FINAL DRAINAGE REPORT

for
\section*{LARGENT SUBDIVISION 6985 MERIDIAN ROAD}

Prepared for:
Hammers Construction, Inc.
1141 Woolsey Heights
Colorado Springs, CO 80915

January 18, 2018

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429
(719)-471-0766 FAX www.jpsengr.com

JPS Project No. 091701
PCD Project No. PPR-18- \qquad

LARGENT SUBDIVISION - 6985 MERIDIAN ROAD FINAL DRAINAGE REPORT TABLE OF CONTENTS

PAGE
\qquad
DRAINAGE STATEMENT ..i
I. INTRODUCTION .. 1
II. EXISTING DRAINAGE CONDITIONS .. 2
III. PROPOSED DRAINAGE CONDITIONS ... 2
IV. DRAINAGE PLANNING FOUR STEP PROCESS.. 3
V. FLOODPLAIN IMPACTS... 4
VI. STORMWATER DETENTION AND WATER QUALITY... 4
VII. DRAINAGE BASIN FEES .. 4
VIII. SUMMARY.. 5

APPENDICES

APPENDIX A Hydrologic Calculations
APPENDIX B Hydraulic Calculations
APPENDIX C Detention Pond Calculations
APPENDIX D Figures
Figure FIRM Floodplain Map
Sheet EX1 Historic Drainage Plan
Sheet D1 Developed Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. \#29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

| | Print the Name, Title, |
| :--- | :--- | Date

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E.
Date
County Engineer / ECM Administrator
Conditions:

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, no parts of the Largent Subdivision are located in a FEMA designated 100-year floodplain, as shown on FIRM panel No. 08041C0575F, dated March 17, 1997.

John P. Schwab, P.E. \#29891

Remove this sheet w/ the design engineer's signature since it is not required by the County.

I. INTRODUCTION

A. Property Location and Description

Big O Tires is planning to construct a new auto sales and service facility on a developed 1.2-acre property (El Paso County Assessor's Parcel No. 53124-01-008) located at the southeast corner of US Highway 24 (US24) and Meridian Road in the Falcon area of El Paso County, Colorado. The site is zoned Community Commercial (CC), and the proposed auto repair facility will require processing of a special use permit and a site development plan prior to establishing the use. The property is currently an unplatted tract described as a portion of Section 7, Township 13S, Range 64W, and a portion of Section 12, Township 13S, Range 65W of the $6^{\text {th }}$ P.M., El Paso County, Colorado. The project will include platting the property as a single lot, which will be described as Lot 1 , Largent Subdivision.

The north boundary of the property adjoins US Highway, and existing commercial development is located to the north across US24. The west boundary of the site adjoins Meridian Road, and existing commercial center is located to the west across Meridian Road. The property adjoins developed ranch properties to the east and south.

The proposed Site Development Plan consists of demolishing the existing buildings within the property and constructing a new 6,474 square-foot, single-story auto sales and service building, along with associated parking and site improvements. Access will be provided by a private access drive connection to Meridian Road at the western site boundary, in close proximity to the existing site access drive.

B. Scope

In support of the Subdivision Plat and Site Development Plan submittals to El Paso County, this report is intended to meet the requirements of a Final Drainage Report in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development. The report will analyze impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Snrinace and F1 Dacn Countw "nrainage Criteria Manual." Revise reference. County still uses the 1991 DCM and has only adopted

El Paso County "Engineering Criteria Manual," January 9, 2006.
FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0575F, March 17, 1997.

Add the Falcon DBPS in the Reference. Add a narrative regarding the DBPS summarizing whether or not there are any DBPS improvements that will be associated with this development.

USDA/NRCS, "Custom Soil Resource Report for El Paso County Area, Colorado," December 10, 2017.

II. EXISTING DRAINAGE CONDITIONS

The existing site topography generally slopes downward to the southwest with grades in the range of 1-3 percent. According to the Soil Survey of What was analyzed in the appendix is Soil Conservation Service (SCS), on-site soils are compris existing flows not historic. Update text to sandy loam soils, and these well-drained soils are classifie note existing. (see Appendix A).

As shown on the enclosed Histokic Drainage Plan (Sheet EX1, Appendix D), the site has been delineated as one on-site drainage basin, and the site is not impacted by any off-site drainage basins.
The on-site area has been delineated as Basin A, which sheet flows towards the southwest corner of the property. The existing site is developed with several buildings, and the majority of the site is covered by compacted gravel. Historic flows from Basin A drain to Design Point $\# 1$, histoftc peak flows calculated as $\mathrm{Q}_{5}=2.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=5.1 \mathrm{cfs}$. Hydrologic calculations are enclosed in Appendix A.

