FINAL DRAINAGE REPORT

for
\title{ LARGENT SUBDIVISION 6985 MERIDIAN ROAD }

Prepared for:
Mr. David Largent
6485 Alibi Circle
Colorado Springs, CO 80923

January 18, 2018
Revised April 18, 2018
Revised May 14, 2018

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429
(719)-471-0766 FAX www.jpsengr.com

LARGENT SUBDIVISION - 6985 MERIDIAN ROAD FINAL DRAINAGE REPORT TABLE OF CONTENTS

PAGE
\qquad
DRAINAGE STATEMENT ..i
I. INTRODUCTION .. 1
II. EXISTING DRAINAGE CONDITIONS .. 2
III. PROPOSED DRAINAGE CONDITIONS ... 2
IV. DRAINAGE PLANNING FOUR STEP PROCESS.. 3
V. FLOODPLAIN IMPACTS... 4
VI. STORMWATER DETENTION AND WATER QUALITY... 4
VII. DRAINAGE BASIN FEES ... 5
VIII. SUMMARY.. 6

APPENDICES

APPENDIX A Hydrologic Calculations
APPENDIX B Hydraulic Calculations
APPENDIX C Detention Pond Calculations

APPENDIX D Figures
Figure A1 Vicinity Map
Figure FIRM Floodplain Map
Sheet EX1 Historic Drainage Plan
Sheet D1 Developed Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. \#29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:
David Largent, Owner
Date
6485 Alibi Circle
Colorado Springs, CO 80923

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E.
Date
County Engineer / ECM Administrator
Conditions:

I. INTRODUCTION

A. Property Location and Description

Big O Tires is planning to construct a new auto sales and service facility on a developed 1.2-acre property (El Paso County Assessor's Parcel No. 53124-01-008) located at the southeast corner of US Highway 24 (US24) and Meridian Road in the Falcon area of El Paso County, Colorado. The site is zoned Community Commercial (CC), and the proposed auto repair facility will require processing of a special use permit and a site development plan prior to establishing the use. The property is currently an unplatted tract described as a portion of Section 7, Township 13S, Range 64W, and a portion of Section 12, Township 13S, Range 65W of the $6^{\text {th }}$ P.M., El Paso County, Colorado. The project will include platting the property as a single lot, which will be described as Lot 1 , Largent Subdivision.

The north boundary of the property adjoins US Highway, and existing commercial development is located to the north across US24. The west boundary of the site adjoins Meridian Road, and existing commercial center is located to the west across Meridian Road. The property adjoins developed ranch properties to the east and south.

The proposed Site Development Plan consists of demolishing the existing buildings within the property and constructing a new 6,474 square-foot, single-story auto sales and service building, along with associated parking and site improvements. Access will be provided by a private access drive connection to Meridian Road at the western site boundary, in close proximity to the existing site access drive.

B. Scope

In support of the Subdivision Plat and Site Development Plan submittals to El Paso County, this report is intended to meet the requirements of a Final Drainage Report in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development. The report will analyze impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

C. References

City of Colorado Springs \& El Paso County "Drainage Criteria Manual," revised November, 1991.

City of Colorado Springs "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014.
El Paso County "Engineering Criteria Manual," January 9, 2006.

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0575F, March 17, 1997.
Matrix Design Group, "Falcon Drainage Basin Planning Study," September, 2015.
USDA/NRCS, "Custom Soil Resource Report for El Paso County Area, Colorado," December 10, 2017.

II. EXISTING DRAINAGE CONDITIONS

The existing site topography generally slopes downward to the southwest with grades in the range of 1-3 percent. According to the Soil Survey of El Paso County prepared by the Soil Conservation Service (SCS), on-site soils are comprised of Columbine gravelly sandy loam soils, and these well-drained soils are classified as hydrologic soils group "A" (see Appendix A).

As shown on the enclosed Existing Drainage Plan (Sheet EX1, Appendix D), the site has been delineated as one on-site drainage basin, and the site is not impacted by any off-site drainage basins.

According to the 2015 "Falcon Drainage Basin Planning Study" (DBPS) by Matrix Design Group, this site is located between the West and Middle Tributary Channels of the Falcon Drainage Basin, and there are no DBPS improvements associated with this site.

