane, plus a 285-foot taper (including taper stripe and gap to the start of the turn lane white stripe). The portion of the striping gap closest to the start of the striped lane has sufficient width for the *ECM* standard deceleration plus storage requirement for this left-turn deceleration lane.

Please refer to the attached striping exhibits for details.

As demonstrated in the exhibits, the roadway appears to have been widened for this turn lane such that *ECM*-standard lane and taper dimensions would be met – this has been verified through field

measurements and the striping exhibits. However, the lane was striped in the field with a shortened transition-taper stripe and longer transition-taper "gap" than normal. LSC has prepared striping exhibits to verify this.

The current striping is not problematic as the existing striping is functional as is and does not require restriping for this development. These modifications could be made in the future when the roadway is repaved with a mill and overlay, if surface treatment is done such that Shoup needs restriping/marking or if the existing markings on Shoup Road are refreshed with routine county maintenance.

As such, no modifications would be required to this existing left-turn deceleration lane.

Westbound Right-Turn Deceleration Lane

According to *ECM*, exclusive right-turn lanes shall be provided for any access on a Minor Arterial with a projected peak-hour ingress turning volume of 50 vehicles per hour (vph) or greater. The projected right-turn volume at Shoup/New Breed is **not** expected to exceed the 50-vph minimum right-turn volume thresholds prescribing a turn lane outlined in the *ECM* upon site buildout. As such, a westbound right-turn deceleration lane would **not** be required on Shoup Road approaching New Breed Drive.

Westbound-Right-Turn Acceleration Lane

According to the *ECM*, right-turn acceleration lanes are generally not required on Minor Arterial roadways.

ROADWAY CLASSIFICATIONS

The proposed subdivision roadway is proposed as a Rural Local Road.

COUNTY ROAD IMPROVEMENT FEE PROGRAM

Transportation Impact Fees

Per ECM Appendix B: State what the current applicable Transportation Impact Fees are and what option the developer will be selecting for payment.

This project will be required to participate in the El Paso County Road Improvement Fee Program. The applicant will select the "Opt-out" option (no PID) and would pay the "Full Fee" amount at building permit. The current (2019) fee amount associated with this option is \$3,850 per dwelling unit (subject to change). Based on 7 lots, the total building permit fee for this plat would be \$26,950.

Reimbursable Improvements

The following roadway improvement projects have been identified as being needed by the year 2040 per Map 13 and Table 4 of El Paso County's 2016 MTCP:

- U13 Shoup Road from SH 83 to Black Forest Road (\$15,019,000)
- Existing conditions 2-lane Rural Unimproved County Road
- Future conditions 2-lane Rural Minor Arterial

See the attached *MTCP* maps for reference.

MULTI-MODAL TRANSPORTATION AND TDM OPPORTUNITIES

The following roadway improvement projects have been identified as being needed by the year 2040 per Map 15 and Table 5 of El Paso County's 2016 MTCP:

- M14 Shoup Road from SH 83 to Vollmer Road
 - Bicycle improvements (6.24miles)

No public schools are located within a two-mile radius of the site.

DEVIATIONS

No deviations to *ECM* design criteria are proposed with this subdivision.

FINDINGS AND CONCLUSIONS

- The site is projected to generate about 71 new driveway vehicle-trips on the average weekday.
- During the weekday morning peak hour of adjacent street traffic, 1 vehicle would enter the site while 4 vehicles would exit.
- During the weekday afternoon peak hour of adjacent street traffic, 4 vehicles would enter the site while 3 vehicles would exit.
- All individual approaches and turn lanes at both study-area intersections would operate at LOS C or better during both short-term and long-term peak hours, with or without the addition of site-generated traffic.
- The existing eastbound left-turn deceleration lane would be adequate for this subdivision, based on projected buildout traffic volumes. No additional auxiliary turn lanes would be required. Please refer to the "Auxiliary Turn-Lane Analysis" section for evaluation details.
- The subdivision road is proposed as a Rural Local.
- No deviations are proposed with this submittal.

* * * * *

Please contact me if you have any questions regarding this report.

Respectfully Submitted,

LSC TRANSPORTATION CONSULTANTS, INC.

By: Jeffrey C. Hodsdon, P.E. Principal

JCH/JAB:jas

Enclosures: Table 3

Figures 1-8

Traffic Count Reports Synchro LOS Reports Striping Exhibits 1-4

Table 3

Table 3: Detailed Trip Generation Estimate

	ITE			Trip	Gener	ation F	Rates ²		Total Ext	ternal	Trips G	enera	ted
Code	Description	Value	Units 1	Average	A.	М.	P.	М.	Average	A.	М.	P.	М.
Coue	Description			Weekday	In	Out	In	Out	Weekday	In	Out	In	Out
210	Single-Family (Detached) Housing	7	DU	10.18	0.20	0.56	0.63	0.37	71	1	4	4	3
-	dwelling units, KSF = 1,000 square fe												

² Source: *Trip Generation, 11th Edition (2021)* by the Institute of Transportation Engineers (ITE)

Figures 1-8

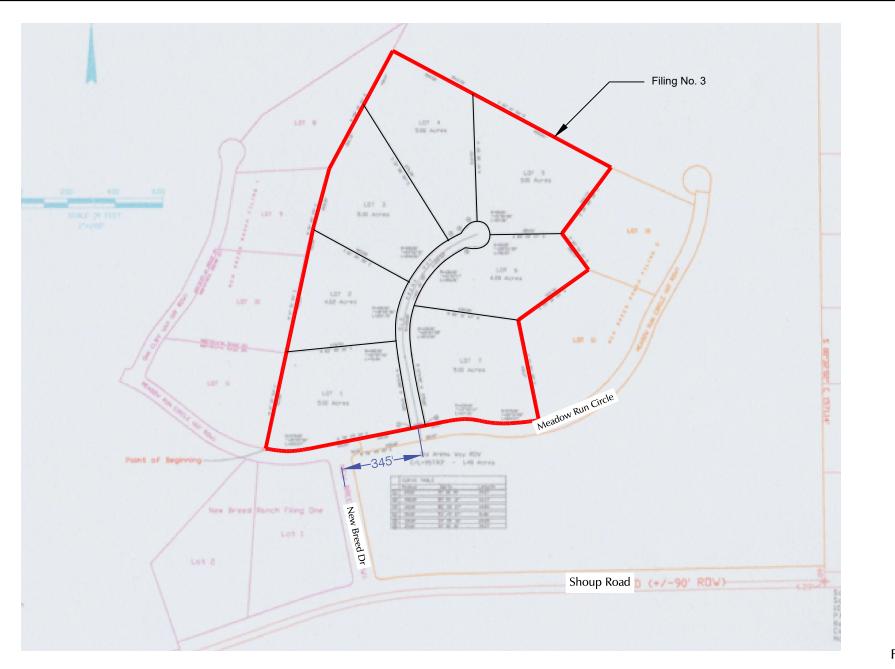
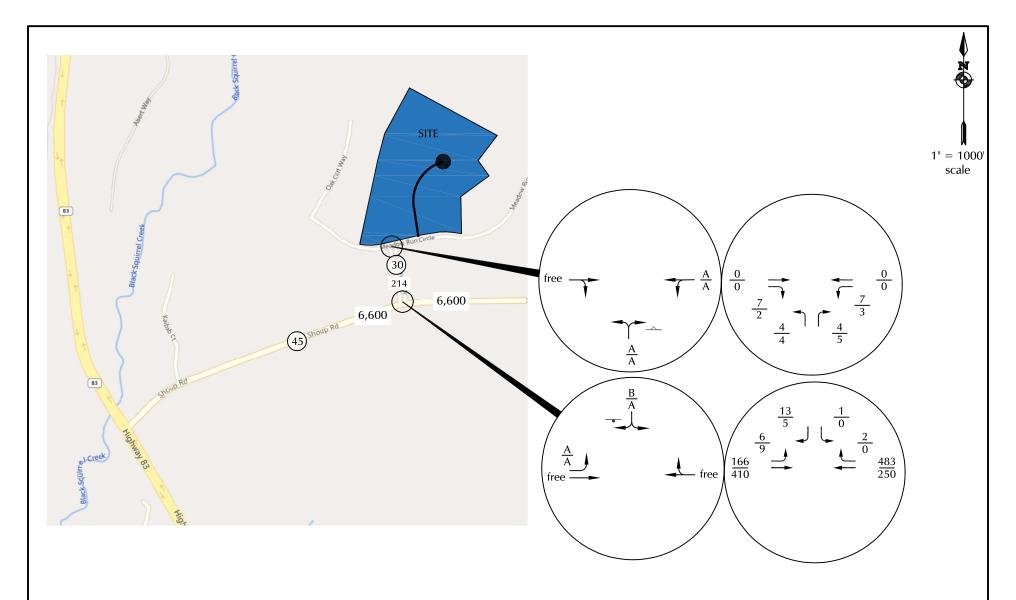