III. PROPOSED DRAINAGE CONDITIONS

As shown on the enclosed Drainage Plan (Figure D1, Appendix A), the schbol site has been delineated as a single on-site drainage basin, consistent with the hlstoric drainage analysis. Developed flows have been calculated based on the impervious areas associated with the proposed building and parking areas.

Developed Basin A will drain southerly across the site to a proposed stormwater detention nond alono the southern houndarv of the nronerty. The proposed building pad
w With DP1 downstream of the EDB, these values $b_{\text {}}$ should be the peak release rates from the pond plus b_{1} the runoff from the small subbasin not draining into ct ${ }^{\text {the EDB. See redlines on the proposed drainage }}$ b_{i} map.
rainage away from the around the perimeter of the orminlets at selected locations, he proposed extended detention

Private Storm Inlets A1 and A2 will intercept surface drainage along the east side of the building, and Private Storm Sewer A1 (12") will flow south into Extended Detention Basin A. Private Storm Inlets A3-A5 will intercept surface drainage along the west side of the building, and Private Storm Sewer A3-A5 (12") will also flow south intofytended Detention Basin A. Developed peak flows at Design Point \#1 are calculated as $\mathrm{Q}_{5}=4.1$ cfs and $\mathrm{Q}_{100}=7.8 \mathrm{cfs}$.

Hydrologic calculations for the site are detailed in the attached spreadsheets (Appendix A), and peak flows are identified on Figures EX1 and D1 (Appendix D).

The contractor will be required to implement standard best management practices for erosion control during construction.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The proposed auto service facility is being constructed on a previously developed site, so this re-development project will inherently minimize drainage impacts in comparison to development of a vacant site. Recognizing the existing compacted gravel covering the site, the proposed development of the site will result in a relatively small net increase in impervious site development.

Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. This site is a redevelopment project, and implementation of the proposed on-site drainage improvements and Detention Basin will minimize the downstream drainage impact from this site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The developed site will drain through a proposed Extended Detention Basin (EDB) along the south boundary of the property. Site drainage will be routed through the extended detention basin, which will capture and slowly release the WQCV over a 40-hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No outside storage or industrial uses are proposed for this site.
- The proposed commercial development project will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the private Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

V. FLOODPLAIN IMPACTS

Floodplain limits in vicinity of this site are delineated in the applicable Flood Insurance Rate Map, FIRM Panel No. 08041C0575 dated March 17, 1997, which was revised by Letter of Map Revision (LOMR) Case No. 01-08-226P dated May 14, 2002. As depicted in the FIRM exhibit enclosed in Appendix D, this site is not impacted by any delineated 100-year FEMA floodplains.

VI. STORMWATER DETENTION AND WATER QUALITY

The proposed drainage and grading plan for the site includes a private Extended Detention Basin (EDB) at the south boundary of the site. This facility has been designed to provide the required stormwater detention and water quality mitigation for this site in accordance with El Paso County drainage criteria.

As detailed in the detention pond hydraulic calculations in Appendix C, the required total Full-Spectrum Detention Volume for this site has been calculated as 0.19 acre-feet, which includes the combined Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and 100-year Detention Volume. As detailed in Appendix C, the proposed Extended Detention Basin (EDB) A has been designed for a storage volume of 0.19 acre-feet, which meets the total required storage volume.

The proposed pond outlet structure has been designed using the UDFCD "UD-Detention" calculation spreadsheets, providing for a 40 -hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The EDB will have a grass-lined bottom and riprap trickle channel to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The proposed stormwater detention facility will be privately owned and maintained by the property owner, and maintenance access will be provided from the adjacent parking lot.

VII. DRAINAGE BASIN FEES

Development of this commercial site will include construction of a private storm sewer system and private stormwater detention and water quality facilities within the site.

The site lies entirely within the Falcon Drainage Basin, which is tributary to the Black Squirrel Creek Drainage Basin. The Falcon Drainage Basin is subject to an El Paso County 2018 drainage basin fee of $\$ 27,762$ per impervious acre, and a bridge fee of $\$ 3,814$ per impervious acre. The required drainage and bridge fees are due at the time of recording the subdivision plat.

