FINAL DRAINAGE REPORT

for

LARGENT SUBDIVISION 6985 MERIDIAN ROAD

Prepared for:

Mr. David Largent 6485 Alibi Circle Colorado Springs, CO 80923

> January 18, 2018 Revised April 18, 2018 Revised May 14, 2018

> > **Prepared by:**

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 FAX www.jpsengr.com

JPS Project No. 091701 PCD Project No. SF-18-003

LARGENT SUBDIVISION – 6985 MERIDIAN ROAD FINAL DRAINAGE REPORT <u>TABLE OF CONTENTS</u>

PAGE

	DRAINAGE STATEMENT	i
I.	INTRODUCTION	1
II.	EXISTING DRAINAGE CONDITIONS	2
III.	PROPOSED DRAINAGE CONDITIONS	2
IV.	DRAINAGE PLANNING FOUR STEP PROCESS	3
V.	FLOODPLAIN IMPACTS	4
VI.	STORMWATER DETENTION AND WATER QUALITY	4
VII.	DRAINAGE BASIN FEES	5
VIII.	SUMMARY	6

APPENDICES

APPENDIX A	Hydrologic Calculations
APPENDIX B	Hydraulic Calculations
APPENDIX C	Detention Pond Calculations

APPENDIX D	Figures
Figure A1	Vicinity Map
Figure FIRM	Floodplain Map
Sheet EX1	Historic Drainage Plan
Sheet D1	Developed Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. #29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

David Largent, Owner 6485 Alibi Circle Colorado Springs, CO 80923

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator

Conditions:

Date

Date

I. INTRODUCTION

A. Property Location and Description

Big O Tires is planning to construct a new auto sales and service facility on a developed 1.2-acre property (El Paso County Assessor's Parcel No. 53124-01-008) located at the southeast corner of US Highway 24 (US24) and Meridian Road in the Falcon area of El Paso County, Colorado. The site is zoned Community Commercial (CC), and the proposed auto repair facility will require processing of a special use permit and a site development plan prior to establishing the use. The property is currently an unplatted tract described as a portion of Section 7, Township 13S, Range 64W, and a portion of Section 12, Township 13S, Range 65W of the 6th P.M., El Paso County, Colorado. The project will include platting the property as a single lot, which will be described as Lot 1, Largent Subdivision.

The north boundary of the property adjoins US Highway, and existing commercial development is located to the north across US24. The west boundary of the site adjoins Meridian Road, and existing commercial center is located to the west across Meridian Road. The property adjoins developed ranch properties to the east and south.

The proposed Site Development Plan consists of demolishing the existing buildings within the property and constructing a new 6,474 square-foot, single-story auto sales and service building, along with associated parking and site improvements. Access will be provided by a private access drive connection to Meridian Road at the western site boundary, in close proximity to the existing site access drive.

B. Scope

In support of the Subdivision Plat and Site Development Plan submittals to El Paso County, this report is intended to meet the requirements of a Final Drainage Report in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development. The report will analyze impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

C. References

City of Colorado Springs & El Paso County "Drainage Criteria Manual," revised November, 1991.

City of Colorado Springs "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014.

El Paso County "Engineering Criteria Manual," January 9, 2006.

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0575F, March 17, 1997.

Matrix Design Group, "Falcon Drainage Basin Planning Study," September, 2015.

USDA/NRCS, "Custom Soil Resource Report for El Paso County Area, Colorado," December 10, 2017.

II. EXISTING DRAINAGE CONDITIONS

The existing site topography generally slopes downward to the southwest with grades in the range of 1-3 percent. According to the Soil Survey of El Paso County prepared by the Soil Conservation Service (SCS), on-site soils are comprised of Columbine gravelly sandy loam soils, and these well-drained soils are classified as hydrologic soils group "A" (see Appendix A).

As shown on the enclosed Existing Drainage Plan (Sheet EX1, Appendix D), the site has been delineated as one on-site drainage basin, and the site is not impacted by any off-site drainage basins.

According to the 2015 "Falcon Drainage Basin Planning Study" (DBPS) by Matrix Design Group, this site is located between the West and Middle Tributary Channels of the Falcon Drainage Basin, and there are no DBPS improvements associated with this site.

The on-site area has been delineated as Basin A, which sheet flows towards the southwest corner of the property. The existing site is developed with several buildings, and the majority of the site is covered by compacted gravel. Existing flows from Basin A drain to Design Point #1, existing peak flows calculated as $Q_5 = 2.2$ cfs and $Q_{100} = 4.8$ cfs. Hydrologic calculations are enclosed in Appendix A.

III. PROPOSED DRAINAGE CONDITIONS

As shown on the enclosed Drainage Plan (Figure D1, Appendix A), the site has been delineated as two on-site drainage basins. Developed flows have been calculated based on the impervious areas associated with the proposed building and parking areas.

The majority of the developed site has been delineated as Basin A1, which will drain southerly across the site to a proposed stormwater detention pond along the southern boundary of the property. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building. Surface drainage swales and a private storm sewer system will be convey developed flows to the proposed extended detention basin (EDB) at the south boundary of the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to the proposed detention basin. Concrete crosspans and curb and gutter will convey surface drainage from the north and east sides of the building to a curb opening at the southeast corner of the parking lot, and a drainage swale will convey flow from the curb opening into Extended Detention Basin A1 along the south boundary of the site. Private Storm Inlets A1.1 and A1.2 will intercept surface drainage along the west side of the building, and Private Storm Sewer A1.1 (12") will flow southeasterly into Extended Detention Basin A1.

Developed peak flows at Design Point #A1 are calculated as $Q_5 = 2.9$ cfs and $Q_{100} = 5.8$ cfs. After routing through Extended Detention Basin A1, detained peak flows at Design Point #A1 are calculated as $Q_5 = 0.0$ cfs and $Q_{100} = 0.8$ cfs. The proposed 12" discharge pipe from Detention Basin A1 will flow to the southwest corner of the property and drain into the improved ditch along the east side of Meridian Road.

Developed Basin A2 consists of the area along the west fringe of the site which will continue to sheet flow southwesterly following existing drainage patterns. According to the El Paso County roadway plans for "Meridian Road Improvements," the upcoming County road project will include an improved ditch along the east side of North Meridian Road adjacent to this site. An 18-inch RCP private driveway culvert will be provided at the site access drive connection to Meridian Road.

Basin A2 will sheet flow southwesterly to Design Point #A2, with developed peak flows calculated as $Q_5 = 0.6$ cfs and $Q_{100} = 1.1$ cfs.

Basins A1 and A2 combine at Design Point #1, with developed peak flows calculated as $Q_5 = 3.3$ cfs and $Q_{100} = 6.7$ cfs. Detained peak flows at Design Point #1 are calculated as $Q_5 = 0.6$ cfs and $Q_{100} = 1.9$ cfs.

Hydrologic calculations for the site are detailed in the attached spreadsheets (Appendix A), and peak flows are identified on Figures EX1 and D1 (Appendix D).

The contractor will be required to implement standard best management practices for erosion control during construction.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Minimize Impacts: The proposed auto service facility is being constructed on a previously developed site, so this re-development project will inherently minimize drainage impacts in comparison to development of a vacant site. Recognizing the existing compacted gravel covering the majority of the site, the proposed re-development of the site will result in a relatively small net increase in impervious site development.