Figure 2

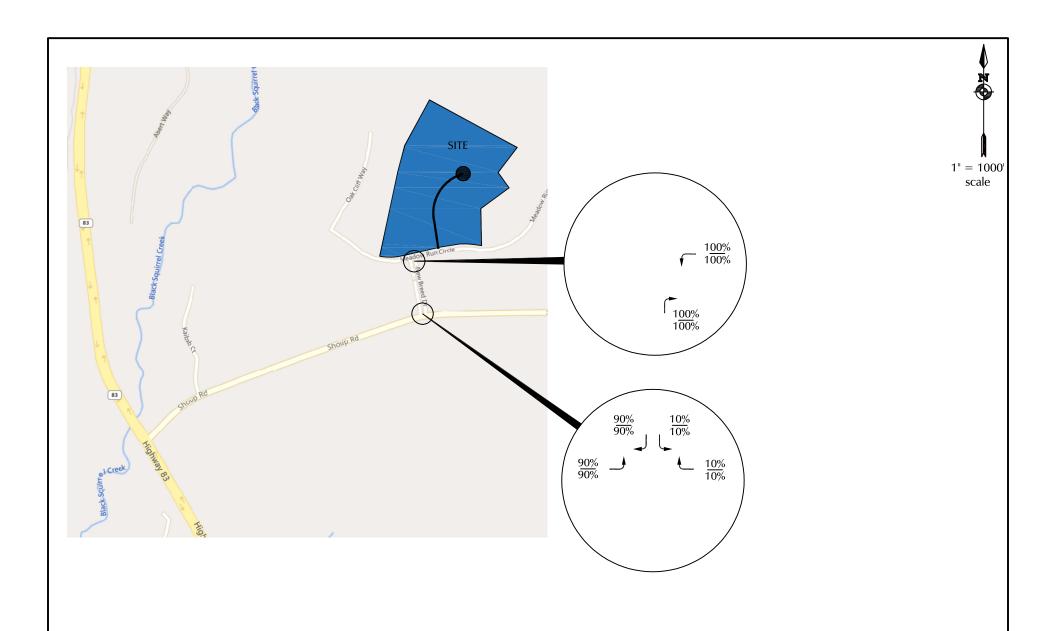
1"=400' scale

Site Plan

 $\frac{X}{X}$ = $\frac{AM \text{ Individual Movement Peak-Hour LOS}}{PM \text{ Individual Movement Peak-Hour LOS}}$

 $\frac{XX}{XX} = \frac{AM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}}{PM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}} \quad \text{Counts by LSC (April 2023)}$

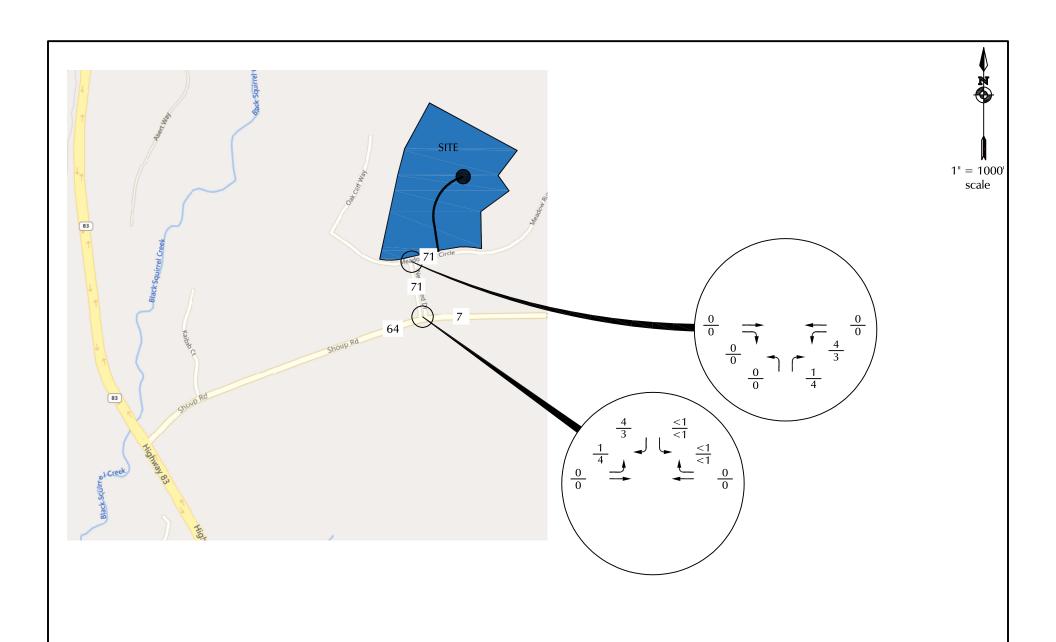
X,XXX = Average Daily Traffic (Vehicles/Day) ADT based on factored peak hours


(#) = Posted Speed Limit

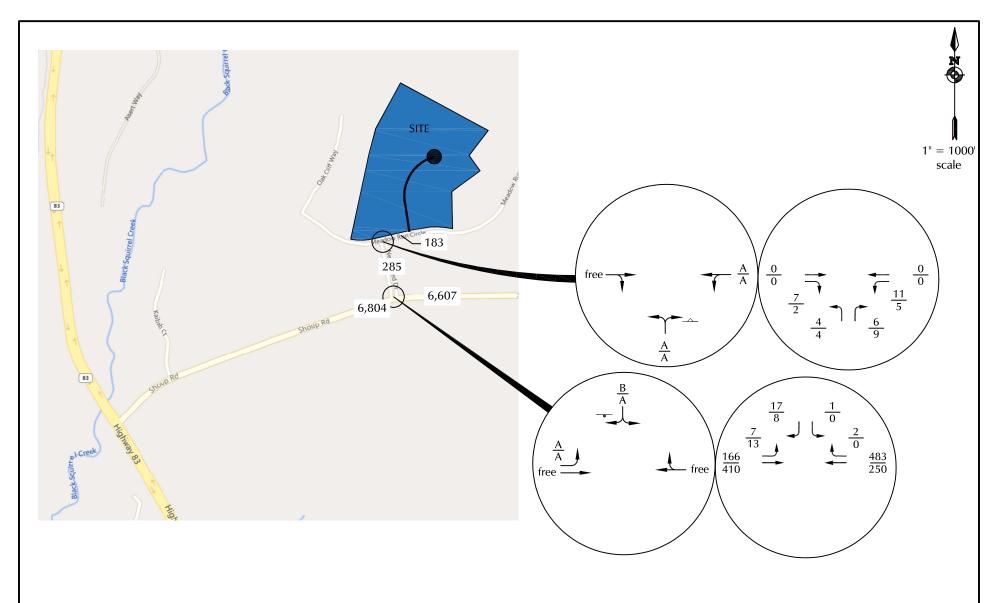
= Yield Sign • = Stop Sign

Figure 3

Existing Traffic, Lane Geometry, Traffic Control, and LOS



\frac{XX}{XX} = \frac{\% \text{ of AM Weekday Peak-Hour Traffic}}{\% \text{ of PM Weekday Peak-Hour Traffic}}


X,XXX = \text{Average Daily Traffic (Vehicles/Day)}

Directional Distribution

 $\frac{XX}{XX}$ = $\frac{AM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}}{PM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}}$ X,XXX = Average Daily Traffic (Vehicles/Day) Site-Generated Traffic

= Yield Sign

= Stop Sign

Figure 6

Existing + Site-Generated Traffic, Lane Geometry, Traffic Control, and LOS

New Breed Ranch (LSC# S224230)

AM Individual Movement Peak-Hour LOS PM Individual Movement Peak-Hour LOS

AM Weekday Peak-Hour Traffic (Veh/Hour)

PM Weekday Peak-Hour Traffic (Veh/Hour)

X,XXX = Average Daily Traffic (Vehicles/Day)

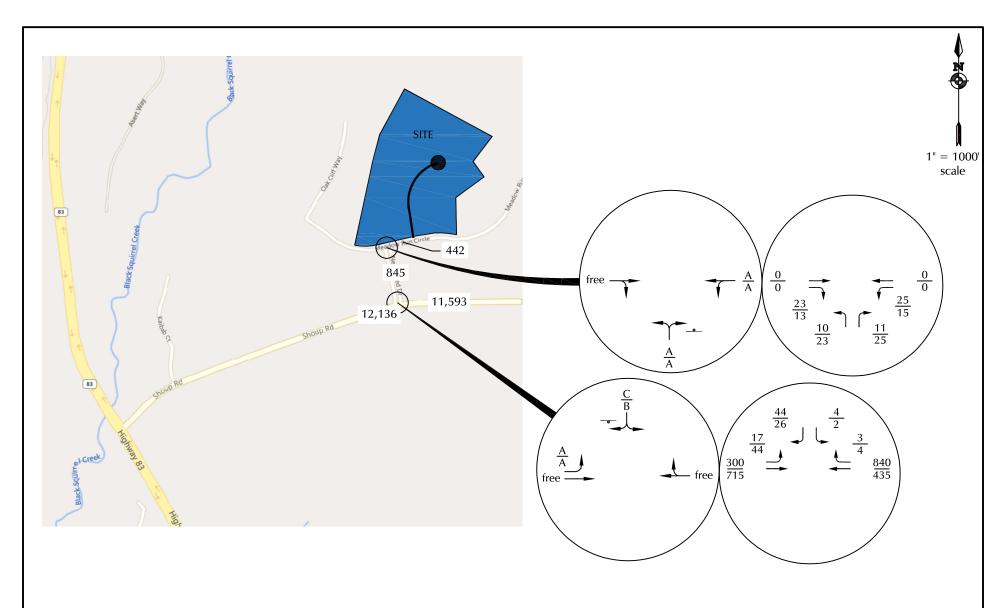


Figure 7

2043 Background, Lane Geometry, Traffic Control, and LOS

TRANSPORTATION CONSIDERANTS INC.

