FINAL DRAINAGE REPORT

CARRIAGE MEADOWS NORTH FILING NO. 1

DECEMBER, 2017

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 212 N. Wahsatch Ave, Suite 206 Colorado Springs, Colorado 80903 (719) 570-1100

Project No. 100.002

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION AND DESCRIPTION	2
2.0 DRAINAGE CRITERIA	2
3.0 EXISTING HYDROLOGICAL CONDITIONS	2
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	
5.0 HYDRAULIC SUMMARY	8
6.0 DRAINAGE AND BRIDGE FEES	20
7.0 WATER QUALITY POND	21
8.0 DETENTION ANALYSIS	22
9.0 CONCLUSIONS	23
10.0 REFERENCES	23

APPENDIX A

VICINITY MAP SCS SOILS INFORMATION FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

STORM SEWER SCHEMATIC

APPENDIX E

DETENTION ANALYSIS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAP OFFSITE DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997	
For and on Behalf of Core Engineering Group,	LLC

Date

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

Date

By

Jeff Mark

Title

Manager

Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F, Dated March 17, 1997, Revised to Reflect LOMR Case Number 06-08-B643P Effective Aug. 29, 2007. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997, For and on Behalf of Core Engineering Group, LLC Date

- is not?

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

(Jennifer Irvine), County Engineer / ECM Administrator

Date

Conditions:

1.0 LOCATION and DESCRIPTION The purpose of this Final Drainage Report is to provide an overview of the overall drainage impacts/mitigation due to development in the proposed Carriage Meadows North Filing No. 1 development located in Lorson Ranch. The study area of this report is approximately 48.2 acres. See **Appendix A** for vicinity map. **Carriage Meadows North Filing No. 1** is located in the southeast guarter of Section 4. Township 15 South, Range 65 West of the 6th Principal Metidian, it is currently unplatted and zoned PUD. The property is bounded to the north by the Banning Lewis Ranch Company, LLC, to the east by Jimmy Camp Creek, to the south by Fontaine Boulevard, and to the west by Marksheffel Road. A vicinity map is included in Appendix A of this report. Also included in this report and plan is the proposed layout for Carriage Meadows North Filing No. 1 which is located north of the intersection of Fontaine Boulevard and Carriage Meadows Drive. The land is currently owned by Cradlan, LLC and Lorson LLC or its nominees for Lorson Ranch. The first phase of development will consist of 155 single-family homes and two tracts of land for future development as commercial land uses. - revise revise The site is located in the southeast quarter of Section 4, Township 15 South, Range 65 West of the 6th Principal Mehidian, it is correctly implatted and zoned RR3, Rural Residential District. The property is bounded to the north by the Banning Lewis Ranch

Company, LLC, to the east by Jimmy Camp Creek, to the south by Fontaine Boulevard, and to the west by Marksheffel Road. A vicinity map is included in Appendix A of this report.

According to the current FEMA Flood Insurance Rate Maps (FIRM), there are no portions of this site located in a Zone AE floodplain. A LOMR was approved by FEMA as Case Number 06-08-B643P, effective date August 29, 2007.

Address floodplain along north boundary.

1.1 COMPLIANCE WITH DBPS, MDDP, and ADJACENT DRAINAGE REPORTS

Carriage Meadows is surrounded by adjacent developments on the west, east, and south. These adjacent developments have approved drainage reports and Lorson Ranch as has complied with the recommendations/requirements of those studies and all of the infrastructure within Lorson Ranch required by the drainage reports has been built. The following is a brief summary of the adjacent drainage studies and how we are in compliance.

1.1.1 Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987 [3], adopted by El Paso County, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the main stem of Jimmy Camp Creek. In 2006 the main stem of Jimmy Camp Creek and the FMIC relocation within Lorson Ranch was reconstructed in accordance with the 1987 study. In 2015 a new DBPS for Jimmy Camp Creek was completed by Kiowa Engineering. The Kiowa Engineering DPBS has been adopted by the City of Colorado Springs and is allowed for use by El Paso County for the entire Jimmy Camp Creek Basin, including the main channel of Jimmy Camp Creek

located on the east side of this site. El Paso county has not approved the drainage fees detailed in the Kiowa DBPS so current county drainage fees apply to this development. The Kiowa DBPS shows the reconstructed channel of Jimmy Camp Creek and the existing Fontaine Boulevard bridge over the main channel. According to the Kiowa DBPS all major drainage infrastructure has been constructed and there are no new requirements for channel/bridge improvements on Jimmy Camp Creek for development of Carriage Meadows North Filing No. 1.

1.1.2 Conformance with Carriage Meadows South at Lorson Ranch Filing No. 1 Preliminary Drainage Report/MDDP

Carriage Meadows North does include areas south of the relocated FMIC that contain the two future commercial development tracts that are covered in the Carriage Meadows South PDR/MDDP. Detention and water quality for these two future development tracts is provided by Carriage Meadows South at Lorson Ranch Filing No. 1 in Pond G1/G2. Existing storm sewer under Fontaine will convey developed runoff to the south

1.1.3 Conformance with Cottonwood Meadows Final Drainage Report (FDR), **Dated October, 1999 by HMS Group** – Cottonwood Meadows is an existing subdivision located west of Marksheffel Road and north of Fontaine Boulevard. Cottonwood Meadows drainage flows south via internal streets to a detention facility located adjacent to the existing FMIC within the subdivision. The stormwater is detained and discharges into the FMIC channel. The FMIC accepted the stormwater into their ditch system on the west side of Marksheffel but is required to discharge the water to Jimmy Camp Creek just east of Marksheffel Road. When Lorson Ranch was reconstructing Jimmy Camp Creek, FMIC required Lorson to reconstruct the outfall structure that separated stormwater from FMIC irrigation water at Jimmy Camp Creek. The outlet structure and upstream FMIC channel design was thoroughly analyzed in the FDR for Marksheffel/Old Glory/Fontaine prepared by Pentacor Engineering. Compliance with the Cottonwood Meadows FDR was maintained by accepting their stormwater runoff into the FMIC channel and separating the stormwater from the irrigation water at Jimmy Camp Creek.