Recognizing that this project consists of re-development of a previously developed site, the required drainage basin fees have been calculated based on the net additional impervious area. The required drainage and bridge fees are calculated as follows:

Platted Area:
Developed Impervious Area:
Historic Impervious Area:
Net Impervious Area:
Net Impervious Area:
$(1.227 \mathrm{ac}) * 13.82 \%=$.
Drainage Fee:
Bridge Fee:
Total Basin Fees:

(0.17 ac.) @ (\$27,762/ac.) =
0.17 ac.$)$ @ (\$3,814/ac.) =
1.227 acres
83.33\%
69.51\%
13.82\%
0.17 ac.
\$ 4,719.54

$\$ \quad 648.38$	
$\$$	$\mathbf{5 , 3 6 7 . 9 2}$

VIII. SUMMARY

The developed drainage patterns assфciated with the proposed Big O Tires development at the southeast corner of US24 and Meridian Road will remain consistent with historic conditions and the overall drainage plan for area. Developed flows from the site will drain through a proposed stormwater Detention Pond at the south boundary of the property prior to discharging to the existing downstream drainage system.

The proposed stormwater detention and watex quality facilities have been designed to mitigate developed flow impacts and meet the County's stormwater detention and water quality requirements. Construction and proper maintenance of the proposed Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

Revise the calculation. Based on ECM 3.13a for vacation/replat a basin drainage fee will be assessed based upon the new impervious acreage if no such fee has been previously paid. With no drainage basin fees previously paid, the fee is based on the new impervious acreage only (83.33%).

The calculation done above only applies if a basin drainage fee has been previously paid, and the replat results in an increase in impervious acreage, then fees are assessed on the additional impervious acreage only.

APPENDIX A

HYDROLOGIC CALCULATIONS

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) \square Area of Interest (AOI)	\square \square	C C/D	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soil Rating Polygons	\square	D	Warning: Soil Map may not be valid at this scale.
A	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water Fe	ures	line placement. The maps do not show the small areas of
]	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+		Please rely on the bar scale on each map sheet for map
C	\sim	Interstate Highways	measurements.
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service
D	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
. Not rated or not available	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \quad A / D$	5	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
B			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
$\checkmark \mathrm{C}$			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017
\cdots C/D			Soil map units are labeled (as space allows) for map scales
* D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: May 22, 2016-Mar
Soil Rating Points			9,2017
$\square \quad A$			The orthophoto or other base map on which the soil lines were
$\square \quad \mathrm{A} / \mathrm{D}$			imagery displayed on these maps. As a result, some minor
- B			shifting of map unit boundaries may be evident.
- B/D			

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	0.9	100.0%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.10	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

What's being calculated is based on existing condition not historic condition. Change the header to "Existing Condition"
BIG O TIRES - FALCON
HISTORIC FLOW\&

BASIN	DESIGN POINT	AREA (AC)	$5-$ YEAR $^{(7)}$	$100-$
A	1	1.2	0.529	1

DEVELOPED FLOWS

						erland F			Cha	nel flow								
				C				CHANNEL	CONVEYANCE		SCS ${ }^{(2)}$		TOTAL	TOTAL	INTE	ITY ${ }^{(5)}$	PEAK	OW
BASIN	$\begin{array}{\|c\|} \text { DESIGN } \\ \text { POINT } \\ \hline \end{array}$	AREA (AC)	5-YEAR ${ }^{(7)}$	100-YEAR ${ }^{\text {(7 }}$	$\begin{gathered} \text { LENGTH } \\ \hline \end{gathered}$	SLOPE (FT/FT)	$\begin{aligned} & \text { Tco }^{(1)} \\ & \text { (MIN) } \end{aligned}$	$\begin{aligned} & \text { LENGTH } \\ & \text { (FT) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { COEFFICIENT } \\ \text { C } \\ \hline \end{gathered}$	SLOPE (FT/FT)	$\begin{array}{\|c} \text { VELOCITY } \\ \text { (FT/S) } \\ \hline \end{array}$	$\begin{aligned} & \mathbf{T t}^{(3)} \\ & (\text { MIN }) \end{aligned}$	$\mathrm{Tc}^{(4)}$ (MIN)	$\mathrm{Tc}^{(4)}$ (MIN)	$\begin{gathered} 5-\mathrm{YR} \\ (\mathrm{IN} / \mathrm{HR}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 100-YR } \\ & \text { (IN/HR) } \end{aligned}$	$\begin{aligned} & \text { Q5 }{ }^{(6)} \\ & \text { (CFS) } \end{aligned}$	$\begin{gathered} \text { Q100 }^{(6)} \\ \text { (CFS) } \end{gathered}$
A	1	1.2	0.763	0.858	100	0.010	6.2	300	20.00	0.0233	3.05	1.6	7.8	7.8	4.50	7.56	4.12	7.78