 $\frac{X}{X}$ = $\frac{AM \text{ Individual Movement Peak-Hour LOS}}{PM \text{ Individual Movement Peak-Hour LOS}}$

 $\frac{XX}{XX}$ = $\frac{AM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}}{PM \text{ Weekday Peak-Hour Traffic (Veh/Hour)}}$

X,XXX = Average Daily Traffic (Vehicles/Day)

Stop Sign

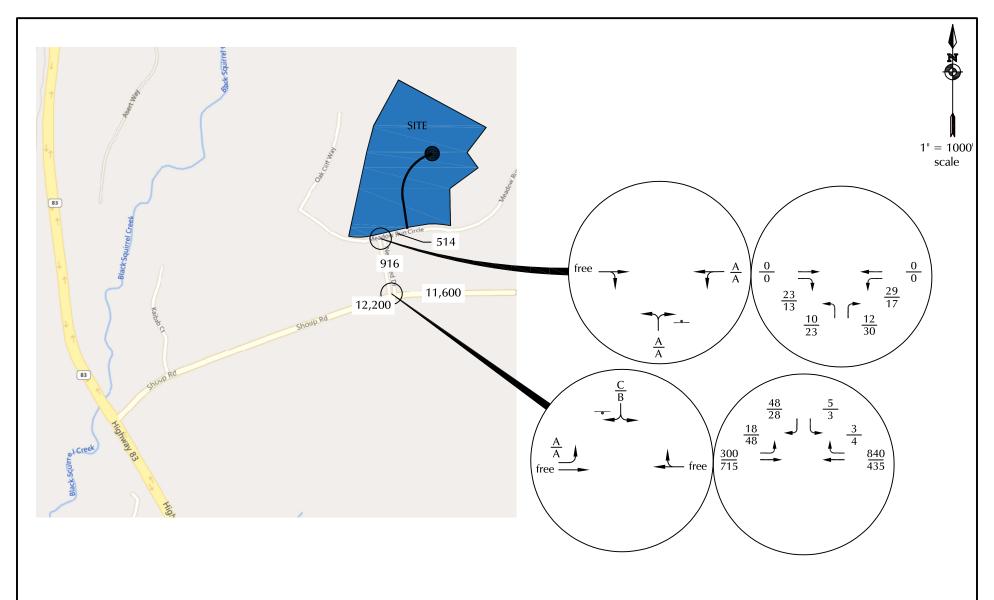


Figure 8

2043 Background + Site-Generated Traffic, Lane Geometry, Traffic Control, and LOS

 $\frac{\text{Traffic (Veh/Hour)}}{\text{Traffic (Veh/Hour)}} = \text{Stop Sign}$

TRANSPORTATION CONSULTANTS, INC.

 $\frac{X}{X} = \frac{AM \text{ Individual Movement Peak-Hour LOS}}{PM \text{ Individual Movement Peak-Hour LOS}}$

\frac{XX}{XX} = \frac{AM Weekday Peak-Hour Traffic (Veh/Hour)}{PM Weekday Peak-Hour Traffic (Veh/Hour)}

X,XXX = Average Daily Traffic (Vehicles/Day)

Traffic Counts

LSC Transportation Consultants, Inc. 2504 E. Pikes Peak Ave, Suite 304

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name: New Breed Dr - Shoup Rd AM

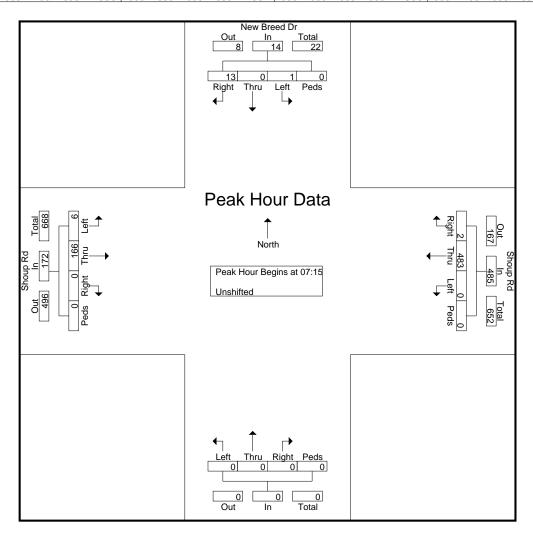
Site Code : S214230 Start Date : 4/26/2022

Page No : 1

Groups Printed- Unshifted

												3111110									1
				ed Dr				houp										houp			
		So	uthbo	und			W	estbo	und			No	rthbo	und			Ea	astbo	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:30	2	0	0	0	2	0	73	0	0	73	0	0	0	0	0	0	11	1	0	12	87
06:45	1	0	0	0	1	0	65	0	0	65	0	0	0	0	0	0	17	0	0	17	83
Total	3	0	0	0	3	0	138	0	0	138	0	0	0	0	0	0	28	1	0	29	170
07:00	2	0	0	0	2	1	99	0	0	100	0	0	0	0	0	0	16	0	0	16	118
07:15	0	0	0	0	0	0	142	0	0	142	0	0	0	0	0	0	20	2	0	22	164
07:30	3	0	0	0	3	1	133	0	0	134	0	0	0	0	0	0	42	0	0	42	179
07:45	9	0	1	0	10	1	127	0	0	128	0	0	0	0	0	0	45	3	0	48	186
Total	14	0	1	0	15	3	501	0	0	504	0	0	0	0	0	0	123	5	0	128	647
08:00	1	0	0	0	1	0	81	0	0	81	0	0	0	0	0	0	59	1	0	60	142
08:15	1	0	1	0	2	1	74	0	0	75	0	0	0	0	0	0	68	1	0	69	146
Grand Total	19	0	2	0	21	4	794	0	0	798	0	0	0	0	0	0	278	8	0	286	1105
Apprch %	90.5	0	9.5	0		0.5	99.5	0	0		0	0	0	0		0	97.2	2.8	0		
Total %	1.7	0	0.2	0	1.9	0.4	71.9	0	0	72.2	0	0	0	0	0	0	25.2	0.7	0	25.9	

LSC Transportation Consultants, Inc. 2504 E. Pikes Peak Ave, Suite 304


2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name: New Breed Dr - Shoup Rd AM

Site Code : S214230 Start Date : 4/26/2022

Page No : 2

		Nev	v Bre	ed Dr			S	houp	Rd								S	houp	Rd		
		So	uthbo	ound			W	estbo	und			No	rthbo	und			Ea	astbo	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Fro	m 6:3	0:00 A	M to 8:	15:00	AM - I	Peak 1	l of 1												
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	7:15:0	MA 00														_
7:15:00 AM	0	0	0	0	0	0	142	0	0	142	0	0	0	0	0	0	20	2	0	22	164
7:30:00 AM	3	0	0	0	3	1	133	0	0	134	0	0	0	0	0	0	42	0	0	42	179
7:45:00 AM	9	0	1	0	10	1	127	0	0	128	0	0	0	0	0	0	45	3	0	48	186
8:00:00 AM	1	0	0	0	1	0	81	0	0	81	0	0	0	0	0	0	59	1	0	60	142
Total Volume	13	0	1	0	14	2	483	0	0	485	0	0	0	0	0	0	166	6	0	172	671
_ % App. Total	92.9	0	7.1	0		0.4	99.6	0	0		0	0	0	0		0	96.5	3.5	0		
PHF	.361	.000	.250	.000	.350	.500	.850	.000	.000	.854	.000	.000	.000	.000	.000	.000	.703	.500	.000	.717	.902

LSC Transportation Consultants, Inc. 2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909

719-633-2868

File Name: New Breed Dr - Shoup Rd AM

Site Code : S214230 Start Date : 4/26/2022

Page No : 3

		New	Bree	a Dr			S	noup	Ka								S	noup	Ka		
		Sou	ıthboı	und			W	estbo	und			No	rthbo	und			E	astbo	und		
Start Time	Right T	hru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour	Analysis	From	າ 6:30	:00 A	M to 8:	15:00 /	4M - Ι	Peak 1	l of 1												
Peak Hour f	or Each	Appr	oach	Begin	s at:																_
	7:30:00 AM			_		7:00:00 AM	ı				6:30:00 AM					7:30:00 AM					
I O mino	2	Λ	Λ	Λ	3	4	QΩ	0	Λ	100	_	Λ	Λ	0	^	0	12	0	0	12	1

	7:30:00 AN	4				7:00:00 Af	И				6:30:00 AN	1				7:30:00 Al	м			
+0 mins.	3	0	0	0	3	1	99	0	0	100	0	0	0	0	0	0	42	0	0	42
+5 mins.	9	0	1	0	10	0	142	0	0	142	0	0	0	0	0	0	45	3	0	48
+10 mins.	1	0	0	0	1	1	133	0	0	134	0	0	0	0	0	0	59	1	0	60
+15 mins.	1	0	1	0	2	1	127	0	0	128	0	0	0	0	0	0	68	1	0	69
Total Volume	14	0	2	0	16	3	501	0	0	504	0	0	0	0	0	0	214	5	0	219
% App. Total	87.5	0	12.5	0		0.6	99.4	0	0		0	0	0	0		0	97.7	2.3	0	
PHF	.389	.000	.500	.000	.400	.750	.882	.000	.000	.887	.000	.000	.000	.000	.000	.000	.787	.417	.000	.793

