FINAL DRAINAGE REPORT

For

TRAILS AT ASPEN RIDGE Filing No. 2

Prepared for: EL PASO COUNTY Engineering Development Review Team 2880 International Circle Colorado Springs, CO 80910

On Behalf of: **COLA, LLC.** 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

Matrix Design Group 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-0208

February 2021

Project No. 19.866.014

PCD File No. SF1927

Engineer's Statement:

This report and plan for the drainage design of Trails at Aspen Ridge Filing No. 2 was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the El Paso County Drainage Criteria Manual and is in conformity with the master plan of the drainage basin.

Jesse Sullivan Registered Professional Engineer State of Colorado No. 55600 Date

Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

<u>COLA, LLC</u> Business Name

By: Tim Buschar 505 Stephen Scheepever Date

Title: Director of Land Acquisition and Development

Address: 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

Final Drainage Report for Trails at Aspen Ridge Filing No. 2 TABLE OF CONTENTS	February 2021
I. INTRODUCTION	
II. PURPOSE AND SCOPE OF STUDY	2
III. GENERAL LOCATION AND DESCRIPTION	2
IV. SOIL CONDITIONS	3
V. PROJECT CHARACTERISTICS	4
VI. DRAINAGE DESIGN CRITERIA	5
VII. DRAINAGE BASINS AND SUB-BASINS	7
VIII. DRAINAGE FACILITY DESIGN	19
IX. ENVIRONMENTAL EVALUATIONS	27
X. EROSION CONTROL PLAN	27
XI. DRAINAGE FEES	28
XII. CONSTRUCTION COST OPINION	28
XIII. REFERENCES	29
XIV. APPENDICES	
APPENDIX A. Hydrologic and Hydraulic Calculations	
B. Standard Design Charts and Tables	
C. Report References	

D. Maps

I. Introduction

The Trails at Aspen Ridge Filing No. 2 development is within the Waterview East (Waterview II) Subdivision, which is within El Paso County jurisdiction and is comprised of a total of 15.730 acres of single-family residential, open space, and public right-of-way. The site is located within the 721.8-acre Waterview Development in the 419.8-acre portion of the development east of Powers. The Trails at Aspen Ridge development was referred to as Waterview East or Waterview II in the original Waterview Master Development Drainage Study (MDDP).

Figure 1 - Project Location

II. PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to identify and evaluate the offsite and onsite drainage patterns associated with Filing No. 2 of the Trails at Aspen Ridge development (15.730 acres) and to provide hydrologic and hydraulic analyses of this area to ensure compliance with the El Paso County Drainage Criteria Manual (DCM) and the most recent MDDP Amendment, as well as provide effective, safe routing to downstream outfalls.

III. GENERAL LOCATION AND DESCRIPTION

Trails at Aspen Ridge Filing No. 2 is within the Waterview subdivision, which extends from Grinnell Road on the west to approximately one-half mile east of the north-south portion of Powers Boulevard. The west portion of the subdivision (Waterview I) is bounded on the north by an east-west portion of Powers Boulevard and on the south by Bradley Road. The east portion of the subdivision (Waterview East/Waterview II) is bounded on the north by the Colorado Springs Airport and on the south, approximately 3,260 feet south of the Bradley and Powers intersection by property owned by the State of Colorado. The subject of this report, Trails at Aspen Ridge Filing No. 2, is in the Waterview East portion of the overall Waterview Subdivision and located southeast of the intersection of Powers Boulevard and Bradley Road. More specifically, the study area is located as follows:

A. <u>General Location</u>: The southwest ¹/₄ and the northwest ¹/₄ of Section 9, Township 15 South, Range 65 West of the 6th P.M. in the County of El Paso, State of Colorado.

B. Surrounding Streets and Developments:

- a. <u>North:</u> Portions of Trails at Aspen Ridge PUD and Bradley Road.
- b. <u>East:</u> Several undeveloped properties. See DR-02 for location and ownership
- c. <u>South:</u> Trails at Aspen Ridge Filing No. 1
- d. <u>West:</u> Legacy Hill Drive and portions of Trails at Aspen Ridge PUD
- C. <u>Drainageway:</u> This site is within the West Fork Jimmy Camp Creek Drainage Basin.
 - **a.** <u>West Fork Jimmy Camp Creek:</u> There appears to be a broad swale running along the west edge of the project area. Flows are conveyed in a southeasterly direction. Total area of basin considered in this report for the East Pond is approximately 165.2 acres. This includes approximately 52.5 acres in Trails at Aspen Ridge Filing No. 1, 77.3 acres of the Trails at Aspen Ridge PUD (Including the 15.730 Acres in Trails at Aspen Ridge Filing No. 2), and 35.1 acres of offsite areas.

D. Irrigation Facilities

No known functioning irrigation facilities are within the project area.

E. Utilities and Encumbrances

- a) Storm Sewer: A 48" storm sewer is extended out of a manhole on the main Filing No. 1 storm sewer to drain an existing low spot just north of Legacy Hill Drive in Trails at Aspen Ridge Filing No. 1.
- **b)** Sanitary Sewer: Sanitary sewer associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Big Johnson Drive at the south boundary of this development.
- c) Gas: There is an existing petroleum line running just inside the Powers Boulevard easement west of the proposed development. No known gas encumbrances on the project site.
- **d)** Water: An 8-inch water main associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Big Johnson Drive at the south boundary of this development.
- e) Electric: There is an existing overhead electric easement parallel to the east side of this development with two sets of overhead lines.

F. Referenced Drainage Reports

This site is within the Waterview II or Waterview East portion of the Waterview Subdivision. This study looks at Trails at Aspen Ridge Filing No. 2, which takes up the south 15.730 acres of the Waterview East Subdivision. The three reports below were used as references for this report.

"Amendment to Waterview Master Drainage Development Plan", completed by Springs Engineering, dated July 2014 (MDDP-2014)

"MDDP for Waterview East and PDR for Trails at Aspen Ridge", completed by Matrix Design Group, Dated September 2019. (MDDPA-Matrix) Note: This report supersedes a previously approved PDR "Springs East at Waterview" by Stantec (SP-17-010).

"Final Drainage Report for Trails at Aspen Ridge Filing No. 1", completed by Matrix Design Group, Dated January 2020. (FDR-F1)

G. Land Uses

Land uses for the proposed development will be single family residential, public roads, and open space.

IV. SOIL CONDITIONS

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map; Appendix C. Table 3.1 on the following page lists the soil types present in the development area:

SOIL ID NUMBER	SOIL	HYDROLOGIC CLASSIFICATION	PERMEABILITY	PERCENT ON SITE
52	Manzanst clay loam, 0 to 3 percent slopes	С	Well Drained	45.3%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	Well Drained	54.7%

Table 3.1 – NRCS Soil Survey for El Paso County

Predevelopment site conditions are undeveloped and ground cover consists of sparse natural vegetative land cover.

V. Project Characteristics

A. Major Basin Description

West Fork Jimmy Camp Creek:

a. <u>Onsite Flows</u>: Filing No. 1 is within the West Fork Jimmy Camp Creek Basin. Under predevelopment conditions flows in this area generally flow south. After development flows will generally sheet flow to adjacent streets, where they will be conveyed via gutter flow towards sump or at-grade inlets which will capture the flows. Flows will then be conveyed to the proposed East Pond via storm sewer.

b. Offsite Flows:

- 1. A portion of the Trails at Aspen Ridge PUD (29.0 acres) is upstream of this development. These flows will collect in the low spot/sediment basin uphill of Filing No. 2 and will drain to a 24-inch RCP storm pipe stubbed out from Big Johnson Drive.
- 2. Another portion of offsite flows to the East Pond are upstream of the PUD. There are two additional offsite areas. The first is approximately 14.5 acres of commercially zoned area in two lots just north of the PUD and south of Bradley Road. (Legacy Hill Drive runs between the two lots). The second, on the north side of Bradley Road, is approximately 19.6 acres (12.3 acres of the West Fork Jimmy Camp Creek Basin plus an additional 7.3 acres of Big Johnson Reservoir drainage area diverted into the West Fork Jimmy Camp Creek by CDOT construction of Powers Boulevard). Runoff south of Bradley Road under predevelopment conditions generally sheet flows to the south and slightly east within the West Fork Jimmy Camp Creek Drainage Basin (DBPS-WFJCC) at slopes ranging from 2 to 9 percent. There appears to be a broad swale running along the middle of this basin in a southeasterly direction. These offsite areas are analyzed in more detail in MDDP-Matrix and FDR-F1.

B. Regulatory Floodplain

Per the *Flood Insurance Rate Map (FIRM)* 08041C0768-G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), no portion of Trails at Aspen Ridge (Waterview East) lies within any designated 100-year floodplain. This map can be found in Appendix C.

VI. Drainage Design Criteria

B. Design References

As required by El Paso County, Colorado, this report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs and El Paso County Drainage Criteria Manual Volume 1 & 2* (Drainage Criteria Manual or DCM), the El Paso County Engineering Criteria Manual (ECM), and El Paso County Resolutions 15-042 and 19-245.

In addition to the DCM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3* (UDFCD), published by the Urban Drainage and Flood Control District, latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV).

C. Design Frequency

Design frequency is based on the DCM. The 100-year storm event was used as the major storm for the project, and the 5-year storm event was used as the minor storm.

D. Design Discharge

a. Method of Analysis

The hydrology for this project uses the Rational Method as recommended by the Drainage Criteria Manual for the minor and major storms for drainage basins less than 100-acres in size. The Rational Method uses the following equation: Q=C*i*A

Where:

- Q = Maximum runoff rate in cubic feet per second (cfs)
- C = Runoff coefficient
- i = Average rainfall intensity (inches per hour)
- A = Area of drainage sub-basin (acres)

b. Runoff Coefficient

Rational Method coefficients from Table 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

c. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a channel to the inlet or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas.

d. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Drainage Criteria Manual. Table 5.1, below, lists the rainfall depth for the Major and Minor 1-hour storm events.

usie sil 110jeet lieu 111oui Ruiniun Dept					
Rainfall					
Depth					
(inches)					
1.50					
2.52					

Table 5.1 – Project Area 1-Hour Rainfall Depth

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5.

e. StormCAD Analysis

1. Routing

Storm CAD was utilized to analyze the routing of runoff through the proposed storm sewer system. Catchments were created in the model and calibrated to match the values calculated in the Rational Method spreadsheet.

2. HGL Profiles

StormCAD was also used to determine the Hydraulic Grade Profiles for the major and minor storms. The standard method was used to calculate head loss in the system with K coefficients taken from Table 9-4 of the DCM.

Table 9-4. STORMCAD Standard Method Coefficients

	Bend Loss						
Bend Angle	Bend Angle K Coefficient						
0°	0.0	5					
22.5°	0.1	0					
45°	0.4	0					
60°	0.6	4					
90°	1.3	2					
	LATERAL LOSS						
(One Lateral K Coeffic	ient					
Bend Angle	Non-surcharged	Surcharged					
45°	0.27	0.47					
60°	0.52	0.90					
90°	1.02	1.77					
Т	wo Laterals K Coeffic	ient					
45°	45° 0.96						
60°	1.16						
90°	1.5	2					

VII. Drainage Basins and Sub-basins

- **A.** The *predevelopment conditions* for the site have been analyzed and are presented by design points (Table 6.2) and are described as follows:
- A. <u>West Fork Jimmy Camp Creek:</u>

The middle portion of the studied area is within the West Fork tributary to Jimmy Camp Creek. A portion of this basin is upstream of Bradley Road. Flows in that sub-basin (OS-1: $Q_5 = 5.0$ cfs, $Q_{100} = 25.3$ cfs) sheet flow to the road ditch and are conveyed to two 42-inch CMP crossroad pipes which direct the water across Bradley Road and on to the proposed development area.

The next downstream sub-basin is WF-1 ($Q_5 = 17.2$ cfs, $Q_{100} = 115.2$ cfs) which includes 14.5 Acres of commercially zoned offsite area, 66.10 acres of offsite Trails at Aspen Ridge PUD (Originally 8.99), 32.09 Acres of Trails at Aspen Ridge Filing No. 1, 15.89 Acres of Trails at Aspen Ridge Filing No. 2 (PUD area reduced), and 5.00 Acres which are in both Filing No. 1 and the PUD. Flows in this sub-basin sheet flow towards the middle of the sub-basins where they join flows from OS-1 and are conveyed via a broad swale in a southeasterly direction and out of the study area.

The third sub-basin within the West Fork basin is sub-basin WF-2 ($Q_5 = 5.4$ cfs, $Q_{100} = 36.5$ cfs) which includes 15.77 Acres of Filing No. 1 and 5.38 Acres of the PUD. Flows in this basin sheet flow in an easterly direction where they are captured by another broad swale at the south limit of the study area and conveyed in a southeasterly direction.

Total discharge to the West Fork Jimmy Camp Creek basin is approximately 22.4 cfs for the Q5 event and 145.4 cfs for the Q100 event.

Table 6.1 <u>Trails at Aspen Ridge, Filing No. 1</u> FDR Existing Conditions Sub-basin Summary Table							
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)				
West Fork Jimmy Camp Creek / OS - 1	19.60	4.96	25.28				
West Fork Jimmy Camp Creek / WF-1	119.08	17.15	115.23				
West Fork Jimmy Camp Creek / WF-2	21.15	5.43	36.51				

Existing conditions consider all of the areas as undeveloped. Sub-basins and Design points are summarized in the tables on the following page:

Table 6.2 Trails at Aspen Ridge, Filing No. 1 FDR Existing Design Point Summary								
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)				
OS-1	OS-1 (7.3 Acres diverted by CDOT from Big Johnson)	19.60	4.96	25.28				
WF-1	WF-1 & OS-1	138.69	17.01	108.84				
WF-2	WF-2	21.15	5.43	36.51				
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel, so this is a sum of WF-1 & WF-2.)	159.84	22.44	145.35				

B. The <u>fully developed</u> conditions for the site are as follows:

West Fork – Jimmy Camp Creek:

Under proposed conditions, flows for this basin will be directed to a proposed detention pond (East Pond) near the southeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points for this major basin are summarized in hydrology Tables 6.3, 6.4, and 6.5 below and on the following pages. (Note that grey shading indicates sub-basins within the West Fork Jimmy Camp Creek basin that are covered in previous drainage reports. Sub-basins C-7 and C-8 were covered in *MDDP-Matrix*, but, as the HGLs for the inlets serving these two sub-basins are included in this report, they are not shaded gray.)

Table 6.3a Trails at Aspen Ridge West Fork - Jimmy Camp Creek West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary (Gray shading: Covered in previous drainage report)						
Basin	Area	Q5	Q100			
	acres	cfs	cfs			
OS-1	19.67	4.0	26.8			
A-1	12.34	4.4	18.9			
A-2	1.09	2.7	5.2			
A-3	4.98	2.2	9.0			
A-4	0.12	0.6	1.0			
B-1	1.06	1.8	4.1			
C-1	3.27	5.9	12.9			
C-2	1.19	2.4	5.3			
C-3	4.60	8.4	18.5			
C-4	0.36	1.6	3.0			
C-5	3.13	5.7	12.5			
C-6	0.07	0.3	0.6			
C-7+8 (MDDP Sub-basins C7 and C8 combined)	2.26	4.2	9.2			
D-1	2.21	1.6	5.2			
E-1	6.43	3.9	12.2			
E-2	2.14	3.9	8.7			

Table 6.3b Trails at Aspen Ridge West Fork - Jimmy Camp Creek West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary (Gray shading: Covered in previous drainage report)						
Basin	Area	Q5	Q100			
	acres	cfs	cfs			
F-1	1.49	2.7	6.0			
F-2	0.58	1.1	2.5			
F-3	1.25	2.3	5.0			
F-4	0.58	1.1	2.5			
F-5	2.27	3.5	7.8			
F-6	1.00	1.7	3.9			
F-7	5.06	7.5	16.5			
F-8	0.84	1.5	3.3			
G-1	1.11	2.1	4.6			
H-1	3.60	5.6	12.3			
Н-2	1.16	1.9	4.2			
H-3	2.97	4.7	10.3			
H-4	0.92	1.6	3.6			
H-5	2.42	4.0	8.9			
Н-6	2.46	4.1	9.1			
H-7	2.03	3.0	6.6			
H-8	0.97	1.7	3.8			
H-9a	1.95	2.3	5.8			
H-9b	0.38	0.6	1.3			
H-10	1.33	2.5	5.5			
H-11	3.42	5.0	11.0			
I-3	4.18	7.1	15.6			
K-1+2	2.37	3.2	7.9			
K-3+4	1.23	2.9	6.3			
K-5	0.95	2.0	4.4			
K-6	0.72	1.5	3.3			
K-7	3.26	2.9	7.9			
K-8	0.15	0.5	0.9			
K-9	1.16	2.1	4.7			
K-10	1.10	2.2	4.7			
K-11	1.39	2.6	5.8			
K-12	0.67	1.4	3.0			
K-13	0.09	0.3	0.6			
K-14	2.78	5.0	11.0			
OS-East Side	4.15	0.6	4.0			
J-OS	5.26	17.2	32.2			
K-OS	18.23	24.7	54.4			
K-OS UNDEVELOPED	29.62	5.7	38.0			

Table 6.4a								
Design Point Summary - StormCAD (Gray shading: Covered in previous drainage report)								
			face		Sewer	D		
Design Point	I otal Drainage	lotal			Q100	Downstream Design		
Design Font	Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	(cfs)	Point		
1-OS	19.67	4.0	26.8	-	-	А		
1-A	12.34	3.5	17.6	-	-	А		
2-A	1.09	2.7	5.2	-	-	А		
3-A	4.98	2.2	8.9	-	-	А		
4-A	0.12	0.6	1.0	-	-	А		
Α	38.20	-	-	12.0	55.6	В		
1-B	1.06	1.8	4.1	-	-	В		
В	39.26	-	-	12.7	57.1	С		
1-C	3.27	5.9	12.9	-	-	С		
2-C	1.19	2.4	5.3	-	-	С		
3-C	4.60	8.4	18.5	-	-	С		
4-C	0.36	1.6	3.0	-	-	С		
5-C	3.13	5.7	12.5	-	-	С		
6-C	0.07	0.3	0.6	-	-	С		
7+8-C	2.26	4.2	9.2	-	-	С		
С	54.13	-	-	27.6	90.2	D		
1-D	2.21	1.6	5.2	-	-	D		
D	56.34	0.0	0.0	28.1	92.1	Е		
1-E	6.43	2.6	11.4	-	-	Е		
2-E	2.14	3.9	8.7	-	-	Е		
E	64.91	-	-	33.7	108.8	F		
1-F	2.07	2.7	6.0	2.7	6.0	3-F		
2-F	0.58	1.1	2.5	1.6	3.6	3-F		
3-F	3.32	2.3	5.0	3.8	8.4	4-F		
4-F	3.89	1.1	2.5	5.0	11.1	5-F		
5-F	6.16	3.5	7.8	6.6	14.6	6-F		
6-F	7.16	1.7	3.9	7.9	17.5	8-F		
7-F	5.06	7.5	16.5	7.5	16.5	8-F		
8-F	13.07	1.5	3.3	16.2	35.8	F		
F	77.97	-	-	43.5	131.0	G		
1-G	1.11	2.1	4.6	-	-	G		
G	79.08	-	-	44.2	132.7	М		
1-H	3.60	5.9	13.1	-	-	1-2 H		
2-H	1.16	1.9	4.2	-	-	1-2 H		
1-2 H	4.76	-	-	9.0	19.8	1-4 H		
3-Н	2.97	4.7	10.3	-	-	1-4 H		

Table 6.4b Design Point Summary - StormCAD									
(Gray shading: Covered in previous drainage report)									
	Total	Surface Storm Sewer							
Design Point	Drainage Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	Q100 (cfs)	Downstream Design Point			
4-H	0.92	1.6	3.6	-	-	1-4 H			
1-4 H	8.65	-	-	16.4	36.1	1-6 H			
5-H	2.42	4.0	8.9	-	-	1-6 H			
6-H	2.46	3.9	8.6	-	-	1-6 H			
1-6 H	13.53	-	-	20.2	44.9	1-8 H			
7-H	2.03	2.9	6.4	-	-	1-8 H			
8-H	0.97	1.7	3.7	-	-	1-8 H			
1-8 H	16.52	-	-	23.3	49.3	1-10 H			
9a-H	1.95	2.3	5.7	-	-	9b-H			
9b-H	0.38	0.6	1.4	2.8	6.5	10-H			
10-H	1.33	2.4	5.2	-	-	1-10 H			
1-10 H	20.17	-	-	29.6	66.5	11-H			
11-H	3.42	5.0	11.0	-	-	Н			
Н	23.59			37.4	83.0	М			
J-OS	4.34	16.1	29.3	-	-	J-K-OS			
K-OS	18.23	24.7	54.4	-	-	J-K-OS			
J-K-OS	22.57	-	-	36.7	77.0	OS-2-K			
K-OS-Undeveloped	29.62	5.7	38.0	-	-	OS-2-K			
1-K	0.78	0.8	2.3						
2-K	1.58	2.7	5.9	-	-	OS-2-K			
OS-2-K	24.93	-	-	39.8	72.8	OS-12-K			
3+4-K	1.23	2.9	6.3	-	-	3-4-K			
OS-4-K	26.16	-	-	41.4	76.7	OS-12-K			
5-K	0.95	2.0	4.4	-	-	6-K			
6-K	0.72	1.5	3.3	3.4	7.6	5-8-K			
7-K	3.26	2.9	7.9	-	-	5-8-K			
8-K	0.15	0.5	0.9	-	-	5-8-K			
5-8-K	5.08	-	-	5.2	12.0	5-10-K			
9-K	1.16	2.1	4.7	-	-	9-10-K			
10-K	1.10	2.2	4.7	-	-	9-10-K			
9-10-K	2.26	-	-	4.0	8.8	5-10-K			
5-10-K	7.34	-	-	7.8	18.0	5-12-K			
11-K	1.39	2.6	5.8	-	-	5-12-K			
12-K	0.67	1.4	3.0	-	-	5-12-K			
5-12-K	9.40	-	-	10.3	23.6	OS-12-K			
OS-12-K	35.56	-	-	47.8	89.5	OS-14-K			
13-K	0.09	0.3	0.6	-	-	OS-14-K			

Table 6.4c Design Point Summary - StormCAD (Gray shading: Covered in previous drainage report)						
	Total	Sur	face	Storm	Sewer	Downstream
Design Point	Drainage Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	Q100 (cfs)	Design Point
OS-E	4.15	3.1	3.4	-	-	14-K
14 - K	2.78	5.0	11.0	5.1	11.0	OS-14-K
OS-14-K	38.42	-	-	51.3	100.5	К
K	42.14	-	-	56.9	110.2	3-I
1-I	3.13	6.9	12.3	-	-	К
2-I	0.59	2.3	4.1	-	-	К
3-I	4.18	9.3	16.5	8.7	15.5	М
Ι	46.32	-	-	62.4	119.8	М
М	158.79	-	-	154.5	383.7	East Pond Discharge
East Pond Discharge (Filing 1 & 2 Buildout)	158.79	-	-	3.6	97.5	Existing Swale

	Table 6.5a DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)							
Design Point	Description	Downstream Design Point						
1-05	 This design point is at the downstream end of the offsite sub-basin (OS-1) north of Bradley Road. Flows in Sub-basin OS-1 will sheet flow to the road ditch running along Bradley and Powers Boulevard. Once channelized in the ditch flows will be directed to a proposed 24-inch RCP storm pipe sleeved into one of the existing 42-inch CMP crossroad pipes to minimize disturbance to Bradley Road and avoid conflicts with existing utilities along the north side of Bradley Road. From there flows will be conveyed on to design point A. The second existing 42" CMP will be plugged. Please note that approximately 7.3 acres of the area tributary to this design point have been diverted from the Big Johnson Reservoir by CDOT construction of Powers Boulevard. Future development of that portion of the tributary sub-basin must redirect these flows to the Big Johnson Reservoir to maintain compliance with the two relevant DBPS reports. Development of the OS-1 Sub-basin will require onsite detention and an FDR. 	А						
1-A	 -This design point is located at a sump inlet on the north side of Frontside Drive and just west of the Legacy Hill Drive Roundabout. -Please note that the commercial lot to within Sub-basin A-1 will be treated as undeveloped for the purposes of this report. Per MDDPA-Matrix, future development of this lot will require on-site detention as described in the referenced MDDP. -Development of this basin will require onsite detention and an FDR. 	А						

	Table 6.5b DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)	
Design Point	Description	Downstream Design Point
2-A	 This design point is located at a sump inlet on the south side of Frontside Drive and just west of the Legacy Hill Drive Roundabout. Flow to This design point is primarily from street drainage along Frontside Drive. 	А
3-A	 -This design point is located at a sump inlet on the north side of Frontside Drive and just east of the Legacy Hill Drive Roundabout. -Please note that the commercial lot to within Sub-basin A-3 will be treated as undeveloped for the purposes of this report. Per MDDPA-Matrix, future development of this lot will require on-site detention as described in the referenced MDDP. -Development of this basin will require onsite detention and an FDR. 	А
4-A	-This design point is located at a sump inlet on the south side of Frontside Drive and just east of the Legacy Hill Drive Roundabout. -Flow to This design point is almost exclusively from street drainage along Frontside Drive.	А
А	-This design point represents the manhole combining drainage from Design points OS-1 and 1-A through 4-A.	В
1-B	-This design point represents the on-grade inlet south of Frontside Drive.	В
В	-This design point represents the manhole on Legacy Hill Drive combining the flows from design point A with design point 1-B.	С
1-C	-This is an offsite design point in a future filing. This is located at a sump inlet on the west side of Drinking Horse Drive. -Future filing	С
2-C	-This is an offsite design point in a future filing. This is located at a sump inlet on the east side of Drinking Horse Drive. -Future filing	С
3-C	-This design point is at a sump inlet just west of Legacy Hill Drive on the north side of Moose Meadow Street.	С
4-C	-This design point is at a sump inlet just west of Legacy Hill Drive on the south side of Moose Meadow Street.	С
5-C	-This design point is at a sump inlet just east of Legacy Hill Drive on the north side of Moose Meadow Street.	С
6-C	-This design point is at a sump inlet just east of Legacy Hill Drive on the south side of Moose Meadow Street.	С

	Table 6.5c DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)					
Design Point	Description	Downstream Design Point				
7+8-C	 This design point is located at a sump inlet on the south side of Moose Meadow Street between Roundhouse Drive and Beartrack Point. Sub-basins C- 7+8 is tributary to this location. This sub-basin will not be developed in this filing excepting the extension of Moose Meadow Drive from its Filing No. 1 termination point just east of Legacy Hill Drive over to its intersection with Bear Track Point. 					
С	-This design point is at a manhole in Legacy Hill Drive at its intersection with Moose Meadow Street. It reflects the combination of flows from design points 1-C through 8-C with flows from design point B.	D				
1-D	-This design point is an on-grade inlet on Legacy Hill Drive northwest of its intersection with Sunday Gulch.	D				
D	-This design point combines flows from design point 1-D with flows from design point C at a manhole in Legacy Hill Drive northwest of its intersection with Sunday Gulch Drive.	Е				
1-E	-This design point is located at a sump inlet on Falling Rock Drive just west of Sunday Gulch Drive which captures flows from Sub-basin E-1 and flow bypass from design point 1-D.	Е				
2-E	-This is a sump inlet across the street from design point 1-E. -During lower probability events flows to design point 1-E may equalize across the street to this design point.	Е				
Е	This design point is at a manhole at the intersection of Sunday Gulch Drive and Falling Rock Drive. Flows from Design points 1-E, 2-E, and D are combined at this design point.	F				
1-F	-This design point is at an at-grade inlet on the west side of future Lazy Ridge Drive. (Future filing)	3-F				
2-F	-This design point is at an at-grade inlet on the east side of future Lazy Ridge Drive. (Future filing)	3-F				
3-F	 This design point is at an at-grade inlet on the west side of future Lazy Ridge Drive. Flows from Sub-basin F-3 are combined with storm sewer flows from design points 1-F and 2-F (Future filing) 	4-F				
4-F	 -This design point is at an at-grade inlet on the east side of future Lazy Ridge Drive. -Flows from sub-basin F-4 are combined with flows from 1-F, 2-F and 3-F. (Future filing) 	5-F				
5-F	 This design point is at an at-grade inlet on the west side of Wagon Hammer Drive. Flows from Sub-basin F-5 are combined with storm sewer flows from design points 1-F, 2-F, 3-F, and 4-F 	6-F				

	Table 6.5d DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)						
Design Point	Description	Downstream Design Point					
6-F	 This design point is at an at-grade inlet on the east side of Wagon Hammer Drive. Flows from Sub-basin F-6 are combined with storm sewer flows from design points 1-F, 2-F, 3-F, 4-F, and 5-F 	8-F					
7-F	-This design point is at a sump inlet located on the north side of Lookout Court just west of its intersection with Sunday Gulch Drive. -This inlet captures flows from Sub-basin F-7	8-F					
8-F	-This design point is at a sump inlet and manhole on the south side of Lookout Court just west of its intersection with Sunday Gulch Drive. -Flows from Sub-basin F-8 are combined with flows from design points 1-F, 2- F, 3-F, 4-F, 5-F, 6-F, and 7-F.	F					
F	-This design point combines flows from design points 1-F through 8-F with flows from design point E. -Variance Drop Manhole	G					
1-G	-This design point is at an at-grade inlet capturing flows from Sub-basin G.	G					
G	-This design point reflects the combination of surface flows from design point 1-G with storm sewer flows from design point F	М					
1-H	-This design point is at a sump inlet on the west side of Lazy Ridge Drive capturing flows from Sub-basin H-1.	1-2 H					
2-H	-This design point is at a sump inlet on the east side of Lazy Ridge Drive capturing flows from Sub-basin H-2.	1-2 H					
1-2 H	-Flows from design points 1-H and 2-H are combined at this manhole on the south side of Buffalo Horn Drive at its intersection with Lazy Ridge Drive.	1-4 H					
3-Н	-This design point is at a sump inlet on the west side of Wagon Hammer Drive capturing flows from Sub-basin H-3	1-4 H					
4-H	-This design point is at a sump inlet on the east side of Wagon Hammer Drive capturing flows from Sub-basin H-5	1-4 H					
1-4 H	-Flows from design point 1-2 H are combined with flows from 3-H and 4-H at this manhole on the south side of Buffalo Horn Drive at its intersection with Wagon Hammer Drive.	1-6 H					
5-H	-This is an at-grade inlet on the north side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.	1-6 H					
6-H	-This is an at-grade inlet on the south side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.	1-6 H					

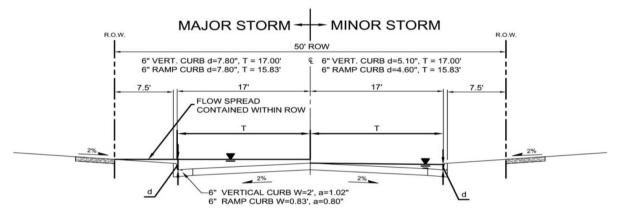
	Table 6.5e DESIGN POINT DESCRIPTIONS. (Gray shading: Covered in previous drainage report)	
Design Point	Description	Downstream Design Point
1-6 H	-Flows from design point 1-4 H are combined with flows from 5-H and 6-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Windy Pass Court.	1-8 H
7-H	-This design point is at an on-grade inlet on the west side of Sunday Gulch Drive just north of its intersection with Buffalo Horn Drive. -This inlet captures flows from Sub-basin H-7	1-8 H
8-H	-This design point is at an on-grade inlet on the east side of Sunday Gulch Drive just north of its intersection with Buffalo Horn Drive. -This inlet captures flows from Sub-basin H-8	1-8 H
1-8 H	-Flows from design point 1-6 H are combined with flows from 7-H and 8-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Sunday Gulch Drive.	1-10 H
9a-H	 This design point is near the south boundary of Filing No. 1 where a flared end section captures flows from a swale running along this southern boundary of the study area. This design point captures flows from Sub-basin H-9a. 	9b-H
9b-H	-This design point is near the south boundary of Filing No. 1 where a Type C Inlet captures flows within Sub-basin H-9b. -This design point combines flows from Sub-basins H-9a and H-9b.	10-H
10-H	-This design point is at a sump inlet on the south side of the cul-de-sac at the east end of Buffalo Horn Drive. Surface flows from Sub-basin H-10 are combined with storm sewer flows from design point 9-H.	1-10 H
1-10 H	-Flows from design points 10-H and 1-8 H are combined at a manhole towards the north side of the cul-de-sac at the east end of Buffalo Horn Drive.	11-H
11-H	-This design point is at a sump inlet on the north side of the cul-de-sac at the east end of Buffalo Horn Drive. -This inlet captures flows from Sub-basin H-11	Н
н	-This design point combines storm sewer flows from design point 11-H and 1- 10 H	М
K-OS	-This design point is at the storm sewer stub out from Filing No. 2. Future filings in Trails at Aspen Ridge will extend the storm sewer to the north along Big Johnson Drive. -Sub-basins K-OS and J-OS contribute flows to this location	OS-2-K
K-OS-UD (Undeveloped)	-This design point is at the 36" FES collecting runoff from the drainage area north of Trails at Aspen Ridge Filing No. 2 (Sub-basin K-OS-UD). -This design point considers all undeveloped upstream flows tributary to the design point at K-OS.	OS-2-K

Table 6.5f DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)						
Design Point	Description	Downstream Design Point				
1+2-K	- Sump inlet on Nutterbutter Point just west of the intersection of Nutterbutter Point and Big Johnson Drive. Captures flows from Sub-basin K-1+2.	OS-2 -K				
OS-2 -K	This manhole in Big Johnson Drive combines flows from Design Points K-OS and 1+2-K	OS-4-K				
3+4-K	-At-grade inlet on Turtle Lake Way just west of the intersection of Turtle Lake Way and Big Johnson. Captures flows from Sub-basin K-3+4.	OS-4-K				
OS-4-K	-Manhole in Big Johnson Drive and Turtle Lake Way intersection combining Design Points 3+4-K and OS-2-K	OS-12-K				
5-K	-At-grade inlet west of the intersection of Bear Track Point and Bird Ridge Drive (north side of Bear Track Point). Captures flows from Sub-basin K-5.	5-6-K				
6-K	-At-grade inlet west of the intersection of Bear Track Point and Bird Ridge Drive (south side of Bird Ridge Drive). Combines captured flows from Sub- basin K-6 with flows from Design Point 5-K.	5-8-K				
7-K	-At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse Drive (west side of road). Captures flows from Sub-basin K-7.					
8-K	-At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse Drive (east side of road). Captures flows from Sub-basin K-8.	5-8-K				
5-8-K	-Manhole in Bird Ridge Drive combining flows from Design Point 5-6-K with flows from Design Points 7-K and 8-K	5-10-K				
9-K	-At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive. Captures flows from Sub-basin K-9.	9-10-K				
10-K	-At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive. Captures flows from Sub-basin K-10.	9-10-K				
9-10-K	-Manhole in Roundhouse Drive combining flows from Design Points 9-K and 10-K	5-10-К				
5-10-K	-Manhole in Roundhouse Drive and Bird Ridge Drive intersection combining flows from Design Points 9-10-K and 5-8-K	5-12-K				
11+12-K	-Sump inlet on Roundhouse Drive just west of intersection with Big Johnson Drive on the south side road. Captures flows from Sub-basins K-11 and K-12.	5-12-K				
5-12-K	-Manhole combining flows from 5-10-K and 11+12-K	OS-12-K				
OS-12-K	-Manhole combining flows from 5-12-K and OS-4-K at intersection of Big Johnson Drive and Roundhouse Drive.	OS-14-K				
13-K	-Sump inlet on the west side of Big Johnson Drive located mid-block between Roundhouse Drive and Legacy Hill Drive. Captures flows from Sub-basin K-13.	OS-14-K				

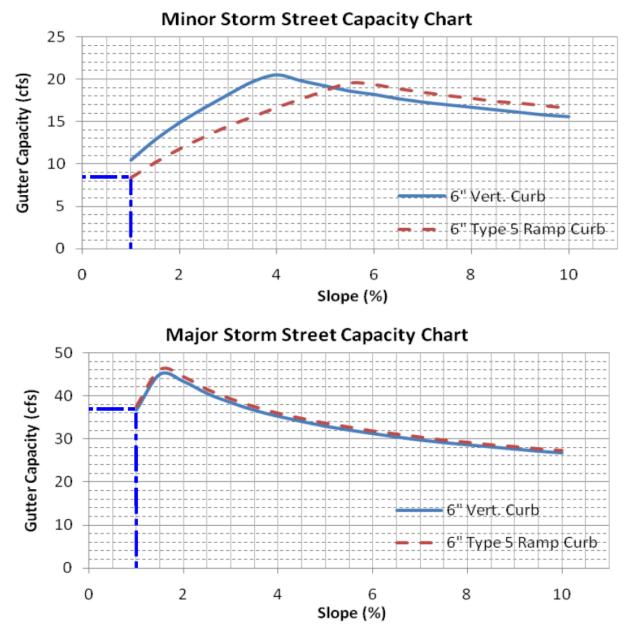
	Table 6.5f DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)	
Design Point	Description	Downstream Design Point
14-K	-Sump inlet on the east side of Big Johnson Drive located mid-block between Roundhouse Drive and Legacy Hill Drive. This inlet captures flows from sub- basin K-14 and combines them with flows captured from Sub-basin OS-East Side.	OS-14-K
OS-14-K	-Manhole combining flows from OS-12-K, 13-K, and 14-K	К
OS-E	-Type C inlet capturing flows from sub-basin OS-East Side. Flows will be conveyed to Design Point 14-K via 18-inch storm pipe.	К
К	-This design point combines storm sewer flows from design points 1-14-K, 2-I, and 1-I in a manhole located at the intersection of Big Johnson Drive and Legacy Hill Drive.	3-I
1-I	-This design point is at a sump inlet on the north side of Legacy Hill Drive just west of its intersection with Big Johnson Drive. -Flows from Sub-basin I-1 are captured at this inlet.	К
2-I	-This design point is at a sump inlet on the south side of Legacy Hill Drive just west of its intersection with Big Johnson Drive. -Flows from Sub-basin I-2 are captured at this inlet.	К
3-I	-This design point is at a sump inlet at the south side of the cul-de-sac at the east end of Falling Rock Drive. -Flows from Sub-basin I-3 are captured by this inlet	М
I	-This design point represents the combination of storm sewer flows from design point K with flows captured by the inlet at design point 3-I	М
М	-This design point represents the combinate of all of the flows directed to the East Pond. -Included Sub-basins: OS-1, A-1 to A-4, B-1, C-1 to C-8, D-1, E-1, E-2, F-1 to F-8, H-1 to H-11, I-1 to I-3, K-1+2 to K-14, K-OS, OS-East Side, and M	East Pond Discharge
East Pond Discharge	-This design point is at the discharge structure from the East Pond. -Developed flows from the proposed improvements will be metered out by this structure at predevelopment levels as determined by a combination of UD- Detention and SWMM modeling of the Full Spectrum Extended Detention Basin	Existing Swale

- Generally, flows will sheet flow off developed lots towards adjacent streets which will capture flows and direct them downstream to the nearest inlets. After capture in inlets the flows will be conveyed onwards towards the downstream detention basin via storm sewer.

VIII. Drainage Facility Design


A. Street Capacity

The width of the typical section for streets within Filing No. 2 will be 35 feet from back of curb to back of curb. Curb heights will be 6-inch. These streets will generally utilize EPC Optional Type C curb and gutter with EPC Type A curb and gutter used for the curb radii through intersections. The following table (Table 6.1) lists streets and capacities by Design Point:


Table 7.1 STREET CAPACITIES Trails at Aspen Ridge Filing No. 2									
Street	Location			ROAD CAPACITY MINOR STORM (cfs)	Q5 TOTAL FLOW (cfs)	ROAD CAPACITY MAJOR STORM (cfs)	Q100 TOTAL FLOW (cfs)		
Nutterbutter Point	Between Bird Ridge Drive and Big Johnson Drive	2-K	3.5	15.5	2.7	37.0	5.9		
Turtle Lake Way	Between Bird Ridge Drive and Big Johnson Drive	3+4-K	1.6	10.5	2.9	46.0	6.3		
Beartrack Point	Near Intersection with Bird Ridge Drive	5-K	5.5	19.5	2.0	32.0	4.4		
Beartrack Point	Near Intersection with Bird Ridge Drive	6-K	5.5	19.5	1.5	32.0	3.3		
Bird Ridge Drive	Between Turtle Lake Way and Roundhouse Drive	7-K	3.4	15.5	2.5	37.0	6.9		
Bird Ridge Drive	Between Turtle Lake Way and Roundhouse Drive	8-K	3.4	15.5	0.5	37.0	0.9		
Roundhouse Drive	Between Moose Meadow Street and Bird Ridge Drive	9-K	4.5	17.5	2.1	35.0	4.7		
Roundhouse Drive	Between Moose Meadow Street and Bird Ridge Drive	10-K	4.5	17.5	2.2	35.0	4.7		
Roundhouse Drive	Between Bird Ridge Drive and Big Johnson Drive	11-K	3.5	15.5	2.6	37.0	5.8		
Roundhouse Drive	Between Bird Ridge Drive and Big Johnson Drive	12-K	3.5	15.5	1.4	37.0	3.0		
Big Johnson Drive	Between Roundhouse Drive and Legacy Hill Drive	13-K	4.0	16.5	0.3	36.0	0.6		
Big Johnson Drive	Between the north boundary of TAR Filing No. 2 and Legacy Hill Drive	14-K	4.0	16.5	5.0	36.0	11.0		

Nomograph 7-7 from the DCM is shown below and on the following page:

Figure 7-7. Street Capacity Charts Residential (Detached Sidewalk)

TYPICAL CROSS SECTION

Notes:

- EPC Optional Type C curb and gutter was used for all streets.
- The nomograph (Figure 7-7) above was used to calculate capacities for the EPC Type C (Local/Residential) streets within the project area. Compared to requirements in the El Paso DCM this nomograph is slightly more conservative for the major storm (7.8-inch depth versus 12-inch depth in Table 6-1 of the El Paso County DCM) and identical for the minor/initial storm.

B. Inlet Capacity

In accordance with the DCM, this project will use Type R inlets. On-grade inlet capacities were determined utilizing UD-Inlet. Sump inlet capacities were determined utilizing DCM Nomograph 8-11 shown below. The following Table 6.2 lists inlets by design point and corresponding capacity. Table 6.3 describes overflow routing for each sump inlet.

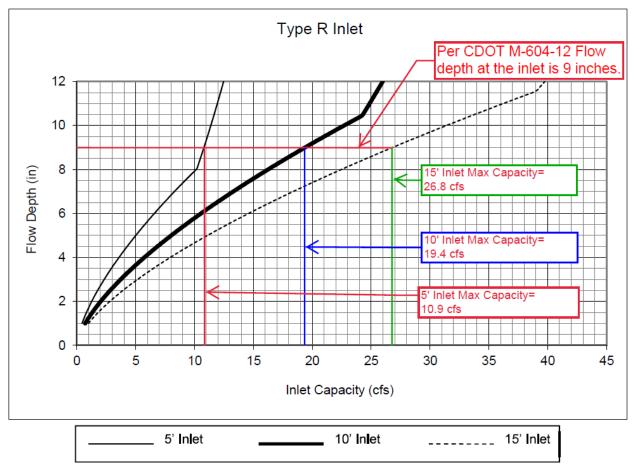


Figure 2-Inlet Capacity - Sump Conditions (DCM Figure 8-11)

Please see Appendix C for CDOT standard M-604-12.

	<i>Table 7.2</i> <i>PROPOSED INLET SUMMARY</i> <i>Trails at Aspen Ridge - Filing No. 2</i>										
DESIGN POINT	SUB- BASIN	TOTAL AREA (AC)	SIZE (Ft.)	INL TYPE	CET	Q(5) BYPASS FLOWS (cfs)	Q(5) TOTAL INFLOW	Q(100) BYPASS FLOWS (cfs)	Q(100) TOTAL INFLOW (cfs)	INLET CAPACITY	NOTES:
1-K	K-1	0.78	4x4	С	SUMP		0.78		2.25	9.00	SUMP
2-K	K-2	1.58	5	R	SUMP		2.68		5.90	10.90	SUMP
3+4-K	K-3+4	1.23	10	R	ON-GRADE	0	2.93	0.8	6.25	5.45	BYPASS GOES TO 11- K
5-K	K-5	0.95	10	R	ON-GRADE	0	1.98	0.1	4.37	4.27	BYPASS GOES TO 7-K
6-K	K-6	0.72	10	R	ON-GRADE	0	1.50	0	3.30	3.30	BYPASS GOES TO 7-K
7-К	K-7	2.89	10	R	ON-GRADE	0	2.51	1.7	7.00	5.30	BYPASS GOES TO 11- K
8-K	K-8	0.15	5	R	ON-GRADE	0	0.45	0	0.91	0.91	BYPASS GOES TO 11- K
9-К	K-9	1.16	10	R	ON-GRADE	0	2.15	0.2	4.73	4.53	BYPASS GOES TO 11- K
10-K	K-10	1.10	10	R	ON-GRADE	0	2.15	0.2	4.74	4.54	BYPASS GOES TO 12- K
11+12-K	K-11 & K12	2.06	10	R	SUMP		4.00		8.81	19.40	SUMP
13-K	K-13	0.09	10	R	SUMP		2.66		5.80	19.40	SUMP, FLOW CROSSES ROAD
14-K	K-14	2.78	10	R	SUMP		2.66		5.80	19.40	SUMP, FLOW CROSSES ROAD
7+8-C	C-7+8	2.25	5	R	SUMP		4.23		9.23	10.90	SUMP
1-K	K-1	0.78	4x4	С	SUMP		0.78		2.25	9.00	SUMP

	Table 7.3 Overflow Routing Trails at Aspen Ridge, Filing No. 2							
Inlet	Overflow Routing Under Inlet Blockage Conditions							
7+8-C	Blockage of this inlet will cause flows to back up towards Bear Track Point. Flows in Bear Track Point will continue south to be captured in downstream inlets and conveyed onward to the East Pond.							
7-K-Area	Blockage of this inlet will cause flows to surcharge the sump area around the inlet and enter the Bird Ridge Drive curb and gutter. At Grade inlet 7-K will then capture the runoff.							
1-K	Blockage of this inlet will cause flows to surcharge the inlet sump area and enter Big Johnson Drive. Flows will then be captured by inlet 2-K.							
2-К	Blockage of this inlet will cause flows to back up along the curb of Nutterbutter Point and continue southward down Big Johnson Drive to Inlet 11+12-K on Roundhouse Drive.							
11+12-K	Blockage of this inlet will cause flows to back up Roundhouse Drive to Big Johnson Drive and continue downhill to Inlet 13-K							
13-K	Blockage of this inlet will cause flows to surcharge the crown of Big Johnson Drive and enter Inlet 14-K. If this inlet is blocked as well, the flows will continue south down Big Johnson Drive and then west along Legacy Hill Drive and into Inlet 1-I in Trails at Aspen Ridge Filing No. 1							
14-K	Blockage of this inlet will cause flows to surcharge the crown of Big Johnson Drive and enter Inlet 13-K. If this inlet is blocked as well, the flows will continue south down Big Johnson Drive and then west along Legacy Hill Drive and into Inlet 1-I in Trails at Aspen Ridge Filing No. 1							

C. Storm Sewer Capacities

Storm sewer capacities and HGL's were analyzed in StormCAD. The table below lists relevant pipe information. HGL profiles for the Q5 and Q100 events can be found in Appendix A.

Table 7.4										
	STORM PIPE SUMMARY TABLE									
PIPE LABEL	PIPE DIA. (IN)	PIPE LENGTH (FT) % GRADE		Q100 PIPE FLOW (cfs)	Velocity (Ft/s)					
63	48	106.5	0.5	100.5	8					
200 (1)	36	82.6	2	66.1	14.4					
200 (2)	36	153	3.2	68	17.43					
201	36	146.6	3.1	72.8	17.43					
202	42	240	2	76.68	15.02					
203	48	80.9	0.5	89.53	7.12					
205	18	49.9	2.4	5.9	8.46					
207	18	7.3	0.4	6.59	4.35					
208	18	68.4	3.4	6.58	14.94					
209	18	33.2	1.9	4.3	7.13					
210	18	60.2	1.9	7.6	8.3					
211	18	80.2	3.4	11.44	11.36					
212	18	7.3	1	5.9	3.57					
213	18	29.4	0.5	1	0.55					
214	18	69	0.5	11.96	9.24					
215	18	30.7	0.5	4.5	2.57					
216	18	9.1	2.8	4.5	8.39					
217	18	40	3.9	8.8	13.48					
218	24	271.8	3.3	17.95	12.66					
220	18	8.5	6	8.8	4.99					
221	36	69.8	3.5	23.62	3.34					
222	18	8.2	0.7	0.7	0.4					
223	18	28.5	1.6	14.38	8.14					
224	18	30.7	0.5	8.8	4.98					
225	18	7.7	0.5	0.5	0.28					
226	18	168.1	1	9.2	5.18					
227		53.8	7	38.68	7 20					
(Filing 2 only)	36	123	7	(K-OS-Undeveloped)	7.28					
233	18	123	2	3.4	6.82					
234	18	35	1	3.4	1.92					
239	18	155	2	6.9	8.25					
240	18	17.1	1.2	6.9	6.82					
241	18	22.8	1	2.3	1.32					

D. Detention

Summary information for the East Pond is listed below. Supporting UD-Detention spreadsheets and SWMM analysis for the East Pond can be found in Appendix A. The East and West Ponds will be privately owned and maintained by the Waterview II Metropolitan District.

	Table 7.5 Pond Summary Table									
	D			Approximate Detention Volumes				Proposed	EX	Proposed
Major Basin	Pond ID	Analysis Method	Contributing Basins	WQCV	EURV	Q100	5 Year	5 Year	100 Year	100 Year
				AcFt.	AcFt.	AcFt.	(CFS)	(CFS)	(CFS)	(CFS)
West Fork			OS-1, A, B, C,							
Jimmy	East	UD-	D, E, F, G, J, K,	F2 : 1.756	4.029	16.490	22.3	2.9	144.6	96.2
Camp	Pond	Detention	I, H, M, &	FB : 4.833	6.581	18.001	22.3	5.8	144.6	139.5
Creek			OS-East Side							

Trails at Aspen Ridge, Filing No. 2 = F2, Trails at Aspen Ridge, Full Buildout = FB (with OS-East Side added)

Emergency Overflows

		Table 7.6									
Emergency Overflow Weirs											
Major Basin	Pond ID	Description of Emergency Overflow Weir									
West Fork - Jimmy Camp Creek	East Pond	The emergency overflow weir for this pond will release emergency overflows to a proposed swale along the edge of the development boundary and direct the flows south to an existing swale flowing to the southeast. Flows will then follow historic patterns.									

Outfall Analysis

East Pond

The outfall for the East Pond was analyzed in *MDDP-Matrix* to confirm that the receiving swale should remain stable after construction of the pond. Hydraflow Express was utilized to check the velocity of the anticipated Full Buildout Q100 Discharge and calculated a velocity in the 48" outfall pipe of 12.9 feet per second. A second Hydraflow calculation was performed at the narrowest point in the swale receiving the discharge. The results of this calculation indicated that the anticipated velocity of a Q100 discharge from the pond is around 3.7 feet per second which is well below the maximum 100-year velocity and barely above the maximum low flow velocity indicated for erosive soils in Table 12-3 (shown on the following page) of the DCM regarding Hydraulic Design Criteria for natural unlined channels. Additionally, the outfall will discharge to a rip rap lined low tailwater basin designed in accordance with UDFCD criteria.