1) $\operatorname{OVERLAND~FLOW~Tco~}=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT })^{*}\left(\operatorname{OVERLAND~FLOW~LENGTH}{ }^{\wedge}(0.5) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)\right.\right.$ 2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)
$=2.5$ FOR HEAVE/FIELD
$=5$ FOR TILLAGE/F
$\mathrm{C}=7$ FOR SHORT PASTURE AND LA
$\mathrm{C}=10$ FOR NEARLY BARE GROUND
$C=15$ FOR GRASSED WATERWAY
$\mathrm{C}=20$ FOR PAVED AREAS AND SHALLOW PAVED SWALES
2) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY
3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)
4) Tc = TCO + Tt
*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES
5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL
$I_{5}=-1.5^{*} \ln (\mathrm{Tc})+7.583$
$\mathrm{I}_{5}=-1.5^{*} \ln (\mathrm{Tc})+7.583$
$\mathrm{I}_{100}=-2.52^{*} \ln (\mathrm{Tc})+12.735$
6) $\mathrm{Q}=\mathrm{CiA}$

APPENDIX B

HYDRAULIC CALCULATIONS

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet -	Type $=$	CDOT/De	alley Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	- Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.43	0.43	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.30	3.30	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	1.023	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	2.6	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak required }}=$	0.8	1.6	cfs

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) \quad Denver No. 16 Combination		MINOR	MAJOR	
Type of Inlet Denver No. 16 Combination	Type $=$	Denver N	mbination	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	W_{0} =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	3.00	3.00	eet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	5.25	5.25	nches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	0.629	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.94	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_{\text {a }}=$	3.9	5.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	0.8	1.6	cfs

Hydraulic Analysis Report

Project Data

Project Title: Big-O-Falcon
Designer: JPS
Project Date: Thursday, January 18, 2018
Project Units: U.S. Customary Units
Notes:

Channel Analysis: SD-A1-A3-A4

Notes:
Input Parameters
Channel Type: Circular
Pipe Diameter: 1.0000 ft
Longitudinal Slope: $0.0050 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.0000 ft

Result Parameters

Flow: 2.5193 cfs
Area of Flow: $0.7854 \mathrm{ft}{ }^{\wedge} 2$
Wetted Perimeter: 3.1416 ft
Hydraulic Radius: 0.2500 ft
Average Velocity: $3.2077 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 0.6797 ft
Critical Velocity: $4.4319 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0077 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.93 ft
Calculated Max Shear Stress: $0.3120 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.0780 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-A2-A5

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.2500 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.2500 ft
Result Parameters
Flow: 6.4598 cfs
Area of Flow: $1.2272 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 3.9270 ft
Hydraulic Radius: 0.3125 ft
Average Velocity: $5.2639 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.0242 ft
Critical Velocity: $6.0025 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.96 ft
Calculated Max Shear Stress: $0.7800 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.1950 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