LSC Transportation Consultants, Inc. 2504 E. Pikes Peak Ave, Suite 304

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name: New Breed Dr - Shoup Rd PM

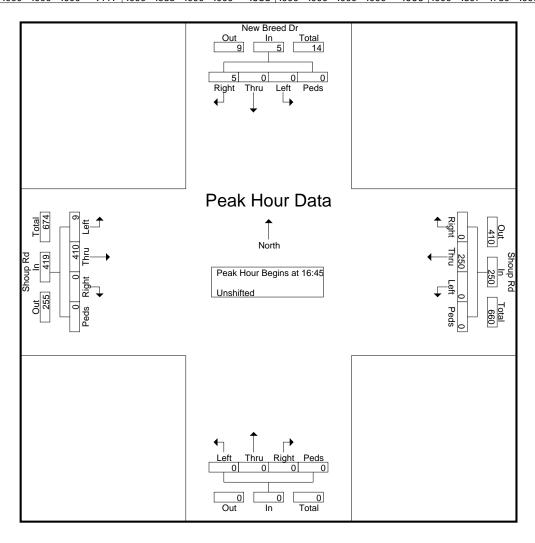
Site Code : S224230 Start Date : 4/26/2022

Page No : 1

Groups Printed- Unshifted

		Nev	v Bre	ed Dr			S	houp									S	houp	Rd]
		So	uthbo	ound				estbo				No	rthbo	und				astbo			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
16:00	1	0	1	0	2	0	60	0	0	60	0	0	0	0	0	0	89	1	0	90	152
16:15	2	0	0	0	2	0	56	0	0	56	0	0	0	0	0	0	106	2	0	108	166
16:30	1	0	1	0	2	1	50	0	0	51	0	0	0	0	0	0	80	0	0	80	133
16:45	1	0	0	0	1	0	67	0	0	67	0	0	0	0	0	0	127	2	0	129	197
Total	5	0	2	0	7	1	233	0	0	234	0	0	0	0	0	0	402	5	0	407	648
17:00	3	0	0	0	3	0	56	0	0	56	0	0	0	0	0	0	98	2	0	100	159
17:15	0	0	0	0	0	0	67	0	0	67	0	0	0	0	0	0	94	2	0	96	163
17:30	1	0	0	0	1	0	60	0	0	60	0	0	0	0	0	0	91	3	0	94	155
17:45	2	0	0	0	2	0	48	0	0	48	0	0	0	0	0	0	77	3	0	80	130
Total	6	0	0	0	6	0	231	0	0	231	0	0	0	0	0	0	360	10	0	370	607
Grand Total	11	0	2	0	13	1	464	0	0	465	0	0	0	0	0	0	762	15	0	777	1255
Apprch %	84.6	0	15.4	0		0.2	99.8	0	0		0	0	0	0		0	98.1	1.9	0		
Total %	0.9	0	0.2	0	1	0.1	37	0	0	37.1	0	0	0	0	0	0	60.7	1.2	0	61.9	

LSC Transportation Consultants, Inc. 2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909


719-633-2868

File Name: New Breed Dr - Shoup Rd PM

Site Code: S224230 Start Date: 4/26/2022

Page No : 2

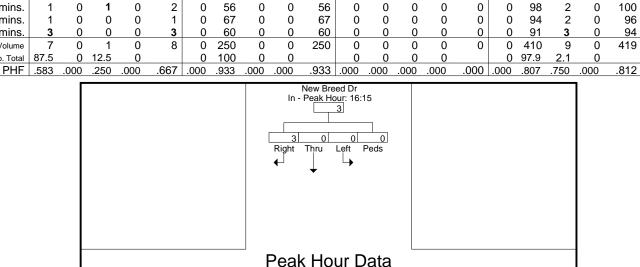
		Nev	v Bree	ed Dr			S	houp	Rd								S	houp	Rd		
		So	uthbo	und			W	estbo	und			No	rthbo	und			E	astbo	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 4:00	0:00 P	M to 5:4	45:00	PM - I	Peak 1	l of 1												
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	4:45:0	00 PM														
4:45:00 PM	1	0	0	0	1	0	67	0	0	67	0	0	0	0	0	0	127	2	0	129	197
5:00:00 PM	3	0	0	0	3	0	56	0	0	56	0	0	0	0	0	0	98	2	0	100	159
5:15:00 PM	0	0	0	0	0	0	67	0	0	67	0	0	0	0	0	0	94	2	0	96	163
5:30:00 PM	1	0	0	0	1	0	60	0	0	60	0	0	0	0	0	0	91	3	0	94	155
Total Volume	5	0	0	0	5	0	250	0	0	250	0	0	0	0	0	0	410	9	0	419	674
% App. Total	100	0	0	0		0	100	0	0		0	0	0	0		0	97.9	2.1	0		
PHF	.417	.000	.000	.000	.417	.000	.933	.000	.000	.933	.000	.000	.000	.000	.000	.000	.807	.750	.000	.812	.855

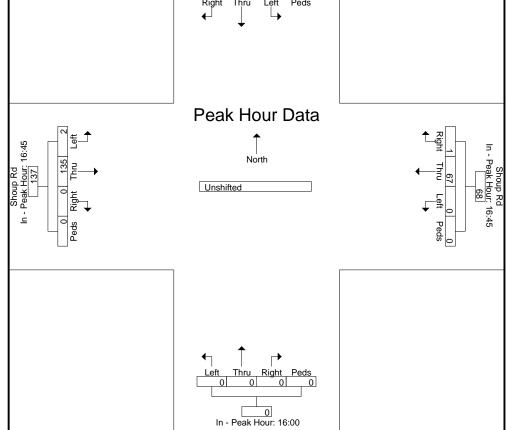
LSC Transportation Consultants, Inc.

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name: New Breed Dr - Shoup Rd PM

Site Code : S224230 Start Date : 4/26/2022


Page No : 3


		Nev	w Bree	ed Dr			S	houp	Rd								S	houp	Rd		
		So	uthbo	und			W	estbo	und			No	rthbo	und			E	astbo	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour	Analys	is Fro	m 4:00	0:00 PI	M to 5:	45:00 F	PM - F	Peak 1	l of 1												
Peak Hour	for Eac	ch App	<u>roach</u>	Begin	s at:																_
	4:15:00 PM	4				4:45:00 PM					4:00:00 PM					4:45:00 PM	И				
+0 mins.	2	0	0	0	2	0	67	0	0	67	0	0	0	0	0	0	127	2	0	129	
+5 mins.	1	0	1	0	2	0	56	0	0	56	0	0	0	0	0	0	98	2	0	100	

+10 mins.

+15 mins.

Total Volume % App. Total

Levels of Service

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	<u> </u>	1		¥	
Traffic Vol, veh/h	6	166	483	2	1	13
Future Vol, veh/h	6	166	483	2	1	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	270	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	87	87	92	92	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	7	191	525	2	1	17
IVIVIII(I IOVV	1	131	525			17
	Major1		Major2		Minor2	
Conflicting Flow All	527	0	-	0	731	526
Stage 1	-	-	-	-	526	-
Stage 2	-	-	-	-	205	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1040	-	-	-	389	552
Stage 1	-	-	-	-	593	-
Stage 2	-	-	-	-	829	-
Platoon blocked, %		_	-	_		
Mov Cap-1 Maneuver	1040	_	_	_	386	552
Mov Cap-2 Maneuver	-	_	_	_	386	-
Stage 1	_	_	_	_	589	_
Stage 2	_	_	_	_	829	_
Olago 2					020	
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		11.9	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SRI n1
Capacity (veh/h)	TC .	1040	LDI	VVDI	יאטועי	536
HCM Lane V/C Ratio		0.007	-	-	-	0.033
		8.5	-	-		11.9
HCM Control Delay (s) HCM Lane LOS		6.5 A	-	-	-	
HCM 95th %tile Q(veh)	١	0	-	-	-	0.1
HOW SOUT /OUIE Q(VEII)		U		_		0.1