The on-site area has been delineated as Basin A, which sheet flows towards the southwest corner of the property. The existing site is developed with several buildings, and the majority of the site is covered by compacted gravel. Existing flows from Basin A drain to Design Point \#1, existing peak flows calculated as $\mathrm{Q}_{5}=2.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=4.8 \mathrm{cfs}$. Hydrologic calculations are enclosed in Appendix A.

III. PROPOSED DRAINAGE CONDITIONS

As shown on the enclosed Drainage Plan (Figure D1, Appendix A), the site has been delineated as two on-site drainage basins. Developed flows have been calculated based on the impervious areas associated with the proposed building and parking areas.

The majority of the developed site has been delineated as Basin A1, which will drain southerly across the site to a proposed stormwater detention pond along the southern boundary of the property. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building. Surface drainage swales and a private storm sewer system will be convey developed flows to the proposed extended detention basin (EDB) at the south boundary of the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to the proposed detention basin.

Concrete crosspans and curb and gutter will convey surface drainage from the north and east sides of the building to a curb opening at the southeast corner of the parking lot, and a drainage swale will convey flow from the curb opening into Extended Detention Basin A1 along the south boundary of the site. Private Storm Inlets A1.1 and A1.2 will intercept surface drainage along the west side of the building, and Private Storm Sewer A1.1 (12") will flow southeasterly into Extended Detention Basin A1.

Developed peak flows at Design Point \#A1 are calculated as $\mathrm{Q}_{5}=2.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=5.8$ cfs. After routing through Extended Detention Basin A1, detained peak flows at Design Point \#A1 are calculated as $\mathrm{Q}_{5}=0.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=0.8 \mathrm{cfs}$. The proposed 12 " discharge pipe from Detention Basin A1 will flow to the southwest corner of the property and drain into the improved ditch along the east side of Meridian Road.

Developed Basin A2 consists of the area along the west fringe of the site which will continue to sheet flow southwesterly following existing drainage patterns. According to the El Paso County roadway plans for "Meridian Road Improvements," the upcoming County road project will include an improved ditch along the east side of North Meridian Road adjacent to this site. An 18 -inch RCP private driveway culvert will be provided at the site access drive connection to Meridian Road.

Basin A2 will sheet flow southwesterly to Design Point \#A2, with developed peak flows calculated as $\mathrm{Q}_{5}=0.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=1.1 \mathrm{cfs}$.

Basins A1 and A2 combine at Design Point \#1, with developed peak flows calculated as $\mathrm{Q}_{5}=3.3$ cfs and $\mathrm{Q}_{100}=6.7$ cfs. Detained peak flows at Design Point \#1 are calculated as $\mathrm{Q}_{5}=0.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=1.9 \mathrm{cfs}$.

Hydrologic calculations for the site are detailed in the attached spreadsheets (Appendix A), and peak flows are identified on Figures EX1 and D1 (Appendix D).

The contractor will be required to implement standard best management practices for erosion control during construction.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The proposed auto service facility is being constructed on a previously developed site, so this re-development project will inherently minimize drainage impacts in comparison to development of a vacant site. Recognizing the existing compacted gravel covering the majority of the site, the proposed redevelopment of the site will result in a relatively small net increase in impervious site development.

Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. This site is a redevelopment project, and implementation of the proposed on-site drainage improvements and Detention Basin will minimize the downstream drainage impact from this site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The developed site will drain through a proposed Extended Detention Basin (EDB) along the south boundary of the property. Site drainage will be routed through the extended detention basin, which will capture and slowly release the WQCV over a 40-hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No outside storage or industrial uses are proposed for this site.
- The proposed commercial development project will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the private Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

V. FLOODPLAIN IMPACTS

Floodplain limits in vicinity of this site are delineated in the applicable Flood Insurance Rate Map, FIRM Panel No. 08041C0575 dated March 17, 1997, which was revised by Letter of Map Revision (LOMR) Case No. 01-08-226P dated May 14, 2002. As depicted in the FIRM exhibit enclosed in Appendix D, this site is not impacted by any delineated 100-year FEMA floodplains.

VI. STORMWATER DETENTION AND WATER QUALITY

The proposed drainage and grading plan for the site includes a private Extended Detention Basin (EDB) at the south boundary of the site. This facility has been designed to provide the required stormwater detention and water quality mitigation for this site in accordance with El Paso County drainage criteria.

The required detention volumes for this site have been calculated based on the net impervious area increase associated with re-development of the site. Recognizing that the majority of the existing site is covered with compacted gravel, the net impervious area increase has been calculated as 4.4 percent as tabulated in Appendix C. For conservative drainage design, we have calculated the required detention volumes based on a net impervious area increase of 20 percent, which significantly exceeds the actual impervious area increase.