APPENDIX C

DETENTION POND CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)														
Project: BIG O TIRES - FALCON														
Basin ID: A														
					Depth Increment =	ft								
					Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (tt)	Width (ft)	Area $\left(\mathrm{ft}^{\wedge} 2\right)$	Optional Override Area (ft^2)	Area (acre)	Volume (tt^{\wedge})	Volume (ac-ft)
Required Volume Calculation					Top of Micropool	--	0.00	--	--	--	2,727	0.063		
Selected BMP Type =	EDB					--	1.00	--	--	--	2,727	0.063	2,700	0.062
Watershed Area = Watershed Length	1.20	acres				--	2.00	--	--	--	2,727	0.063	5,427	0.125
	400	ft			100-YR WSL	--	3.00	--	--	--	2,727	0.063	8,181	0.188
Watershed Slope =	0.020	ft / t			Top of Bank	--	4.00	--	--	--	2,727	0.063	10,908	0.250
Watershed Imperviousness $=$	83.30\%	percent				--		--	--	--				
Percentage Hydrologic Soil Group $\mathrm{A}=$	100.0\%	percent				--		--	--	--				
Percentage Hydrologic Soil Groups $\mathrm{C} / \mathrm{D}=$	0.0\%	percent				--		--	--	--				
	0.0\%	percent				--		--	--	--				
$\begin{aligned} & \text { Desired WQCV Drain Time }=40.0 \\ & \text { Locars }\end{aligned}$						--		--	--	--				
						--		--	--	--				
Water Quality Capture Volume (WQCV) $=$ Excess Urban Runoff Volume (EURV) =	0.035	acre-feet Optional User Override acre-feet 1-hr Precipitation				--		--	--	--				
	0.133					--		--	--	--				
2-yr Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}$.) = $5-y r$ Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$	0.092	acre-feet acre-feet	1.19	inch		--		--	--	--				
	0.120	acre-feet	1.50	inches		--		--	--	--				
10-yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) $=$ $25-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	0.144	acre-feet	1.75	inches		--		--	--	--				
	0.170	acre-feet	2.00	inches		--		--	--	--				
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$) $)=$	0.194	acre-feet	2.25			--		--	--	--				
$100-\mathrm{yr}$ Runoff Volume (P1 = 2.52 in .) $=$ 500-yr Runoff Volume (P1 = 3.14 in .) =	0.224		2.52	inches inches inches		--		--	--	--				
	0.291	acre-feet	3.14			--		--	--	--				
Approximate 2 -yr Detention Volume $=$	0.087	acre-feet				--		--	--	--				
	0.114	acre-feet acre-feet				--		--	--	--				
Approximate 10-yr Detention Volume $=$	0.135	acre-feet				--		--	--	--				
Approximate $25-\mathrm{yr}$ Detention Volume $=$	0.160	acre-feet				--		--	--	--				
Approximate $50-\mathrm{yr}$ Detention Volume $=$	0.175	acre-feet				--		--	--	--				
Approximate 100-yr Detention Volume $=$	0.188					--		--	--	--				
						--		--	--	--				
Stage-Storage Calculation						--		--	--	--				
Zone 1 Volume (WQCV) =	0.035					--		--	--	--				
Zone 2 Volume (EURV - Zone 1) =	0.098	acre-feet				--		--	--	--				
Zone 3 Volume (100 -year - Zones 1 \& 2) $=$	0.055	acre-feet acre-feet				--		--	--	--				
Total Detention Basin Volume $=$	0.188					--		--	--	--				

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
Total Area of Each Orifice Row (numbered from lowest to highest)

Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)
Stage of Orifice Centroid (ft)	Row 8 (optional)					
Orifice Area (sq. inches)	0.00	0.71	1.42			

Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)		
									Stage of Orifice Centroid (ft)
:---									
Orifice Area (sq. inches)									