1.1.4 Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements. This FDR was the basis for much of the offsite and on-site stormwater infrastructure design in Carriage Meadows. The Lorson Ranch FDR addresses FMIC issues, future runoff from Marksheffel Road and on-site runoff from the commercial area to Fontaine Boulevard. The FMIC historically consisted of an open channel from Cottonwood Meadows to Jimmy Camp Creek (culvert under Marksheffel). Upon development of Lorson Ranch in 2007, a 48" pipe was installed from Cottonwood Meadows west and under Marksheffel Road. The 48" pipe carries FMIC water (50cfs) and stormwater to the east side of Marksheffel Road where a reconstructed open channel directs water east to Carriage Meadows Drive. In addition, this open channel section is designed to handle runoff from the full buildout of Marksheffel Road which is carried in a 30" RCP under Marksheffel Road. The 30" RCP is located directly north of the 48" FMIC pipe. Stormwater and FMIC water (113cfs & 214cfs in 5/100 year storm) travels east to Carriage Meadows Drive where a diversion structure and a box culvert effectively separate stormwater from FMIC water. The diversion structure is a 25' D-10-R inlet with a 1.5' opening and the box culvert is a 3x4 culvert with a gate to regulate or shut off flow. During times of FMIC operation, the gate is adjusted so that only the FMIC water is allowed to pass east in the FMIC channel. Additional runoff at this gate will pond up and flow into the 25' diversion structure. During times the FMIC is not operating, the gate is closed which forces all runoff into the 25' diversion structure. The outlet structure is drained by a 48" RCP that flows east under Carriage Meadows Drive. A 60" RCP at 0.95% slope continues east and outlets directly into Jimmy Camp Creek with a capacity of 270cfs. Just north of the 60" RCP, a 36" stub has been constructed to accept flows from a WQ basin in the Carriage Meadows residential areas. This entire system is in place and has been fully operational since August, 2006. In addition to addressing runoff from the residential areas of Carriage Meadows, Lorson Ranch was required to address future runoff from the commercial areas of Carriage Meadows. The future commercial areas flow west to a low point on the north side of Fontaine Boulevard between Carriage Meadows Drive and Marksheffel Road. A large storm sewer collects the future runoff and directs it south under Fontaine Boulevard. These commercial areas will be detained to the south within Lorson Ranch. Infrastructure for this drainage report was constructed in 2007.

1.1.5 Reconstruction of Jimmy Camp Creek and FMIC relocation

In 2006 Jimmy Camp Creek was re-aligned and reconstructed within Lorson Ranch from the southern boundary to the northern boundary. The construction plans were prepared by Drexel Barrell & Company (project number C-7668-2) and were approved on September 6, 2005 by El Paso County (#2801). Construction was based more or less on recommendations in the 1987 Wilson DBPS for Jimmy Camp Creek. The construction consisted of a trapezoidal channel section, armored creek banks with a sand bottom. Construction started at the south property line of Lorson Ranch and extended north 5,300 feet to the north line of Lorson Ranch. In 2006 the FMIC ditch in Lorson Ranch was also relocated in conjunction with the creek improvements. The FMIC through Lorson Ranch was relocated adjacent to the creek on the west bank and was constructed at the same time as the creek improvements. Pentacor Engineering prepared the FMIC relocation construction plans (project number 6000.0002) which were approved by El Paso County on November 22, 2005. Both the creek and FMIC relocation were completed in 2006 from the south property line of Lorson Ranch and extended north 5,300 feet to the north line of Lorson Ranch

1.1.6 Conformance with Marksheffel Road Drainage Report

Marksheffel Road on the west side of Carriage Meadows was re-constructed in 2015 by El Paso County. As part of the County's construction plans a drainage report was prepared by HDR in 2015. Marksheffel Road reconstruction uses infrastructure constructed in 2007 by Lorson Ranch to convey runoff from Marksheffel Road east to Jimmy Camp Creek per the FDR for Fontaine Boulevard. The County did remove an existing 72" CMP pipe and replace it with a 4'x7' CBC which is designated as Pipe P228. Per the HDR report Offsite Drainage Basin 226L (65.2acres) generates 20cfs and 73.0cfs in the 5/100 year storm events. P228 conveys the flow east under Marksheffel Road into a temporary swale flowing NE to an existing 60" RCP at the north property line. There is no additional overland drainage entering Carriage Meadows North because the constructed roadside swale conveys runoff south to the FMIC channel prior to entering this site.

1.1.7 Final Drainage Report for Peaceful Ridge at Fountain Valley prepared by <u>**Kiowa Engineering.**</u> This FDR was prepared to address development of Peaceful Ridge which is located directly west of Carriage Meadows and Marksheffel Road. Peaceful Ridge will construct an on-site detention pond to detain on-site flows and will direct to pond outflow to an existing 4'x7' CBC under Marksheffel Road. The CBC was constructed in 2015 as part of the Marksheffel Road improvements. A significant amount of offsite runoff from north of Peaceful Ridge enters the roadside swale on the east side of Marksheffel Road and also flows to the existing CBC. Lorson Ranch and the developers of Peaceful Ridge have agreed to direct the offsite flows north of

-west?

Peaceful Ridge under Marksheffel Road (via a 48" RCP) and runoff from the east end of the CBC north (via a 48" RCP) to the north property line of Carriage Meadows where they will connect and flow east to Jimmy Camp Creek via a 60" RCP. These recommendations have been incorporated into the FDR and the construction drawings for Carriage Meadows.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for full spectrum pond sizing. No deviations from these published criteria are requested for this site. The proposed improvements to the development will be in substantial compliance with the "Jimmy Camp Creek Drainage Basin Planning Study", prepared by Kiowa Engineering Corp., Colorado Springs, CO and all improvements to Jimmy Camp Creek have been completed.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development

3.0 EXISTING HYDROLOGICAL CONDITIONS

The site is currently undeveloped with vegetation (grass with no shrubs) that has been used as an irrigated hayfield and moderate slopes to the south and east to Jimmy Camp Creek.

The majority of onsite soil consists of Manzanola clay loam according to the Soil Survey of El Paso County Area [2]. Other onsite soil types consist of Bressler sandy loam, Ellicott loamy course sand and Razor-Midway complex. Since the majority of this site consists of import material, soil type C/D has been assumed for the hydrologic conditions. See Appendix A for SCS Soils Map.

Existing Soil Types:

The following table summarizes the characteristics of the soil type.

Table 3.1: SCS Soils Survey

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
11-Bresser Sandy Loam	В	Moderate	Moderate	Slow to Medium	Moderate

28-Ellicot Loamy Sand	А	Low	Rapid	Low	Moderate
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate

This site was graded as part of the Jimmy Camp Creek Channel Improvements and the adjacent land on three sides has been developed/constructed with the exception of the north side which is the future Banning Lewis Ranch. On the west no overland drainage from Marksheffel Road will enter Carriage Meadows North because Marksheffel Road was reconstructed in 2015 which includes a roadside swale directing runoff south to existing drainage facilities. The only runoff from Marksheffel Road entering the site is from an existing 4'x7' CBC constructed in 2015. Carriage Meadows North will pipe the flow from the CBC north and east to Jimmy Camp Creek into an existing 60" RCP on the north property line. On the south an existing storm sewer constructed as part of Fontaine Boulevard in 2006 will collect runoff from the southern portions of the site and convey it south. On the east Jimmy Camp Creek was reconstructed in 2006.

Basin 226L

Basin 226L is an off-site undeveloped basin located west of Marksheffel Road and north of the Cottonwood Meadows subdivision. This basin has steep slopes and flows overland east to Marksheffel Road, then south to an existing 4'x7''' CBC under Marksheffel Road, then east under Marksheffel Road to Jimmy Camp Creek. This basin was studied in the FDR for Marksheffel Road prepared by HDR. The total predeveloped flow from this basin is 20 cfs and 73 cfs in the 5 and 100-year storm events.

<u>Basin EX-E1</u>

Basin EX-E1 is an on-site undeveloped basin located east of Marksheffel Road, north of the existing FMIC channel, and north of Fontaine Boulevard. This basin has gentle slopes on the east and flows east and south overland directly to Jimmy Camp Creek. The total historic flow from this basin is 31.0 cfs and 88.0 cfs in the 5 and 100-year storm events.

Basin EX-E2

Basin EX-E2 is an on-site undeveloped basin located east of Marksheffel Road, south of the existing FMIC channel, and north of Fontaine Boulevard. This basin has moderate slopes and flows overland south downstream to Fontaine Boulevard to an existing storm sewer under Fontaine Boulevard. The total pre-developed flow from this basin is 7.0 cfs and 31.0 cfs in the 5 and 100-year storm events.

EXISTING DESIGN PT. 226L

Existing Design Point 22L is located on the west side of Marksheffel Road north of Fontaine Boulevard and is the entrance to an existing 4'x7'CBC culvert that drains east under Marksheffel Road and continues east in a swale to Jimmy Camp Creek. The total pre-developed flow at this design point is 20.0 cfs and 73.0 cfs in the 5 and 100-year storm events per the FDR for Marksheffel Road prepared by HDR.

EXISTING DESIGN PT. 23

Existing Design Point 23 is located at an existing on the east side of Marksheffel Road north of Fontaine Boulevard and is on the FMIC ditch. The FMIC ditch at this point has roughly a 50cfs maximum base irrigation flow which combines with stormwater from

Address why this is so large.

Marksheffel Road and Cottonwood Meadows for a total of 113cfs and 214 in the 5 and 100-year storm events per the FDR for Fontaine Boulevard prepared by Pentacor Engineering.

4.2 DEVELOPED HYDROLOGICAL CONDITIONS

Carriage Meadows Filing No. 1 will have multiple sub-basins within the site depending on the need for storm inlets and street capacity. The general drainage concept allows runoff to flow from the northwest corner of the site to the southeast corner of the residential area just north of the relocated FMIC irrigation channel. A full spectrum pond will be located in the southeast corner of the site. Offsite runoff has been addressed through a 48" RCP on Marksheffel Road (flows north) and a 60" RCP that flows east to Jimmy Camp Creek on the north property line. These developed drainage condition concepts are in compliance with the FDR's detailed in Section 4.1

Drainage concepts for each of the basins are briefly discussed as follow:

Basin E1.1 thru E1.3

These basins consist of residential lots located adjacent to Meadow Bank Lane north of Chalkstone Lane. The runoff flows southerly via curb and gutter to on-grade storm sewer inlets in Meadow Bank Lane. The storm sewer flows south and east to the full spectrum pond in the southeast portion of the residential area. See the excel spreadsheet in Appendix B and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

Basin E1.4, E1.4A, E1.5, E1.6

Basin E1.4, E1.4a/b, E1.5 and E1.6 flows consist of runoff from residential lots on Cider Mill Place. Runoff from these basins flows south to the east end of Coyote Run. Storm sewer inlets will collect runoff and convey it south to the full spectrum pond in the southeast portion of the residential area. The storm sewer system is designed for the 100year storm event. See the excel spreadsheet in Appendix B and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

Basin E1.7-E1.11

These basins consist of residential lots located adjacent to Meadow Bank Lane, Coyote Run Drive, Borderpine Way, Chalkstone Lane, and Carriage Meadows Drive north of the FMIC relocated channel. The runoff flows southerly and easterly via curb and gutter to storm sewer inlets in Borderpine Way, and Carriage Meadows Drive. The storm sewer flows south and east to the full spectrum pond in the southeast portion of the residential area. See the excel spreadsheet in Appendix B and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

Basin E1.12

Basin E1.12 flows are primarily generated by residential lots and open areas and drain directly to the water quality pond. The runoff from this sub-basin is 4.0 and 9.4 cfs for the 5-year and 100-year storm respectively.

<u>Basin E1.13</u>

Basin E1.13 flows are primarily generated by the backyards of residential lots and open areas. Runoff from this basin drains overland (no channelization) easterly directly to Jimmy Camp Creek. Roof drains on the proposed houses will be required to direct

downspouts to the front of the lot. Runoff from this basin in not included in the water quality calculations. A deviation will be submitted to allow the direct flow to Jimmy Camp Creek without treatment of WQ since this area is only backyards and open space. There is a 20' open space buffer between the backlot lines and JCC which will provide some treatment of runoff. This basin comprises of about 2.54acres of backyards which calculates about 5.26% of the total site (48.2ac). The runoff from this sub-basin is 9.2 and 19.2 cfs for the 5-year and 100-year storm respectively.

Basin E2.1

Basin E2.1 flows are primarily generated by roof and parking lot runoff of future commercial areas. The runoff flows to the south to a storm sewer constructed as part of the Lorson Ranch Phase 1 improvements at Design Point 19. The runoff from this subbasin is 30.8 cfs and 58.0 cfs for the 5-year and 100-year storm respectively. Runoff from this basin will be detained and treated downstream per the FDR for Carriage Meadows South at Lorson Ranch Filing No. 1.

Basin E2.2

Basin E2.2 flows are primarily generated street runoff from Carriage Meadows Drive. The runoff flows southerly down Carriage Meadows Drive is collected by a 5' Type R inlet at Design Point 18 (sump). The runoff from this sub-basin is 2.3 cfs and 4.9 cfs for the 5-year and 100-year storm respectively. Runoff from this basin will be detained and treated downstream per the FDR for Carriage Meadows South at Lorson Ranch Filing No. 1.

Basin E2.3

Basin E2.3 flows are primarily generated by roof and parking lot runoff of future commercial areas. The runoff flows southwesterly and is collected by a 20' Type R inlet at Design Point 17 (sump). The runoff from this sub-basin is 11.6 cfs and 22.2 cfs for the 5-year and 100-year storm respectively. Runoff from this basin will be detained and treated downstream per the FDR for Carriage Meadows South at Lorson Ranch Filing No. 1.

Basin E2.4

Basin E2.4 flows are primarily generated by street runoff from Fontaine Boulevard. The runoff flows westerly down Fontaine Boulevard to an inlet at Design Point 17 (sump). The runoff from this sub-basin is 5.1 cfs and 9.6 cfs for the 5-year and 100-year storm respectively. Runoff from this basin will be detained and treated downstream per the FDR for Carriage Meadows South at Lorson Ranch Filing No. 1.

Basin E2.5

Basin E2.5 flows are primarily generated by roof and parking lot runoff of future commercial areas. The runoff flows southwesterly and is all collected by an18" RCP stub at Design Point 17a, then westerly to Type R inlet at Design Point 17 (sump). The runoff from this sub-basin is 5.3cfs and 10.2cfs for the 5-year and 100-year storm respectively. Runoff from this basin will be detained and treated downstream per the FDR for Carriage Meadows South at Lorson Ranch Filing No. 1.

5.0 HYDRAULIC SUMMARY

Hydraulic and pond calculations have been performed using an excel spreadsheet, Hydraflow for Storm Sewers and Hydraflow Express by Intellisolve. Street runoff capacities are calculated by using irregular channel calculations based on local street typical sections and using Hydraflow Express and varying street slopes, a rating curve was developed for both the 5-year and 100-year storm events. The street capacities for the 5/100 year storm events adhere to requirements set forth in Table 6.1 in the DCM.

It is the intent of this FDR to use the proposed curb/gutter and storm sewer in the streets to convey runoff to water quality ponds or Jimmy Camp Creek where runoff can be treated prior to discharge into Jimmy Camp Creek. Inlet locations have been indicated on the developed conditions drainage map and have been sized for either the 5-year or 100-year storms based on location. See Appendix C for detailed hydraulic calculations and the storm sewer model.

The sizing of the storm sewer was prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Inlet sizing was performed by Denver Urban Drainage Excel Spreadsheets.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to Jimmy Camp Creek. See Appendix C for detailed hydraulic calculations and the storm sewer model.

All storm sewer is to be part of a public system. Detention Pond CMN1 is full spectrum detention pond including water quality and will be owned an maintained by Lorson Ranch Metro District.

Street	Resident	Residential Local		Residential Collector		I Arterial
Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Table 1: Street Capacities (100-year capacity is only ½ of street)

Note: all flows are in cfs (cubic feet per second)

Design Point 1

(5-year storm)Tributary Basins:E1.1Inlet/MH Number:DP-1Upstream Bypass:0 cfsTotal Street Flow:6.7 cfsFlow Intercepted:5.8 cfsFlow Bypassed:1.0 cfs to Inlet DP-2Inlet Size:10-foot, on-grade, Type RStreet Capacity:7.5 cfs at 0.74% --- street capacity okay

(100-year storm)Tributary Basins:E1.1Inlet/MH Number:DP-1Upstream Bypass:0 cfsTotal Street Flow:14.2 cfsFlow Intercepted:8.6 cfsFlow Bypassed:5.6 cfs to Inlet DP-2Inlet Size:10-foot, on-grade, Type RStreet Capacity:31 cfs at 0.74% --- street capacity okay

Comments:

Design Point 2

(5-year storm) E1.2 Inlet/MH Number: Tributary Basins: DP-2 **Upstream Bypass:** 1.0 cfs Total Street Flow: 6.6 cfs Flow Intercepted: 5.7 cfs Flow Bypassed: 0.9 cfs to Inlet DP-8 Inlet Size: 10-foot, on-grade, Type R Street Capacity: 7.5 cfs at 0.74% --- street capacity okay (100-year storm) Tributary Basins: E1.2 Inlet/MH Number: DP-2 **Upstream Bypass:** 5.6 cfs 17.4 cfs Total Street Flow: Flow Intercepted: 9.5 cfs Flow Bypassed: 7.9 cfs to Inlet DP-8 Inlet Size: 10-foot, on-grade, Type R Street Capacity: 31 cfs at 0.74% --- street capacity okay Comments:

Design Point 3

<u>(5-year storm)</u>		
Tributary Basins: E1.3	Inlet/MH Number:	DP-3
Upstream Bypass: 0 cfs	Total Street Flow:	3.5 cfs
Flow Intercepted: 3.5 cfs	Flow Bypassed:	0
Inlet Size: 10-foot, on-grade, Type R		
Street Capacity: 7.5 cfs at 0.74% street	capacity okay	
<u>(100-year storm)</u>		
Tributary Basins: E1.3	Inlet/MH Number:	DP-3
Upstream Bypass: 0 cfs	Total Street Flow:	7.3 cfs
Flow Intercepted: 6.1 cfs	Flow Bypassed:	1.2 cfs to Inlet DP-5
Inlet Size: 10-foot, on-grade, Type R		
Street Capacity: 31 cfs at 0.74% street	capacity okay	
Comments:		

Design Point 4

(5-year storm) Tributary Basins: E1.4 Upstream Bypass: Flow Intercepted: 6.1cfs Inlet Size: 10-foot, on-grade, Type R Street Capacity: 7.5 cfs at 0.74% street	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-4 7.5cfs 1.4cfs to Inlet DP-4a
(100-year storm) Tributary Basins: E1.4 Upstream Bypass: n/a Flow Intercepted: 9.0cfs Inlet Size: 10-foot, on-grade, Type R Street Capacity: 31 cfs at 0.74% street Comments:	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-4 15.6cfs 6.6cfs to Inlet DP-4a

Design Point 4a

(5-year storm) Tributary Basins: E1.4a Upstream Bypass: 1.4 cfs Flow Intercepted: 5.5 cfs Inlet Size: 10-foot, on-grade, Type R Street Capacity: 7.5 cfs at 0.74% street	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-4a 6.3 cfs 0.8 cfs to Inlet DP-4b
(100-year storm) Tributary Basins: E1.4a Upstream Bypass: 6.6 cfs Flow Intercepted: 9.3cfs Inlet Size: 10-foot, on-grade, Type R Street Capacity: 31 cfs at 0.74% street	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-4a 16.7 cfs 7.4 cfs to Inlet DP-4b
Comments:		

Design Point 4b

<u>(5-year storm)</u>		
Tributary Basins: E1.4b	Inlet/MH Number:	DP-4b
Upstream Bypass: 0.8 cfs	Total Street Flow:	5.7 cfs
Flow Intercepted: 5.7 cfs	Flow Bypassed:	
Inlet Size: 15-foot, SUMP, Type R		
Street Capacity: 7.5 cfs at 0.7% s	treet capacity okay	
(100-vear storm)		

Tributary Basins: E1.4bInlet/MH Number:Upstream Bypass: 7.4 cfsTotal Street Flow:Flow Intercepted: 17.5 cfsFlow Bypassed:Inlet Size: 15-foot, SUMP, Type RStreet Capacity: 31 cfs at 0.7% --- street capacity okay

Comments:

Design Point 5

(5-year storm)		
Tributary Basins: E1.5	Inlet/MH Number:	DP-5
Upstream Bypass: 0 cfs	Total Street Flow:	2.3cfs
Flow Intercepted: 2.3 cfs	Flow Bypassed:	0 cfs
Inlet Size: 5-foot, SUMP, Type R		
Street Capacity: 7.5 cfs at 0.7% str	eet capacity okay	
(100-year storm)		
Tributary Basins: E1.5	Inlet/MH Number:	DP-5
Upstream Bypass: 1.2cfs	Total Street Flow:	5.9 cfs
Flow Intercepted: 5.9cfs	Flow Bypassed:	0 cfs
Inlet Size: 5-foot, SUMP, Type R		
Street Capacity: 31 cfs at 0.7% street	et capacity okay	

DP-4b

17.5 cfs

Comments:

Design Point 6

(5-year storm) Tributary Basins: E1.6 Upstream Bypass: 0 cfs Flow Intercepted: 5.1 cfs Inlet Size: 10' sump inlet, Type R Street Capacity: 7.5 cfs at 0.7% street (Inlet/MH Number: Total Street Flow: Flow Bypassed:	DP-6 5.1 cfs 0 cfs
Street Capacity: 7.5 cls at 0.7% street of	сарасну окау	
(100-year storm) Tributary Basins: E1.6 Upstream Bypass: 0 cfs Flow Intercepted: 10.5 cfs Inlet Size: 10' sump inlet, Type R Street Capacity: 31 cfs at 0.7% street c	Inlet/MH Number: Total Street Flow: Flow Bypassed: apacity okay	DP-6 10.5 cfs 0 cfs
Comments:		