As detailed in the detention pond hydraulic calculations in Appendix C, the required Water Quality Capture Volume has been calculated as 0.012 acre-feet, and the total FullSpectrum Detention Volume for this site has been calculated as 0.048 acre-feet. The proposed Extended Detention Basin (EDB) A1 has been designed for a storage volume of 0.064 acre-feet, which meets the required full-spectrum detention volume, and the outlet structure has been designed to discharge well below the existing peak flow rates.

The proposed pond outlet structure has been designed using the UDFCD "UD-Detention" calculation spreadsheets, providing for a 40 -hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The EDB will have a grass-lined bottom and riprap trickle channel to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The proposed stormwater detention facility will be privately owned and maintained by the property owner, and maintenance access will be provided from the adjacent parking lot.

VII. DRAINAGE BASIN FEES

Development of this commercial site will include construction of a private storm sewer system and private stormwater detention and water quality facilities within the site.

The site lies entirely within the Falcon Drainage Basin, which is tributary to the Black Squirrel Creek Drainage Basin. The Falcon Drainage Basin is subject to an El Paso County 2018 drainage basin fee of $\$ 27,762$ per impervious acre, and a bridge fee of $\$ 3,814$ per impervious acre. The required drainage and bridge fees are due at the time of recording the subdivision plat.

According to El Paso County Engineering Criteria Manual Section 3.13a, the required drainage basin fees for subdivision plats are assessed based upon the new impervious area if no such fee has been previously paid. As such, the required basin fees are calculated based on the developed impervious area calculation for this site.

The required drainage and bridge fees are calculated as follows:

Platted Area:		1.227 acres
Developed Impervious Area:		68.0%
Net Impervious Area:	$(1.227 \mathrm{ac}) * 68.0 \%=$.	$\mathbf{0 . 8 3 4} \mathbf{~ a c .}$
	$(0.834 \mathrm{ac}) @.(\$ 27,762 / \mathrm{ac})=$.	$\$ 23,153.51$
Drainage Fee:	$(0.834 \mathrm{ac}) @.(\$ 3,814 / \mathrm{ac})=$.	$\underline{\$ 3,180.88}$
Bridge Fee:		$\$ 26,334.39$

VIII. SUMMARY

The developed drainage patterns associated with the proposed Big O Tires development at the southeast corner of US24 and Meridian Road will remain consistent with existing conditions and the overall drainage plan for area. Developed flows from the site will drain through a proposed stormwater Detention Pond at the south boundary of the property prior to discharging to the existing downstream drainage system.

The proposed stormwater detention and water quality facilities have been designed to mitigate developed flow impacts and meet the County's stormwater detention and water quality requirements. Construction and proper maintenance of the proposed Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) \square Area of Interest (AOI)	\square \square	C C/D	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soil Rating Polygons	\square	D	Warning: Soil Map may not be valid at this scale.
A	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water Fe	ures	line placement. The maps do not show the small areas of
]	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+		Please rely on the bar scale on each map sheet for map
C	\sim	Interstate Highways	measurements.
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service
D	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
. Not rated or not available	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \quad A / D$	5	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
B			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
$\checkmark \mathrm{C}$			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017
\cdots C/D			Soil map units are labeled (as space allows) for map scales
* D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: May 22, 2016-Mar
Soil Rating Points			9,2017
$\square \quad A$			The orthophoto or other base map on which the soil lines were
$\square \quad \mathrm{A} / \mathrm{D}$			imagery displayed on these maps. As a result, some minor
- B			shifting of map unit boundaries may be evident.
- B/D			

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	0.9	100.0%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.10	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

BIG O TIRES - FALCON

$\begin{aligned} & \text { EXISTING COI } \\ & \text { 5-YEAR C VAL } \end{aligned}$											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	C	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A	1.2	0.04	BUILDING / ASPHALT	0.9	0.92	GRAVEL	0.59	0.26	LANDSCAPED	0.08	0.491
100-YEAR C V											
BASIN	TOTAL AREA (AC)	(AC)	$\begin{aligned} & \text { SUB-AREA } 1 \\ & \text { DEVELOPMENT/ } \\ & \text { COVER } \\ & \hline \end{aligned}$	C	AREA (AC)	$\begin{gathered} \text { SUB-AREA 2 } \\ \text { DEVELOPMENT// } \\ \text { COVER } \end{gathered}$	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A	1.2	0.04	BUILDING / ASPHALT	0.96	0.92	GRAVEL	0.7	0.26	LANDSCAPED	0.35	0.634