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid $=$	N/A	N/A

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrographs UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	WORKBOOK								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.70 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:11:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:17:06	0.02	0.09	0.06	0.08	0.10	0.11	0.13	0.15	0.19
0.877	0:22:48	0.06	0.24	0.17	0.22	0.26	0.30	0.35	0.40	0.51
	0:28:30	0.17	0.62	0.43	0.56	0.66	0.78	0.89	1.02	1.32
	0:34:12	0.46	1.70	1.19	1.53	1.83	2.14	2.45	2.82	3.64
	0:39:54	0.53	1.97	1.37	1.78	2.13	2.50	2.87	3.30	4.27
	0:45:36	0.49	1.87	1.30	1.69	2.02	2.38	2.72	3.14	4.07
	0:51:18	0.45	1.70	1.18	1.53	1.84	2.16	2.48	2.85	3.70
	0:57:00	0.39	1.51	1.05	1.36	1.63	1.92	2.20	2.53	3.29
	1:02:42	0.33	1.29	0.89	1.16	1.39	1.64	1.88	2.17	2.83
	1:08:24	0.29	1.13	0.78	1.01	1.22	1.43	1.65	1.90	2.47
	1:14:06	0.26	1.02	0.70	0.92	1.10	1.30	1.49	1.72	2.23
	1:19:48	0.21	0.83	0.57	0.74	0.89	1.06	1.21	1.40	1.83
	1:25:30	0.17	0.66	0.46	0.60	0.72	0.85	0.98	1.13	1.48
	1:31:12	0.12	0.50	0.34	0.44	0.54	0.64	0.74	0.86	1.13
	1:36:54	0.09	0.36	0.24	0.32	0.39	0.46	0.54	0.63	0.83
	1:42:36	0.06	0.26	0.18	0.24	0.29	0.34	0.39	0.46	0.60
	1:48:18	0.05	0.21	0.14	0.19	0.23	0.27	0.31	0.36	0.47
	1:54:00	0.04	0.17	0.12	0.15	0.19	0.22	0.26	0.30	0.39
	1:59:42	0.04	0.15	0.10	0.13	0.16	0.19	0.22	0.25	0.33
	2:05:24	0.03	0.13	0.09	0.12	0.14	0.17	0.19	0.22	0.29
	2:11:06	0.03	0.12	0.08	0.11	0.13	0.15	0.17	0.20	0.26
	2:16:48	0.03	0.11	0.08	0.10	0.12	0.14	0.16	0.19	0.24
	2:22:30	0.02	0.08	0.06	0.07	0.09	0.10	0.12	0.14	0.18
	2:28:12	0.01	0.06	0.04	0.05	0.06	0.08	0.09	0.10	0.13
	2:33:54	0.01	0.04	0.03	0.04	0.05	0.05	0.06	0.07	0.10
	2:39:36	0.01	0.03	0.02	0.03	0.03	0.04	0.05	0.05	0.07
	2:45:18	0.01	0.02	0.01	0.02	0.02	0.03	0.03	0.04	0.05
	2:51:00	0.00	0.02	0.01	0.01	0.02	0.02	0.02	0.03	0.03
	2:56:42	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	3:02:24	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:08:06	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	3:13:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:42:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:48:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:53:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:59:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:16:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:33:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:02:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:07:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:19:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:24:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:42:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:47:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:53:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:59:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:04:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:10:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:16:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:21:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:27:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:33:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:39:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:44:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:50:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

Stage - Storage Description	Stage [ft]	$\begin{aligned} & \text { Area } \\ & {\left[f t^{\wedge} 2\right]} \end{aligned}$	Area [acres]	Volume [ft^3]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

APPENDIX D

FIGURES

Markup Summary

dsdlaforce (17)		
JPS Project No. 091701 PCD Project No. PPR-18-SF-18-003 V \qquad	Subject: Callout Page Label: 1 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 12:53:13 PM Color:	SF-18-003
	Subject: Callout Page Label: 3 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 12:54:43 PM Color:	Print the Name, Title, Business Name, Address
,	Subject: Text Box Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:29:38 PM Color:	Remove this sheet w/ the design engineer's signature since it is not required by the County.
	Subject: Callout Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 1:16:49 PM Color:	Add the Falcon DBPS in the Reference. Add a narrative regarding the DBPS summarizing whether or not there are any DBPS improvements that will be associated with this development.
	Subject: Callout Page Label: 5 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 1:12:42 PM Color:	Revise reference. County still uses the 1991 DCM and has only adopted portions of the City's 2014 DCM.
	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:26:15 PM Color:	With DP1 downstream of the EDB, these values should be the peak release rates from the pond plus the runoff from the small subbasin not draining into the EDB. See redlines on the proposed drainage map.

$00=5.1 \mathrm{cfs}$.	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 1:37:29 PM Color:	remove "school"
	Subject: Callout Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:19:29 PM Color:	What was analyzed in the appendix is existing flows not historic. Update text to note existing.
	Subject: Callout Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:48:16 PM Color:	Revise the calculation. Based on ECM 3.13a for vacation/replat a basin drainage fee will be assessed based upon the new impervious acreage if no such fee has been previously paid. With no drainage basin fees previously paid, the fee is based on the new impervious acreage only (83.33%). The calculation done above only applies if a basin drainage fee has been previously paid, and the replat results in an increase in impervious acreage, then fees are assessed on the additional impervious acreage only.
	Subject: Callout Page Label: 19 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:11:01 PM Color:	What's being calculated is based on existing condition not historic condition. Change the header to "Existing Condition"
	Subject: Callout Page Label: 20 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:11:24 PM Color:	What's being calculated is based on existing condition not historic condition. Change the header to "Existing Condition"
	Subject: Callout Page Label: 38 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdlaforce Date: 2/15/2018 2:11:57 PM Color:	What's being calculated is based on existing condition not historic condition. Change the header to "Existing Condition"

Subject: Text Box
Page Label: 37
Lock: Unlocked
Status:
Checkmark: Unchecked
Author: Penny
Date: 1/19/2018 8:40:10 AM
Color:

