FINAL DRAINAGE REPORT

for

NEW BREED RANCH FILING THREE

Prepared for:

New Breed Ranch Inc. 12750 Oak Cliff Way Colorado Springs, CO 80908

February 28, 2024 Revised October 18, 2024

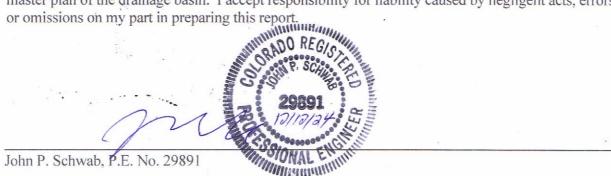
Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 042207 PCD File No.: SF247

NEW BREED RANCH FILING THREE FINAL DRAINAGE REPORT <u>TABLE OF CONTENTS</u>

	DRAINAGE STATEMENT	í
I.	GENERAL LOCATION AND DESCRIPTION 1	-
II.	DRAINAGE BASINS AND SUB-BASINS	;
III.	DRAINAGE DESIGN CRITERIA 4	ŀ
IV.	DRAINAGE PLANNING FOUR STEP PROCESS 4	ŀ
V.	GENERAL DRAINAGE RECOMMENDATIONS	;
VI.	DRAINAGE FACILITY DESIGN)
VII.	EROSION / SEDIMENT CONTROL 11	
VIII.	STORMWATER DETENTION AND WATER QUALITY 11	
IX.	DRAINAGE FEES 12)
X.	SUMMARY 13	;


APPENDICES

APPENDIX A	Soils Information
APPENDIX B	Hydrologic Calculations
APPENDIX C1	Hydraulic Calculations – Ditches & Channels
APPENDIX C2	Hydraulic Calculations - Culverts
APPENDIX D	Water Quality Calculations
APPENDIX E	Site Photographs
APPENDIX F	Figures
	Figures Floodplain Map
	e
	Floodplain Map
	Floodplain Map "New Breed Ranch Filings 1 & 2 Sub-Basins / Design Points"
Figure FIRM	Floodplain Map "New Breed Ranch Filings 1 & 2 Sub-Basins / Design Points" (by Professional Consultants Inc.)
Figure FIRM Sheet EX1	Floodplain Map "New Breed Ranch Filings 1 & 2 Sub-Basins / Design Points" (by Professional Consultants Inc.) Existing Conditions Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Printed Name: James Scott, President New Breed Ranch Inc. 12750 Oak Cliff Way, Colorado Springs, CO.80908

// //CC 2A Date

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E. County Engineer / ECM Administrator

Date

Conditions:

I. GENERAL LOCATION AND DESCRIPTION

A. Background

New Breed Subdivision Filing Three is a proposed 7-lot rural residential subdivision filing located in the Black Forest area of northern El Paso County, Colorado. This filing is the third phase of the New Breed Subdivision PUD and Preliminary Plan, approved by El Paso County in 2000. Previous development of New Breed Ranch included development of Filing No. 1, recorded in 2002, consisting of 11 lots on the west side of the overall subdivision. Filing No. 2 was recorded in 2008, consisting of 11 lots on 53.9-acres in the southeast area of the overall subdivision. The proposed Filing Three will create seven residential lots on 34.7-acres of the unplatted 279.1-acre balance of the New Breed Ranch, Inc. parcel (El Paso County Assessor's Number 62100-00-002).

The property is located on the north side of Meadow Run Circle, generally northeast of the intersection of Shoup Road and New Breed Ranch Road. The proposed lots will be served by extension of Old Arena Way as a new public road extending north from Meadow Run Circle. The site disturbance for the proposed subdivision improvements is anticipated to be approximately 3.9 acres. The property is zoned PUD / RR-5, and the proposed development is entirely consistent with the existing zoning of the parcel.

B. Scope

This report will provide a summary of site drainage issues impacting the proposed rural residential subdivision. The report will analyze upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the El Paso County Drainage Criteria Manual and the El Paso County Engineering Criteria Manual. The report is intended to fulfill the requirements for a "Final Drainage Report" in support of the Final Plat process for this property.

C. Site Location and Description

New Breed Ranch Filing Three is located in the South Half of Section 10, Township 12 South, Range 66 West of the 6th Principal Meridian, El Paso County, Colorado.

The 34.7-acre property encompassing the proposed "Filing Three" is a vacant area located northeast of the existing New Breed Ranch Filing One, and northwest of the existing New Breed Ranch Filing Two. The property is zoned PUD (planned unit development) / RR-5 (rural residential), allowing for a minimum lot size of 3-acres, and an overall average of 5-acre lot sizes within the PUD. The proposed subdivision filing is fully in conformance with the existing zoning of the site, and the previously approved New Breed Ranch Preliminary Plan.

Access to the new lots will be provided by a new public road (Old Arena Way) extending north from Meadow Run Circle.

The project site is bordered by rural residential properties on all sides. The west and south boundaries of the property adjoin previously platted lots of New Breed Ranch Filing One, and the east boundary of the property adjoins previously platted lots within new Breed Ranch Filing Two. The north boundary of this filing adjoins the unplatted area of the remaining New Breed Ranch, Inc. parcel, which is planned for future rural residential lots as part of the previously approved New Breed Ranch Preliminary Plan. Meadow Run Circle is an improved, asphalt-paved public street along the south boundary of this filing.

The site is located in the Black Squirrel Creek Drainage Basin, and surface drainage from this site generally sheet flows southwesterly to existing drainage ditches and swales, ultimately flowing to the Black Squirrel Creek Channel downstream of this site. The terrain is gently rolling with average grades ranging from 2 to 8 percent. Ground elevations within the site range from approximately 6,980 feet above mean sea level at the southwest corner of the property to approximately 7,100 along the northeast filing boundary.

D. General Soil Conditions

According to the Custom Soil Resource Report for this site (see details in Appendix A) provided by the Natural Resources Conservation Service (NRCS), on-site soils are predominately comprised of the following:

- Type 41: Kettle gravelly loamy sand
- Type 69: Peyton-Pring complex
- Type 93: Tomah-Crowfoot complex

These soils are all classified as hydrologic soils group "B" (moderate infiltration rate).

E. References

City of Colorado Springs & El Paso County "Drainage Criteria Manual," revised October 31, 2018.

City of Colorado Springs "Drainage Criteria Manual, Volume 1," revised January, 2021.

City of Colorado Springs "Drainage Criteria Manual, Volume 2," revised December, 2020.

El Paso County "Engineering Criteria Manual," revised July 18, 2023.

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0295G, December 7, 2018.

Mile High Flood District, "Urban Storm Drainage Criteria Manual, Volume 1," revised August, 2018.

Mile High Flood District, "Urban Storm Drainage Criteria Manual, Volume 2," revised September, 2017.

Mile High Flood District, "Urban Storm Drainage Criteria Manual, Volume 3," revised January, 2021.

Professional Consultants Incorporated, "Final Drainage Report, New Breed Ranch Subdivision Filings 1 & 2," February 2002 (approved by El Paso County 3/20/02).

URS Consultants, "Black Squirrel Creek Drainage Basin Planning Study," January, 1989.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The proposed subdivision property lies entirely within the Black Squirrel Creek Drainage Basin (FOM 03600) as classified by El Paso County. Drainage from this site flows southwesterly to existing drainage ditches and natural drainage swales flowing to the Black Squirrel Creek drainage channel, which ultimately flows into Monument Creek.

URS Consultants prepared the "Black Squirrel Creek Drainage Basin Planning Study (DBPS)" in January, 1989.

B. Floodplain Impacts

This site is not impacted by any FEMA 100-year floodplain limits. The delineated floodplain limits in vicinity of the site are shown in FEMA Flood Insurance Rate Map (FIRM) Number 08041C0295G, dated December 7, 2018 (see FIRMette exhibit in Appendix E).

C. Sub-Basin Description

The Filing Three property is located within parts of Basins I-3, I-8, and I-9 as delineated in the "Final Drainage Report, New Breed Ranch Subdivision Filings 1 & 2" by Professional Consultants Incorporated (PCI), dated February 2002 (see "New Breed Ranch Filings 1 & 2 Sub-Basins / Design Points…" Exhibit in Appendix E). The previously approved subdivision drainage report identifies developed flows from these basins as flowing southwesterly to the existing downstream drainage swales.

The existing drainage basins lying in and around the proposed development are depicted on Figure EX1 (Appendix E). The New Breed Ranch Filing Three property lies within parts of Basins I-3, I-8, and I-9 as delineated in the PCI drainage report.

Developed runoff in this subdivision will generally continue to follow historic paths. The developed drainage basin areas within New Breed Ranch Filing Three have been labeled as Basins I-3.1, I-8.2, I-9.1, and I-9.2 (Figure D1, Appendix E) for general consistency with the basin designations in the previously approved subdivision drainage report.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

Drainage planning for this subdivision was previously studied in the February, 2002 "Final Drainage Report, New Breed Ranch Subdivision Filings 1 & 2" by Professional Consultants Incorporated (approved by El Paso County 3/20/02).

B. Hydrologic Criteria

The tributary drainage basins impacting this site are all less than 100 acres, so Rational Method Hydrology procedures were utilized for calculation of peak flows. Rational Method hydrologic calculations were based on the following assumptions:

	0 1		
٠	Design storm (minor)	5-year	
٠	Design storm (major)	100-year	
٠	Rainfall Intensities	El Paso Cour	nty I-D-F Curve
٠	Hydrologic soil type	В	
		<u>C5</u>	<u>C100</u>
•	Runoff Coefficients - undeveloped:		
	Existing meadow / forest areas	0.08	0.35
٠	Runoff Coefficients - developed:		
	Proposed residential areas (5-acre lots)	0.137	0.393
	(4-ac min. lot size, with open space the	racts;	
	equivalent overall density of 5-ac lot	sizes)	

Hydrologic calculations are enclosed in Appendix B, and peak design flows are identified on the drainage plan drawings.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls. As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Minimize Impacts: The proposed rural residential subdivision development (overall density of 5-acre lot sizes) provides for inherently minimal drainage impacts based on the limited impervious areas associated with rural residential development.

- Minimize Directly Connected Impervious Areas (MDCIA): The rural residential development will have roadside ditches along all roads, providing for impervious areas to drain across pervious areas. Based on the roadside ditches throughout the subdivision, the subdivision is classified as MDCIA Level One.
- Grass Swales: The proposed rural residential roads will have grass-lined roadside ditches to encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- There are no major drainageways within the site. Vegetated buffer strips will be maintained between developed areas of the site and downstream drainage channels.
- Proper erosion control measures will be implemented along the roadside ditches and grass-lined drainage channels to provide stabilized drainageways within the site.
- Drainage basin fees will be paid at the time of recording of the subdivision plat, and these fees provide the applicable cost contribution towards regional drainage improvements.

Step 3: Provide Water Quality Capture Volume (WQCV)

- The proposed subdivision consists of rural residential lots (>2.5-acre minimum lot sizes), so the single family lots are excluded from water quality requirements per ECM Section I.7.1.B.5.
- Water quality mitigation for the public roadway improvements (Old Arena Way) will be provided by construction of a proposed Rain Garden as a Permanent Control Measure (PCM).

Step 4: Consider Need for Industrial and Commercial BMPs

• No industrial or commercial land uses are proposed within this rural residential subdivision.

V. GENERAL DRAINAGE RECOMMENDATIONS

The developed drainage plan for the site is to provide and maintain positive drainage away from structures and conform to the established drainage patterns for the overall site. JPS Engineering recommends that positive drainage be established and maintained away from all structures within the site in conformance with applicable building codes and geotechnical engineering recommendations.

Site grading and drainage improvements performed as a part of subdivision infrastructure development will include public road improvements and limited overlot grading as depicted on the subdivision construction drawings. Individual lot grading is the sole responsibility of the individual builders and property owners. Final grading of each home site should establish proper protective slopes and positive drainage in accordance with HUD guidelines and building codes. In general, main floor elevations for each home should be established a minimum of 2 feet above the top of curb of the adjoining street.

In general, we recommend a minimum of 6 inches clearance from the top of concrete foundation walls to adjacent finished site grades. Positive drainage slopes should be maintained away from all structures, with a minimum recommended slope of 5 percent for the first 10 feet away from buildings in landscaped areas, a minimum recommended slope of 2 percent for the first 10 feet away from buildings in paved areas, and a minimum slope of 1 percent for paved areas beyond buildings.

VI. DRAINAGE FACILITY DESIGN

A. General Concept

Development of the proposed subdivision will include site grading and road improvements serving seven new rural residential lots, resulting in additional impervious areas across the site. The general concept for management of developed storm runoff is for individual builders to grade the home sites to provide positive drainage away from the building pads, and divert runoff to the proposed roadside ditches and existing grass-lined swales running through the property, following historic drainage patterns. A new rain garden will be constructed to mitigate water quality impacts from the public roadway improvements.

B. Specific Details

1. Existing Drainage Conditions

Existing drainage conditions are depicted in Figure EX1 (Appendix E). The Filing Three property is currently undeveloped, and there are no existing drainage facilities within the site. There are no existing irrigation facilities, major utilities, or significant encumbrances impacting the site.

Design Point K

The west side of the New Breed Ranch Filing Three property lies within Basin I-3 (38.7acres), which encompasses the area between an existing ridge on the west side of the proposed Old Arena Way and the existing Oak Cliff Way further to the west. Basin I-3 drains southwesterly to an existing 36" CMP culvert crossing Meadow Run Circle on the east side of Oak Cliff Way. Historic peak flows at Design Point K are calculated as $Q_5 = 6.5$ cfs and $Q_{100} = 48.0$ cfs. Existing peak flows at Design Point K are calculated as $Q_5 = 14.7$ cfs and $Q_{100} = 77.2$ cfs.

Design Point P

The east side of the New Breed Ranch Filing Three property lies within Basin I-8 (39.8-acres), which encompasses the area between the proposed Old Arena Way and the northeasterly extension of Meadow Run Circle. Basin I-8 receives off-site drainage from upstream Basin I-1 (72.7-acres), which extends northeasterly from Meadow Run Circle to a ridge within the

adjoining Bridle Bit Subdivision to the east of New Breed Ranch. Runoff from Basins I-1 flows southwesterly to an existing triple 24" CMP culvert crossing Meadow Run Circle, draining into Basin I-8. The combined flows from Basins I-1 and I-8 drain southwesterly to an existing 48" CMP culvert crossing Meadow Run Circle on the east side of the proposed Old Arena Way. Historic peak flows at Design Point P are calculated as $Q_5 = 14.3$ cfs and $Q_{100} = 104.9$ cfs. Existing conditions peak flows at Design Point P are calculated as $Q_5 = 21.4$ cfs and $Q_{100} = 109.9$ cfs.

Design Point Q

The drainage area between the west side of Old Arena Way and the existing ridge to the west has been delineated as Basin I-9 (12.4-acres), which flows southwesterly to the existing ditch along the north side of Meadow Run Circle, draining to an existing 30" CMP culvert crossing the road. Historic peak flows at Design Point Q are calculated as $Q_5 = 2.1$ cfs and $Q_{100} = 15.8$ cfs. Existing conditions peak flows at Design Point Q are calculated as $Q_5 = 5.0$ cfs and $Q_{100} = 36.9$ cfs.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown on the Developed Drainage Plan (Figure D1, Appendix E).

Design Point K

The westerly edge of the New Breed Ranch Filing Three property has been delineated as Basin I-3.1 (9.9-acres), which sheet flows southwesterly to the west boundary of Filing Three. Developed peak flows from Basin I-3.1 are calculated as $Q_5 = 4.6$ cfs and $Q_{100} = 22.1$ cfs. Sub-Basin I-3.1 contributes to Basin I-3 which drains southwesterly to the existing 36" CMP culvert crossing Meadow Run Circle on the east side of Oak Cliff Way. Developed peak flows at Design Point K are calculated as $Q_5 = 16.5$ cfs and $Q_{100} = 79.4$ cfs (minor 100-year flow increase of 2.2 cfs compared to existing conditions).

Basin I-3.1 is excluded from permanent water quality requirements based on ECM Appendix I.7.1.B.5, which is the large lot exclusion.

Design Point P

The easterly edge of the New Breed Ranch Filing Three property has been delineated as a part of Basin I-8.3 (6.8-acres), which flows southwesterly to the existing 48" CMP culvert crossing Meadow Run Circle on the east side of the proposed Old Arena Way. The on-site developed flows from Basin I-8.3 are calculated as $Q_5 = 4.3$ cfs and $Q_{100} = 20.8$ cfs. The off-site areas to the north and northeast have been delineated as Basin I-8.1 (11.0-acres) and I-8.2 (12.8-acres).

Drainage from upstream Basin I-1 will continue to combine with Basins I-8.1-I-8.3 at Design Point P, with developed peak flows calculated as $Q_5 = 23.3$ cfs and $Q_{100} = 112.2$ cfs (minor 100-year flow increase of 2.3 cfs compared to existing conditions).

Basin I-8.3 is excluded from permanent water quality requirements based on ECM Appendix I.7.1.B.5, which is the large lot exclusion.

As detailed in Appendix C, the existing "Culvert P" has adequate capacity to convey the developed flows at DP-P, and the existing downstream drainage outfall is a stable, grass-lined channel (see photographs in Appendix E).

Design Point Q

The developed area along the east side of the proposed Old Arena Way has been delineated as Sub-Basin I-8.4 (9.0-acres), which drains into the roadside ditch along the east side of Old Arena Way, flowing south to the proposed Culvert I-8.4. Developed peak flows at Design Point I-8.4 are calculated as $Q_5 = 4.3$ cfs and $Q_{100} = 20.8$ cfs. Proposed Public Culvert I-8.4 (24" RCP) will convey the flow from Design Point I-8.4 westerly across Old Arena Way, draining into the proposed Private Rain Garden I-9.1 at the northwest corner of Old Arena Way and Meadow Run Circle.

The developed area along the west side of the proposed Old Arena Way has been delineated as Sub-Basin I-9.1 (4.9-acres), which drains into the roadside ditch along the west side of Old Arena Way, flowing south into the proposed Rain Garden I-9.1. Developed peak flows from Basin I-9.1 are calculated as $Q_5 = 2.2$ cfs and $Q_{100} = 10.8$ cfs. Flows from Basins I-8.2 and I-9.1 combine at Design Point I-9.1a, with developed peak flows calculated as $Q_5 = 6.3$ cfs and $Q_{100} = 30.6$ cfs.

Rain Garden I-9.1 will provide stormwater quality mitigation for the new roadway improvements within Basins I-8.4 and I-9.1. The underdrain flows and overflows from Rain Garden I-9.1 will discharge into the existing grass-lined roadside ditch along the north side of Meadow Run Circle, which provides a stable and adequate outfall for the developed drainage from this subdivision filing. As detailed in Appendix C, hydraulic calculations have confirmed that the existing grass-lined roadside Ditch I-9.2 has adequate capacity to convey the developed flow from DP-I-9.1a (discharge from Rain Garden) in stable condition.

The southwest corner of the New Breed Ranch Filing Three property has been delineated as a part of Basin I-9.2 (7.5-acres), which sheet flows southwesterly the existing ditch along the north side of Meadow Run Circle. Developed peak flows from Basin I-9.2 are calculated as $Q_5 = 3.5$ cfs and $Q_{100} = 16.7$ cfs.

Basin I-9.2 is excluded from permanent water quality requirements based on ECM Appendix I.7.1.B.5, which is the large lot exclusion.

Drainage from Basins I-8.4, I-9.1, and I-9.2 will drain to the existing 30" CMP culvert crossing at the low point in Meadow Run Circle. Developed peak flows at Design Point Q are calculated as $Q_5 = 8.7$ cfs and $Q_{100} = 42.1$ cfs (minor 100-year flow increase of 5.2 cfs compared to existing conditions). As detailed in Appendix C, the existing "Culvert Q" has adequate capacity to convey the developed flows at DP-Q, and the existing downstream drainage outfall is a stable, grass-lined channel (see photographs in Appendix E).

Comparison to Previously Approved Subdivision Drainage Report

The combined developed peak flows from Basins I-1, I-3, I-8, and I-9 are calculated as $Q_5 = 40.1$ cfs and $Q_{100} = 192.8$ cfs. The previously approved subdivision drainage report by PCI identified the total combined flows from these basins as $Q_{100} = 217.1$ cfs. As such, the calculated developed flows are <u>below</u> the previously estimated flows from this part of the subdivision and consistent with the established drainage planning for this subdivision.

Recognizing the rural residential nature of the proposed subdivision (5-acre average lot sizes), the developed flows will have no significant impact on downstream facilities, as established in the previously approved 2002 subdivision drainage report. Downstream areas consist of rural residential lots in previously developed filings of the New Breed Ranch Subdivision, which have been planned to accept developed flows from this filing. The proposed Filing Three is fully consistent with the previously approved New Breed Ranch PUD.

C. On-Site Drainage Facility Design

Developed sub-basins and proposed drainage improvements are depicted on the enclosed Drainage Plan (Sheet D1). In accordance with El Paso County standards, new roadways will be graded with a minimum longitudinal slope of 1.0 percent. On-site drainage facilities will consist of roadside ditches, grass-lined channels, and culverts.

Hydraulic design calculations for sizing of on-site drainage facilities are enclosed in Appendix C and design criteria are summarized as follows:

1. Culverts

The road system will be graded to convey surface drainage in roadside ditches to low points along the road profile, where cross-culverts will convey developed flows into grass-lined channels following historic drainage paths. Culvert pipes have been specified as reinforced concrete pipe (RCP) with a minimum diameter of 18-inches (Proposed Culvert I-8.4 has been designed as a 24" RCP). Culvert sizes have been identified based on a maximum headwater-to-depth ratio (HW/D) of 1.0 for the minor (5-year) design storm. Final culvert design has been performed utilizing the FHWA HY-8 software package to perform a detailed analysis of inlet and outlet control conditions, meeting El Paso County criteria for allowable overtopping. Culvert design parameters are tabulated in Appendix C2.

Flared end sections have been specified for culvert inlets and outlets, and riprap aprons will be provided at all culvert outlets. The on-site soils are classified as Hydrologic Soils Group B (moderate hazard of erosion). Based on engineering judgement given the site conditions, cutoff walls are not necessary for the culvert inlets and outlets.

The existing culverts downstream of this filing have been evaluated to confirm that the existing culverts have adequate capacity. According to the hydraulic calculations in Appendix C2, the existing culverts have sufficient capacity to carry the total calculated flows, including developed flows from Filing Three.

2. **Open Channels**

The existing and proposed drainage ditches and channels have been evaluated utilizing Manning's equation for open channel flow, assuming a friction factor ("n") of 0.030 for dryland grass channels. Maximum allowable velocities have been evaluated based on El Paso County drainage criteria, generally allowing for a maximum 100-year velocity of 5 feet per second. The proposed channels will be seeded with native grasses for erosion control. Erosion control blanket / turf reinforcement mat linings have been specified where required along the roadside ditches based on erosive velocities. Detailed channel hydraulic calculations are enclosed in Appendix C1.

A proposed 30-foot wide drainage easement has been dedicated along the east side of Lot 5 for the existing grass-lined Channel I-8.2, and a proposed 50-foot wide drainage easement has been dedicated along the east side of Lots 6-7 for the existing grass-lined Channel I-8.3, as shown on the enclosed Developed Drainage Plan (Sh. D1, Appendix F).

D. Analysis of Existing and Proposed Downstream Facilities

The proposed subdivision area will drain southwesterly to existing ditches and natural drainage swales flowing to the Black Squirrel Creek Drainage Basin. Development of this property as a rural residential subdivision will have no significant impact on downstream drainage facilities.

There is no evidence of erosive conditions at the outfall points, and the existing downstream grasslined drainage ditches and channels provide a hydrologically and hydraulically adequate drainage outfall system.

E. Anticipated Drainage Problems and Solutions

The drainage plan for this subdivision consists of maintaining positive drainage away from home sites and conveying drainage through the site in general conformance with historic drainage patterns. The primary drainage problems anticipated within this type of development consist of maintenance of proper drainage patterns and erosion control. Care will need to be taken to implement proper erosion control measures associated with the proposed driveways, home sites, and drainage swales. Proposed drainage facilities outside the public right-of-way will be owned and maintained by the individual lot owners unless otherwise noted.

VII. EROSION CONTROL / SEDIMENT CONTROL

Contractors and Owners will need to implement and maintain proper control measures (CM's) for erosion and sediment control during and after construction. Erosion control measures should include installation of silt fence at the toe of disturbed areas, straw bales protecting drainage ditches, vehicle tracking control pads at access points, riprap protection at culvert outlets, and revegetation of disturbed areas. Cut slopes will need to be stabilized during excavation as necessary and vegetation will need to be re-established as soon as possible for stabilization of graded areas.

VIII. STORMWATER DETENTION AND WATER QUALITY

Based on the rural residential nature of this subdivision and the large lot sizes proposed, there will be no significant increase in developed flows compared to the existing conditions, and there is no need for on-site flood control detention.

Water quality facilities are not required for the rural residential subdivision lots as this site meets exclusions listed in the revised El Paso County Engineering Criteria Manual (ECM). Section I.7.1.B.5 of the ECM identifies "Large Lot Single Family Sites" as excluded sites under the following definition: "A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent." The estimated new impervious area of the proposed 5-acre lots is 7 percent, which is below the "10 percent" threshold.

The proposed drainage and grading plan for this site includes a new Rain Garden (RG) at the northwest corner of Meadow Run Circle and Old Arena Way to provide the required stormwater quality mitigation to address the roadway construction impacts for the new public road of Old Arena Way extending north from Meadow Run Circle (Basins I-8.2 and I-9.1).

Water quality mitigation for the public road improvements will be provided by constructing the new Rain Garden I-9.1 as a permanent water quality control measure.

The enclosed "PBMP Applicability Exhibit" (Sh. PBMP, Appendix F) graphically depicts the basin areas draining to the proposed water quality facility, as well as the areas with applicable exclusions from permanent BMP requirements.

The proposed Rain Garden has been designed utilizing the Denver Mile High Flood District's "UD-BMP_v3.07" software package. Calculations and details for the proposed Rain Garden are enclosed in Appendix D, and design parameters for the Rain Garden are summarized as follows:

Water	Tributary	Tributary		Min.	
Quality	Drainage	Area	Impervious	WQCV	Design
Facility (RG)	Basins	(ac)	Percentage	(cf)	Volume (cf)
I-9.1	I-8.4,I-9.1	13.9	7.0	1,981	2,210

The proposed Rain Garden I-9.1 provides a volume of 2,210 cubic feet, which meets the required Water Quality Capture Volume (WQCV).

The proposed Rain Garden will include a riprap rundown and riprap apron for erosion control at the entry. The outlet structure has been designed with a water quality orifice plate to maintain a 12-hour release of the WQCV. The Rain Garden will have a vegetated bottom to encourage infiltration of stormwater prior to discharging into the downstream public ditch.

The proposed stormwater quality facilities will be privately owned and maintained by the subdivision homeowners association (HOA), and maintenance access is readily available from the adjoining public road. A gravel maintenance access ramp will be provided from Old Arena Way into the Rain Garden.

The estimated cost of the proposed private water quality facilities is approximately \$23,649 (see estimate in Appendix D).

IX. DRAINAGE FEES

The developer will finance all costs for required subdivision improvements, and there are no reimbursable public drainage facilities proposed as part of this subdivision development.

The property is located entirely within the Black Squirrel Creek Drainage Basin (FOM 03600), which has a 2024 drainage basin fee of \$11,275 per impervious acre and a bridge fee of \$710 per impervious acre. Applicable drainage basin fees are calculated as follows:

Subdivision Area =	34.7 acres
Impervious Area Percentage =	7.0%
Calculated Impervious Area =	2.429 ac.
Adjusted Impervious Area = (2.429 ac) * 75% =	1.822 ac.
(includes 25% reduction on drainage fees for 2.5	to 5-acre lots per ECM
Appendix L Section 3.10.2a)	
Drainage Basin Fee = (1.822 ac.) @ \$11,275/ac. =	\$20,543.05
Bridge Fee = (2.429 ac.) @ \$710/ac. =	<u>\$ 1,724.59</u>
Total Fee =	\$22,267.64

C:\Users\Owner\Dropbox\jpsprojects\042207.new-breed\admin\drainage\FDR-New-Breed-F3-1024.docx

X. SUMMARY

New Breed Ranch Subdivision Filing Three is a proposed rural residential subdivision filing consisting of 7 lots comprising the third phase of the previously approved New Breed Ranch Preliminary Plan. Development of the proposed subdivision filing is anticipated to result in a minimal increase in developed runoff from the site, and erosion control measures will be implemented to mitigate developed drainage impacts.

A rain garden will be constructed as a permanent water quality control measure to meet current County stormwater quality requirements for the new roadway improvements. The proposed rural residential subdivision (overall density of 5-acre lots) is fully consistent with the surrounding zoning and character of this site.

The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities will be constructed to El Paso County standards to safely convey runoff to adequate outfalls. Construction and proper maintenance of the proposed drainage facilities, in conjunction with proper erosion control measures, will ensure that this development has no significant adverse drainage impact on downstream properties.

APPENDIX A

SOILS INFORMATION

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	11
El Paso County Area, Colorado	13
41—Kettle gravelly loamy sand, 8 to 40 percent slopes	13
69—Peyton-Pring complex, 8 to 15 percent slopes	
93—Tomah-Crowfoot complex, 8 to 15 percent slopes	15
References	18

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

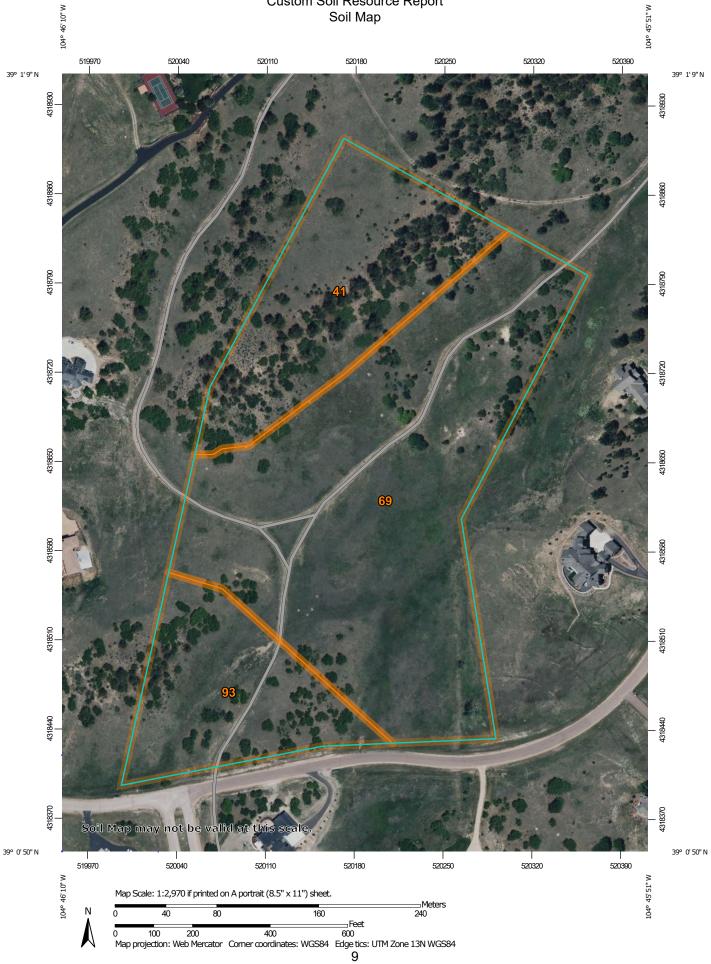
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP LEGEND			MAP INFORMATION		
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.		
Soils	Soil Map Unit Polygons	00 12	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.		
~	Soil Map Unit Lines Soil Map Unit Points	Q	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Special	Point Features Blowout	Water Fea	Special Line Features tures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.		
X X	Borrow Pit Clay Spot	Transport		Please rely on the bar scale on each map sheet for map measurements.		
☆ ¥	Closed Depression Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
.: ©	Gravelly Spot Landfill	~	Major Roads Local Roads	Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator		
ید جو	Lava Flow Marsh or swamp Mine or Quarry	Backgrou	nd Aerial Photography	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
Ô	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
~ +	Rock Outcrop Saline Spot			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022		
:: =	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
\$ ≽	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	6.3	23.7%
69	Peyton-Pring complex, 8 to 15 percent slopes	15.8	59.2%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	4.5	17.0%
Totals for Area of Interest		26.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: F048AY908CO - Mixed Conifer Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

69—Peyton-Pring complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 369g Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent *Pring and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Peyton

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam Bt - 12 to 25 inches: sandy clay loam BC - 25 to 35 inches: sandy clay loam C - 35 to 60 inches: sandy loam

Properties and qualities

Slope: 8 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XY216CO - Sandy Divide Hydric soil rating: No

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam *C - 14 to 60 inches:* gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R048AY222CO - Loamy Park Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

93—Tomah-Crowfoot complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 36bb Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tomah

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand E - 10 to 22 inches: coarse sand

- Bt 22 to 48 inches: stratified coarse sand to sandy clay loam
- C 48 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XY216CO - Sandy Divide Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand E - 12 to 23 inches: sand Bt - 23 to 36 inches: sandy clay loam C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent

Custom Soil Resource Report

Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XY216CO - Sandy Divide Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

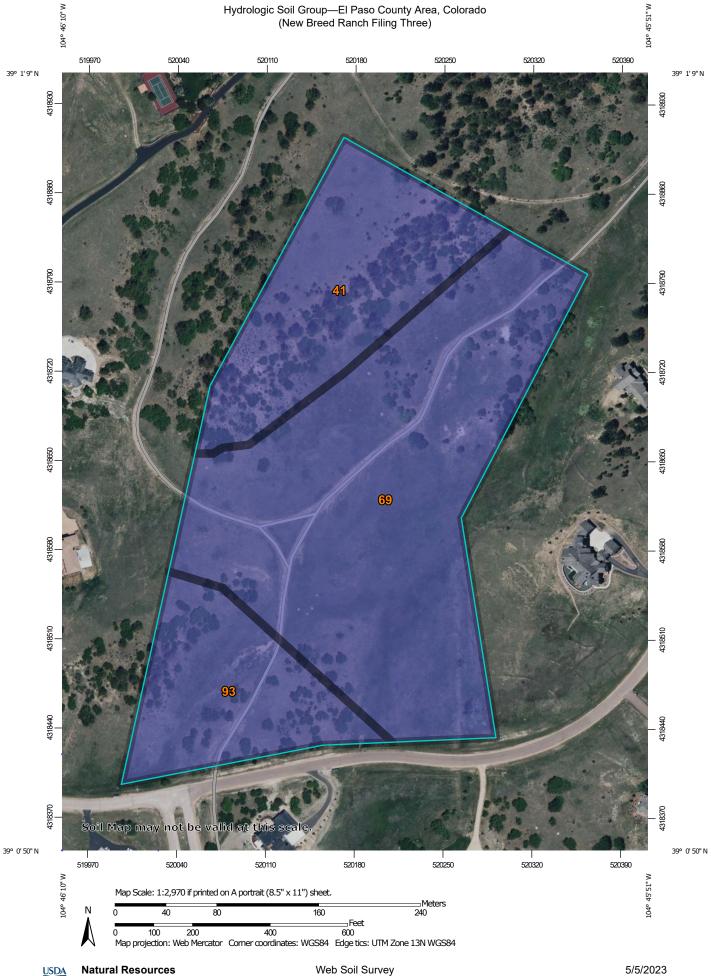
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

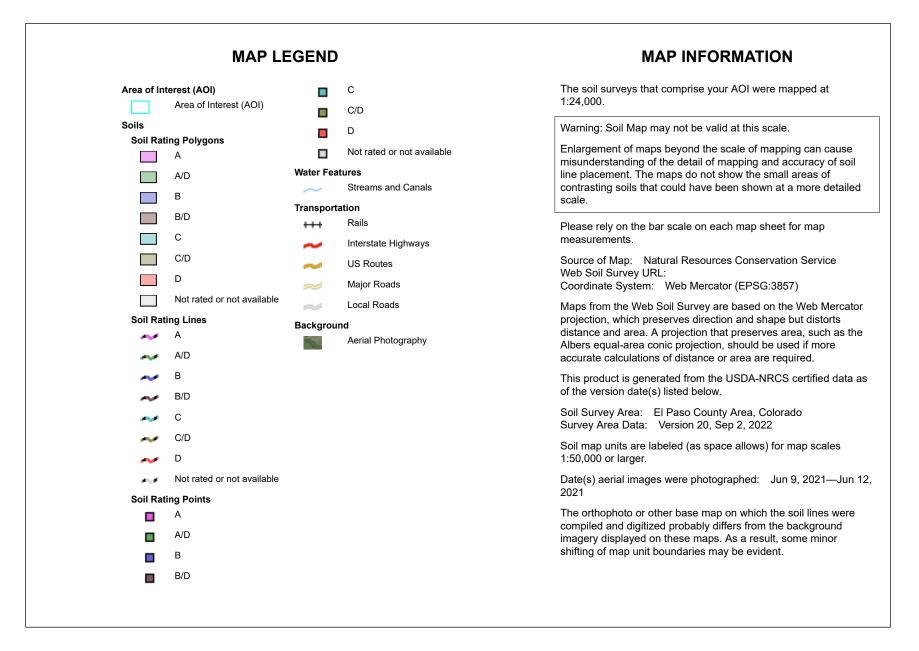
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.


United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624


United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

National Cooperative Soil Survey

Conservation Service

Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	6.3	23.7%
69	Peyton-Pring complex, 8 to 15 percent slopes	В	15.8	59.2%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	4.5	17.0%
Totals for Area of Inter	est	I	26.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX B

HYDROLOGIC CALCULATIONS

Land Use or Surface	Democrat						Runoff Co	efficients					
Characteristics	Percent Impervious	2-у	ear	5-y	ear	י-10	/ear	ړ-25	/ear	י-50	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
- · · ·													
Streets	100	0.00			0.00	0.00				0.05	0.07	0.05	0.05
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripran select C value based on type of y	agetative cover

Table 6-7.	Conveyance	Coefficient, C_{ν}
-------------------	------------	------------------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

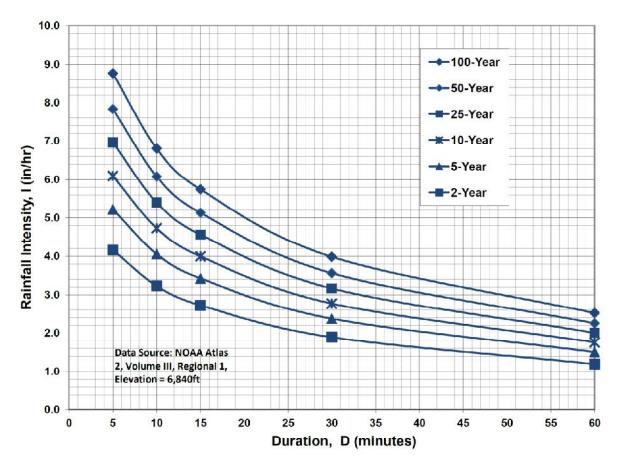


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

NEW BREED RANCH FILING NO. 3 HISTORIC / PRE-DEVELOPMENT FLOWS

					Over	rland Flo	W		Channe	el flow								
				С				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTE	NSITY ⁽⁵⁾	PEAK	FLOW
BASIN	DESIGN	AREA	5-YEAR	100-YEAR	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FT)	С	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
I-1	I	72.7	0.080	0.350	300	0.033	21.7	4300	15	0.049	3.32	21.6	43.3	43.3	1.93	3.24	11.2	82.4
1-3	K	38.7	0.080	0.350	300	0.057	18.1	3560	15	0.038	2.92	20.3	38.4	38.4	2.11	3.54	6.5	48.0
l-8		39.6	0.080	0.350	300	0.093	15.4	2305	15	0.041	3.04	12.6	28.0	28.0	2.58	4.33	8.2	60.1
Tt DP-I to DP-P		39.0	0.000	0.330	300	0.095	13.4	1715	15	0.041	2.60	11.0	20.0	20.0	2.30	4.55	0.2	00.1
I-1,I-8	Р	112.3	0.080	0.350									54.3	54.3	1.59	2.67	14.3	104.9
1-9	Q	12.4	0.080	0.350	300	0.053	18.6	3120	15	0.035	2.81	18.5	37.1	37.1	2.16	3.63	2.1	15.8

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS

C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN) 4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

 $I_5 = -1.5 * \ln(Tc) + 7.583$

 $I_{100} = -2.52 * \ln(Tc) + 12.735$

6) Q = CiA

NEW BREED RANCH SUBDIVISION - FILING NO. 3

COMPOSITE RUNOFF COEFFICIENTS - TYPICAL 5-ACRE DEVELOPED RESIDENTIAL AREA

DEVELOPED CONDITIONS

100-YEAR C VALUES

100-TEAR C VALUES												
	TOTAL			SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA	SOIL	AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(%)	COVER	С	(%)	COVER	С	(%)	COVER	С	C VALUE
5-ACRE LOTS	5.00	В	7.00	BLDG/DRIVEWAY	0.9	93.00	LAWN/MEADOW	0.08				0.137
100-YEAR C VALUES					1		SUB-AREA 2					
	TOTAL			SUB-AREA 1						SUB-AREA 3		
	AREA	SOIL	AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(%)	COVER	C	(%)	COVER	С	(%)	COVER	С	C VALUE
5-ACRE LOTS	5.00	В	7.00	BLDG/DRIVEWAY	0.96	93.00	LAWN/MEADOW	0.35				0.393

JPS ENGINEERING

NEW BREED RANCH COMPOSITE RUNOFF COEFFICIENTS

EXISTING CONDITIONS

5-YEAR C VALUES

	TOTAL			SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA	SOIL	AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(%)	COVER	С	(%)	COVER	С	(%)	COVER	С	C VALUE
I-3.1	9.9	В	100	MEADOW	0.08							0.080
I-3.2	28.8	В	100	5-AC LOTS	0.137							0.137
I-3.1,I-3.2	38.7	В										0.122
I-1	72.7	В	100	5-AC LOTS	0.137							0.137
I-8.1	11.0	B	100	5-AC LOTS	0.137							0.137
I-8.2	12.8	В	100	MEADOW	0.08							0.080
I-8.1,I-8.2	96.5	В										0.129
I-8.3	6.8	В	100	MEADOW	0.08							0.080
I-1,I-8.1,I8.2,I-8.3	103.3	В										0.126
I-8.4	9.0	В	100	MEADOW	0.08							0.080
I-9.1	4.9	В	100	MEADOW	0.08							0.080
I-8.4,I-9.1	13.9	В										0.080
I-9.2	7.50	В	100	MEADOW	0.08							0.080
I-8.4,I-9.1,I-9.2	21.4	В										0.080

100-YEAR C VALUES

TOU-TEAK C VALUE	-								-			-
	TOTAL			SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA	SOIL	AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		AREA	DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(%)	COVER	С	(%)	COVER	С	(%)	COVER	С	C VALUE
I-3.1	9.9	В	100	MEADOW	0.35							0.350
I-3.2	28.8	В	100	5-AC LOTS	0.393							0.393
I-3.1,I-3.2	38.7	В										0.382
I-1	72.7	В	100	5-AC LOTS	0.393							0.393
I-8.1	11.0	В	100	5-AC LOTS	0.393							0.393
1-8.2	12.8	В	100	MEADOW	0.35							0.350
I-8.1,I-8.2	96.5	В										0.387
1-8.3	6.8	В	100	MEADOW	0.35							0.350
I-1,I-8.1,I8.2,I-8.3	103.3	В										0.385
I-8.4	9.0	В	100	MEADOW	0.35							0.350
I-9.1	4.9	В	100	MEADOW	0.35							0.350
I-8.4,I-9.1	13.9	В										0.350
I-9.2	7.50	В	100	MEADOW	0.35							0.350
I-8.4,I-9.1,I-9.2	21.4	В										0.350

NEW BREED RANCH - FILING NO. 3 EXISTING CONDITIONS FLOWS

					Ove	rland Flo	w		Channe	el flow								
				С				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTE	NSITY ⁽⁵⁾	PEAK	FLOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)	Tco ⁽¹⁾ (MIN)	LENGTH (FT)	COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Тс ⁽⁴⁾ (MIN)	Тс ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
I-1	I	72.7	0.137	0.393	300	0.033	20.5	4300	15	0.049	3.32	21.6	42.1	42.1	1.97	3.31	19.6	94.6
I-3.1		9.9	0.080	0.350	100	0.040	11.8	1310	15	0.073	4.05	5.4	17.2	17.2	3.32	5.57	2.6	19.3
l-3.2 l-3.1,l-3.2	К	28.8 38.7	0.137	0.393	100	0.080	8.8	2400	15	0.06	3.67	10.9	19.7 19.7	19.7 19.7	3.11 3.11	5.22 5.22	12.3 14.7	59.1 77.2
			-										-		-			
I-8.1 I-8.2		11.0 12.8	0.137	0.393	100	0.130	0.0	560 1065	15 15	0.041	3.04 3.61	3.1 4.9	3.1 12.9	5.0 12.9	5.17 3.75	8.68 6.30	7.8	37.5 28.2
I-1,I-8.1,I-8.2	I-8.2a	96.5 6.8	0.129	0.387			0.0	1130	15	0.031	2.64	7.1	45.2	45.2 7.1	1.87 4.64	3.13 7.78	23.2 2.5	117.0 18.5
I-8.3 I-1,I-8.1,I-8.2,I-8.3	P	103.3	0.080	0.350 0.385			0.0	1130	15	0.031	2.04	7.1	7.1 52.3	52.3	4.64	2.76	2.5	10.5
1-8.4	1-8.4	9.0	0.080	0.350	100	0.120	8.2	1680	15	0.062	3.73	7.5	15.7	15.7	3.46	5.80	2.5	18.3
1-9.1	10.1-	4.9	0.080	0.350	100	0.040	11.8	1410	15	0.071	4.00	5.9	17.6	17.6	3.28	5.50	1.3	9.4
I-8.4,I-9.1 Tt I-9.1a to DP-Q	l-9.1a	13.9	0.080	0.350				690	15	0.029	2.55	4.5	17.6	17.6	3.28	5.50	3.6	26.8
l-9.2 l-8.4,l-9.1,l-9.2	Q	7.5 21.4	0.080	0.350 0.350	100	0.040	11.8	940	15	0.038	2.92	5.4	17.1 22.1	17.1 22.1	3.32 2.94	5.58 4.93	2.0 5.0	14.6 36.9
		21.7	0.000	0.000										<u> </u>	2.04	4.00	0.0	

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS

C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

 $I_5 = -1.5 * \ln(Tc) + 7.583$

I₁₀₀ = -2.52 * In(Tc) + 12.735

6) Q = CiA

JPS ENGINEERING

NEW BREED RANCH COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITIONS

5-YEAR C VALUES

BASIN	TOTAL AREA (AC)	SOIL TYPE	AREA (%)	SUB-AREA 1 DEVELOPMENT/ COVER	с	AREA (%)	SUB-AREA 2 DEVELOPMENT/ COVER	С	AREA (%)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTEI C VALUE
I-3.1	9.9	В	100	5-AC LOTS	0.137							0.137
I-3.2	28.8	В	100	5-AC LOTS	0.137							0.137
I-3.1,I-3.2	38.7	В										0.137
I-1	72.7	В	100	5-AC LOTS	0.137							0.137
I-8.1	11.0	B	100	5-AC LOTS	0.137							0.137
1-8.2	12.8	В	100	5-AC LOTS	0.137							0.137
I-8.1,I-8.2	96.5	В										0.137
1-8.3	6.8	В	100	5-AC LOTS	0.137							0.137
I-1,I-8.1,I8.2,I-8.3	103.3	В										0.137
I-8.4	9.0	В	100	5-AC LOTS	0.137							0.137
I-9.1	4.9	B	100	5-AC LOTS	0.137							0.137
I-8.4,I-9.1	13.9	В										0.137
1-9.2	7.50	В	100	5-AC LOTS	0.137							0.137
I-8.4,I-9.1,I-9.2	21.4	В										0.137

100-YEAR C VALUES

TOU-TEAR C VALUE	-								•			-
BASIN	TOTAL AREA	SOIL TYPE		SUB-AREA 1 DEVELOPMENT/ COVER			SUB-AREA 2 DEVELOPMENT/ COVER	С	AREA	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTED C VALUE
DASIN	(AC)	TIPE	(%)	COVER	С	(%)	COVER	U	(%)	COVER	U	C VALUE
I-3.1	9.9	В	100	5-AC LOTS	0.393							0.393
I-3.2	28.8	В	100	5-AC LOTS	0.393							0.393
I-3.1,I-3.2	38.7	В										0.393
l-1	72.7	В	100	5-AC LOTS	0.393							0.393
I-8.1	11.0	В	100	5-AC LOTS	0.393							0.393
I-8.2	12.8	В	100	5-AC LOTS	0.393							0.393
I-8.1,I-8.2	96.5	В										0.393
I-8.3	6.8	В	100	5-AC LOTS	0.393							0.393
I-1,I-8.1,I8.2,I-8.3	103.3	В										0.393
I-8.4	9.0	В	100	5-AC LOTS	0.393							0.393
I-9.1	4.9	В	100	5-AC LOTS	0.393							0.393
I-8.42,I-9.1	13.9	В										0.393
I-9.2	7.50	В	100	5-AC LOTS	0.393							0.393
I-8.4,I-9.1,I-9.2	21.4	В										0.393

NEW BREED RANCH - FILING NO. 3 DEVELOPED FLOWS

					Ove	rland Flo	w		Channel flow									
				С				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTE	NSITY ⁽⁵⁾	PEAK	FLOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)		LENGTH (FT)	COEFFICIENT	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Тс ⁽⁴⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
		(7.0)			()	[(· · · · ·)	((,)	((((,	(invinty	(0.0)	(0.0)
I-1	1	72.7	0.137	0.393	300	0.033	20.5	4300	15	0.049	3.32	21.6	42.1	42.1	1.97	3.31	19.6	94.6
I-3.1		9.9	0.137	0.393	100	0.040	11.1	1310	15	0.073	4.05	5.4	16.5	16.5	3.38	5.67	4.6	22.1
I-3.2		28.8	0.137	0.393	100	0.080	8.8	2400	15	0.06	3.67	10.9	19.7	19.7	3.11	5.22	12.3	59.1
I-3.1,I-3.2	К	38.7	0.137	0.393									19.7	19.7	3.11	5.22	16.5	79.4
I-8.1		11.0	0.137	0.393			0.0	560	15	0.041	3.04	3.1	3.1	5.0	5.17	8.68	7.8	37.5
I-8.2	I-8.2	12.8	0.137	0.393	100	0.130	7.5	1065	15	0.058	3.61	4.9	12.4	12.4	3.80	6.39	6.7	32.1
I-1,I-8.1,I-8.2	I-8.2a	96.5	0.137	0.393									45.2	45.2	1.87	3.13	24.7	118.8
1-8.3		6.8	0.137	0.393			0.0	1130	15	0.031	2.64	7.1	7.1	7.1	4.64	7.78	4.3	20.8
I-1,I-8.1,I-8.2,I-8.3	Р	103.3	0.137	0.393									52.3	52.3	1.65	2.76	23.3	112.2
1-8.4	I-8.4	9.0	0.137	0.393	100	0.120	7.7	1680	15	0.062	3.73	7.5	15.2	15.2	3.50	5.88	4.3	20.8
I-9.1		4.9	0.137	0.393	100	0.040	11.1	1410	15	0.071	4.00	5.9	17.0	17.0	3.33	5.60	2.2	10.8
I-8.4,I-9.1	I-9.1a	13.9	0.137	0.393									17.0	17.0	3.33	5.60	6.3	30.6
Tt I-9.1a to DP-Q								690	15	0.029	2.55	4.5						
1-9.2		7.5	0.137	0.393	100	0.040	11.1	940	15	0.038	2.92	5.4	16.5	16.5	3.38	5.68	3.5	16.7
I-8.4,I-9.1,I-9.2	Q	21.4	0.137	0.393									21.5	21.5	2.98	5.00	8.7	42.1
I-1,I-3,I-8,I-9	I-1-9	156.6	0.137	0.393									45.2	45.2	1.87	3.13	40.1	192.8

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS

C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

I₅ = -1.5 * ln(Tc) + 7.583

I₁₀₀ = -2.52 * In(Tc) + 12.735

6) Q = CiA

APPENDIX C1

HYDRAULIC CALCULATIONS – DITCHES & CHANNELS

NEW BREED SUBDIVISION - FILING NO. 3 DITCH CALCULATION SUMMARY

PROPOSED ROADSIDE DITCHES

				PROPOSED	SIDE	CHANNEL	FRICTION	ROW		Q100	DITCH	DITCH	Q100	Q100	DITCH
	FROM	ТО		SLOPE	SLOPE	DEPTH	FACTOR	WIDTH	DP/	FLOW	FLOW %	FLOW	DEPTH	VELOCITY	LINING
ROADWAY	STA	STA	SIDE	(%)	(Z)	(FT)	(n)	(ft)	BASIN	(CFS)	OF BASIN	(CFS)	(FT)	(FT/S)	
OLD ARENA WAY	1+16	5+00	E	1.36	4:1/3:1	2.5	0.030	60	I-8.4	20.8	100	20.8	1.2	4.0	GRASS
OLD ARENA WAY	1+16	5+00	W	1.36	4:1/3:1	2.5	0.030	60	I-9.1	10.8	100	10.8	0.9	3.4	GRASS
OLD ARENA WAY	5+00	9+50	E	6.07	4:1/3:1	2.5	0.030	60	I-8.4	20.8	65	13.5	0.8	6.3	GRASS / TRM
OLD ARENA WAY	5+00	9+50	W	6.07	4:1/3:1	2.5	0.030	60	I-9.1	10.8	65	7.0	0.6	5.4	GRASS / TRM
OLD ARENA WAY	9+50	11+38	E	2.00	4:1/3:1	2.5	0.030	60	I-8.4	20.8	30	6.2	0.7	3.4	GRASS
OLD ARENA WAY	9+50	11+38	W	2.00	4:1/3:1	2.5	0.030	60	I-9.1	10.8	30	3.2	0.6	2.9	GRASS
MEADOW RUN CIR			N	3.30	4:1/3:1	2.5	0.030	60	I-9.1a	30.6	100	30.6	1.2	6.2	GRASS / TRM

1) Channel flow calculations based on Manning's Equation

2) Channel depth includes 1' minimum freeboard

3) n = 0.03 for grass-lined non-irrigated channels (minimum)

4) n = 0.045 for riprap-lined channels

5) Vmax = 5.0 fps per El Paso County criteria (p. 10-13) for fescue (dry land grass) for 100-year flows

6) Vmax = 8.0 fps with Turf Reinforcement Mat (TRM) Lining (Tensar Eronet SC150 or equal)

The complete line of RollMax[®] products offers a variety of options for both short-term and permanent erosion control needs. Reference the RollMax Products Chart below to find the right solution for your next project.

RollMax Product Selection Chart

			EDC	TEMPORARY DNET			BIONET
	DS75	DS150	S75	S150	SC150	C125	S75BN
Longevity	45 days	60 days	12 mo.	12 mo.	24 mo.	36 mo.	12 mo.
Applications	Low Flow Channels 4:1-3:1 Slopes	Moderate Flow Channels 3:1-2:1 Slopes	Low Flow Channels 4:1-3:1 Slopes	Moderate Flow Channels 3:1-2:1 Slopes	Medium Flow Channels 2:1-1:1 Slopes	High-Flow Channels 1:1 and Greater Slopes	Low Flow Channels 4:1-3:1 Slopes
Design Permissible Shear Stress Ibs/ft² (Pa)	Unvegetated 1.55 (74)	Unvegetated 1.75 (84)	Unvegetated 1.55 (74)	Unvegetated 1.75 (84)	Unvegetated 2.00 (96)	Unvegetated 2.25 (108)	Unvegetated 1.60 (76)
Design Permissible Velocity ft/s (m/s)	Unvegetated 5.00 (1.52)	Unvegetated 6.00 (1.52)	Unvegetated 5.00 (1.2)	Unvegetated 6.00 (1.83)	Unvegetated 8.00 (2.44)	Unvegetated 10.00 (3.05)	Unvegetated 5.00 (1.52)
Top Net	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	Leno woven. 100% biodegradable jute fiber 9.30 lbs/1000 ft ² (4.53 kg/100 m ²) approx wt
Center Net	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fiber Matrix	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd ² (0.27 kg/m ²)	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw/coconut matrix 70% Straw 0.35 lbs/yd ² (0.19 kg/m ²) 30% Coconut 0.15 lbs/yd ² (0.08 kg/m ²)	Coconut fiber 0.50 lbs/yd² (0.27 kg/m²)	Straw fiber 0.50 lbs/yd² (0.27 kg/m²)
Bottom Net	N/A	Lightweight accelerated photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ³) approx wt	N/A	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Lightweight photodegradable polypropylene 1.50 lbs/1000 ft ² (0.73 kg/100 m ²) approx wt	Heavyweight UV-stabilized polypropylene 2.9 lbs/1000 ft ² (1.47 kg/100 m ²) approx wt	N/A
Thread	Accelerated degradable	Accelerated degradable	Degradable	Degradable	Degradable	UV-stabilized polypropylene	Biodegradable

Hydraulic Analysis Report

Project Data

Project Title: Project - New Breed Sub. Flg. 3 - Roadside Ditches
Designer: JPS
Project Date: Sunday, November 28, 2021
Project Units: U.S. Customary Units
Notes:

Channel Analysis: Ditch-STA-1+16-5+00, E

Notes:

Refer to Ditch Stationing on Sh. PP1 of CD's

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0136 ft/ft Manning's n: 0.0300 Flow: 20.8000 cfs

Result Parameters

Depth: 1.2140 ft Area of Flow: 5.1583 ft^2 Wetted Perimeter: 8.8445 ft Hydraulic Radius: 0.5832 ft Average Velocity: 4.0323 ft/s Top Width: 8.4980 ft Froude Number: 0.9121 Critical Depth: 1.1750 ft Critical Velocity: 4.3047 ft/s Critical Slope: 0.0162 ft/ft Critical Slope: 0.0162 ft/ft Critical Top Width: 8.40 ft Calculated Max Shear Stress: 1.0303 lb/ft^2 Calculated Avg Shear Stress: 0.4949 lb/ft^2 Refer to Sh. TY1 of CD / GEC Plans for typical roadway and roadside ditch section

Channel Analysis: Ditch-STA-1+16-5+00, W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0136 ft/ft Manning's n: 0.0300 Flow: 10.8000 cfs

Result Parameters

Depth: 0.9495 ft Area of Flow: 3.1552 ft^2 Wetted Perimeter: 6.9172 ft Hydraulic Radius: 0.4561 ft Average Velocity: 3.4229 ft/s Top Width: 6.6463 ft Froude Number: 0.8755 Critical Depth: 0.9040 ft Critical Velocity: 3.7759 ft/s Critical Slope: 0.0177 ft/ft Critical Slope: 0.0177 ft/ft Critical Top Width: 6.46 ft Calculated Max Shear Stress: 0.8058 lb/ft^2 Calculated Avg Shear Stress: 0.3871 lb/ft^2

Channel Analysis: Ditch-STA-5+00-9+50, E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0607 ft/ft Manning's n: 0.0300 Flow: 13.5000 cfs

Result Parameters

Depth: 0.7799 ft Area of Flow: 2.1286 ft² Wetted Perimeter: 5.6815 ft Hydraulic Radius: 0.3747 ft Average Velocity: 6.3422 ft/s **>5 fps.....Use TRM Lining** Top Width: 5.4590 ft Froude Number: 1.7899 Critical Depth: 0.9884 ft Critical Velocity: 3.9482 ft/s Critical Slope: 0.0172 ft/ft Critical Top Width: 7.06 ft Calculated Max Shear Stress: 2.9538 lb/ft² Calculated Avg Shear Stress: 1.4191 lb/ft²

Channel Analysis: Ditch-STA-5+00-9+50, W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0607 ft/ft Manning's n: 0.0300 Flow: 7.0000 cfs

Result Parameters

Depth: 0.6096 ft Area of Flow: 1.3007 ft^2 Wetted Perimeter: 4.4412 ft Hydraulic Radius: 0.2929 ft Average Velocity: 5.3819 ft/s **>5 fps....Use TRM Lining** Top Width: 4.2672 ft Froude Number: 1.7179 Critical Depth: 0.7600 ft Critical Velocity: 3.4622 ft/s Critical Slope: 0.0187 ft/ft Critical Slope: 0.0187 ft/ft Critical Top Width: 5.43 ft Calculated Max Shear Stress: 2.3090 lb/ft^2 Calculated Avg Shear Stress: 1.1093 lb/ft^2

Channel Analysis: Ditch-STA-9+50-11+38, E

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 6.2000 cfs

Result Parameters

Depth: 0.7173 ft Area of Flow: 1.8007 ft² Wetted Perimeter: 5.2256 ft Hydraulic Radius: 0.3446 ft Average Velocity: 3.4431 ft/s Top Width: 5.0209 ft Froude Number: 1.0132 Critical Depth: 0.7240 ft Critical Velocity: 3.3792 ft/s Critical Slope: 0.0190 ft/ft Critical Slope: 0.0190 ft/ft Critical Top Width: 5.17 ft Calculated Max Shear Stress: 0.8952 lb/ft²

Channel Analysis: Ditch-STA-9+50-11+38, W

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0200 ft/ft Manning's n: 0.0300 Flow: 3.2000 cfs

Result Parameters

Depth: 0.5597 ft Area of Flow: 1.0965 ft² Wetted Perimeter: 4.0778 ft Hydraulic Radius: 0.2689 ft Average Velocity: 2.9184 ft/s Top Width: 3.9181 ft Froude Number: 0.9722 Critical Depth: 0.5557 ft Critical Velocity: 2.9605 ft/s Critical Slope: 0.0208 ft/ft Critical Slope: 0.0208 ft/ft Critical Top Width: 3.97 ft Calculated Max Shear Stress: 0.6985 lb/ft² Refer to Sh. TY1 of CD / GEC Plans for typical roadway and roadside ditch section

Channel Analysis: Ditch-Meadow-Run-Circle, N (DP-I-9.1a....Rain Garden Discharge)

Notes: Ditch I-9.2

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 3.0000 ft/ft Longitudinal Slope: 0.0330 ft/ft Manning's n: 0.0300 Flow: 30.6000 cfs

Result Parameters

Depth: 1.1883 ft Area of Flow: 4.9418 ft² Wetted Perimeter: 8.6569 ft Hydraulic Radius: 0.5709 ft Average Velocity: 6.1921 ft/s **>5 fps.....Use TRM Lining** Top Width: 8.3178 ft Froude Number: 1.4157 Critical Depth: 1.3712 ft Critical Velocity: 4.6503 ft/s Critical Slope: 0.0154 ft/ft Critical Top Width: 9.80 ft Calculated Max Shear Stress: 2.4468 lb/ft² Calculated Avg Shear Stress: 1.1755 lb/ft²

NEW BREED SUBDIVISION - FILING NO. 3 CHANNEL CALCULATIONS DEVELOPED FLOWS

DRAINAGE CHANNELS

CHANNEL	SLOPE	BOTTOM WIDTH	SIDE SLOPE	MIN. DEPTH	FRICTION FACTOR		Q100 FLOW	CHANNEL FLOW %	CHANNEL FLOW	Q100 DEPTH	Q100 VELOCITY	TOP WIDTH	PROPOSED EASEMENT	-
	(%)	(B, FT)	(Z)	(FT)	(n)	DP	(CFS)	OF BASIN	(CFS)	(FT)	(FT/S)	(FT)	WIDTH (FT)	
EXISTING	G CHANN	ELS:												
I-8.2	0.034	12	6:1	2.0	0.030	I-8.2	32.1	100	32.1	0.5	4.8	17.5	30	GRASS
I-8.3	0.033	24	10:1	2.0	0.030	I-8.2a	118.8	100	118.8	0.7	5.9	37.1	50	GRASS
PROPOS	ED CHAN	NNEL:												
I-9.1 ^ª	0.083	0	4:1	2.0	0.035	I-9.1	10.8	100	10.8	0.7	5.8	5.4	N/A	RIPRAP

^a RIPRAP RUNDOWN INTO RAIN GARDEN

1) Channel flow calculations based on Manning's Equation

2) n = 0.03 for grass-lined non-irrigated channels (minimum)

3) n = 0.035 for riprap-lined channels

4) Channel depth includes 1' minimum freeboard

5) Riprap Sizing based on Table 10-6 of EPC-DCM, where size is governed by (V * S^0.17) / (Ss - 1)^0.66; Ss = 2.6

Hydraulic Analysis Report

Project Data

Project Title:New Breed Ranch Filing No. 3 - ChannelsDesigner:JPSProject Date:Sunday, April 23, 2023Project Units:U.S. Customary UnitsNotes:

Channel Analysis: Channel Analysis - I-8.2

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 6.0000 ft/ft Side Slope 2 (Z2): 6.0000 ft/ft Channel Width: 12.0000 ft Longitudinal Slope: 0.0340 ft/ft Manning's n: 0.0300 Flow: 32.1000 cfs

Result Parameters

Depth: 0.4539 ft Area of Flow: 6.6827 ft^2 Wetted Perimeter: 17.5217 ft Hydraulic Radius: 0.3814 ft Average Velocity: 4.8035 ft/s Top Width: 17.4466 ft Froude Number: 1.3677 Critical Depth: 0.5498 ft Critical Velocity: 3.8163 ft/s Critical Slope: 0.0172 ft/ft Critical Slope: 0.0172 ft/ft Critical Top Width: 18.60 ft Calculated Max Shear Stress: 0.9630 lb/ft^2 Calculated Avg Shear Stress: 0.8092 lb/ft^2

Channel Analysis: Channel Analysis - I-8.3

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 10.0000 ft/ft Side Slope 2 (Z2): 10.0000 ft/ft Channel Width: 24.0000 ft Longitudinal Slope: 0.0330 ft/ft Manning's n: 0.0300 Flow: 118.8000 cfs

Result Parameters

Depth: 0.6539 ft Area of Flow: 19.9688 ft² Wetted Perimeter: 37.1429 ft Hydraulic Radius: 0.5376 ft Average Velocity: 5.9493 ft/s Top Width: 37.0777 ft Froude Number: 1.4286 Critical Depth: 0.8106 ft Critical Velocity: 4.5649 ft/s Critical Slope: 0.0152 ft/ft Critical Top Width: 40.21 ft Calculated Max Shear Stress: 1.3465 lb/ft² Calculated Avg Shear Stress: 1.1071 lb/ft²

Channel Analysis: Channel Analysis - I-9.1a (Rundown to RG)

Notes:

Input Parameters

Channel Type: Triangular Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft Longitudinal Slope: 0.0830 ft/ft Manning's n: 0.0350 Flow: 10.8000 cfs

Result Parameters

Depth: 0.6800 ft Area of Flow: 1.8495 ft² Wetted Perimeter: 5.6073 ft Hydraulic Radius: 0.3298 ft Average Velocity: 5.8393 ft/s Top Width: 5.4399 ft Froude Number: 1.7648 Critical Depth: 0.8535 ft Critical Velocity: 3.7068 ft/s Critical Slope: 0.0247 ft/ft Critical Top Width: 6.83 ft Calculated Max Shear Stress: 3.5218 lb/ft² Calculated Avg Shear Stress: 1.7083 lb/ft²

PROJECT:	NEW BREED RANCH FILING THREE - CHANNEL I-9.1 (RR RUNDOWN TO RG)
----------	---

RIPRAP SIZING: d ₅₀ > [(VS ^{0.17}) / (4.5(Gs - 1) ^{0.66})] ²	(USDCM EQUATION 8-11)							
ASSUMPTIONS: V = S = Gs = d ₅₀ =	5.90 FPS 0.083 FT/FT 2.5	MEAN CHANNEL VELOCITY LONGITUDINAL SLOPE SPECIFIC GRAVITY OF STONE CALCULATED MEAN ROCK SIZE						
CALCULATED RIPRAP SIZE: d ₅₀ = d ₅₀ = SELECTED MEAN RIPRAP SIZE =	0.43 FT 5.18 INCHES 12 INCHES	(TYPE M SOIL RIPRAP)						

APPENDIX C2

HYDRAULIC CALCULATIONS – CULVERTS

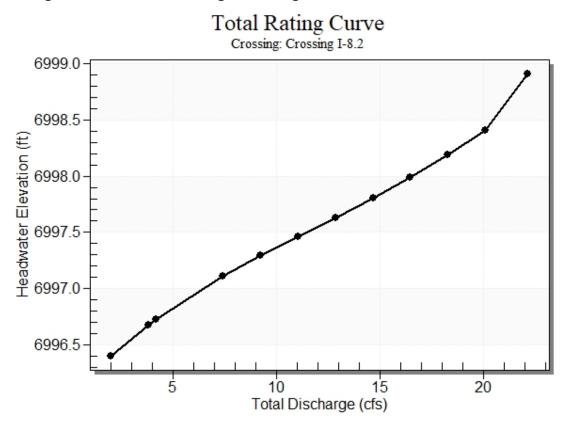
NEW BREED RANCH SUBDIVISION - FILING NO. 3 CULVERT DESIGN SUMMARY

		RD	INV	INV	PIPE	PIPE	TOTAL	TAILWATER	Q ₅ MAX	CALC	TOTAL	TAILWATER	Q ₁₀₀ MAX	CALC	CALC
	DESIGN	CL	IN	OUT	LENGTH	DIA	Q ₅	$Q_5 TW$	ALLOWABLE	$Q_5 HW$	Q ₁₀₀	Q ₁₀₀ TW	ALLOWABLE	Q ₁₀₀ HW	Q ₁₀₀
BASIN	POINT	ELEV	ELEV	ELEV	(FT)	(FT)	(CFS)	DEPTH (FT)	HEADWATER ¹	ELEV	(CFS)	DEPTH (FT)	HEADWATER ²	ELEV	HW/D
OLD ARENA WA	Ý:														
I-8.4	I-8.4	6998.68	6995.74	6995.00	74.0	2.0	4.2	0.59	6997.7	6996.7	20.1	1.06	6998.86	6998.40	1.33

¹ Q_5 MAX. ALLOWABLE HEADWATER, HW/D = 1.0

 2 Q₁₀₀ MAX. ALLOWABLE HEADWATER = 6" DEPTH AT SHOULDER (PER DCM TABLE 6-1)

HY-8 Culvert Analysis Report – Culvert I-8.4


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 2 cfs Design Flow: 4.2 cfs Maximum Flow: 20.1 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6996.40	2.00	2.00	0.00	1
6996.67	3.81	3.81	0.00	1
6996.72	4.20	4.20	0.00	1
6997.11	7.43	7.43	0.00	1
6997.29	9.24	9.24	0.00	1
6997.46	11.05	11.05	0.00	1
6997.63	12.86	12.86	0.00	1
6997.80	14.67	14.67	0.00	1
6997.99	16.48	16.48	0.00	1
6998.19	18.29	18.29	0.00	1
6998.40	20.10	20.10	0.00	1
6998.68	22.15	22.15	0.00	Overtopping

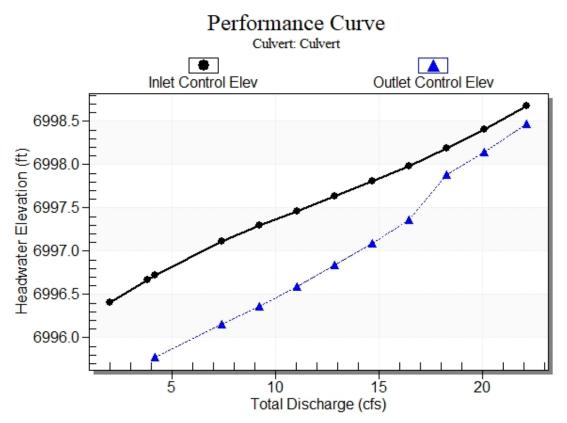
Table 1 - Summary of Culvert Flows at Crossing: Crossing I-8.4

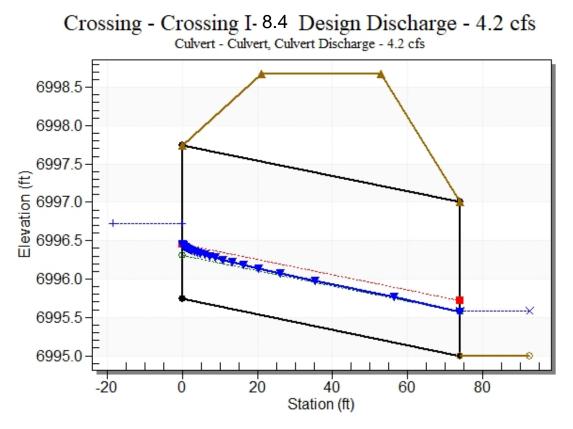
Rating Curve Plot for Crossing: Crossing I-8.4

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2.00	2.00	6996.40	0.662	0.0*	1-S2n	0.390	0.485	0.390	0.445	4.483	2.522
3.81	3.81	6996.67	0.930	0.0*	1-S2n	0.540	0.679	0.540	0.567	5.378	2.963
4.20	4.20	6996.72	0.981	0.035	1-S2n	0.568	0.716	0.568	0.588	5.515	3.036
7.43	7.43	6997.11	1.372	0.412	1-S2n	0.768	0.969	0.793	0.728	6.187	3.501
9.24	9.24	6997.29	1.554	0.627	1-S2n	0.866	1.083	0.895	0.790	6.561	3.697
11.05	11.05	6997.46	1.724	0.855	1-S2n	0.960	1.189	0.995	0.845	6.853	3.866
12.86	12.86	6997.63	1.891	1.097	1-S2n	1.051	1.287	1.089	0.895	7.120	4.016
14.67	14.67	6997.80	2.063	1.352	5-S2n	1.141	1.376	1.181	0.940	7.364	4.150
16.48	16.48	6997.99	2.247	1.622	5-S2n	1.232	1.458	1.275	0.982	7.560	4.273
18.29	18.29	6998.19	2.446	2.142	5-S2n	1.327	1.538	1.372	1.021	7.736	4.385
20.10	20.10	6998.40	2.665	2.408	5-S2n	1.428	1.608	1.472	1.058	7.892	4.490

 Table 2 - Culvert Summary Table: Culvert

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert


Inlet Elevation (invert): 6995.74 ft, Outlet Elevation (invert): 6995.00 ft

Culvert Length: 74.00 ft, Culvert Slope: 0.0100

Culvert Performance Curve Plot: Culvert

Water Surface Profile Plot for Culvert: Culvert

Site Data - Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 6995.74 ft Outlet Station: 74.00 ft Outlet Elevation: 6995.00 ft Number of Barrels: 1

Culvert Data Summary - Culvert

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
2.00	6995.45	0.45	2.52	0.56	0.94
3.81	6995.57	0.57	2.96	0.71	0.98
4.20	6995.59	0.59	3.04	0.73	0.99
7.43	6995.73	0.73	3.50	0.91	1.02
9.24	6995.79	0.79	3.70	0.99	1.04
11.05	6995.85	0.85	3.87	1.05	1.05
12.86	6995.89	0.89	4.02	1.12	1.06
14.67	6995.94	0.94	4.15	1.17	1.07
16.48	6995.98	0.98	4.27	1.23	1.07
18.29	6996.02	1.02	4.39	1.27	1.08
20.10	6996.06	1.06	4.49	1.32	1.09

Table 3 - Downstream Channel Rating Curve (Crossing: Crossing I-8.4)

Tailwater Channel Data - Crossing I-8.4

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0300 Channel Invert Elevation: 6995.00 ft

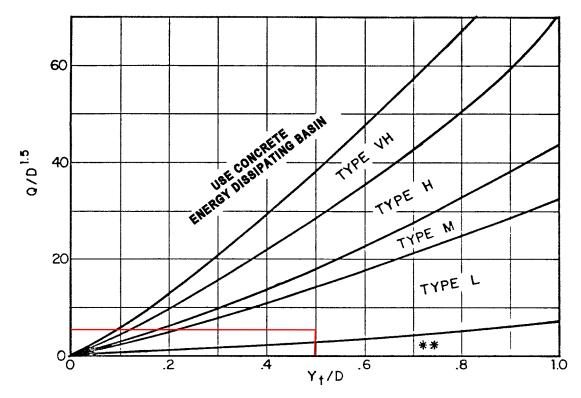
Roadway Data for Crossing: Crossing I-8.4

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 6998.68 ft Crest Elevation: 6998.68 ft Roadway Surface: Paved Roadway Top Width: 32.00 ft Hydraulic Structures

Q100 (DP-I-8.2) = 20.1 cfs; D = 2.0 ft
Q / D^1.5 = 20.1 / (2.0^1.5) = 7.1
$$H_a = \frac{(H + Y_n)}{2}$$

Equation 9-19

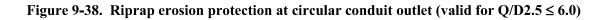
Where the maximum value of H_a shall not exceed H, and:


 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

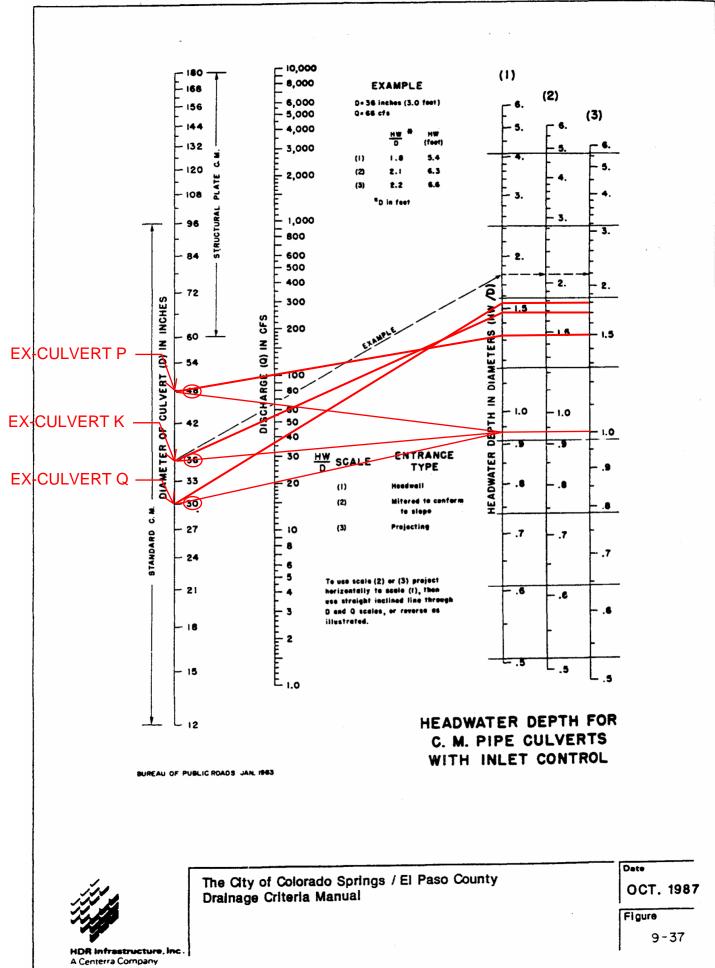

 Y_n = normal depth of supercritical flow in the culvert (ft)

Yt = 1.0 ft; Yt / D = (1.0 / 2.0) = 0.5

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

Use Type M (Conservative)

NEW BREED RANCH FILING THREE EXISTING CULVERT SUMMARY


CULVERT	DESIGN POINT	CULVERT SIZE (IN)	Q5 FLOW (CFS)	Q5 CULVERT CAPACITY (CFS)	Q100 FLOW (CFS)	HEADWATER DEPTH (FT)	AVAILABLE HW/D	MAX. CULVERT CAPACITY (CFS)
К	K	36" CMP	16.5	32	79.4	5.0	1.7	55
Р	Р	48" CMP	23.3	65	112.2	6.0	1.5	100
Q	Q	30" CMP	8.7	20	42.1	4.5	1.8	36

1

ASSUMPTIONS:

Culvert Capacity based on Inlet Control Nomographs (DCM Fig. 9-37 & 9-38)
 Q5 Culvert Capacity based on HW/D = 1.0
 Max. Culvert Capacity based on max. available HW/D; Local roadway overtopping allowed per DCM Table 6-1 (6" depth at shoulder)

NEW BREED RANCH - EXISTING CULVERT CAPACITY

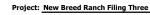
.

APPENDIX D

WATER QUALITY CALCULATIONS

NEW BREED RANCH COMPOSITE IMPERVIOUS AREAS

DEVELOPED CONDITIONS IMPERVIOUS AREAS TOTAL SUB-AREA 1 SUB-AREA 2 SUB-AREA 3 WEIGHTED AREA SOIL AREA DEVELOPMENT/ % AREA DEVELOPMENT/ % AREA DEVELOPMENT/ % % IMP * BASIN TYPE COVER (%) COVER IMP COVER IMP IMP (AC) (%) (%) I-8.4 9.0 100 5-AC LOTS 7.000 В 7 I-9.1 4.9 В 100 5-AC LOTS 7 7.000 I-8.4,I-9.1 7.000 13.9 В I-9.2 7.50 В 100 5-AC LOTS 7 7.000 I-8.4,I-9.1,I-9.2 21.4 7.000 В


* ASSUMED IMPERVIOUS AREA OF 7.0 PERCENT FOR 5-AC LOTS INCLUDES LOT AREAS, BUILDING SITES, DRIVEWAYS, AND ADJOINING ROADWAYS (PER TABLE 3-1 OF EL PASO COUNTY "ADDENDUM; REVISED DRAINAGE BASIN FEES BASED ON IMPERVIOUS AREA," JUNE 21, 2001)

	Design Procedure	Form: Rain Garden (RG)	
Designer:	UD-BMP JPS	(Version 3.07, March 2018)	Sheet 1 of 2
Company:	JPS		-
Date:	September 20, 2024		
Project:	NEW BREED FILING NO. 3		
Location:	RAIN GARDEN I-9.1		
1. Basin Stor	•		
	e Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of rain garden)	I _a = 7.0 %	
B) Tributa	ary Area's Imperviousness Ratio (i = l₀/100)	i = 0.070	
	Quality Capture Volume (WQCV) for a 12-hour Drain Time V= 0.8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.04 watershe	ed inches
D) Contril	outing Watershed Area (including rain garden area)	Area = <u>605,484</u> sq ft	
	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} = <u>1,981</u> cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft	
2. Basin Geo	metry		
A) WQCV	Depth (12-inch maximum)	D _{WQCV} = 12 in	
	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical) " if rain garden has vertical walls)	Z = 4.00 ft / ft	
C) Mimim	um Flat Surface Area	A _{Min} = 848 sq ft	
D) Actual	Flat Surface Area	A _{Actual} = <u>1767</u> sq ft	
E) Area at	Design Depth (Top Surface Area)	A _{Top} = <u>2652</u> sq ft	
	arden Total Volume A _{Top} + A _{Actual}) / 2) * Depth)	V _T = 2,210 cu ft	
3. Growing N	ledia	Choose One Its" Rain Garden Gro Other (Explain):	owing Media
4. Underdrai	n System		
	derdrains provided?	Choose One YES	
B) Underd	rain system orifice diameter for 12 hour drain time		
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = 2.0 ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = <u>1,981</u> cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _o = 1 in	

	Design Procedure	e Form: Rain Garden (RG)
Designer: Company: Date: Project: Location:	JPS JPS September 20, 2024 NEW BREED FILING NO. 3 RAIN GARDEN I-9.1	Sheet 2 of 2
5. Impermea A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One YES NO
6. Inlet / Out A) Inlet C		Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided
7. Vegetatio	n	Choose One Seed (Plan for frequent weed control) Plantings Sand Grown or Other High Infiltration Sod
8. Irrigation A) Will th	e rain garden be irrigated?	Choose One YES NO
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Example Zone Configuration (Retention Pond)

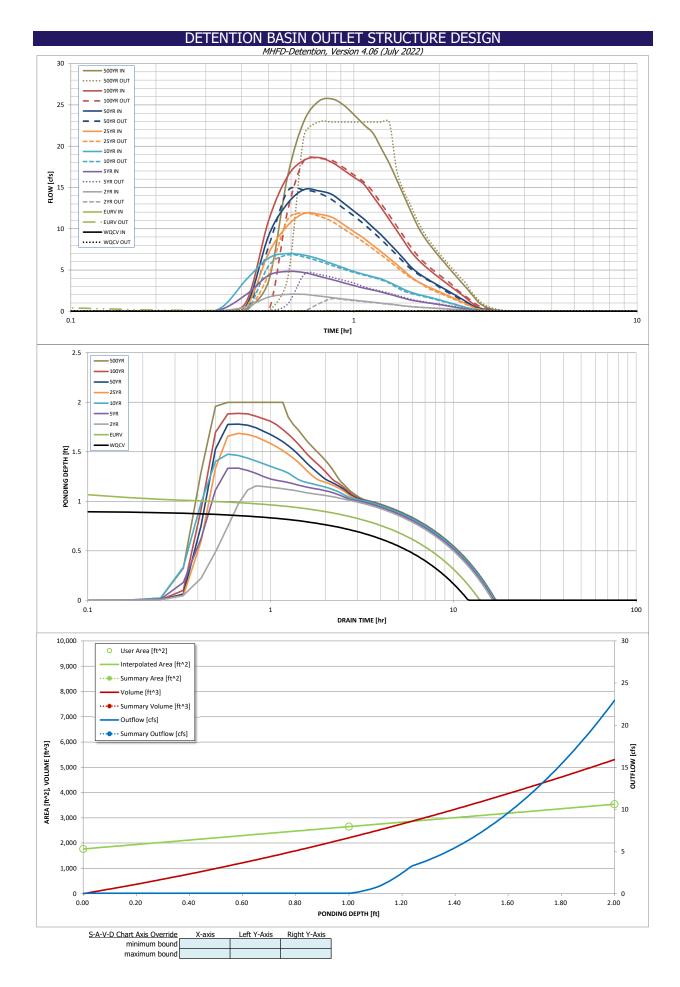
Watershed Information

Selected BMP Type =	RG	
Watershed Area =	13.90	acres
Watershed Length =	1,470	ft
Watershed Length to Centroid =	735	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	7.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	-

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Overrides
Water Quality Capture Volume (WQCV) =	0.045	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.089	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.154	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.369	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.588	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.991	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	1.260	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	1.653	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	2.361	acre-feet	3.14	inches
Approximate 2-yr Detention Volume =	0.055	acre-feet		-
Approximate 5-yr Detention Volume =	0.088	acre-feet		
Approximate 10-yr Detention Volume =	0.218	acre-feet		
Approximate 25-yr Detention Volume =	0.320	acre-feet		
Approximate 50-yr Detention Volume =	0.331	acre-feet		
Approximate 100-yr Detention Volume =	0.436	acre-feet		
		-		

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	0.045	acre-feet
Zone 2 Volume (User Defined - Zone 1) =	0.000	acre-feet
Select Zone 3 Storage Volume (Optional) =		acre-feet
Total Detention Basin Volume =	0.045	acre-feet

Total detention volume is less than 100-year volume. et

		Depth Increment =		ft							
		<u> </u>	ä	Optional			Area	Optional Override		Volume	
		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft ³)	Volume (ac-ft)
		Media Surface		0.00				1,767	0.041	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(de rej
		RG WSL=6996.0		1.00				2,652	0.061	2,209	0.051
		Top EL=6997.0		2.00				3,537	0.081	5,304	0.122
_	Overrides										
	acre-feet										
	acre-feet										
	inches										
	inches										
	inches										
	inches										
	inches										
	inches										
	inches										
	tion										
	ion iss than										
	lume.										
							L				

DETENTION BASIN OUTLET STRUCTURE DESIGN

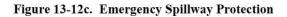
-	New Breed Ranch	Filing Three	IHFD-Detention, V	ersion 4.06 (July 2	2022)				
	Rain Garden I-9.1								
				Estimated	Estimated				
100.YB				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURV WOCV			Zone 1 (WQCV)	0.92	0.045	Filtration Media			
	100-YEAR ORIFICE		Zone 2 (User)	0.92	0.000	Weir&Pipe (Restrict)	1		
PERMANENT ORIFICES	ORIFICE		Zone 3				1		
	Configuration (Re	tention Pond)	20110 0	Total (all zones)	0.045		1		
User Input: Orifice at Underdrain Outlet (typical	vused to drain WC	CV in a Filtration B	MP)		0.045]	Calculated Parame	ters for Underdrair	
Underdrain Orifice Invert Depth =	2.00	i	the filtration media	surface)	Under	Irain Orifice Area =		ft ²	<u>1</u>
Underdrain Orifice Diameter =	1.05	inches		Surface)		Orifice Centroid =	0.04	feet	
	1.05	Jinenes			onderaran		0.01	licer	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WOCV an	d/or FURV in a sedi	imentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	N/A	1	bottom at Stage =			ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	N/A		bottom at Stage =		-	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	bottom at blage	0 10)		cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches				lliptical Slot Area =	N/A	ft ²	
	.,	1-4			_],,	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						
ober input budge und retain retain et alen ennie	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1
Orifice Area (sq. inches)	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	1
Ginice Area (sq. illelies)	L. 1975	1. 1975	1975	1975	1. 1975	1. 1975	1 1975	1 1975	-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-
Orifice Area (sq. inches)		N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	-
Office Area (sq. incres)	N/A	10/6	N/A	N/A		1. 19/6			1
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	ters for Vertical Or	ifice
	Not Selected	Not Selected					Not Selected	Not Selected	1
Invert of Vertical Orifice =	2.00		ft (relative to basir	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	1.77		ft ²
Depth at top of Zone using Vertical Orifice =	3.00		ft (relative to basir	-		Orifice Centroid =	0.75		feet
Vertical Orifice Diameter =	18.00		inches	····					
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	let Pipe)		Calculated Parame	ters for Overflow V	Veir
User Input: Overflow Weir (Dropbox with Flat o	· ·		tangular/Trapezoid	al Weir and No Out	let Pipe)			ters for Overflow V	<u>Veir</u>
	Zone 2 Weir	Not Selected				e Upper Edge, H+ =	Zone 2 Weir	ters for Overflow V Not Selected]
Overflow Weir Front Edge Height, Ho =	Zone 2 Weir 1.00	Not Selected	ft (relative to basin t		t) Height of Grate	e Upper Edge, H _t = 'eir Slope Lenath =	Zone 2 Weir 1.00		feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 2 Weir 1.00 4.00	Not Selected	ft (relative to basin t feet	pottom at Stage = 0 f	t) Height of Grate Overflow W	eir Slope Length =	Zone 2 Weir 1.00 2.50]
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 2 Weir 1.00 4.00 0.00	Not Selected	ft (relative to basin t feet H:V	oottom at Stage = 0 f Gr	t) Height of Grate Overflow W ate Open Area / 10	eir Slope Length = 0-yr Orifice Area =	Zone 2 Weir 1.00 2.50 23.80		feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 2 Weir 1.00 4.00 0.00 2.50	Not Selected	ft (relative to basin t feet	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 1.00 2.50 23.80 6.96		feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate	Not Selected	ft (relative to basin t feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 1.00 2.50 23.80		feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 2 Weir 1.00 4.00 0.00 2.50	Not Selected	ft (relative to basin t feet H:V	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 1.00 2.50 23.80 6.96		feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50%	Not Selected	ft (relative to basin t feet H:V feet %	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48	Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50%	Not Selected	ft (relative to basin t feet H:V feet %	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/	Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u>	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice)	אסטננסm at Stage = 0 f Gr סע C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Ope	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter:	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor	Not Selected	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba	אסטנלט at Stage = 0 f Gr סע C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter utlet Orifice Area =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29	Not Selected	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outled	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> : utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20	Not Selected	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> : utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29	Not Selected	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00	Not Selected estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outled	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> : utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20	Not Selected Flow Restriction P Not Selected N/A	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00	Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Outled ral Angle of Restric	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98	Not Selected Flow Restriction P Not Selected N/A	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10	Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric Spillway D	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00	Not Selected estrictor Plate, or R Not Selected ft (relative to basin feet	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / IC verflow Grate Open Overflow Grate Open C Ca C C C C C C C C C C C C C C C C C	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet feet	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00	Not Selected estrictor Plate, or R Not Selected ft (relative to basir feet H:V	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car car car car car car car car car car c	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 <u>Calculated Parame</u> 0.86 1.96 0.08	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet feet acres	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00	Not Selected estrictor Plate, or R Not Selected ft (relative to basin feet	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car car car car car car car car car car c	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet feet	feet feet ft ² ft ² late ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches bottom at Stage =	xottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent : 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Center Cente	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.12	Not Selected	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected estrictor Plate, or R Not Selected ft (relative to basin feet H:V feet ride the default CU/	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / IC verflow Grate Open Overflow Grate Open C C c c c c c c c c c c c c c c c c c	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12	Not Selected	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u>	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open C C C C C C C C C C C C C C C C C C C	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = <u>low of Freeboard =</u> low of Freeboard = low of Freeboard 	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet feet acres acre-ft columns W through 100 Year	feet feet ft ² ft ² feet feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 Trapezoidal) 1.10 5.00 4.00 WOCV N/A	Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Volume at T Basin Volume at T Centering new valu 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = liculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "25 Year 2.00	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet acres acreft plumns W through 100 Year 2.52	feet feet ft ² ft ² ft ² feet radians <u>500 Year</u> 3.14
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u><i>HP hydrographs and</i></u> <u>2 Year</u> 1.19 0.154	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>6 Year 1.50</u> 0.369	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open C C = 0 ft) O Uutlet ral Angle of Restric Spillway D Stage at T Basin Volume at T Basin Volume at T U entering new value 10.75 0.588	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Preeboard =	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.12 drographs table (CC 50 Year 2.25 1.260	Not Selected	feet feet ft ² ft ² feet radians <u>500 Year</u> <u>3.14</u> 2.361
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 Trapezoidal) 1.10 5.00 4.00 WOCV N/A	Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Volume at T Basin Volume at T Centering new valu 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = liculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "25 Year 2.00	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12	Not Selected Flow Restriction P Not Selected N/A ters for Spillway feet acres acreft plumns W through 100 Year 2.52	feet feet ft ² ft ² ft ² feet radians <u>500 Year</u> 3.14
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 O.00 The user can over WQCV N/A	Not Selected estrictor Plate, or R Not Selected ft (relative to basir feet H:V feet ride the default CUI EURV N/A 0.089 N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches the bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.154 0.154 1.5	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft) <u>6 runoff volumes by</u> <u>5 Year</u> <u>1 50</u> 0.369 0.369 4.2	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Dverflow Grate Open Carlow Grate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "op of Freeboard = "op of Freeboard = es in the Inflow Hy 25 Year 2.00 0.991 0.991 11.2	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260	Not Selected	feet feet ft² ft² ft² feet ft² foot and
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches the bottom at Stage = he bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.154 0.154 1.5 0.11</u>	xottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.369 0.369 4.2 0.30	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Carlow Grate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = "op of Freeboard = 25 Year 2.00 0.991 0.991 11.2 0.81	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 14.1 	Not Selected	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 The user can over WQCV N/A 0.045 N/A N/A N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.154 0.154 1.5	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.369 0.369 4.2 0.30 4.8	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Carlow Grate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = 25 Year 2.00 0.991 11.2 0.81 11.9	Zone 2 Weir 1.00 2.50 2.3.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 14.1 	Not Selected	feet feet ft ² ft ² feet radians 500 Year 3.14 2.361 2.361 2.5.1 1.81 25.7
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basinches inches the bottom at Stage = HP hydrographs and 2 Year 1.19 0.154 1.5	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.369 4.2 0.30 4.8 4.5	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Dverflow Grate Open Center = 0 ft) O Outlet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T 10 Year 1.75 0.588 6.3 0.46 7.0 6.8	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= - op of Freeboard = - 00 0.991 0.991 11.2 - 0.81 11.9 - 11.9 - 11.9	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 1.260 1.260 1.4.1 14.7	Not Selected	feet feet ft² ft² ft² ft² feet ft² feet soo Year 3.14 2.361 25.1 1.81 25.7 22.9
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% e (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 The user can over WQCV N/A 0.045 N/A N/A N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.154 0.154 1.5	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.369 0.369 4.2 0.30 4.8	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Carlow Grate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 0.991 11.2 0.81 11.9	Zone 2 Weir 1.00 2.50 2.3.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 14.1 	Not Selected	feet feet ft ² ft ² feet radians 500 Year 3.14 2.361 2.361 2.5.1 1.81 25.7
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 7 <i>Trapezoidal</i>) 1.10 5.00 4.00 0.00 7 <i>Trapezoidal</i>) 1.10 5.00 4.00 0.00 7 <i>N</i> /A N/A N/A N/A N/A N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches inches bottom at Stage = hottom at Stage = 0.154 1.19 0.154 1.5 0.11 2.0 1.5 N/A Spillway 0.17	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.369 4.2 0.369 4.2 0.369 4.8 4.5 1.1 Spillway 0.4	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car = 0 ft) O Utilet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T detering new value 10 Year 1.75 0.588 0.588 6.3 0.46 7.0 6.8 1.1 5pillway 0.4	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 14.1 4.7 14.7 1.0 Spillway 0.4	Not Selected	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 2.361 2.361 2.361 2.5.1 1.81 25.7 22.9 0.9 N/A 0.4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 Trapezoidal) 1.10 5.00 4.00 0.00 WQCV N/A	Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = 1/P hydrographs and 2 Year 1.19 0.154 0.154 0.154 0.15 0.15 0.15 0.15 0.17 N/A	asin bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 1 5 Year 0.369 0.369 0.369 4.8 4.5 1.1 Spiillway 0.4 N/A	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Volume at T Basin Volume at T Basin Volume at T Centering new Value 10 Year 1.75 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.46 7.0 6.8 1.1 Spillway 0.4 N/A	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "00 0.991 0.991 11.2 0.81 11.9 11.9 1.1 Spillway 0.4 N/A	Zone 2 Weir 1.00 2.50 23.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 1.261 14.1 14.7 1.0 14.7 1.0 N/A	Not Selected	feet feet ft² ft² ft² feet ft² feet state ft² feet state ft² feet radians 500 Year 3.14 2.361 25.1
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Plok (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 Trapezoidal) 1.10 5.00 4.00 0.00 WQCV N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches the bottom at Stage = here for the formation of the bottom at Stage = here for the formation of the here for the formation of the formation of the here for the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the formation of the here for the formation of the formation	xottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Area at T Basin Area at T Basin Volume at T Carlow Grate Open Stage at T Basin Volume at T Carlow Grate Open Carlow Gra	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = 25 Year 2.00 0.991 11.2 0.81 11.9 11.9 11.1 Spillway 0.4 N/A 9	Zone 2 Weir 1.00 2.50 2.3.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 1.260 1.260 1.260 1.260 1.27 1.0 Spillway 0.4 N/A 7	Not Selected	feet feet ft² ft² ft² feet ft² feet ft² feet ft² feet feet feet faile feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Predevelopment Unit Peak Rlow, q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c (Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 O.00 Trapezoidal) 1.10 5.00 4.00 0.00 WOCV N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches	xottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) = 0	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carl a Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T Basin Volume at T 0.588 0.588 6.3 0.46 7.0 6.8 0.46 7.0 6.8 1.1 Spillway 0.4 N/A N/A 12 15	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = liculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = 25 Year 2.00 0.991 11.2 0.81 11.9 11.9 11.9 1.1 Spillway 0.4 N/A 9 14	Zone 2 Weir 1.00 2.50 2.3.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 1.260 1.260 1.260 1.4.1 1.01 1.4.7 1.0 Spillway 0.4 N/A 7 1.3	Not Selected	feet feet ft² ft² ft² feet ft² feet radians 500 Year 3.14 2.361 25.1 1.81 25.7 22.9 0.9 N/A 0.4 N/A 2 11
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NewHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Plok (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir 1.00 4.00 0.00 2.50 Type C Grate 50% c(Circular Orifice, R Zone 2 Restrictor 2.00 18.00 4.00 Trapezoidal) 1.10 5.00 4.00 0.00 Trapezoidal) 1.10 5.00 4.00 0.00 WQCV N/A N/A	Not Selected	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches the bottom at Stage = here for the formation of the bottom at Stage = here for the formation of the here for the formation of the formation of the here for the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the here for the formation of the formation of the formation of the formation of the here for the formation of the formation	xottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 0.369 0.369 0.369 4.2 = 0.30 4.2 = 1.1 0.30 4.2 = 1.1 0.30 4.2 = 1.1 0.30 4.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Area at T Basin Area at T Basin Volume at T Carlow Grate Open Stage at T Basin Volume at T Carlow Grate Open Carlow Gra	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = 25 Year 2.00 0.991 11.2 0.81 11.9 11.9 11.1 Spillway 0.4 N/A 9	Zone 2 Weir 1.00 2.50 2.3.80 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 0.29 0.20 0.98 Calculated Parame 0.86 1.96 0.08 0.12 drographs table (CC 50 Year 2.25 1.260 1.260 1.260 1.260 1.260 1.260 1.27 1.0 Spillway 0.4 N/A 7	Not Selected	feet feet ft² ft² ft² feet ft² feet ft² feet ft² feet feet feet faile feet radians

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow	Hvdroai	ranhs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.


	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	0:20:00	0.00	0.00	0.04	0.14	0.26	0.04	0.05	0.06	0.25
	0:25:00	0.00	0.00	0.56	2.03	3.83	0.52	0.69	1.14	3.70
	0:30:00	0.00	0.00	1.72	4.36	6.45	7.07	9.20	11.04	16.36
	0:35:00	0.00	0.00	2.04	4.81	6.98	10.38	13.07	16.35	23.06
	0:40:00	0.00	0.00	2.04	4.69	6.80	11.85	14.75	18.30	25.43
	0:45:00	0.00	0.00	1.85	4.25	6.34	11.75	14.60	18.61	25.74
	0:50:00	0.00	0.00	1.66 1.49	3.85 3.46	5.78 5.27	11.42 10.53	14.17 13.15	18.06 17.15	25.02 23.82
	1:00:00	0.00	0.00	1.34	3.10	4.82	9.64	12.12	16.23	22.62
	1:05:00	0.00	0.00	1.22	2.81	4.47	8.84	11.19	15.41	21.58
	1:10:00	0.00	0.00	1.10	2.57	4.18	7.98	10.16	13.93	19.71
	1:15:00	0.00	0.00	0.98	2.33	3.90	7.19	9.22	12.52	17.92
	1:20:00	0.00	0.00	0.87	2.07	3.51	6.41	8.23	11.11	15.93
	1:25:00	0.00	0.00	0.76	1.82	3.08	5.67	7.28	9.79	14.03
	1:30:00	0.00	0.00	0.66	1.57	2.65	4.93	6.34	8.52	12.22
	1:35:00	0.00	0.00	0.56	1.37	2.32	4.22	5.43	7.32	10.55
	1:40:00	0.00	0.00	0.50	1.23	2.09	3.68	4.76	6.41	9.27
	1:45:00	0.00	0.00	0.46	1.11	1.90	3.28	4.25	5.71	8.28
	1:50:00 1:55:00	0.00	0.00	0.42	1.01	1.73	2.94	3.82	5.11	7.42
	2:00:00	0.00	0.00	0.38	0.91 0.81	1.56	2.64 2.37	3.43	4.57	6.64
	2:05:00	0.00	0.00	0.34	0.81	1.39 1.22	2.37	3.08 2.73	4.08 3.61	5.93 5.24
	2:10:00	0.00	0.00	0.26	0.61	1.05	1.84	2.40	3.16	4.59
	2:15:00	0.00	0.00	0.22	0.52	0.89	1.60	2.07	2.75	3.98
	2:20:00	0.00	0.00	0.18	0.42	0.73	1.35	1.76	2.34	3.39
	2:25:00	0.00	0.00	0.14	0.33	0.59	1.11	1.45	1.94	2.80
	2:30:00	0.00	0.00	0.11	0.24	0.44	0.87	1.14	1.54	2.23
	2:35:00	0.00	0.00	0.07	0.15	0.30	0.63	0.83	1.14	1.65
	2:40:00	0.00	0.00	0.04	0.09	0.20	0.40	0.53	0.75	1.12
	2:45:00	0.00	0.00	0.02	0.05	0.14	0.24	0.34	0.49	0.76
	2:50:00	0.00	0.00	0.01	0.04	0.11	0.15	0.22	0.32	0.53
	2:55:00 3:00:00	0.00	0.00	0.01	0.03	0.09	0.09	0.15	0.21	0.36
	3:05:00	0.00	0.00	0.01	0.02	0.07	0.06	0.10	0.13	0.24
	3:10:00	0.00	0.00	0.00	0.02	0.03	0.04	0.07	0.03	0.09
	3:15:00	0.00	0.00	0.00	0.01	0.03	0.02	0.03	0.01	0.05
	3:20:00	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.01	0.03
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:35:00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT:	NEW BREED RANCH FILING THREE - CHANNEL I-9.1 (RR RUNDOWN TO RG)
----------	---

RIPRAP SIZING: d ₅₀ > [(VS ^{0.17}) / (4.5(Gs - 1) ^{0.66})] ²		(USDCM EQUATION 8-11)
ASSUMPTIONS: V = S = Gs = d ₅₀ =	5.90 FPS 0.083 FT/FT 2.5	MEAN CHANNEL VELOCITY LONGITUDINAL SLOPE SPECIFIC GRAVITY OF STONE CALCULATED MEAN ROCK SIZE
CALCULATED RIPRAP SIZE: d ₅₀ = d ₅₀ = SELECTED MEAN RIPRAP SIZE =	0.43 FT 5.18 INCHES 12 INCHES	(TYPE M SOIL RIPRAP)

New Breed Ranch Filing Three Rain Garden I-9.1 Spillway

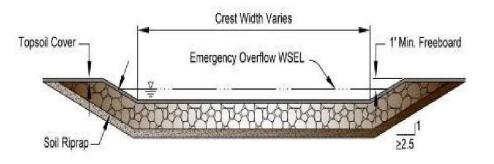
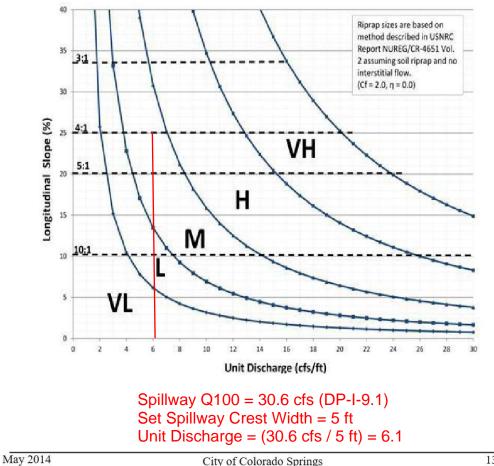



Figure 13-12d. Riprap Types for Emergency Spillway Protection

Drainage Criteria Manual, Volume 1

Storage

JPS ENGINEERING

NEW BREED RANCH FILING THREE ENGINEER'S COST ESTIMATE DRAINAGE IMPROVEMENTS - WATER QUALITY RAIN GARDEN					
Item	Description	Quantity	Unit	Unit	Total
No.				Cost	Cost
				(\$\$\$)	(\$\$\$)
	PRIVATE DRAINAGE FACILITIES (NON-REIMBURSABLE)				
	Earthwork	200	CY	\$5	\$1,000
	Aggregate Base Course (Access Ramp)	12	CY	\$66	\$792
	Riprap Rundown / Apron	55	TN	\$104	\$5,720
	Rain Garden Infiltration Media	150	CY	\$20	\$3,000
	4" PVC Underdain	65	LF	\$20	\$1,300
	18" HDPE Outlet Pipe	28	LF	\$82	\$2,296
	Outlet Structure	1	LS	\$5,000	\$5,000
	Buried Soil Riprap Spillway	14	TN	\$104	\$1,456
	SUBTOTAL				\$20,564
	Engineering @ 10%				\$2,056
	Contingency @ 5%				\$1,028
	TOTAL (NON-REIMBURSABLE)				\$23,649
	Note: This estimate does not include costs for street improvements and general civil c	osts (curb & g	utter, crossp	ans, retaining wa	alls, etc.)
the engin prices an as design	estimate submitted herein is based on time-honored practices within the construction in here does not control the cost of labor, materials, equipment or a contractor's method of or d competitive bidding practices or market conditions. The estimate represents our best j professionals using current information available at the time of the preparation. The en e that proposals, bids and/or construction costs will not vary from this cost estimate.	determining udgement	h		

APPENDIX E

SITE PHOTOGRAPHS

Existing Culvert P - 48" CMP Inlet with RR apron (facing NE; typical vegetation within Filing Three)

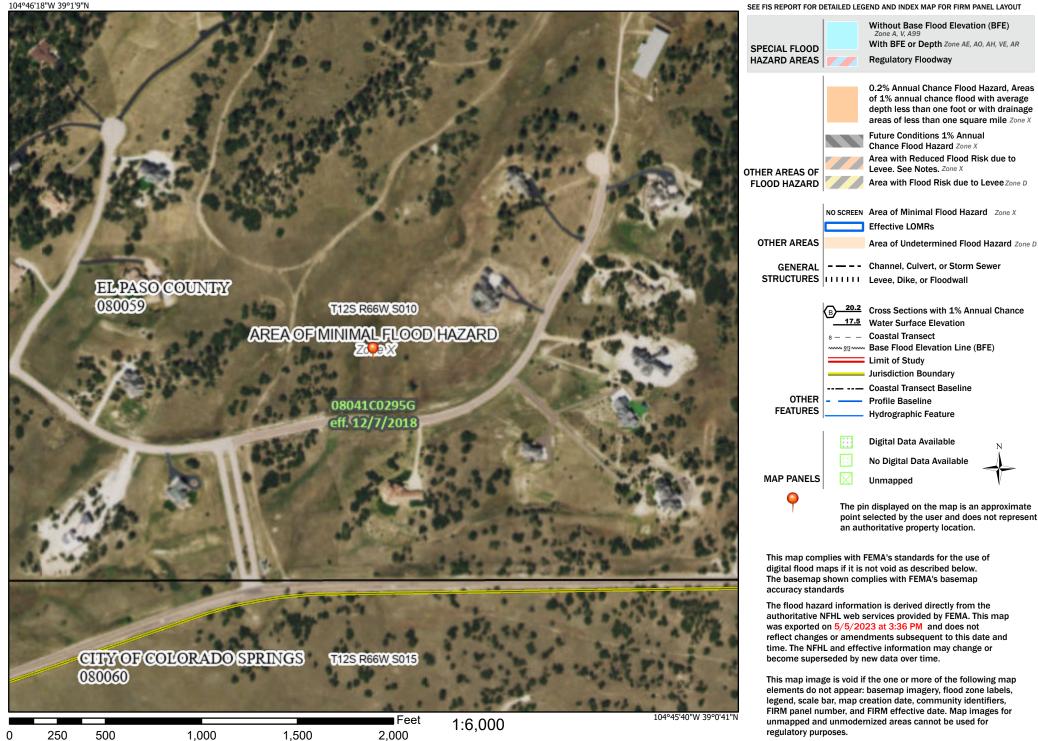
Existing Culvert P - RR outlet apron and stable grass-lined channel downstream

Existing Culvert Q – 30" CMP Inlet with RR apron (facing SW)

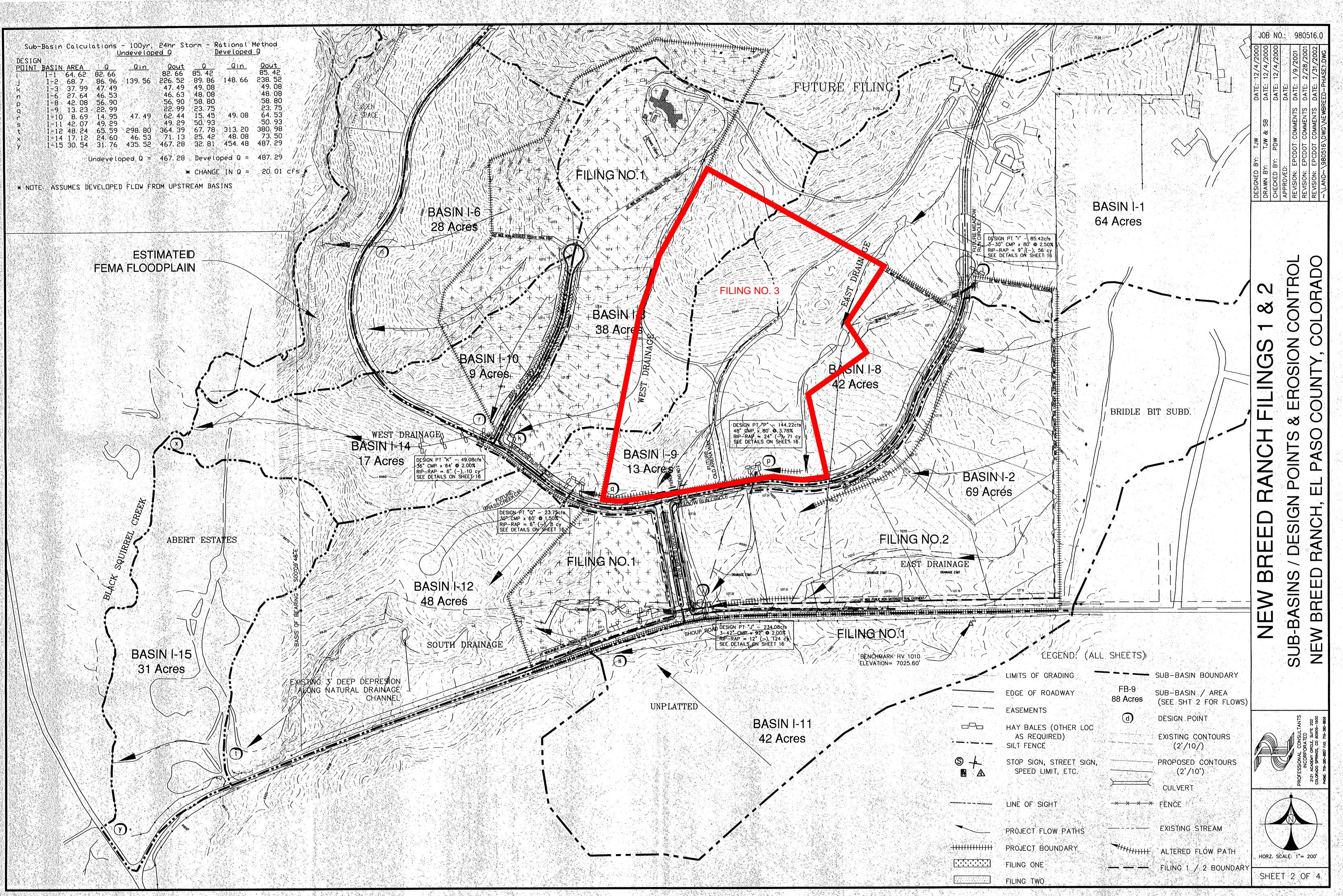
Existing Culvert Q – RR outlet apron and stable grass-lined channel downstream

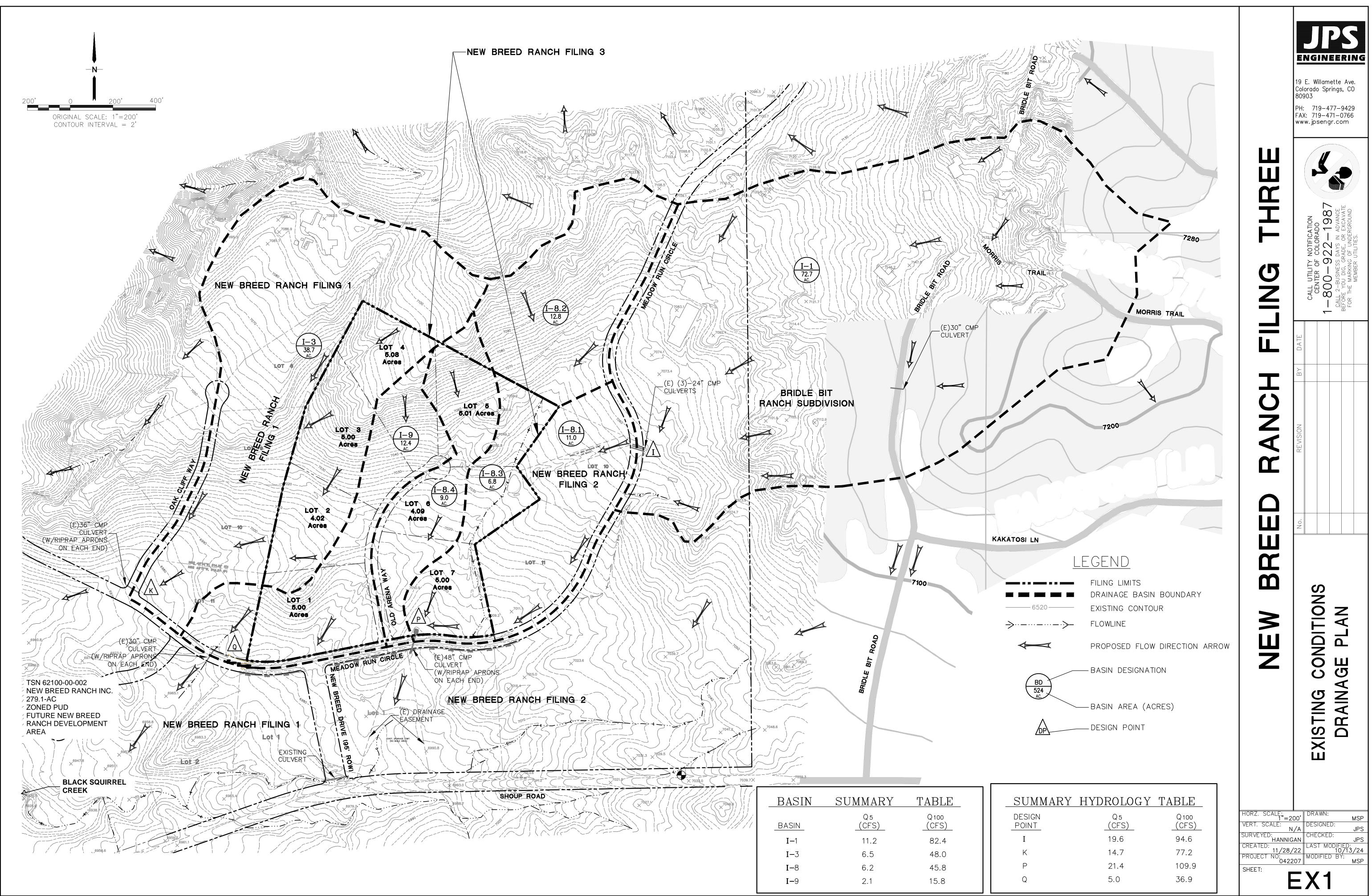
Existing Culvert K – 36" CMP Inlet with RR apron (facing west

Existing Culvert K – RR outlet apron and stable grass-lined channel downstream

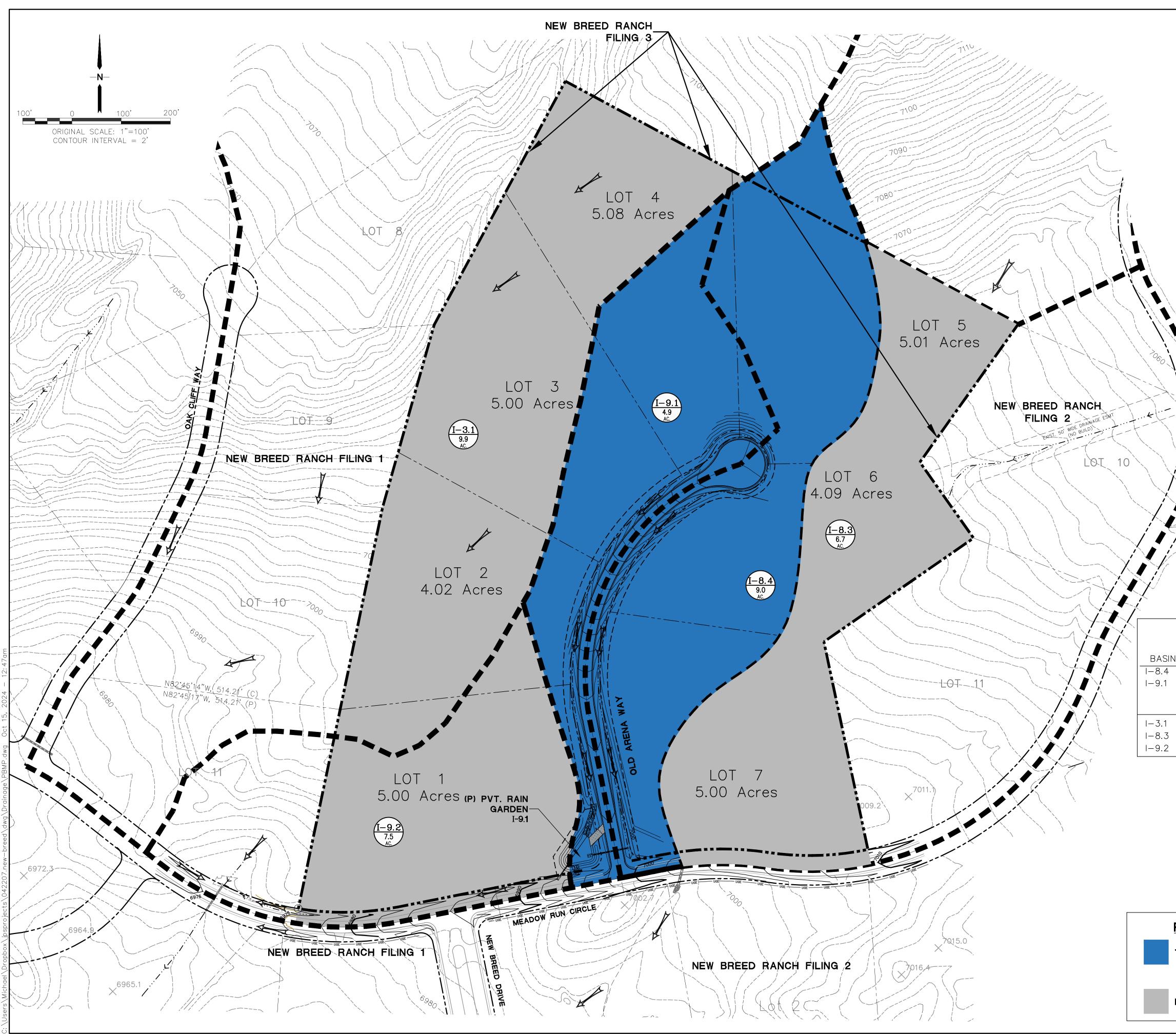

APPENDIX F

FIGURES

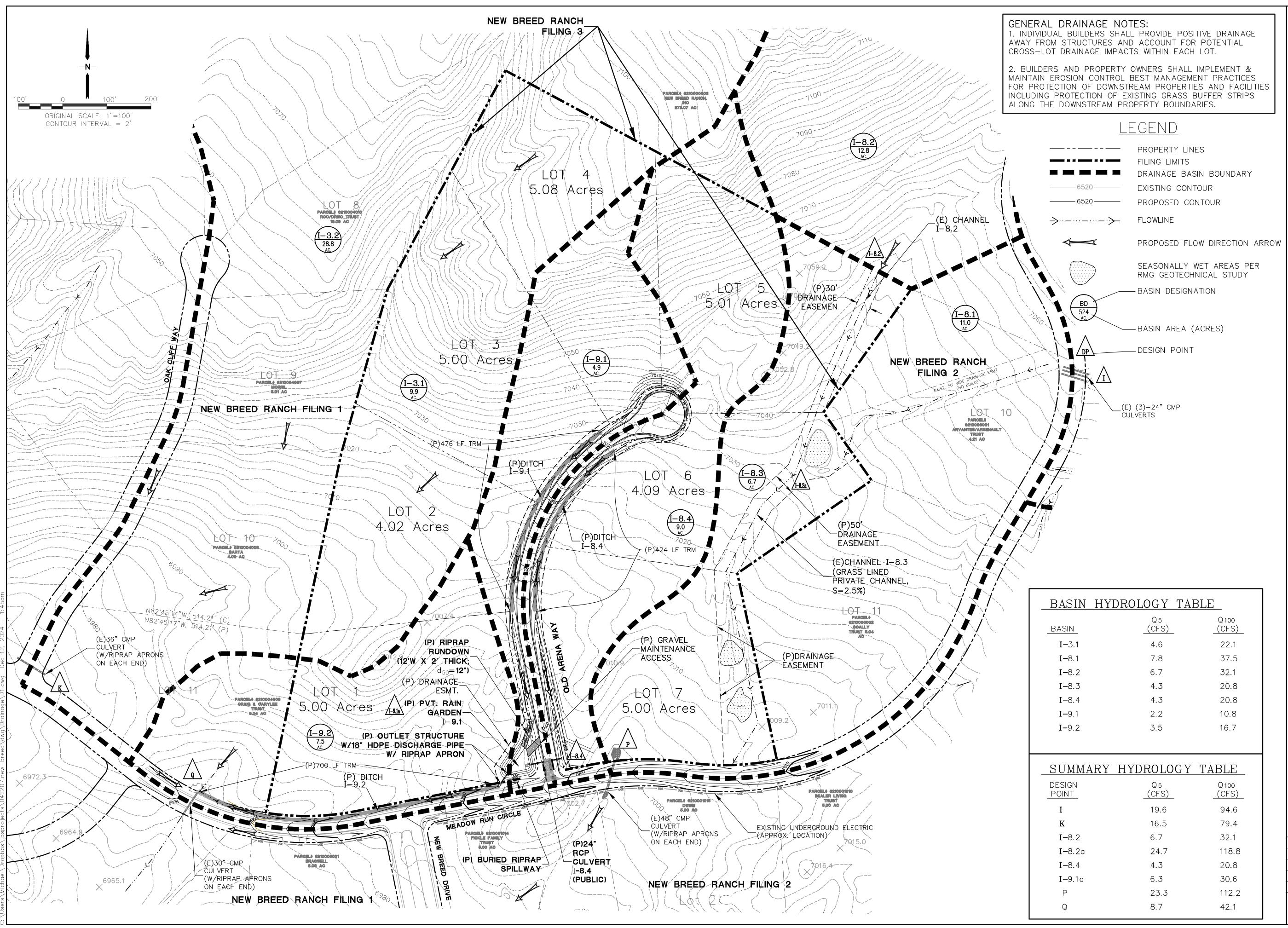

National Flood Hazard Layer FIRMette



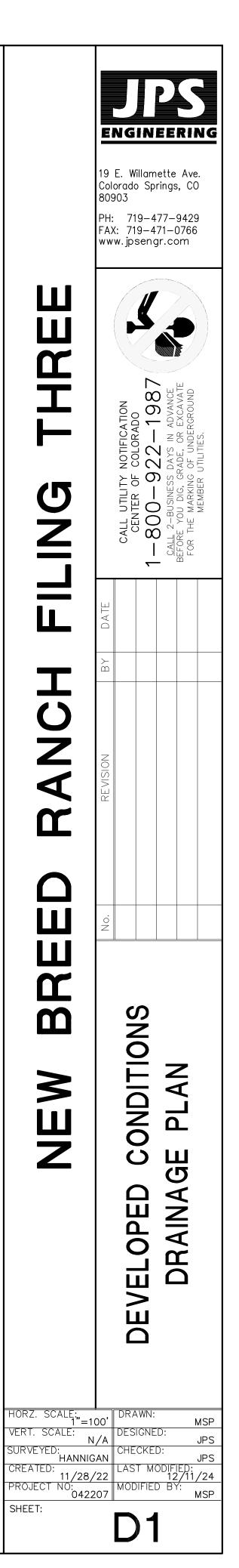
Legend



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020



rs\Michael\Dropbox\jpsprojects\042207.new-breed\dwg\Drainage\EX1.dwg Oct 13, 2024 - 5:31pm



PBM 5INS / 4 1 1 3 2 2 ** LO	BMP SUM P TRIBUTAR AREA (AC) 9.0 4.9 9.9 6.7 7.5 EXCLUDED	MARY TABLE Y PBMP RAIN GARDEN I-9.1 RAIN GARDEN I-9.1 EXCLUDED **	NEW BREED RANCH FILING THREE	Image: Second
	TO RAIN	GARDEN I-9.1 IP REQUIREMENTS PER ECI	M SHEET:	=100' DRAWN: MSP =100' DESIGNED: JPS N/A CHECKED: JPS IIGAN LAST MODIFIED:

BASIN	HYDROLOGY	TABLE
BASIN	Q5 (CFS)	Q100 (CFS)
I– 3.1	4.6	22.1
I- 8.1	7.8	37.5
I- 8.2	6.7	32.1
I- 8.3	4.3	20.8
I- 8.4	4.3	20.8
I- 9.1	2.2	10.8
I- 9.2	3.5	16.7

SUMMARY	HYDROLOGY	TABLE
DESIGN POINT	Q5 (CFS)	Q100 (CFS)
Ι	19.6	94.6
K	16.5	79.4
I- 8.2	6.7	32.1
I-8 .2a	24.7	118.8
I- 8.4	4.3	20.8
I- 9.1a	6.3	30.6
Ρ	23.3	112.2
Q	8.7	42.1