Design Parameter	Erosive Soils or Poor Vegetation	Erosion Resistant Soils and Vegetation
Maximum Low-flow Velocity (ft/sec)	3.5 ft/sec	5.0 ft/sec
Maximum 100-year Velocity (ft/sec)	5.0 ft/sec	7.0 ft/sec
Froude No., Low-flow	0.5	0.7
Froude No., 100-year	0.6	0.8
Maximum Tractive Force, 100-year	0.60 lb/sf	1.0 lb/sf

Table 12_3	Hydraulic D)esign Criteri	a for Natural I	Unlined Channels
1 able 12-3.	II yur aune D	esign Criteri	a for fratural o	Junneu Channels

¹Velocities, Froude numbers and tractive force values listed are average values for the cross section. ² "Erosion resistant" soils are those with 30% or greater clay content. Soils with less than 30% clay content

shall be considered "erosive soils."

The Web Soil Survey for the site indicates that the Soils for the receiving swale are are classified as Stoneham sandy loam which is likely an erosive soil.

After receiving the East Pond Discharge, the existing swale will convey the stormwater to an existing detention feature on an adjacent property. According to the West Fork – Jimmy Camp Creek DBPS (See DPBS plan Sheet 6 in Appendix C of *MDDP-Matrix*) this existing detention feature is expected to receive up to 380 cfs for a Q100 event. The tributary drainage area treated by the East Pond makes up approximately 70 percent of the area tributary to the existing offsite pond. As the anticipated discharge from the East Pond is less than half (Filing No. 2: 96.2 cfs, Full Buildout: 139.5 cfs) of the the flow listed in the DBPS, the existing detention feature should not be adversely affected.

SWMM Analysis: West Fork – Jimmy Camp Creek

Please note that the *MDDPA-Matrix* report analyzed the full buildout of the area tributary to the East Pond using pond inflow hydrographs generated in SWMM and input to UD-Detention because full build out of the basin will include detention ponds for the commercial areas along Bradley Road in series with the East Pond. However, as these commercial areas are not anticipated to be developed prior to Trails at Aspen Ridge Filing No. 2, analysis of the East Pond for this filing utilized only the UD-Detention spreadsheet and considered all the upstream areas as undeveloped in order to confirm that the East Pond outlet structure for Filing No. 2 will conform to detention requirements in the DCM.

East Pond Phasing:

The East Pond was constructed as part of Trails at Aspen Ridge Filing No. 1. The pond was built to the size required for full development of the upstream basin, so expansion of the pond volume is not required for this development. (This volume does <u>not</u> include developed flows from the commercial areas or OS-East Side. These areas will be required to construct full spectrum detention when developed.) The Filing No. 1 orifice plate for the East Pond outlet structure has been evaluated and found <u>adequate</u> to discharge the combined Filing No. 1 and Filing No. 2 developed flows in compliance with DCM Criteria. Future filings will require additional evaluations and,

possibly, redesigns of the orifice plate to ensure compliance with the DCM and *MDDPA-Matrix* criteria.

IX. Environmental Evaluations

A. WETLAND IMPACTS

There are no designated wetland or riparian areas on site, and no anticipated impacts.

B. STORMWATER QUALITY

All on-site detention facilities shall be designed to accommodate water quality requirements. As the development of each parcel progresses, the detention guidelines outlined in this report are to be upheld. Per Chapter 4, Section 4.1, of the El Paso County DCM, Volume 2, the DCM requires a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

<u>Step 1:</u> Employ Runoff Reduction Practices

• Site specific landscaping will be done on each lot to decrease the connectivity of impervious areas. Grass lined swales will be used where possible to allow ground infiltration.

<u>Step 2:</u> Stabilize Drainageways.

• The site is in the West Fork – Jimmy Camp Creek basin. Drainage fees, to be paid by the relevant Trails at Aspen Ridge (Waterview East) developers at the time of platting, will help fund future channel improvements. Specific information on future improvements to the Jimmy Camp Creek channel was unavailable for this report.

Step 3: Provide Water Quality Capture Volume

• The East Pond meets the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes.

Step 4: Consider Need for Industrial and Commercial BMPs

• There are no commercial or industrial components of this development, therefore no BMPs of this nature are required. The Full Spectrum Detention BMP is provided for the proposed development by the East Pond.

C. PERMITTING REQUIREMENTS

No additional permitting requirements are expected at this time.

X. Erosion Control Plan

A grading and erosion control plan (GEC) for Trails at Aspen Ridge Filing No. 2 will be completed. The GEC incorporates straw wattles, straw bale check dams, silt fence, vehicle tracking control, inlet & outlet control, sedimentation basins and other best management practices (BMPs) identified in the DCM Volume 2. Please refer to the GEC for phasing and procedural information for adaptations between the Filing No. 2 GEC and the overall GEC.

XI. Drainage Fees

			AT ASPEN RID Final Drainage est Fork Jimmy	1). 2								
	2021 Drainage and Bridge Fees												
	Impervious Area (ac.)	Fee/ Imp. Acre	Fee Due	Reimbursable Const. Costs	Fee Due at Platting	Drainage Fee Credit							
Drainage Fee	9.058	\$13,524.00	\$122,500.39	\$0.00	\$122,500.39	\$0.00							
Bridge Fee	Bridge Fee 9.058 \$4,001.00 \$36,241.06 \$0.00 \$36,241.06 \$0.00												
				\$0.00	\$158,741.45								

Note: See Rational Method Spreadsheet in Appendix for impervious area calculations

XII. Construction Cost Opinion

18" RCP LF 585 \$65.00 \$38,0 24" RCP LF 271 \$78.00 \$21,1 36" RCP LF 496 \$120.00 \$59,5 42" RCP LF 240 \$160.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Virate Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	Engineer's Estimate of Probable Construction Costs											
Item Unit Quantity Unit Cost Extension 18" RCP LF 585 \$65.00 \$38,0 24" RCP LF 271 \$78.00 \$21,1 36" RCP LF 496 \$120.00 \$59,5 42" RCP LF 240 \$160.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE I MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 1 \$720.00 \$7 Sub Total \$391,7 \$391,7 \$391,7 Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 </td <td colspan="11">Trails at Aspen Ridge Filing No. 2</td>	Trails at Aspen Ridge Filing No. 2											
IB" RCP LF 585 \$65.00 \$38,0 24" RCP LF 271 \$78.00 \$21,1 36" RCP LF 496 \$120.00 \$59,5 42" RCP LF 496 \$120.00 \$59,5 42" RCP LF 496 \$120.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE I MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 UPIVATE NON-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 <td colspan="12">Public Non-Reimbursable</td>	Public Non-Reimbursable											
24" RCP LF 271 \$78.00 \$21,1 36" RCP LF 496 \$120.00 \$59,5 42" RCP LF 496 \$120.00 \$59,5 42" RCP LF 240 \$160.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 1 \$720.00 \$7 Sub Total \$391,7 \$391,7 \$391,7 ER IF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6 <td colspan="11">tem Unit Quantity Unit Cost Extension</td>	tem Unit Quantity Unit Cost Extension											
36" RCP LF 496 \$120.00 \$59,5 42" RCP LF 240 \$160.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE I MANHOLE (Box Base) EA 8 \$6,395.00 \$21,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 1 \$720.00 \$7 Sub Total \$391,7 Sub Total \$391,7 Frivate Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	P Lf	F	585	\$65.00	\$38,025.00							
42" RCP LF 240 \$160.00 \$38,4 48" RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Frivate Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	P Lf	F	271	\$78.00	\$21,138.00							
12 RCP LF 142 \$195.00 \$27,6 TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet	P Lf	F	496	\$120.00	\$59,520.00							
TYPE I MANHOLE (Box Base) EA 6 \$11,627.00 \$69,7 TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Vivate Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	P Lf	F	240	\$160.00	\$38,400.00							
TYPE II MANHOLE (Slab Base) EA 8 \$6,395.00 \$51,1 5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	P Lf	F	142	\$195.00	\$27,690.00							
5' INLET EA 4 \$5,542.00 \$22,1 10' INLET EA 7 \$7,693.86 \$53,8 Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total Sub Total \$391,7 Image: Second colspan="3">Sub Total Sub Total \$36" FES Image: Second colspan="3">Sub Total Sub Total \$391,7 \$1,7 \$1,8,6 \$1,9 \$1,9 \$1,9	MANHOLE (Box Base) EA	ĒA	6	\$11,627.00	\$69,762.00							
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>												
Type C Inlet EA 2 \$4,640.00 \$9,2 36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Private Non-Reimbursable \$391,7 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	.т <u>е</u> л	ĒA	4	\$5,542.00	\$22,168.00							
36" FES EA 1 \$720.00 \$7 Sub Total \$391,7 Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	.ET E/	ĒA	7	\$7,693.86	\$53,857.00							
Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	Inlet E	ĒA	2	\$4,640.00	\$9,280.00							
Private Non-Reimbursable 18" RCP LF 287 \$65.00 \$18,6 10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	S <u>E</u> ,	ĒA	1	\$720.00	\$720.00							
18" RCPLF287\$65.00\$18,610' INLETEA3\$7,627.00\$22,8Type C InletEA1\$4,640.00\$4,6			Sub	o Total	\$391,720.00							
18" RCPLF287\$65.00\$18,610' INLETEA3\$7,627.00\$22,8Type C InletEA1\$4,640.00\$4,6												
10' INLET EA 3 \$7,627.00 \$22,8 Type C Inlet EA 1 \$4,640.00 \$4,6	Private Non-Reimbursable											
Type C Inlet EA 1 \$4,640.00 \$4,6	P LI	F	287	\$65.00	\$18,655.00							
	.ET E,	ĒA	3	\$7,627.00	\$22,881.00							
	Inlet E	ĒA	1	\$4,640.00								
Sub Total \$46,1	Sub Total \$46,176.00											

Total Estimated Construction Costs \$43

\$437,896.00

Since the engineer has no control over the cost of labor, materials, equipment or services furnished by others, or over the contractor's method of determining prices, or over the competitive bidding or market conditions, the opinion of probable construction costs provided herein are made on the basis of the engineer's experience and qualifications and represents the best judgment as an experienced and qualified professional familiar with the construction industry. The engineer cannot, and does not guarantee that proposals, bid or actual construction costs will not vary from the opinions of probable cost.

XIII. References

- 1. *El Paso County and City of Colorado Springs Drainage Criteria Manual, Volume 1 & 2*, El Paso County, May 2014
- 2. El Paso County Engineering Criteria Manual, El Paso County, Rev. December 2016
- 3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
- 4. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 768 of 1300, Federal Emergency Management Agency, Effective Date December 7, 2018.
- 5. *Urban Storm Drainage Criteria Manual, Vol. 1-3* by Urban Drainage and Flood Control District (UDFCD), January 2016
- 6. *West Fork Jimmy Camp Creek Drainage Basin Planning Study* by Kiowa Engineering, revised October 2003
- 7. Jimmy Camp Creek Drainage Basin Planning Study, Development of Alternatives & Design of Selected Plan, Report by Kiowa Engineering, March 2015
- 8. **Big Johnson Reservoir/Crews Gulch Drainage Basin Planning Study,** by Kiowa Engineering, September 1991.
- 9. **"Amendment to Waterview Master Drainage Development Plan"**, completed by Springs Engineering, dated July 2014 (*MDDP-2014*)
- "Master Drainage Development Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge", Completed by Matrix Design Group, Dated August 2019 (MDDPA-Matrix) (Approval Pending)
- 11. *"Final Drainage Report for Trails at Aspen Ridge Filing No. 1",* completed by Matrix Design Group, Dated September 2019. (FDR-F1) (Approval Pending)

XIV. Appendices

APPENDIXA

HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Name:	TRAILS AT ASPEN RIDGE FILING NO. 2
Project Location:	EL PASO COUNTY
Designer	KZ & JTS
Notes:	Existing Condition
Average Channel Velocity	5 f
Average Slope for Initial Flow	0.04 f

																							1			
		Are	a				Rational	'C' Values					Flow L	engths		Initia	I Flow		Channel	Flow		Tc	Rainfall	Intensity &	Rational Flo	ow Rate
Major Basin / Sub-basin	Comments	sf	acres		urface Type (Impervious C100			Surface Type (Undevelope C100		Com C5	posite C100	Initial ft	True Initial Length ft		rue Chann Length ft		Initial Tc (min)	(%)	Channel Flow Type (See Key above) Ground Type	Velocity (ft/s)	Channel Tc (min)	Total (min)	i5 in/hr	Q5 cfs	i100 in/hr	Q100 cfs
West Fork Jimmy Camp Creek / OS - 1	- The most northwestern portion of this basin (7.268 Acres) outside of the proposed Trails at Aspen Ridge development was rerouted out of the Big Johnson Reservoir basin by CDOT construction of Powers Boulevard and Bradley Road. Future development of the rerouted area will require routing the flows back to the Big Johnson Reservoir to return the area to compliance with the relevant DBPS studies.	853,953.7	19.60	0.90	0.96	42031.00	0.09	0.36	811,923	0.13	0.39	621.00	300.00	2146.00	2467.00	0.106	19.79	2.470	5.000	1.5	26.5	46.3	3 1.9	4.8	3.1	24.1
West Fork Jimmy Camp Creek / WF-1		5,187,332.2	119.08	0.90	0.96		0.09	0.36	5,187,332	0.09	0.36	530.00	300.00	3811.00	4041.00	0.089	20.22	2.940	5.000	1.7	39.5	59.8	3 1.6	17.1	2.7	115.2
West Fork Jimmy Camp Creek / WF-2	Located at south end of study area.	921,440.7	21.15	0.90	0.96		0.09	0.36	921,441	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	õ 2.8	5.4	4.8	36.5
EXISTING CONDITIONS - DESIGN POINTS	INCLUDED SUB-BASINS														-									 '		
OS-1	OS-1 (Note: 7.3 Acres diverted by CDOT from Big Johnson)	853,953.7	19.60	0.90	0.96	42031.00	0.09	0.36	811,923	0.13	0.39	621.00	300.00	2146.00	2467.00	0.106	19.79	2.470	5.000	1.5	26.5	46.3	3 1.9	4.8	3.1	24.1
WF-1	WF-1 & OS-1	6,041,285.9	138.69	0.90	0.96	42031.00	0.09	0.36	5,999,255	0.10	0.36	621.00	300.00	5957.00	6278.00	0.106	20.49	2.771	5.000	1.6	63.7	84.2	2 1.3	16.9	2.1	108.1
WF-2	WF-2	921,440.7	21.15	0.90	0.96	0.00	0.09	0.36	921,441	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	2.8	5.4	4.8	36.5
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF- 1 & WF-2.)	6,962,726.5	159.84	0.90	0.96	42031.00	0.09	0.36	6,920,696	0.09	0.36		0.00		0.00		#DIV/0!		5.000					22.3		144.6

Note: Q2, Q5 & Q10 are based on C5; Q25, Q50 & Q100 are based on C100

Channel Flow Type Key Heavy Meadow 2 Tillage/Field 3 Short Pasture and Lawns 4 Nearly Bare Ground 5 Grassed Waterway 6 Paved Areas 7

Project Name:	TRAILS AT ASPEN RIDGE FILING NO. 2
Project Location:	EL PASO COUNTY
Designer	KZ & JTS
Notes:	Proposed Condition

Average Channel Velocity 4 ft/s (If specific channel vel is used, this will be ignored) 0.04 #/# Average Slope for Initial Flow (If Elevations are used, this will be ignored)

Channel Flow Type Key Heavy Meadow 2 Tillage/Field 3 Short Pasture and Lawns 4 Nearly Bare Ground 5 Grassed Waterway 6 Paved Areas 7

A		
0.04 11/11	(II Elevations are used, this will be ignored)	

<u> </u>	Are	rea					ional '	C' Val	ues							Flow	Lengths		Initia	l Flow		Channel Fl		
			Resider	ace Type 1 tial 1/8 or less 5% Imp.)	Pave	e Type 2 ement 5 Imp.)		face Ty k (7%			urface Jndeve (2% li		Com	oosite	Initial	True Initia	Channel	True Channel	Average (decimal)	Initial	Average (%)	Channel Flow Type (See Key above)	Ve	
Basin	sf	acres	C5 C ⁻	100 Area (SF)	C5 C100	Area (SF)	C5	C100	Area	C5	C100	Area	C5	C100	ft	Length ft	ft	Length ft	Slope	Tc (min)	Slope	Ground Type	(
K-1+2	103,026	2.37	0.45 0.	59 80387	0.90 0.96		0.12	0.39	22639	0.09	0.36		0.38	0.55	271.00	271.00	571.00	571.00	0.07	11.19	3.50	7		
K-3+4	53,569	1.23	0.45 0.	59 48779	0.90 0.96	4790	0.12	0.39		0.09	0.36		0.49	0.62	85.00	85.00	370.00	370.00	0.11	4.55	3.50	7		
K-5	41,563	0.95	0.45 0.	59 41563	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	70.00	70.00	646.00	646.00	0.08	4.98	5.50	7		
K-6	31,527	0.72	0.45 0.	59 31527	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	60.00	60.00	458.00	458.00	0.04	5.76	5.50	7		
K-7	141,790	3.26	0.45 0.	67162	0.90 0.96	7,083	0.12	0.39	67545	0.09	0.36		0.32	0.51	543.00	300.00	560.00	803.00	0.06	18.65	2.40	7		
K-8	6,417	0.15	0.45 0.	59 4280	0.90 0.96	2137	0.12	0.39		0.09	0.36		0.60	0.71	56.00	56.00	217.00	217.00	0.09	3.24	3.40	7		
K-9	50,442	1.16	0.45 0.	59 50442	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	113.00	113.00	610.00	610.00	0.04	7.59	4.20	7		
K-10	48,002	1.10	0.45 0.	59 48002	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	74.00	74.00	653.00	653.00	0.04	6.14	4.20	7		
K-11	60,633	1.39	0.45 0.	60633	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	180.00	180.00	350.00	350.00	0.08	7.95	3.50	7		
K-12	29,123	0.67	0.45 0.	59 29123	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	74.00	74.00	360.00	360.00	0.04	6.14	3.50	7		
K-13	3,706	0.09	0.45 0.	59	0.90 0.96	2,946	0.12	0.39	760	0.09	0.36		0.74	0.84	23.00	23.00	80.00	80.00	0.10	1.42	2.20	7		
K-14	120,925	2.78	0.45 0.	59 120925	0.90 0.96		0.12	0.39		0.09	0.36		0.45	0.59	180.00	180.00	695.00	695.00	0.07	8.06	4.00	7		
C7&8 combined	98,093	2.25	0.45 0.	59 95674	0.90 0.96	2419	0.12	0.39	0	0.09	0.36	0	0.46	0.60	110.00	110.00	800.00	800.00	0.05	7.05	3.90	7		
J-OS	189,052	4.34	0.45 0.	59 30190	0.90 0.96	158862	0.65	0.80		0.09	0.36		0.83	0.90	266.00	266.00	909.00	909.00	0.09	3.84	3.20	7		
K-OS	793,893	18.23	0.45 0.		0.90 0.96			0.39		0.09			0.45	0.59	350.00	300.00	1650.00	1700.00	0.06	11.91	2.80	7		
K-OS UNDEVELOPED	1,290,308	29.62	0.45 0.	59	0.90 0.96		0.12	0.39	_	0.09	0.36	1290308	0.09	0.36	1099.00	300.00	314.00	1113.00	0.07	31.51	2.00	7		
OS-EAST SIDE	180,740	4.15	0.45 0.	59	0.90 0.96		0.12	0.39		0.09	0.36	180740	0.09	0.36	165.00	165.00	1421.00	1421.00	0.07	12.21	3.90	2		

Filing No. 2 Impervious Calculations	685,199	15.73	582,823	16,956	90,944	0	% Impervious	Impervious Acreage
			65.00	100.00	7.00	2.00	58.69	9.232

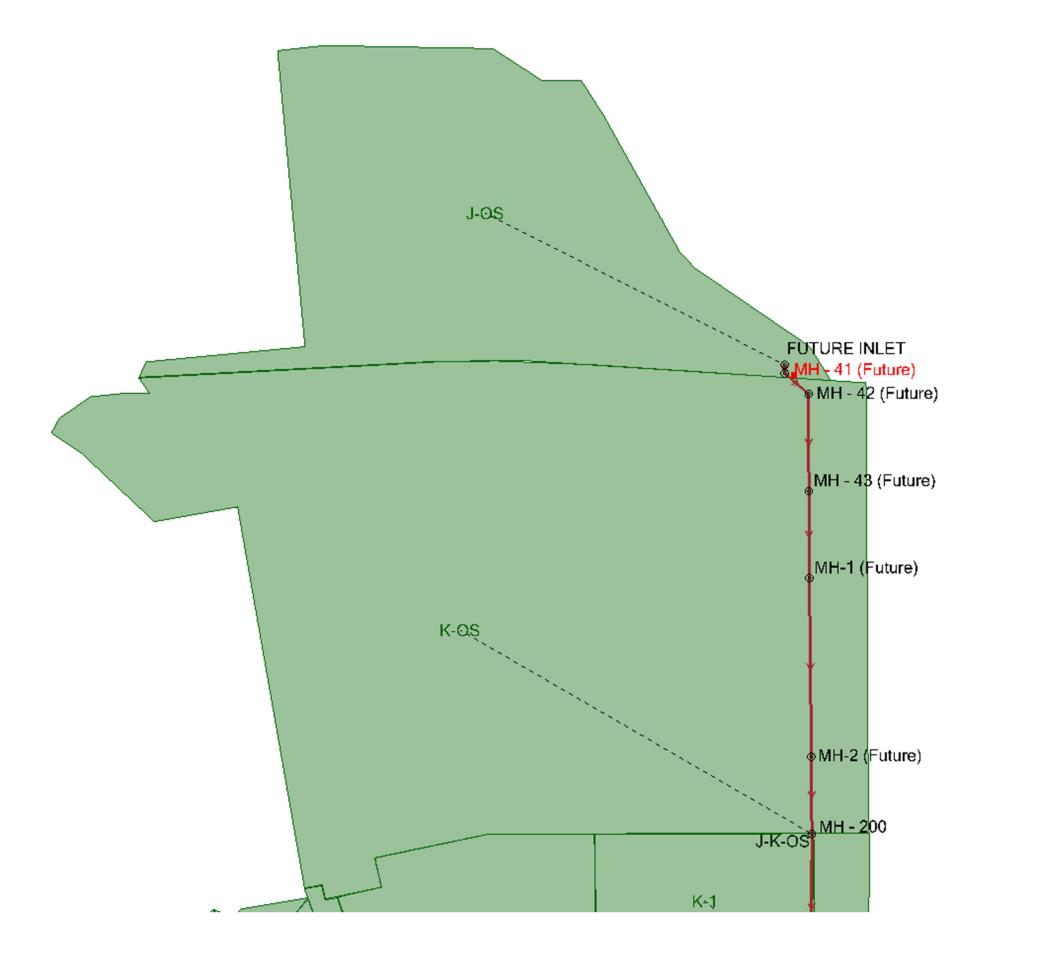
Note: Q2, Q5 & Q10 are based on C5; Q25, Q50 & Q100 are based on C100

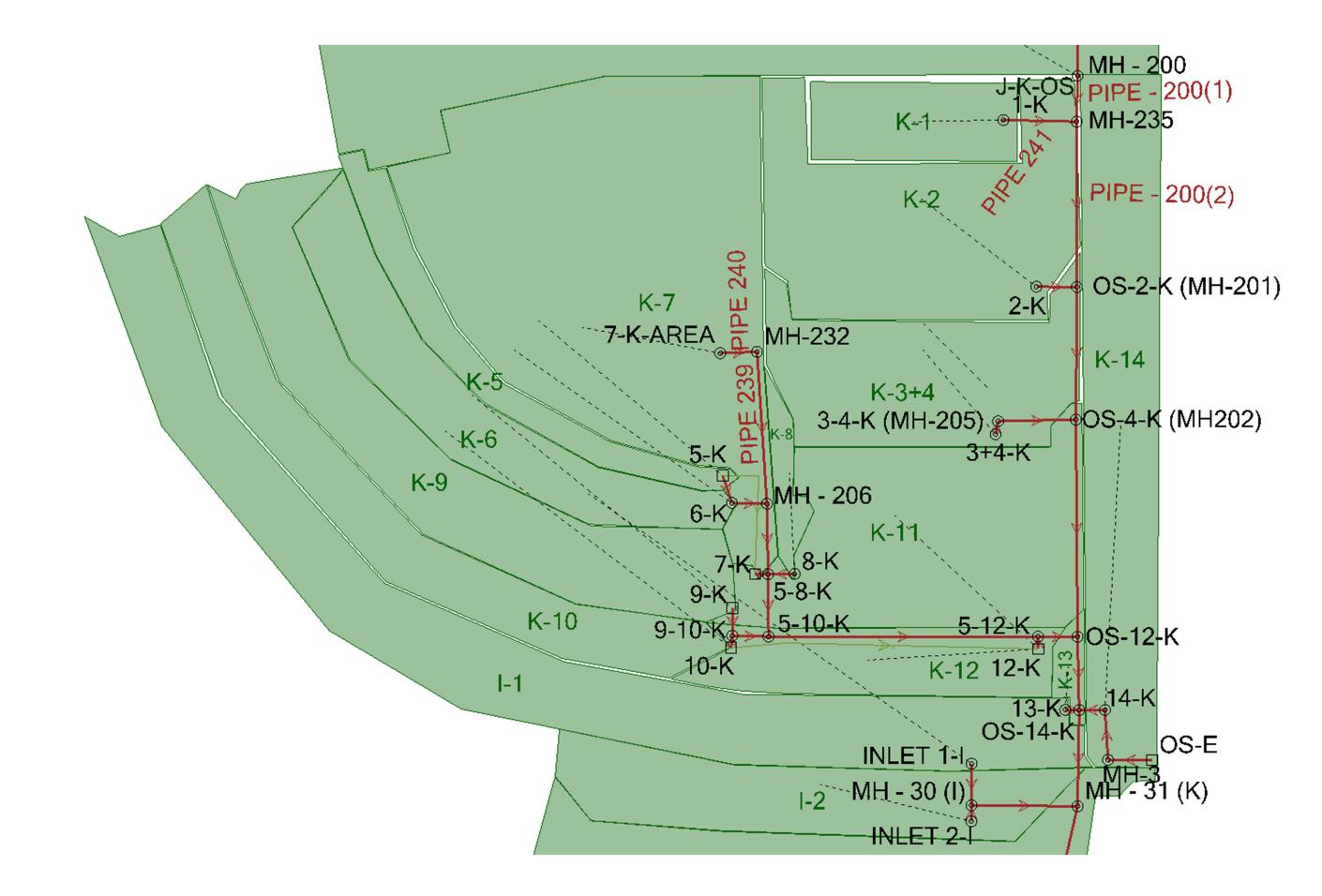
2	۱		i
7	1	٧	ľ

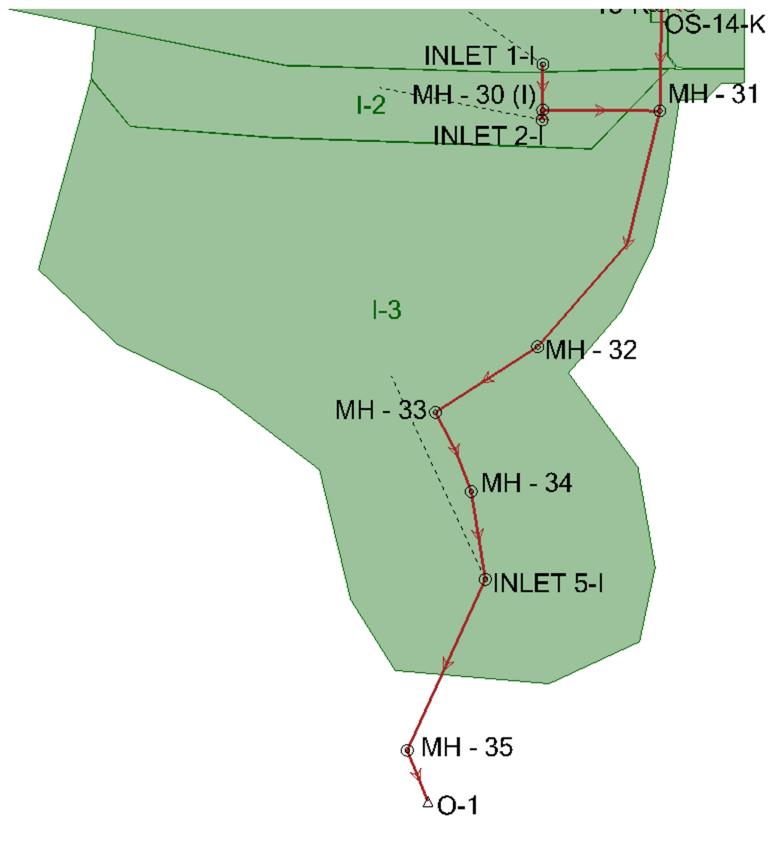
Flow Tc Rainfall Intensity & Rational Flow Rate Velocity Channel Total i2 Q2 i5 Q5 i100 Q100 (ft/s) Tc (min) in/hr cfs in/hr cfs in/hr cfs (min) 3.7 3.7 4.7
 13.7
 2.9
 2.6
 3.6
 3.24
 6.1
 7.88

 6.2
 3.8
 2.3
 4.8
 2.93
 8.1
 6.25
 2.5 1.6 2.3
 7.3
 3.6
 1.6
 4.6
 1.98
 7.7
 4.37

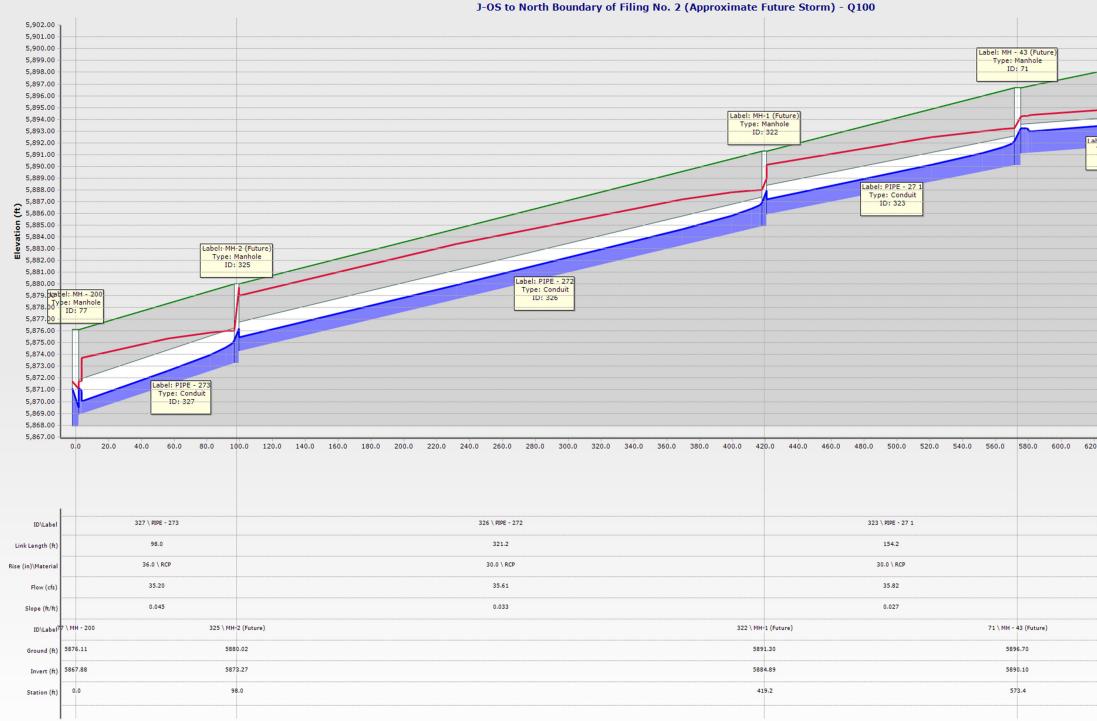
 7.4
 3.6
 1.2
 4.6
 1.50
 7.7
 3.30

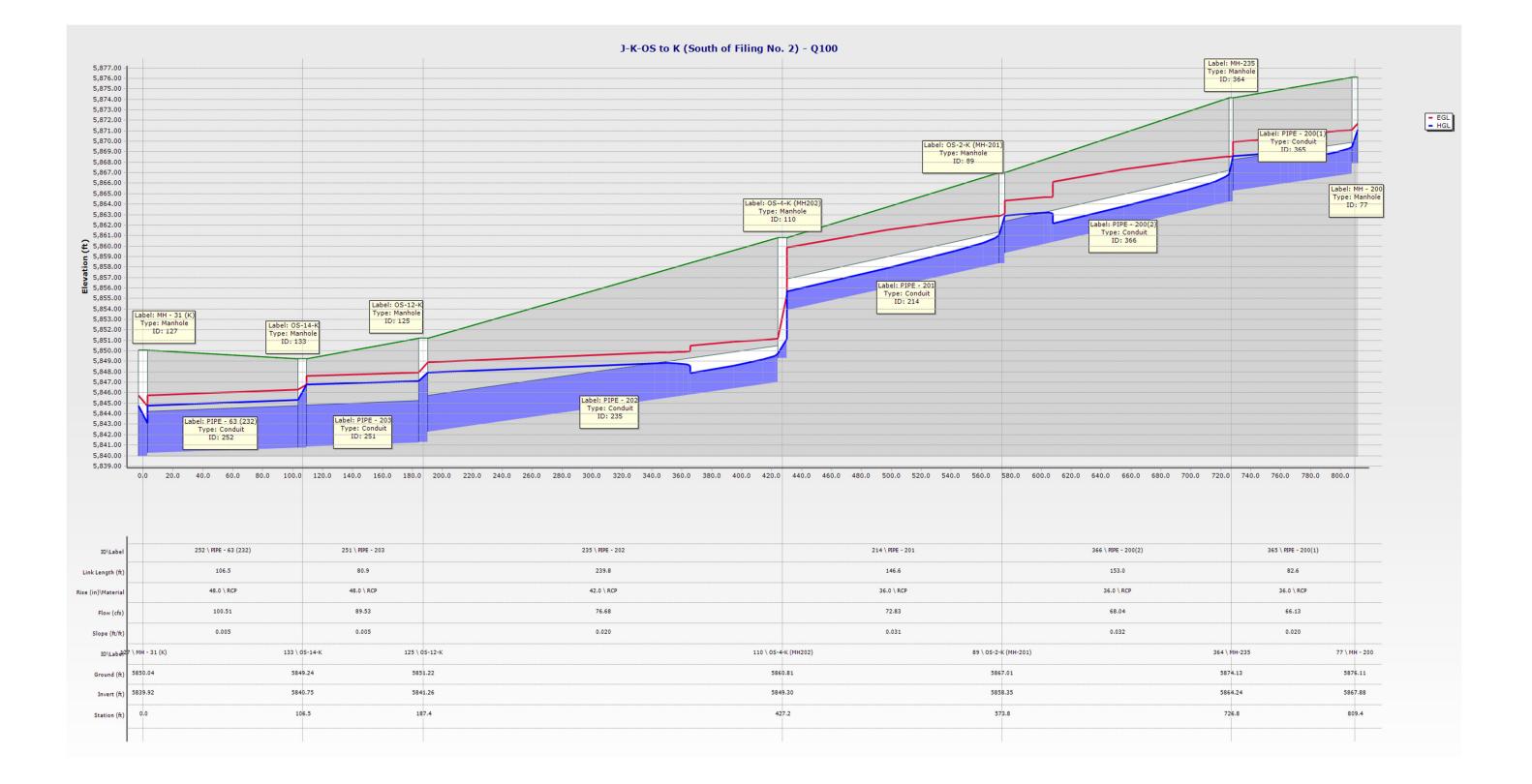

 23.0
 2.2
 2.3
 2.8
 2.90 4.7
 7.94

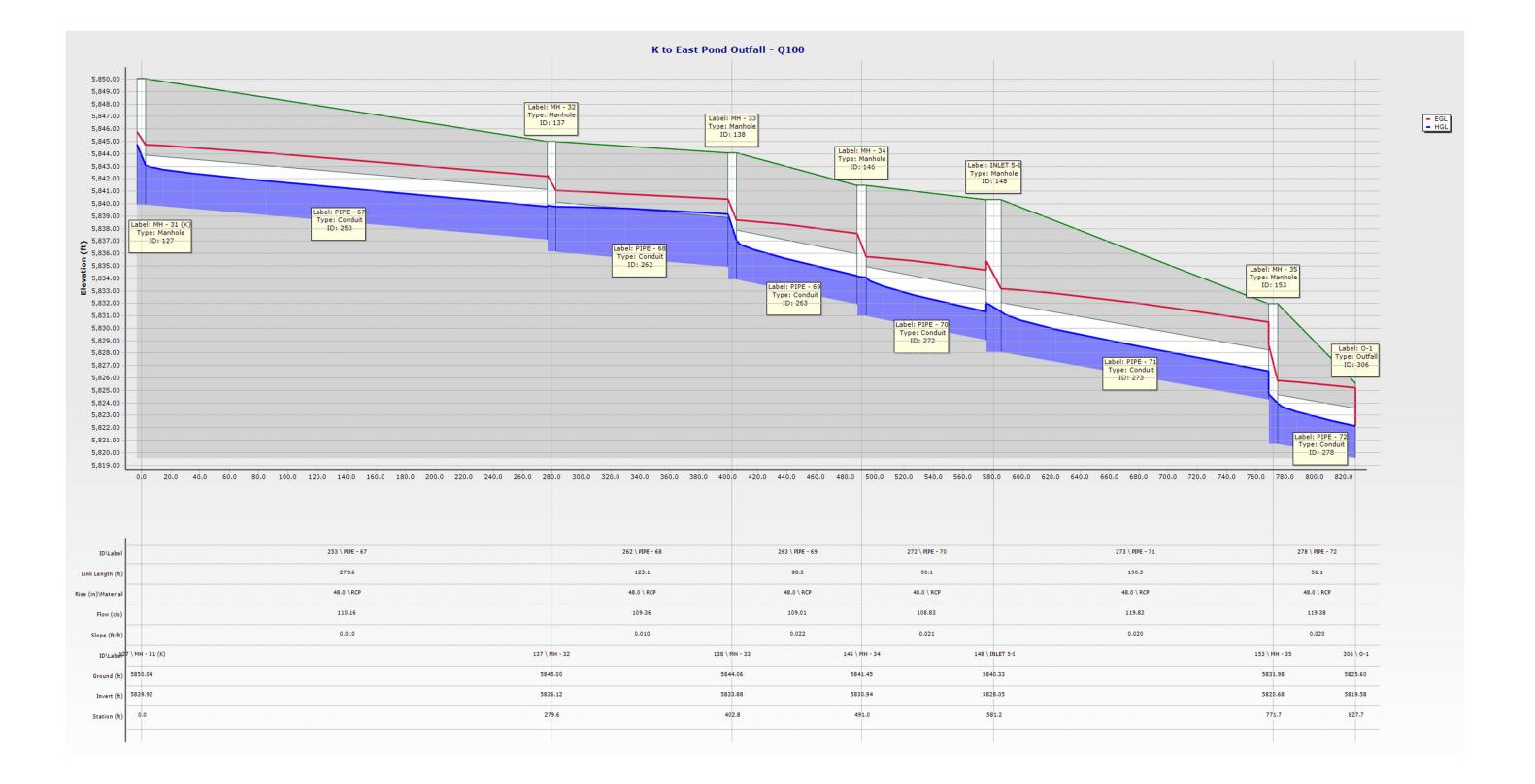

 5.0
 4.0
 0.4
 5.1
 0.45 8.6
 0.91 4.7 3.1 1.6 4.3 3.7 4.1 4.1 3.7 1.0
 10.1
 3.2
 1.7
 4.1
 2.15 6.9
 4.73 2.5
 8.8
 3.4
 1.7
 4.3
 2.15
 7.2
 4.74

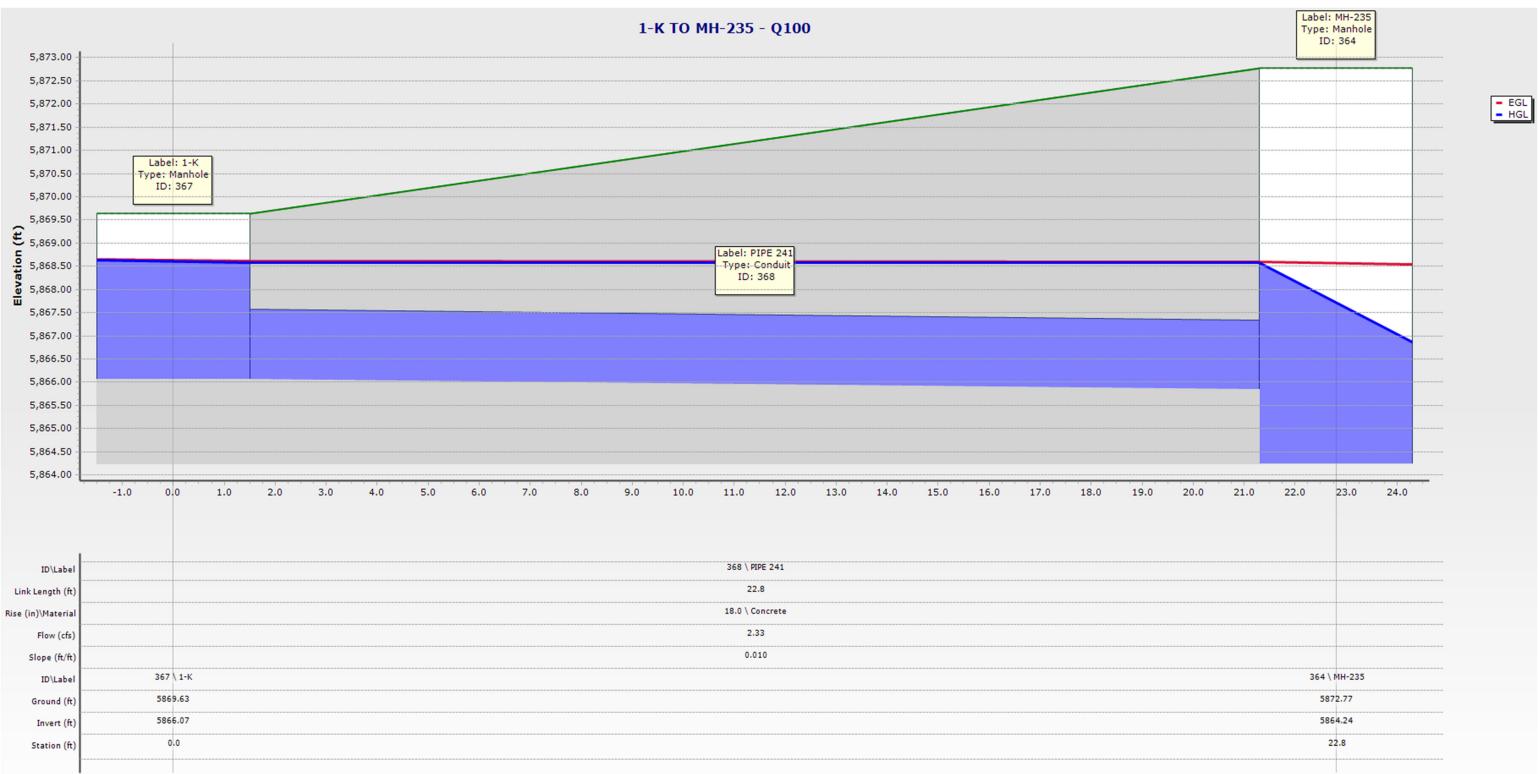

 9.5
 3.3
 2.1
 4.2
 2.64
 7.0
 5.82
 2.7 1.6 3.7 3.0 4.0
 7.7
 3.6
 1.1
 4.5
 1.36
 7.5
 3.00
 1.6
 5.0
 4.0
 0.3
 5.1
 0.32
 8.6
 0.62

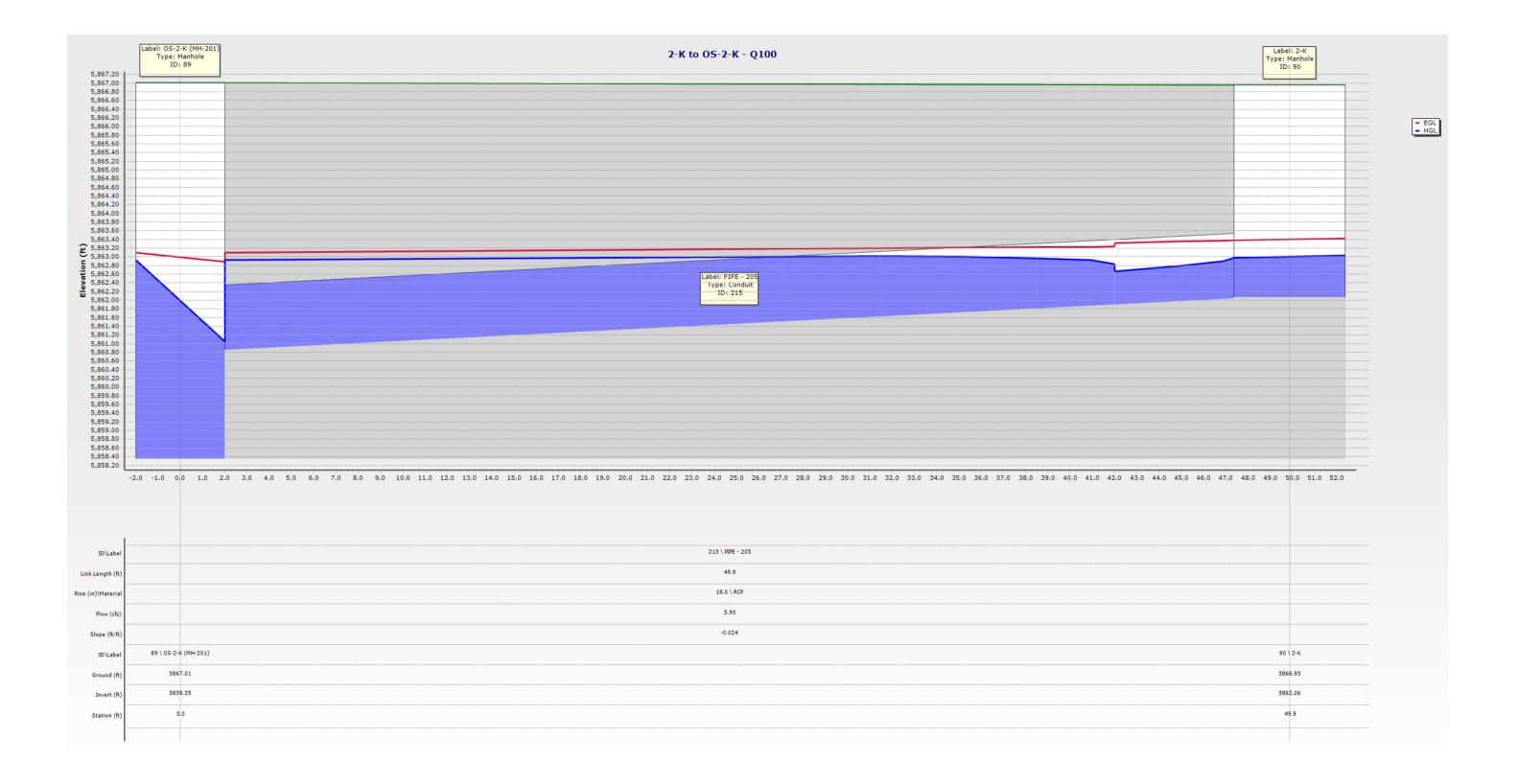
 11.0
 3.1
 4.0
 4.0
 4.99
 6.7
 10.98
 0.4 2.9 3.9 3.4
 10.4
 3.2
 3.4
 4.0
 4.23
 6.8
 9.23
 3.6 4.2 8.1 3.5 12.7 4.4 **16.05** 7.4 **29.34** 3.3
 20.4
 2.4
 19.6
 3.0
 24.68
 5.0
 54.36
 8.5 2.8 6.6
 38.1
 1.7
 4.5
 2.1
 5.66
 3.5
 38.05
 48.0 60.2 1.3 0.5 1.6 **0.59** 2.7 **4.00** 0.5

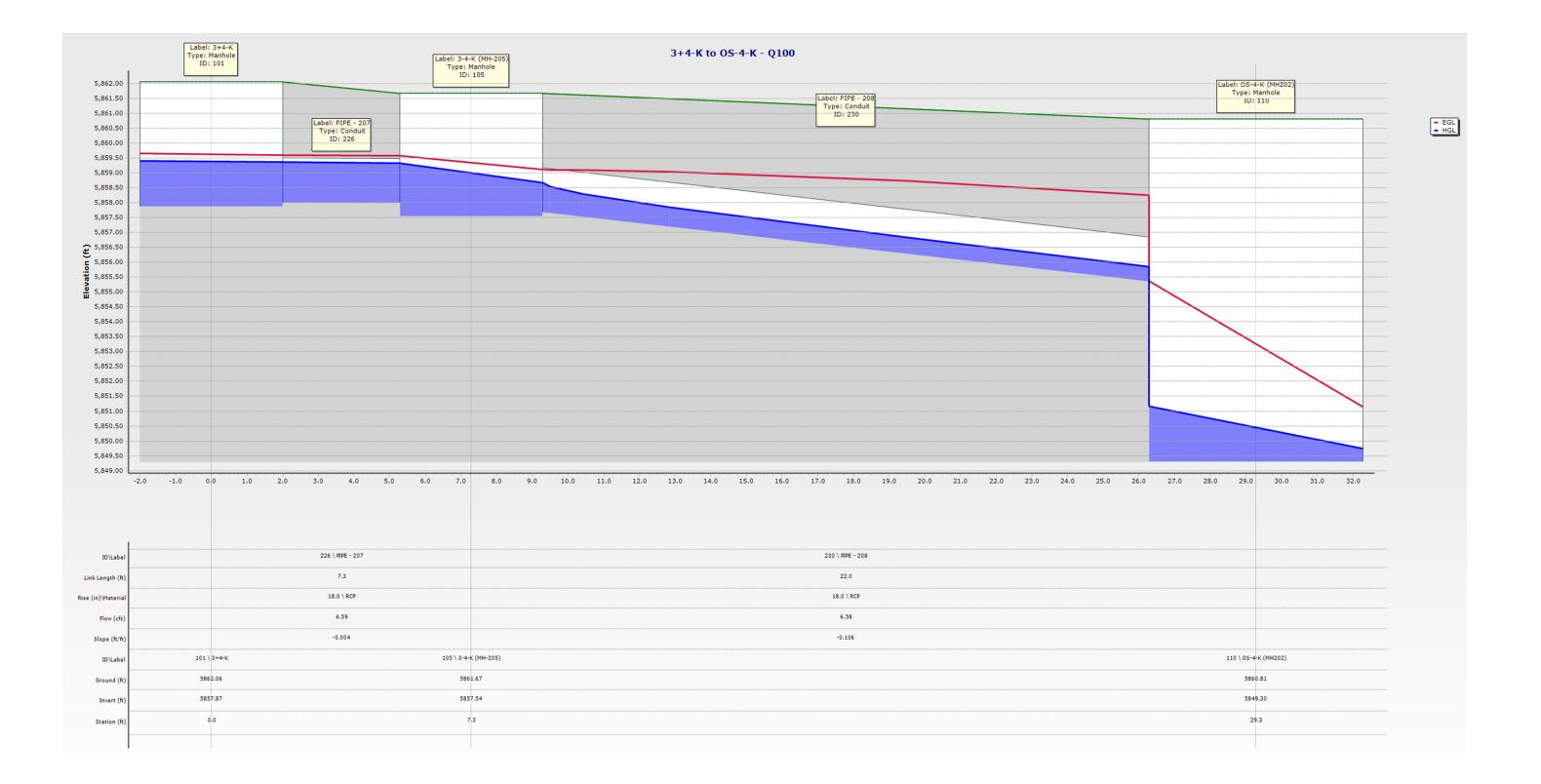

T	Design Point R rails at Aspen Ridge		0	2		
	StormCA		8			
Design Point	Total Drainage Area		face Q100	Storm Q5	Sewer Q100	Downstream Design Point
1-05	19.67	4.0	26.8	-	-	А
1-A	12.34	3.5	17.6	-	-	А
2-A	1.09	2.7	5.2	-	-	A
3-A 4-A	4.98	2.2 0.6	8.9 1.0	-	-	A
A	38.20	-	-	12.0	55.6	B
1-B	1.06	1.8	4.1	-	-	В
<u>B</u>	39.26	-	-	12.7	57.1	С
<u>1-C</u> 2-C	3.27	5.9 2.4	12.9 5.3	-	-	C C
3-C	4.60	8.4	18.5	-	-	C
4-C	0.36	1.6	3.0	-	-	С
<u> </u>	3.13	5.7 0.3	12.5 0.6	-	-	C C
	2.26	4.2	9.2	-	-	C
С	54.14	-	-	27.6	90.2	D
1-D	2.21	1.6	5.2	-	-	D
D 1-E	<u>56.34</u> 6.43	0.0	0.0	28.1	92.1	E E
2-E	2.14	2.6 3.9	8.7	-	-	E
E	64.91	-	-	33.7	108.8	F
1-F	2.07	2.7	6.0	2.7	6.0	3-F
2-F 3-F	0.58	1.1 2.3	2.5 5.0	1.6 3.8	3.6 8.4	3-F 4-F
	3.89	1.1	2.5	5.0	0.4	4-F 5-F
5-F	6.16	3.5	7.8	6.6	14.6	6-F
6-F	7.16	1.7	3.9	7.9	17.5	8-F
7-F 8-F	5.06	7.5	16.5 3.3	7.5 16.2	16.5 35.8	8-F F
F	77.98	-	-	43.5	131.0	G
1-G	1.11	2.1	4.6	-	-	G
G	79.09	-	-	44.2	132.7	M
<u>1-H</u> 2-H	3.60	5.9 1.9	13.1 4.2	-	-	<u>1-2 Н</u> 1-2 Н
1-2 H	4.76	-	-	9.0	19.8	1-4 H
3-Н	2.97	4.7	10.3	-	-	1-4 H
4-H	0.92	1.6	3.6	-	-	1-4 H
<u>1-4 H</u> 5-H	8.65	- 4.0	- 8.9	- 16.4	- 36.1	1-6 H 1-6 H
6-H	2.46	3.9	8.6	-	-	1-6 H
1-6 H	13.53	-	-	20.2	44.9	1-8 H
7-H	2.03	2.9	6.4	-	-	1-8 H
8-H 1-8 H	0.97	1.7	3.7	- 23.3	- 49.3	1-8 H 1-10 H
9-H	2.32	3.3	8.0	-	-	1-10 H
10-H	1.33	2.4	5.2	2.8	6.5	1-10 H
10-H 1-10 H	1.33 21.50	2.4	5.2	- 29.6	- 66.5	1-10 H 11-H
11-10 H	3.42	- 5.0	- 11.0	- 29.0	- 00.5	Н
Н	24.92			37.4	83.0	М
J-OS	4.34	16.1	29.3	-	-	J-K-OS
K-OS J-K-OS	18.23 22.57	- 24.7	- 54.4	- 36.7	- 77.0	J-K-OS OS-2-K
K-OS-Undeveloped	29.62	- 5.7	38.0	- 30.7	-	OS-2-K OS-2-K
1-K	0.78	0.8	2.3			
2-K	1.58	2.7	5.9	-	-	OS-2-K
OS-2-K 3+4-K	24.93 1.23	- 2.9	- 6.3	39.8	72.8	OS-12-K 3-4-K
OS-4-K	26.16	-	-	41.4	- 76.7	OS-12-K
5-K	0.95	2.0	4.4	-	-	6-K
6-K 7-K	0.72 3.26	1.5 2.9	3.3 7.9	3.4	7.6	5-8-K 5-8-K
	0.15	0.5	0.9	-	-	5-8-K 5-8-K
5-8-K	5.08	-	-	5.2	12.0	5-10-K
9-K	1.16	2.1	4.7	-	-	9-10-K
10-K 9-10-K	1.10 2.26	2.2	4.7	- 4.0	- 8.8	9-10-K 5-10-K
5-10-K	7.34	-	-	7.8	18.0	5-10-K
11-К	1.39	2.6	5.8	-	-	5-12-K
12-K	0.67 9.40	1.4	3.0	-	- 23.6	5-12-K
5-12-K OS-12-K	35.56	-	-	10.3 47.8	23.6 89.5	OS-12-K OS-14-K
13-K	0.09	0.3	0.6	-	-	OS-14-K
OS-E	4.15	3.1	3.4	-	-	14-K
14-K OS-14-K	2.78 38.42	5.0	11.0	5.1 51.3	11.0 100.5	OS-14-K K
<u> </u>	42.14	-	-	51.3	100.5	<u>K</u> 3-I
1-I	3.13	6.9	12.3	-	-	K
<u>2-I</u>	0.59	2.3	4.1	-	-	K
<u>3-I</u> I	4.18 46.32	9.3	- 16.5	8.7 62.4	15.5 119.8	M M
M	158.79	-	-	154.5	383.7	East Pond Discharge
East Pond Discharge (Filing 1 & 2 Buildout)	158.79	-	-	2.9	96.2	Existing Swale

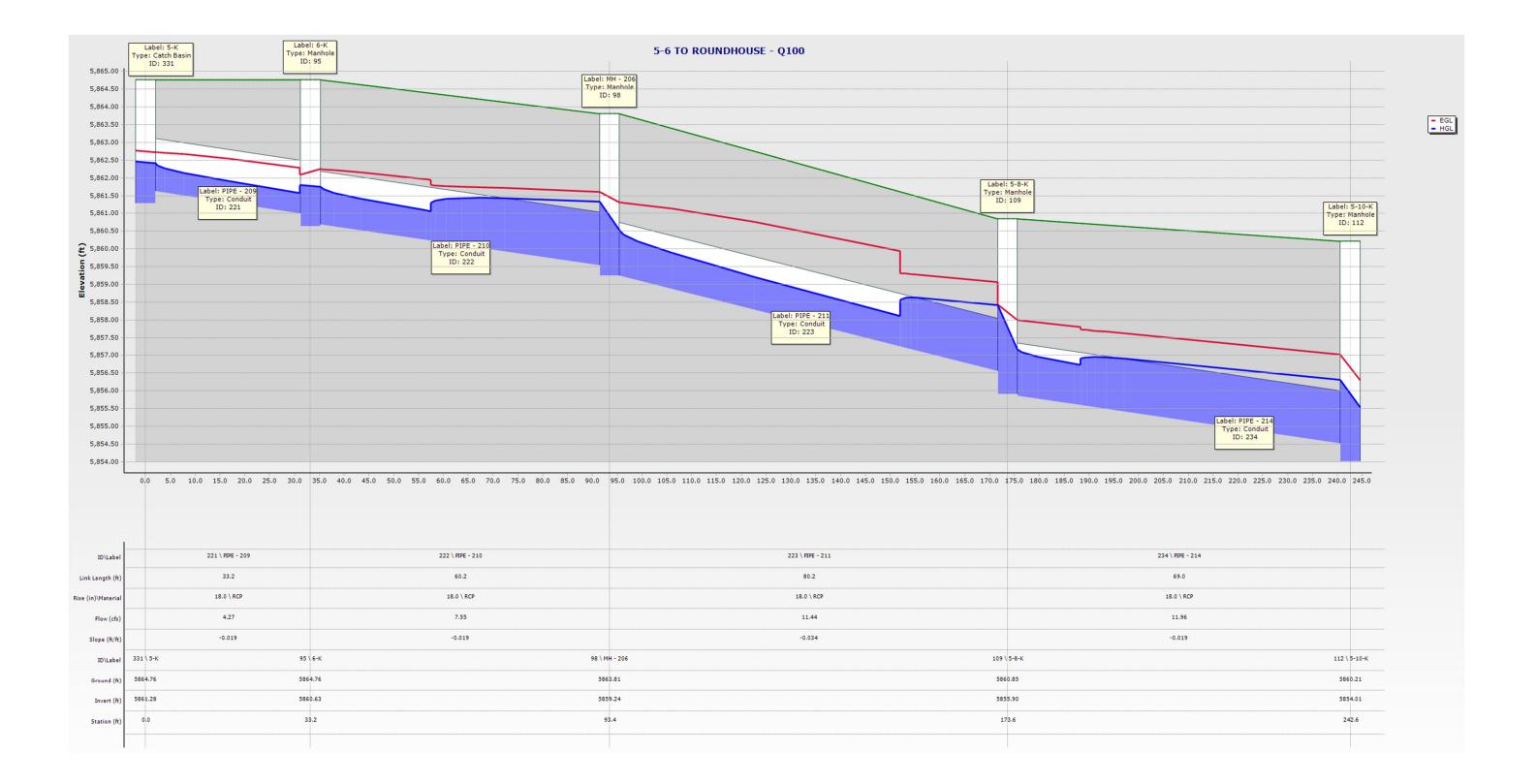


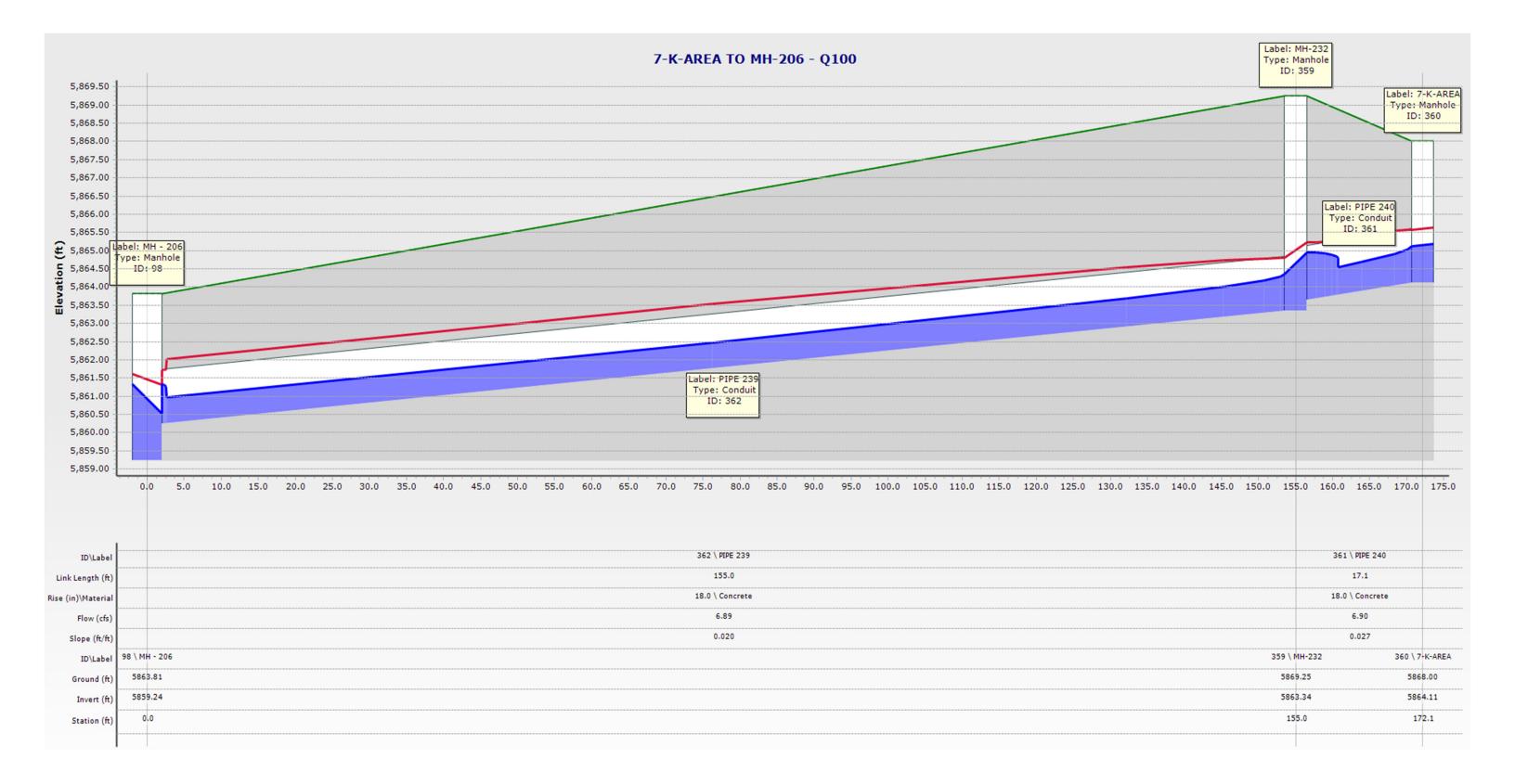


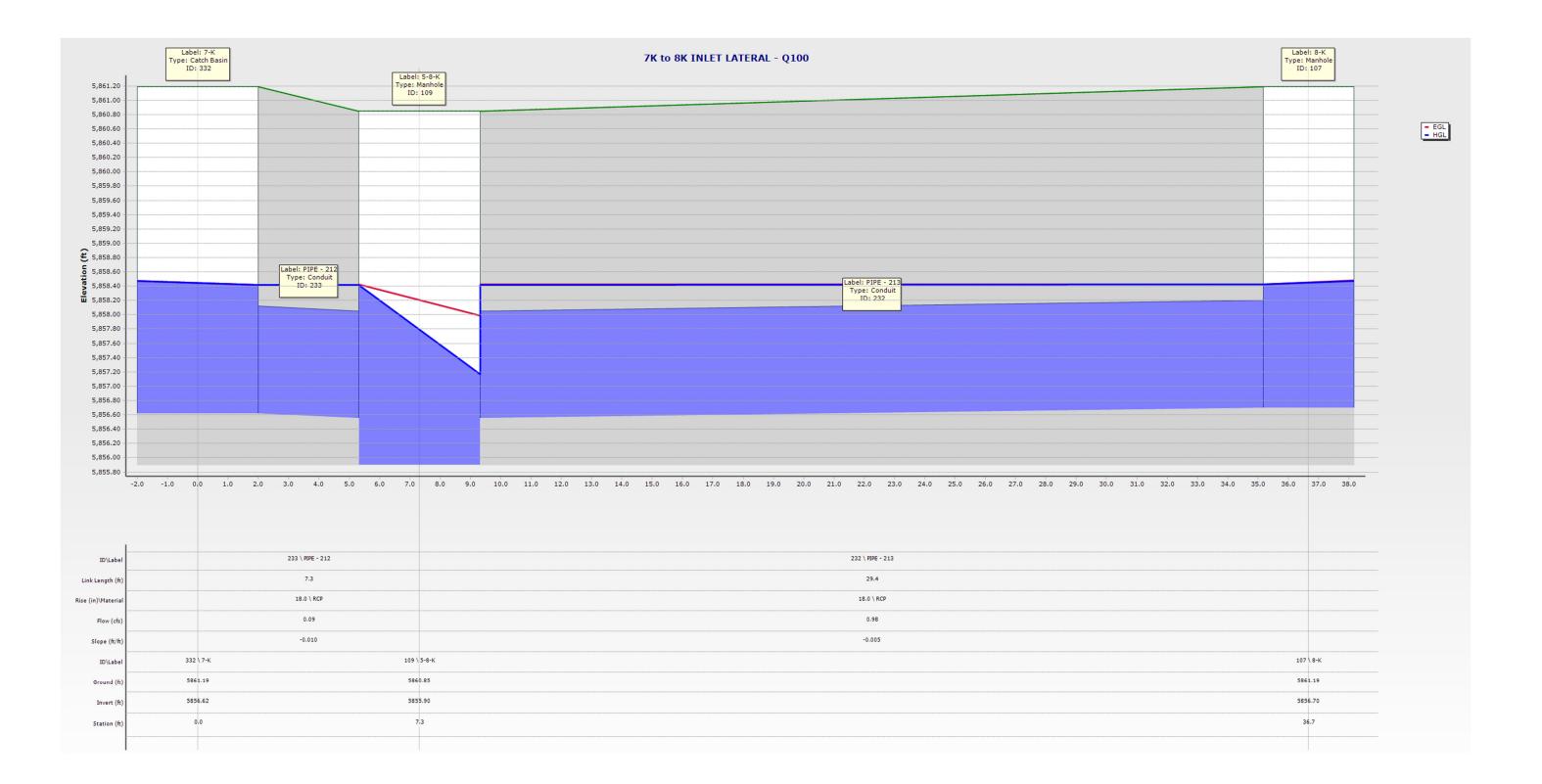

HGL Profiles: Q100

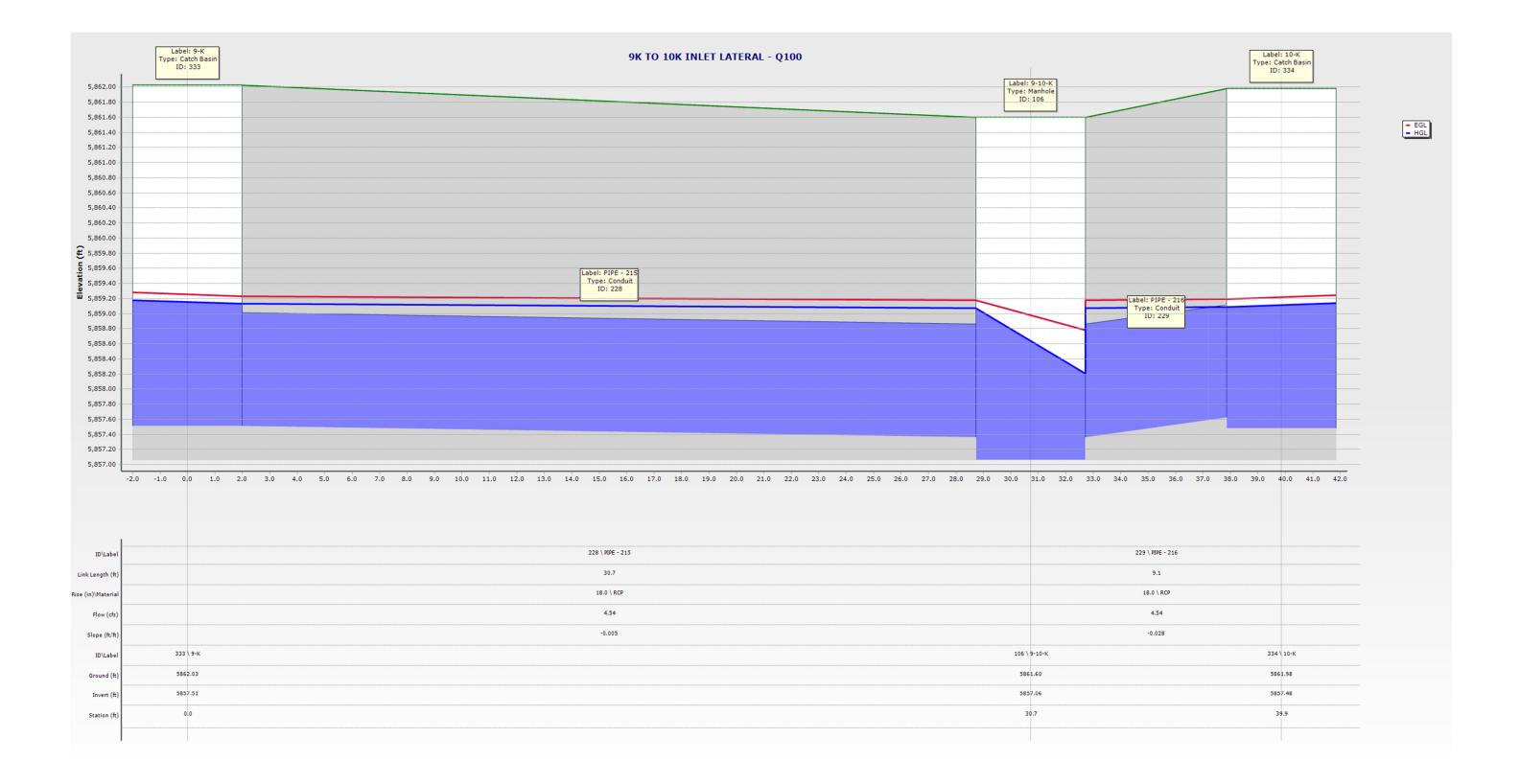


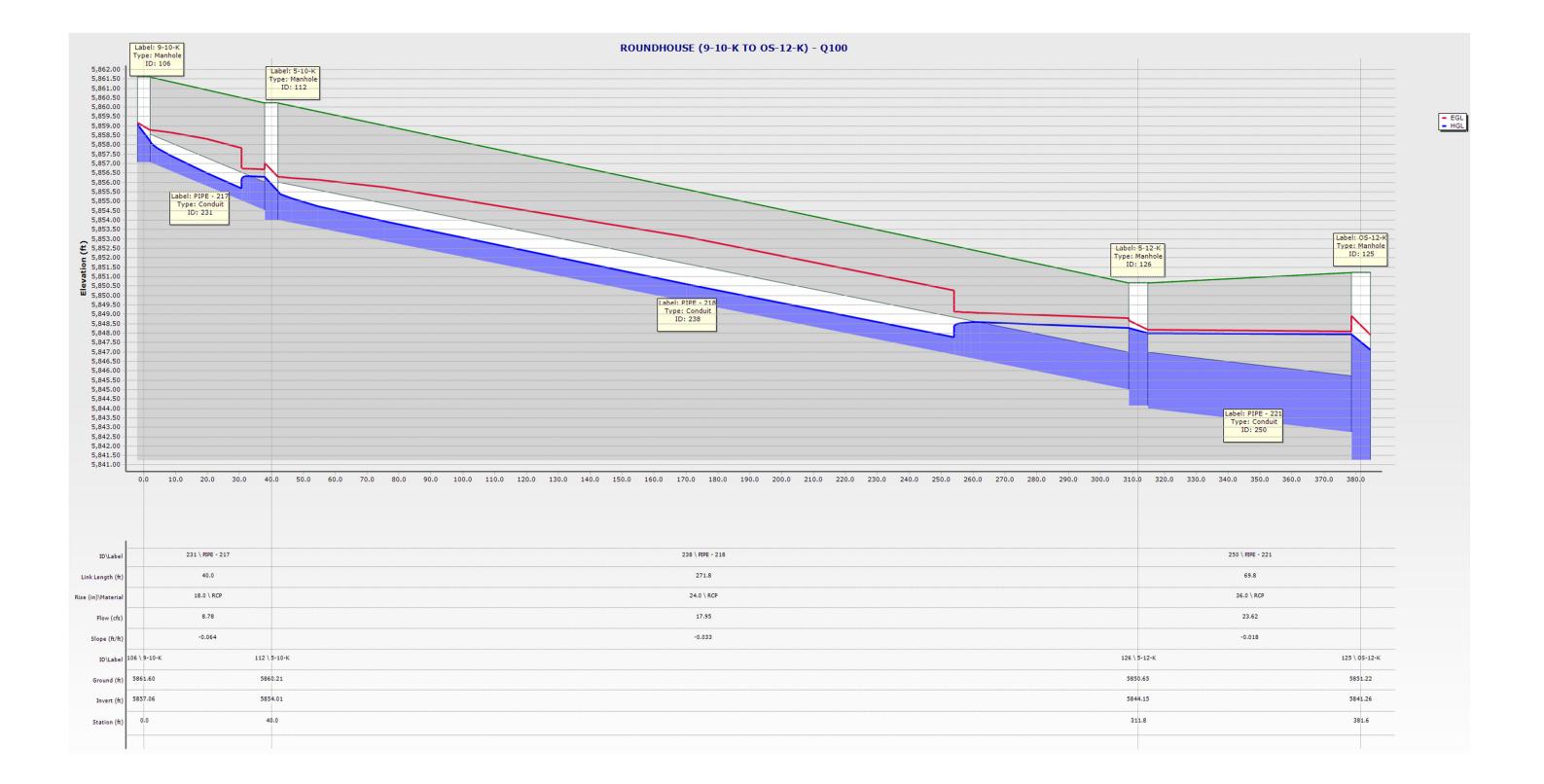

Loo 640.0 660.0 680.0 700.0 720.0 740.0 760.0 20.0 640.0 660.0 680.0 700.0 720.0 740.0 760.0 125.\ NPF - 27 (2 126.1 50.6 72 30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.23 0.010 0.005 0.06 53 \ NPF - 27 (2 182 \ PPF - 260381 \ PFE - 2500 126.1 50.6 72 30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.23 0.010 0.005 0.06 53 \ NH - 42 (Futura) 50 \ NP - 470 (MB IN), ET 590, 20 550 589.1.3 69.6 720.27.3		Label: MH - 42 (Futur Type: Manhole ID: 53	e)	Label: FUTURE INLET Type: Manhole ID: 49	
Type: Conduit Type: Conduit Type: Conduit Type:	abel: PIPE - 27 (2	Typ	ie: Conduit ID: 182	- HGL	
185 \ PIPE - 27 (2 182 \ PIPE - 2600181 \ PIPE - 2500 126.1 50.6 7.2 30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.25 0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ MH) \ #UTERE:MJLET 5900.20 590 SE81.02 5892.36 589 Z693.15	Type: Conduit	Ty	MH - 41 (Future) be: Manhole	Type: Conduit	
126.1 50.6 7.2 30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.25 0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ M9 \ #UT(ENELIN),ET 5900.20 590 5593.15	20.0 640.0 660.0	680.0 700.0 72	20.0 740.0 7	50.0	
126.1 50.6 7.2 30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.25 0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ M9 \ #UT(ENELIN),ET 5900.20 590 5593.15					
30.0 \ RCP 30.0 \ RCP 30.0 \ RCP 36.09 36.23 36.25 0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ NH9 \ #UT(BRE: IN),ET 5900.20 590 S581.02 5892.36 569 Z593.15		182		- 2500	
36.09 36.23 36.25 0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ Me9 \ #UTENELINI).ET 5900.20 5900.56#1.02 5892.36 5892.593.15					
0.010 0.005 0.006 53 \ MH - 42 (Future) 50 \ MH - 4 2 (Future) 50 \ MH - 4 2 (Future) 50 \ MH - 4 2 (Euture) 50 \ MH - 50		3			
53 \ MH - 42 (Future) 50 \ NH9 \ 4U(ERE:N)LET 5900.20 590 5591 .02 5892.36 589 2.93 .15					
5900.20 590 5591 .02 5892.36 589 2591 .15	0.010				
5892.36 589293.15					

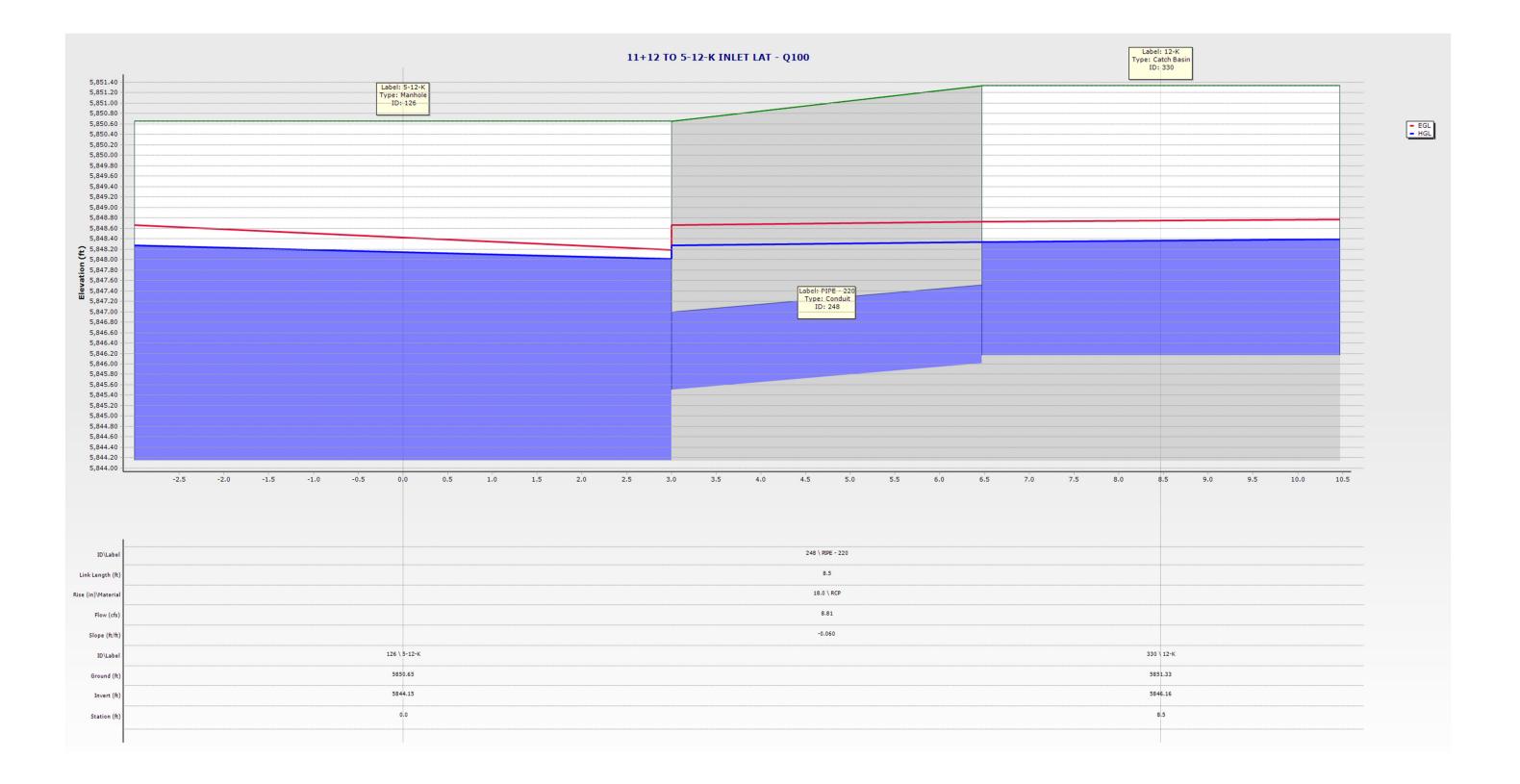




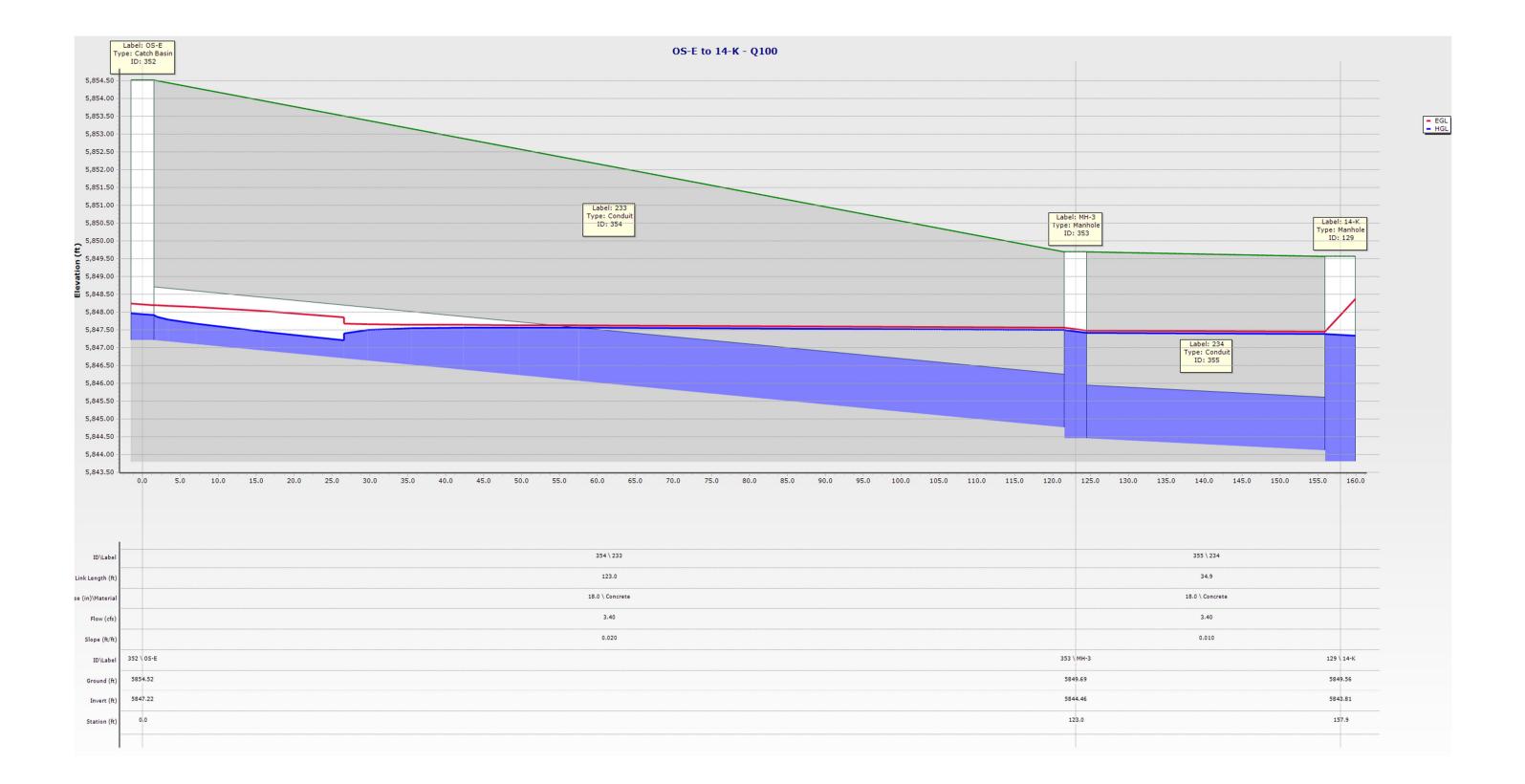


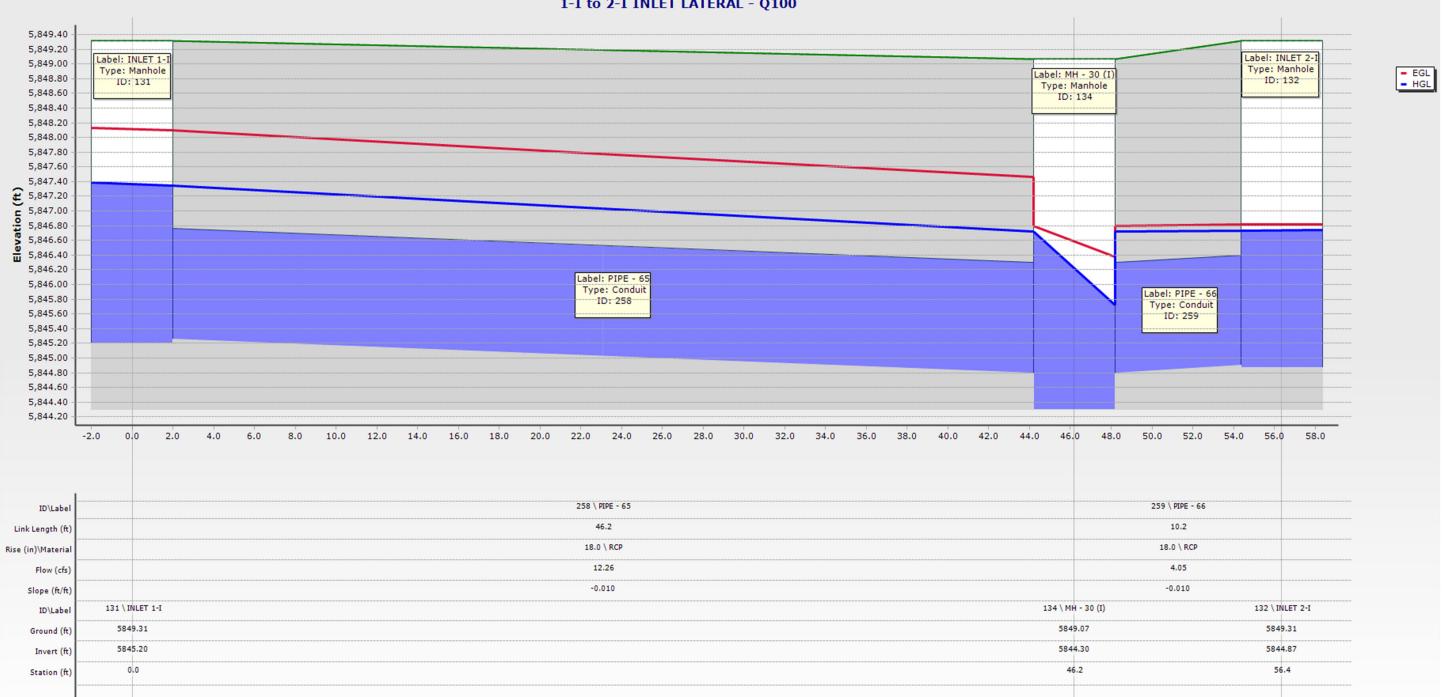


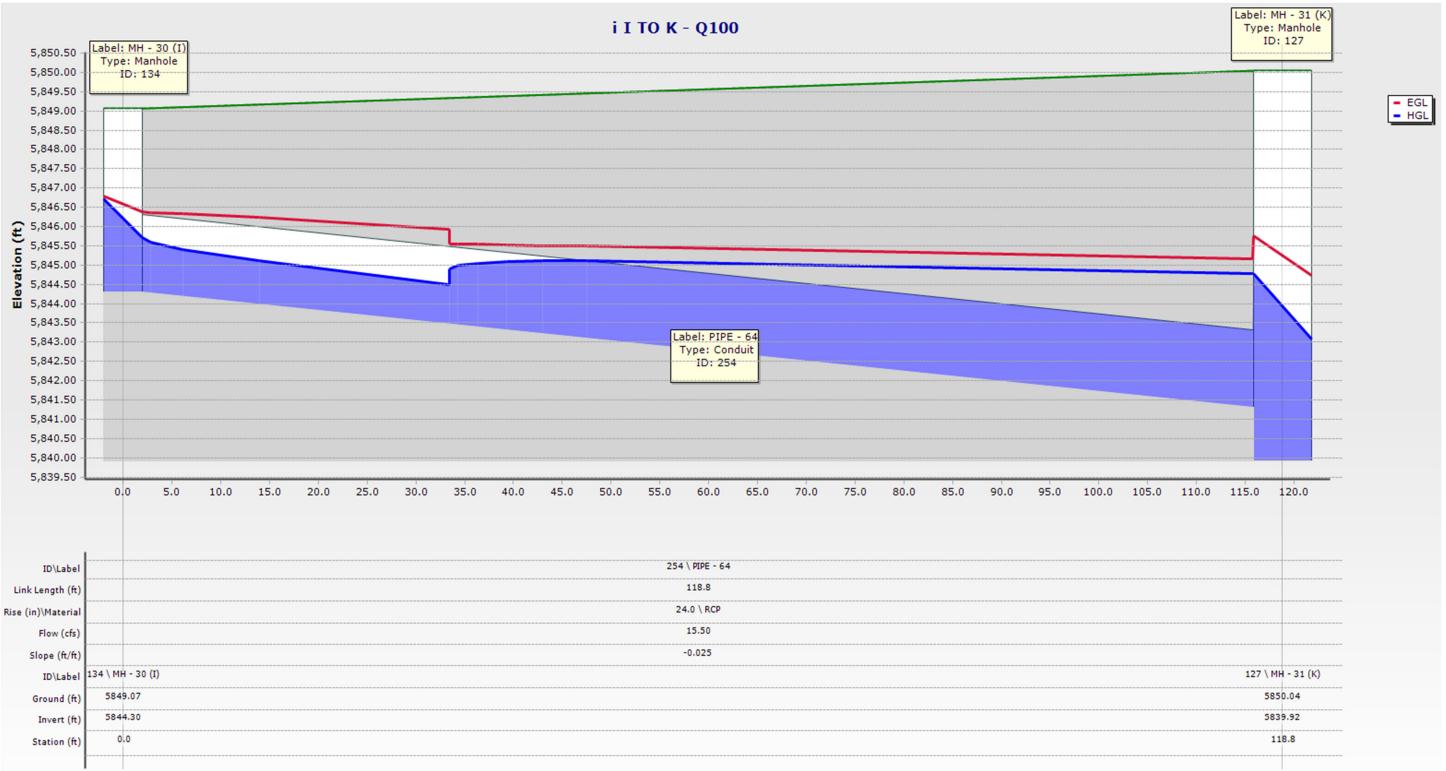


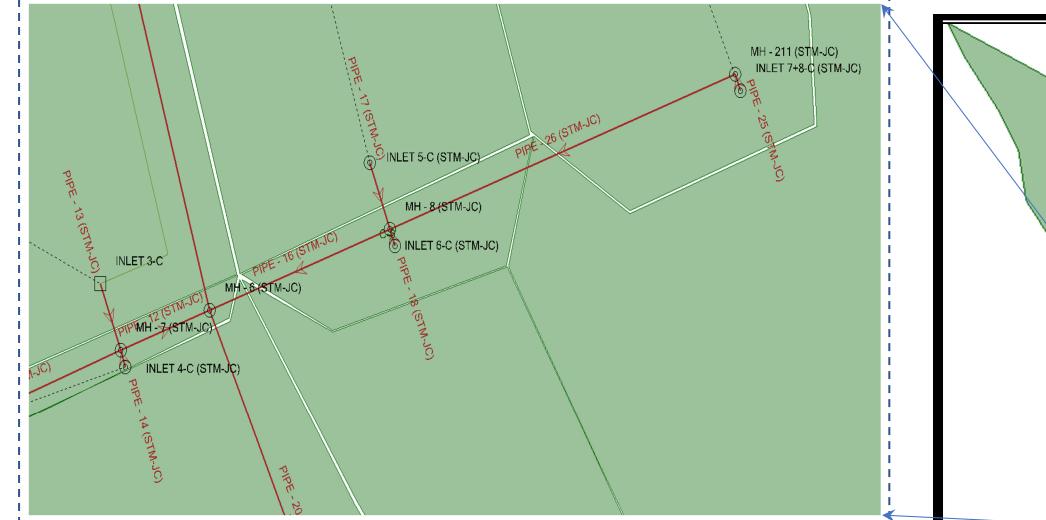


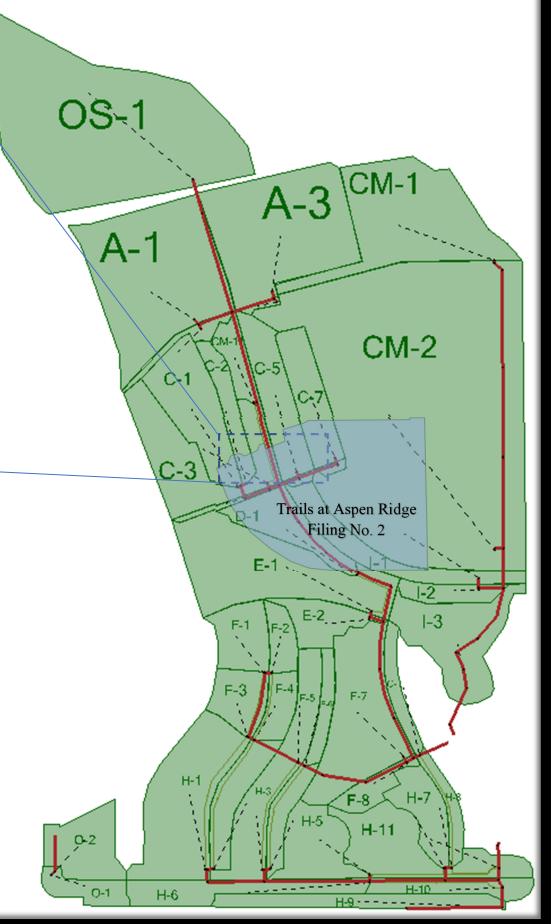






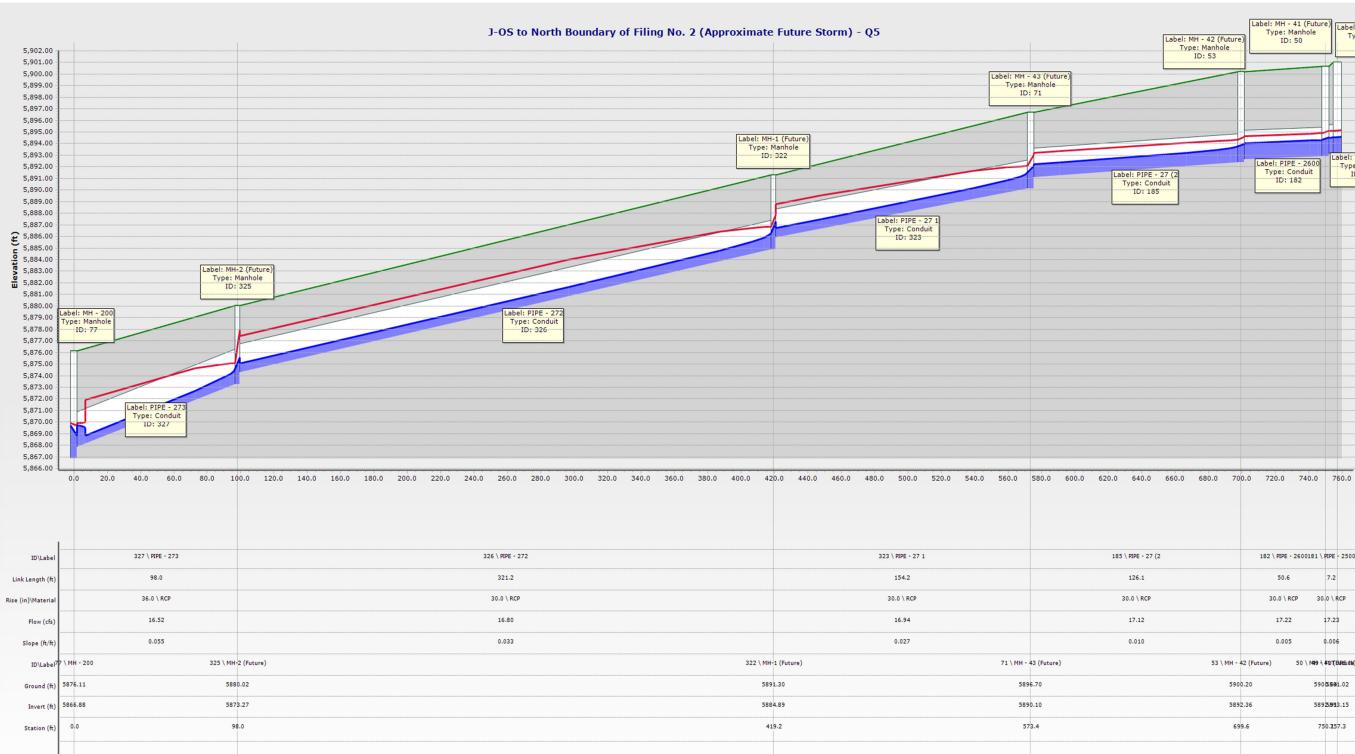


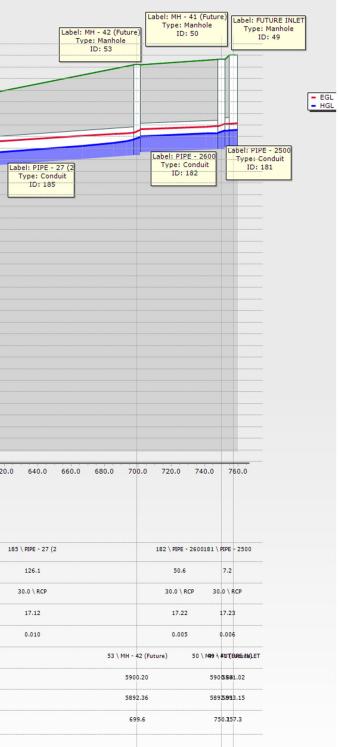


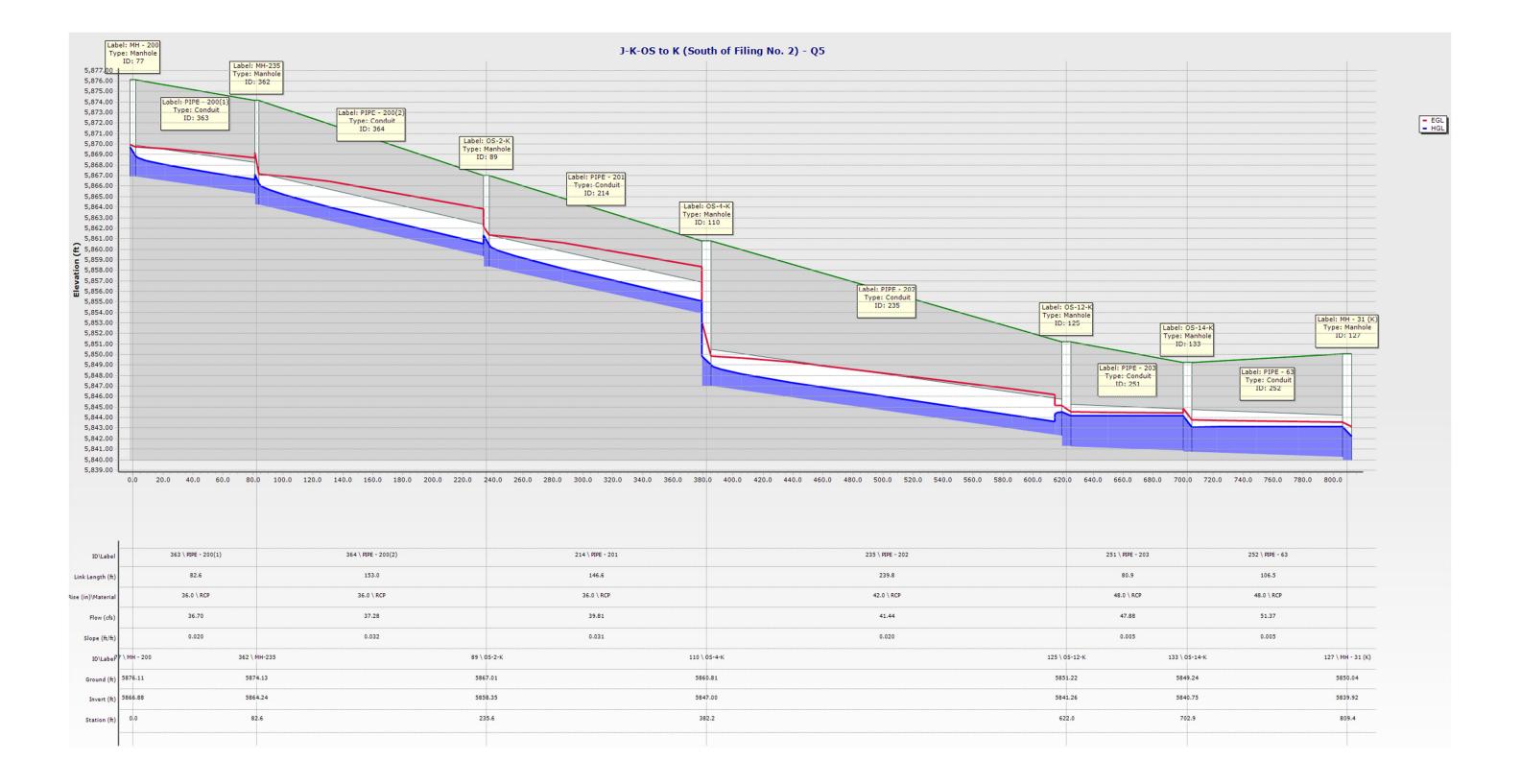


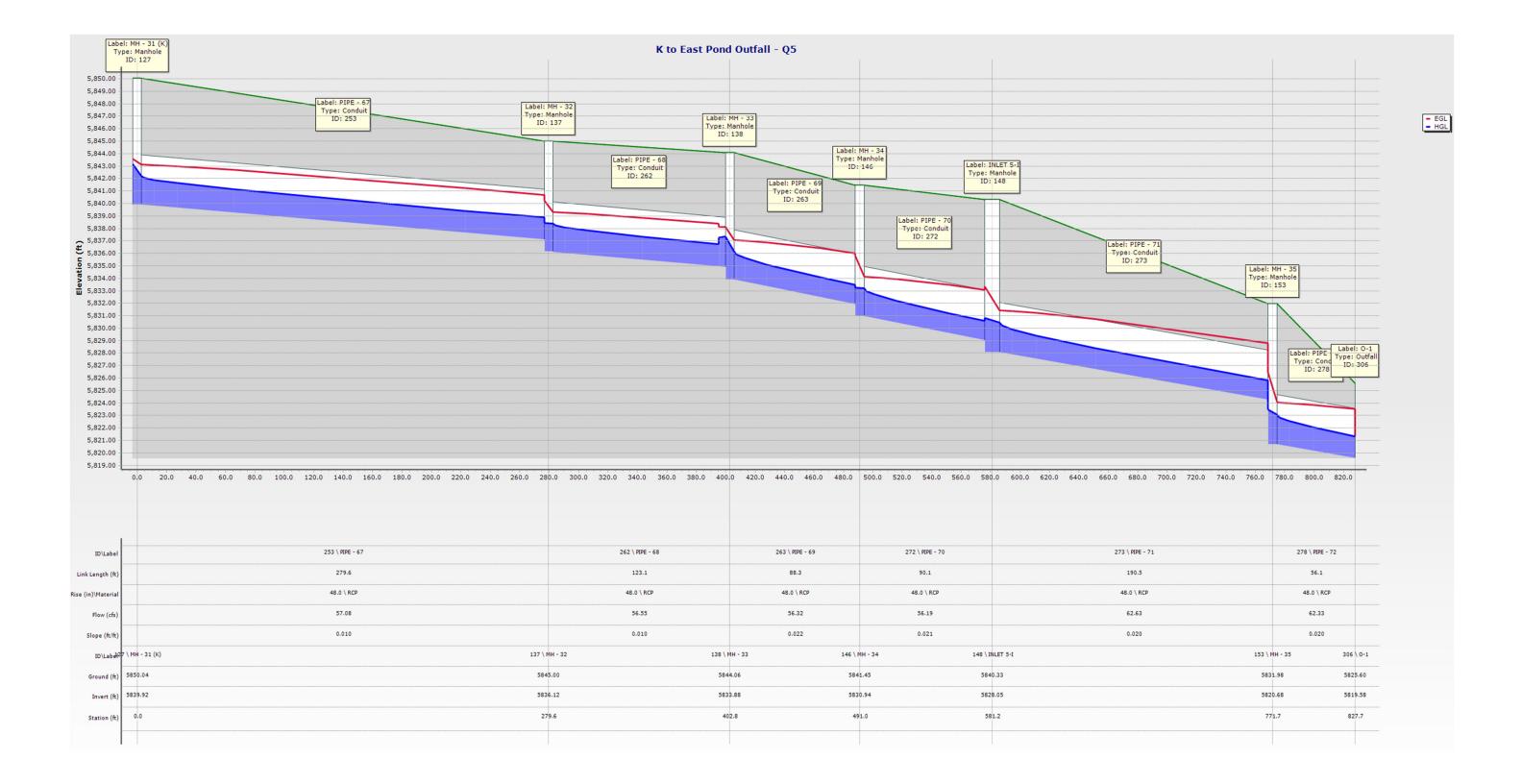
1-I to 2-I INLET LATERAL - Q100

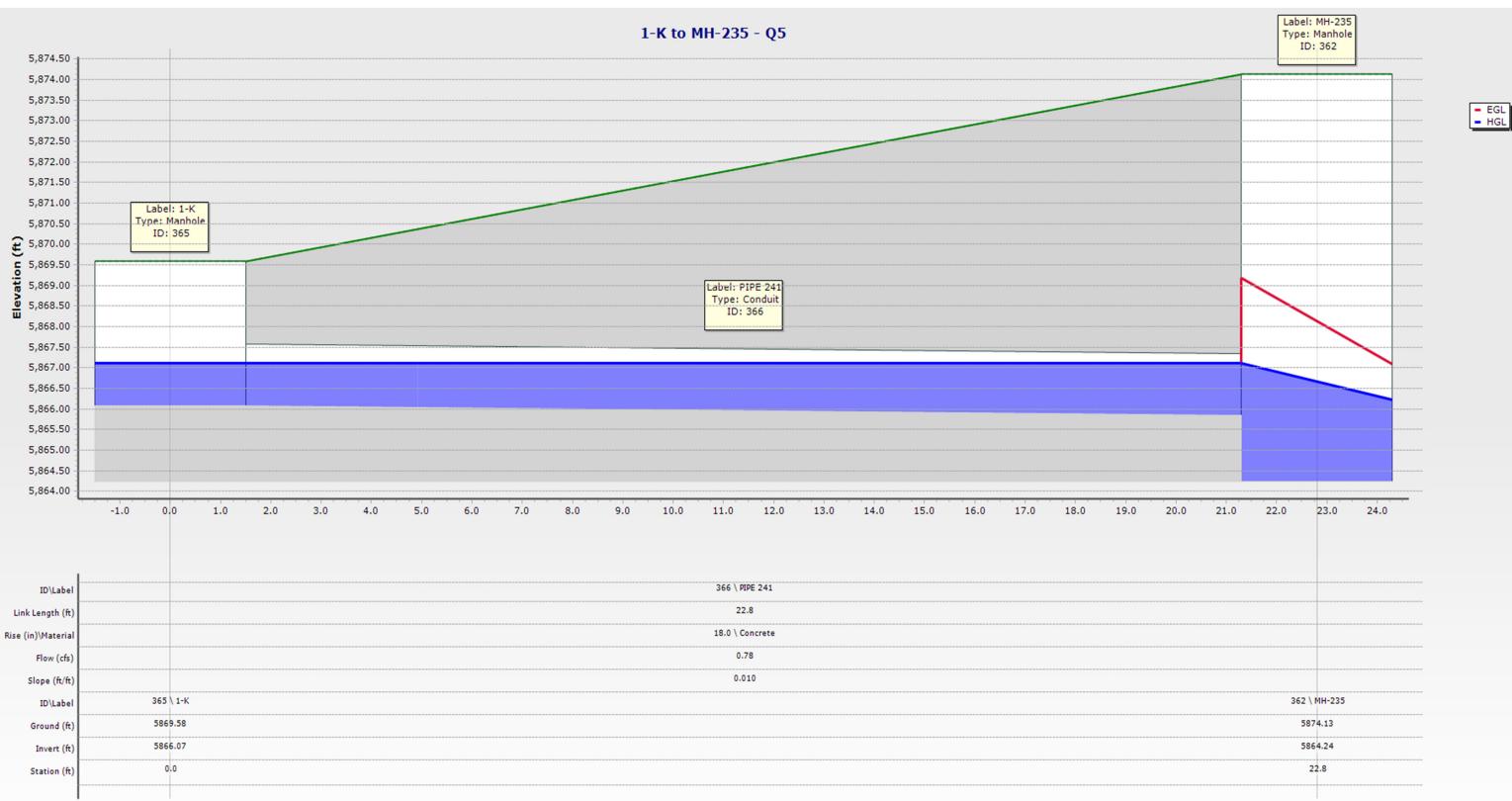
Note: StormCAD modeling for the 7-C and 8-C inlets and connection to the main storm sewer was completed in the Filing No. 1 models because they include the whole Legacy Hill Drive storm sewer system. In Filing No. 2, due to road design, two inlets were reduced to one. Which is labeled 7+8-C in this drainage report.

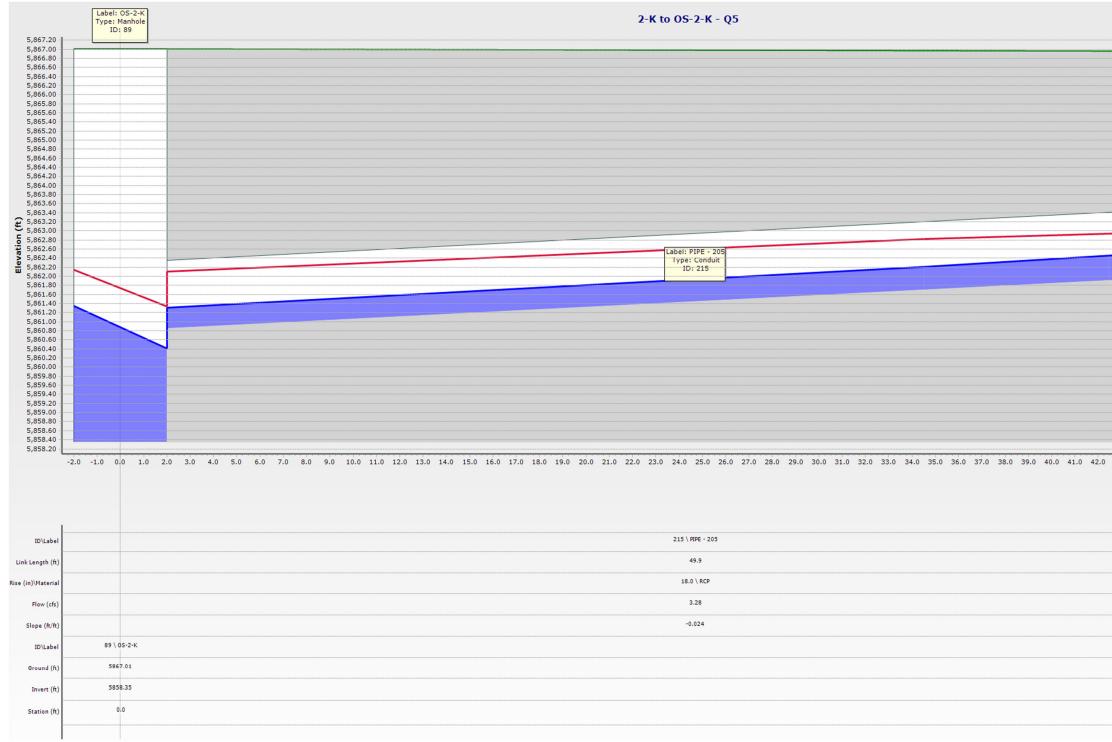

Q100 PIPE SUMMARY

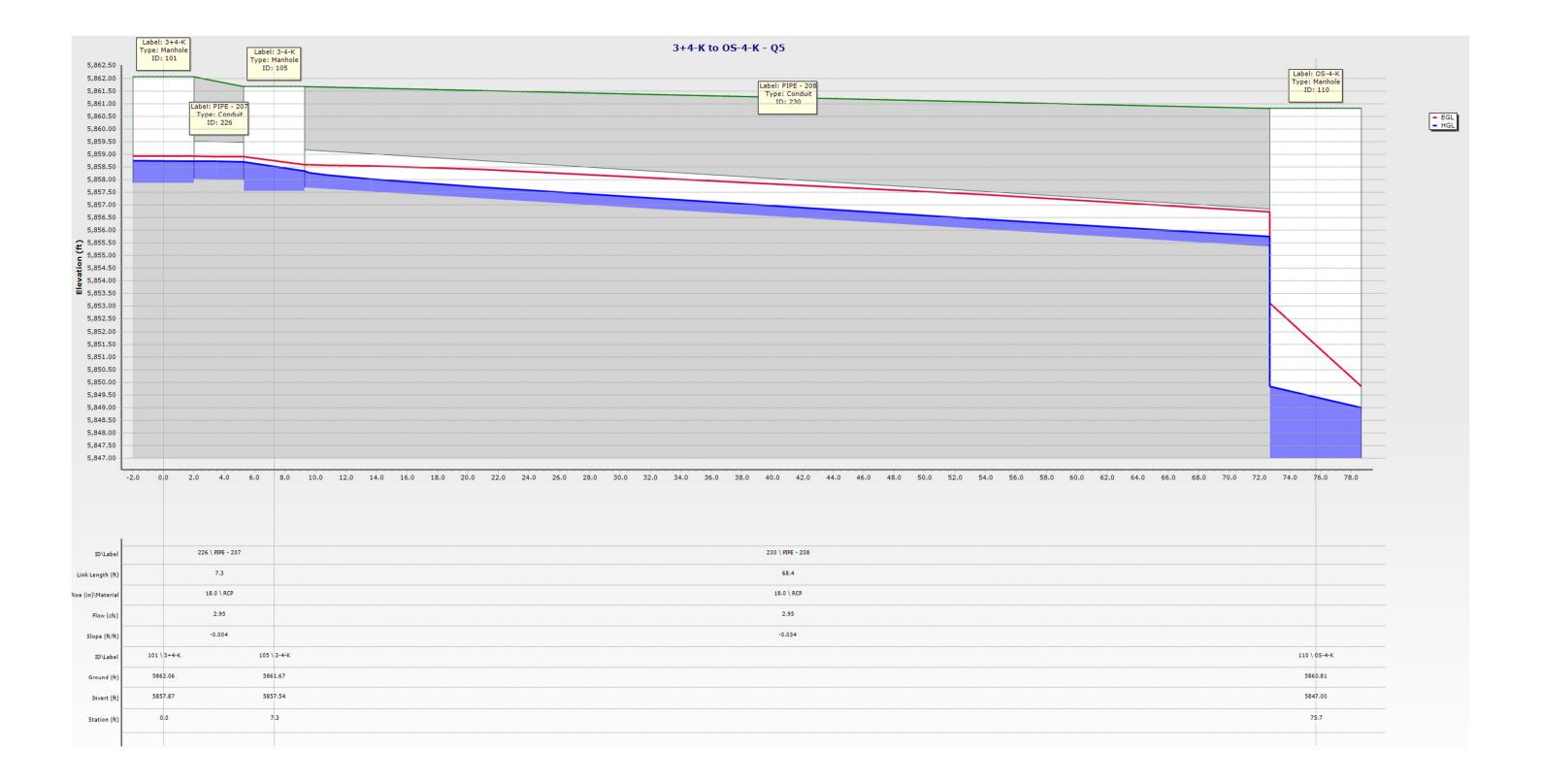

br br m - <thm< th=""><th></th><th>Label 🔺</th><th>Start Node</th><th>Stop Node</th><th>Length (User Defined) (ft)</th><th>Diameter (in)</th><th>Notes</th><th>Manning's n</th><th>Flow (cfs)</th><th>Capacity (Full Flow) (cfs)</th><th>Flow / Capacity (Design) (%)</th><th>Depth (Normal) / Rise (%)</th><th>Velocity (ft/s)</th><th>Invert (Start) (ft)</th><th>Invert (Stop) (ft)</th><th>Slope (Calculated) (ft/ft)</th><th>Hydraulic Grade Line (In) (ft)</th><th>Hydraulic Grade Line (Out) (ft)</th></thm<>		Label 🔺	Start Node	Stop Node	Length (User Defined) (ft)	Diameter (in)	Notes	Manning's n	Flow (cfs)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
bis free: Pic: <t< td=""><td>354: 233</td><td>233</td><td>OS-E</td><td>MH-3</td><td>1</td><td>18.0</td><td></td><td>0.013</td><td>3.40</td><td>14.85</td><td>22.9</td><td></td><td>6.82</td><td>5,847.22</td><td>5,844.76</td><td>0.020</td><td>5,847.92</td><td>5,847.51</td></t<>	354: 233	233	OS-E	MH-3	1	18.0		0.013	3.40	14.85	22.9		6.82	5,847.22	5,844.76	0.020	5,847.92	5,847.51
ph:ph:ph:ph:ph:ph:ph:ph:ph:ph:ph:ph:ph:p	355: 234	234	MH-3	14-K	34.9	18.0		0.013	3.40	10.52	32.3	39.1	1.92	5,844.46	5,844.11	0.010	5,847.44	5,847.40
bit bit< bit< bit bit	185: PIPE - 27	PIPE - 27 (2	MH - 42 (Future)	MH - 43 (Future)	126.1	30.0	24" RCP	0.013	36.09	40.99	88.0	72.8	9.42	5,892.36	5,891.10	0.010	5,894.40	5,893.25
124 PPC 4 PPC 4 M+ 34 P) MH 34 P)	323: PIPE - 27	PIPE - 27 1	MH - 43 (Future)	MH-1 (Future)	154.2	30.0	24" RCP	0.013	35.82	67.77	52.9	51.7	14.00	5,890.10	5,885.89	0.027	5,892.13	5,888.02
pic.pic.pic Pic.Pic.0 Pic.Pic.0 Pic.Pic.0 Pic.Pic.0 <	252: PIPE - 63	PIPE - 63 (232)	OS-14-K	MH - 31 (K)	106.5	48.0	48" RCP	0.013	100.64	101.57	99.1	81.1	8.01	5,840.75	5,840.22	0.005	5,845.30	5,844.78
259 Per-60 H-3 Per-60 H-3 Per-60 H-3 NH NH <td< td=""><td>254: PIPE - 64</td><td>PIPE - 64</td><td>MH - 31 (K)</td><td>MH - 30 (I)</td><td>118.8</td><td>24.0</td><td>24" RCP</td><td>0.013</td><td>15.50</td><td>35.83</td><td>43.3</td><td>46.0</td><td>10.99</td><td>5,841.32</td><td>5,844.30</td><td>-0.025</td><td>5,845.72</td><td>5,844.78</td></td<>	254: PIPE - 64	PIPE - 64	MH - 31 (K)	MH - 30 (I)	118.8	24.0	24" RCP	0.013	15.50	35.83	43.3	46.0	10.99	5,841.32	5,844.30	-0.025	5,845.72	5,844.78
b23 PE-97 M+-3 M+-3 M+-3 M<-3	258: PIPE - 65	PIPE - 65	MH - 30 (I)	INLET 1-I	46.2	18.0	18" RCP	0.013	12.26	10.48	117.0	(N/A)	6.94	5,844.80	5,845.26	-0.010	5,847.35	5,846.72
black black<	259: PIPE - 66	PIPE - 66	MH - 30 (I)	INLET 2-I	10.2	18.0	18" RCP	0.013	4.05	10.41	38.9	43.3	2.29	5,844.80	5,844.90	-0.010	5,846.73	5,846.72
Shiper -0 PR-3 PR-3 PR-3 PR-3	253: PIPE - 67	PIPE - 67	MH - 31 (K)	MH - 32	279.6	48.0	48" RCP	0.013	110.31	143.63	76.8	65.7	12.60	5,839.92	5,837.12	0.010	5,843.09	5,839.75
P27 PP-70 P4-34 P4-34 <th< td=""><td>262: PIPE - 68</td><td>PIPE - 68</td><td>MH - 32</td><td>MH - 33</td><td>123.1</td><td>48.0</td><td>48" RCP</td><td>0.013</td><td>109.50</td><td>143.63</td><td>76.2</td><td>65.4</td><td>12.58</td><td>5,836.12</td><td>5,834.89</td><td>0.010</td><td>5,839.79</td><td>5,839.20</td></th<>	262: PIPE - 68	PIPE - 68	MH - 32	MH - 33	123.1	48.0	48" RCP	0.013	109.50	143.63	76.2	65.4	12.58	5,836.12	5,834.89	0.010	5,839.79	5,839.20
profile T MI-3 MI-3 <t< td=""><td>263: PIPE - 69</td><td>PIPE - 69</td><td>MH - 33</td><td>MH - 34</td><td>88.3</td><td>48.0</td><td>48" RCP</td><td>0.013</td><td>109.15</td><td>213.02</td><td>51.2</td><td>50.7</td><td>17.05</td><td>5,833.88</td><td>5,831.94</td><td>0.022</td><td>5,837.04</td><td>5,834.21</td></t<>	263: PIPE - 69	PIPE - 69	MH - 33	MH - 34	88.3	48.0	48" RCP	0.013	109.15	213.02	51.2	50.7	17.05	5,833.88	5,831.94	0.022	5,837.04	5,834.21
P2P P2P P2 P4-3 O-1 S5.1 40.0 P42-20 P2-20 P4-3 S5.1 P5.00 S5.0 S5.0 S5.0 S5.00	272: PIPE - 70	PIPE - 70	MH - 34	INLET 5-I	90.1	48.0	48" RCP	0.013	108.97	208.12	52.4	51.4	16.75	5,830.94	5,829.05	0.021	5,834.10	5,831.34
Since Prec 20 (PE - 200 () HH - 20 ⁻ HH - 25 ⁻ Field Solo Prec Prec Prec Prec Prec Prec Prec Prec	273: PIPE - 71	PIPE - 71	INLET 5-I	MH - 35	190.5	48.0	48" RCP	0.013	119.98	203.11	59.1	55.3	16.83	5,828.05	5,824.24	0.020	5,831.35	5,826.55
bic prec - 200 / Pre - 202 M+-25 Oc-24 (M+-201) Oc-10 ISA M-10 SA M-10 SA M-10 SA SA <td>278: PIPE - 72</td> <td>PIPE - 72</td> <td>MH - 35</td> <td>0-1</td> <td>56.1</td> <td>48.0</td> <td>48" RCP</td> <td>0.013</td> <td>119.54</td> <td>201.16</td> <td>59.4</td> <td>55.5</td> <td>16.69</td> <td>5,820.68</td> <td>5,819.58</td> <td>0.020</td> <td>5,823.97</td> <td>5,822.15</td>	278: PIPE - 72	PIPE - 72	MH - 35	0-1	56.1	48.0	48" RCP	0.013	119.54	201.16	59.4	55.5	16.69	5,820.68	5,819.58	0.020	5,823.97	5,822.15
114 PIE<-201	365: PIPE - 20	PIPE - 200(1)	MH - 200	MH-235	82.6	36.0	24" RCP	0.013	66.13	93.98	70.4	61.9	14.40	5,866.88	5,865.24	0.020	5,869.48	5,868.57
DSS: PIPE - 20 OPE - 20 OS-12 K OS-12	366: PIPE - 20	PIPE - 200(2)	MH-235	OS-2-K (MH-201)	153.0	36.0	24" RCP	0.013	68.04	119.23	57.1	54.1	17.43	5,864.24	5,859.35	0.032	5,866.87	5,862.92
DSS: PIPE - 20 OPE - 20 OS-12 M OS-12 M PID OLI FAR.9 H1.73 S.41 S.24 ISD2 S.47.00 S.49.24 O.000 S.497.41 S.47.00 S1: PIPE - 20 PIPE - 30 OS-2X (M+201) 2X M9.9 18.0 2M*CP 0.013 5.90 16.00 8.86 41.1 8.46 5.800.8 5.802.8	214: PIPE - 20	PIPE - 201	OS-2-K (MH-201)	OS-4-K (MH202)	146.6	36.0	36" RCP	0.013	72.83	116.84	62.3	57.2	17.43	5,858.35	5,853.85	0.031	5,861.04	5,855.65
115 PIE - 20 PIE - 20 OPE - 307 3 + 4 (M+205) 24 (49.9 16.0 24" (P 0.013 6.59 6.74 97.7 8.00 4.35 5.85.00 5.86.2.0 4.0.04 5.85.9.8 5.85.9	235: PIPE - 20	PIPE - 202	OS-4-K (MH202)		239.8	42.0	36" RCP	0.013	76.68	141.73	54.1	52.4	15.02	5,847.00	5,842.24	0.020	5,849.74	5,847.94
225: PIPE - 20 S4+K (MH-203) 3++K (MH-203) 3++K (MH-203) 24* RCP 0.013 6.59 6.74 97.7 80.0 4.35 5.857.95 5.857.01 -0.004 5.887.05 5.8	251: PIPE - 20	PIPE - 203	OS-12-K	OS-14-K	80.9	48.0		0.013	89.65	101.00	88.8	73.3	7.13	5,841.24	5,840.84	0.005	5,847.13	5,846.82
225 PIPE - 20 PIPE - 20* 34-K (MH-205) 34-K (MH-205) 210 18.0 24" PCP 0.013 6.59 6.74 97.7 80.0 4.35 5.857.0	215: PIPE - 20	PIPE - 205	OS-2-K (MH-201)	2-К	49.9	18.0	24" RCP	0.013	5.90	16.23	36.4	41.7	8.46	5,860.85	5,862.04	-0.024	5,862.98	5,862.92
239. PPE-20 PPE-21 S4K S5K S4K S5K <	226: PIPE - 20	PIPE - 207		3+4-K		18.0	24" RCP	0.013	6.59		97.7	80.0	4.35	5,857.98			5,859.36	5,859.34
221 PIPE - 20 PIE - 20 MH - 20 6 K 60.2 13.0 1° R CP 0.013 4.27 14.47 29.5 37.2 7.13 5,860.99 5,861.62 0.019 5,861.75 6,861.75 5,861.75 6,861.75 5,861.75 6,861.75 5,861.75 6,861.75 6,861.75 6,861.75 6,861.75 6,861.75 6,861.75<	230: PIPE - 20	PIPE - 208		3-4-K (MH-205)		18.0	24" RCP	0.013	6.58	34.18		29.7	14.94	5,855.35	5,857.68	-0.106	5,858.67	5,855.86
222: PIPE - 21 PIPE - 21 SH MH - 20 ⁻ 6 M, 2 ⁻ 0.13 7,55 14,51 52.0 51.2 8.30 5,85.9,24 -0.013 5,86.13 233: PIPE - 21 PIPE - 21 ⁻ 5-8K ⁻ 7K ⁻ 73 18.0 2 ¹⁸ CP ⁻ 0.13 11.46 19.24 59.6 55.6 11.36 5,85.5 5,85.6 4.001 5,88.2 4.001 5,88.2 4.001 5,88.2 4.001 5,88.2 4.001 5,88.2 4.001 5,88.2 5,88.2 4.001 5,88.2 5,88.2 4.001 5,88.2 5,88.2 4.001 5,88.2 5,88.2 4.001 5,88.2 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.4 5,88.2 5,88.2 4.005 5,88.2 4.005 5,88.2 4.005 5,88.2 5,88.2 4.005 5,88.2 5,88.2 5,88.2 5,88.2 </td <td>221: PIPE - 20</td> <td>PIPE - 209</td> <td></td> <td></td> <td></td> <td>18.0</td> <td></td> <td>5,861.80</td>	221: PIPE - 20	PIPE - 209				18.0												5,861.80
223: PIPE - 21 S+8+ MH - 206 80.2 18.0 24° RCP 0.013 11.46 19.24 S9.6 S5.6 11.36 S,856.55 S,859.24 -0.03 S,886.35 S,887.35 S,886.42 -0.010 S,888.45 S,886.55 S,856.55 S,857.55 S,857.																	-	5,861.33
233: PIFE - 21 9 PE - 212 5 8 + 7 + 7 3 18.0 18" RCP 0.13 0.09 10.27 0.9 6.7 0.05 5,856.55 5,856.62 -0.010 5,888.43 5,888.4 5,888.6 5,888.6 5,																		5,858.42
22: PIPE - 21 5+8+ 8+* 294 18.0 18* <p< th=""> 0.13 0.98 7.51 13.0 24.3 0.55 5,856.5 5,856.70 0.005 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.43 5,858.45 0.010 5,858.45 5,859.45 5,858.55 0.010 5,858.45 5,859.45 5,858.55 0.010 5,859.45 5,</p<>																		5,858.42
234: PIPE - 21 PIPE - 214 5+0.K 5+0.K 69.0 18.0 24" RCP 0.013 11.98 14.64 81.8 66.8 9.24 5,855.55 5,855.55 -0.019 5,857.16 5,857.16 5,857.35 5,8																		5,858.42
228: PIPE - 21 9-10 × 9-10 × 10+ 9-10 × 10+ 9-10 18.0 18" RCP 0.01 4.54 7.73 61.8 5.69 2.57 5,857.36 5,857.35	234: PIPE - 21	PIPE - 214	5-10-K	5-8-K		18.0	24" RCP	0.013				68.8	9.24					5,856.31
229: PIPE - 21 9+0 ··· 10·· 9.1 18°. 18°. P 0.13 4.54 17.73 25.6 34.5 8.39 5,857.62 -0.028 5,859.90<																		5,859.07
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	229: PIPE - 21	PIPE - 216	9-10-K			18.0		0.013				34.5						5,859.07
238: PIPE - 21 PIPE - 218 5 - 12 + 5 - 10 + 271.8 24.0 36* RCP 0.013 17.97 41.19 43.6 46.2 12.66 5,845.00 5,854.01 -0.033 5,855.54 5,848.03 248: PIPE - 22 PIPE - 220 5 - 12 + 12 + 8.5 18.0 30* RCP 0.013 8.81 25.77 34.2 40.3 4.99 5,845.00 5,846.01 -0.008 5,848.03 5,847.0 255: PIPE - 22 OS - 14 + 5 - 12 + 68.0 30* RCP 0.013 2.65 89.60 26.4 35.1 3.35 5,843.40 -0.018 5,848.03 5,847.0 256: PIPE - 22 OS - 14 + 14 + 28.5 18.0 30* RCP 0.013 14.38 1.34 5,843.34 5,843.81 -0.0016 5,847.35 5,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 25,846.3 26,843.4 5,843.34 5,843.34 5,843.34 5,843.34 5,843.34 5,843.34 5,843.34 5,846.33 5,866.34 <td>231: PIPE - 21</td> <td>PIPE - 217</td> <td>5-10-K</td> <td>9-10-K</td> <td></td> <td>18.0</td> <td></td> <td>0.013</td> <td>8.78</td> <td></td> <td></td> <td>39.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5,856.31</td>	231: PIPE - 21	PIPE - 217	5-10-K	9-10-K		18.0		0.013	8.78			39.6						5,856.31
248: PIPE - 22 PIPE - 22 5-12 + 12 + 8.5 18.0 30° RCP 0.013 8.81 25.77 34.2 40.3 4.99 5,845.0 5,846.01 -0.000 5,848.35 5,848.35 5,848.35 5,846.01 -0.010 5,848.35 </td <td>238: PIPE - 21</td> <td>PIPE - 218</td> <td>5-12-K</td> <td>5-10-K</td> <td>271.8</td> <td>24.0</td> <td>36" RCP</td> <td>0.013</td> <td>17.97</td> <td></td> <td>43.6</td> <td>46.2</td> <td>12.66</td> <td>-</td> <td></td> <td>-0.033</td> <td>5,855.54</td> <td>5,848.29</td>	238: PIPE - 21	PIPE - 218	5-12-K	5-10-K	271.8	24.0	36" RCP	0.013	17.97		43.6	46.2	12.66	-		-0.033	5,855.54	5,848.29
250: PIPE - 22 0S-12 K 5-12 K 69.8 36.0 36" CP 0.013 23.65 89.60 26.4 35.1 3.35 5,842.74 5,84.00 -0.018 5,848.03 5,847.47 255: PIPE - 22 PIPE - 222 OS-14 K 13-K 8.2 18.0 30" CP 0.013 0.69 9.00 7.7 18.8 0.39 5,843.34 5,843.04 -0.007 5,846.62 5,847.35 5,846.3 5,847.34 5,843.34 5,843.34 5,843.34 5,846.34 5,847.35 5,846.35 5,847.35 5,846.35 5,857.51 <	248: PIPE - 22	PIPE - 220	5-12-K	12-К	8.5	18.0		0.013	8.81	25.77	34.2	40.3	4.99	5,845.50	5,846.01	-0.060	5,848.35	5,848.29
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		5,847.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	255: PIPE - 22	PIPE - 222	OS-14-K														-	5,846.82
326: PIPE - 27 PIPE - 27 MH-1 (Future) MH - 2 (Future) 321.3 30.0 24" RCP 0.13 35.61 74.77 48.7 15.02 5,884.89 5,874.27 0.033 5,886.92 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,875.27 5,886.88 0.045 5,895.71 5	256: PIPE - 22	PIPE - 223															-	
327: PIPE - 27 PIPE - 27 MH-2 (Future) 98.0 36.0 24" RCP 0.013 35.20 141.19 24.9 34.0 16.59 5,873.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,868.8 0.045 5,875.27 5,867.37 5,868.8 0.045 5,875.27 5,867.37 <t< td=""><td></td><td></td><td></td><td>MH-2 (Future)</td><td></td><td>30.0</td><td>24" RCP</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>				MH-2 (Future)		30.0	24" RCP							-				
181: PIPE - 25 PIPE - 25/O FUTURE INLET MH - 41 (Future) 7.2 3.0 24° KP 0.01 36.25 30.64 118.3 (N/A) 7.38 5,893.15 5,89																	-	5,871.12
182: PIPE - 26 PIPE - 2600 MH - 4 [Future) 50.6 30.0 24" RCP 0.013 36.23 28.83 125.6 (N/A) 7.38 5,892.91 5,892.66 0.005 5,895.30	181: PIPE - 25	PIPE - 2500																5,895.65
362: PIPE 239 PIPE 239 MH-232 MH - 240 155.0 18.0 0.013 6.89 14.85 46.4 47.9 8.25 5,863.34 5,860.24 0.020 5,864.36 5,864.36 5,864.36 5,863.34 5,860.24 0.020 5,864.36 5,																		5,894.84
361: PIPE 240 PIPE 25(STM-JC) PIPE 25(S																		5,861.33
368: PIPE 241 PIPE 241 1-K MH-23 22.8 18.0 0.013 2.33 10.55 22.1 31.9 1.32 5,866.07 5,865.84 0.010 5,868.58 5,868.58 5,868.58 5,868.58 5,868.58 5,868.67 5,865.84 0.010 5,868.68 5,868.58 5,868.58 5,868.58 5,868.58 5,868.68 5,868.68 5,868.68 5,888.68			An and a second s															
166: PIPE - 25 (STM-JC) PIPE - 25 (STM-JC) INLET 7+8-C (STM-JC) MH - 211 (STM-JC) 7.7 18.0 18" RCP 0.013 9.53 10.50 90.7 74.6 5.39 5,880.82 5,880.74 0.010 5,884.67 5,884.67																		
		1			22.0		19.0 197.000	1 1							-			
				MH - 13 (STM-JC)			30.0 30" RCP	0.013							1		5,851.66	5,851.53

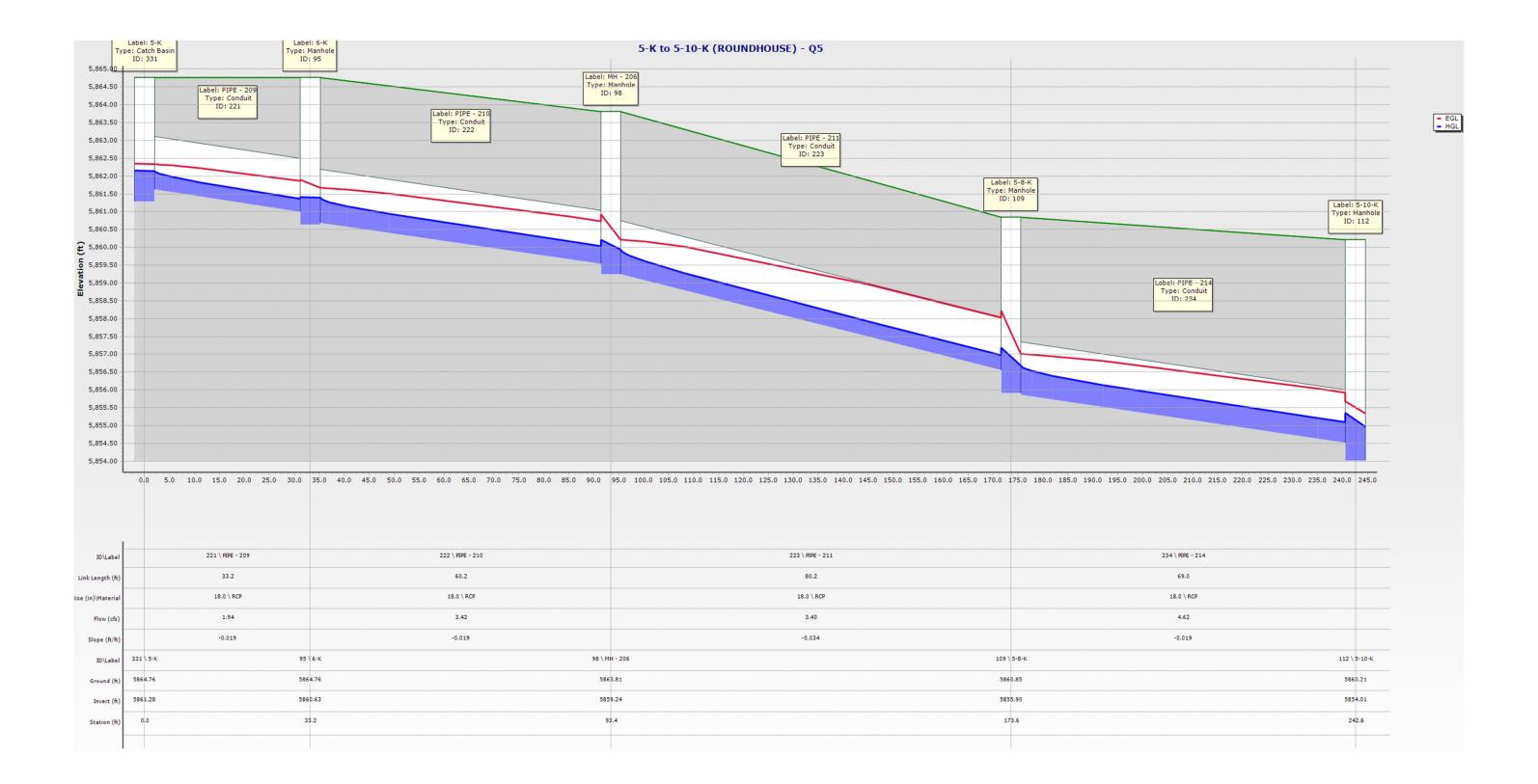

Q100 NODE SUMMARY

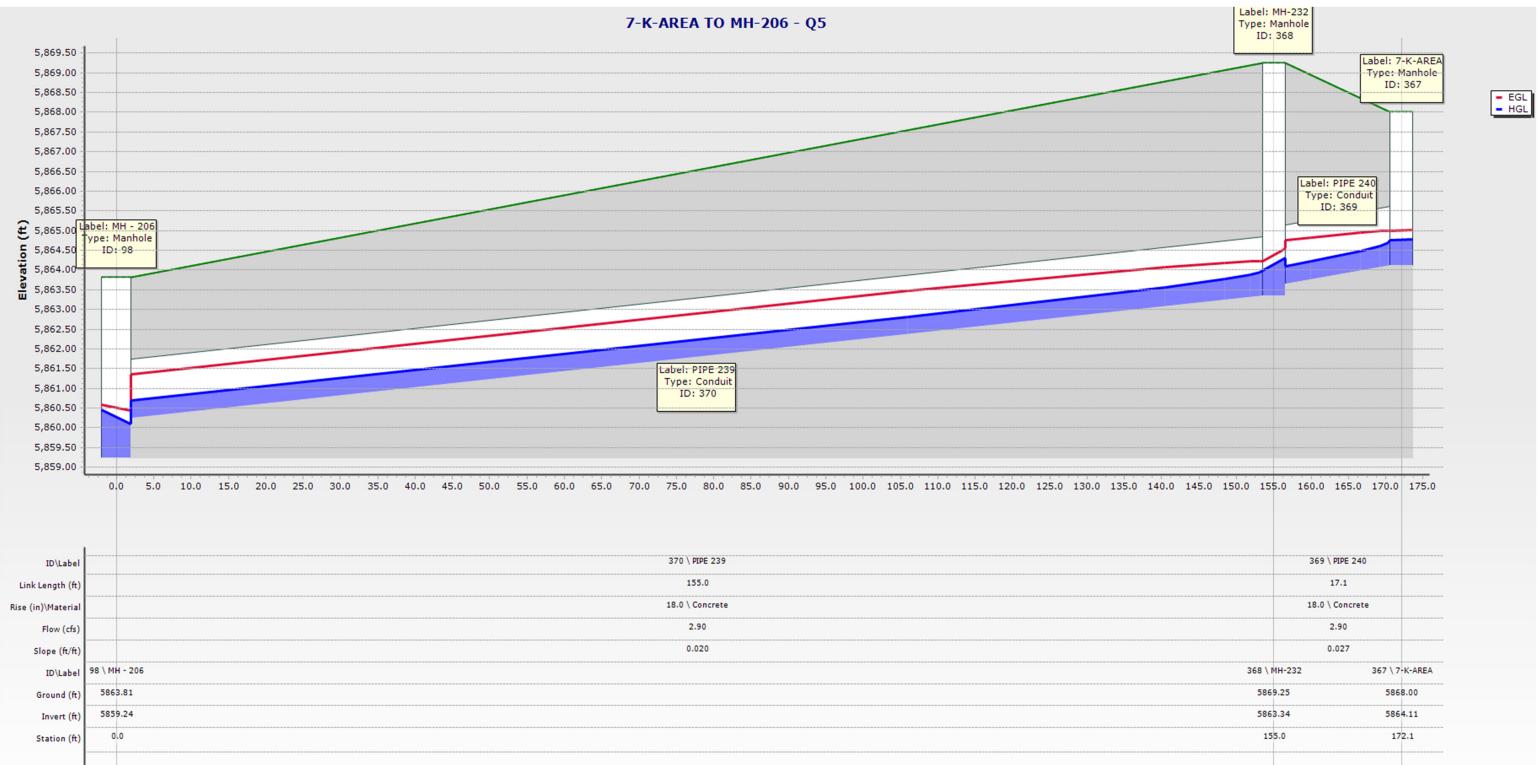

		ID≜	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Head Meth	Coetto	ient	Hydraulic Grade Line (In) (ft)	Inlet Type	Length (ft)		Width (ft)	Flow (Total Out) (cfs)	
	330: 12-K	330	12-К	5,851.33	5,851.33	5,846.16	Standard	1	0.050	5,848.39	Full Capture	4.0	0	10.00	8.81	
	331: 5-К		5-K	5,864.76	5,864.76		Standard		0.050		Percent Capture	4.0	0	10.00	4.27	
	332: 7-K		7-K	5,861.19	5,861.19		Standard		0.050		Percent Capture	4.0		10.00	0.09	
	333: 9-K		9-K	5,862.03	5,862.03		Standard		0.050		Percent Capture	4.0		10.00	4.54	
	334: 10-K		10-K OS-E	5,861.98 5,854.52	5,861.98 5,854.52		Standard Standard		0.050		Percent Capture	4.0	0	10.00	4.54	
	352: OS-E	352	05-E	5,054.52	5,054.52	5,047.22	Standard		0.050	5,047.97	Full Capture				3.40	
	ID		L	abel 🔻	Elevation (Ground) (ft)	Eleva (Ri (fi	m)	Elevation (Invert) (ft)		(Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Lin (In) (ft)		Hydraulic Grade Line (Out) (ft)	Headlos Method	
133: OS-14-K		133	OS-14-	< l	5,849.2	4 5,	,849.24	5,840.75		100.64	4.55	5,846	5.82	5,845.	30 Standard	1.520
125: OS-12-K		125	OS-12-	< l	5,851.2	2 5	,851.22	5,841.26		89.65	5.88	5,847	7.94	5,847.	13 Standard	1.020
110: OS-4-K (MH202)		110	OS-4-K	(MH202)	5,860.8		,860.81	5,849.30		76.68	0.44	5,851		5,849.	74 Standard	1.020
39: OS-2-K (MH-201)				(MH-201)	5,867.0		,867.01	5,858.35		72.83	2.69	5,862			04 Standard	1.020
364: MH-235			MH-235		5,872.7		,872.77	5,864.24		68.04	2.63	5,868			87 Standard	1.020
359: MH-232			MH-232		5,869.2		,869.25	5,863.34		6.89	1.02	5,864		-	36 Standard	1.320
353: MH-3		353			5,849.69		,849.69	5,844.46		3.40	2.98	5,847			44 Standard	1.322
325: MH-2 (Future)			MH-2 (F	uture)	5,880.0		,880.02	5,873.27		35.20	1.93	5,876			20 Standard	1.020
322: MH-1 (Future)	_		MH-1 (F		5,891.3		,891.30	5,884.89		35.61	2.03	5,888			92 Standard	1.020
98: MH - 206			MH - 20		5,863.8		,863.81	5,859.24		11.46	1.29	5,861			53 Standard	1.020
77: MH - 200			MH - 20		5,876.1		,876.11	5,867.88		66.13	1.60	5,871			48 Standard	1.020
71: MH - 43 (Future)	_			(Future)	5,896.70		,896.70	5,890.10		35.82	2.03	5,893		-	13 Standard	1.020
53: MH - 42 (Future)	_			(Future)	5,900.20		,900.20	5,892.36		36.09	2.03	5,894		-	40 Standard	0.400
50: MH - 41 (Future)	_			(Future)	5,900.6		,900.64	5,892.91		36.23	2.39	5,895		-	30 Standard	0.400
	_		MH - 35													
153: MH - 35 146: MH - 34	_				5,831.9		,831.98	5,820.68		119.54 108.97	3.29	5,824			97 Standard	0.400
	_		MH - 34		5,841.4		,841.45	5,830.94			3.16	5,834		-	10 Standard	
138: MH - 33	_		MH - 33		5,844.00		,844.06	5,833.88		109.15	3.16	5,839		-	04 Standard	1.320
137: MH - 32			MH - 32		5,845.0		,845.00	5,836.12		109.50	3.67	5,839		-	79 Standard	0.050
127: MH - 31 (K)			MH - 31		5,850.04		,850.04	5,839.92		110.31	3.18	5,844			09 Standard	1.020
134: MH - 30 (I)	_		MH - 30		5,849.0		,849.07	5,844.30		15.50	1.42	5,846			72 Standard	1.520
148: INLET 5-I	_		INLET 5	-	5,840.3		,840.33	5,828.05		119.98	3.30	5,832		-	35 Standard	0.400
132: INLET 2-I	_		INLET 2		5,849.3		,849.31	5,844.87		4.05	1.86	5,846		-	73 Standard	0.050
131: INLET 1-I	_		INLET 1		5,849.3		,849.31	5,845.20		12.26	2.15	5,847			35 Standard	0.050
49: FUTURE INLET	_	49 F	FUTURE	INLET	5,901.0	_	,901.02	5,893.15		36.25	2.56	5,895			71 Standard	0.050
129: 14-K	_	129	14-K		5,849.5		,849.56	5,843.81		14.38	3.54	5,847			35 Standard	0.000
128: 13-K		128	13-K		5,849.5		,849.57	5,843.40		0.69	3.42	5,846	5.87		82 Standard	0.000
106: 9-10-K		106 9	9-10-K		5,861.60	_	,861.60	5,857.06		8.78	1.15	5,859	9.07	5,858.	21 Standard	1.520
107: 8-K		107	8-K		5,861.1	9 5	,861.19	5,856.70		0.98	1.73	5,858	3.48		43 Standard	0.050
360: 7-K-AREA		360	7-K-ARE	EA	5,868.00	0 5	,868.00	5,864.11		6.90	1.02	5,865	5.18	5,865.	13 Standard	0.050
95: 6-K		95 (6-К		5,864.7	6 5	,864.76	5,860.63		7.55	1.12	5,861	1.80	5,861.	75 Standard	0.050
109: 5-8-K		109	5-8-K		5,860.8	5 5	,860.85	5,855.90		11.98	1.26	5,858	3.42	5,857.	16 Standard	1.520
126: 5-12-K		126	5-12-K		5,850.6	5 5	,850.65	5,844.15		23.65	3.88	5,848	3.29	5,848.	03 Standard	1.520
112: 5-10-K		112	5-10-K		5,860.2	1 5	,860.21	5,854.01		17.97	1.53	5,856	5.31	5,855.	54 Standard	1.020
105: 3-4-K (MH-205)		105	3-4-K (N	4H-205)	5,861.6	7 5	,861.67	5,857.54		6.58	1.13	5,859	9.34	5,858.	67 Standard	1.520
101: 3+4-K		101	3+4-K		5,862.00	_	,862.06	5,857.87		6.59	1.49	5,859		5,859.	36 Standard	0.050
90: 2-K		90			5,866.9	_	,866.95	5,862.06		5.90	0.92	5,863			98 Standard	0.050
367: 1-K		367			5,869.63	_	,869.63	5,866.07		2.33	2.51	5,868			58 Standard	0.050
55: MH - 211 (STM-JC)		_		STM-JC)		5,885.99	_	-	,880.44			1	,884.6	-	33.92 Standard	1.520
53: INLET 7+8-C (STM-J	C)	63	INLET 7-	+8-C (STM-JC)		5,886.	36	5,886.36	5,880.82	2	9.53	3.85	5,884.6	57 5.8	84.67 Standard	0.050

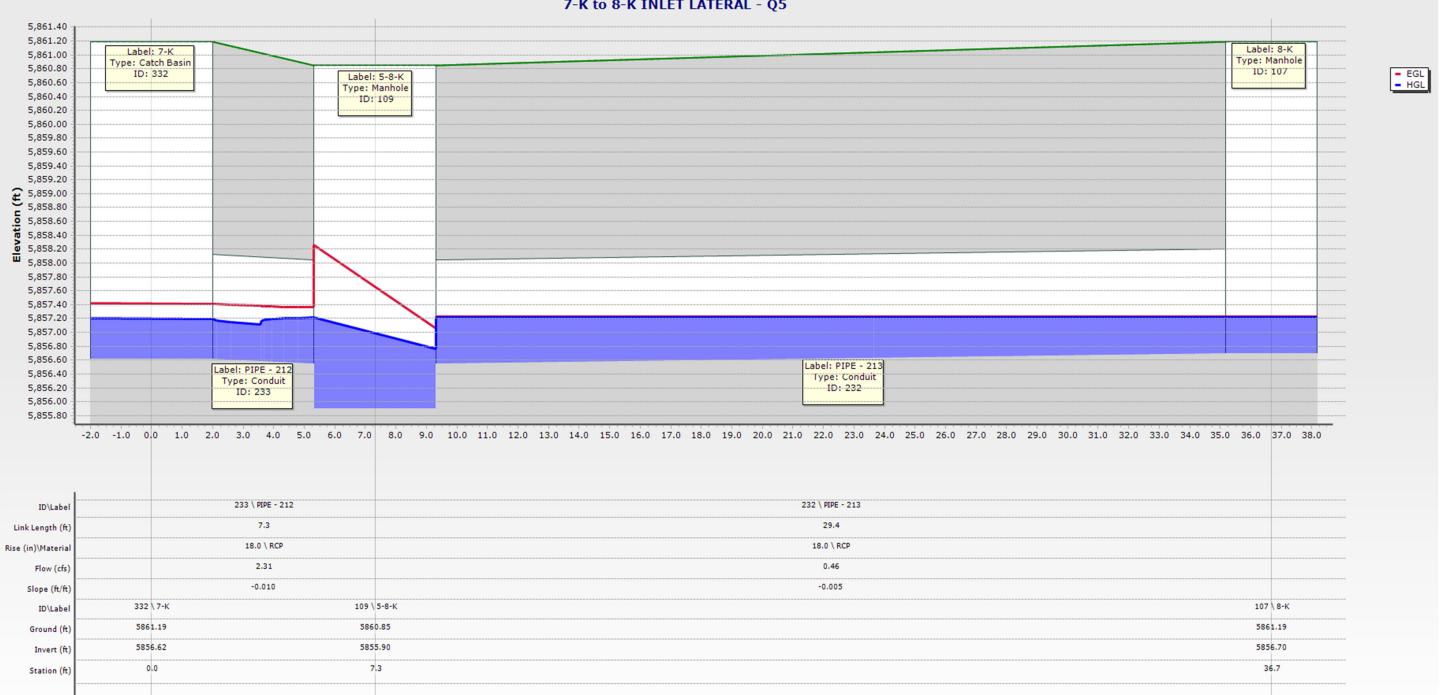

HGL Profiles: Q5



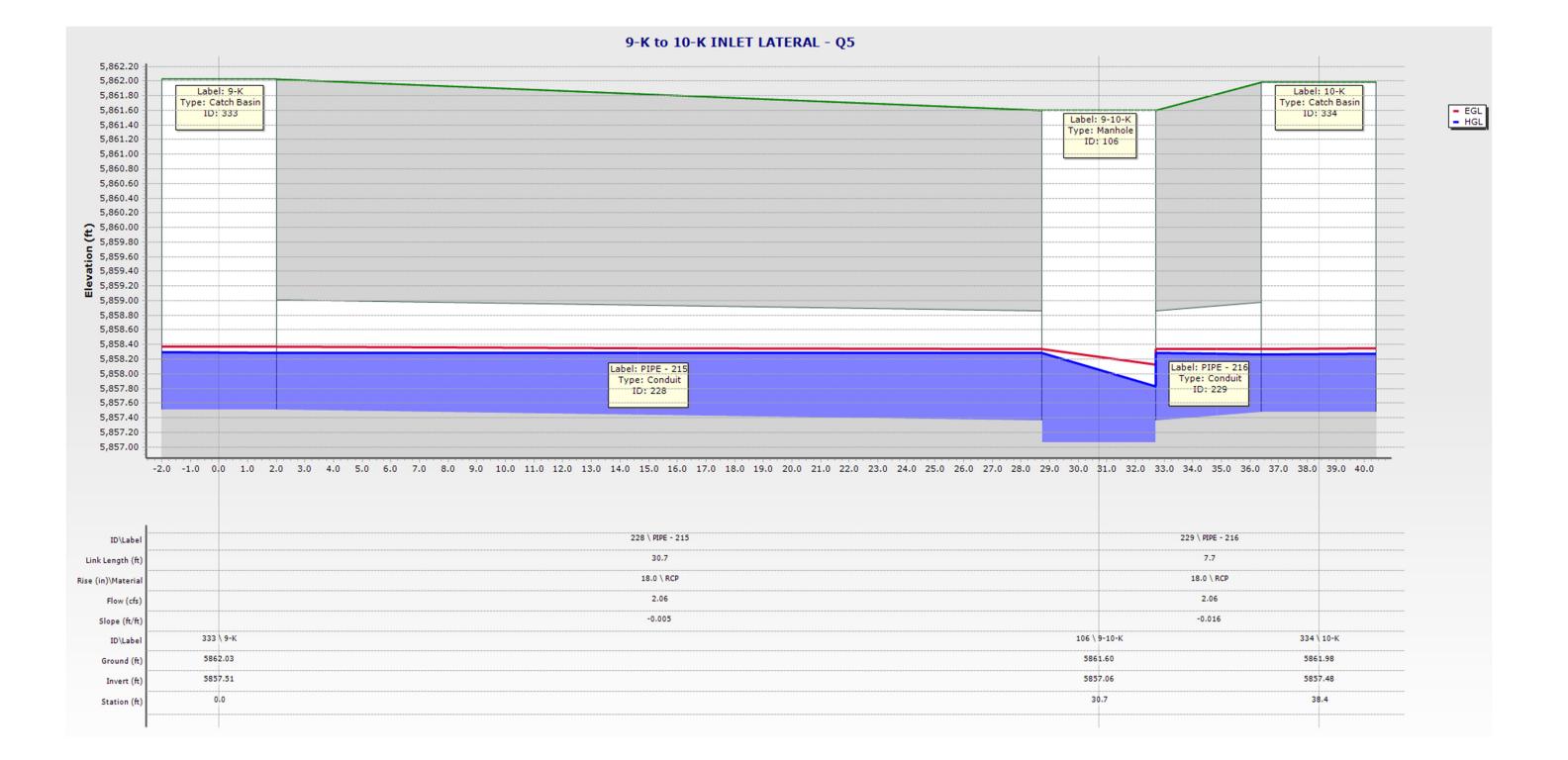


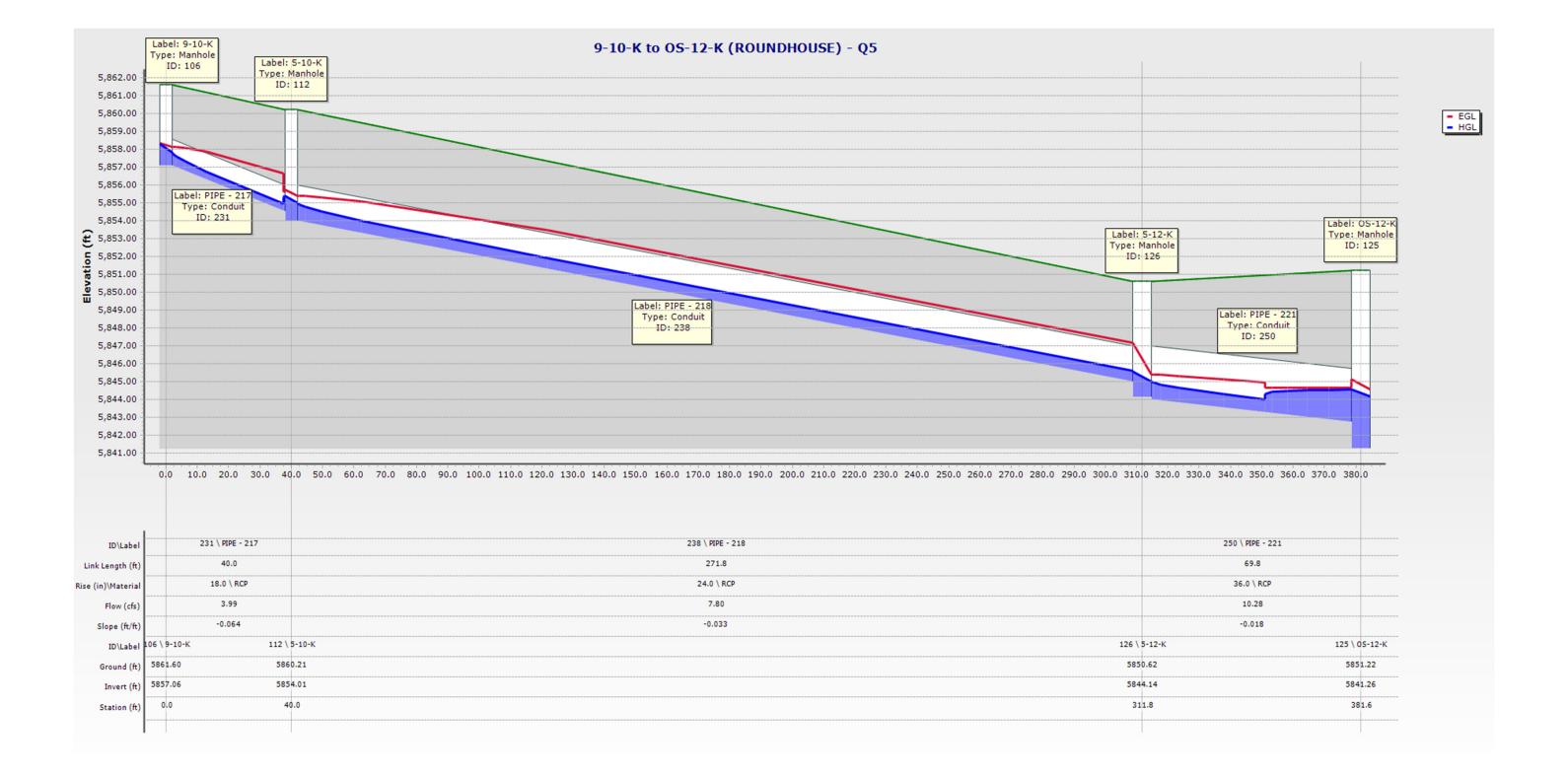


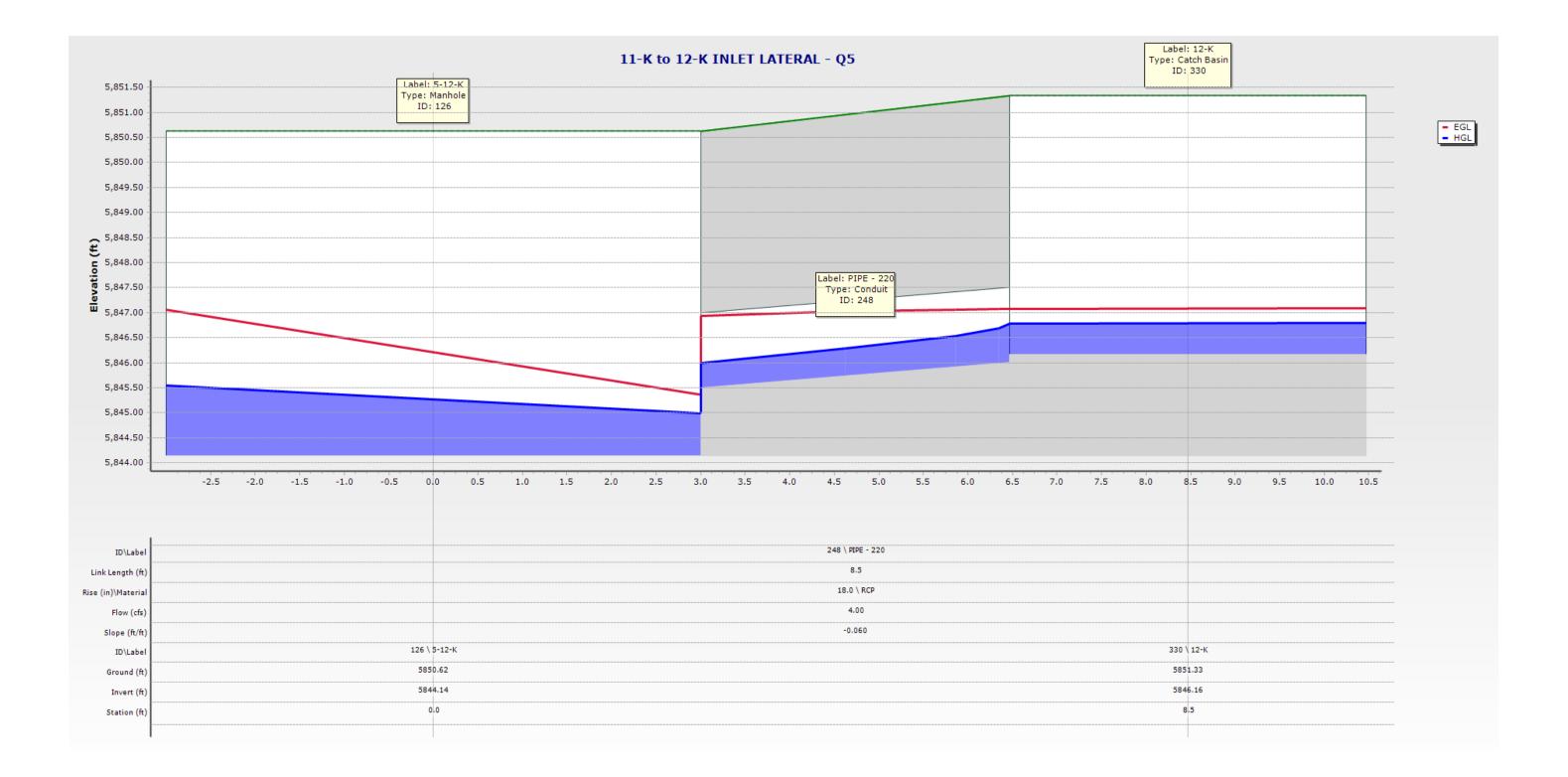


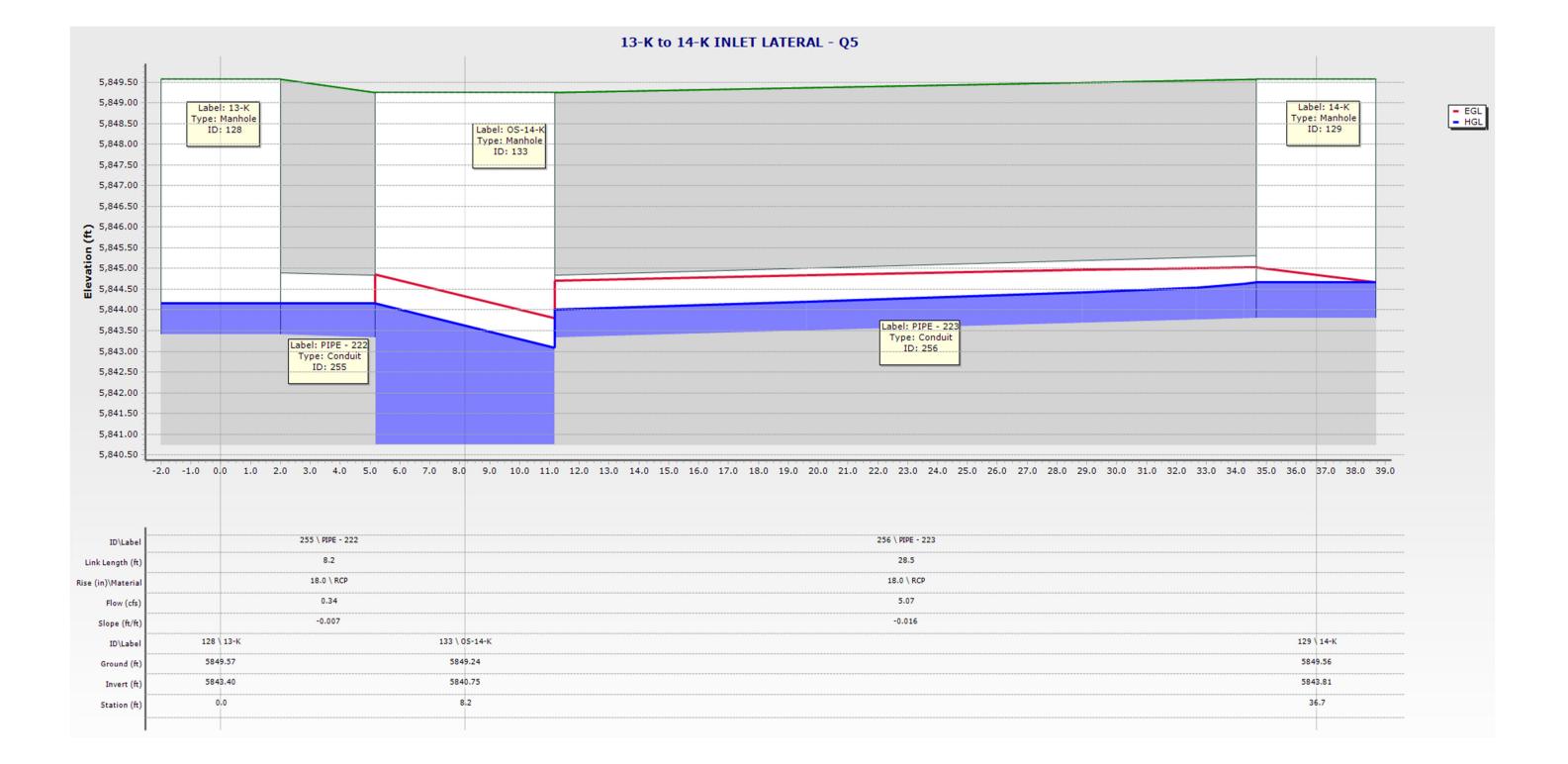


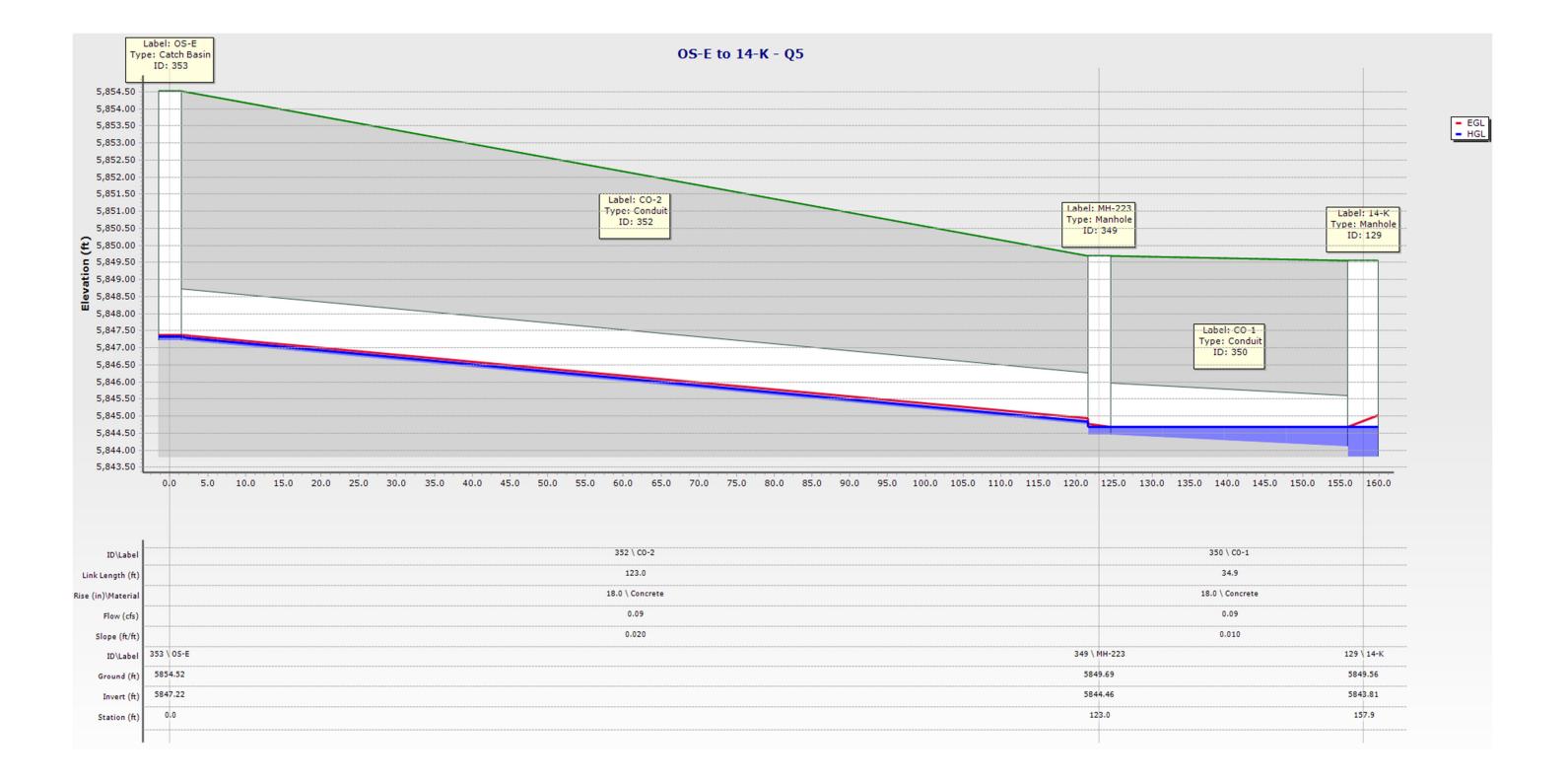
	Labels	1+2-K		
	Label: Type: N	Inhole		
	Type: M ID:	90		
			- EG - HG	iL I
			нс	SL.
43.0 44.0 45.0 46.0 47.0	48.0 49.0 5	0.0 51.0 52.0		
43.0 44.0 45.0 46.0 47.0	40.0 49.0 5	0.0 51.0 52.0		
	90 \ 1	L+2-K		
	5866	5.95		
	5863			
	586.	2.00		
	49	.9		

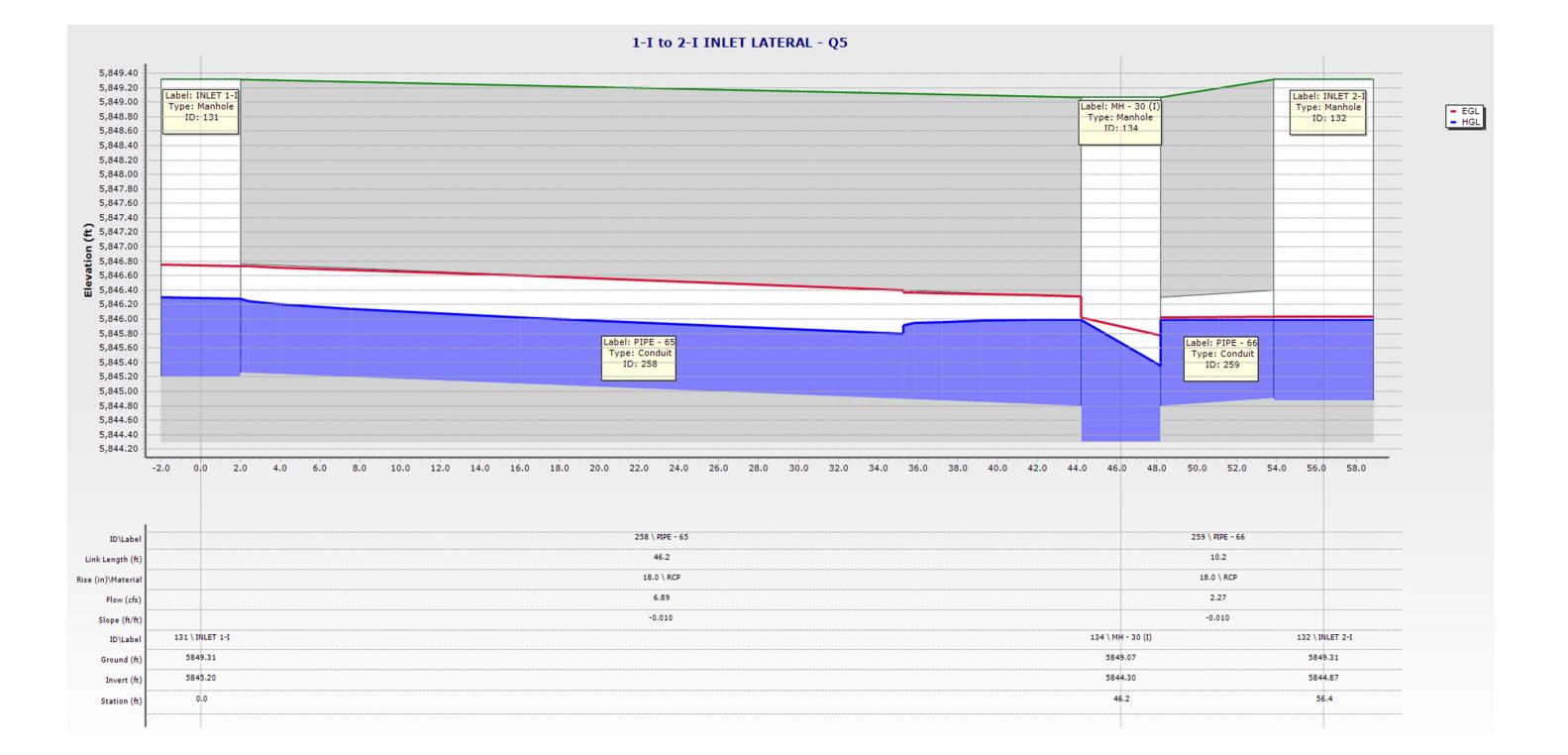


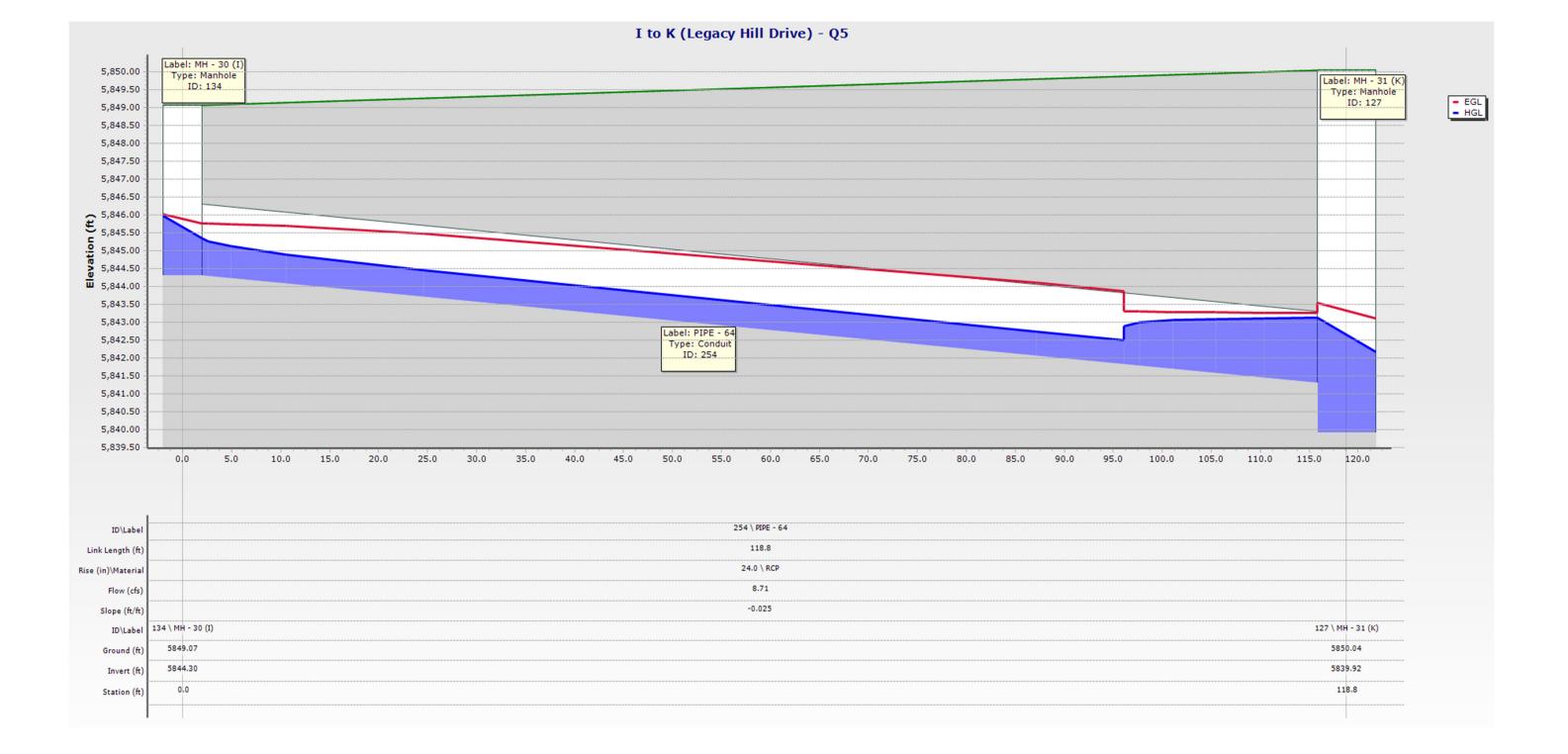


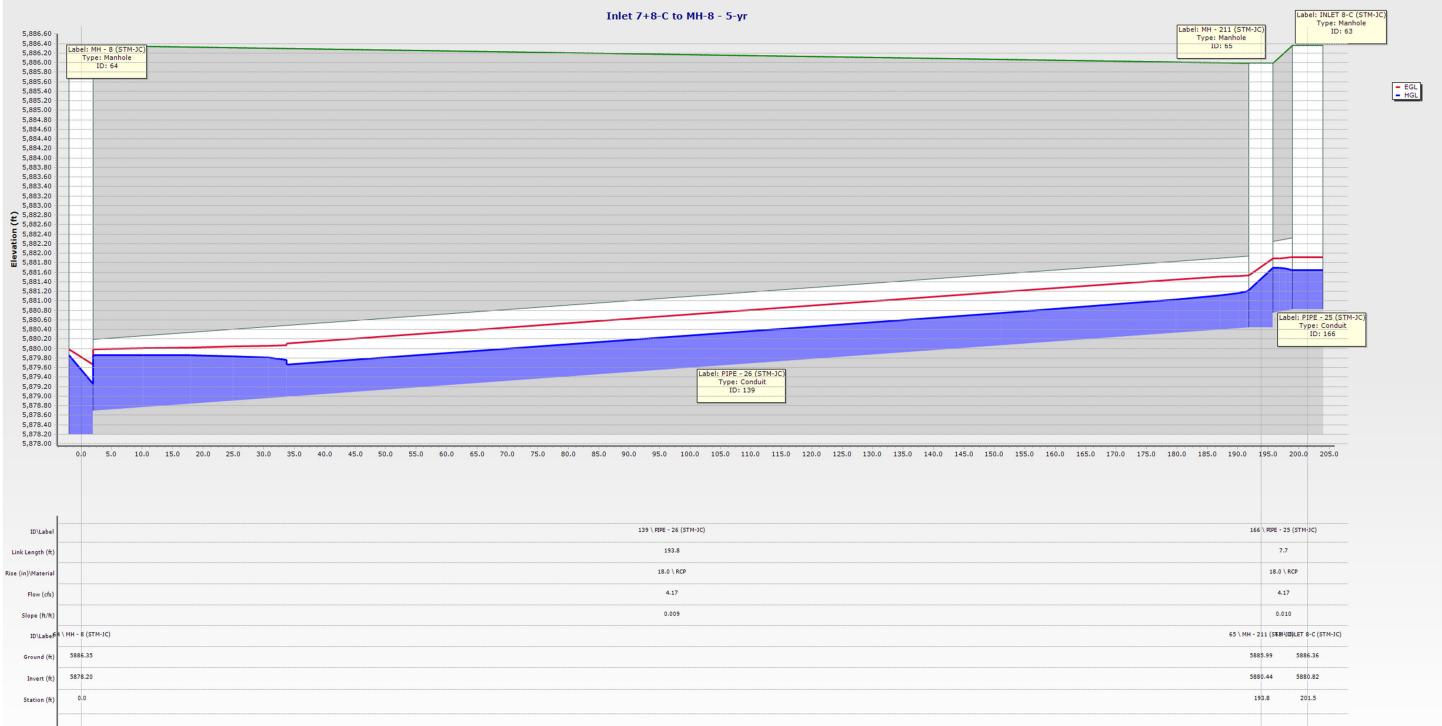


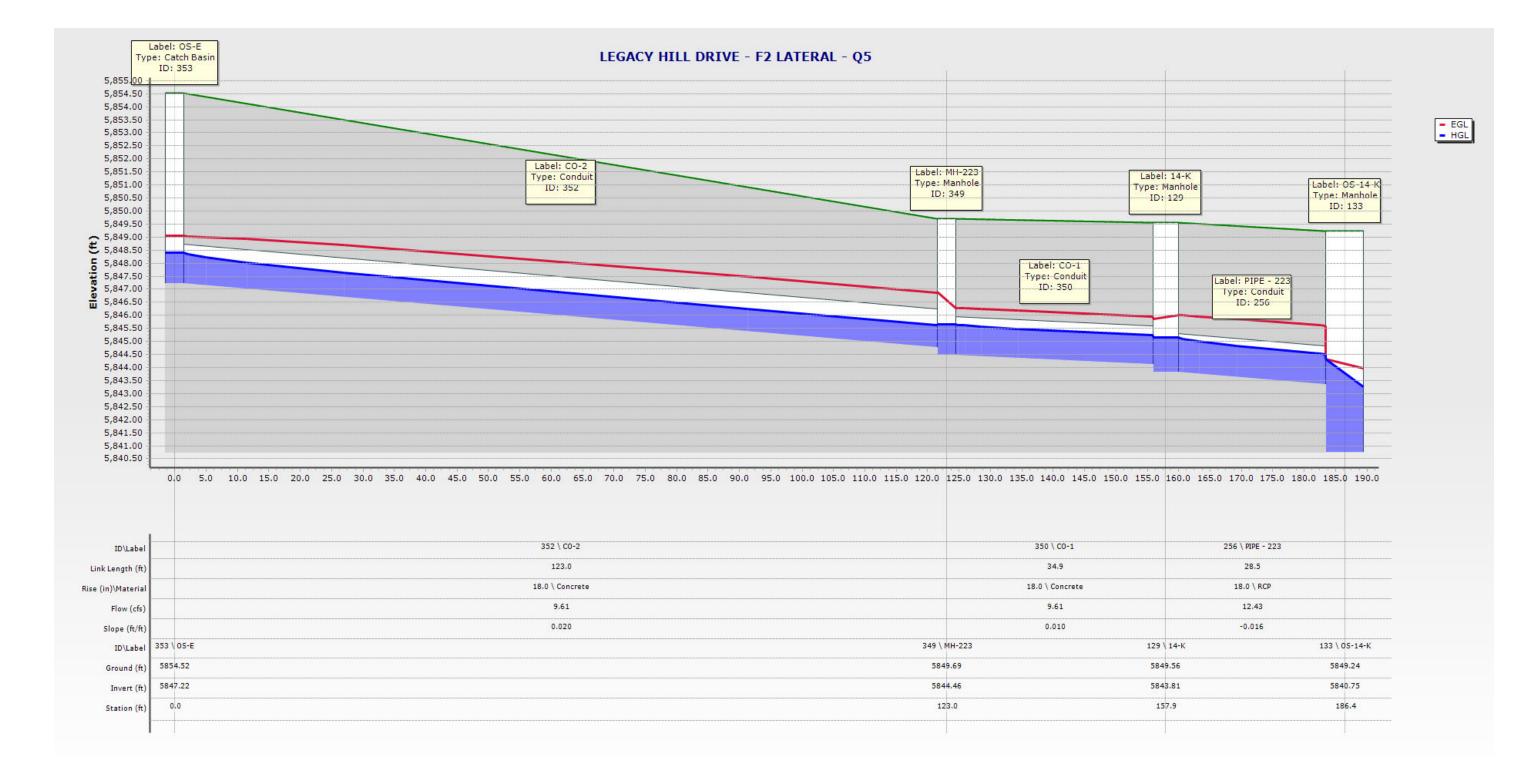



7-K to 8-K INLET LATERAL - Q5







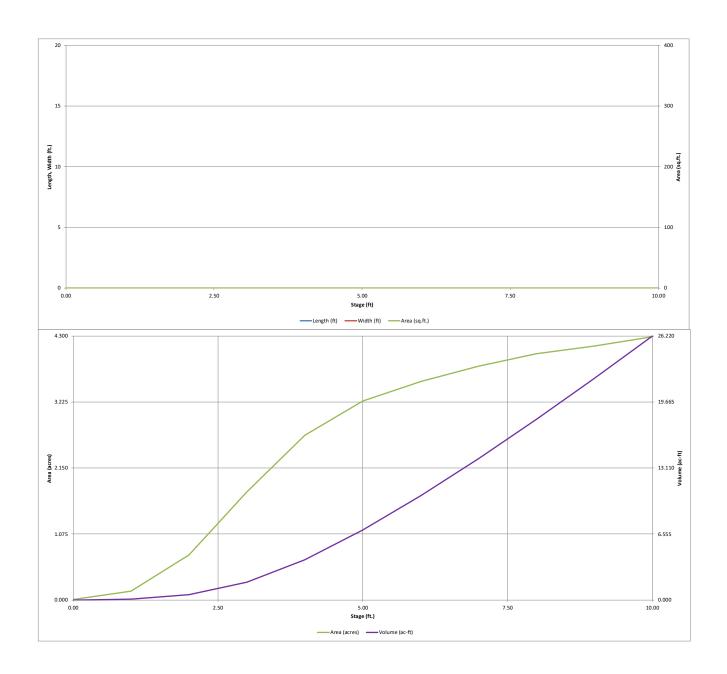


Q5 PIPE SUMMARY

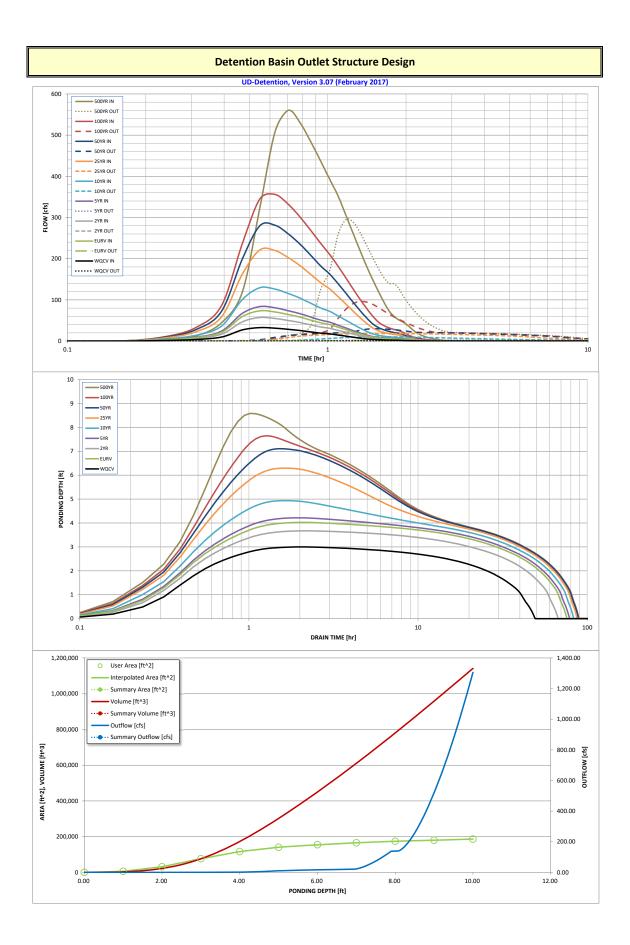
	Label 🔺	Start Node	Stop Node	Length (User Defined) (ft)	Diameter (in)	Notes	Manning's n	Flow (cfs)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
350: CO-1	CO-1	MH-223	14-K	34.9	18.0		0.013	0.09	10.52	0.9	6.6	1.82	5,844.46	5,844.11	0.010	5,844.67	5,844.68
352: CO-2	CO-2	OS-E	MH-223	123.0	18.0		0.013	0.09	14.85	0.6	5.6	2.31	5,847.22	5,844.76	0.020	5,847.33	5,844.84
185: PIPE - 27 (2	PIPE - 27 (2	MH - 42 (Future)	MH - 43 (Future)	126.1	30.0	24" RCP	0.013	17.12	40.99	41.8	45.1	7.98	5,892.36	5,891.10	0.010	5,893.76	5,892.23
323: PIPE - 27 1	PIPE - 27 1	MH - 43 (Future)	MH-1 (Future)	154.2	30.0	24" RCP	0.013	16.94	67.77	25.0	34.1	11.48	5,890.10	5,885.89	0.027	5,891.49	5,886.74
252: PIPE - 63	PIPE - 63	OS-14-K	MH - 31 (K)	106.5	48.0	48" RCP	0.013	51.37	101.57	50.6	50.3	8.11	5,840.75	5,840.22	0.005	5,843.10	5,843.14
254: PIPE - 64	PIPE - 64	MH - 31 (K)	MH - 30 (I)	118.8	24.0	24" RCP	0.013	8.71	35.83	24.3	33.6	9.41	5,841.32	5,844.30	-0.025	5,845.35	5,843.14
258: PIPE - 65	PIPE - 65	MH - 30 (I)	INLET 1-I	46.2	18.0	18" RCP	0.013	6.89	10.48	65.7	59.1	6.33	5,844.80	5,845.26	-0.010	5,846.28	5,845.99
259: PIPE - 66	PIPE - 66	MH - 30 (I)	INLET 2-I	10.2	18.0	18" RCP	0.013	2.27	10.41	21.8	31.7	4.71	5,844.80	5,844.90	-0.010	5,845.99	5,845.99
253: PIPE - 67	PIPE - 67	MH - 31 (K)	MH - 32	279.6	48.0	48" RCP	0.013	57.00	143.63	39.7	43.8	10.77	5,839.92	5,837.12	0.010	5,842.19	5,838.87
262: PIPE - 68	PIPE - 68	MH - 32	MH - 33	123.1	48.0	48" RCP	0.013	56.48	143.63	39.3	43.6	10.75	5,836.12	5,834.89	0.010	5,838.38	5,837.35
263: PIPE - 69	PIPE - 69	MH - 33	MH - 34	88.3	48.0	48" RCP	0.013	56.25	213.02	26.4	35.1	14.31	5,833.88	5,831.94	0.022	5,836.14	5,833.46
272: PIPE - 70	PIPE - 70	MH - 34	INLET 5-I	90.1	48.0	48" RCP	0.013	56.13	208.12	27.0	35.5	14.06	5,830.94	5,829.05	0.021	5,833.20	5,830.58
273: PIPE - 71	PIPE - 71	INLET 5-I	MH - 35	190.5	48.0	48" RCP	0.013	62.50	203.11	30.8	38.1	14.23	5,828.05	5,824.24	0.020	5,830.44	5,825.79
278: PIPE - 72	PIPE - 72	MH - 35	0-1	56.1	48.0	48" RCP	0.013	62.21	201.16	30.9	38.2	14.11	5,820.68	5,819.58	0.020	5,823.06	5,821.31
363: PIPE - 200(1)	PIPE - 200(1)	MH - 200	MH-235	82.6	36.0	24" RCP	0.013	36.70	93.98	39.1	43.4	12.48	5,866.88	5,865.24	0.020	5,868.85	5,866.62
364: PIPE - 200(2)	PIPE - 200(2)	MH-235	OS-2-K	153.0	36.0	24" RCP	0.013	37.28	119.23	31.3	38.4	14.91	5,864.24	5,859.35	0.032	5,866.23	5,861.35
214: PIPE - 201	PIPE - 201	OS-2-K	OS-4-K	146.6	36.0	36" RCP	0.013	39.81	116.84	34.1	40.2	14.96	5,858.35	5,853.85	0.031	5,860.40	5,855.08
235: PIPE - 202	PIPE - 202	OS-4-K	OS-12-K	239.8	42.0	36" RCP	0.013	41.44	141.74	29.2	37.0	12.79	5,847.00	5,842.24	0.020	5,849.00	5,844.56
251: PIPE - 203	PIPE - 203	OS-12-K	OS-14-K	80.9	48.0	48" RCP	0.013	47.91	101.00	47.4	48.5	7.93	5,841.24	5,840.84	0.005	5,844.19	5,844.16
215: PIPE - 205	PIPE - 205	OS-2-K	2-К	49.9	18.0	24" RCP	0.013	3.28	16.23	20.2	30.5	7.19	5,860.85	5,862.04	-0.024	5,862.73	5,861.31
226: PIPE - 207	PIPE - 207	3-4-K	3+4-K	7.3	18.0	-	0.013	2.95	6.74	43.8	46.3	3.69	5,857.98	5,858.01	-0.004	5,858.73	5,858.71
230: PIPE - 208	PIPE - 208	OS-4-K	3-4-K	68.4	18.0	24" RCP	0.013	2.95	19.39	15.2	26.4	7.92	5,855.35	5,857.68	-0.034	5,858.33	5,855.75
221: PIPE - 209	PIPE - 209	6-К	5-К	33.2	18.0	18" RCP	0.013	1.94	14.47	13.4	24.7	5.70	5,860.99	5,861.62	-0.019	5,862.14	5,861.36
222: PIPE - 210	PIPE - 210	MH - 206	6-К	60.2	18.0	24" RCP	0.013	3.42	14.52	23.6	33.0	6.72	5,859.54	5,860.69	-0.019	5,861.40	5,860.45
223: PIPE - 211	PIPE - 211	5-8-K	MH - 206	80.2	18.0	24" RCP	0.013	4.92	19.24	25.6	34.5	9.10	5,856.55	5,859.24	-0.034	5,860.09	5,857.07
233: PIPE - 212	PIPE - 212	5-8-K	7-К	7.3	18.0		0.013	0.04	10.27	0.4	4.5	1.40	5,856.55		-0.010	5,857.28	5,857.28
232: PIPE - 213	PIPE - 213	5-8-K	8-К	29.4	18.0	18" RCP	0.013	0.46	7.51	6.2	16.8	2.36	5,856.55	5,856.70	-0.005	5,857.28	5,857.28
234: PIPE - 214	PIPE - 214	5-10-K	5-8-K	69.0		24" RCP	0.013	5.17	14.64	35.3	41.0	7.57	5,854.51	5,855.85	-0.019	5,856.73	5,855.40
228: PIPE - 215	PIPE - 215	9-10-K	9-К	30.7	18.0	18" RCP	0.013	2.06	7.34	28.1	36.2	3.56	5,857.36	5,857.51	-0.005	5,858.29	5,858.28
229: PIPE - 216	PIPE - 216	9-10-K	10-К	9.1		18" RCP	0.013	2.06	17.75	11.6	23.0	6.70		5,857.62	-0.029	5,858.16	-
231: PIPE - 217	PIPE - 217	5-10-K	9-10-K	40.0		24" RCP	0.013	3.99	26.53	15.0	26.2	10.81	5,854.51	5,857.06	-0.064	5,857.82	5,855.40
238: PIPE - 218	PIPE - 218	5-12-K	5-10-K	271.8		36" RCP	0.013	7.82	41.19	19.0	29.5	10.09	5,845.00	5,854.01	-0.033	5,855.00	5,845.59
248: PIPE - 220	PIPE - 220	5-12-K	12-К	8.5		30" RCP	0.013	4.00	25.77	15.5	26.6	10.59	5,845.50		-0.060	5,846.77	5,846.00
250: PIPE - 221	PIPE - 221	OS-12-K	5-12-K	69.8		36" RCP	0.013	10.31	89.61	11.5	22.9	8.44	-		-0.018	5,845.02	5,844.56
255: PIPE - 222	PIPE - 222	OS-14-K	13-К	8.2		30" RCP	0.013	0.34	9.00	3.8	13.3	2.45	5,843.34	5,843.40	-0.007	5,844.16	5,844.16
256: PIPE - 223	PIPE - 223	OS-14-K	14-K	28.5		30" RCP	0.013	5.07	13.49	37.6	42.5	7.09	5,843.34		-0.016	5,844.68	5,844.00
326: PIPE - 272	PIPE - 272	MH-1 (Future)	MH-2 (Future)	321.3		24" RCP	0.013	16.80	74.57	22.5	32.3	12.27	5,884.89	5,874.27	0.033	5,886.28	5,875.08
327: PIPE - 273	PIPE - 273	MH-2 (Future)	MH - 200	98.0		24" RCP	0.013	16.52	156.44	10.6	21.9	14.38	5,873.27		0.055	5,874.57	5,869.73
181: PIPE - 2500	PIPE - 2500	FUTURE INLET	MH - 41 (Future)	7.2		24" RCP	0.013	17.23	30.64	56.2	53.6	6.42	5,893.15	5,893.11	0.006	5,894.55	5,894.54
182: PIPE - 2600	PIPE - 2600	MH - 41 (Future)	MH - 42 (Future)	50.6		24" RCP	0.013	17.22	28.83	59.7	55.7	6.13	5,892.91		0.005	5,894.31	5,894.05
370: PIPE 239	PIPE 239	MH-232	MH - 206	155.0	18.0		0.013	2.90	14.85	19.5	29.9	6.52	5,863.34		0.020	5,863.99	5,860.69
369: PIPE 240	PIPE 240	7-K-AREA	MH-232	135.0	18.0		0.013	2.90	17.41	16.7	27.6	7.30		5,863.64	0.027	5,864.76	5,864.31
366: PIPE 241	PIPE 241	1-K	MH-235	22.8	18.0		0.013	0.78	10.55	7.3	18.3	3.49	5,866.07		0.010	5,867.12	5,867.12
166: PIPE - 25 (STM-						18.0 18" RCP							-	2 5,880.74		1	
			MH - 211 (STM-JC)		7.7		0.013				9.7 43			-			
139: PIPE - 26 (STM-)	JC) PIPE - 26 (STM-JC) MH - 211 (STM-JC)	MH - 8 (STM-JC)		193.8	18.0 24" RCP	0.013		4.17 9	.99 4:	1.7 45	.1 5.40	5,880.4	4 5,878.69	0.009	5,881.23	5,879.87

Q5 NODE SUMMARY

		п	D 📥 Label	Elevation (Ground) (ft)		Elevation (Invert) (ft)	Headloss Method	Headlo Coefficie (Standa	ent (To)	Inlet Type	Length (ft)	Width (ft)	(v (Total Dut) cfs)	
	330: 12-K		330 12-K	5,851.			Standard			Full Capture	4.00		0.00	4.00	
	331: 5-K		331 5-K	5,864.			Standard			Percent Capture	4.00		0.00	1.94	
	332: 7-K 333: 9-K		332 7-К 333 9-К	5,861. 5,862.			Standard Standard			Percent Capture Percent Capture	4.00		0.00	2.06	
	334: 10-K		334 10-K	5,861.			Standard			Percent Capture	4.00		0.00	2.00	
	353: OS-E		353 OS-E	5,854.			Standard			Full Capture				0.09	
	ID		Lab	oel 🔻	Elevation (Ground) (ft)	Elevat (Rin (ft)	n) (evation invert) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydrau Grade Li (In) (ft)		ydraulic ade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)
133: OS-14-K		133	OS-14-K		5,849.24	5,	349.24	5,840.75	51.37	7 2.3	5 5,84	14.16	5,843.10) Standard	1.520
125: OS-12-K		125	OS-12-K		5,851.22	5,	351.22	5,841.26	47.9	1 2.9	3 5,84	14.56	5,844.19	Standard	1.020
110: OS-4-K		110	OS-4-K		5,860.81	5,8	360.81	5,847.00	41.44	1 2.0	5,84	19.84	5,849.00	Standard	1.020
89: OS-2-K		89	OS-2-K		5,867.01	5,8	367.01	5,858.35	39.8	1 2.0	5 5,86	51.35	5,860.40) Standard	1.020
362: MH-235			MH-235		5,874.13		374.13	5,864.24	37.28			57.12		3 Standard	1.020
368: MH-232			MH-232		5,869.25		369.25	5,863.34	2.90			64.31		Standard	1.320
349: MH-223		349	MH-223		5,849.69		349.69	5,844.46	0.09		-	14.68		7 Standard	1.320
325: MH-2 (Future)			MH-2 (Fut	ure)	5,880.02		380.02	5,873.27	16.52			75.07		7 Standard	1.020
322: MH-1 (Future)		_	MH-1 (Fut		5,891.30		391.30	5,884.89	16.80			86.85		8 Standard	1.020
98: MH - 206			MH - 206		5,863.81		363.81	5,859.24	4.92			60.45		Standard	1.020
77: MH - 200		_	MH - 200		5,876.11		376.11	5,866.88	36.70			9.73		5 Standard	1.020
71: MH - 43 (Future)		71	MH - 43 (F	uture)	5,896.70		396.70	5,890.10	16.94			2.07	-	Standard	1.020
53: MH - 42 (Future)			MH - 42 (F		5,900.20		900.20	5,892.36	17.12			3.99	-	5 Standard	0.400
50: MH - 41 (Future)			MH - 41 (F		5,900.64		900.64	5,892.91	17.22		-	94.54		1 Standard	0.400
153: MH - 35			MH - 35		5,831.98		331.98	5,820.68	62.2			23.46		5 Standard	0.400
146: MH - 34		_	MH - 34		5,841.45		341.45	5,830.94	56.13			33.24		Standard	0.050
138: MH - 33			MH - 33		5,844.06		344.06	5,833.88	56.25			37.35		1 Standard	1.320
137: MH - 32			MH - 32		5,845.00		345.00	5,836.12	56.48			38.42	-	Standard	0.050
127: MH - 31 (K)			MH - 31 (k	0	5,850.04	-	350.04	5,839.92	57.00			13.14	-	Standard	1.020
134: MH - 30 (I)			MH - 30 (I		5,849.07		349.07	5,844.30	8.7			15.99		5 Standard	1.520
148: INLET 5-I			INLET 5-I		5,840.33	-	340.33	5,828.05	62.50			30.83		1 Standard	0.400
132: INLET 2-I	-		INLET 2-I		5,849.31		349.31	5,844.87	2.2			15.99		Standard	0.050
131: INLET 1-I			INLET 1-I		5,849.31		349.31	5,845.20	6.89			16.30		8 Standard	0.050
49: FUTURE INLET			FUTURE I	NLET	5,901.02		901.02	5,893.15	17.23			94.58		Standard	0.050
129: 14-K			14-K		5,849.56		349.56	5,843.81	5.07			14.68		Standard	0.000
128: 13-K			13-K		5,849.57		349.57	5,843.40	0.34			14.16		Standard	0.000
106: 9-10-K			9-10-K		5,861.60		361.60	5,857.06	3.99			58.28		2 Standard	1.520
107: 8-K		107			5,861.19		361.19	5,856.70	0.46			57.28		Standard	0.050
367: 7-K-AREA			7-K-AREA		5,868.00		368.00	5,864.11	2.90			54.77		Standard	0.050
95: 6-K		95			5,864.76		364.76	5,860.63	3.42		-	51.41	-	Standard	0.050
109: 5-8-K			5-8-K		5,860.85		360.85	5,855.90	5.1			57.28	-	Standard	1.520
126: 5-12-K		_	5-12-K		5,850.62		350.62	5,844.14	10.3			15.58		2 Standard	1.520
112: 5-10-K			5-10-K		5,860.21		360.21	5,854.01	7.82			55.40		Standard Standard	1.020
105: 3-4-K			3-4-K		5,861.67		361.67	5,857.54	2.95		-	58.71	-	Standard Standard	1.520
101: 3+4-K			3+4-K		5,862.06	-	362.06	5,857.87	2.95			58.74		Standard Standard	0.050
90: 2-K		90			5,866.95	-	366.95	5,862.06	3.28			52.74		Standard Standard	0.050
365: 1-K		365			5,869.58		369.58	5,866.07	0.78			57.12		2 Standard	0.050
		_	H - 211 (ST	M-1C)	5,005.00		1	-						.23 Standard	
65: MH - 211 (STM-JC) 63: INLET 8-C (STM-JC)		_	NLET 8-C (S			5,885.99		-	,880.44	4.17	0.78	5,881.70 5,881.65		.65 Standard	0.050

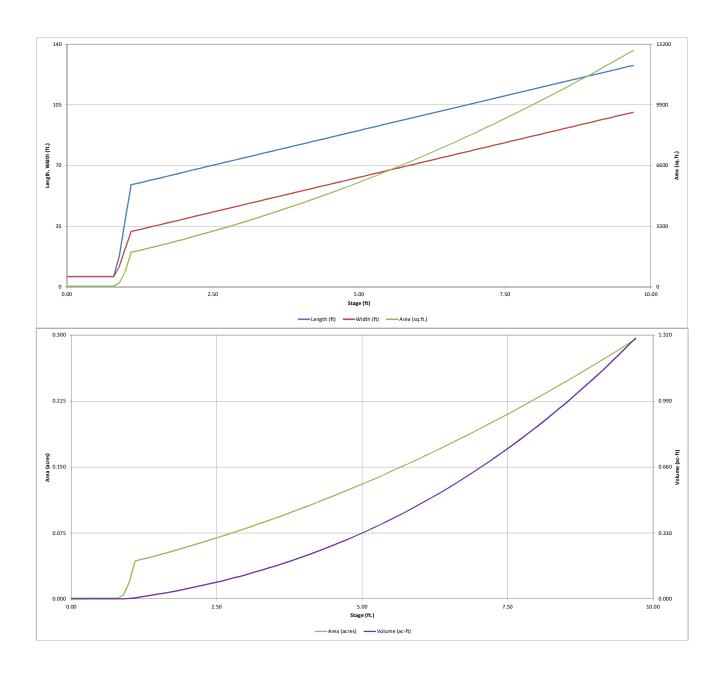

DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
UD-Detention, Version 3.07 (February 2017)														
Project: <u>Trails at Aspen Ridge - Filing No. 2</u> Basin ID: West Fork of Jimmy Camp Creek: East Pond(located in Sub-basin M)														
ZONE 3		f Jimmy Carr	1p Creek: Ea	ist Pond(loca	ited in Sub-basin M)									
				_										
T COULT WOOD		100-YEA	AR			1	1.							
PERMANENT ORIFIC POOL Example Zone	1 AND 2	ORIFIC			Depth Increment =		π Optional	1			Optional		Malan	
POOL Example Zone	Configurat	ion (Retenti	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Required Volume Calculation	500	٦			Top of Micropool		0.00				443	0.010	0.005	0.075
Selected BMP Type = Watershed Area =	EDB 160.87	acres			5817 5818	-	1.00 2.00		-		6,211 31,782	0.143	3,265 22,007	0.075
Watershed Length =	3,742	ft			5819		3.00				76,551	1.757	76,490	1.756
Watershed Slope =	0.030	ft/ft			5820		4.00		-		116,770	2.681	173,150	3.975
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	26.52% 0.0%	percent percent			5821 5822		5.00 6.00		-		141,034 154,951	3.238 3.557	302,052 450,045	6.934 10.332
Percentage Hydrologic Soil Group B =	87.0%	percent			5823		7.00	-			165,754	3.805	610,397	14.013
Percentage Hydrologic Soil Groups C/D =	13.0%	percent			5824		8.00	-			174,708	4.011	780,628	17.921
Desired WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0	hours			5825 5826		9.00 10.00				180,233 186,799	4.138 4.288	958,098 1,141,614	21.995 26.208
Water Quality Capture Volume (WQCV) =	1.879	acre-feet	Optional Us	er Override	5620		10.00	-	-		100,799	4.200	1,141,014	20.200
Excess Urban Runoff Volume (EURV) =	4.271	acre-feet	1-hr Precipi	tation					-					
2-yr Runoff Volume (P1 = 1.19 in.) =	3.310	acre-feet	1.19 1.50	inches										
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	4.883 7.634	acre-feet acre-feet	1.50	inches inches		-			-					
25-yr Runoff Volume (P1 = 2 in.) =	13.271	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	16.974	acre-feet	2.25	inches					-					
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.55 in.) =	21.799 35.422	acre-feet acre-feet	2.52 3.55	inches inches					-					
Approximate 2-yr Detention Volume =	3.090	acre-feet	0.00	incrica				-	-					
Approximate 5-yr Detention Volume =	4.585	acre-feet							-					
Approximate 10-yr Detention Volume =	6.639	acre-feet												
Approximate 25-yr Detention Volume = Approximate 50-yr Detention Volume =	7.805 8.226	acre-feet acre-feet						-	-					
Approximate 100-yr Detention Volume =	9.897	acre-feet						-	-					
Stage-Storage Calculation Zone 1 Volume (WQCV) =	1.879	acre-feet							-					
Zone 2 Volume (EURV - Zone 1) =	2.392	acre-feet						-	-					
Zone 3 Volume (100-year - Zones 1 & 2) =	5.626	acre-feet												
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	9.897 user	acre-feet ft^3							-					
Initial Surcharge Depth (ISD) =	user	π ⁻³				-		-	-					
Total Available Detention Depth (H_{total}) =	user	ft							-					
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user user	ft							-					
Slopes of Main Basin Sides (S _{main}) =	user	ft/ft H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user							-	-					
		Т												
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user user	ft^2							-					
Surcharge Volume Width (W _{ISV}) =	user	π ft						-						
Depth of Basin Floor (H _{FLOOR}) =	user	ft						-	-					
Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W _{FLOOR}) =	user user	ft							-					
Area of Basin Floor (A _{FLOOR}) =	user	ft ft*2				-			-					
Volume of Basin Floor (V_{FLOOR}) =	user	ft^3							-					
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W _{MAIN}) =	user user	ft ft						-	-					
Area of Main Basin (A _{MAIN}) =	user	ft^2												
Volume of Main Basin (V _{MAIN}) =	user	ft^3							-					
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
													l	

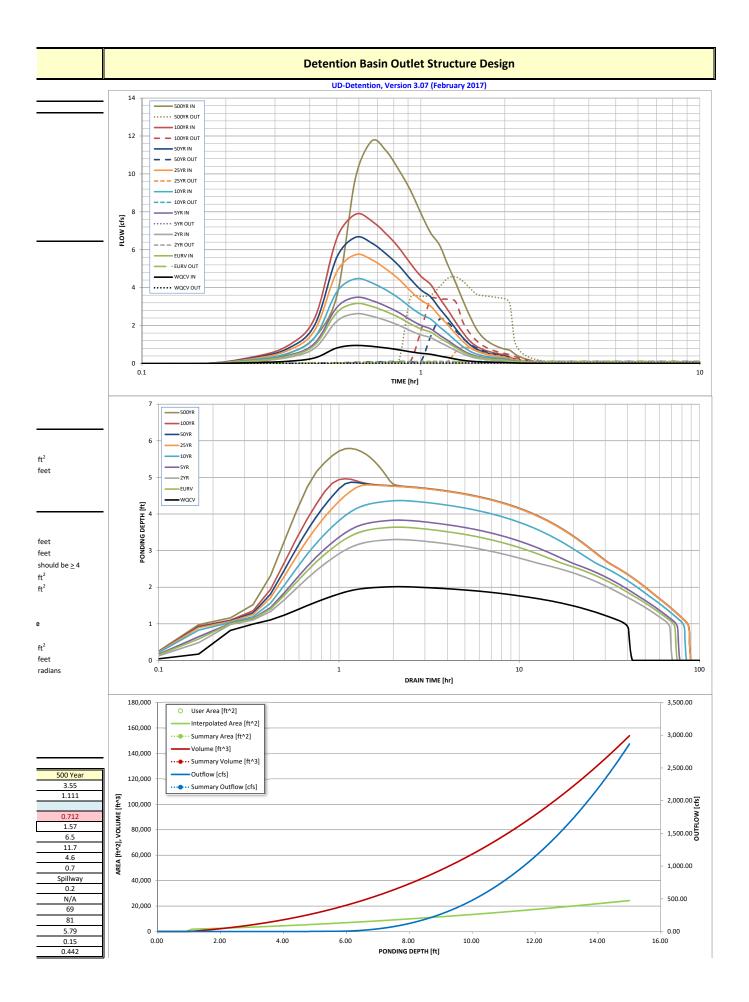
 III
 III
 III
 III

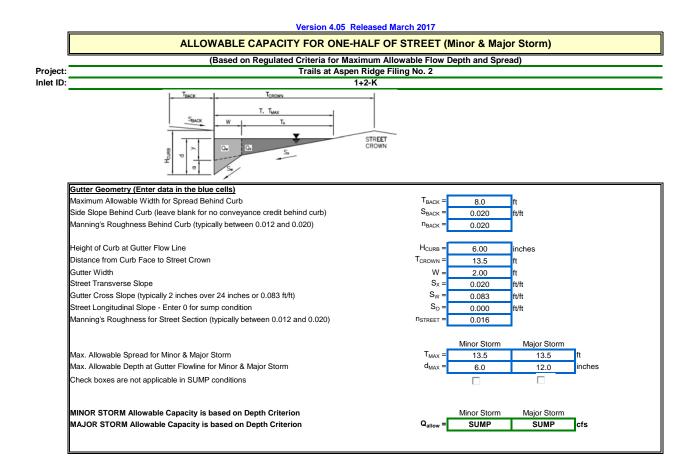

 III
 III
 III
 III
 III

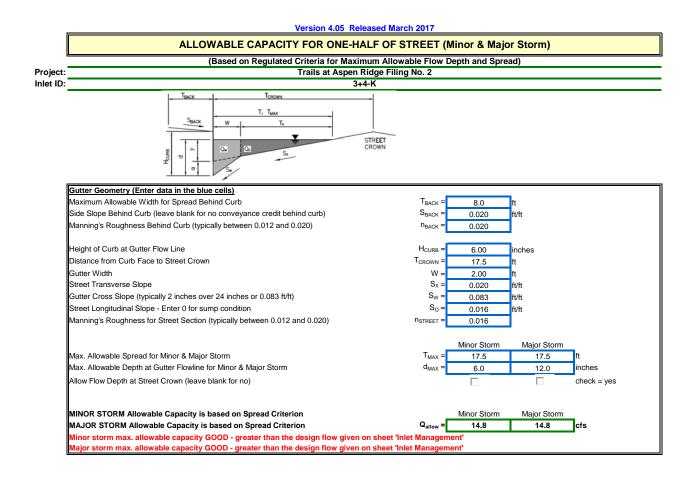
DETENTION BASIN STAGE-STORAGE TABLE BUILDER

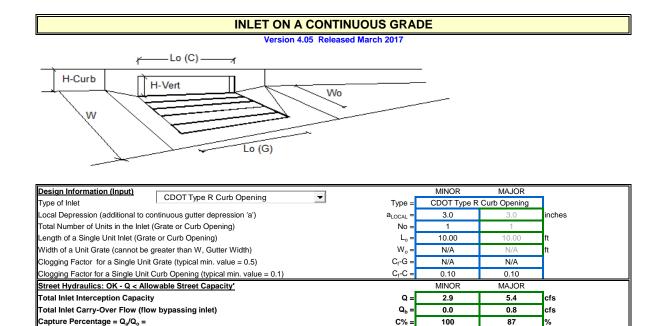
UD-Detention, Version 3.07 (February 2017)

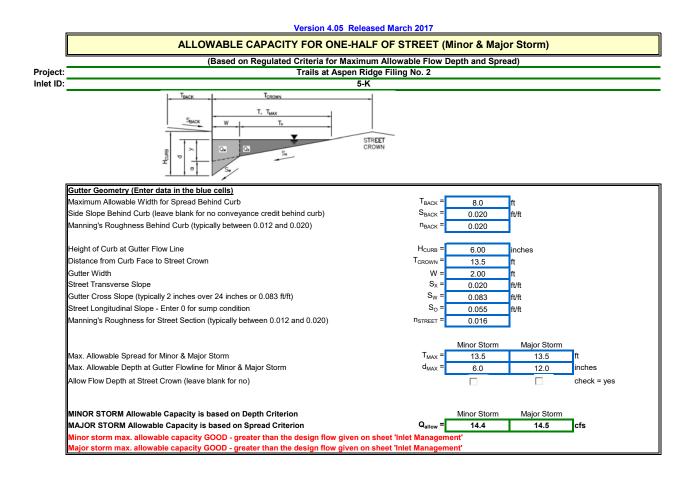

Detention Basin Outlet Structure Design												
				rsion 3.07 (Februar								
-	Trails at Aspen Ride West Fork of Jimmy	ge - Filing No. 2 y Camp Creek-East F	Pond. (Filing No. 2 C	onditions)								
ZONE 3 ZONE 2 ZONE 1	(
100-YR EURV WQCV					Zone Volume (ac-ft)	Outlet Type	1					
Trout water	100-YEAI		Zone 1 (WQCV)	3.07	1.879	Orifice Plate						
ZONE 1 AND 2- ORIFICES	ORIFICE		Zone 2 (EURV) 'one 3 (100-year)	5.88	2.392 5.626	Rectangular Orifice Weir&Pipe (Restrict)						
r EnmanElli	Configuration (Re	tention Pond)	.one 5 (100-year)	5.86	9.897	Total	l					
Jser Input: Orifice at Underdrain Outlet (typically us	ed to drain WQCV ir	a Filtration BMP)					ed Parameters for Ur	derdrain				
Underdrain Orifice Invert Depth =	N/A		e filtration media sur	face)		rdrain Orifice Area =	N/A	ft ²				
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet				
ser Input: Orifice Plate with one or more orifices o	r Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate				
Invert of Lowest Orifice =	0.00		ottom at Stage = 0 ft		WQ Orifice Area CHE		N/A	ft ²				
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	2.90 8.00	ft (relative to basin b inches	ottom at Stage = 0 ft)		lliptical Half-Width = ptical Slot Centroid =	N/A N/A	feet feet				
Orifice Plate: Orifice Area per Row =	N/A	inches			Ling	Elliptical Slot Area =	N/A	ft ²				
		•										
er Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)												
Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional)												
Stage of Orifice Centroid (ft) 0.00 0.70 1.40 2.10 2.80												
Orifice Area (sq. inches)	Orifice Area (sq. inches) 4.10 4.20 4.20 4.30 4.30											
	Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional)											
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Stage of Orifice Centroid (ft)											
User Input: Vertical Orifice (Circ	ular or Postangular)					Calculated	Parameters for Vert	ical Orifica				
User input: Vertical Office (Circ	Zone 2 Rectangular	Not Selected				Calculated	Zone 2 Rectangular	Not Selected]			
Invert of Vertical Orifice =	3.73	N/A	ft (relative to basin b	ottom at Stage = 0 ft	:) V	ertical Orifice Area =	2.50	N/A	ft ²			
Depth at top of Zone using Vertical Orifice =	6.95	N/A	-	oottom at Stage = 0 ft	:) Vertio	al Orifice Centroid =	0.63	N/A	feet			
Vertical Orifice Height = Vertical Orifice Width =	15.00 24.00	N/A	inches inches									
Vertical Office Width -	24.00	L	inches									
User Input: Overflow Weir (Dropbox) and G			1			Calculated	Parameters for Ove	rflow Weir				
	Zone 3 Weir	Not Selected			Uninht of Co	ata Usasa Edas II -	Zone 3 Weir	Not Selected	6			
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	6.94 14.50	N/A N/A	ft (relative to basin bot feet	ttom at Stage = 0 it)		ate Upper Edge, H _t = Weir Slope Length =	6.94 9.50	N/A N/A	feet feet			
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /		9.23	N/A	should be <u>></u> 4			
Horiz. Length of Weir Sides =	9.50	N/A	feet		Overflow Grate Ope		103.31	N/A	ft ²			
Overflow Grate Open Area % = Debris Clogging % =	75% 45%	N/A N/A	%, grate open area/t «	otal area	Overflow Grate Op	en Area w/ Debris =	56.82	N/A	ft ²			
	4376	N/A	70									
User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restri	ctor Plate, or Rectan	gular Orifice)		c	alculated Parameter	s for Outlet Pipe w/		te			
	Zone 3 Restrictor	Not Selected	6. <i></i>				Zone 3 Restrictor	Not Selected	~2			
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	0.50 48.00	N/A N/A	π (distance below basi inches	n bottom at Stage = 0 f		Outlet Orifice Area =	11.19 1.80	N/A N/A	ft ² feet			
Restrictor Plate Height Above Pipe Invert =	40.00		inches			et Oritice Centroid =			radians			
	40.00		inches	Half-0	Central Angle of Restr	et Orifice Centroid = ictor Plate on Pipe =	2.30	N/A	Taulalis			
		L	inches	Half-(ictor Plate on Pipe =			radialis			
User Input: Emergency Spillway (Rectang	gular or Trapezoidal)	r			Central Angle of Restr	ictor Plate on Pipe = Calcula	ted Parameters for S	pillway				
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =		r	inches oottom at Stage = 0 ft		Central Angle of Resti Spillway	ictor Plate on Pipe =						
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	gular or Trapezoidal) 8.08	ft (relative to basin b			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth=	ted Parameters for S	pillway feet				
Spillway Invert Stage= Spillway Crest Length =	gular or Trapezoidal) 8.08 136.00	ft (relative to basin b feet			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	ted Parameters for S 0.85 9.93	pillway feet feet				
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	gular or Trapezoidal) 8.08 136.00 5.00	ft (relative to basin b feet H:V			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	ted Parameters for S 0.85 9.93	pillway feet feet				
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	gular or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV	ft (relative to basin b feet H:V feet EURV	oottom at Stage = 0 ft 2 Year) 5 Year	Central Angle of Restr Spillway Stage a Basin Area a 10 Year	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	ted Parameters for S 0.85 9.93 4.28 50 Year	pillway feet feet acres 100 Year	500 Year			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	gular or Trapezoidal) 8.08 136.00 5.00 1.00 <u>WQCV</u> 0.53	ft (relative to basin b feet H:V feet EURV 1.07	oottom at Stage = 0 ft 2 Year 1.19) <u>5 Year</u> 1.50	Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.75	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25	pilway feet feet acres <u>100 Year</u> 2.52	500 Year 3.55			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	201ar or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV 0.53 1.879	ft (relative to basin t feet H:V feet <u>EURV</u> 1.07 4.271	2 Year 1.19 3.310) 5 Year 1.50 4.883	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974	pillway feet feet acres <u>100 Year</u> 2.52 21.799	500 Year 3.55 35.422			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	2ular or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV 0.53 1.879 1.877	ft (relative to basin t feet H:V feet <u>EURV</u> 1.07 4.271 4.267	2 Year 1.19 3.310 3.307	5 Year 1.50 4.883 4.878	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Cop of Freeboard = 25 Year 2.00 13.271 13.257	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 16.954	pillway feet feet acres 2.52 21.799 21.779	500 Year 3.55 35.422 35.389			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	201ar or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV 0.53 1.879	ft (relative to basin t feet H:V feet <u>EURV</u> 1.07 4.271	2 Year 1.19 3.310) 5 Year 1.50 4.883	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974	pillway feet feet acres <u>100 Year</u> 2.52 21.799	500 Year 3.55 35.422			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	xular or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV 0.53 1.879 1.877 0.00 0.0 32.7	ft (relative to basin to feet H:V feet <u>EURV</u> 1.07 4.271 4.267 0.00 0.0 73.5	2 Year 1.19 3.310 3.307 0.01 2.2 57.2	5 Year 1.50 4.883 4.878 0.04 5.9 83.8	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 16.954 1.00 161.4 281.4	pilway feet feet acres 2.52 21.799 21.779 1.34 215.6 356.1	500 Year 3.55 35.422 35.389 2.23 358.7 560.2			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	WQCV 0.53 1.877 0.00 32.7 0.8	ft (relative to basin to feet H:V feet EURV 1.07 4.271 4.267 0.00 0.0 73.5 1.8	2 Year 1.19 3.310 	5 Year 1.50 4.883 	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5 10.2	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2 18.3	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 1.0974 1.00 1.61.4 2.81.4 2.81.4 2.9.9	pillway feet feet acres 21.799 21.779 1.34 215.6 356.1 96.2	500 Year 3.55 35.422 			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	xular or Trapezoidal) 8.08 136.00 5.00 1.00 WQCV 0.53 1.879 1.877 0.00 0.0 32.7	ft (relative to basin to feet H:V feet <u>EURV</u> 1.07 4.271 4.267 0.00 0.0 73.5	2 Year 1.19 3.310 3.307 0.01 2.2 57.2	5 Year 1.50 4.883 4.878 0.04 5.9 83.8	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 16.954 1.00 161.4 281.4	pilway feet feet acres 2.52 21.799 21.779 1.34 215.6 356.1	500 Year 3.55 35.422 35.389 2.23 358.7 560.2			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	xular or Trapezoidal) 8.08 136.00 5.00 1.00 	ft (relative to basin to feet H:V feet L.07 4.271 4.267 0.00 0.0 73.5 1.8 N/A Vertical Orifice 1 N/A	2 Year 1.19 3.310 3.307 0.01 2.2 57.2 1.0 N/A Plate N/A	5 Year 1.50 4.883 4.878 0.04 5.9 83.8 2.9 0.5 Vertical Orifice 1 N/A	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5 10.2 0.3 Vertical Orifice 1 N/A	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Cop of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2 18.3 0.2 Vertical Orifice 1 N/A	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 1.00 161.4 281.4 29.9 0.2 Overflow Grate 1 0.1	pillway feet feet acres 2.52 21.799 21.779 1.34 215.6 356.1 96.2 0.4 Overflow Grate 1 0.7	500 Year 3.55 35.422 35.389 2.23 358.7 560.2 294.9 0.8 Spillway 1.1			
Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak (G(sfs) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	sular or Trapezoidal) 8.08 136.00 5.00 1.00 0.53 1.879 1.877 0.00 0.0 32.7 0.8 N/A Plate N/A N/A	ft (relative to basin b feet H:V feet	2 Year 1.19 3.310 3.307 0.01 2.2 57.2 1.0 N/A Plate N/A N/A	5 Year 1.50 4.883 4.878 0.04 5.9 83.8 2.9 0.5 Vertical Orifice 1 N/A N/A	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5 10.2 0.3 Vertical Orifice 1 N/A N/A	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Contemporter of the second	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 16.954 1.00 161.4 281.4 29.9 0.2 Overflow Grate 1 0.1 N/A	pillway feet feet acres 21.799 21.779 1.34 215.6 356.1 96.2 0.4 Overflow Grate 1 0.7 N/A	500 Year 3.55 35.422 35.389 2.23 358.7 560.2 294.9 0.8 \$pillway 1.1 N/A			
Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	xular or Trapezoidal) 8.08 136.00 5.00 1.00 	ft (relative to basin to feet H:V feet L.07 4.271 4.267 0.00 0.0 73.5 1.8 N/A Vertical Orifice 1 N/A	2 Year 1.19 3.310 3.307 0.01 2.2 57.2 1.0 N/A Plate N/A	5 Year 1.50 4.883 4.878 0.04 5.9 83.8 2.9 0.5 Vertical Orifice 1 N/A	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 7.634 7.625 0.24 38.2 129.5 10.2 0.3 Vertical Orifice 1 N/A	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Cop of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2 18.3 0.2 Vertical Orifice 1 N/A	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 1.00 161.4 281.4 29.9 0.2 Overflow Grate 1 0.1	pillway feet feet acres 2.52 21.799 21.779 1.34 215.6 356.1 96.2 0.4 Overflow Grate 1 0.7	500 Year 3.55 35.422 2.23 358.7 560.2 294.9 0.8 Spillway 1.1			
Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	gular or Trapezoidal) 8.08 136.00 5.00 1.00 0.03 1.879 1.877 0.00 0.0 32.7 0.8 N/A Plate N/A N/A 42	ft (relative to basin b feet H:V feet 1.07 4.271 4.267 0.00 0.0 73.5 1.8 N/A Vertical Orifice 1 N/A 65	2 Year 1.19 3.310 3.307 0.01 2.2 57.2 1.0 N/A Plate N/A S8	5 Year 1.50 4.878 0.04 5.9 83.8 2.9 0.5 Vertical Orifice 1 N/A 67	Central Angle of Restr Spillway Stage a Basin Area a 1.075 7.634 7.625 0.24 38.2 129.5 10.2 0.3 Vertical Orifice 1 N/A 68	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 13.271 13.257 0.73 117.5 221.2 18.3 0.2 Vertical Orifice 1 N/A N/A 67	ted Parameters for S 0.85 9.93 4.28 50 Year 2.25 16.974 16.954 1.00 161.4 281.4 281.4 29.9 0.2 Overflow Grate 1 0.1 N/A 65	pillway feet feet acres 2.52 21.779 21.779 1.34 215.6 356.1 96.2 0.4 Overflow Grate 1 0.7 N/A 62	500 Year 3.55 35.422 35.389 2.23 358.7 560.2 294.9 0.8 Spillway 1.1 N/A 54			

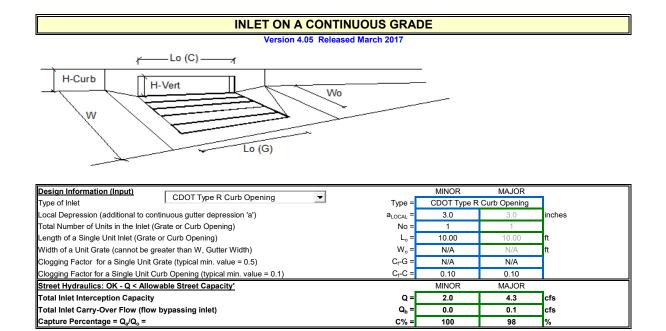

DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
				UD-D	etention, Version 3	3.07 (Febru	iary 2017)							
Project:	Trails at Asp	en Ridge Fi	ling No. 2 - Of	fsite-East Sid	le Onsite Detention									
Basin ID:	West Fork J	immy Camp	Creek - OS E	ast Side										
	2 ONE 1													
	1 AND 2	100-YE ORIFIC	AR CE		Depth Increment =	0.1	ft							
PERMANENT ORIFIC	CES	ion (Retent	tion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	-	-			Description Top of Micropool	(ft) 0.00	Stage (ft)	(ft) 5.9	(ft) 5.9	(ft^2) 35	Area (ft^2)	(acre) 0.001	(ft^3)	(ac-ft)
Required Volume Calculation Selected BMP Type =	EDB	T			ISV	0.33		5.9	5.9	35		0.001	11	0.000
Watershed Area =	4.15	acres	Note: L / W	Ratio > 8	-	0.40		5.9	5.9	35		0.001	14	0.000
Watershed Length =	1,451	ft	L / W Ratio			0.50		5.9	5.9	35		0.001	17	0.000
Watershed Slope =	0.039	ft/ft				0.60		5.9	5.9	35		0.001	21	0.000
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	65.00% 0.0%	percent percent				0.70		5.9 5.9	5.9 5.9	35 35		0.001	24 27	0.001
Percentage Hydrologic Soil Group B =	100.0%	percent				0.90		18.1	11.9	216		0.005	36	0.001
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				1.00		38.5	21.9	844		0.019	85	0.002
Desired WQCV Drain Time =	40.0	hours			Floor	1.09		56.9	30.9	1,758		0.040	200	0.005
Location for 1-hr Rainfall Depths = Water Quality Capture Volume (WQCV) =	0.088	acre-feet	Optional Use	er Override		1.10 1.20		58.8 59.6	31.8 32.6	1,873 1,946		0.043	218 409	0.005
Excess Urban Runoff Volume (EURV) =	0.294	acre-feet	1-hr Precipit			1.30		60.4	33.4	2,021		0.046	607	0.014
2-yr Runoff Volume (P1 = 1.19 in.) =	0.244	acre-feet	1.19	inches		1.40		61.2	34.2	2,096		0.048	813	0.019
5-yr Runoff Volume (P1 = 1.5 in.) =	0.326	acre-feet	1.50	inches		1.50		62.0	35.0	2,174		0.050	1,027	0.024
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	0.419	acre-feet acre-feet	1.75 2.00	inches inches		1.60 1.70		62.8 63.6	35.8 36.6	2,252 2,331		0.052	1,248 1,477	0.029 0.034
50-yr Runoff Volume (P1 = 2.25 in.) =	0.627	acre-feet	2.25	inches		1.80		64.4	37.4	2,412		0.055	1,714	0.039
100-yr Runoff Volume (P1 = 2.52 in.) =	0.741	acre-feet	2.52	inches		1.90		65.2	38.2	2,494		0.057	1,960	0.045
500-yr Runoff Volume (P1 = 3.55 in.) =	1.111	acre-feet	3.55	inches		2.00		66.0	39.0	2,578		0.059	2,213	0.051
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	0.228	acre-feet acre-feet				2.10 2.20		66.9 67.7	39.9 40.7	2,671 2,757		0.061	2,502 2,773	0.057 0.064
Approximate 10-yr Detention Volume =	0.390	acre-feet				2.30		68.5	41.5	2,844		0.065	3,053	0.070
Approximate 25-yr Detention Volume =	0.420	acre-feet				2.40		69.3	42.3	2,933		0.067	3,342	0.077
Approximate 50-yr Detention Volume =	0.438	acre-feet			-	2.50		70.1	43.1	3,023		0.069	3,640	0.084
Approximate 100-yr Detention Volume =	0.473	acre-feet			Zone 1 (WQCV)	2.57 2.60		70.7 70.9	43.7 43.9	3,087 3,114		0.071	3,854 3,947	0.088
Stage-Storage Calculation						2.70		71.7	44.7	3,207		0.074	4,263	0.098
Zone 1 Volume (WQCV) =	0.088	acre-feet				2.80		72.5	45.5	3,301		0.076	4,588	0.105
Zone 2 Volume (EURV - Zone 1) =	0.207	acre-feet				2.90		73.3	46.3	3,396		0.078	4,923	0.113
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.179 0.473	acre-feet acre-feet				3.00 3.10		74.1 74.9	47.1 47.9	3,492 3,590		0.080	5,267 5,621	0.121 0.129
Initial Surcharge Volume (ISV) =	11	ft^3				3.20		75.7	48.7	3,689		0.085	5,985	0.137
Initial Surcharge Depth (ISD) =	0.33	ft				3.30		76.5	49.5	3,789		0.087	6,359	0.146
Total Available Detention Depth (H _{total}) =	6.00 0.50	ft				3.40 3.50		77.3 78.1	50.3 51.1	3,890 3,993		0.089	6,743 7,137	0.155
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	0.005	ft ft/ft				3.60		78.9	51.1	4,097		0.092	7,137	0.164
Slopes of Main Basin Sides (Smain) =	4	H:V				3.70		79.7	52.7	4,202		0.096	7,957	0.183
Basin Length-to-Width Ratio ($R_{L/W}$) =	2	1				3.80		80.5	53.5	4,309		0.099	8,382	0.192
Initial Surcharge Area (Arsy) =	05	т				3.90		81.3	54.3	4,417		0.101	8,819	0.202
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	35 5.9	ft^2 ft				4.00 4.10		82.1 82.9	55.1 55.9	4,526 4,636		0.104	9,266 9,724	0.213 0.223
Surcharge Volume Width (W _{ISV}) =	5.9	ft				4.20		83.7	56.7	4,748		0.109	10,193	0.234
Depth of Basin Floor (H _{FLOOR}) =	0.26	ft				4.30		84.5	57.5	4,861		0.112	10,673	0.245
Length of Basin Floor (L _{FLOOR}) =	58.8	ft				4.40		85.3	58.3	4,975		0.114	11,165	0.256
Width of Basin Floor (W _{FLOOR}) = Area of Basin Floor (A _{FLOOR}) =	31.8 1,873	ft ft/2				4.50 4.60		86.1 86.9	59.1 59.9	5,091 5,208		0.117 0.120	11,668 12,183	0.268
Volume of Basin Floor (V _{FLOOR}) =	187	ft/3				4.70		87.7	60.7	5,326		0.122	12,710	0.292
Depth of Main Basin (H _{MAIN}) =	4.91	ft			Zone 2 (EURV)	4.73		87.9	61.0	5,361		0.123	12,870	0.295
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W _{MAIN}) =	98.1	ft				4.80 4.90		88.5	61.5	5,445		0.125	13,249	0.304
Area of Main Basin (W _{MAIN}) =	71.1 6,977	ft ft/2				4.90 5.00		89.3 90.1	62.3 63.1	5,566 5,688		0.128	13,799 14,362	0.317 0.330
Volume of Main Basin (V _{MAIN}) =	20,403	ft^3				5.10		90.9	63.9	5,811		0.133	14,937	0.343
Calculated Total Basin Volume (V_{total}) =	0.473	acre-feet				5.20		91.7	64.7	5,935		0.136	15,524	0.356
						5.30 5.40		92.5 93.3	65.5 66.3	6,061 6,188		0.139 0.142	16,124 16,736	0.370 0.384
						5.50 5.60		94.1 94.9	67.1 67.9	6,317 6,446		0.145	17,361 18,000	0.399 0.413
						5.70 5.80		95.7 96.5	68.7 69.5	6,577 6,709		0.151 0.154	18,651 19,315	0.428
					7	5.90		97.3	70.3	6,843		0.157	19,993	0.459
					Zone 3 (100-year)	6.00		98.1	71.1	6,977	-	0.160	20,684	0.475

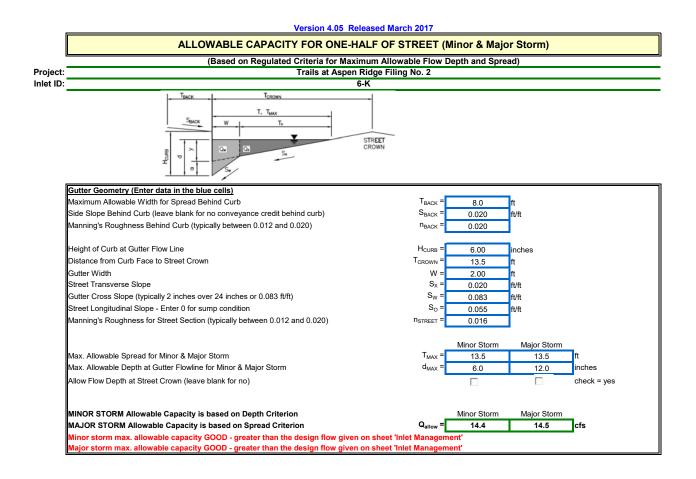

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

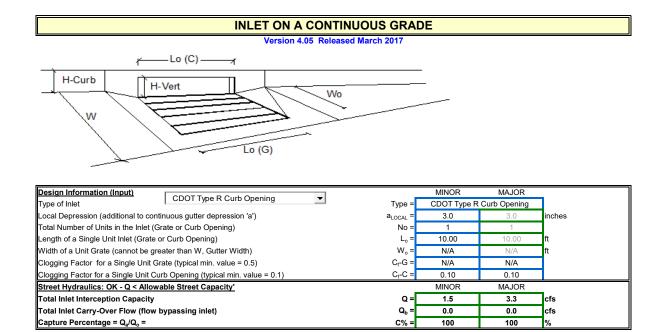

UD-Detention, Version 3.07 (February 2017)

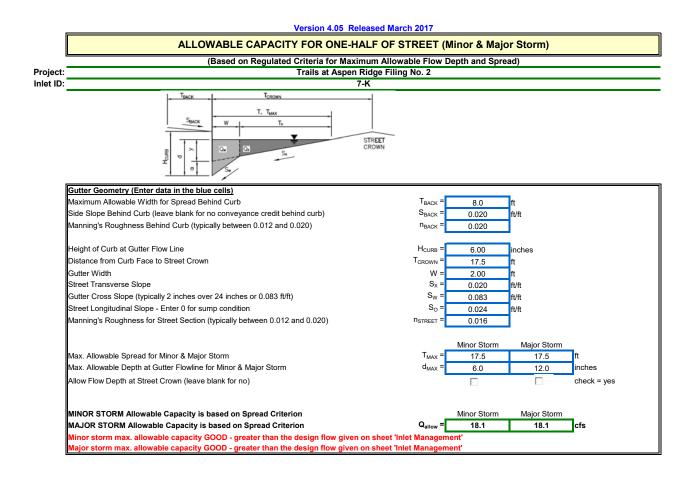


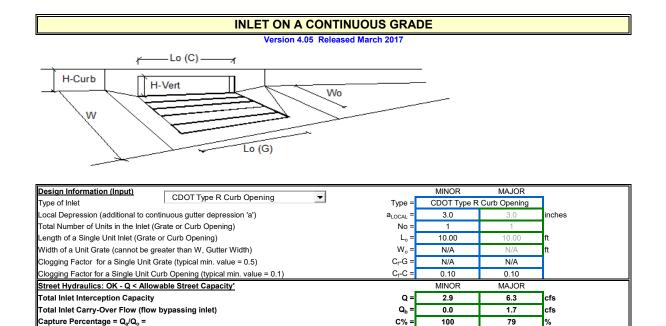

Singe of Online Centres (b) Image: Single of Online Centres (b) Calculated Parameters for Vertical Online Centres (b) User Input: Vertical Online (Crouter or Rectangular) Calculated Parameters for Vertical Online Centres (b) Online Vertical Online Vertical Online Centres (b) Online Vertical Online Centres (b) Online Vertical Online Ver	Detention Basin Outlet Structure Design													
Biol 1000 Biol 10000 Biol 10000 Biol 1000 Biol 1000 Biol 1000 Biol 1000 Biol 1000	Project	Trails at Asnen Rid	ae Filina No. 2 - Offs			ry 2017)								
North North North Output (N Output (N) Output (N) Output (N) North Stapp Lone Configuration (Paratitude N)					Detention									
Start (P) Start (P) <t< td=""><td>ZONE 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ZONE 2													
Image: Interface of the Line of the Control					Stage (ft)	Zone Volume (ac-ft)	Outlet Type							
Image: Description of the set leader bit in				Zone 1 (WQCV)	2.57	0.088	Orifice Plate]						
memory memory<		100-YEA	R	Zone 2 (EURV)	4.73	0.207	Circular Orifice							
Unit pict Office and block house (build wat of a with VCD + Transford MM) U.d.1 Outside office Prince Outside of Prin	PERMANENT ORIFICES	ORIFICE		20ne 3 (100-year)	6.00	0.179	Weir&Pipe (Restrict)							
Underdam Orific Farse NA P(fdatarse bases bases the fibration media surface) Underdam Orific Farse NA NA NA User fight: Office Farse with one or more effects or Fliptical Side Wei (splically used to drain MQC) and/or Early used to drain MQC and/or Early Us	POOL Example Zone	Configuration (Re	etention Pond)			0.473	Total	3						
Understand Diffice Dammen N/A Sect User lapsit: Office Pate with one or more offices of Biged 100 Wer Typically used to drain VACV and/or BUPY to sectione states 000 MPU begin at too 0 frace wates of 0 frace with one of more offices 0 frame. The first out basis interaction of Sage = 0 ft 1 User of an example of an	User Input: Orifice at Underdrain Outlet (typically us	ed to drain WQCV in	a Filtration BMP)				Calculat	ed Parameters for Ur	derdrain					
Unite riped: Online Flags with one or more officing office flags End office flags with one of more office flags End office flags with one of more office flags End office flags with one of more office flags End office flags with one office flags End office				e filtration media sur	face)									
Invert of Joses (Infra- Deposite size) of Joses (Infra- Bases) of Joses (Infra-	Underdrain Orifice Diameter =	N/A	inches			Underdr	ain Orifice Centroid =	N/A	feet					
Invert of Joses (Infra- Deposite size) of Joses (Infra- Bases) of Joses (Infra-	Licer Input: Orifice Plate with one or more crifices o	r Elliptical Slat Wair	(tunically used to dra	in WOCV and/or FUR	Win a codimontation	PMD)	Calcu	lated Barameters for	Plata					
Upper at top of Zore using ordine Theory 2/37 (1) includes Includes M/A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-	-												
Online Paste Online Area ger Rave 0.24 0.44 No. R ⁴ User Input: Stage and Total Area of Each Online Row (unstanced non lowest to highest) Row 2 (optional) Row 1 (optio														
User Input: Stage and Total Acea of Each Office Revolution Row 1 (registron) Row 2 (registron) Row 1 (registron) Row 2 (registron) Row 1 (registron) Row 2 (registron) Row 2 (registron) Row 1 (registron) Row 2 (registron)	Orifice Plate: Orifice Vertical Spacing =	10.30	inches			Ell	iptical Slot Centroid =	N/A	feet					
Name Nove Topstore Row 2 (sprinne) Row 4 (sprinne) Row 5 (sprinne) Row 5 (sprinne) Row 5 (sprinne) Row 7 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 1	Orifice Plate: Orifice Area per Row =	0.24	sq. inches (diameter	= 9/16 inch)			Elliptical Slot Area =	N/A	ft ²					
Stage of Orlice Certronic (II) Rev 1 (equined) Rev 2 (equined) Rev 5 (equined) Rev 5 (equined) Rev 5 (equined) Rev 6 (equined) Rev 1 (equined) Rev1 (equined) Rev1 (equined) <			_						-					
Name Nove Topstore Row 2 (sprinne) Row 4 (sprinne) Row 5 (sprinne) Row 5 (sprinne) Row 5 (sprinne) Row 7 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 8 (sprinne) Row 1														
Bigs of Orlico Cannod (m) 0.00 0.08 1.71 Image	User Input: Stage and Total Area of Each Orifice R			Pow 2 (antional)	Pour 4 (antions)	Bow E (antiang)	Pow 6 (antianal)	Pow 7 (antians)	Dow 9 (antian-1)					
Ortho Area (a, inches) 0.24 0.2														
Row 9 (potional Row 10 (potional Row 11 (potional) Row 13 (potional) Row 13 (potional) Row 15 (potional) Row 16 (potional)														
Stage of Ortice Centricit (III) Initial Initial <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Ordina Area (eq. incles) Calculated Parameters for Vertical Orific User Input: Vertical Orific (Crocular or Rectangular) Calculated Parameters for Vertical Orific Depth at top of Vertical Orific = 2.37 N/A (r (rative to basis bottom at Stage = 0 ft) Vertical Orific = 0.03 N/A Depth at top of Zone using Vertical Orific = 2.37 N/A (r (rative to basis bottom at Stage = 0 ft) Vertical Orific = 0.03 N/A User Input: Overflow Weir (Droppho) and Grate (Plat or Sloped) Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir 0.06 N/A Overflow Weir Front Edge Height, Her 0.03 N/A Height or frat grate) Grate Open Aras / 100 yr Orifics Aras = 0.33 1.4/A Overflow Weir Front Edge Height, Her 0.03 N/A Height or frat grate) Grate Open Aras / 100 yr Orifics Aras = 3.3.6 N/A Overflow Weir Stope = 0.00 N/A Height or arao or frat grate) Overflow Grate Open Aras / 100 yr Orifics Aras = 3.8.6 N/A Overflow Grate Open Aras / 20 wr N/A Height or arao open araa/Inctal area Overflow Grate Open Aras / 100 yr Orifics Aras = 3.8.6 <t< td=""><td></td><td>Row 9 (optional)</td><td>Row 10 (optional)</td><td>Row 11 (optional)</td><td>Row 12 (optional)</td><td>Row 13 (optional)</td><td>Row 14 (optional)</td><td>Row 15 (optional)</td><td>Row 16 (optional)</td></t<>		Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)					
Calculated Parameters for Vertical Office Calculated Parameters for Vertical Office Depth at top of Zone using Vertical Office Calculated Parameters for Vertical Office Depth at top of Zone using Vertical Office Calculated Parameters for Vertical Office Depth at top of Zone using Vertical Office Cantrols Calculated Parameters for Vertical Office User Input: Vertical Office Cantrols Calculated Parameters for Overflow Weir Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Stage of Orifice Centroid (ft)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Stage of Orifice Centroid (ft)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Stage of Orifice Centroid (ft)												
Insert of Vertical Orlice Zone 2 Circular Not 5 Selected Insert of Vertical Orlice Zone 2 Circular Not 5 Selected Depth at top of Zone using Vertical Orlice 4.73 N/A tr(relative to basin bottom at Stage = 0 ft) Vertical Orlice Centrols 0.06 N/A User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir Tone 3 Weir Not 5 Selected 4.00 N/A Overflow Weir Front Edge Ineght 6.00 N/A tr(relative to basin bottom at Stage = 0 ft) Overflow Weir Front Edge Ineght 6.00 N/A Overflow Weir Front Edge Ineght 6.00 N/A tr(relative to basin bottom at Stage = 0 ft) Overflow Weir Stope Edge Ineght 6.00 N/A Overflow Weir Front Edge Ineght 6.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Grate Open Area W/D Bottis 5.8.0 N/A Overflow Weir Stope Edge Ing ft = 5.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Grate Open Area W/D Bottis 5.8.0 N/A Overflow Grate Open Area W/D Bottis 5.05 N/A ft (relative to basin bottom at	Orifice Area (sq. inches)													
Invert of Vertical Orifice Zone 2 Circular Not Selected Depth at top of Zone using Vertical Orifice 4.73 1/1/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrols 0.06 N/A User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir Overflow Weir (Front Edge Length 6.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Slope Length 4.00 N/A Overflow Weir Slope Length of Weir Slope Length 6.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Slope Length 4.00 N/A Overflow Weir Slope Length of Weir Slope Length 6.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Grate Open Area w/D Obits 5.8.0 N/A Overflow Weir Slope Length 5.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Grate Open Area w/D Obits 5.8.0 N/A Overflow Grate Degen Rear w/D Dottis 5.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Instrument of Vertical Ordice 2 2.57 11/A Ft (relative to basin bottom at Stage = 0 ft) Vertical Ordice Centrol = 0.01 1/A Depth at top 2 Doeu sayle vertical Ordice 2 1.34 N/A rches 0.06 N/A Vertical Ordice Diameter 1.34 N/A rches 0.01 N/A Vertical Ordice Diameter 1.34 N/A rches 0.01 N/A User Input: Overflow Weir (Dropbox) and Gret (Flat or Signed) Calculated Parameters for Overflow Weir Ordice Area 5 Overflow Weir Fort Edge Hight, Ho 4.73 N/A Tr (relative to basin bottom at Sage = 0 ft) Neight of Grate Upper Ligge, He = 0.00 N/A Overflow Weir Fort Edge Hight, Ho 0.00 N/A Feet Overflow Create Open Area 10.00 N/A Overflow Weir Sides 4 0.00 N/A Feet Overflow Create Open Area 10.00 N/A Overflow Weir Sides 4 0.00 N/A Feet Overflow Create Open Area 10.00 N/A Overflow Grate Open Area 10.00 N/A Feet Overf	User Input: Vertical Orifice (Circ			7			Calculated	r						
Depth at top of Zone using Vertical Orfice 4.73 N/A ft (relative to basin bottom at Stage = 0.ft) Vertical Orfice Centrol = 0.05 N/A User Input: Overflow Weir (Dropbox) and Grate (flat or sloped) Calculated Parameters for Overflow Weir Calculated Parameters for Overflow Weir Overflow Weir Front Edge Height, Ho Cone 3 Weir NOS Selected N/A ft (relative to basin bottom at Stage = 0.ft) Height of Grate Upper fdge, h, = Calculated Parameters for Overflow Weir Overflow Weir Front Edge Height, Ho 6.00 N/A ft (relative to basin bottom at Stage = 0.ft) Height of Grate Upper fdge, h, = Calculated Parameters for Overflow Weir Overflow Weir Stope 0.000 N/A ft (relative to basin bottom at Stage = 0.ft) User flow Kers Stope N/A Overflow Grate Open Area Stop 20% N/A ft (relative to basin bottom at Stage = 0.ft) Overflow Grate Open Area Stop N/A Overflow Grate Open Area Stop 20% N/A ft (relative to basin bottom at Stage = 0.ft) Overflow Grate Open Area Stop Deve for New Stope in Stop Stop Stop Stop Stop Stop Stop Stop	Invert of Vertical Orifice -			ft (relative to basin b	ottom at Stage - 0 ft))	/ortical Orifice Area -							
Vertical Driftice Diameter = 1.3.4 N/A Inches User Input: Overflow Weir (Gropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Overflow Weir Tont Eige Height, Ho 2.0 2.0 3.0 N/A test Overflow Weir Overflow Weir Tont Eige Height, Ho 2.0 2.0 3.0 N/A test Overflow Weir Grate Upper Eige, H ₁ 4.73 N/A Overflow Weir Stage 0.00 N/A Het Overflow Weir Stage = 0.00 N/A 4.73 N/A Overflow Weir Stage 0.00 N/A Het Overflow Weir Stage = 0.00 N/A N/A Sign of the stage = 0.00 N/A Sign of the stage = 0.00 Overflow Weir Stage = 0.00 N/A Sign of the stage = 0.00 Overflow Weir Stage = 0.00 Outlet Pripe w/ Pow Restriction Overflow Weir Stage = 0.00 N/A % Sign of the stage = 0.00 Outlet Pripe w/ Pow Restriction Outlet Pripe w/ Pow Restriction Outlet Pripe w/ Row Restriction Plate (Crout Office, Restrictor Plate or Restructor Plate New Meir Stage = 0.01) Outlet Pripe w/ Pow Restriction Outlet Pripe w/ Pow Restriction Outlet														
User Input: Overflow Weir [Coropbox] and Grate [Flat or Sloped] Calculated Parameters for Overflow Weir Overflow Weir Front Edge Height, Ho Zone 3 Weir Not Selected Height of Grate Upper Flage, H; Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.00 N/A Hete Overflow Weir Slope 4.00 N/A Overflow Weir Slope 0.000 N/A Hete Overflow Grate Open Area % 4.00 N/A Overflow Weir Slope 0.000 N/A Hete Overflow Grate Open Area % 4.00 N/A Overflow Grate Open Area % 4.00 N/A K grate open area/total area Overflow Grate Open Area %/ Debris = 5.60 N/A Overflow Grate Open Area %/ 50% N/A % Solverflow Grate Open Area %/ Debris = 8.40 N/A User Input: Outlet Pipe W/ Flow Restrictor Plate (Circular Orifice, Restrictor Plate, Grate Circular Orifice, Restrictor Nate Selected N/A % Outlet Orifice Area = 0.01 0.01 0.02 N/A User Input: Emrogency Spillway (Invert Stage = 0 ft) Spillway Design Flow Depting 1.01 N/A Spillw			-			,			.,					
Overflow Weir Front Edge Height, Ho Zone 3 Weir Not Selected 0.verflow Weir Front Edge Height, Ho 4.73 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Height, Ho 4.73 N/A 0.verflow Weir Front Edge Length = 6.00 N/A fteet Overflow Weir Stope = 4.03 N/A 0.verflow Weir Stope = 0.00 N/A Ht (relative to basin bottom at Stage = 0 ft) Grate Open Area // Dotyr File 4.00 N/A 0.verflow Weir Stope = 0.00 N/A Hst Yeir zero for fat grate) Overflow Weir Stope Length 4.00 N/A 0.verflow Grate Open Area // Dotyr Weir N/A Hst Yeir zero for fat grate) Overflow Grate Open Area // Dotyr 8.40 N/A User Input: Outlet Pipe w/ Flow Restrictor Plate, Or Restructor Plate, Or Restructor Plate, Or Restructor N/A Hst Yeir Second Calculated Parameters for Outlet Pipe w/ Flow Restrictor N/A User Input: Outlet Pipe w/ Flow Restrictor Plate, Or Restructor Plate, Or Restructor N/A Ht (stature below basin bottom at Stage = 0 ft) Outlet Orflice Area at 0.01 Outlet Orflice Area at 0.01 0.01 N/A Dep			,											
Overflow Weir Front Edge Height, Ho Zone 3 Weir Not Selected 0.verflow Weir Front Edge Height, Ho 4.73 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Height, Ho 4.73 N/A 0.verflow Weir Front Edge Length = 6.00 N/A fteet Overflow Weir Stope = 4.03 N/A 0.verflow Weir Stope = 0.00 N/A Ht (relative to basin bottom at Stage = 0 ft) Grate Open Area // Dotyr File 4.00 N/A 0.verflow Weir Stope = 0.00 N/A Hst Yeir zero for fat grate) Overflow Weir Stope Length 4.00 N/A 0.verflow Grate Open Area // Dotyr Weir N/A Hst Yeir zero for fat grate) Overflow Grate Open Area // Dotyr 8.40 N/A User Input: Outlet Pipe w/ Flow Restrictor Plate, Or Restructor Plate, Or Restructor Plate, Or Restructor N/A Hst Yeir Second Calculated Parameters for Outlet Pipe w/ Flow Restrictor N/A User Input: Outlet Pipe w/ Flow Restrictor Plate, Or Restructor Plate, Or Restructor N/A Ht (stature below basin bottom at Stage = 0 ft) Outlet Orflice Area at 0.01 Outlet Orflice Area at 0.01 0.01 N/A Dep														
Overflow Weir Front Edge Height, Hoe 4.73 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grafe Upper Edge, H ₁ 4.73 N/A Overflow Weir Stope Length = 0.00 N/A Heet Core Flow Weir Stope Length = 4.00 N/A Overflow Weir Stope Length = 0.00 N/A Heet Core Flow Weir Stope Length = 4.00 N/A Overflow Weir Stope Length = 0.00 N/A feet Overflow Grate Open Area av /O Debris = 5.8.0 N/A Overflow Core Davice Avera ave 50% N/A % grate open area/total area Overflow Grate Open Area ave /O Debris = 5.8.0 N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orffice, Restrictor Plate, or Rectangular Orffice) Calculated Parameters for Outlet Pipe w/ Flow Restriction 8.40 N/A Outlet Office / Depth to Invert of Outlet Pipe in meters 0.30 N/A inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A User Input: Emergency Spillway (Rectangular or Tragezoidal) feet Spillway Design Flow Depth Office 6.41 0.22 inches Spillway Urest tangt how office ave	User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)		-			Calculated	d Parameters for Ove	rflow Weir					
Overflow Weir Front Edge Length = 6.00 N/A fret Over Flow Weir Stope Length = 4.00 N/A Overflow Weir Stope = 0.00 N/A Hrty (entir zero for flat grate) Grate Open Area / 100-yr Orffice Area = 53.61 N/A Overflow Grate Open Area / Depr Area % 70% N/A % grate open area/total area Overflow Grate Open Area / Debris 58.00 N/A Overflow Grate Open Area % 70% N/A % grate open area/total area Overflow Grate Open Area / Debris 58.40 N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orffice) Calculated Parameters for Outlet Pipe w/ Flow Restriction 0.010 N/A % User Input: Energency Spillway Invert Stage 5.00 N/A fret 0.010 N/A Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Invert Stage 0.021 N/A Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Insert Stage 0.024 perts Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Insert Stage									Not Selected					
Overflow Weir Stope Horiz, Length of Weir Stope Overflow Grate Open Area W / 100-yr Orffice Area Debris Clogging % 53.6.1 N/A N/A Overflow Grate Open Area W / 100-yr Orffice Area Debris Clogging % 4.00 N/A feet Overflow Grate Open Area W / Debris = 16.80 N/A Overflow Grate Open Area W / Debris = 50% N/A % grate open area/total area Overflow Grate Open Area W / Debris = 8.40 N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orffice, Restrictor Plate, or Rectangular Orffice) Calculated Parameters for Outlet Pipe W/ Flow Restriction N/A Outlet Pipe Diameter = 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area 0.31 N/A Outlet Pipe Diameter = 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area 0.31 N/A User Input: Emergency Spillway (Restanguer or Trapezoida) Calculated Parameters for Spillway Spillway Nets Stage Spillway Design Flow Depthe 0.04 feet Spillway Crest Length 3.00 feet Stage at Top of Freeboard = 0.22 2.25 2.52 Calculated Parameters for Outlet Pipe Urin					ttom at Stage = 0 ft)			-						
Horiz Length of Weir Sides Overflow Grate Open Area w/o Debris = 16.80 N/A Overflow Grate Open Area w/o Debris = 00% N/A % Overflow Grate Open Area w/o Debris = 8.40 N/A Debris Ologging % = 50% N/A % Overflow Grate Open Area w/o Debris = 8.40 N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orffice, Restrictor Plate, o Reatangular Orffice) Calculated Parameters for Outlet Pipe w/ Flow Restriction N/A % Outlet Pipe w/ Flow Restriction Plate (Dircular Orffice, Restrictor Plate, o Reatangular Orffice) Calculated Parameters for Outlet Pipe w/ Flow Restriction N/A Outlet Pipe Diameter = 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orffice Area = 0.31 N/A User Input: Emergency Spillway (Rectangular or Trapecidal) inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A Spillway Invert Stages = 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Deptipe 1 0.64 feet Spillway Invert Stages = 1.00 feet 0.20 acres 2.25 2.52 0.26 1.00 feet					at grata)									
Overflow Grate Open Area % 70% N/A %, grate open area/total area Debris Clogging % Overflow Grate Open Area %/ Debris * 8.40 N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Zone 3 Restrictor Not Selected 0.31 N/A Depth to Invert of Outlet Pipe Isoo N/A fr. distance below basin bottom at Stage = 0 ft) Outlet Orifice Area at 0.31 N/A Outlet Pipe biameter + Isoo N/A inches Outlet Orifice Area at 0.31 N/A User Input: Emergency Spillway (Rectangular or Tragezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Crest Lengt + 3.00 feet Spillway Crest Lengt + 3.00 feet Spillway Crest Lengt + 3.00 feet Spillway Crest Lengt + 0.22 2.25 2.52 Coladated Hord Optim (And Coladate Area Mol Volume (aref-H) 0.033 1.07 1.19 1.50 1.75 2.00 2.25 2.52 2.52 Calculated Hydrograph Results 0.056 0.129 0.244 <td></td> <td></td> <td></td> <td></td> <td>al grate)</td> <td></td> <td></td> <td>-</td> <td></td>					al grate)			-						
Debris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Depth to invert of Outlet Pipe * 0.30 N/A in (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.31 N/A Outlet Pipe biameter 0.30 N/A inches Half-Centrol a 0.21 N/A Restrictor Plate Height Above Pipe Invert 4.20 inches Half-Centrol a 0.21 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway 6.64 feet Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depthe 0.64 feet Spillway Crest Length = 3.00 feet Spillway Crest Stage = 1.00 feet Design Storm Return Period 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoft Volume (acre-ft) 0.053 1.07 1.19 1.50	•				otal area									
Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Diameter= 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orlifec Area 0.31 N/A Outlet Pipe Diameter= 18.00 N/A inches Outlet Orlifec Centroid = 0.31 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Crest Length = 3.60 feet Stage = 0 ft) Spillway Endos Depthe 0.64 feet Spillway Invert Stage= 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Depthe 0.64 feet Spillway Invert Stage= 3.00 feet Stage at Top of Freeboard = 7.24 feet Spillway End Stopes = 4.00 H/V Basin Area at Top of Freeboard = 0.20 arcres Preeboard above Max Water Surface 1.00 feet 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoft Volume (acreft) = 0.056 0.189 0.156 0.208 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Diameter = 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.31 N/A Outlet Pipe Diameter = 18.00 N/A inches Outlet Orifice Centroid = 0.21 N/A Restrictor Plate Height Above Pipe Invert = 4.20 inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A User Input: Emergency Spillway (Rectangular or Trapezoldal) Calculated Parameters for Spillway Calculated Parameters for Spillway feet Stage at Top of Freeboard = 7.24 feet Spillway Invert Stage= 1.00 feet Stage at Top of Freeboard = 0.20 arcres Freeboard above Max Water Surfield 0.053 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoft Volume (acreft) = 0.056 0.189 0.156 0.208 0.244 0.244 0.326 0.419 0.53 0.07/141 OPTIONAL Overide Rundt Volume (acreft) = 0.056 0.189 0.156 0.286 0.345														
Depth to Invert of Outlet Pipe 0.30 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.31 N/A Outlet Pipe Diameter = 18.00 N/A Inches Outlet Orifice Centrol = 0.21 N/A Restrictor Plate Height Above Pipe Invert = 4.20 inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Depth = 0.64 feet Spillway Crest Length = 3.00 feet Spillway Depth = 0.64 feet Spillway Exercise Length = 3.00 feet Spillway Exercise and Top of Freeboard = 0.20 acres Freeboard above Max Water Surface 1.00 feet Spillway Exercise and Top of Freeboard = 0.20 acres Calculated Runoff Volume (acreft) = 0.03 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acreft) = 0.038 0.234 0.244 0.326 0.419 0.539 0.627 0.714	User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restrie	ctor Plate, or Rectang	ular Orifice)			Calculated Paramete	rs for Outlet Pipe w/	Flow Restriction Pla					
Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = 18.00 N/A Inches Outlet Orifice Centroid = 0.21 N/A Restrictor Plate Height Above Pipe Invert = 4.20 inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.64 feet Spillway Crest Length = 3.00 feet Spillway Engles = 7.24 feet Spillway Invert Stage 4.00 H:V Basin Area at Top of Freeboard = 0.20 acres Freeboard above Max Water Surface = 1.00 feet 0.20 acres 0.20 acres Calculated Hydrograph Results 0.68 0.294 0.2244 0.326 0.419 0.539 0.627 0.711 OPTIONAL Override Runoff Volume (acre-ft) = 0.056 0.189 0.156 0.208 0.244 0.326 0.419 0.539 0.627 0.741 Predevelopment Unit Paka (Cris) = 0.00 0.01 </td <td></td> <td>Zone 3 Restrictor</td> <td>Not Selected</td> <td></td> <td></td> <td></td> <td></td> <td>Zone 3 Restrictor</td> <td>Not Selected</td>		Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected					
Restrictor Plate Height Above Pipe Invert = 4.20 inches Half-Central Angle of Restrictor Plate on Pipe = 1.01 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Crest Length = 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Despth= 0.64 feet Spillway Crest Length = 3.00 feet Stage at Top of Freeboard = 7.24 feet Spillway End Slopes = 4.00 H.V Basin Area at Top of Freeboard = 0.20 acres Preeboard above Max Water Surface = 1.00 feet 53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acreft) = 0.056 0.189 0.156 0.208 0.268 0.401 0.475 Predevelopment Unit Peak Flow, q(cfs) = 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Valume (acreft) = 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Valume (acreft) =					n bottom at Stage = 0 f									
Calculated Parameters for Spillway Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway (next stage = 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.64 feet Spillway Crest Length = 3.00 feet Stage at Top of Freeboard = 0.20 acres Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.20 acres Design Storm Return Period A One-Hour Rainfall Depth (in) = 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) = 0.038 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) = 0.00 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Dink Peak Flow, q (cfs) are place 0.056 0.189 0.156 0.208 0.248 0.345 0.401 0.475 Predevelopment Dine Peak V (cfs) = 0.00 0.00 0.01 <			N/A					-						
Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.64 feet Spillway Crest Length 3.00 feet Stage at Top of Freeboard = 7.24 feet Spillway Crest Length 4.00 H:V Basin Area at Top of Freeboard = 0.20 acres Freeboard above Max Water Surface 1.00 feet Basin Area at Top of Freeboard = 0.20 acres Routed Hydrograph Results Design Storm Return Period = WQCV EURV 2 Year 5 Year 10 Year 25 Year 5 OYear 100 Year One-Hour Rainfall Depth (n) 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) 0.088 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) 0.056 0.189 0.156 0.208 0.268 0.345 0.401 0.475 Predevelopment Peak Q (cfs) 0.0 0.0 0.01 0.06 2.1 2.9 3.9 3.4	Restrictor Plate Height Above Pipe Invert =	4.20		inches	Half	-Central Angle of Rest	rictor Plate on Pipe =	1.01	N/A					
Spillway Invert Stage 5.60 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.64 feet Spillway Crest Length 3.00 feet Stage at Top of Freeboard = 7.24 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 0.20 acres Freeboard above Max Water Surface 1.00 feet Basin Area at Top of Freeboard = 0.20 acres Design Storm Return Period = WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (n) = 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) = 0.088 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) = 0.00 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Unit Peak Flow, q (cfs/acre) = 0.00 0.01 0.02 0.14 0.50 0.69	User Input: Emergency Spillway (Rectand	zular or Trapezoidal)					Calcula	ated Parameters for 9	Spillway					
Spillway Crest Length = Spillway End Slopes = H.00 3.00 feet H.V Stage at Top of Freeboard = 0.20 7.24 feet acres Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.20 0.20 acres Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Unflow Hydrograph Volume (acre-ft) = Nedevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak R Q (cfs) = Predevelopment Unit Peak R Q (cfs) = Predevelopment Q (cfs) = Desk Unflow Q (cfs) = Ratio Peak Unflow Q (cfs) = Max Velocity through Grate 1 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Hat Inflow Volume (hours) = Hat Inflow Volume (hours) = Hat Inflow Volume (hours) = Hat Inflow Predevelopment Q = N/A N/A N/A <td></td> <td></td> <td></td> <td>oottom at Stage = 0 ft)</td> <td>)</td> <td>Spillway</td> <td></td> <td></td> <td>1 .</td>				oottom at Stage = 0 ft))	Spillway			1 .					
Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard 0.20 acres Freeboard above Max Water Surface 1.00 feet besign Storm Return Period 0.20 acres Routed Hydrograph Result Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) 0.088 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) 0.056 0.189 0.156 0.208 0.268 0.345 0.401 0.475 Predevelopment Veak Q (cfs) 0.00 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Peak Q (cfs) 1.0 3.2 2.6 3.5 4.5 5.7 6.7 7.9 Peak Inflow Q (cfs) 0.0 <	· · · –							-						
Noted Hydrograph Results WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 60 Year	Spillway End Slopes =	4.00	H:V			Basin Area	at Top of Freeboard =	0.20	acres					
Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) 0.088 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) 0.055 0.189 0.156 0.208 0.268 0.345 0.401 0.475 Inflow Hydrograph Volume (acre-ft) 0.000 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Dati Peak Cl(cfs) 0.00 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Peak Q (cfs) 0.0 0.0 0.0 0.0 0.1 0.1 0.6 2.1 2.9 3.9 Peak Inflow Q (cfs) 0.0 0.1 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow	Freeboard above Max Water Surface =	1.00	feet						-					
Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) 0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 Calculated Runoff Volume (acre-ft) 0.088 0.294 0.244 0.326 0.419 0.539 0.627 0.741 OPTIONAL Override Runoff Volume (acre-ft) 0.055 0.189 0.156 0.208 0.268 0.345 0.401 0.475 Inflow Hydrograph Volume (acre-ft) 0.000 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Dati Peak Cl(cfs) 0.00 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Peak Q (cfs) 0.0 0.0 0.0 0.0 0.1 0.1 0.6 2.1 2.9 3.9 Peak Inflow Q (cfs) 0.0 0.1 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow														
One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) OPTIONAL Override Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Flow, q (dsfacer) Predevelopment Peak Q (ds) Peak Inflow Q (ds) Peak Inflow Q (ds) Beak Outflow to Predevelopment Q 0.05 0.189 0.156 0.208 0.268 0.345 0.401 0.475 Predevelopment Unit Peak Flow, q (dsfacer) Predevelopment Peak Q (ds) Peak Inflow Q (ds) Beak Inflow Q (ds) Attion Volume (acre-ft) OU 0.00 0.01 0.02 0.14 0.50 0.69 0.94 NA 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Max Velocity through Grate 1 (hps) Time to Drain 99% of Inflow Volume (hours) N/A N/A N/A N/A N/A N/A N/A 0.0 0.1 0.1 0.1 0.9 2.3 3.4 Max Velocity through Grate 1 (hps) Time to Drain 99% of Inflow Volume (hours) N/A N/A<		1110.01					05.V	504	400.11					
Calculated Runoff Volume (acre-ft) OPTIONAL Override Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Mindow Hydrograph Volume (acre-ft) Endewelopment Unit Peak Flow, q (sfs/acre) Predevelopment Peak Q (sfs) Predevelopment Q (sfs) Peak Nufflow Q (sfs) Predevelopment Q (sfs) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	-													
OPTIONAL Override Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Flow, q (ds/acre) Predevelopment Volume (qsr) Predevelopment Peak Q (ds) Predevelopment Peak Inflow Q (ds) Peak Inflow Q (ds) Peak Nufflow Q (ds) Peak Outflow Q (ds) Peak Outflow Q (ds) Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fts) Max Velocity through Grate 2 (fts) Time to Drain 97% of Inflow Volume (hours) Time to Drain 99% of Inflow Volume (hours) Pate Max Velocity Volume (hours) Pate Max Velocity Volume (hours) One One One One One One One One One One														
Predevelopment Unit Peak Flow, q (cfs/acre) = 0.00 0.01 0.02 0.14 0.50 0.69 0.94 Predevelopment Peak Q (cfs) = 0.0 0.0 0.0 0.1 0.66 2.1 2.9 3.9 Peak Inflow Q (cfs) = 1.0 3.2 2.6 3.5 4.5 5.7 6.7 7.9 Peak Inflow Q (cfs) = 0.0 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 1.5 0.2 0.4 0.8 0.9 Structure Controlling Flow Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A 0.0 0.1 0.2 0.4 0.8 0.9 Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A N/A 0.0 0.1 0.2 0.4 0.8 0.9 Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A N/A N/A N/A N/A <t< td=""><td>OPTIONAL Override Runoff Volume (acre-ft) =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	OPTIONAL Override Runoff Volume (acre-ft) =													
Predevelopment Peak Q (cfs) = 0.0 0.0 0.0 0.1 0.6 2.1 2.9 3.9 Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = 1.0 3.2 2.6 3.5 4.5 5.7 6.7 7.9 Peak Outflow Q (cfs) = 0.0 0.1 0.1 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 0.1 0.1 0.1 0.9 2.3 3.4 Structure Controlling Flow = N/A N/A N/A 1.5 0.2 0.4 0.8 0.9 Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A 0.0 0.1 0.2 Max Velocity through Grate 2 (fps) = N/A 0.0 0.1 0.2 Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A N/A N/A N/A														
Peak Inflow Q (cfs) = 1.0 3.2 2.6 3.5 4.5 5.7 6.7 7.9 Peak Outflow Q (cfs) = 0.0 0.1 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow Q (cfs) = N/A N/A N/A 1.5 0.2 0.4 0.8 0.9 Structure Controlling Flow = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 Over														
Peak Outflow Q (cfs) = 0.0 0.1 0.1 0.1 0.1 0.1 0.9 2.3 3.4 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A N/A 1.5 0.2 0.4 0.8 0.9 Structure Controlling Flow = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 Overflow Grate 1 Outlet Plate Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A 0.0 0.1 0.2 Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0 0.1 0.2 Time to Drain 97% of Inflow Volume (hours) = 39 68 65 70 75 78 77 75 Time to Drain 99% of Inflow Volume (hours) = 41 72 68 74 81 85 84 83														
Structure Controlling Flow = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 Overflow Grate 1 Outlet Plate Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A Overflow Grate 1	Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.1	0.9	2.3	3.4					
Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A 0.0 0.1 0.2 Max Velocity through Grate 2 (fps) = N/A N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Max Velocity through Grate 2 (fps) = N/A	-													
Time to Drain 97% of Inflow Volume (hours) = 39 68 65 70 75 78 77 75 Time to Drain 99% of Inflow Volume (hours) = 41 72 68 74 81 85 84 83														
						75								
Maximum Ponding Depth (ft) = 2.01 3.64 3.30 3.83 4.37 4.80 4.87 4.96 Area at Maximum Panding Depth (area) 0.00 0.00 0.10 0.12 0.12 0.12														
Area at Maximum Ponding Depth (acres) = 0.06 0.10 0.09 0.10 0.11 0.12 0.13 0.13 Maximum Volume Stored (acre-ft) = 0.052 0.177 0.146 0.195 0.252 0.303 0.312 0.324														

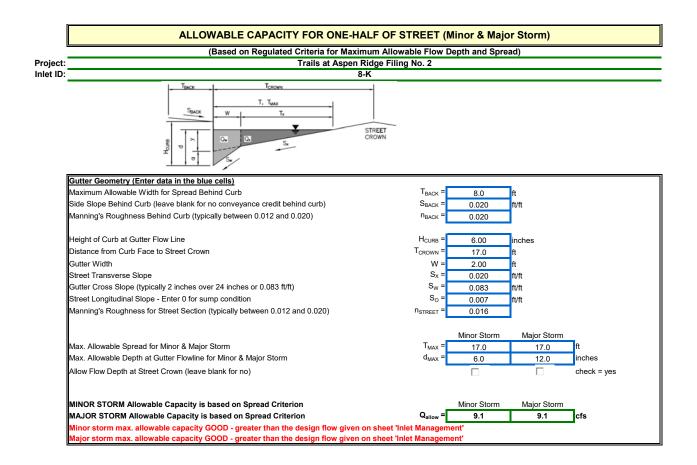


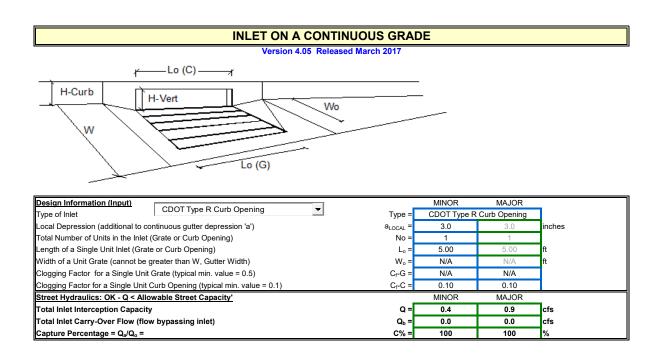


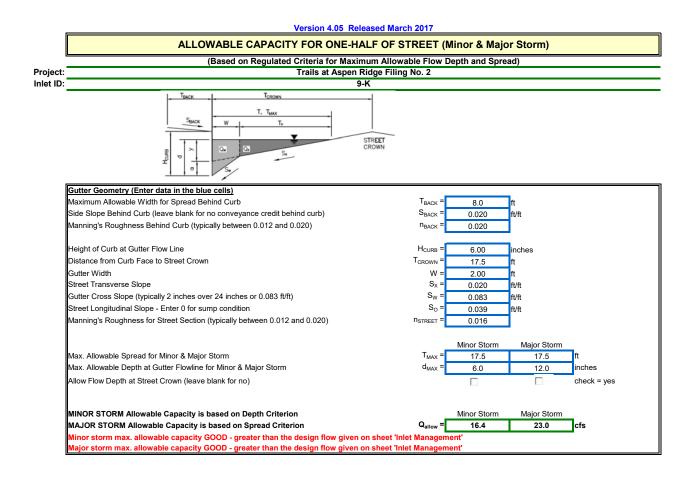


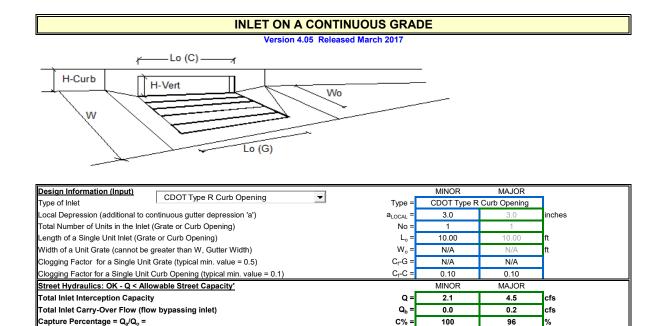


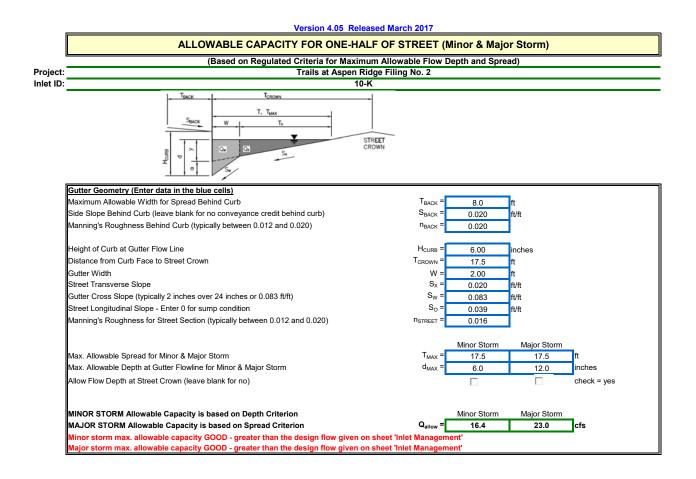


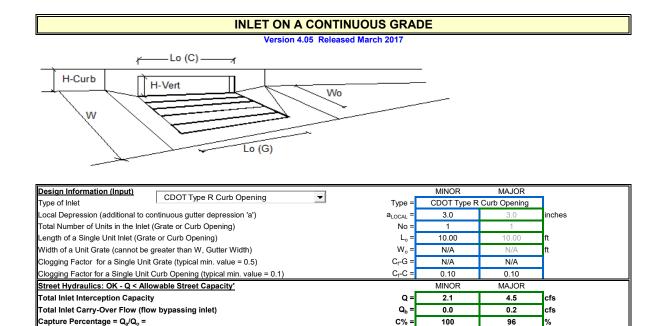


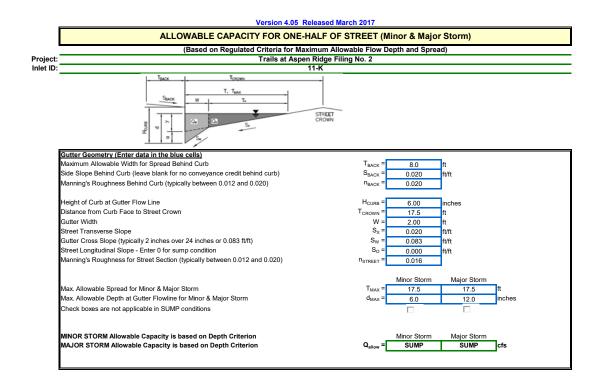


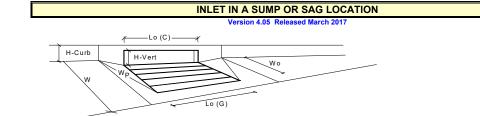


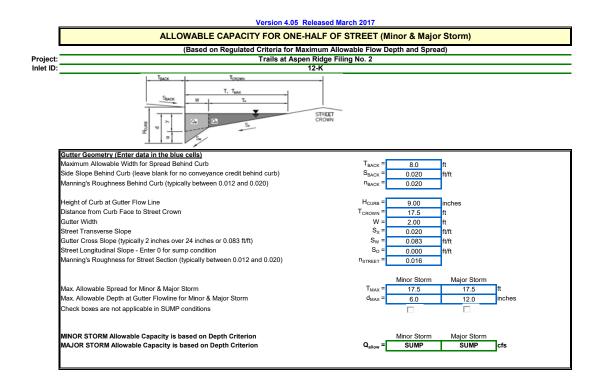


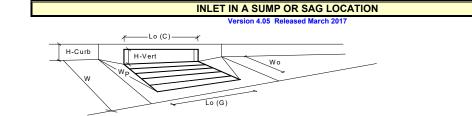


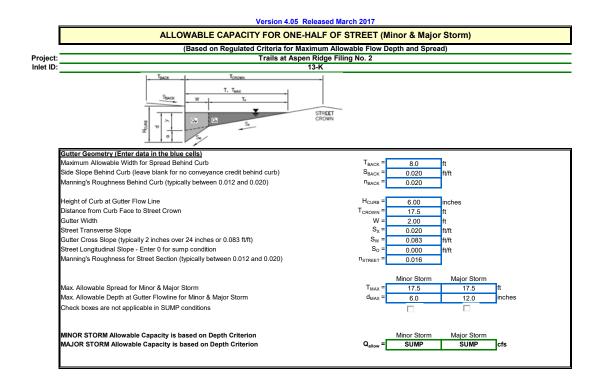


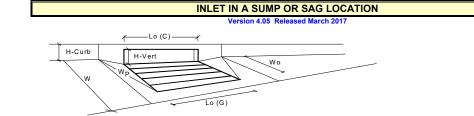


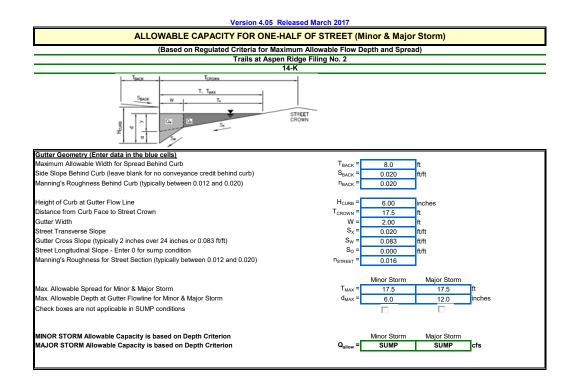


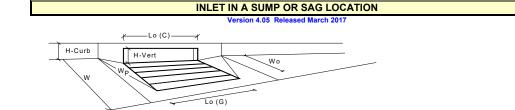




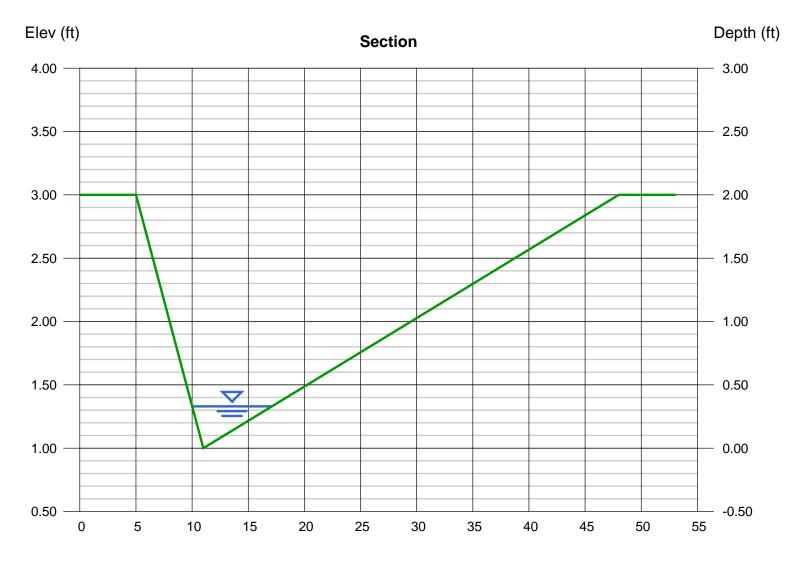



Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet		Type =	CDOT Type F	Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Cur	b Opening)	No =	1	1	
Water Depth at Flowline (outside of	local depression)	Ponding Depth =	5.7	5.7	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typ	ical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value	2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical val	ue 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		-	MINOR	MAJOR	
Length of a Unit Curb Opening		L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in I	nches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inch	nes	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure	e ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typi	cally the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb C	Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typi	cal value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (ty	pical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reductio	n (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equa	tion	d _{Curb} =	0.31	0.31	ft
Combination Inlet Performance Red	luction Factor for Long Inlets	RF _{Combination} =	0.54	0.54	
Curb Opening Performance Reduct	tion Factor for Long Inlets	RF _{Curb} =	0.92	0.92	
Grated Inlet Performance Reduction	n Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
			MINOR	MAJOR	
Total Inlet Interception Cap	acity (assumes clogged condition)	Q _a =	7.3	7.3	cfs
Inlet Capacity IS GOOD for Minor	and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	5.5	cfs




CDOT Type R Curb Opening	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	0.00	0.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.7	5.7	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.31	0.31	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.54	0.54	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.92	0.92	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.3	7.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	5.5	cfs

CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.7	5.7	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.31	0.31	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.54	0.54	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.92	0.92	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.3	7.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.7	5.8	cfs


CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.7	5.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.31	0.31	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.54	0.54	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.92	0.92	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.27	7.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.66	5.8	cfs

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

TAR F2-Bypass swale east of development

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 18.50	Depth (ft)	= 0.33
Total Depth (ft)	= 2.00	Q (cfs)	= 4.000
		Area (sqft)	= 1.17
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.42
Slope (%)	= 3.90	Wetted Perim (ft)	= 7.16
N-Value	= 0.025	Crit Depth, Yc (ft)	= 0.39
		Top Width (ft)	= 7.09
Calculations		EGL (ft)	= 0.51
Compute by:	Known Q		
Known Q (cfs)	= 4.00		

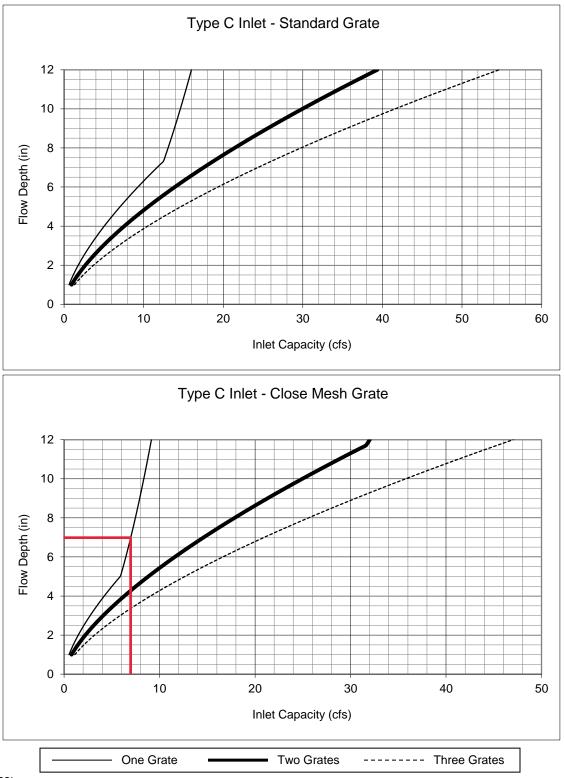


Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

1. The standard inlet parameters must apply to use these charts.

<u>APPENDIX B</u>

STANDARD DESIGN CHARTS AND TABLES

Land Use or Surface Percent Runoff Coefficients													
Characteristics	Impervious	2-у	ear	5-y	ear	10 - ر	/ear	25-year		50-year		100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	<mark>0.81</mark>	0.82	0.83	0.84	0.85	0.87	0.87	0.88	<mark>0.88</mark>	0.89
Neighborhood Areas	70	0.45	0.49	<mark>0.49</mark>	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	<mark>0.45</mark>	0.49	0.49	0.54	0.54	0.59	0.57	0.62	<mark>0.59</mark>	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets	100	0.00	0.00	0.00	0.00	0.02	0.02	0.04	0.04	0.05	0.05	0.00	0.00
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

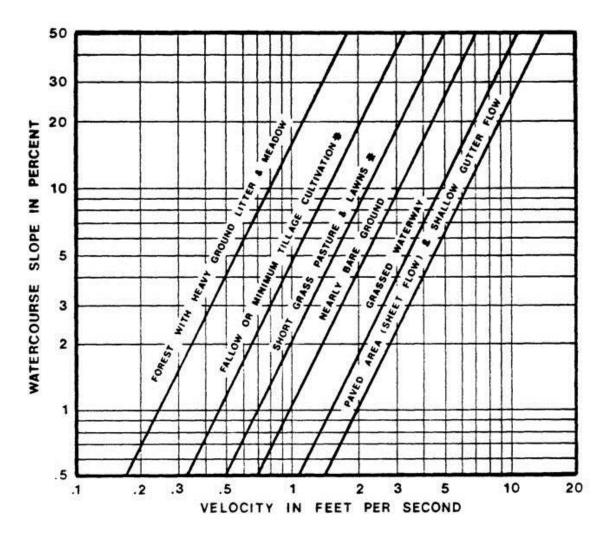
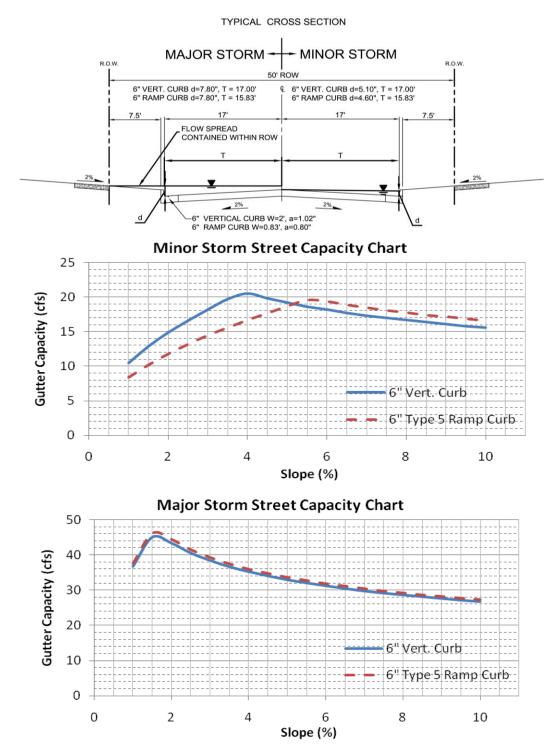
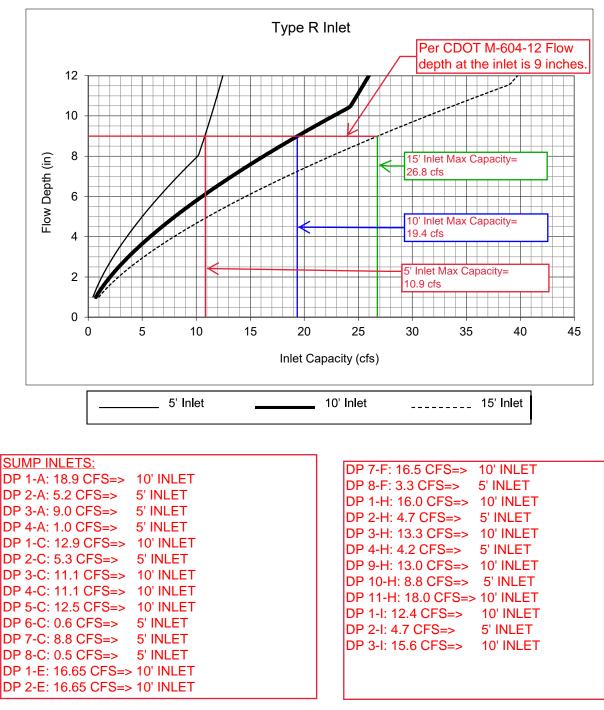
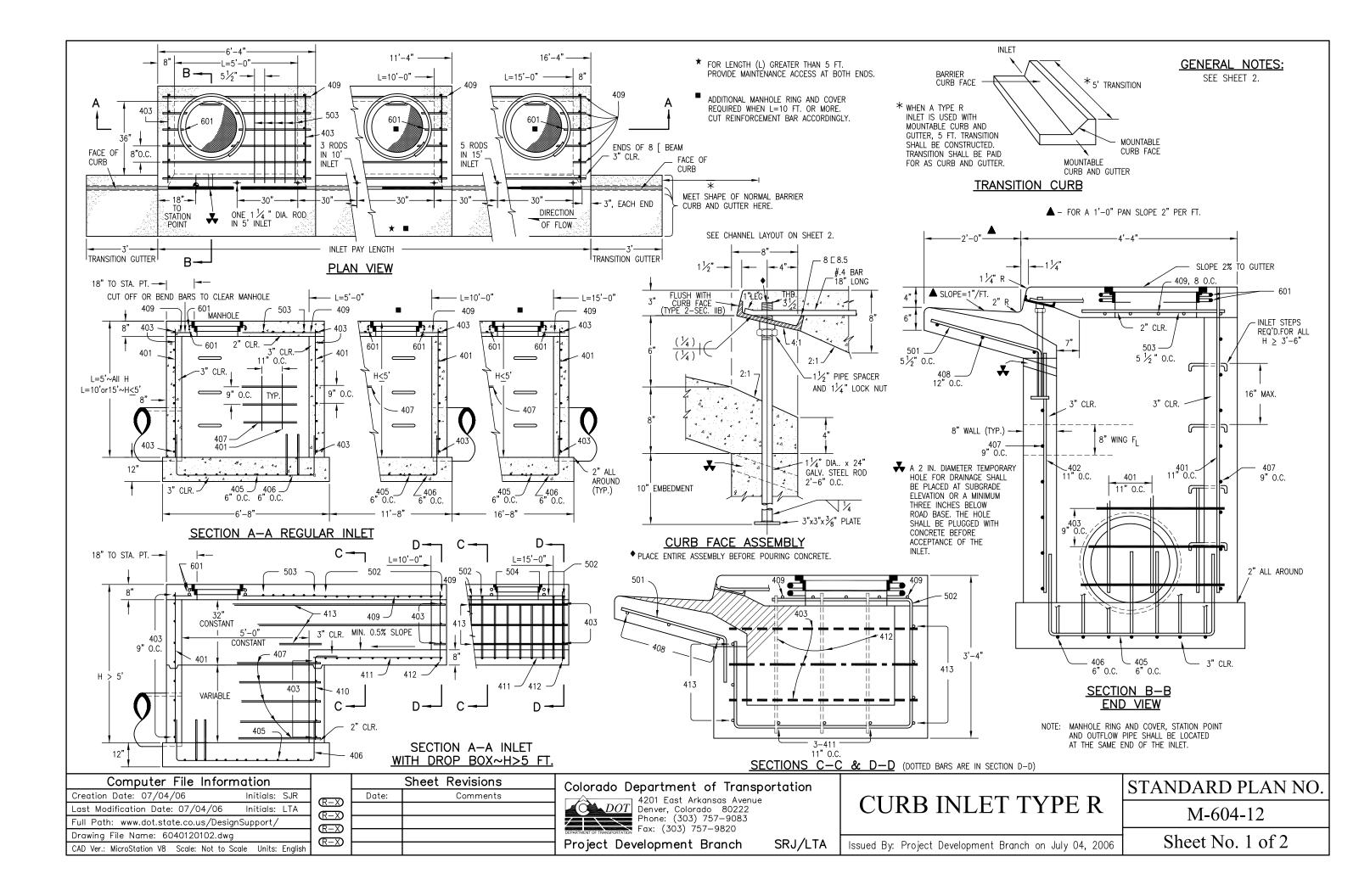
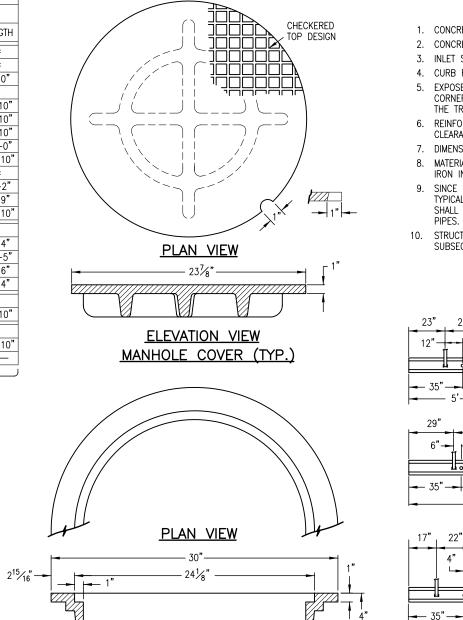



Figure 6-25. Estimate of Average Concentrated Shallow Flow

These charts shall only be used for the standard street sections as shown. The capacity shown is based on ½ the street section as calculated by the UD-Inlet spreadsheets. Minor storm capacities are based on no crown overtopping, curb height or maximum allowable spread widths. Major storm capacities are based on flow being containing within the public right-of-way, including conveyance capacity behind the curb. The UDFCD Safety Reduction Factor was applied. An 'nstreet' of 0.016 and 'n_{BACK}' of 0.020 was used. Calculations were done using UD-Inlet 3.00.xls, March, 2011.


Figure 8-11. Inlet Capacity Chart Sump Conditions, Curb Opening (Type R) Inlet

Notes:

1. The standard inlet parameters must apply to use this chart.

	BAR #			ALL INL	.ets		INLETS:	H≤5 FT.			INLETS:	H>5 FT.	
MARK	OR SIZE	0.C. SPACING	TYPE	L = 5	FT.	L = 10	FT.	L = 15	FT.	L = 10	FT.	L = 15	FT.
	SIZE			NO. REQ'D.	LENGTH	NO. REQ'D.	LENGTH	NO. REQ'D.	LENGTH	NO. REQ'D.	LENGTH	NO. REQ'D.	LENGT
401	4	11"		15	*	21	*	26	*	11	*	11	*
402	4	11"		7	*	13	*	18	*	7	*	7	*
403	4	9"	ll	*	4'-0"	*	4'-0"	*	4'-0"	*	4'-0"	*	4'-0
405	4	6"	VI	11	6'-10"	21	6'-10"	31	6'-10"	11	6'-10"	11	6'-10
405	4	6"	VII	7	$\frac{0-10}{8'-10''}$	7	13'-10"	7	18'-10"	7	8'-10"	7	8'-10
407	4	9"		*	5'-10"	*	10'-10"	*	15'-10"	*	5'-10''	*	5'-10
408	4	12"		3	6'-10"	3	11'-10"	3	16'-0"	3	11'-10"	3	16'-0
409	4	8"		6	5'-10"	6	10'-10"	6	15'-10"	6	10'-10"	6	15'-1
410	4	11"	VII	0	0 10	0	10 10		10 10	3	*	3	*
411	4	11"								3	5'-2"	3	10-2
412	4	11"								3	2'-9"	3	2'-9
413	4	9"								7	10'-10"	7	15'–1
501	5	$5\frac{1}{2}$ "	IV	11	3'-4"	22	3'-4"	33	3'-4"	22	3'-4"	33	3'-4
502	5	$5\frac{1}{2}$ "	III							11	11'-5"	17	11'-5
503	5	$5\frac{1}{2}$ "		5	3'-6"	16	3'-6"	27	3'-6"	6	3'-6"	6	3'-6
504	5	51/2"	IX									5	8'-4
601	6	2 ¹ ⁄ ₂ "	V	2	8'-10"	2	8'-10"	2	8'-10"	2	8'–10"	4	8'-1(
8[8.5				1	5'-10"	1	10'-10"	1	15'–10"	1	10'-10"	1	15'–1
-				2 BARS, 1 RODS		4 BARS, 3 RODS		8 BARS, 5 RODS		4 BARS, 3 RODS		8 BARS, 5 RODS	

ELEVATION VIEW

TYPE III

31"

T

- 44" -

502

⊢ 41"

MANHOLE RING (TYP.)

TYPE IV

29"

501

8

WEIGHTS: COVER = 125 LBS.

+ RING = 135 LBS.

TOTAL = 260 LBS.

TYPE V

601

12

■ INCLUDE #4, 18 IN. BARS (SEE CHANNEL LAYOUT).

REGULAR INLETS

		LENGTH		NO. F	REQ'D.	NO. F	REQ'D.	L = 5	5 FT.	L = 1	0 FT.	L = 1	5 FT.
"H"				REGU	JLAR	DROP	BOX	CONC.	STEEL	CONC.	STEEL	CONC.	STEEL
	401	402	410	403	407	403	407	CU. YDS.	LBS.	CUNC. CU. YDS.	LBS.	CU. YDS.	LBS.
3'-0"	2'-8"	1'-8"		10	7			3.2	285	5.3	497	7.4	706
3'-6"	3'-2"	2'-2"		10	7			3.4	305	5.7	528	7.9	747
4'-0"	3'-8"	2'-8"		12	9			3.7	326	6.0	559	8.4	786
4'-6"	4'-2"	3'-2"		12	9			3.9	334	6.4	571	8.8	803
5'-0"	4'-8"	3'-8"		14	11			4.1	354	6.7	602	9.3	844
5'-6"	5'-2"	4'-2"	3'-5"	16	13	15	6	4.4	375	6.0	607	7.4	850
6'-0"	5'-8"	4'-8"	3'-11"	16	13	16	6	4.6	382	6.2	616	7.6	860
6'-6"	6'-2"	5'-2"	4'-5"	18	15	18	8	4.8	402	6.4	637	7.8	880
7'-0"	6'-8"	5'-8"	4'-11"	20	17	19	10	5.0	423	6.6	654	8.0	897
7'-6"	7'-2"	6-2"	5'-5"	20	17	20	10	5.3	430	6.9	664	8.3	907
8'-0"	7'-8"	6'-8"	5'-11"	22	19	22	12	5.5	451	7.1	684	8.5	927
8'-6"	8'-2"	7'-2"	6'-5"	24	21	23	14	5.7	471	7.3	702	8.7	944
9'-0"	8'-8"	7'-8"	6'-11"	24	21	24	14	6.0	479	7.6	711	9.0	954
9'-6"	9'-2"	8'-2"	7'-5"	26	23	26	16	6.2	499	7.8	732	9.2	974
10'-0"	9'-8"	8'-8"	7'-11"	28	25	27	18	6.4	520	8.0	749	9.4	992
10'-6"	10'-2"	9'-2"	8'-5"	28	25	28	18	6.7	527	8.3	759	9.7	1001
11'-0"	10'-8"	9'-8"	8'-11"	30	27	30	20	6.9	547	8.5	779	9.9	1022

NOTES: FOR L=5 FT., L=10 FT., AND L=15 FT. REGULAR INLETS: TOTAL QUANTITIES NEEDED ARE OUTSIDE THE HEAVY BLACK LINE.

DROP BOX INLETS: TOTAL QUANTITIES NEEDED ARE INSIDE THE HEAVY BLACK LINE.

STEEL WEIGHTS DO NOT INCLUDE STRUCTURAL STEEL CHANNEL

TABLE TWO ~ BARS AND QUANTITIES VARIABLE WITH "H"

Computer File Inforn	nation			Sheet Revisions	Colorado Department of Transp	ortation	
Creation Date: 07/04/06	Initials: SJR	(R-X)	Date:	Comments			
Last Modification Date: 07/04/06	Initials: LTA	$\mathbb{R}=X$			4201 East Arkansas Avenue Denver, Colorado 80222 Phone: (303) 757-9083	-	CURB INLET
Full Path: www.dot.state.co.us/Desig	nSupport/	$\mathbb{R}=X$			Phone: (303) 757-9083 DEPARTMENT OF TRANSPORTATION Fax: (303) 757-9820		
Drawing File Name: 6040120202.dwg		$\mathbb{R}=X$					
CAD Ver.: MicroStation V8 Scale: Not to Sc	cale Units: English				Project Development Branch	SRJ/LTA	Issued By: Project Development Bra

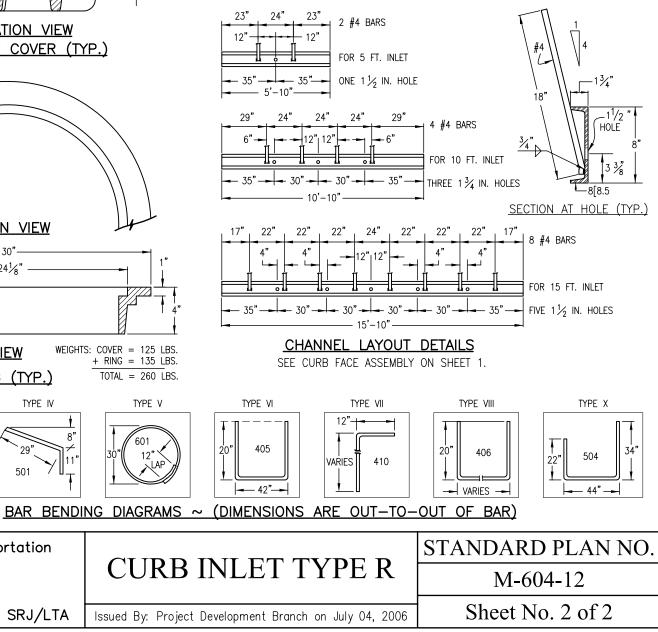
TYPE II

LENGTH

DROP BOX INLETS

GENERAL NOTES

1. CONCRETE SHALL BE CLASS B. INLET MAY BE CAST-IN-PLACE OR PRECAST. 2. CONCRETE WALLS SHALL BE FORMED ON BOTH SIDES AND SHALL BE 8 IN. THICK. 3. INLET STEPS SHALL BE IN CONFORMANCE WITH AASHTO M 199. 4. CURB FACE ASSEMBLY SHALL BE GALVANIZED AFTER WELDING.


5. EXPOSED CONCRETE CORNERS SHALL BE CHAMFERED 3/4 IN. CURB AND GUTTER CORNERS SHALL BE FINISHED TO MATCH THE EXISTING CURB AND GUTTER BEYOND THE TRANSITION GUTTER.

6. REINFORCING BARS SHALL BE DEFORMED AND SHALL HAVE A 2 IN. MINIMUM CLEARANCE. ALL REINFORCING BARS SHALL BE EPOXY COATED.

7. DIMENSIONS AND WEIGHTS OF TYPICAL MANHOLE RING AND COVER ARE NOMINAL. 8. MATERIAL FOR MANHOLE RINGS AND COVERS SHALL BE GRAY OR DUCTILE CAST IRON IN ACCORDANCE WITH SUBSECTION 712.06.

9. SINCE PIPE ENTRIES INTO THE INLET ARE VARIABLE, THE DIMENSIONS SHOWN ARE TYPICAL. ACTUAL DIMENSIONS AND QUANTITIES FOR CONCRETE AND REINFORCEMENT SHALL BE AS REQUIRED IN THE WORK. QUANTITIES INCLUDE VOLUMES OCCUPIED BY

10. STRUCTURAL STEEL SHALL BE GALVANIZED AND SHALL BE IN ACCORDANCE WITH SUBSECTION 712.06.

⊿"

405

20'

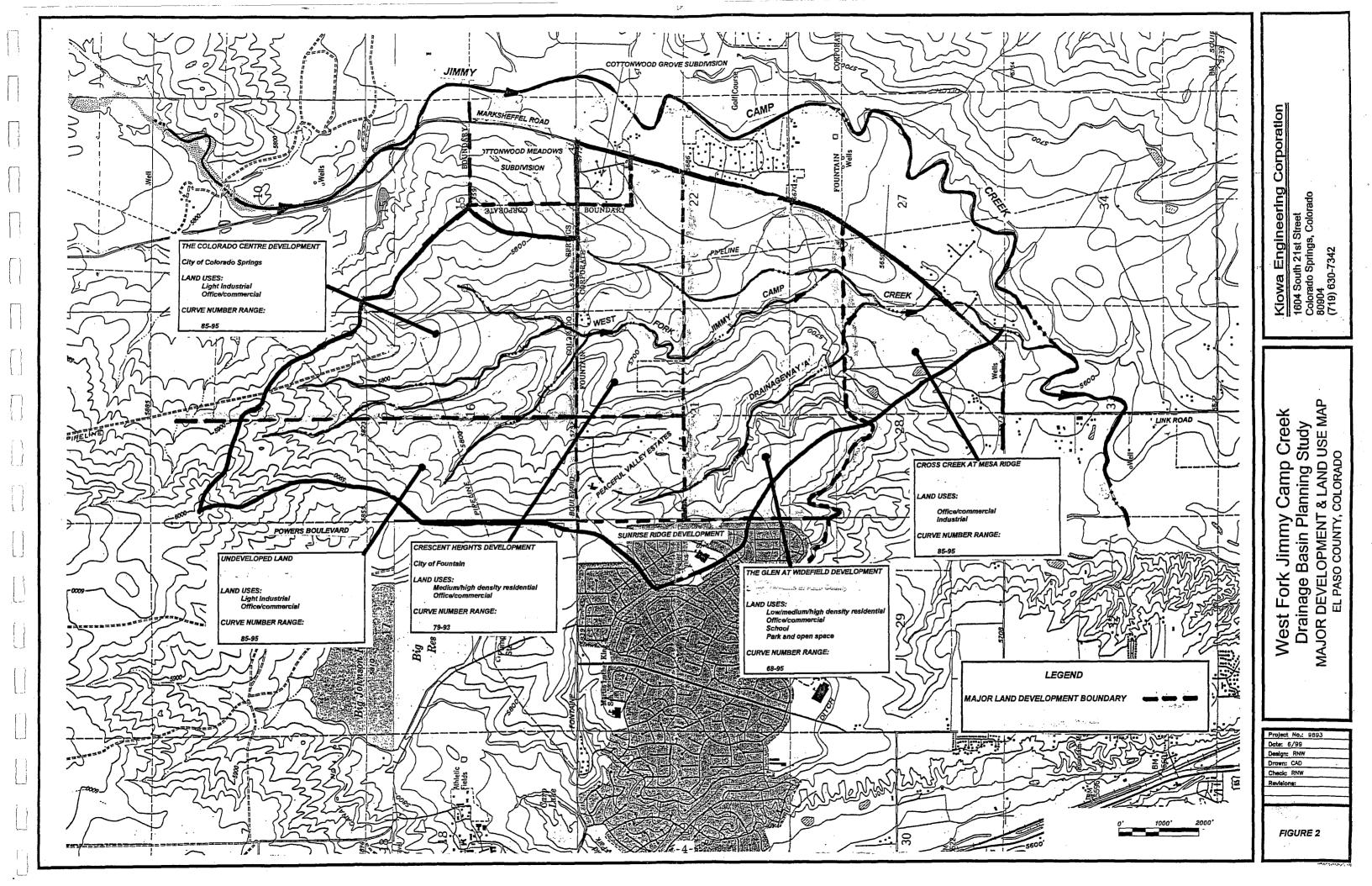
<u>Appendix C</u>

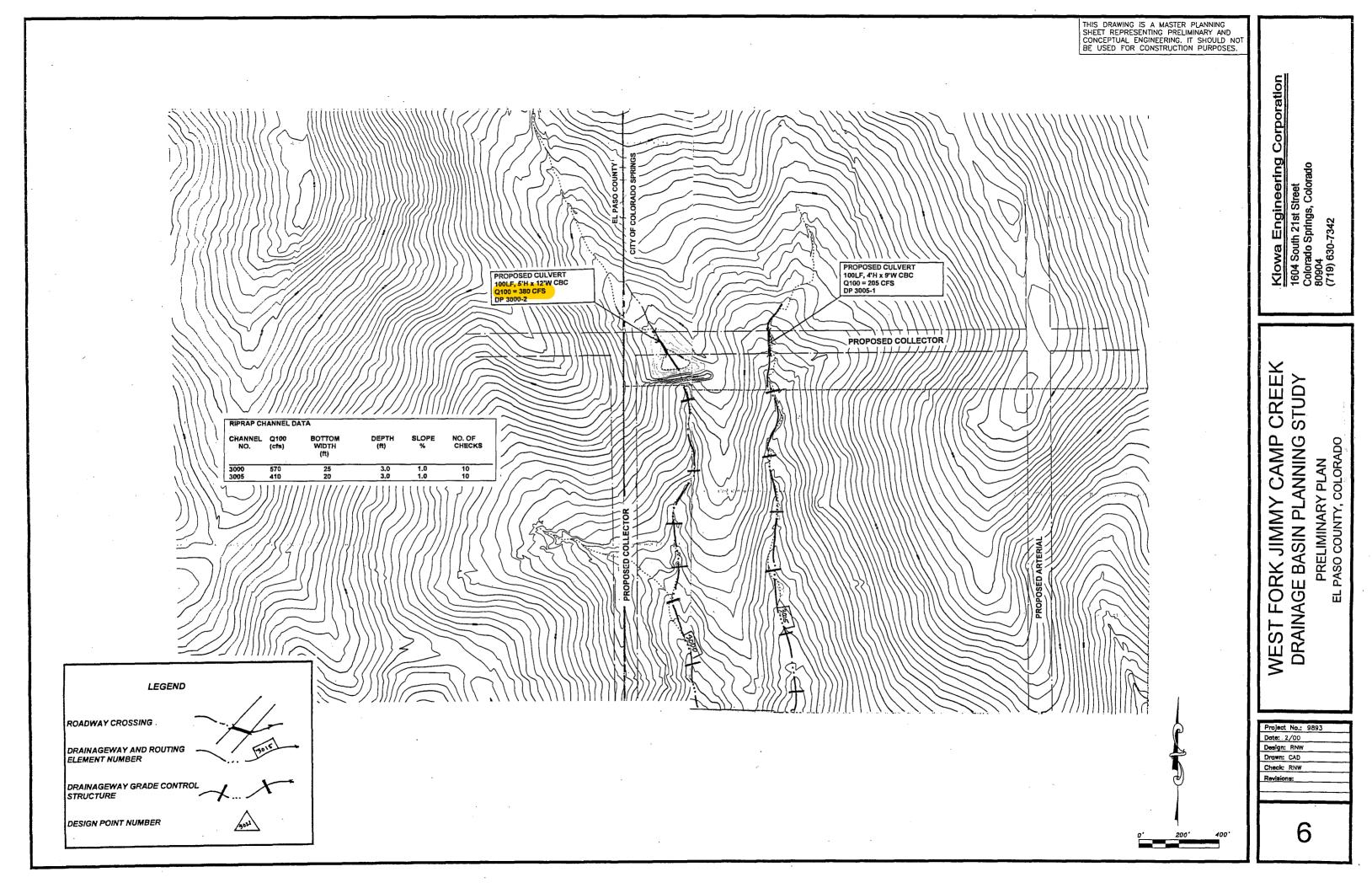
REPORT REFERENCES

Excerpts from DBPS West Fork Jimmy Camp Creek on the design plans. The purpose of the detention basins is to limit peak discharges at the basin's outfall to Jimmy Camp Creek to the existing hydrologic condition. The regional basins have also been sited within each of the major land developments to more locally control runoff to existing levels. Wherever practical, the regional detention basins should be designed so as to take advantage of the adjacent roadway embankments. It is not anticipated that any of the regional detention basins will be subject to State Engineer's regulations. Stormwater quality measures should be designed into the regional stormwater detention basins. These measures would include the provision of a water quality and sediment pool area in addition to the volume required for stormwater detention.

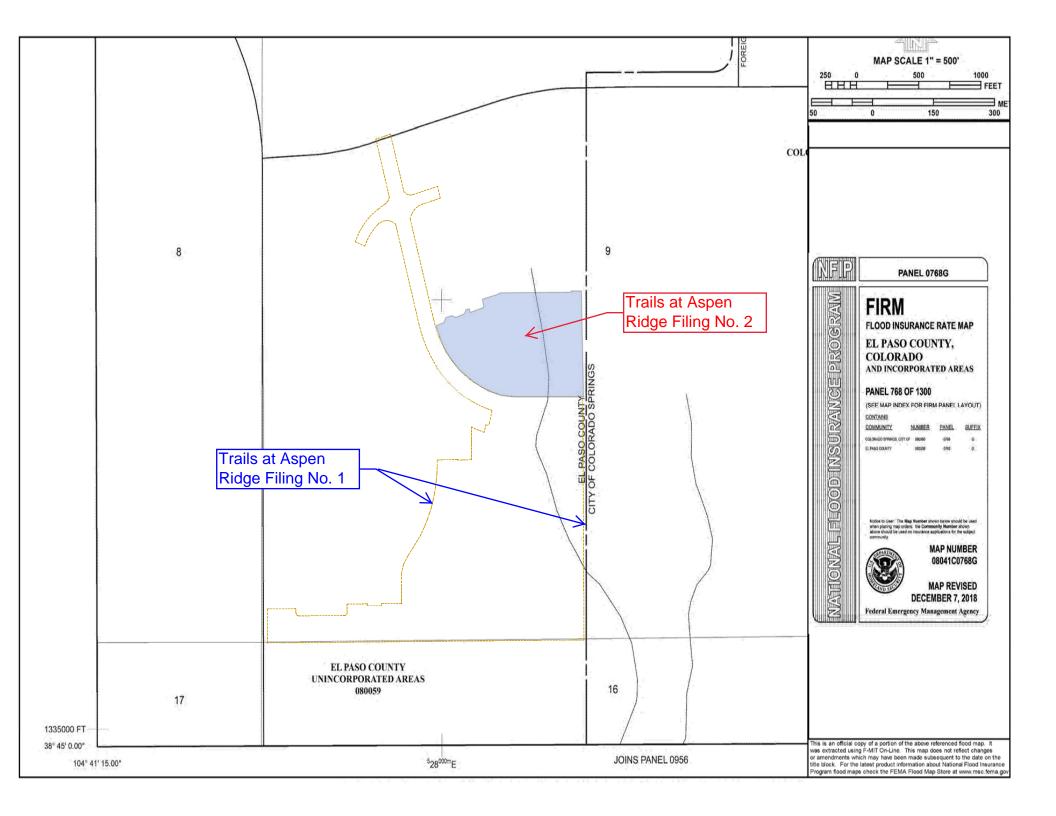
Right-of-Way

For the most part the main channels within the basin which pass through undeveloped areas and the right-of-way can be dedicated as part of the land development process. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as park-land and greenbelts), in combination with a more narrow dedicated right-of-way along the low flow area of the drainageway should be obtained through the land development process. Land acquisition will be required for the regional detention basins. The dedication of easements and right-of-way for the drainageways and detention basins would be accomplished at the time of development planning and platting of the parcels that lie adjacent to or upstream of the stormwater facility.

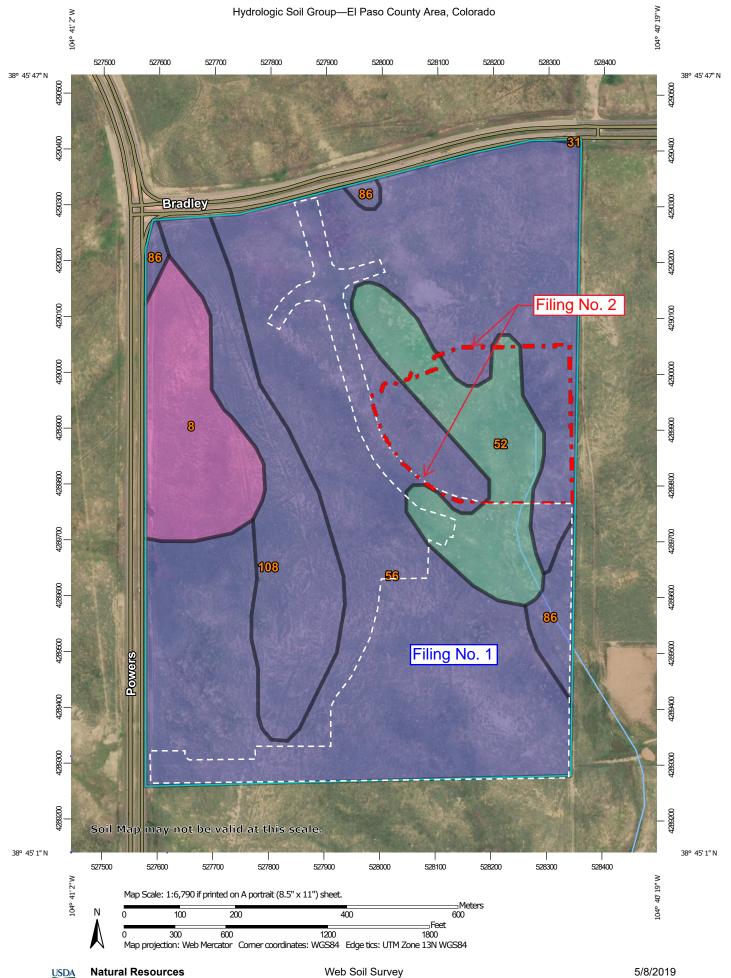

Cost Estimates and Drainage Basin Fees


Cost estimates have been prepared and are contained within the DBPS. The cost of the major drainageway facilities has been determined for each jurisdiction. The facility cost estimate will be used in the determination of the drainage and bridge fees for this basin. Bridge crossing costs have been determined as well for the basin.

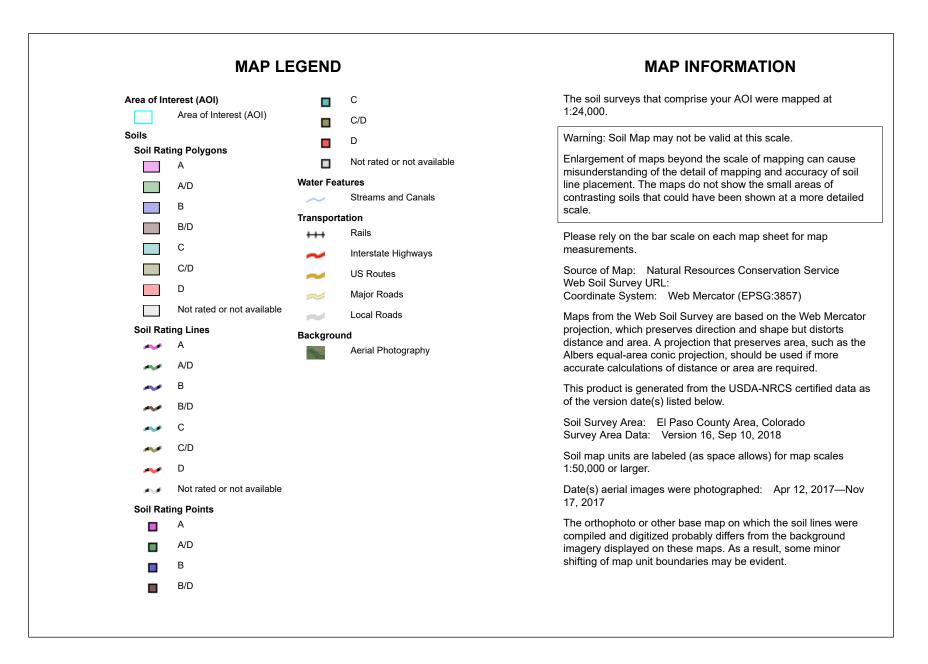
Presented on Table 17 through 19 is the cost and plattable acreage (i.e., that area available for platting into subdivisions), data associated with the determination of drainage and bridge fees for the basin. The plattable acreage has been determined using a combination of assessor's maps, aerial photographs and topographic mapping that covering the watershed. As presented on Table 17, the reductions in the area available for platting have been listed. The reductions are mostly attributable to areas that are already platted, known roadway or planned road right-of-ways for minor and major arterials, and the area underlying the proposed detention basins.


Drainage basin fees have been determined for those areas that are within the City of Colorado Springs and El Paso County. The City of Fountain does not have a drainage basin fee system and therefore no fees have been calculated for the areas within the City of Fountain. The

area of the basin within the City of Colorado Springs lies within the Colorado Centre development and the Banning-Lewis Ranch Flood Conservancy District (District). It is the intent of the City of Colorado Springs that the District will be responsible for all drainage, detention and bridge improvement construction and maintenance. Prior to any development within the City, specific agreements will have to be finalized between the City and the District. The drainage and bridge fees calculated for the County areas have been determined in accordance with Resolution No. 99-383. The percent impervious values listed on Exhibit 3 of this resolution where applied when calculating the weighted percent impervious value for the sub-basins within the County.



FIRMETTE



USDA NRCS WEB SOIL SURVEY REPORT

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	17.8	8.6%
31	Fort Collins loam, 3 to 8 percent slopes	В	0.0	0.0%
52	Manzanst clay loam, 0 to 3 percent slopes	С	21.0	10.2%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	137.7	66.8%
86	Stoneham sandy loam, 3 to 8 percent slopes	В	5.3	2.6%
108	Wiley silt loam, 3 to 9 percent slopes	В	24.3	11.8%
Totals for Area of Inter	est		206.0	100.0%

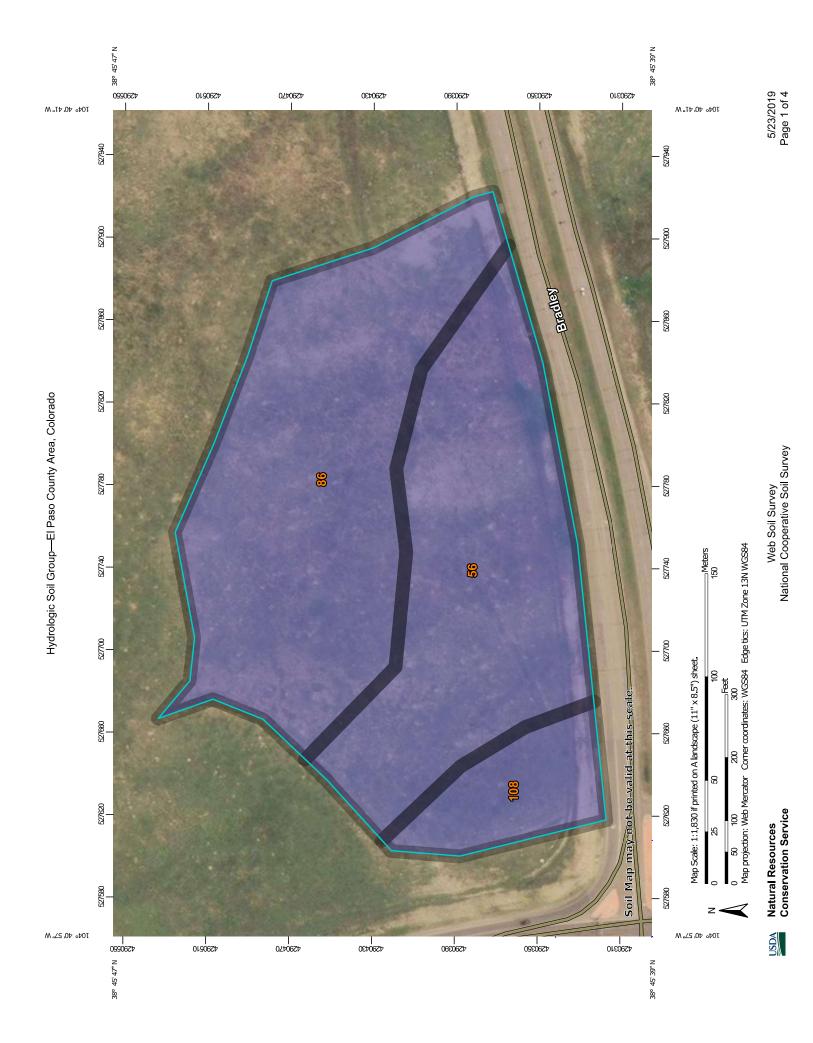
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

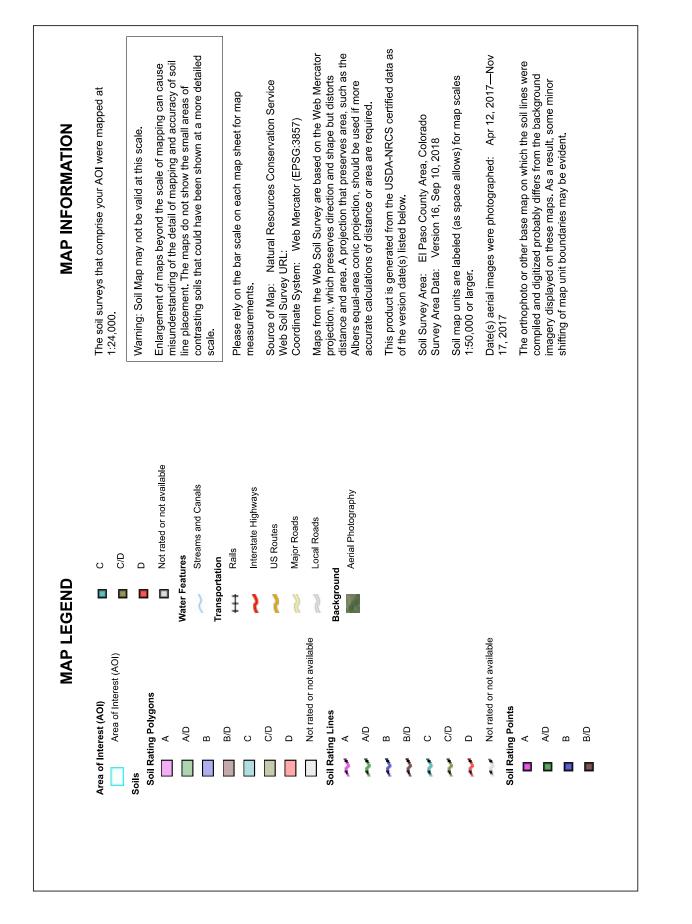
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Hydrologic Soil Group-El Paso County Area, Colorado

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	4.8	41.2%
86	Stoneham sandy loam, 3 to 8 percent slopes	В	5.7	49.2%
108	Wiley silt loam, 3 to 9 percent slopes	В	1.1	9.6%
Totals for Area of Inter	est	1	11.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

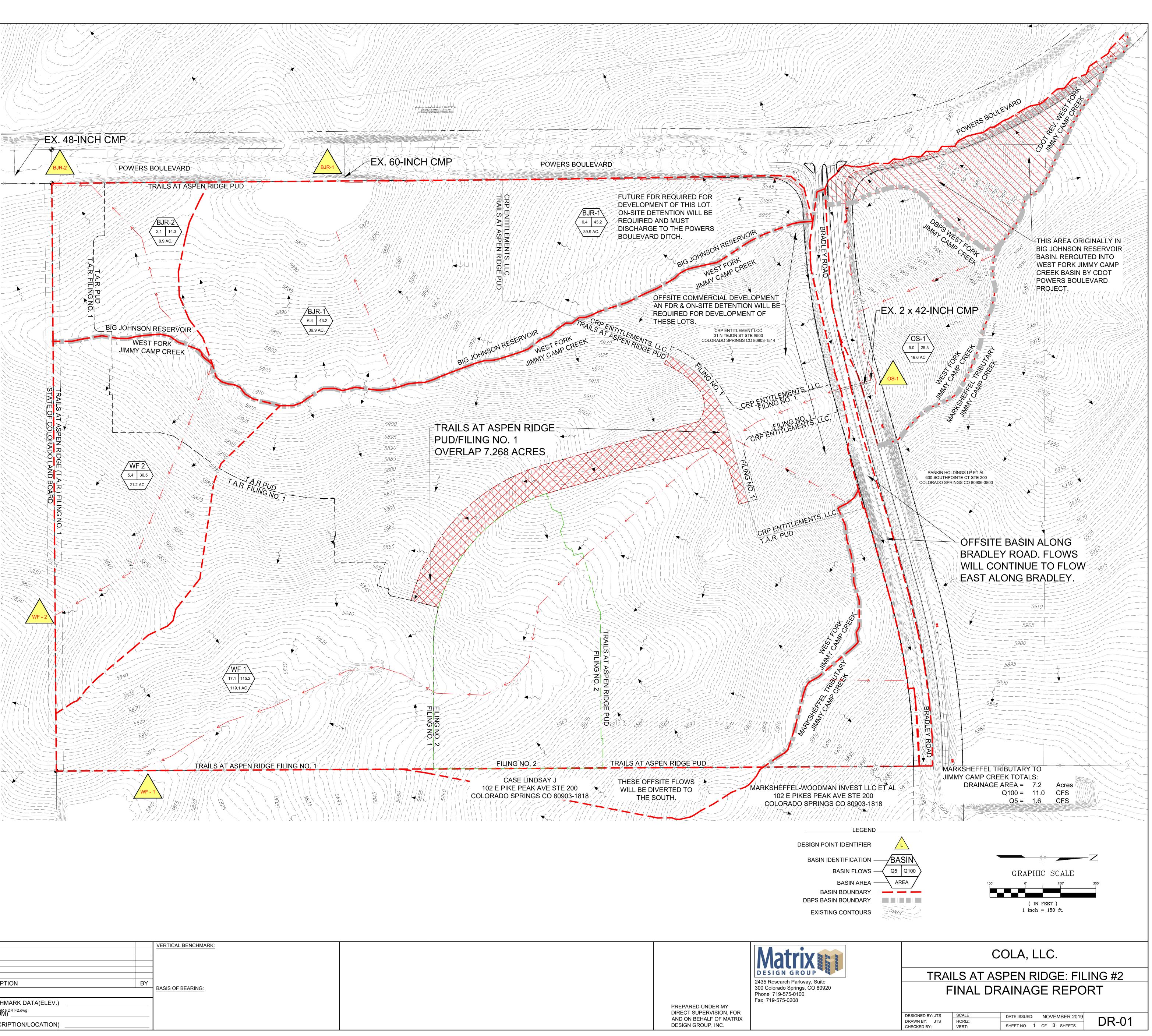
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

<u>APPENDIX D</u>

MAPS

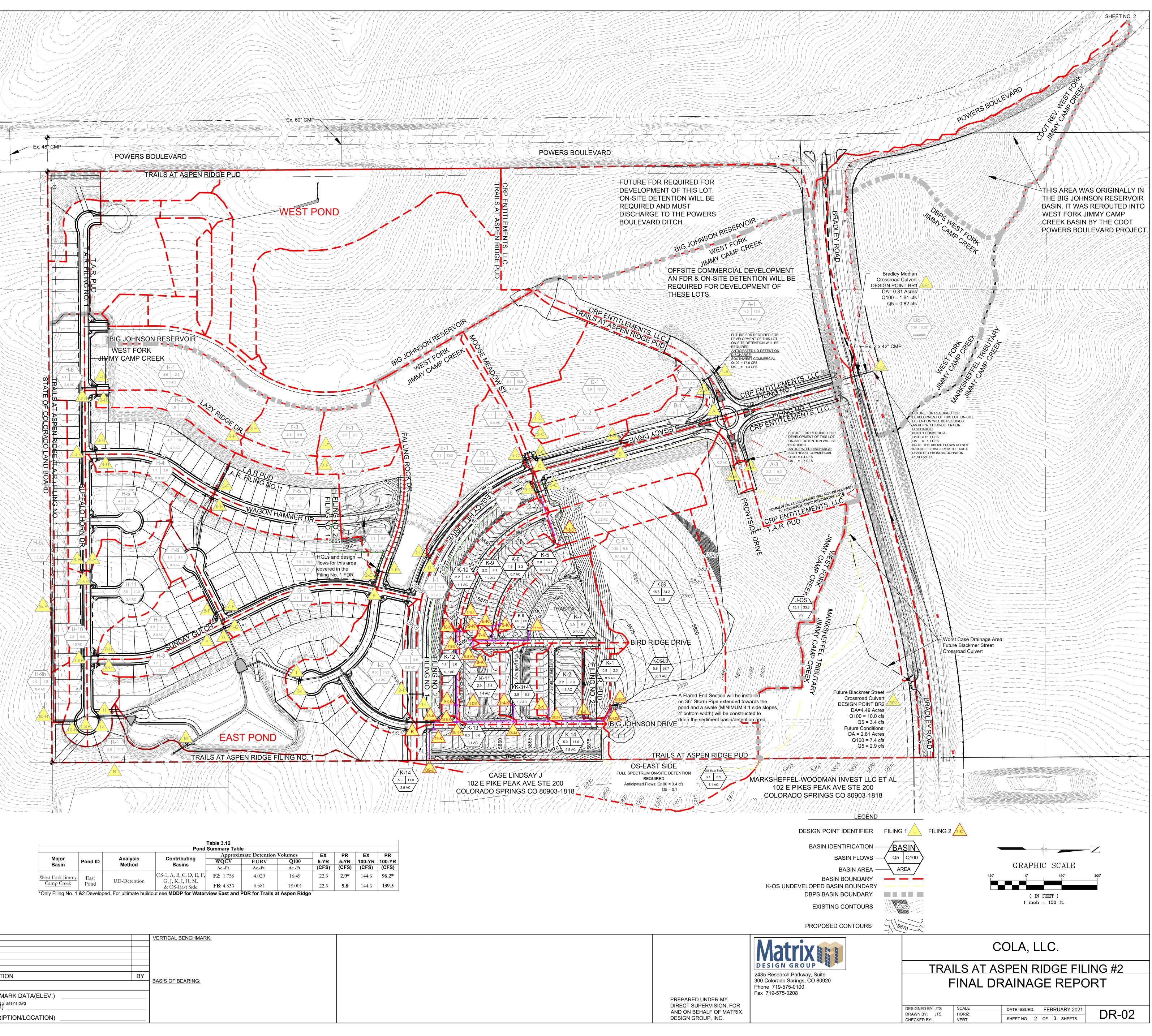

Trails at Aspen Ridge Vicinity Map

Trails at Aspen Ridge Filing No. 1 Final Drainage Report

	Existing Design Point Summary							
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)				
BJR-1	BJR-1	39.94	6.43	43.22				
BJR-2	BJR-2	8.85	2.13	14.32				
TO BIG JOHNSON RESERVOIR	BJR-1 & BJR-2 (Basins are parallel so this is a sum of BJR-1 & BJR-2.)	48.79	8.56	57.54				
OS-1	OS-1 (Note: 7.3 Acres diverted by CDOT from Big Johnson)	19.60	4.79	24.15				
WF-1	WF-1 & OS-1	138.69	16.90	108.09				
WF-2	WF-2	21.15	5.43	36.51				
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF-1 & WF-2.)	159.84	22.33	144.60				

Trails at Aspen Ridge Filing No. 1 Final Drainage Report Existing Conditions Basin Summary Table							
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)				
Big Johnson Reservoir / BJR-1	39.94	6.43	43.22				
Big Johnson Reservoir / BJR-2	8.85	2.13	14.32				
West Fork Jimmy Camp Creek / OS - 1	19.60	4.79	24.15				
West Fork Jimmy Camp Creek / WF-1	119.08	17.15	115.23				
West Fork Jimmy Camp Creek / WF-2	21.15	5.43	36.51				

REFERENCE			VERTICAL BENCHMARK:	
DRAWINGS				
X-886-PR SITE_F1 X-886-PR SITE 10415-Storm Base-2017				
10415-Storm Base-2017 886-PR Legacy Drive				
886-PR Legacy Drive X-886-EX SURVEY X-Title(Drainage)	NO. DATE D	ESCRIPTION BY	BASIS OF BEARING:	
	REVIS	SIONS	DASIS OF BEARING.	
		BENCHMARK DATA(ELEV.)		
	NAME: S:\19.886.014 (Trails at Aspen Ridge - F2)\200 Drainage\201 Drainage Reports\FDR\DW PCP: Matrix.ctb	G\DR01-TAR FDR F2.dwg (DATUM)		
	PLOT DATE: Fri Nov 01, 2019 4:14pm	(DESCRIPTION/LOCATION)		


DIRECT SUPERVISION, FOR
AND ON BEHALF OF MATRI
DESIGN GROUP INC

Trails at Aspen Ridge Filing No. 2	

Proposed Conditions							
n Summary	7						
Area	Q5	Q100					
acres	cfs	cfs					
0.78	0.8	2.2					
1.58	2.7	5.9					
1.23	2.9	6.3					
0.95	2.0	4.4					
0.72	1.5	3.3					
2.89	2.5	6.9					
0.15	0.5	0.9					
1.16	2.1	4.7					
1.10	2.2	4.7					
1.39	2.6	5.8					
0.67	1.4	3.0					
0.09	0.3	0.6					
2.78	5.0	11.0					
9.16	15.1	33.3					
11.46	15.5	34.2					
30.11	5.8	38.7					
4.15	0.6	4.0					
	Conditions In Summary Area acres 0.78 1.58 1.23 0.95 0.72 2.89 0.15 1.16 1.39 0.67 0.09 2.78 9.16 11.46 30.11	Area Q5 acres cfs 0.78 0.8 1.58 2.7 1.23 2.9 0.95 2.0 0.72 1.5 2.89 2.5 0.15 0.5 1.16 2.1 1.39 2.6 0.67 1.4 0.09 0.3 2.78 5.0 9.16 15.1 11.46 15.5 30.11 5.8					

		1 4 1	.r -	C .	C .	
Design Point	Total Drainage				Sewer	Downstream
	Area	Q 5	Q100	Q 5	Q100	Design Poin
1 -O S	19.67	4.0	26.8	-	-	А
1-A	12.34	3.5	17.6	-	-	А
2-A	1.09	2.7	5.2	-	-	A
3-A	4.98	2.2	8.9	-	-	A
4-A	0.12	0.6	1.0	-	-	A
<u>A</u> 1-B	38.20 1.06	- 1.8	4.1	12.0	55.6	BB
<u> </u>	39.26	1.0	4.1	12.7	57.1	C
<u> </u>	3.27	5.9	12.9	-	-	C
2-C	1.19	2.4	5.3	_	-	С
3-C	4.60	8.4	18.5	-	-	С
4-C	0.36	1.6	3.0	-	-	С
<u>5-C</u>	3.13	5.7	12.5	-	-	C
<u> </u>	0.07	0.3	0.6	-	-	C C
<u> </u>	54.14	4.2	9.2	- 27.6	90.2	D
<u> </u>	2.21	1.6	5.2		- 90.2	D
D	56.34	0.0	0.0	28.1	92.1	E
1-E	6.43	2.6		-	-	E
2-E	2.14	3.9	8.7	-	-	Е
E	64.91	-	-	33.7	108.8	F
1-F	2.07	2.7	6.0	2.7	6.0	3-F
<u>2-F</u>	0.58	1.1	2.5	1.6	3.6	3-F
<u>3-F</u>	3.32	2.3	5.0	3.8	8.4	4-F
<u> </u>	3.89	1.1	2.5	5.0	11.1	5-F
<u> </u>	6.16 7.16	3.5	7.8	<u>6.6</u> 7.9	14.6 17.5	6-F 8-F
<u> </u>	5.06	7.5	16.5	7.5	16.5	8-F
8-F	13.07	1.5	3.3	16.2	35.8	F
F	77.98	-	-	43.5	131.0	G
1-G	1.11	2.1	4.6	-	-	G
G	79.09	-	-	44.2	132.7	М
1-H	3.60	5.9	13.1	-	-	1-2 H
2-H	1.16	1.9	4.2	-	-	1-2 H
1-2 H	4.76	-	-	9.0	19.8	1-4 H
<u>3-H</u>	2.97	4.7	10.3	-	-	1-4 H
<u>4-H</u> 1-4 H	0.92 8.65	1.6	3.6	- 16.4	- 36.1	1-4 H 1-6 H
<u> </u>	2.42	4.0	- 8.9	10.4		1-6 H
<u> </u>	2.46	3.9	8.6		-	1-6 H
1-6 H	13.53	-	-	20.2	44.9	1-8 H
7-H	2.03	2.9	6.4	-	-	1-8 H
8-H	0.97	1.7	3.7	-	-	1-8 H
1-8 H	16.52	-	-	23.3	49.3	1-10 H
9-H	2.32	3.3	8.0	-	-	1-10 H
<u>10-H</u>	1.33	2.4	5.2	2.8	6.5	1-10 H
<u>10-H</u> 1-10 H	1.33 21.50	2.4	5.2	- 29.6	- 66.5	1-10 H 11-H
<u> </u>	3.42	5.0	11.0	-		H
H	24.92	3.0	11.0	37.4	83.0	M
J-OS	4.34	16.1	29.3	-	-	J-K-OS
K-OS	18.23		54.4	-	_	J-K-OS
J-K-OS	22.57	-	-	36.7	77.0	OS-2-K
K-OS-Undeveloped	29.62	5.7	38.0	-	-	OS-2-K
1-K	0.78	0.8	2.3			
2-K	1.58	2.7	5.9	-	-	OS-2-K
OS-2-K 3+4 K	24.93	-	-	39.8	72.8	OS-12-K 3-4-K
<u>3+4-K</u> OS-4-K	1.23 26.16	2.9	6.3	- 41.4	- 76.7	<u> </u>
<u> </u>	0.95	2.0	4.4	-	-	6-K
<u> </u>	0.72	1.5	3.3	3.4	7.6	5-8-K
7-K	3.26	2.9	7.9		-	5-8-K
8-K	0.15	0.5	0.9	-	-	5-8-K
5-8-K	5.08	-	-	5.2	12.0	5-10-K
<u>9-K</u>	1.16	2.1	4.7	-	-	9-10-K
10-K	1.10	2.2	4.7	-	-	9-10-K
9-10-K	2.26	-	-	4.0	8.8 18.0	5-10-K
<u>5-10-K</u> 11-K	1.39	- 2.6	- 5.8	7.8	-	5-12-K 5-12-K
11-K 12-K	0.67	1.4	3.0	_	-	5-12-K 5-12-K
5-12-K	9.40	-	-	10.3	23.6	OS-12-K
OS-12-K	35.56	-	-	47.8	89.5	OS-12-K OS-14-K
13-K	0.09	0.3	0.6	-	-	OS-14-K
OS-E	4.15	3.1	3.4	-	-	14-K
14-K	2.78	5.0	11.0	5.1	11.0	OS-14-K
OS-14-K	38.42	-	-	51.3	100.5	K
K	42.14	-	-	56.9	110.2	3-I
<u>1-I</u>	3.13	6.9	12.3	-	-	K
<u>2-I</u> 3-I	0.59 4.18	2.3 9.3	4.1	- 8.7	- 15.5	K M
<u>3-I</u> I	4.18	9.3	- 16.5	<u>8.7</u> 62.4	15.5	M M
I		+	-		117.0	East Pond
Μ	158.79	1	1	154.5	383.7	i l

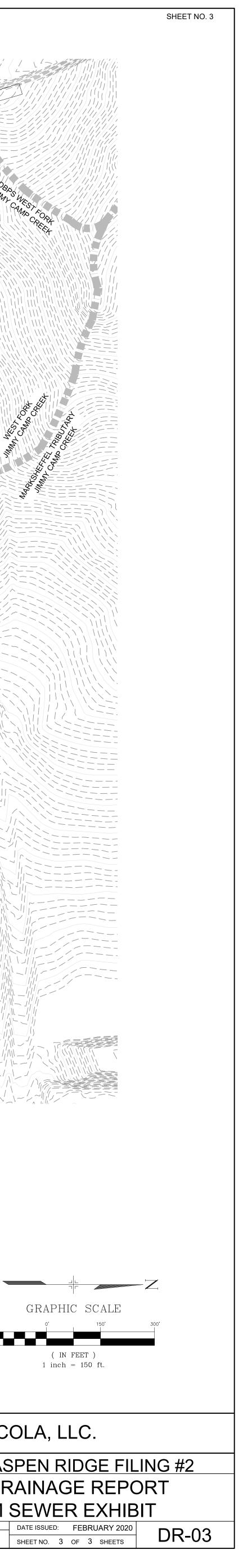
Table 3.12 Pond Summary Table										
	Analysis Method	Contributing Basins	Approximate Detention Volumes			EX	PR	EX	PR	
Pond ID			WQCV	EURV	Q100	5-YR	5-YR	100-YR	100-YR	
			AcFt.	AcFt.	AcFt.	(CFS)	(CFS)	(CFS)	(CFS)	
East Pond	UD-Detention		F2 : 1.756	4.029	16.49	22.3	2.9*	144.6	96.2*	
		6, J, K, I, H, M, & OS-East Side	FB : 4.833	6.581	18.001	22.3	5.8	144.6	139.5	
	East	East UD-Detention	Pond Pond ID Analysis Method Contributing Basins East Pond UD-Detention OS-1, A, B, C, D, E, F, G, J, K, I, H, M,	Pond IDSummary TablPond IDAnalysis MethodContributing BasinsApproxin WQCVEast PondUD-DetentionOS-1, A, B, C, D, E, F, G, J, K, I, H, M,F2: 1.756	$ \begin{array}{c c c c c c } \hline Pond ID & Analysis \\ \hline Pond ID & Method \\ \hline \\ \hline \\ East \\ Pond \\ \hline \\ \hline \\ UD-Detention \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c c c c c c } \hline Pond ID \\ \hline Pond ID \\ \hline Pond ID \\ \hline Method \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c c c c c c c } \hline Pond ID \\ \hline Pond ID \\ \hline Pond ID \\ \hline Method \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

REFERENCE DRAWINGS						
886-PR Legacy Drive X-Title(Drainage) X-886-EX SURVEY X-886-PR SITE-F2						
X-886-PR STORM-F2 X-886-PR STORM_F1 X-886-PR SITE X-886-PR SITE F1	NO.	DATE		DESCRIPTION I		
		S:\19.886.014 (Trails atrix.ctb ATE: Wed Feb 24, 2	at Aspen Ridge - F2)\200 Drainage\201 Drainage Reports\FDR\DW	BENCHMARK DATA(ELEV.)		

LEGEND

	OFFSITE FUTURE STORM PIPE
	FILING NO. 2 STORM PIPE
	FILING NO. 1 STORM PIPE
-St	EXISTING STORM PIPE

STORM PIPE SUMMARY TABLE


Trails at Aspen Ridge Filing No. 2									
PIPE LABEL	PIPE DIA. (IN)	PIPE LENGTH (FT)	% GRADE	Q100	Velocity				
THE LIDEE			// GIEIDE	PIPE FLOW (cfs)	(Ft/s)				
63	48	106.5	0.5	100.5	8				
200 (1)	36	82.6	2	66.1	14.4				
200 (2)	36	153	3.2	68	17.43				
201	36	146.6	3.1	72.8	17.43				
202	42	240	2	76.68	15.02				
203	48	80.9	0.5	89.53	7.12				
205	18	49.9	2.4	5.9	8.46				
207	18	7.3	0.4	6.59	4.35				
208	18	68.4	3.4	6.58	14.94				
209	18	33.2	1.9	4.3	7.13				
210	18	60.2	1.9	7.6	8.3				
211	18	80.2	3.4	11.44	11.36				
212	18	7.3	1	5.9	3.57				
213	18	29.4	0.5	1	0.55				
214	18	69	0.5	11.96	9.24				
215	18	30.7	0.5	4.5	2.57				
216	18	9.1	2.8	4.5	8.39				
217	18	40	3.9	8.8	13.48				
218	24	271.8	3.3	17.95	12.66				
220	18	8.5	6	8.8	4.99				
221	36	69.8	3.5	23.62	3.34				
222	18	8.2	0.7	0.7	0.4				
223	18	28.5	1.6	14.38	8.14				
224	18	30.7	0.5	8.8	4.98				
225	18	7.7	0.5	0.5	0.28				
226	18	168.1	1	9.2	5.18				
227	34	52.0	7	38.68	7.09				
(Filing 2 only)	36	53.8	/	(K-OS-Undeveloped)	7.28				
233	18	123	2	3.4	6.82				
234	18	35	1	3.4	1.92				
239	18	155	2	<mark>6</mark> .9	8.25				
240	18	17.1	1.2	<mark>6</mark> .9	6.82				
241	18	22.8	1	2.3	1.32				

TRAILS AT ASPEN RIDGE FILING NO. 2 Q(5) Q(5) Q(100) Q(100) BYPASS TOTAL BYPASS TOTAL INLET FLOWS INFLOW FLOWS INFLOW CAPACITY INLET DESIGN SUB-TOTAL NOTES: BASINS AREA (AC) SIZE TYP CONDITIO POINT (Ft.) E N (cfs) (cfs) 0.78 4x4 C SUMP 0.78 2.25 9.00 SUMP 1-K 2-K K-2 1.58 5 R SUMP 2.68 5.90 10.90 SUMP 3+4-K K-3+4 1.23 10 R ON-GRADE 0 2.93 0.8 6.25 5.45 BYPASS GOES TO 11-K 5-K K-5 0.95 10 R ON-GRADE 0 1.98 0.1 4.37 4.27 BYPASS GOES TO 7-K 6-K K-6 0.72 10 R ON-GRADE 0 1.50 0 3.30 3.30 BYPASS GOES TO 7-K 7-K K-7 2.89 10 R ON-GRADE 0 2.51 1.7 7.00 5.30 BYPASS GOES TO 11-K 8-K K-8 0.15 5 R ON-GRADE 0 0.45 0 0.91 BYPASS GOES TO 11-K 0-K N-O 0.13 5 R 0N-GRADE 0 0.45 0 0.91 0.91 BYPASS GOES TO 11-K 9-K K-9 1.16 10 R ON-GRADE 0 2.15 0.2 4.73 4.53 BYPASS GOES TO 11-K 10-K K-10 1.10 10 R ON-GRADE 0 2.15 0.2 4.73 4.53 BYPASS GOES TO 11-K 10-K K-10 1.10 10 R ON-GRADE 0 2.15 0.2 4.74 4.54 BYPASS GOES TO 12-K 11+12-K K-11 & K12 2.06 10 R SUMP 4.00 8.81 19.40 SUMP 13-K K-13 0.09 10 R SUMP 2.66 5.80 19.40 SUMP, FLOW CROSSES ROAI 14-K K-14 2.78 10 R SUMP 2.66 5.80 19.40 SUMP, FLOW CROSSES ROAI 7+8-C C-7+8 2.25 5 R 5.80 19.40 SUMP, FLOW CROSSES ROAD 5.80 19.40 SUMP, FLOW CROSSES ROAD 9.23 10.90 SUMP

	-							
REFERENCE							VERTICAL BENCHMARK:	
DRAWINGS								
X-886-PR SITE_F1 X-886-PR SITE								
10415-Storm Base-2017								
X-Title(Drainage) X-886-PR STORM_F1 X-886-FUTURE STORM->	NO				D			
X-886-FUTURE STORM-> X-886-PR SITE-F2	(REFU.				B	S Y	BASIS OF BEARING:	
X-886-PR-UTIL-F2		REVISIONS						
886-PR Legacy Drive		BENCHMARK DATA(ELEV.)						
	NAME: S:\19.886.014 (Trails at Aspen Ridge - F2)\200 Drainage\201 Drainage Reports\FDR\D PCP: Matrix.ctb		rainage Reports\FDR\DW	(DATUM)(DESCRIPTION/LOCATION)				
	PLOT DA	DATE: Mon Feb 24, 2020 1:50pm						

PROPOSED INLET SUMMARY