Step 2: Stabilize Drainageways

• There are no drainageways directly adjacent to this project site. This site is a redevelopment project, and implementation of the proposed on-site drainage improvements and Detention Basin will minimize the downstream drainage impact from this site.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: The developed site will drain through a proposed Extended Detention Basin (EDB) along the south boundary of the property. Site drainage will be routed through the extended detention basin, which will capture and slowly release the WQCV over a 40-hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No outside storage or industrial uses are proposed for this site.
- The proposed commercial development project will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the private Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

V. FLOODPLAIN IMPACTS

Floodplain limits in vicinity of this site are delineated in the applicable Flood Insurance Rate Map, FIRM Panel No. 08041C0575 dated March 17, 1997, which was revised by Letter of Map Revision (LOMR) Case No. 01-08-226P dated May 14, 2002. As depicted in the FIRM exhibit enclosed in Appendix D, this site is not impacted by any delineated 100-year FEMA floodplains.

VI. STORMWATER DETENTION AND WATER QUALITY

The proposed drainage and grading plan for the site includes a private Extended Detention Basin (EDB) at the south boundary of the site. This facility has been designed to provide the required stormwater detention and water quality mitigation for this site in accordance with El Paso County drainage criteria. The required detention volumes for this site have been calculated based on the net impervious area increase associated with re-development of the site. Recognizing that the majority of the existing site is covered with compacted gravel, the net impervious area increase has been calculated as 4.4 percent as tabulated in Appendix C. For conservative drainage design, we have calculated the required detention volumes based on a net impervious area increase of 20 percent, which significantly exceeds the actual impervious area increase.

As detailed in the detention pond hydraulic calculations in Appendix C, the required Water Quality Capture Volume has been calculated as 0.012 acre-feet, and the total Full-Spectrum Detention Volume for this site has been calculated as 0.048 acre-feet. The proposed Extended Detention Basin (EDB) A1 has been designed for a storage volume of 0.064 acre-feet, which meets the required full-spectrum detention volume, and the outlet structure has been designed to discharge well below the existing peak flow rates.

The proposed pond outlet structure has been designed using the UDFCD "UD-Detention" calculation spreadsheets, providing for a 40-hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The EDB will have a grass-lined bottom and riprap trickle channel to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The proposed stormwater detention facility will be privately owned and maintained by the property owner, and maintenance access will be provided from the adjacent parking lot.

VII. DRAINAGE BASIN FEES

Development of this commercial site will include construction of a private storm sewer system and private stormwater detention and water quality facilities within the site.

The site lies entirely within the Falcon Drainage Basin, which is tributary to the Black Squirrel Creek Drainage Basin. The Falcon Drainage Basin is subject to an El Paso County 2018 drainage basin fee of \$27,762 per impervious acre, and a bridge fee of \$3,814 per impervious acre. The required drainage and bridge fees are due at the time of recording the subdivision plat.

According to El Paso County Engineering Criteria Manual Section 3.13a, the required drainage basin fees for subdivision plats are assessed based upon the new impervious area if no such fee has been previously paid. As such, the required basin fees are calculated based on the developed impervious area calculation for this site.

The required drainage and bridge fees are calculated as follows:

Platted Area: Developed Impervious Area: Net Impervious Area:	(1.227 ac.) * 68.0% =	1.227 acres 68.0% 0.834 ac.
Drainage Fee: Bridge Fee: Total Basin Fees:	(0.834 ac.) @ (\$27,762/ac.) = (0.834 ac.) @ (\$3,814/ac.) =	\$ 23,153.51 <u>\$ 3,180.88</u> \$ 26,334.39

VIII. SUMMARY

The developed drainage patterns associated with the proposed Big O Tires development at the southeast corner of US24 and Meridian Road will remain consistent with existing conditions and the overall drainage plan for area. Developed flows from the site will drain through a proposed stormwater Detention Pond at the south boundary of the property prior to discharging to the existing downstream drainage system.

The proposed stormwater detention and water quality facilities have been designed to mitigate developed flow impacts and meet the County's stormwater detention and water quality requirements. Construction and proper maintenance of the proposed Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS

Web Soil Survey National Cooperative Soil Survey Hydrologic Soil Group—El Paso County Area, Colorado (6985 N. Meridian Road, Falcon, CO)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	0.9	100.0%
Totals for Area of Intere	st	1	0.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-y	ear	5-y	rear	۱0- ۲	year	ץ-25	/ear	י-50	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial												ł – –	
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripran select C value based on type of y	agetative cover

Table 6-7.	Conveyance	Coefficient, C_{ν}
-------------------	------------	------------------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

BIG O TIRES - FALCON COMPOSITE RUNOFF COEFFICIENTS

	S
	~
	2
	E
	~
	ဗ
	Ö
	Ż
	E.
	2
	Ш
1	

5-YEAR C VALUES	~										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT /		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	c	(AC)	COVER	ပ	C VALUE
A	1.2	0.04	BUILDING / ASPHALT	0.9	0.92	GRAVEL	0.59	0.26	LANDSCAPED	0.08	0.491
100-YEAR C VALUES	ES										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/	_		DEVELOPMENT /		WEIGHTED
BASIN	(AC)	(AC)	COVER	с	(AC)	COVER	U	(AC)	COVER	υ	C VALUE

0.634

0.35

LANDSCAPED

0.26

0.7

GRAVEL

0.92

0.96

BUILDING / ASPHALT

0.04

1.2

	s
	õ
	Ĕ
	Z
	ខ
	B
	Ы
	Ш
	Ň
ļ	۵

	ũ
	2
	2
	\$
	-
	¢
	۵
	< 11
	5
	ĩ

D-TEAR C VALUES											
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/	_		DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	c	C VALUE
A1	1.06	0.72	BUILDING / ASPHALT	0.9	0.34	LANDSCAPED	0.08				0.637
A2	0.17	0.12	BUILDING / ASPHALT	0.9	0.05	LANDSCAPED	0.08				0.640
A1,A2	1.23	0.83	BUILDING / ASPHALT	0.9	0.40	LANDSCAPED	0.08				0.637
100-YEAR C VALUES	ES										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/	_		DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	c	C VALUE
A1	1.06	0.72	BUILDING / ASPHALT	0.96	0.34	LANDSCAPED	0.35				0.764
A2	0.17	0.12	BUILDING / ASPHALT	0.96	0.05	LANDSCAPED	0.35				0.766
A1,A2	1.23	0.83	BUILDING / ASPHALT	0.96	0.40	LANDSCAPED	0.35				0.765

BIG O TIRES - FALCON RATIONAL METHOD

EXISTING FLOWS

1						
	:LOW	Q100 ⁽⁶⁾	(CFS)		4.80	
	PEAK FLOW	Q5 ⁽⁶⁾	(CFS)		2.22	
	INTENSITY ⁽⁵⁾	100-YR	(IN/HR)		6.31	
	INTEN	5-YR	(IN/HR)		3.76	
		Tc ⁽⁴⁾	(NIN)		12.8	
	TOTAL	Tc ⁽⁴⁾	(MIN)		12.8	
		Tt ⁽³⁾	(MIN)		1.6	
	SCS ^(z)	VELOCITY	(FT/S)		3.05	
		SLOPE	(FT/FT)		0.0233	
Clie	CONVEYANCE CONVEYANCE	ENGTH COEFFICIENT	c		20.00	
	CHANNEL	LENGTH	(FT)		300	
w		Tco ⁽¹⁾	(MIN)		11.1	
		SLOPE	(FT/FT)		0.010	
2		LENGTH	(FT)		100	
	с С	5-YEAR ⁽⁷⁾ 100-YEAR ⁽⁷ LENGTH		-	0.634	
		5-YEAR ⁽⁷⁾			0.491	
		AREA	(AC)		1.2	
		DESIGN /	POINT		1	
		BASIN			A	

DEVELOPED FLOWS

					C	UVERIAND FIOW	Ň		CUA	Channel TIOW								
			5	0				CHANNEL	CHANNEL CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTENSITY ⁽⁵⁾	ΙTY ⁽⁵⁾	PEAK FLOW	MO
BASIN	DESIGN		5-YEAR ⁽⁷⁾	5-YEAR ⁽⁷⁾ 100-YEAR ⁽⁷⁾ LENGTH	LENGTH	I SLOPE	Tco ⁽¹⁾	Ξ	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FT)	U	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)		(IN/HR)	(CFS)	(CFS)
																	-	
	A1	1.06	0.637	0.764	45	0.026	4.1	570	20.00	0.009	1.90	5.0	9.1	9.1	4.26	7.16	2.88	5.80
	A2	0.17	0.640	0.766	02	0.036	4.6	150	20.00	0.023	3.03	0.8	5.4	5.4	5.05	8.47	0.55	1.10
	1	1.23	0.637	0.765									9.1	9.1	4.26	7.16	3.34	6.74
																	-	

DETAINED FLOWS

			T	1			
	MOT	Q100 ⁽⁶⁾ (CFS)		0.80	1.10	1.90	
	PEAK FLOW	(CFS) (⁶⁾		0.00	0.55	0.55	
	SITΥ ⁽⁵⁾	100-YR (IN/HR)					
	INTENSITY ⁽⁵⁾	5-YR (IN/HR)					
	TOTAL	Tc ⁽⁴⁾ (MIN)					
	TOTAL	Tc ⁽⁴⁾ (MIN)					
		14 (3) (MIN)					
	SCS ⁽²⁾	VELOCITY (FT/S)					
Channel TIOW		SLOPE (FT/FT)					
Cua	CHANNEL CONVEYANCE	LENGTH COEFFICIENT (FT) C					
	CHANNEL	LENGTH (FT)					
ž		Tco ⁽¹⁾ (MIN)					
Veriand Flow		SLOPE (FT/FT)					
<u> </u>		T LENGTH					
	с U	5-YEAR ⁽⁷⁾ 100-YEAR ^{(7]} LENGTH SLOPE (FT) (FT)				0.765	
		5-YEAR ⁽⁷⁾				0.637	
		AREA (AC)		1.06	0.17	1.23	
		DESIGN		A1	A2	-	
		BASIN		A1 (DETAINED)	A2	A1,A2	

OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))
 SCS VELOCITY = C * ((SLOPE (FT)+7)-0.5) C = 2.5 FOR HEAVY MEADOW C = 5 FOR TILEADOW C = 7 FOR SHORT PASTURE AND LAWNS C = 10 FOR NEARLY BARE GROUND C = 15 FOR REARLY BARE GROUND C = 15 FOR RASSED WATERWAY C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN) 4) Tc = Tco + Tt *** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL $I_5 = -1.5 * In(Tc) + 7.583$

 $l_{100} = -2.52 * ln(Tc) + 12.735$ 6) Q = CiA

RATL.BIG-O-FALCON-0518.xls

APPENDIX B

HYDRAULIC CALCULATIONS

JPS ENGINEERING

BIG O TIRE - FALCON STORM INLET SIZING SUMMARY

	INLET CAPACITY (CFS)	3.9	6.8	
	INLET SIZE	SGL	SGL	
	INLET CONDITION / TYPE	SUMP TYPE 16	SUMP TYPE 16	
	Q100 FLOW (CFS)	1.5	4.4	
M	Q5 FLOW (CFS)	0.7	2.2	
INLET FLOW	Q5 Q100 INLET FLOW FLOW FLOW % (CFS) (CFS) OF BASIN	25	75	
	Q100 FLOW (CFS)	5.8	5.8	
LOW	Q5 FLOW (CFS)	2.9	2.9	
BASIN FLOW	DP	-	-	
	INLET	A1.1	A1.2	

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.523	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.94	0.94	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.94	0.94	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.9	3.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.7	1.5	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) Denver No. 16 Combination		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Combination	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	9.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	0.773	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.58	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.94	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.94	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.9	6.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.2	4.4	cfs

BIG O TIRE - FALCON STORM SEWER SIZING SUMMARY

	PIPE FLOW			PIPE CAPACITY	Y	
		PLOW Q5	Q100 FLOW	PIPE	MIN. PIPE	FULL PIPE CAPACITY
PIPE	BASINS	(CFS)	(CFS)	SIZE	SLOPE	(CFS)
A1.1	A1.1	0.7	1.5	12	1.0%	3.6
ASSUMF 1. STOR	ASSUMPTIONS: 1. STORM DRAIN PIPE ASSUMED 1	TO BE RCP OR HDPE	k HDPE			

Hydraulic Analysis Report

Project Data

Project Title:Big-O-FalconDesigner:JPSProject Date:Thursday, January 18, 2018Project Units:U.S. Customary UnitsNotes:

Channel Analysis: SD-A1.1

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.0000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0130 Depth: 1.0000 ft

Result Parameters

Flow: 3.5628 cfs Area of Flow: 0.7854 ft^2 Wetted Perimeter: 3.1416 ft Hydraulic Radius: 0.2500 ft Average Velocity: 4.5363 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 0.8057 ft Critical Velocity: 5.2542 ft/s Critical Slope: 0.0103 ft/ft Critical Top Width: 0.79 ft Calculated Max Shear Stress: 0.6240 lb/ft^2 Calculated Avg Shear Stress: 0.1560 lb/ft^2

APPENDIX C

DETENTION POND CALCULATIONS

JPS ENGINEERING

BIG O TIRES - FALCON IMPERVIOUS AREAS

IMPERVIOUS AREAS	EAS										
EXISTING CONDITIONS	TIONS										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT	WEIGHTED % IMP
A	1.2	0.04	BUILDINGS	100	0.92	GRAVEL	80	0.26	LANDSCAPED	0	63.607
DEVELOPED CONDITIONS	IDITIONS										
	TOTAL AREA		SUB-AREA 1 DEVELOPMENT/	PERCENT	AREA	SUB-AREA 2 DEVELOPMENT/	PERCENT		SUB-AREA 3 DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
A1,A2	1.23	0.834	BUILDING / PAVEMENT	100	0.39	LANDSCAPED	0				67.971
NET IMPERVIOUS AREA	: AREA										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT	WEIGHTED % IMP
		Ì						Ì		Ī	Ī

4.364

1.23

NET INCREASE

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

acre-feet

acre-feet

0.048

Total Detention Basin Volume =

Width Override Length Area Override Area Volume Volume Stage (ft (ft) (ft^2) ea (ft^2 (acre) (ft^3) (ac-ft) (ft) 0.00 10 0.000 1.00 800 0.018 397 0.009 2.00 800 0.018 1,197 0.027 3.00 800 0.018 2,005 0.046 4.00 800 0.018 2,805 0.064 5.00 800 0.018 3,605 0.083

Revise to the developed percent impervious of the tributary watershed (sub-basin A1). Update the pond design and narrative accordingly.

	Deter	ntion Basin C	Dutlet Struct	ure Design				
Project: BIG O TIRES - FAL	CON	UD-Detention, Ve	rsion 3.07 (Februa	ry 2017)				
Basin ID: A1								
			Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
EURY WOOV		Zone 1 (WQCV)	1.14	0.012	Orifice Plate	Ī		
	n	Zone 2 (EURV)	1.69	0.010	Orifice Plate			
ZONE 1 AND 2 ORIFICE		:one 3 (100-year)	3.13	0.026	Weir&Pipe (Restrict)	-		
Example Zone Configuration (Re	tention Pond)	.one 5 (100 year)	5.15	0.048	Total	1		
ut: Orifice at Underdrain Outlet (typically used to drain WQCV	in a Filtration BMP)					ed Parameters for U	nderdrain	
Underdrain Orifice Invert Depth = N/A	ft (distance below th	e filtration media su	rface)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter = N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
ut: Orifice Plate with one or more orifices or Elliptical Slot Wei	ir (tunically used to d	rain WOCV and for F	UPV in a codimonta	tion PMD)	Calcu	lated Parameters for	r Blata	
Invert of Lowest Orifice = 0.00	ft (relative to basin b				ifice Area per Row =	8.333E-04	ft ²	
Depth at top of Zone using Orifice Plate = 2.00	ft (relative to basin b	ottom at Stage = 0 ft	:)	E	liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = 8.00	inches			Ellip	tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row = 0.12	sq. inches (diameter	= 3/8 inch)			Elliptical Slot Area =	N/A	ft ²	
ut: Stage and Total Area of Each Orifice Row (numbered from	1	D 0 (D 4 (Davie 5 (11 11	D0 (David Z (11 11	David (11 11	T
Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	ļ
Stage of Orifice Centroid (ft) 0.00 Orifice Area (sq. inches) 0.12	0.70 0.12	1.40 0.12						
	0.12	0.12					1	L
Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	Į
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								l
User Input: Vertical Orifice (Circular or Rectangular)	1				Calculated	Parameters for Ver	tical Orifice	
Not Selected	Not Selected					Not Selected	Not Selected]
Invert of Vertical Orifice = N/A	N/A	ft (relative to basin b	ottom at Stage = 0 f	ft) V	ertical Orifice Area =	N/A	N/A	ft ²
			-					1
Depth at top of Zone using Vertical Orifice = N/A Vertical Orifice Diameter = N/A		ft (relative to basin b inches	-		al Orifice Centroid =	N/A	N/A	feet
	N/A		-		al Orifice Centroid =		N/A	
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00	N/A Not Selected N/A	inches ft (relative to basin bo	oottom at Stage = 0 f	it) Vertic	al Orifice Centroid = Calculated ate Upper Edge, H _t =	N/A Parameters for Ove Zone 3 Weir 2.00	N/A erflow Weir Not Selected N/A	feet
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00	N/A Not Selected N/A N/A	inches ft (relative to basin bot feet	bottom at Stage = 0 f	ft) Vertic Height of Gra Over Flow	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00	N/A erflow Weir Not Selected N/A N/A	feet feet feet
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = 0.00	N/A Not Selected N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fl	bottom at Stage = 0 f	it) Vertic Height of Gr Over Flow Grate Open Area / 3	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = L00-yr Orifice Area =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04	N/A erflow Weir Not Selected N/A N/A	feet feet feet should be ≥ 4
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sldes = 3.00	N/A Not Selected N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet	oottom at Stage = 0 f 	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30	N/A Prflow Weir Not Selected N/A N/A N/A	feet feet feet should be ≥ 4 ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = 0.00	N/A Not Selected N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fl	oottom at Stage = 0 f 	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = L00-yr Orifice Area =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04	N/A erflow Weir Not Selected N/A N/A	feet feet feet should be ≥ 4
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sloes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50%	N/A Not Selected N/A N/A N/A N/A N/A	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t %	oottom at Stage = 0 f 	t) Vertic Height of Gra Over Flow Grate Open Area / I Overflow Grate Ope Overflow Grate Ope	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	N/A Parameters for Ove 2.00 3.00 16.04 6.30 3.15	N/A erflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet feet should be ≥ 4 ft ² ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sides = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest	N/A Not Selected N/A N/A N/A N/A N/A rictor Plate, or Recta	inches ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t %	oottom at Stage = 0 f 	t) Vertic Height of Gra Over Flow Grate Open Area / I Overflow Grate Ope Overflow Grate Ope	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/	N/A erflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet feet feet should be ≥ 4 ft ² ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slodes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Zone 3 Restrictor	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice)	bottom at Stage = 0 f ttom at Stage = 0 ft) lat grate) total area	t) Vertic Height of Gri Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = L00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor	N/A erflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet feet feet should be ≥ 4 ft ² ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slotes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00	N/A Not Selected N/A N/A N/A N/A N/A rictor Plate, or Recta Not Selected N/A	inches ft (relative to basin boi feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi	bottom at Stage = 0 f ttom at Stage = 0 ft) lat grate) total area	t) Vertic Height of Gr Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Cr	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39	N/A Prflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet feet should be ≥ 4 ft ² ft ² te
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slodes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Zone 3 Restrictor	N/A Not Selected N/A N/A N/A N/A N/A rictor Plate, or Rectar Not Selected N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice)	oottom at Stage = 0 f ttom at Stage = 0 ft) lat grate) sotal area n bottom at Stage = 0	t) Vertic Height of Gr Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Cr	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor	N/A erflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet feet feet should be ≥ 4 ft ² ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sloes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 0.00 Restrictor Plate Height Above Pipe Invert = 6.00	N/A Not Selected N/A N/A N/A N/A N/A rictor Plate, or Recta Not Selected N/A N/A	inches ft (relative to basin bor feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches	oottom at Stage = 0 f ttom at Stage = 0 ft) lat grate) sotal area n bottom at Stage = 0	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Cr. ft) Gutl	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/ o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57	N/A rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Zone 3 Weir Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Sloge = 0.00 Horiz. Length of Weir Sloge = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Zone 3 Restrictor Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal)	N/A Not Selected N/A N/A N/A N/A N/A rictor Plate, or Rectaa Not Selected N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Cut ft) Cut Central Angle of Restr	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = een Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for States	N/A erflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ² feet
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Zone 3 Restrictor Depth to Invert of Outlet Pipe = 0.00 Coutlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00	N/A Not Selected N/A N/A N/A N/A N/A N/A rictor Plate, or Recta Not Selected N/A N/A ft (relative to basin b	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Cut ft) Cut Central Angle of Restr	al Orifice Centroid = Calculated ate Upper Edge, H _i = Weir Slope Length = L00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for Sort 0.16	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ² feet
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Overflow To Outlet Pipe = 0.00 Depth to Invert of Outlet Pipe = 0.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 4.00	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A rictor Plate, or Rectal Not Selected N/A N/A ft (relative to basin b feet	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gri Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Cr ft) C ft) C Gut Spillway Stage at	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = een Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Selected N/A N/A Spillway feet feet	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ² feet
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Overflow To Outlet Pipe = 0.00 Depth to Invert of Outlet Pipe = 0.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 4.00	N/A Not Selected N/A N/A N/A N/A N/A N/A rictor Plate, or Recta Not Selected N/A N/A ft (relative to basin b	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gri Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Cr ft) C ft) C Gut Spillway Stage at	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = LOD-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for Sort 0.16	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 3.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Sloge = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe W/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 0.00 Outlet Pipe Diameter = 12.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage Spillway Crest Length = 4.00 Spillway End Slopes = 0.00 Freeboard above Max Water Surface = 1.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A rictor Plate, or Rectat Not Selected N/A N/A ft (relative to basin b feet H:V	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gri Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Cr ft) C ft) C Gut Spillway Stage at	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = LOD-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Selected N/A N/A Spillway feet feet	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Crest Length = 4.00 Spillway End Slopes = 0.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A rictor Plate, or Rectat Not Selected N/A N/A ft (relative to basin b feet H:V	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gri Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Cr ft) C ft) C Gut Spillway Stage at	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = LOD-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Selected N/A N/A Spillway feet feet	feet feet feet fet should be ≥ 4 ft ² ft ² te ft ²
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe M/ Flow Restriction Plate (Circular Orifice, Rest Cone 3 Restrictor Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 0.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = WQCV One-Hour Rainfall Depth (in) = 0.53	N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 fi 2 Year 1.19	ttom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gr. Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Cc ft) C Grate Grate Open Area of Spillway Stage at Basin Area of 10 Year 1.75	al Orifice Centroid = Calculated ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 50 Year 2.25	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet acres 100 Year 2.52	feet feet feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.14
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sloes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe W/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 0.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 0.00 Routed Hydrograph Results Design Storm Return Period = 0.53 Calculated Rundf Volume (acre-ft) = 0.012	N/A N/A N/A N/A N/A N/A N/A N/A N/A rictor Plate, or Recta Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft	ttom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) cotal area n bottom at Stage = 0 Half-C	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Central Angle of Restr Spillway Stage at Basin Area at	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year	feet feet feet should be ≥ 4 ft ² ft ² fte feet radians
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slope = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe M/ Flow Restriction Plate (Circular Orifice, Rest Cone 3 Restrictor Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 0.00 Freeboard above Max Water Surface = 1.00 Routed Hydrograph Results Design Storm Return Period = WQCV One-Hour Rainfall Depth (in) = 0.53	N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 fi 2 Year 1.19	ttom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-0	t) Vertic Height of Gr. Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Cc ft) C Grate Grate Open Area of Spillway Stage at Basin Area of 10 Year 1.75	al Orifice Centroid = Calculated ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard =	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 50 Year 2.25	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet acres 100 Year 2.52	feet feet feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.14
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Sldes = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe W/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Crest Length = 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.03 Calculated Runoff Volume (acre-ft) = 0.012 PTIONAL Override Runoff Volume (acre-ft) = 0.011 other Restrict Flow, q (cfs/acre) = 0.00	N/A Not Selected N/A It (relative to basin b feet H:V feet 1.07 0.022 0.021 0.00	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches inctores tottom at Stage = 0 fi 2 Year 1.19 0.015 0.014 0.00	ttom at Stage = 0 ft) ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-O SYear 1.50 0.020 0.00	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Cr. Cr. ft) Cutl Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 0.025	al Orifice Centroid = Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Top of Freeboard = : Top of Freeboard = : Top of Freeboard = : Top of Stear 25 Year 2.00 0.035 0.034 0.01	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 50 Year 2.25 0.051 0.11	N/A Introduction NA N/A Selected N/A N/A N/A Spillway feet acres 100 Year 2.52 0.079 0.26	feet feet feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Slope = 0.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.012 TIONAL Override Runoff Volume (acre-ft) = 0.012 Predevelopment Unit Peak Flow, q (cfs) = 0.00 Predevelopment Peak Q (cfs) = 0.00	N/A Not Selected N/A It (relative to basin b feet H:V feet H:O 0.022 0.021 0.00 0.0	inches ft (relative to basin boi feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches outtom at Stage = 0 fi 2 Year 1.19 0.015 0.014 0.00 0.0	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C b) 5 Year 1.50 0.020 0.020 0.00 0.00	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Overflow Grate Ope Overflow Grate Ope Overflo	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for 5 0.16 5.16 0.02 50 Year 2.25 0.051 0.11 0.1	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.079 0.079 0.26 0.3	feet feet feet should $be \ge 4$ ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62 0.8
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Stope = 0.00 Horiz. Length of Weir Sides = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 4.00 Spillway End Slopes = 0.00 Routed Hydrograph Results Design Storm Return Period = 0.012 TIONAL Override Runoff Volume (acre-ft) = 0.011 Detex Inflow Hydrograph Volume (acre-ft) = 0.011 Predevelopment Unit Peak Flow, q (cfs/acre) = 0.00 Predevelopment Peak Q (cfs) = 0.1	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet H:V feet 0.022 0.021 0.0 0.2	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches vottom at Stage = 0 ft 2 Year 1.19 0.015 0.014 0.00 0.1	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C t) 5 Year 1.50 0.020 0.02 0.02 0.0 0.2	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Overflow Grate Ope Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate O	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Cop of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0 0.4	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 50 Year 2.25 0.051 0.11 0.1	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.079 0.26 0.3 0.8	feet feet feet should be ≥ 4 ft ² ft ² fte ftet radians 500 Year 3.14 0.142 0.141 0.62 0.8 1.4
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Slope = 0.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.012 TIONAL Override Runoff Volume (acre-ft) = 0.012 Predevelopment Unit Peak Flow, q (cfs) = 0.00 Predevelopment Peak Q (cfs) = 0.00	N/A Not Selected N/A It (relative to basin b feet H:V feet H:O 0.022 0.021 0.00 0.0	inches ft (relative to basin boi feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches outtom at Stage = 0 fi 2 Year 1.19 0.015 0.014 0.00 0.0	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C b) 5 Year 1.50 0.020 0.020 0.00 0.00	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Overflow Grate Ope Overflow Grate Ope Overflo	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for 5 0.16 5.16 0.02 50 Year 2.25 0.051 0.11 0.1	N/A rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 0.079 0.079 0.26 0.3	feet feet feet should $be \ge 4$ ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62 0.8
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Stope = 0.00 Horiz. Length of Weir Sides = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe W / Flow Restriction Plate (Circular Orifice, Rest Debris Clogging % = 0.00 outlet Pipe Diameter = 0.00 Outlet Pipe Diameter = 0.00 Cutlet Pipe Diameter = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Crest Length = 4.00 Spillway Crest Length = 4.00 Spillway Crest Length = 1.00 Routed Hydrograph Results Design Storm Return Period = 0.012 TIONAL Override Runoff Volume (acre-ft) = 0.012 Predevelopment Deak Flow, q (cfs) = 0.0 Ratio Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = 0.1 Ratio Peak Outflow Q (cfs) = 0.1 Plate	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet H:V 0.022 0.021 0.00 0.0 0.0 N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 0.015 0.014 0.00 0.0 0.0 0.1 0.0 N/A Plate	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C S S Year 1.50 0.020 0.02	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Cr. ft) Outl Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 0.025 0.024 0.01 0.0 0.0 0.0 1.5 Plate	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0 0.4 0.1 Overflow Grate 1	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 So Year 2.25 0.052 0.051 0.11 0.5 0.43 3.3 Overflow Grate 1	N/A Introduction N/A Spillway feet feet 0.079 0.079 0.26 0.3 0.8 0.8 0.8 2.5 Overflow Grate 1	feet feet feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62 0.88 1.4 2.7 Overflow Gra
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Slope = 0.00 Horiz. Length of Weir Slope = 0.00 Horiz. Length of Weir Sloge = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe My Flow Restriction Plate (Circular Orifice, Rest User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 4.00 Spillway Crest Length = 0.00 Iver Hour Rainfall Depth (in) = 0.53 Calculated Ruoff Volume (acre-ft) = 0.012 Predevelopment Unit Peak Flow, q (cfs/acre) = 0.00 Predevelopment Peak Q (cfs) = 0.01 Predevelopment Peak Q (cfs) = 0.01 Ratio Peak Outflow Q (cfs) = 0.01 Ratio Peak Outflow Grate 1 (fps) = N/A	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet EURV 1.07 0.022 0.021 0.00 0.2 0.0 N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.015 2 Year 1.19 0.015 0.014 0.00 0.1 0.0 N/A Plate N/A	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C 5 Year 1.50 0.020 0.020 0.02 0.	t) Vertic Height of Gr. Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Overflow Overflow	al Orifice Centroid = Calculated ate Upper Edge, H ₄ = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/ o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= : Top of Freeboard = : Out of the	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 S0 Year 2.25 0.052 0.051 0.11 0.5 0.4 3.3 Overflow Grate 1 0.1	N/A Introduction N/A Spillway feet feet acres 100 Year 2.52 0.079 0.26 0.3 0.8 0.8 0.8 0.1	feet feet feet feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.14 0.142 0.62 0.8 1.4 2.7 Overflow Gra 0.3
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Stope = 0.00 Horiz. Length of Weir Sides = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe W/ Flow Restriction Plate (Circular Orifice, Rest Zone 3 Restrictor Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Outlet Pipe Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = Onto Preak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Onto Predevelopment Peak Q (cfs) = Onto Peak Nufflow Q (cfs) = <	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet H:V 0.022 0.021 0.00 0.0 0.0 N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.19 0.015 0.014 0.00 0.0 0.0 0.1 0.0 N/A Plate	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C S S Year 1.50 0.020 0.02	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Cr. ft) Outl Central Angle of Restr Spillway Stage at Basin Area at 10 Year 1.75 0.025 0.024 0.01 0.0 0.0 0.0 1.5 Plate	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0 0.4 0.1 Overflow Grate 1	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 So Year 2.25 0.052 0.051 0.11 0.5 0.43 3.3 Overflow Grate 1	N/A Introduction N/A Spillway feet feet 0.079 0.079 0.26 0.3 0.8 0.8 0.8 2.5 Overflow Grate 1	feet feet feet feet should $be \ge 4$ ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62 0.88 1.4 2.7 Overflow Grai
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Front Edge Length = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe M/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 12.00 Restrictor Plate Height Above Pipe Invert = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Crest Length = Spillway Crest Length = 4.00 Spillway Crest Length = 0.00 Calculated Runoff Volume (acreft) = 0.011 One-Hour Rainfall Depth (in) = 0.53 Calculated Runoff Volume (acreft) = 0.01 Predevelopment Peak Q (cfs) = 0.0 Predevelopment Peak Q (cfs) = 0.0 Predevelopment Peak Q (cfs) = 0.0 Ratio Peak Outflow to Predevelopment Q = N/A Max Velocity through Grate 1 (fps) = N/A Max Velocity through Grate 1 (fps) = N/A	N/A Not Selected N/A It (relative to basin b feet H:V feet H:V 0.021 0.00 0.0 0.021 0.00 N/A Plate N/A N/A	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.015 2 Year 1.19 0.015 2 Year 1.19 0.015 0.01 0.0 0.0 0.1 0.0 0.0 0.1 0.1	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C b) 5 Year 1.50 0.02 0.020 0.	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate O	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/o Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.035 0.034 0.01 0.0 0.4 0.1 6.1 0.0 N/A 0.0 N/A 54 58	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 50 Year 2.25 0.051 0.11 0.1 0.5 0.4 3.3 Overflow Grate 1 0.1 0.1 0.5 0.4 3.3 Overflow Grate 1 0.1 N/A 52	N/A Introduction N/A Spillway feet acres 100 Year 2.52 0.079 0.26 0.3 0.8 0.8 2.5 Overflow Grate 1 0.1 N/A 48 56	feet feet feet feet should be ≥ 4 ft ² ft ² feet radians
Vertical Orifice Diameter = N/A ser Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Overflow Weir Front Edge Height, Ho = 2.00 Overflow Weir Front Edge Length = 3.00 Overflow Weir Stope = 0.00 Horiz. Length of Weir Sides = 3.00 Overflow Grate Open Area % = 70% Debris Clogging % = 50% ut: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Rest Depth to Invert of Outlet Pipe = 0.00 Outlet Pipe Diameter = 0.00 Quert Pipe Diameter = 6.00 User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Crest Length = Spillway Crest Length = 4.00 Spillway End Slopes = 0.00 Preeboard above Max Water Surface = 1.00 Routed Hydrograph Results 0.012 Design Storm Return Period = 0.02 Orne-Hour Rainfall Depth (in) = 0.53 Calculated Runoff Volume (acre-ft) = 0.011 Inflow Hydrograph Volume (acre-ft) = 0.00 Preak Inflow Q (cfs) = 0.0 Peak Inflow Q (cfs) = 0.0 Peak Nufflow Q (cfs) = 0.0<	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet H:V 0.022 0.021 0.00 0.2 0.0 N/A Plate N/A A8	inches ft (relative to basin bo' feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches ottom at Stage = 0 ft 2 Year 1.19 0.015 2 Year 0.014 0.00 0.0 0.1 0.0 N/A Plate N/A N/A 39	bottom at Stage = 0 ft ttom at Stage = 0 ft) lat grate) total area n bottom at Stage = 0 Half-C SYear 1.50 0.020 0.020 0.02 0.0	t) Vertic Height of Gr. Over Flow Grate Open Area / : Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Cr ft) Over ft) Over ft) Over ft) Outl Central Angle of Restr Spillway Stage al Basin Area al 0.025 0.024 0.025 0.024 0.02 0.02 0.02 0.02 0.02 0.02 0.0	al Orifice Centroid = Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = n Area w/o Debris = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Cop of Freeboard = 25 Year 2.00 0.035 	N/A Parameters for Ove Zone 3 Weir 2.00 3.00 16.04 6.30 3.15 s for Outlet Pipe w/ Zone 3 Restrictor 0.39 0.29 1.57 ted Parameters for S 0.16 5.16 0.02 So Year 2.25 0.051 0.11 0.5 0.43 3.3 Overflow Grate 1 0.1 0.5 0.43 3.3 Overflow Grate 1 0.1 0.5	N/A Introduction N/A Spillway feet feet 0.079 0.26 0.3 0.8 0.8 0.8 0.8 0.79 0.1 N/A	feet feet feet feet should $b \ge 4$ ft ² ft ² feet radians 500 Year 3.14 0.142 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.62 0.8 1.4 0.141 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

UD-BMP (Version 3.06, November 2016) Sheet 1 of 4 Decigner: JP5 Company: JP6 Date: May 14, 2018 Project: Big 0 Tres - Falson 1. Gates Storage Volume A A) Effective Imperviourness Ratio (= l_1/100)	Design Procedure Form: Extended Detention Basin (EDB)						
Company: IPS Data: May 14,2015 Project: Big 0 Tars - Falcon Location: 5958 M. Mardian Read, Falcon, CO 1. Basin Storage Volume A) Effective Imperviousness Of Telutary Area, IL, A) Effective Imperviousness Of Telutary Area, IL, IIII = 0.200 B) Tori Waterheds Outside of the Deriver Region, Depth of Average Rundf Pioducing Stuin Area = 1.230 B) For Waterheds Outside of the Deriver Region, Depth of Average Rundf Pioducing Stuin Area = 1.230 B) For Waterheds Outside of the Deriver Region, Depth of Average Rundf Pioducing Stuin Area = 1.230 F) Design Volume (VGCV) Based on 40-hour Drain Time (Varsour = (1.0 * 0.91 * /r 1.19 * /r 4.078 * 0 / 12 * Area) Vecausor = 0.012 G) For Waterheds Outside of the Deriver Region, Meyor Volume (VGCV) Based on 40-hour Drain Time (Varsour = (1.0 * 0.91 * /r 1.19 * /r 4.078 * 0 / 12 * Area) Vecausor = 0.012 G) For Waterheds Outside of the Deriver Region, Meyor Volume (VGCV) Design Volume (Vaccomer = 0.012 ac-ft I) User Input Valuer Outsign (VGCV) Design Volume (Vaccomer = 0.012 ac-ft I) Predominant Watershed NRCS Soil Group Vecausor = 0.022 ac-ft I) Predominant Watershed NRCS Soil Group L : W = 12.5 : 1 I) Excess Urban Rundf Volume (EUV) Design Volume For HOS A: EURV, - 1.00 * 1 * M L : W =			P (Version 3.06, November 2016) Sheet 1 of 4				
Date::::::::::::::::::::::::::::::::::::	-						
Project: Big 0 Tries - Falcon Location: 995 N. Meridian Road, Falcon, CO 1. Basin Storage Volume A) Effective Imperiousness of Tibutary Area, I, A) Effective Imperiousness of Tibutary Area, I, I =							
1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ix, B) Tributary Area's Imperviousness Ratio (i = 1, / 100) C) Contributing Watershed Area D) For Watersheds Outside of the Deriver Region, Depth of Average (Select EURV when also designing for flood control) P. Design Volume (WQCV) Based on 40-hour Drain Time (Vascov = 1(0, 10 f and the Deriver Region, Despth of Average (Control (0, 11 + 1) + 1) + 1' + 0.75 + 1) + 12' + Ama) C) For Watersheds Outside of the Deriver Region, Watershed Region, Watersheds Outside of the Deriver Region, Water Region, Watersheds Outside of the Deriver Region, Watersheds Outside of the Deriver Region, Watersheds Outside of the Deriver Region, Water Region, Watersheds Outside of the Deriver Region, Volume (WCV) Design Volume (Project:						
A) Effective Imperviousness of Tributary Area, I_ Image: Ima	Location:	6985 N. Meridian Road, Falcon, CO					
B) Tributary Area's Imperviousness Ratio (= l_u 100) i = 0.200 C) Contributing Watershed Area i = 0.200 D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Sturm i = 0.200 Real Discover (0.00000000000000000000000000000000000	1. Basin Storage	Volume					
C) Contributing Watershed Area Area =in D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm in E) Design Concept (Select EURV when also designing for flood control) in F) Design Volume (WQCV) Based on 40-hour Drain Time (Vocanon = (1,0 ⁺ /0,1 ⁺) ⁺ - 1,19 ⁺) ⁺ - 0,78 ⁺ i) / 12 ⁻ Area i) in G) For Watersheds Outside of the Deriver Region, Water Couldity Capture Volume (WQCV) Design Volume (Vocanon = (1,0 ⁺ /0,1 ⁺) ⁺ - 1,19 ⁺	A) Effective Imp	perviousness of Tributary Area, I _a	I _a =%				
D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm d, =	B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i =0.200				
Rundf Producing Storm Choose One (Select EURV when also designing for flood control) Water Quality Capture Volume (WOCV) F) Design Volume (WQCV) Based on 40-hour Drain Time (Vorsson = (1.0 * (0.91 * 1 ² + 1.19 * 1 ² + 0.78 * 1) / 12 * Area) Vesson = (0.012 ac-ft (P) For Watersheds Outside of the Derver Region, Water Quality Capture Volume (WQCV) Design Volume (URV) Vesson were =ac-ft (Only if a different WQCV Design Volume (WQCV) Design Volume (VQCV) Design Volume (URV) Vesson were =ac-ft (P) Predominant Watershed NRCS Soil Group Vesson were =ac-ft () Excess Urban Runoff Volume (EURV) Design Volume (FURV) Design Volume (FURV) Design Volume (URV) EURV =ac-ft (Priso B : EURV_a = 1.88 * 1 ^{1,28} EURV =	C) Contributing	g Watershed Area	Area = <u>1.230</u> ac				
e) Design Concept (Select EURV when also designing for flood control) \u03c4 Water Quality Capture Volume (WOCV) \u03c4 Excess Urban Runoff Volume (EURV) f) Design Volume (WQCV) Based on 40-hour Drain Time (Vocesion = (1.0* (0.91*1 ^{2*} 1.19*1 ² + 0.78*1)/12* Area.) \u03c4 Vocesion = (0.012 ac-ft \u03c4 Vocesion = (0.012 ac-ft \u03c4 Vocesion Volume (WOCV) Design Volume (Woceviorence = (0.012 ac-ft \u03c4 Vocesion Votere =			d ₆ = in				
(Select EURV when also designing for flood control) Water Quality Capture Volume (WCCV) F) Design Volume (WQCV) Based on 40-hour Drain Time (V _{DESG0N} = (1.0* (0.91*1 ² - 1.78*1)/12*Area) Design Volume (WQCV) Based on 40-hour Drain Time (V _{DESG0N} = (1.0* (0.91*1 ² - 1.78*1)/12*Area) G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (N _{WOCO} or nex = [0.012] ac-ft Design Volume (WQCV) Design Volume (N _{WOCO} or nex = [0.012] ac-ft H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only 1 a different WQCCV) Design Volume For HSG A: EURV _A = 1.88*1 ^{1.28} For HSG A: EURV _A = 1.88*1 ^{1.28} For HSG A: EURV _A = 1.38*1 ^{1.28} For HSG A: EURV _A = 1.38*1 ^{1.28} For HSG A: EURV _A = 1.38*1 ^{1.28} A: Basin Shape: Length to Width Ratio (A basin length to Width Ratio (A basin length to Width ratio of at least 2:1 will improve TSS reduction.) L: W =12.5	E) Design Con	ncent	Choose One				
F) Design Volume (WQCV) Based on 40-hour Drain Time ($V_{Design} = (1.0^{\circ} (0.91^{\circ}1^{\circ})^{-} 1.19^{\circ}1^{\circ} - 0.78^{\circ})^{1} / 12^{\circ} Area)$ G) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (W_{OCV}) Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume (COV) Design Volume (Only if a different WQCV Design Volume (Second Only if a different WQCV Design Volume For HSG A: EURV _k = 1.38^{\circ}1^{1:03} ac-ft J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _k = 1.38^{\circ}1^{1:03} ac-ft J) Excess Urban Runoff Volume (Second For HSG A: EURV _k = 1.38^{\circ}1^{1:03} EURV = 0.0022 ac-ft 2. Basin Shape: Length to Width Ratio (A basin length to Width Ratio (A basin length to Width Ratio (A basin Maximum Side Slopes (Horizontial distance per unit vertical, 4:1 or flatter preferred) $Z = 0.00 \text{ ft / ft}$ DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet A) Describe means of providing energy dissipation at concentrated Ripring Apron			O Water Quality Capture Volume (WQCV)				
$(V_{DESION} = (1.0^{+} (0.91^{+})^{2} + 1.79^{+})/12^{+} Area)$ Vesses voreme G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (WQCV) Design Volume (MQCV) Design Volume (MQCV) Design Volume (Only if a different WQCV Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) Vesses voreme =ac-ft I) Predominant Watershed NRCS Soil Group Vesses Urban Runoff Volume (EURV) Design Volume (DNUME (EURV) Design Volume (For HSG A: EURV_a = 1.68^{+})^{1/30} EURV =ac-ft J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV_b = 1.26^{+})^{1/30} EURV =ac-ft 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W =			Excess Urban Runoff Volume (EURV)				
Water Quality Capture Volume (WQCV) Design Volume (Mwcvornex = (dx*(V _{DESIGN} /0.43)) Image: Water State (V _{DESIGN} /0.43) H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) Image: Water State (V _{DESIGN} /0.43) I) Predominant Watershed NRCS Soil Group Image: Water State (V _{DESIGN} /0.43) J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _a = 1.68 * 1 ^{1.28} For HSG A: EURV _a = 1.68 * 1 ^{1.28} For HSG C/D: EURV _g = 1.20 * 1 ^{1.06} EURV = 0.022 ac-ft 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 12.5 : 1 3. Basin Side Slopes Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet A) Describe means of providing energy dissipation at concentrated			V _{DESIGN} = 0.012 ac-ft				
(Only if a different WQCV Design Volume is desired) Image: Choose One Ima	Water Qual	lity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft				
i) Predominant Watershed NRCS Soil Group			V _{DESIGN USER} =ac-ft				
For HSG A: EURV _A = 1.68 * i ^{1,28} EURV = 0.022 ac-f t For HSG B: EURV _B = 1.36 * i ^{1,08} EURV = 0.022 ac-f t 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 12.5 : 1 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet Riprap Apron Riprap Apron	I) Predominant	t Watershed NRCS Soil Group	● A O B				
(A basin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet A) Describe means of providing energy dissipation at concentrated	For HSG A For HSG B	A: EURV _A = 1.68 * $i^{1.28}$ B: EURV _B = 1.36 * $i^{1.08}$	EURV = 0.022 ac-ft				
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet Riprap Apron A) Describe means of providing energy dissipation at concentrated Riprap Apron			L : W = <u>12.5</u> : 1				
4. Inlet A) Describe means of providing energy dissipation at concentrated	3. Basin Side Slop	pes					
A) Describe means of providing energy dissipation at concentrated			Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE				
A) Describe means of providing energy dissipation at concentrated	4. Inlet						
	A) Describe m	eans of providing energy dissipation at concentrated	Riprap Apron				

Design Procedure Form: Extended Detention Basin (EDB)					
Designer: JPS Company: JPS Date: May 14, 2018 Project: Big O Tires - Falcon Location: 6985 N. Meridian Road, Falcon, CO	Sheet 2 of 4				
5. Forebay A) Minimum Forebay Volume (V _{FMIN} = <u>0%</u> of the WQCV)	V _{FMIN} = 0.000 ac-ft A FOREBAY MAY NOT BE				
B) Actual Forebay Volume	V _F = ac-ft				
C) Forebay Depth $(D_F = 12 \text{ inch maximum})$	D _F = in				
D) Forebay Discharge i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow $(Q_F=0.02*Q_{100})$ E) Forebay Discharge Design	$Q_{100} = cfs$ $Q_F = cfs$ (flow too small for berm w/ pipe)				
F) Discharge Pipe Size (minimum 8-inches) G) Rectangular Notch Width	Calculated $D_P =$ in Calculated $W_N =$ in				
6. Trickle Channel A) Type of Trickle Channel F) Slope of Trickle Channel	Choose One PROVIDE A CONSISTENT LONGITUDINAL O Concrete SLOPE FROM FOREBAY TO MICROPOOL WITH NO MEANDERING, RIPRAP AND Soft Bottom SOIL RIPRAP LINED CHANNELS ARE NOT RECOMMENDED. MINIMUM DEPTH OF 1.5 FEET S = 0.0050				
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{10}_{Sq} \text{ sq ft}$ $\textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	$D_{onfice} =inches$ $A_{ot} =square inches$				

Design Procedure F	orm: Extended Detention Basin (EDB)
Designer: JPS Company: JPS Date: May 14, 2018 Project: Big O Tires - Falcon Location: 6985 N. Meridian Road, Falcon, CO	Sheet 3 of 4
8. Initial Surcharge Volume	
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) 	D _{IS} =6 in
 B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) 	$V_{IS} =$ cu ft
C) Initial Surcharge Provided Above Micropool	V _s =cu ft
9. Trash Rack	
A) Water Quality Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = <u>13</u> square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	S.S. Well Screen with 60% Open Area
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	$A_{total} = 22$ sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	H=feet
F) Height of Water Quality Screen (H_{TR})	H _{TR} = <u>52</u> inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches

	Design Procedure Form	: Extended Detention Basin (EDB)		
Designer: Company: Date:	JPS JPS May 14, 2018	Sheet 4 of 4		
Project: Big O Tires - Falcon				
Location:	6985 N. Meridian Road, Falcon, CO			
10. Overflow Eml A) Describe	bankment embankment protection for 100-year and greater overtopping:			
	Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)			
11. Vegetation		Choose One O Irrigated Not Irrigated		
12. Access				
A) Describe Sediment Removal Procedures		Access ramp provided to pond bottom for skid loader access		
Notes:		·		

Stormwater Detention and Infiltration Design Data Sheet

User Defined

Stage [ft]

User Defined

Area [ft^2]

Workbook Protected

Worksheet Protected

User Defined

Stage [ft]

User Defined

Discharge [cfs]

Stormwater Facility Name: BIG O TIRES - FALCON

Facility Location & Jurisdiction: 6985 MERIDIAN ROAD, FALCON, EL PASO COUNTY, CO

WQCV Treatment Method = Extended Detention

Remove the SDI worksheet from the Drainage Report

0.00 10 0.00 0.00 1.00 800 1.00 0.01 2.00 800 2.00 0.01 3.00 800 3.00 3.11 4.00 800 4.00 3.64 5.00 800 5.00 16.10	Stage [it]	Alca [it 2]	Stage [it]	Discharge [CI3]	
2.00 800 2.00 0.01 3.00 800 3.00 3.11 4.00 800 4.00 3.64	0.00	10	0.00	0.00	
3.00 800 3.00 3.11 4.00 800 4.00 3.64	1.00	800	1.00	0.01	
4.00 800 4.00 3.64	2.00	800	2.00	0.01	
	3.00	800	3.00	3.11	
5.00 800 5.00 16.10	4.00	800	4.00	3.64	
	5.00	800	5.00	16.10	
	-				
Image: second					
Image: sector of the sector					
Image: set of the set of th					
Image: second					
Image: second					
Image: state					
Image: state					

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

Routed Hydrograph Results						_	
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.60	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	0.027	0.071	0.092	0.114	0.172	0.200	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	0.027	0.070	0.092	0.114	0.171	0.200	acre-ft
Time to Drain 97% of Inflow Volume =	37.9	37.5	36.1	34.8	31.6	30.3	hours
Time to Drain 99% of Inflow Volume =	40.8	42.1	41.4	40.6	38.9	38.1	hours
Maximum Ponding Depth =	1.84	2.23	2.37	2.47	2.73	2.86	ft
Maximum Ponded Area =	0.02	0.02	0.02	0.02	0.02	0.02	acres
Maximum Volume Stored =	0.025	0.032	0.034	0.036	0.041	0.043	acre-ft

SDI_Design_Data_v1.07-Big-O-Falcon.xlsm, Design Data

APPENDIX D

FIGURES

DRAINAGE LEGEND	BIG O TIRES 6985 N. MERIDIAN ROAD, PEYTON, CO 80831	Image: Noise of the state
DEVELOPED BASIN AREA (ACRES) $\frac{IMPERVIOUS AREA CALCULATIONS:}{TOTAL AREA} = 1.227 AC.$ $\frac{IMPERVIOUS AREAS:}{SURFACE TYPE} AREA PAVEMENT/SIDEWALK 29,854 SF 6,474 SF 36,328 SF$ $= 0.834 AC = 68.0\% IMPERVIOUS$		DEVELOPED DRAINAGE
SUMMARY HYDROLOGY TABLE DESIGN Q5 Q100 POINT (CFS) (CFS)	HORZ. SCALE: 1"=:	20' DRAWN: MSP
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A DESIGNED: JPS CHECKED: JPS (17 LAST MODIFIED: 5/14/18 MODIFIED BY:
	JILL I.	D1