DEVELOPED CONDITIONS5-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT// COVER	C	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A1	1.06	0.72	BUILDING / ASPHALT	0.9	0.34	LANDSCAPED	0.08				0.637
A2	0.17	0.12	BUILDING / ASPHALT	0.9	0.05	LANDSCAPED	0.08				0.640
A1,A2	1.23	0.83	BUILDING / ASPHALT	0.9	0.40	LANDSCAPED	0.08				0.637
100-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT// COVER	C	AREA (AC)	SUB-AREA 2 DEVELOPMENT// COVER	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A1	1.06	0.72	BUILDING / ASPHALT	0.96	0.34	LANDSCAPED	0.35				0.764
A2	0.17	0.12	BUILDING / ASPHALT	0.96	0.05	LANDSCAPED	0.35				0.766
A1,A2	1.23	0.83	BUILDING / ASPHALT	0.96	0.40	LANDSCAPED	0.35				0.765

BIG O TIRES - FALCON
RATIONAL METHOD

EXISting FLows													$\begin{aligned} & \text { TOTAL } \\ & \text { Tc } \\ & \text { (MIN) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { Tc } \mathrm{Tc}^{(4)} \\ & (\mathrm{MIN} \\ & \hline \end{aligned}$				
					Overland Flow			Channel flow							INTENSITY ${ }^{(5)}$		PEAK FLOW	
			C					CHANNEL	CONVEYANCE		SCS ${ }^{(2)}$							
BASIN	$\begin{array}{\|c\|} \hline \text { DESIGN } \\ \text { POINT } \\ \hline \end{array}$	$\begin{gathered} \text { AREA } \\ \text { (AC) } \end{gathered}$	5-YEAR ${ }^{(7)}$	100-YEAR ${ }^{(7)}$	$\begin{array}{\|c} \text { LENGTH } \\ (\mathrm{FT}) \end{array}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	$\begin{aligned} & \mathrm{Tco}^{(1)} \\ & (\mathrm{MIN}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { LENGTH } \\ (\mathrm{FT}) \end{gathered}$	$\underset{\mathrm{C}}{\substack{\text { COEFFICIENT } \\ \hline}}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	$\begin{gathered} \text { VELOCITY } \\ \text { (FT/S) } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Tt}^{(3)} \\ (\mathrm{MIN}) \\ \hline \end{array}$			$\begin{gathered} 5-\mathrm{YR} \\ \text { (IN/HR) } \end{gathered}$	$\begin{aligned} & \text { 100-YR } \\ & \text { (IN/HR) } \end{aligned}$	$\begin{aligned} & \text { Q5 }{ }^{(6)} \\ & \text { (CFS) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q100 } \\ & (\mathrm{CFS}) \\ & \hline \end{aligned}$
A	1	1.2	0.491	0.634	100	0.010	11.1	300	20.00	0.0233	3.05	1.6	12.8	12.8	3.76	6.31	2.22	4.80

DEVELOPED FLOWS

						erland F			Ch	nel flow								
				C				CHANNEL	CONVEYANCE		SCS ${ }^{(2)}$		TOTAL	TOTAL	INTEN	ITY ${ }^{(5)}$	PEAK	OW
BASIN	DESIGN POINT POINT	AREA (AC)	5-YEAR ${ }^{(7)}$	$100-$ YEAR $^{\text {(7 }}$	$\begin{gathered} \text { LENGTH } \\ \text { (FT) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { SLOPE } \\ & (\mathrm{FT} / \mathrm{FT}) \end{aligned}$	$\begin{aligned} & \text { Tco }^{(1)} \\ & \text { (MIN) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { LENGTH } \\ (\mathrm{FT}) \\ \hline \end{gathered}$	$\begin{gathered} \text { COEFFICIENT } \\ \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { VELOCITY } \\ \text { (FT/S) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{T t}^{(3)} \\ (\mathrm{MIN}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Tc}^{(4)} \\ & (\mathrm{MIN}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Tc}^{(4)} \\ & (\mathrm{MIN}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 5-YR } \\ (\text { IN/HR) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 100-YR } \\ & \text { (IN/HR) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q5 }^{(6)} \\ & \text { (CFS) } \end{aligned}$	$\begin{gathered} \text { Q100 }^{(6)} \\ \text { (CFS) } \\ \hline \end{gathered}$
A1	A1	1.06	0.637	0.764	45	0.026	4.1	570	20.00	0.009	1.90	5.0	9.1	9.1	4.26	7.16	2.88	5.80
A2	A2	0.17	0.640	0.766	70	0.036	4.6	150	20.00	0.023	3.03	0.8	5.4	5.4	5.05	8.47	0.55	1.10
A1,A2	1	1.23	0.637	0.765									9.1	9.1	4.26	7.16	3.34	6.74

1) OVERLAND FLOW Tco $=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT })^{*}\left(\right.\right.$ OVERLAND FLOW LENGTH^$(0.5) /\left(\right.$ SLOPE $\left.^{\wedge}(0.333)\right)$
2) SCS VELOCITY $=C$ * ($\left(\right.$ SLOPE $\left.(F T / F T)^{\wedge} 0.5\right)$
C $=5$ FOR TILLAGE/FIELD
3) MANNING'S CHANNEL TRAVEL TIME $=$ L/V (WHEN CHANNEL VELOCITY IS
${ }_{* * *}$ IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
4)

$$
\begin{aligned}
& \mathrm{I}_{5}=-1.5 * \ln (\mathrm{Tc})+7.583 \\
& \mathrm{I}_{100}=-2.52 * \ln (\mathrm{Tc})+12.735 \\
& \text { 6) } \mathrm{Q}=\mathrm{CiA}
\end{aligned}
$$

APPENDIX B

HYDRAULIC CALCULATIONS

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)
Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) ${ }^{\text {P }}$		MINOR	MAJOR	
Type of Inlet ت-	Type $=$	Denver N	mbination	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	Г Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	0.523	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.94	0.94	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	0.94	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	3.9	3.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak required }}=$	0.7	1.5	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) ${ }^{\text {Den }}$		MINOR	MAJOR	
Type of Inlet ت-	Type $=$	Denver N	mbination	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	9.0	inches
Grate Information		MINOR	MAJOR	Г Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	0.773	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.58	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.94	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	3.9	6.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak required }}=$	2.2	4.4	cfs

Hydraulic Analysis Report

Project Data

Project Title: Big-O-Falcon
Designer: JPS
Project Date: Thursday, January 18, 2018
Project Units: U.S. Customary Units
Notes:

Channel Analysis: SD-A1.1

Notes:
Input Parameters
Channel Type: Circular
Pipe Diameter: 1.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.0000 ft

Result Parameters

Flow: 3.5628 cfs
Area of Flow: $0.7854 \mathrm{ft} \wedge 2$
Wetted Perimeter: 3.1416 ft
Hydraulic Radius: 0.2500 ft
Average Velocity: $4.5363 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 0.8057 ft
Critical Velocity: $5.2542 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0103 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.79 ft
Calculated Max Shear Stress: $0.6240 \mathrm{lb} / \mathrm{tt}^{\wedge} 2$
Calculated Avg Shear Stress: $0.1560 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

APPENDIX C

DETENTION POND CALCULATIONS

JPS ENGINEERING

BIG O TIRES - FALCONIMPERVIOUS AREAS											
EXISTING CONDITIONS											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	$\begin{aligned} & \text { AREA } \\ & \text { (AC) } \end{aligned}$	$\begin{gathered} \text { SUB-AREA } 2 \\ \text { DEVELOPMENT/ } \end{gathered}$ COVER	PERCENT IMPERVIOUS	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	WEIGHTED $\%$ IMP
A	1.2	0.04	BUILDINGS	100	0.92	GRAVEL	80	0.26	LANDSCAPED	0	63.607
DEVELOPED CONDITIONS											
BASIN	$\begin{aligned} & \text { TOTAL } \\ & \text { AREA } \\ & \text { (AC) } \end{aligned}$	(AC)	$\begin{gathered} \text { SUB-AREA 1 } \\ \text { DEVELOPMENT/ } \\ \text { COVER } \\ \hline \end{gathered}$	PERCENT IMPERVIOUS	$\begin{aligned} & \text { AREA } \\ & (\mathrm{AC}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { SUB-AREA 2 } \\ \text { DEVELOPMENT/ } \\ \text { COVER } \\ \hline \end{gathered}$	PERCENT IMPERVIOUS	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	$\begin{gathered} \text { WEIGHTED } \\ \% \text { IMP } \\ \hline \end{gathered}$
A1,A2	1.23	0.834	BUILDING / PAVEMENT	100	0.39	LANDSCAPED	0				67.971
NET IMPERVIOUS AREA											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	$\begin{aligned} & \text { AREA } \\ & \text { (AC) } \end{aligned}$	$\begin{gathered} \hline \text { SUB-AREA 2 } \\ \text { DEVELOPMENT/ } \\ \text { COVER } \\ \hline \end{gathered}$	PERCENT IMPERVIOUS	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	$\begin{gathered} \text { WEIGHTED } \\ \% \text { IMP } \\ \hline \end{gathered}$
NET INCREASE	1.23										4.364

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40					
Orifice Area (sq. inches)	0.12	0.12	0.12					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	rameters for V	Orifice
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$Vertical Orifice Diameter $=$	N/A	N/A			N/A	N/A
	N/A	N/A				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)			Calculated Parameters for Overflow Weir				
	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	2.00	N/A			2.00	N/A	
Overflow Weir Front Edge Length $=$	3.00	N/A		Over Flow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$ (enter zero for flat grate)	Grate Open Area / 100-yr Orifice Area =	16.04	N/A	should be ≥ 4
Horiz. Length of Weir Sides $=$	3.00	N/A	feet	Overflow Grate Open Area w/o Debris $=$	6.30	N/A	ft^{2}
Overflow Grate Open Area \% =	70\%	N/A	\%, grate open area/total area	Overflow Grate Open Area w/ Debris $=$	3.15	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Depth to Invert of Outlet Pipe =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	0.00	N/A	
	12.00	N/A	
Restrictor Plate Height Above Pipe Invert =	6.00		inches Half-Cen

Outlet Orifice Area =	Zone 3 Restrictor	Not Selected	ft^{2}
	0.39	N/A	
	0.29	N/A	feet
Restrictor Plate on Pipe $=$	1.57	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)		
Spillway Invert Stage=	4.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	4.00	feet
Spillway End Slopes =	0.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway		
Spillway Design Flow Depth	$=0.16$	feet
Stage at Top of Freeboard	$=$	5.16
feet		
Basin Area at Top of Freeboard	$=10.02$	acres

Routed Hydrograph Results									
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.14
Calculated Runoff Volume (acre-ft) $=$	0.012	0.022	0.015	0.020	0.025	0.035	0.052	0.079	0.142
OPTIONAL Override Runoff Volume (acre-ft) $=$									
Inflow Hydrograph Volume ((acre-ft) $=$	0.011	0.021	0.014	0.020	0.024	0.034	0.051	0.079	0.141
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.00	0.01	0.01	0.11	0.26	0.62
Predevelopment Peak Q (cfs) $=$	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.8
Peak Inflow Q (cfs) $=$	0.1	0.2	0.1	0.2	0.3	0.4	0.5	0.8	1.4
Peak Outflow Q (cfs) $=$	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.8	2.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.7	1.5	6.1	3.3	2.5	2.7
Structure Controlling Flow $=$	Plate	Plate	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.0	0.1	0.1	0.3
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	35	48	39	46	50	54	52	48	41
Time to Drain 99\% of Inflow Volume (hours) $=$	37	51	41	49	53	58	57	56	53
Maximum Ponding Depth (ft) =	1.03	1.54	1.17	1.45	1.68	2.02	2.06	2.10	2.19
Area at Maximum Ponding Depth (acres) $=$	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Maximum Volume Stored (acre-ft) =	0.010	0.019	0.012	0.017	0.022	0.028	0.029	0.029	0.031

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: BIG O TIRES - FALCON

Facility Location \& Jurisdiction: 6985 MERIDIAN ROAD, FALCON, EL PASO COUNTY, CO

WQCV Treatment Method = Extended Delention \quad,

Remove the SDI worksheet from the Drainage Report

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

User Defined Stage [ft]	User Defined Area [$\mathrm{ft}{ }^{\wedge} 2$]	User Defined Stage [ft]	User Defined Discharge [cfs]
0.00	10	0.00	0.00
1.00	800	1.00	0.01
2.00	800	2.00	0.01
3.00	800	3.00	3.11
4.00	800	4.00	3.64
5.00	800	5.00	16.10

APPENDIX D

FIGURES