Intersection						
Int Delay, s/veh	5.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			4	¥	
Traffic Vol, veh/h	0	7	7	0	4	4
Future Vol, veh/h	0	7	7	0	4	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storag	e,# 0	_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	9	9	0	5	5
IVIVIIIL FIOW	U	9	9	U	3	5
Major/Minor	Major1	ı	Major2	- 1	Minor1	
Conflicting Flow All	0	0	9	0	23	5
Stage 1	-	-	-	-	5	-
Stage 2	-	-	-	-	18	-
Critical Hdwy	-	-	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	-
Follow-up Hdwy	_	_	2.218	_	3.518	
Pot Cap-1 Maneuver	_	_	1611	_	993	1078
Stage 1	_	_	-	_	1018	-
Stage 2	_	_	_	_	1005	_
Platoon blocked, %	_	_		_	1000	
Mov Cap-1 Maneuver		_	1611	_	987	1078
Mov Cap-1 Maneuver		_	1011		987	1070
Stage 1		-	_	_	1018	
•	-	-	-	-		
Stage 2	-	-	-	-	999	-
Approach	EB		WB		NB	
HCM Control Delay, s			7.2		8.5	
HCM LOS	•				A	
					, \	
		151 (14/5-
Minor Lane/Major Mvr	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1030	-		1611	-
HCM Lane V/C Ratio		0.01	-	-	0.006	-
HCM Control Delay (s)	8.5	-	-		0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh	1)	0	-	-	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	CDL	<u></u>	VVD I }	אטוז	SDL W	אמט
Traffic Vol, veh/h	9	T 410	250	0	0	5
Future Vol, veh/h	9	410	250	0	0	5
-	0	410	250	0	0	0
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	270	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	446	272	0	0	6
Major/Minor	Major1	P	Major2	ľ	Minor2	
Conflicting Flow All	272	0	-	0	738	272
Stage 1	-	-	_	-	272	-
Stage 2		_	<u> </u>	_	466	_
Critical Hdwy	4.12	_			6.42	6.22
		-	-	-	5.42	0.22
Critical Hdwy Stg 1	-	_	-			_
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218		-		3.518	
Pot Cap-1 Maneuver	1291	-	-	-	385	767
Stage 1	-	-	-	-	774	-
Stage 2	-	-	-	-	632	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1291	-	-	-	382	767
Mov Cap-2 Maneuver	-	-	-	-	382	-
Stage 1	-	-	-	-	768	-
Stage 2	-	-	-	-	632	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0.2		0		9.7	
HCM LOS					Α	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1291	_	_	-	767
HCM Lane V/C Ratio		0.008	_	_		0.008
HCM Control Delay (s)		7.8	_	_	_	9.7
HCM Lane LOS		Α.	_	_	_	A
						0
HCM 95th %tile Q(veh)	0	_	-	_	

Intersection Int Delay, s/veh						
	7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>	LDI	WUL	4	₩.	ווטוו
Traffic Vol, veh/h	0	2	3	0	4	5
Future Vol, veh/h	0	2	3	0	4	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- Stop	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0, # 0	_	_	0	0	_
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
		3	4			
Mvmt Flow	0	3	4	0	5	6
Major/Minor	Major1	N	Major2		Minor1	
Conflicting Flow All	0	0	3	0	10	2
Stage 1	-	-	-	-	2	-
Stage 2	-	_	_	_	8	-
Critical Hdwy	_	-	4.12	_	6.42	6.22
Critical Hdwy Stg 1	_	_	-	_	5.42	-
Critical Hdwy Stg 2	_	-	_	_	5.42	-
Follow-up Hdwy	_	_	2.218		3.518	
Pot Cap-1 Maneuver	_	-	1619	-	1010	1082
Stage 1	_	_	-	_	1021	-
Stage 2	_	_	_	_	1015	_
Platoon blocked, %	_			_	1013	
Mov Cap-1 Maneuver		-	1619	_	1008	1082
Mov Cap-1 Maneuver		-		-	1008	1002
	-	-	-		1008	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	1013	-
Approach	EB		WB		NB	
HCM Control Delay, s			7.2		8.5	
HCM LOS			· ·-		A	
3 200						
		151 4			14	14/5-
Minor Lane/Major Mvn	nt l	NBLn1	EBT	EBR	WBL	WBT
Canacity (yoh/h)		1048	-		1619	-
Capacity (veh/h)		0.011	-	-	0.002	-
HCM Lane V/C Ratio						
HCM Lane V/C Ratio HCM Control Delay (s))	8.5	-	-	7.2	0
HCM Lane V/C Ratio	,		- -		7.2 A 0	0 A

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WDR		אמט
Lane Configurations	ዃ	100	}	•	Y	47
Traffic Vol, veh/h	7	166	483	2	1	17
Future Vol, veh/h	7	166	483	2	1	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	270	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	87	87	92	92	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	191	525	2	1	22
WWW.	U	101	020	_	!	
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	527	0	-	0	733	526
Stage 1	-	-	-	-	526	-
Stage 2	-	-	-	-	207	-
Critical Hdwy	4.12	-	_	-	6.42	6.22
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1040		_	_	388	552
Stage 1	1040	_	_	_	593	-
	-	_	-			
Stage 2	-	-	-	-	828	-
Platoon blocked, %	10.10	-		-	005	
Mov Cap-1 Maneuver	1040	-	-	-	385	552
Mov Cap-2 Maneuver	-	-	-	-	385	-
Stage 1	-	-	-	-	588	-
Stage 2	-	-	-	-	828	-
· ·						
	-		MA		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		12	
HCM LOS					В	
Minor Lanc/Major Mus	nt .	EBL	EDT	\M/DT	WBR:	CDI n1
Minor Lane/Major Mvn	IL		EBT	WBT		
Capacity (veh/h)		1040	-	-	-	
HCM Lane V/C Ratio		0.008	-	-		0.043
HCM Control Delay (s)		8.5	-	-	-	12
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.1

Intersection						
Int Delay, s/veh	5.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	7.	LDIX	TYDL	₩ <u>₩</u>	Y	אפאר
Traffic Vol, veh/h	0	7	11	4	T 4	6
Future Vol, veh/h	0	7	11	0	4	6
· · · · · · · · · · · · · · · · · · ·		-				
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	9	14	0	5	8
N.A. 1. (N.A.)			4 : 0		N. P. A.	
	/lajor1		Major2		Minor1	
Conflicting Flow All	0	0	9	0	33	5
Stage 1	-	-	-	-	5	-
Stage 2	-	-	-	-	28	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	_	_	1611	-	980	1078
Stage 1	_	_	-	_	1018	-
Stage 2	_	_	_	_	995	_
Platoon blocked, %	_	_		<u>-</u>	000	
Mov Cap-1 Maneuver			1611	_	971	1078
			1011		971	1070
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	1018	-
Stage 2	-	-	-	-	986	-
Approach	EB		WB		NB	
	0		7.3			
HCM LOS	U		1.3		8.5	
HCM LOS					Α	
Minor Lane/Major Mvmt	t N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1032	-		1611	-
HCM Lane V/C Ratio		0.012	_		0.009	-
HCM Control Delay (s)		8.5	<u>-</u>	-	7.3	0
HCM Lane LOS			_			A
		A	-	-	A	
HOW YOUR WIVE W(Ven)		U	-	-	U	_
HCM 95th %tile Q(veh)		0	-	-	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	<u> </u>	₽		W	
Traffic Vol. veh/h	13	410	250	0	0	7
Future Vol, veh/h	13	410	250	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	270	-	_	-	0	-
Veh in Median Storage		0	0	_	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	92	92	92	92	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	14	446	272	0	0	9
IVIVIII I IOW	14	440	212	U	U	9
Major/Minor	Major1	N	/lajor2	<u> </u>	/linor2	
Conflicting Flow All	272	0	-	0	746	272
Stage 1	-	-	-	-	272	-
Stage 2	-	-	-	-	474	-
Critical Hdwy	4.12	-	_	-	6.42	6.22
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1291	_	_	_	381	767
Stage 1	1201	_	_	_	774	-
Stage 2	_	_	_	_	626	_
Platoon blocked, %		_	<u>-</u>	<u>-</u>	020	
Mov Cap-1 Maneuver	1291		_		377	767
Mov Cap-1 Maneuver	1231	_		-	377	-
		-	-		765	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	626	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		9.7	
HCM LOS	0.2				A	
					, ,	
NAII /NA P.A		EDI	CDT	MOT	WDD	2DL 4
Minor Lane/Major Mvm	it	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1291	-	-	-	767
HCM Lane V/C Ratio		0.011	-	-	-	0.012
HCM Control Delay (s)		7.8	-	-	-	9.7
HCM Lane LOS		Α	-	-	-	Α
HCM 95th %tile Q(veh)		0	-	-	-	0

7.3					
EBT	EBR	WBL	WBT	NBL	NBR
0	2	5	0	4	9
0	2	5	0	4	9
	0	0	0	0	0
Free	Free	Free			Stop
		-		-	None
-	-	-	-	0	-
ge,# 0	-	-	0	0	-
0	-	-	0	0	-
78	78	78	78	78	78
			2		2
0	3	6	0	5	12
	_				
	0	3			2
-	-	-	-		-
-	-	-	-		-
-	-	4.12	-		6.22
-	-	-	-	5.42	-
-	-	-	-	5.42	-
-	-		-		
-	-	1619	-	1005	1082
-	-	-	-	1021	-
-	-	-	-	1011	-
-	-		-		
r -	-	1619	-	1001	1082
	-	-	-	1001	-
-	-	_	_		-
-	_	_	_		_
				. 501	
s 0		7.2		8.5	
				Α	
mt I	NRI n1	FRT	FRP	WRI	WBT
					-
	8.5	-			-
c 1	~ ^ ^	-	-	7.2	0
s)				٨	٨
s) h)	0.5 A 0	-	-	A 0	Α -
	EBT 0 0 0 Free - ge, # 0 0 78 2 0 Major1	EBT EBR 0 2 0 2 0 0 2 0 0 0 Free Free - None	EBT EBR WBL 0 2 5 0 2 5 0 0 0 0 Free Free Free - None 0 78 78 78 78 2 2 2 2 0 3 6 Major1 Major2 0 0 3 4.12 4.12 1619 1619 1619	EBT EBR WBL WBT 0 2 5 0 0 0 2 5 0 0 0 0 0 0 Free Free Free Free - None - None 0 0 0 78 78 78 78 78 2 2 2 2 2 0 3 6 0 Major1 Major2 0 0 3 0	EBT EBR WBL WBT NBL O 2 5 0 4 O 2 5 0 4 O 0 0 0 0 0 Free Free Free Free Free Stop - None - None 0 0 O 0 0 O 78 78 78 78 78 78 2 2 2 2 2 2 O 3 6 0 5 Major1 Major2 Minor1 O 0 3 0 14 2 12 - 4.12 - 6.42 12 - 4.12 - 6.42 5.42 2.218 - 3.518 - 1619 - 1005 1619 - 1001 1011 1021 1619 - 1001 1001 1001 1001 1001 1007 EB WB NB S 0 7.2 8.5 A mut NBLn1 EBT EBR WBL mut NBLn1 EBT EBR WBL

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	<u> </u>	1	W Cont	¥	ODIT
Traffic Vol, veh/h	17	300	840	3	4	44
Future Vol, veh/h	17	300	840	3	4	44
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	270	-	-	INOHE -	0	INOITE
Veh in Median Storage		0	0		0	
Grade, %		0	0	-	0	-
Peak Hour Factor	92	92	93	93	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	326	903	3	5	56
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All	906	0	-	0	1267	905
Stage 1	-	-	_	-	905	-
Stage 2	_	_	_	_	362	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	0.22
Critical Hdwy Stg 2			_		5.42	_
Follow-up Hdwy	2.218		_	_	3.518	
Pot Cap-1 Maneuver	751	-	-	-	186	335
	751	_	_	_	395	333
Stage 1	-	-	-			-
Stage 2	-	-	-	-	704	-
Platoon blocked, %	751	-	-	-	100	225
Mov Cap-1 Maneuver	751	-	-	-	182	335
Mov Cap-2 Maneuver	-	-	-	-	182	-
Stage 1	-	-	-	-	386	-
Stage 2	-	-	-	-	704	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		19.3	
•	0.5		U			
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBL _{n1}
Capacity (veh/h)		751	_	_	-	313
HCM Lane V/C Ratio		0.025	_	_	-	0.197
HCM Control Delay (s)		9.9	-	_	_	
HCM Lane LOS		A	_	_	_	С
HCM 95th %tile Q(veh)	0.1	_	_	_	0.7
		9 , 1				J .,

2043 Background AM
HCM 6th TWSC
Synchro 11 Report
JAB

Intersection						
Int Delay, s/veh	5.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$			र्स	¥	
Traffic Vol., veh/h	0	23	25	0	10	11
Future Vol, veh/h	0	23	25	0	10	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	_	None
Storage Length	-	-	-	_	0	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	29	32	0	13	14
Majay/Minay	Maia = 1		Maia#0		Aire and	
	Major1		Major2		Minor1	4.5
Conflicting Flow All	0	0	29	0	79	15
Stage 1	-	-	-	-	15	-
Stage 2	-	-	4.40	-	64	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1584	-	924	1065
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	959	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1584	-	906	1065
Mov Cap-2 Maneuver	-	-	-	-	906	-
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	940	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.3		8.8	
HCM LOS	U		1.5		0.0 A	
I IOWI LOS					А	
Minor Lane/Major Mvn	nt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		983	-	-	1584	-
HCM Lane V/C Ratio		0.027	-	-	0.02	-
HCM Control Delay (s))	8.8	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh	1)	0.1	-	-	0.1	-
)					

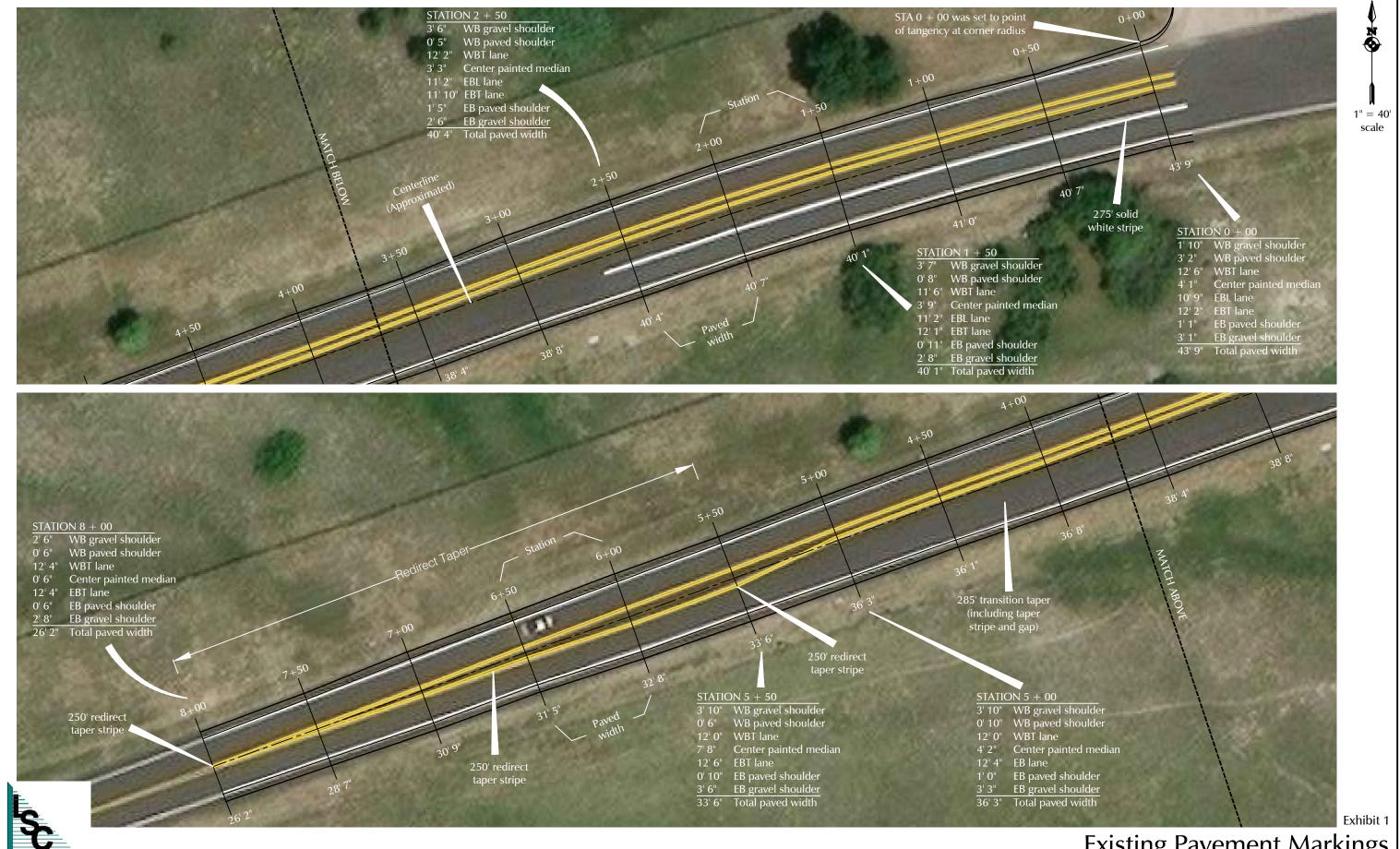
2043 Background AM
HCM 6th TWSC
Synchro 11 Report
JAB

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	<u> </u>	1	W Cont	¥	ODIT
Traffic Vol, veh/h	44	715	435	4	2	26
Future Vol, veh/h	44	715	435	4	2	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	270	-	-	INOHE -	0	INOITE
Veh in Median Storage		0	0	_	0	
Grade, %	5, π - -	0	0	_	0	_
Peak Hour Factor	93	93	92	92	78	78
	2	2	2			2
Heavy Vehicles, %				2	2	
Mvmt Flow	47	769	473	4	3	33
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	477	0	-	0	1338	475
Stage 1	-	-	_	-	475	-
Stage 2	_	_	_	_	863	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	7.12	_	_	_	5.42	-
Critical Hdwy Stg 2	_				5.42	_
Follow-up Hdwy	2.218		_		3.518	
Pot Cap-1 Maneuver	1085			_	169	590
Stage 1	1005	_	_	_	626	330
Stage 2	-	-	-		413	
Platoon blocked, %	-	-			413	-
	1005	-	-	-	100	E00
Mov Cap-1 Maneuver		-	-	-	162	590
Mov Cap-2 Maneuver	-	-	-	-	162	-
Stage 1	-	-	-	-	599	-
Stage 2	-	-	-	-	413	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.8	
HCM LOS	0.5		U			
HOW LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBL _{n1}
Capacity (veh/h)		1085	-	-	-	496
HCM Lane V/C Ratio		0.044	_	-	-	0.072
HCM Control Delay (s))	8.5	_	-	-	
HCM Lane LOS		Α	_	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	0.2
	,					

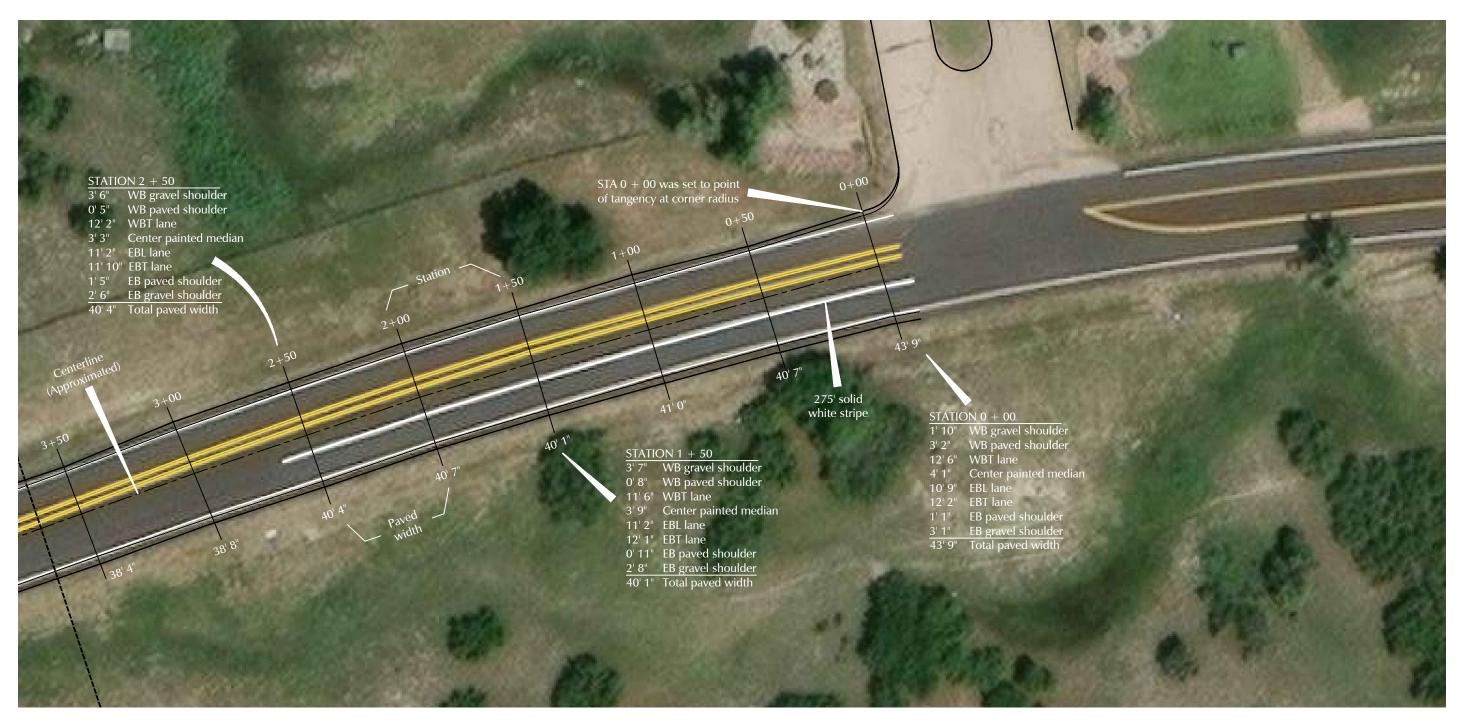
2043 Background PM
HCM 6th TWSC
Synchro 11 Report
JAB

Intersection						
Int Delay, s/veh	7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1€	LDI	VVDL	4	₩.	וטוו
Traffic Vol. veh/h	0	13	15	0	23	25
Future Vol, veh/h	0	13	15	0	23	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		_	_	0	0	_
Grade, %	, # 0	_	_	0	0	_
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	17	19	0	29	32
INIVITIL FIOW	U	17	19	U	29	32
Major/Minor N	/lajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	17	0	47	9
Stage 1	-	_	-	-	9	_
Stage 2	-	-	-	-	38	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	_	_	-	-	5.42	_
Follow-up Hdwy	_	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1600	-	963	1073
Stage 1	-	-	-	-	1014	-
Stage 2	_	-	-	-	984	_
Platoon blocked, %	_	_		_	001	
Mov Cap-1 Maneuver	_	_	1600	_	951	1073
Mov Cap-2 Maneuver	_	_	-	_	951	-
Stage 1	_	_	_	_	1014	_
Stage 2	_	_	_	_	972	_
Olago Z					312	
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.3		8.8	
HCM LOS					Α	
Minor Lane/Major Mvm	t N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	1	1011			1600	
HCM Lane V/C Ratio			-		0.012	-
		0.061	-	-	7.3	-
HCM Lang LOS			-			0
HCM Lane LOS HCM 95th %tile Q(veh)		0.2	-	-	A 0	A -

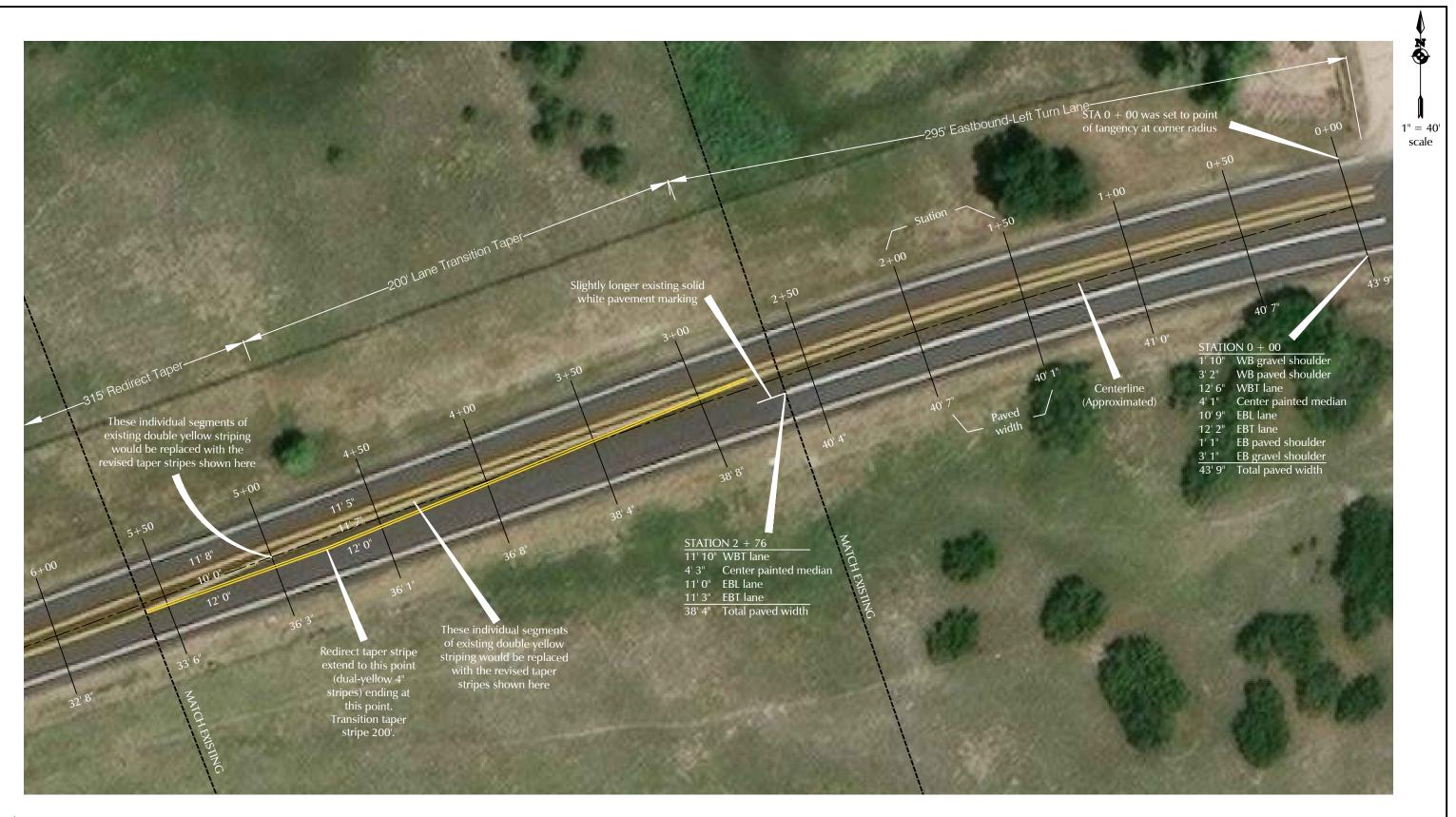
Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	†	1>		¥	
Traffic Vol, veh/h	18	300	840	3	5	48
Future Vol, veh/h	18	300	840	3	5	48
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	270	-	-	-	0	-
Veh in Median Storag		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	93	93	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	326	903	3	6	58
				•		
NA-1- /NA:	N/ · ·		4		4: -	
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	906	0	-		1271	905
Stage 1	-	-	-	-	905	-
Stage 2	-	-	-	-	366	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	751	-	-	-	185	335
Stage 1	-	-	-	-	395	-
Stage 2	-	-	-	-	702	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	180	335
Mov Cap-2 Maneuver		-	-	-	180	-
Stage 1	-	-	-	-	384	-
Stage 2	-	-	-	-	702	-
Annragah	ED		\A/D		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		19.6	
HCM LOS					С	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		751			_	310
HCM Lane V/C Ratio		0.026	-	-	-	0.206
HCM Control Delay (s)	9.9			_	19.6
HCM Lane LOS	/	3.5 A	_	_	_	C
HCM 95th %tile Q(veh	1)	0.1			_	0.8
	1	4.1				5.0


Intersection						
Int Delay, s/veh	5.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDK	VVDL			NDK
Lane Configurations Traffic Vol, veh/h	1	23	29	વ 0	10	12
Future Vol, veh/h	0	23	29	0	10	12
Conflicting Peds, #/hr	0	23	29	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length		-	<u>-</u>	-	0	-
Veh in Median Storage		_	_	0	0	
Grade, %	e, # 0 0	_	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	29	37	0	13	15
IVIVIIIL FIOW	U	29	31	U	13	13
Major/Minor	Major1	1	Major2	1	Minor1	
Conflicting Flow All	0	0	29	0	89	15
Stage 1	-	-	-	-	15	-
Stage 2	-	-	-	-	74	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1584	-	912	1065
Stage 1	-	-	-	-	1008	-
Stage 2	-	-	-	-	949	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1584	-	891	1065
Mov Cap-2 Maneuver	-	-	-	-	891	-
Stage 1	-	_	-	-	1008	-
Stage 2	_	_	_	_	927	_
2.0.30 2					J	
	ED		VA/E		NE	
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.3		8.8	
HCM LOS					Α	
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		978	-		1584	-
HCM Lane V/C Ratio		0.029	_		0.023	_
HCM Control Delay (s		8.8	_	_	7.3	0
HCM Lane LOS		Α	_	_	Α	A
HCM 95th %tile Q(veh)	0.1	_	_	0.1	-
	1	J. 1			5.1	

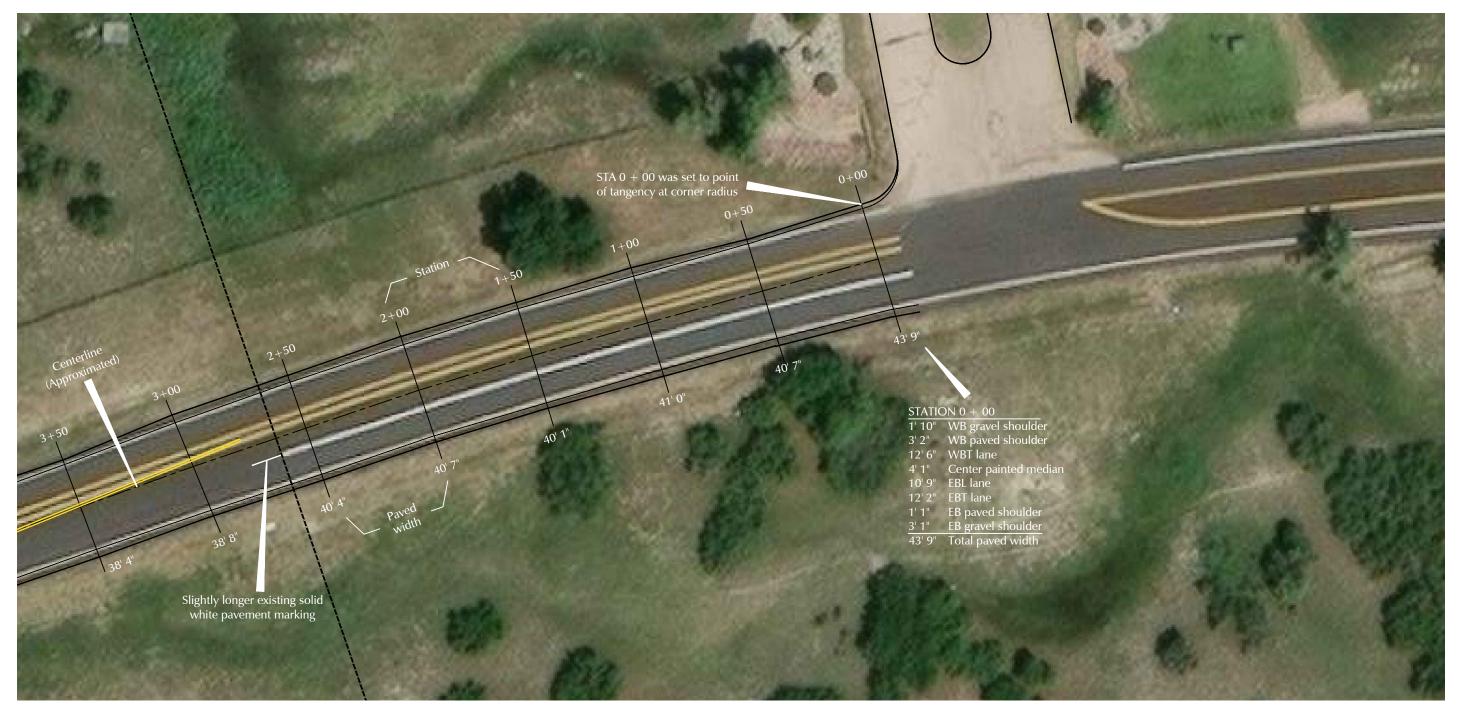
0.7					
FBI	EBT	WBT	WBR	SBI	SBR
			11211		OBIT
			4		28
					28
					0
					Stop
					None
					-
					_
					<u>-</u>
					78
					2
					36
52	111	4/3	4	4	30
Major1	N	Major2		Minor2	
477	0	-	0	1356	475
-	-	-	-		-
-	-	_	-		-
4.12	_	_	_		6.22
	_	_	_		-
			_		_
	_		_		
	_	_			590
	_	_			330
		-			
-	-	-		400	_
4005	_			457	F00
	-				590
		-			-
-	-	-	-		-
-	-	-	-	405	-
FR		WR		SB	
0.5		U			
				D	
nt	EBL	EBT	WBT	WBR :	SBL _{n1}
	1085	-	_	-	466
		_	-	_	0.085
)		_	_		
	A	_	_	_	В
1)	0.2	-	-	_	0.3
	## AB	EBL EBT 48 715 48 715 0 0 Free Free - None 270 e, # - 0 92 92 2 2 2 52 777 Major1 N 477 0 4.12 2.218 1085 1085 1085 EB 0.5	EBL EBT WBT 48 715 435 48 715 435 0 0 0 0 Free Free Free - None 270 e, # - 0 0 92 92 92 2 2 2 2 52 777 473 Major1 Major2 477 0 4.12 2.218 1085 1085 1085 1085	EBL EBT WBT WBR 48 715 435 4 48 715 435 4 0 0 0 0 0 Free Free Free Free Free - None - None 270 - 0 0 - 92 92 92 92 2 2 2 2 2 52 777 473 4 Major1 Major2 1 477 0 - 0 4.12 4.12 2.218 1085	EBL EBT WBT WBR SBL 48 715 435 4 3 48 715 435 4 3 0 0 0 0 0 Free Free Free Stop - None - None - 0 270 - - 0 - 0 e, # 0 0 - 0 - 0 - 0 - 0 - 0 - 0 92 92 92 78 2


Intersection						
Int Delay, s/veh	7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>	LDIN	VVDL	4	W	ווטוו
Traffic Vol., veh/h	0	13	17	0	23	30
Future Vol, veh/h	0	13	17	0	23	30
	0			0	23	
Conflicting Peds, #/hr		0	0			0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	17	22	0	28	36
Major/Minor	Major1	ı	Major2	ı	Minor1	
Conflicting Flow All	0	0	17	0	53	9
Stage 1	-	U	17	-	9	-
•		-	_		44	
Stage 2	-	-	4.40	-		-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1600	-	955	1073
Stage 1	-	-	-	-	1014	-
Stage 2	-	-	-	-	978	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_	-	1600	-	942	1073
Mov Cap-2 Maneuver	_	_	_	_	942	_
Stage 1	_	_	_	_	1014	-
Stage 2	_	_	_	_	964	_
Glage 2					304	
Approach	EB		WB		NB	
HCM Control Delay, s	0		7.3		8.8	
HCM LOS					Α	
N4:		UDL 4	- CDT	EDD	WD	WDT
Minor Lane/Major Mvn	ול ו	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1012	-		1600	-
HCM Lane V/C Ratio		0.063	-	-	0.014	-
HCM Control Delay (s)		8.8	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)	0.2	-	-	0	-

Striping Exhibits 1-4



Existing Pavement Markings
Detail at the Shoup Rd/New Breed Dr Intersection



* Note: Existing striping is functional as-is and does not require re-striping for this development. These modifications could be made in the future when the roadway is repaved with a mill and overlay, if surface treatment is done such that Shoup Road needs re-striping/re-marking or if the existing markings on Shoup Road are refreshed.

Exhibit 3

Recommendations for <u>Future</u>* Pavement Marking Configuration

* Note: Existing striping is functional as-is and does not require re-striping for this development. These modifications could be made in the future when the roadway is repaved with a mill and overlay, if surface treatment is done such that Shoup Road needs re-striping/re-marking or if the existing markings on Shoup Road are refreshed.

Exhibit 4

Recommendations for <u>Future</u>* Pavement Marking Configuration Detail at the Shoup Rd/New Breed Dr Intersection

New Breed Ranch (LSC# S224230)