Design Point 7

<u>(5-year storm)</u>		
Tributary Basins: E1.7	Inlet/MH Number:	DP-7
Upstream Bypass: 0 cfs	Total Street Flow:	5.2 cfs
Flow Intercepted: 5.2 cfs	Flow Bypassed:	0 cfs
Inlet Size: 10-foot, sump inlet, Type R		
Street Capacity: 9.0 cfs at 1.0% street of	capacity okay	
(100-year storm)		
Tributary Basins: E1.7	Inlet/MH Number:	DP-7
Upstream Bypass: 0 cfs	Total Street Flow:	10.9 cfs
Flow Intercepted: 10.9 cfs	Flow Bypassed:	0 cfs
Inlet Size: 10-foot, sump inlet, Type R		
Street Capacity: 37 cfs at 1.0% street c	apacity okay	
Comments:		

Design Point 8

(5-year storm) Tributary Basins: E1.8 Upstream Bypass: 0.9 cfs Flow Intercepted: 8.4 cfs Inlet Size: 10-foot, SUMP, Type R Street Capacity: 7.5 cfs at 0.7% stree	Inlet/MH Number: Total Street Flow: Flow Bypassed: et capacity okay	DP-8 8.4 cfs
(100-year storm) Tributary Basins: E1.8 Upstream Bypass: 7.9 cfs Flow Intercepted: 16.3 cfs Inlet Size: 10-foot, SUMP, Type R Street Capacity: 31 cfs at 0.7% street Comments:	Inlet/MH Number: Total Street Flow: Flow Bypassed: et capacity okay	DP-8 23.4 cfs 7.1cfs to DP-10

Design Point 9

(5-year storm) Tributary Basins: E1.9 Upstream Bypass: 0 cfs Flow Intercepted: 5.2 cfs Inlet Size: 5-foot, sump, Type R	Inlet/MH Number: Total Street Flow: Flow Bypassed:	DP-9 5.2 cfs 0 cfs
Street Capacity: 7.5 cfs at 0.7% street ca	pacity okay	
(100-year storm) Tributary Basins: E1.9 Upstream Bypass: 0 cfs Flow Intercepted: 9.3 cfs Inlet Size: 5-foot, sump, Type R Street Capacity: 31 cfs at 0.7% street cap	Inlet/MH Number: Total Street Flow: Flow Bypassed: Dacity okay	DP-9 10.7 cfs 1.4 cfs to DP-10
Comments:		

Design Point 10

(5-year storm)Inlet/MH Number:DP-10Upstream Bypass:0 cfsTotal Street Flow:3.1 cfsIllet Size:10-foot, sump, Type R0 cfs0 cfsStreet Capacity:8.0 cfs at 0.80% --- street capacity okay0

(100-year storm)Inlet/MH Number:DP-10Tributary Basins: E1.10Inlet/MH Number:DP-10Upstream Bypass: 8.5 cfsTotal Street Flow:14.7 cfsFlow Intercepted:14.7 cfsFlow Bypassed:0 cfsInlet Size:10-foot, sump, Type RStreet Capacity:33 cfs at 0.80% --- street capacity okay

Comments: Inlet in sump. In 5-yr storm, 1.0 cfs is from south and does not exceed street cap. A clogging factor of 1.25 was used in this inlet.

Design Point 11

(5-year storm) Tributary Basins: E1.11 Upstream Bypass: 0 cfs Flow Intercepted: 2.1 cfs Inlet Size: 5-foot, sump, Type R Street Capacity: 8.0 cfs at 0.80% street	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-11 2.1 cfs 0 cfs
(100-year storm) Tributary Basins: E1.11 Upstream Bypass: Flow Intercepted: 4.2 cfs Inlet Size: 5-foot, sump, Type R Street Capacity: 33 cfs at 0.80% street of	Inlet/MH Number: Total Street Flow: Flow Bypassed: capacity okay	DP-11 4.2 cfs 0 cfs
Comments:		

Design Point 12

(5-year storm) Flow into pond: 24.2 cfs (100-year storm) Flow into pond: 61.1cfs

Comments: This design point is the total developed flow entering Pond CMN-1 from Basins E1.1 to E1.12. The flow rates are from the excel spreadsheets for Full Spectrum Detention Ponds. The total tributary area is 29.84acres and has an imperviousness of 50%.

Design Point 13 (Full Spectrum Pond CMN-1)

(2-year storm) Pond Outflow: 1.7 cfs <u>(5-year storm)</u> Pond Outflow: 2.6cfs

(100-year storm) Pond Outflow: 27.2 cfs

Comments: See Section 7.0 for Full Spectrum Pond Sizing

Design Point 14

(5-year storm) Runoff: 113cfs (100-year storm) Runoff: 214cfs

Comments: Design Point 14 is located on the west end the FMIC channel at Marksheffel Rd. The existing channel accepts runoff from Marksheffel Road, detention pond outflow from Cottonwood Meadows Subdivision, and irrigation baseflows of 50cfs. The channel conveys the flow east to a diversion structure at Design Point 15 where the storm runoff will be diverted into an existing diversion structure while the irrigation baseflow of 50cfs will be allowed to flow east under Carriage Meadows Drive. This flow data was taken from the Final Drainage Report for Fontaine Boulevard.

Design Point 15

((5-year storm) Runoff: 63cfs <u>(100-year storm)</u> Runoff: 164cfs

Comments: Design Point 15 is located on the west side of Carriage Meadows Drive and the FMIC open channel and is the total storm runoff entering a 25' D10R diversion structure constructed as part of the FMIC Channel improvements in 2006. A diversion structure at this point will divert 63cfs/164 cfs into an existing modified D10R inlet and allow the 50 cfs irrigation base flow to remain in the FMIC channel and flow east in an existing box culvert. The diversion concept consists of a 3'x4' box under Carriage Meadows Drive (for 50cfs of irrigation) while the storm runoff overflows into an existing modified 25' type D10R inlet. When the ditch is not running a slide gate on the box culvert is closed and a gate on the D10R inlet is opened so all storm runoff enters the inlet. A 48" storm sewer conveys the diverted runoff from the D10R inlet east to an existing 60" storm sewer where it will combine with runoff from Design Point 13 (from Carriage Meadows North WQ Pond) and flow directly east to Jimmy Camp Creek. The FMIC ditch system east of Carriage Meadows Drive has been converted from an open channel to a piped system in 2015. This flow data was taken from the Final Drainage Report for Fontaine Boulevard.

Design Point 16

<u>(5-year storm)</u> Runoff: 63+2.6 = 65.6cfs <u>(100-year storm)</u> Runoff: 164+27.2 = 191.2cfs

Comments: Design Point 16 is located at Jimmy Camp Creek and is the total flow in the 60" RCP at 0.95% slope from the FMIC storm diversion structure (modified 25' D10R) at Design Point 15 and flow from the WQ/Detention Pond at Design Point 13. The 60" RCP has a flow depth of 3.5' for 191.2cfs and has a full flow capacity of 270cfs which exceeds the flows required. The existing 60" pipe has an existing cut-off wall and rip rap channel into JCC and no additional improvements are necessary in JCC.

(5-year storm) Tributary Basins: E2.5 Flow Intercepted: 5.3 cfs

Inlet/MH Number:

(100-year storm) Tributary Basins: E2.5 Flow Intercepted: 10.2 cfs

Inlet/MH Number:

Comments: This design point collects flow from Basin E2.5 which is a future commercial area. Basin E2.5 will be required to direct all flow to the southwest to an 18" RCP stub provided by this construction, then west to Design Point 17. Both the 5 and 100-year storm events will need to be collected by the storm sewer stub. No runoff will be allowed to flow west to discharge directly to Carriage Meadows Drive. Runoff from this basin will be treated for water quality and volume downstream to the south as part of Carriage Meadows South Filing No. 1 development. See Carriage Meadows South Filing No. 1 PDR/MDDP.

Design Point 17

(5-year storm) Tributary Basins: E2.3 & E2.4 Upstream Bypass: 0 Flow Intercepted: 11.6 cfs Inlet Size: 20-foot, sump, Type R	Inlet/MH Number: Total Street Flow: Flow Bypassed: Flow in Pipe:	DP-17 11.6 cfs 0 16.9 cfs, 30" RCP
Street Capacity: 16.2 cfs at 1.5% grade	residential collector	okay
(100-year storm) Tributary Basins: E2.3 & E2.4 Upstream Bypass: 0 Flow Intercepted: 22.2 cfs Inlet Size: 20-foot, sump, Type R Street Capacity: 49cfs at 1.5% grade re	Inlet/MH Number: Total Street Flow: Flow Bypassed: Flow in Pipe: sidential collector okay	DP-17 22.2 cfs 0 32.0 cfs, 30" RCP

Comments: Storm sewer is designed for 100-year storm and flows west to Design Point 18 via a 30" RCP at 0.5%. Runoff from this basin will be treated for water quality and volume downstream on Carriage Meadows South at Lorson Ranch Filing No. 1.

Design Point 18

(5-year storm)		
Tributary Basins: E2.2	Inlet/MH Number:	DP-18
Upstream Bypass: 0	Total Street Flow:	2.6 cfs
Flow Intercepted: 2.6 cfs	Flow Bypassed:	0
Inlet Size: 5-foot, sump, Type R	Flow in Pipe:	19.2 cfs, 30" RCP
Street Capacity: 16.2 cfs at 1.5% grade	okay	
(100-year storm)		
Tributary Basins: E2.2	Inlet/MH Number:	DP-18
Upstream Bypass: 0	Total Street Flow:	4.9 cfs
Flow Intercepted: 4.9 cfs	Flow Bypassed:	0
Inlet Size: 5-foot, sump, Type R	Flow in Pipe:	37.1 cfs. 30" RCP

Inlet Size: 5-foot, sump, Type R Flo Street Capacity: 49 cfs at 1.5% grade --- okay

Comments: Storm sewer is designed for 100-year storm and flows west to Design Point 19 via a 30" RCP at 0.5%. At Design Point 19, a new manhole will be constructed over an existing 24X53" stub. The Lorson Ranch improvements have been designed to accept runoff from Basin E2.2, 2.3, 2.4 and E2.5 (upstream flow). Runoff from this basin will be treated for water quality and volume downstream on Carriage Meadows South Filing No. 1 at Lorson Ranch.

Design Point 19

(5-year storm) **Tributary Basins:** E2.1 **Basin Flow:** 30.7 cfs Total Flow in Pipe: 48.3 cfs in 36" RCP pipe okay, 52cfs allowed per Lorson Ranch Phase 1 FDR.

(100-year storm) **Tributary Basins:** E2.1 **Basin Flow:** 58.0 cfs Total Flow in Pipe: 90.9 cfs in 36" pipe okay, 97cfs allowed per Lorson Ranch Phase 1 FDR.

Comments: This design point collects flow from Basin E2.1 which is a future commercial area. Basin E2.1 will be required to direct all flow to the south to an existing 34X53" RCP stub provided by Lorson Ranch Phase 1 improvements. Runoff from Basins E2.1-E2.5 is then directed south under Fontaine Boulevard via a storm sewer system constructed as part of Lorson Ranch Phase 1 improvements. Both the 5 and 100-year storm events will need to be collected by the storm sewer stub. . Runoff from this basin will be treated for water quality and volume downstream on Carriage Meadows South Lorson Ranch Filing No. 1. <u>(5-year storm)</u> Total Flow in Pipe: 20.0 cfs in ex. 4'x7'CBC

(100-year storm) Total Flow in Pipe: 75.4 cfs in ex. 4'x7'CBC

Comments: This design point is located on the east side of Marksheffel Road at an existing 4'x7'CBC pipe crossing under Marksheffel Road constructed in 2015. Drainage flows east onto Carriage Meadows. The design flows above have been taken from a Final Drainage Report for Marksheffel Road by HDR. Carriage Meadows North will construct a 48" RCP north to Peaceful Ridge Drive at Design Point 22.

Design Point 21

<u>(5-year storm)</u> Total Flow in Pipe: 40.7 cfs

(100-year storm) Total Flow in Pipe: 104.1cfs

Comments: This design point is located on the east side of Marksheffel Road at Peaceful Ridge Drive. The design flows above have been taken from a Final Drainage Report from a proposed subdivision called Peaceful Ridge at Fountain Valley prepared by Kiowa Engineering. A 48" RCP will convey the flows to a proposed manhole in Peaceful Ridge Drive where is combines with flow from Design Point 20 and flows east to JCC. In 2015 the portion of the 48" RCP under Marksheffel Road was constructed so we need to connect to the existing stub and extend it east to the proposed manhole at Design Point 22.

Design Point 22

<u>(5-year storm)</u> Total Flow in Pipe: 60.7 cfs in 60" RCP (developed conditions)

(100-year storm)

Total Flow in Pipe: 179.5 cfs in 60" RCP (developed conditions)

Comments: This design point is located on the west side of Marksheffel Road at the north property line of Carriage Meadows on Peaceful Ridge Drive. Carriage Meadows will construct a 60" RCP east to an existing 60" RCP at Jimmy Camp Creek. No improvements are necessary in Jimmy Camp Creek.

Address pipe size transition, maintenance, potential for clogging...

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for Carriage Meadows North Filing No. 1 is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for Carriage Meadows North Filing No. 1 per the Denver Urban Drainage Districts specifications. Pond CMN-1 will incorporate storm water quality features into the full spectrum pond. Detention Pond CMN-1 will be owned and maintained by the Lorson Ranch Metropolitan District No. 1.

Detention Pond CMN-1 (Full Spectrum Design)

This is an on-site permanent full spectrum detention pond that includes water quality and discharges directly into Jimmy Camp Creek. Pond CMN-1 is designed using the UDCF Full Spectrum spreadsheets. The outlet structure is a standard 4'x20' full spectrum sloped outlet structure and the overflow spillway is a weir set above the outlet structure designed by the full spectrum spreadsheets to match pre-developed rates. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Ares: 29.84 acres
- Watershed Imperviousness: 50%
- Hydrologic Soils Group C/b
- Forebay: 0.025ac-ft (see spreadsheet in appendix), Top=5707.00, Btm=5705.5
- Zone 1 WQCV: 0.467ac-ft, WSEL: 5706.44
- Zone 2 EURV: 1.18ac-ft, WSEL: 5707.70, Top outlet structure set at 5709.20, 4'x20' outlet with 6:1 slope, 1.8cfs
- (5-yr): 1.57ac-ft, WSEL: 5708.32, 2.6cfs
- Zone 3 (100-yr): 2.64ac-ft, WSEL: 5709.82, 27.2cfs
- Pipe Outlet: 24" RCP at 0.5% with restrictor plate up 18 inches
- Overflow Spillway: 21' wide bottom, elevation=5710.00, 4:1 side slopes, flow depth=0.92' at 61.1cfs and 1.08' of freeboard
- Pre-development release rate into creek compliance from full spectrum pond spreadsheets
- Pond Bottom Elevation: 5696.00

Design: Full Spectrum Excel Worksheets Only

	WQ	EURV	5-yr	100-yr			
Peak Inflow	6.7cfs	18.2cfs	24.2cfs	61.1cfs			
Peak Outflow	0.2cfs	1.8cfs	2.6cfs	27.2cfs			
Ponding Depth	2.44ft	3.70ft	3.70ft 4.32ft				
Stored Volume	0.467ac-ft	1.18ac-ft	1.57ac-ft	2.64ac-ft			
Spillway Stage	6.00ft, 21' wide						
Structure Type:	4'x20' outlet st	4'x20' outlet structure with 6:1 slopes. Top at stage 5.2ft					

Verify - this seems low, should be 52-55%?

This should not include Tracts D and E which will pay fees when they replat. If you want to include Tracts D and E, account for the commercial imperviousness. Residential 34.2 acres at 52-55% imperviousness(?)

	7.0 DRAINAGE	AND BRIDG	E FEES					
	Carriage Mead basin which is regulations required plat recordation agreement with constructed as	ows North Fili currently a uire drainage process. Lo h El Paso Co part of the dis	ng No. 1 is loo fee basin in and bridge fee rson Ranch I punty which trict.	cated v EL Pa es to b Metro defines	within the Jimm aso County. Ci e paid for plattii District has neg s major draina	y Camp Cro urrent El F ng of land a gotiated a ge infrastro	eek drainage Paso County as part of the development ucture to be	
	Lorson Ranch I Drainage and t received for the	Metro District pridge fees fo same yearly	will compile a r the approve time frame.	nd sub d plate	omit to the coun s, and shall sho	ty on a yea ow all credi	arly basis the its they have	
E	Carriage Mead assessed Drain impervious pero The 2017 drain \$7,000 per imp	lows North Finage, Bridge centage of 50% age fees are \$ ervious acre.	iling No. 1 c and Surety 15,720, bridg The fees are	ontains fees. e fees due a	s 48.2 acres. This project is ate \$735 and D t plat recordatio	The 48.2 a s estimated pro prainage Su n and are o	acres will be d to have a ovide late arety fees are calculated as	est update
7,28	føllows: 85 Table 1: Drain	\$16,2 age/Bridge F	270 ees		\$761		revis	Se
	Type of Land Use	Total Area	Impervious	ness	Drainage Fee	Bridge Fee	Surety Ree	
	Site	48.2	50%	3	\$378,852	\$17,713	\$168,700	
		uu		5	tun	····	ιιι	
r	Table 2: Storn	n Drainage Fa	acility Costs	(non-I	reimbursable)			
				11 14				

Item	Quantity	Unit	Unit Cost	Item Total
Rip Rap Overflow	1	EA	\$4000/EA	\$4,000
Inlets/Manholes	30	EA	\$5000/EA	\$150,000
18" Storm	880	LF	\$35	\$30,800
24" Storm	1290	LF	\$40	\$51,600
30" Storm	413	LF	\$45	\$18,585
36" Storm	283	LF	\$55	\$15.656
42" Storm	334	LF	\$65	\$21,710
48" Storm	440	LF	\$85	\$37,400
60" Storm	610	LF	\$200	\$122,000
			Subtotal	\$451,660
			Eng/Cont (15%)	\$67,749
			Total Est. Cost	\$519,409

Reference Resolution No. 17-71, Rec. No. 2017021072

Item	Quantity	Unit	Unit Cost	Item Total				
Full Spectrum Ponds and Outlet	1	LS	\$90,000	\$90,000				
			Subtotal	\$90,000				
		Eng/Cont (15%)	\$13,500					
		Total Est. Cost	\$103,500					

Table 3: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

7.0 WATER QUALITY

Water quality for the majority of the site (29.84ac) is provided by an on-site full spectrum pond (Pond CMN-1) including water quality provisions.

Water quality for the commercial areas in the future development tracts is provided in Carriage Meadows South at Lorson Ranch Filing No. 1 as stated in the FDR for Carriage Meadows South.

There is a small drainage area (adjacent to Jimmy Camp Creek from backyards that flows east to Jimmy Camp Creek. Carriage Meadows North has included a 17' buffer strip behind the backyards to partially treat the runoff for water quality. However, the county does require all areas to be treated so a deviation for the small area will be required. The area comprises of about 2.54acres of backyards which calculates to 5.26% of the total site (48.2ac).

The Lorson Ranch Metropolitan District will own/maintain all ponds including WQ ponds.

9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- Jimmy Camp Creek is realigned and Marksheffel Road has been reconstructed within this study area
- Detention and water quality for this study area has been provided

10.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014
- 3. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 4. Jimmy Camp Creek Drainage Basin Planning Study, 1987, Wilson & Co.
- 5. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 6. El Paso County "Engineering Criteria Manual"
- Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.
- 8. Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 9. Final Drainage Report for Marksheffel Road South by HDR dated August, 2015
- 10. Jimmy Camp Creek Reconstruction plans by Drexel, Barrell & Co, dated September 6, 2005, county plans #2801.
- 11. Master Development Drainage Plan and Preliminary Drainage Report for Carriage Meadows South at Lorson Ranch by Core Engineering Group, dated June, 2017 and revised March, 2017.
- 12. Peaceful Ridge at Fountain Valley Final Drainage Report, Dated December 7, 2005, Revised July 20, 2006, by Kiowa Engineering
- 13. Cottonwood Meadows Final Drainage Report, Dated October, 1999 by HMS Group

APPENDIX A – VICINITY MAP, SOILS MAP, FEMA MAP

Federal Emergency Management Agency

Washington, D.C. 20472

MAY 0 7 2007

CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Dennis Hisey Chairman, El Paso County Board of Commissioners 27 East Vermijo Avenue Colorado Springs, CO 80903

Dear Mr. Hisey:

IN REPLY REFER TO: Case No.: 06-08-B643P Follows Conditional Case No.: 05-08-0286R Community Name: El Paso County, CO Community No.: 080059 Effective Date of This Revision: AUG 2 9 2007

The Flood Insurance Study report and Flood Insurance Rate Map for your community have been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Denver, Colorado, at (303) 235-4830, or the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

Sincerely,

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

List of Enclosures:

Letter of Map Revision Determination Document Annotated Flood Insurance Rate Map Annotated Flood Insurance Study Report

cc: The Honorable Lionel Rivera Mayor, City of Colorado Springs

> The Honorable Jeri Howells Mayor, City of Fountain

Pentacor Engineering LLC

For: William R. Blanton Jr., CFM, Chief Engineering Management Section Mitigation Division

> Mr. Phil Wuthier, P.E., CFM Regional Floodplain Administrator Pikes Peak Regional Building Department

APPENDIX B – HYDROLOGIC CALCULATIONS

PROJECT NAME: Carriage Meadows North Filing No. 1 FDR PROJECT NUMBER: 100.002 Provide pre-development calculations

ENGINEER: RLS DATE: 12/1/2017

EXISTING CONDITIONS HYDROLOGY CALCULATIONS

BASIN		EV-E1	EV-E2
		EV-EI	EA-EZ
AREA, A [ACRE]	-	37.30	12.40
RUN-OFF COEFFICIENT, C5	-	0.30	0.30
OVERLAND DROP [FT]	- (4.00	4.00
OVERLAND FLOW LENGTH, L _O [FT]	- >	200.00	200.00
OVERLAND SLOPE, S _O [%]	- >	2.00%	2.00%
OVERLAND FLOW TIME, t _i [MIN]	- >	16.16	16.16
TRAVEL FLOW DROP [FT]	- >	8.00	5.00
TRAVEL FLOW LENGTH, Lt [FT]	- >	800.00	500.00
TRAVEL SLOPE, S _t [%]	- >	1.00%	1.00%
TRAVEL VELOCITY, V _t [FT/SEC] ³	Chart 🔀	1.90	1.90
TRAVEL TIME, t _t [MIN]	- >	7.02	4.39
TIME OF CONCENTRATION, t _c	t _i +t _t	23.18	20.55
	- >		
5-YR RUN-OFF COEFFICIENT, C5	- 7	0.30	0.30
5-YR RAINFALL INTENSITY, I5 [IN/HR]	- >	2.78	1.94
5-YR MAXIMUM RUN-OFF, Q5 [CFS]	Q=CIA	31	7
100-YR RUN-OFF COEFFICIENT, C ₁₀₀	(.	0.45	0.45
100-YR RAINFALL INTENSITY, I ₁₀₀ [IN/HR]	- (5.23	5.57
100-YR MAXIMUM RUN-OFF, Q ₁₀₀ [CFS]	Q=CIA	88	31

¹ City of Colorado Springs and El Paso County Drainage Criteria Manual unless otherwise noted.

² Urban Drainage Criteria Manual

³ Velocity for shallow concentrated flow

Use pre-development Tcs and C values. Reference DCM Update (City) Table 6-6.

PROJECT NAME: Carriage Meadows Filing No. 1 FDR PROJECT NUMBER: 100.002 ENGINEER: RLS DATE: 9/1/2006, Rev. 11/1/2017

DEVELOPED CONDITIONS HYDROLOGY CALCULATIONS

BASIN	CRITERIA								
	REFERENCE ¹	E1.1	E1.2	E1.3	E1.4	E1.4a	E1.4b	E1.5	E1.6
AREA, A [ACRE]	-	3.29	2.56	1.53	3.32	2.19	2.23	0.93	2.43
RUN-OFF COEFFICIENT, C5	-	0.58	0.59	0.60	0.60	0.60	0.60	0.60	0.60
OVERLAND DROP [FT]	-	3.00	3.40	1.00	2.60	4.10	4.10	3.40	1.40
OVERLAND FLOW LENGTH, L _O [FT]	-	150.00	150.00	50.00	130.00	205.00	205.00	170.00	70.00
OVERLAND SLOPE, S _O [%]	-	2.00%	2.27%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
OVERLAND FLOW TIME, t _i [MIN]	-	9.07	8.59	5.05	8.14	10.23	10.23	9.31	5.98
TRAVEL FLOW DROP [FT]	-	5.92	4.44	7.80	5.20	2.80	3.15	2.50	9.10
TRAVEL FLOW LENGTH, Lt [FT]	-	800.00	600.00	1050.00	650.00	400.00	450.00	220.00	1300.00
TRAVEL SLOPE, S _t [%]	-	0.74%	0.74%	0.74%	0.80%	0.70%	0.70%	1.14%	0.70%
TRAVEL VELOCITY, Vt [FT/SEC] ³	V=1.486/n * R ^{2/3} * S ^{1/2}	2.54	2.54	2.54	2.64	2.47	2.47	3.14	2.47
TRAVEL TIME, t _t [MIN]	-	5.26	3.94	6.88	4.11	2.70	3.04	1.17	8.78
TIME OF CONCENTRATION, t _c	t _i +t _t	14.32	12.53	11.94	12.25	12.93	13.27	10.48	14.76
	-								
5-YR RUN-OFF COEFFICIENT, C ₅	-	0.58	0.59	0.60	0.60	0.60	0.60	0.60	0.60
5-YR RAINFALL INTENSITY, I ₅ [IN/HR]	-	3.54	3.75	3.82	3.78	3.70	3.66	4.03	3.49
5-YR MAXIMUM RUN-OFF, Q₅ [CFS]	Q=CIA	6.8	5.6	3.5	7.5	4.9	4.9	2.2	5.1
100-YR RUN-OFF COEFFICIENT, C ₁₀₀		0.68	0.69	0.70	0.70	0.70	0.70	0.70	0.70
100-YR RAINFALL INTENSITY, I ₁₀₀ [IN/HR]	-	6.28	6.66	6.79	6.72	6.57	6.50	7.16	6.20
100-YR MAXIMUM RUN-OFF, Q ₁₀₀ [CFS]	Q=CIA	14.2	11.8	7.3	15.6	10.1	10.1	4.7	10.5

PROJECT NAME: Carriage Meadows Filing No. 1 FDR PROJECT NUMBER: 100.002 ENGINEER: RLS DATE: 9/1/2006, Rev. 11/1/2017

DEVELOPED CONDITIONS HYDROLOGY CALC

BASIN	CRITERIA								
	REFERENCE'	E1.7	E1.8	E1.9	E1.10	E1.11	E1.12	E1.13	E2.1
AREA, A [ACRE]	-	1.95	3.46	1.96	1.00	0.57	2.42	3.23	7.90
RUN-OFF COEFFICIENT, C5	-	0.60	0.60	0.60	0.69	0.73	0.40	0.60	0.85
OVERLAND DROP [FT]	-	1.00	3.00	0.80	1.20	0.80	2.00	1.60	2.00
OVERLAND FLOW LENGTH, L _O [FT]	-	50.00	150.00	40.00	60.00	40.00	100.00	80.00	100.00
OVERLAND SLOPE, S _O [%]	-	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
OVERLAND FLOW TIME, t _i [MIN]	-	5.05	8.75	4.52	4.54	3.34	10.01	6.39	3.57
TRAVEL FLOW DROP [FT]	-	5.70	5.80	4.80	5.40	1.83			6.50
TRAVEL FLOW LENGTH, Lt [FT]	-	500.00	760.00	600.00	540.00	260.00			650.00
TRAVEL SLOPE, S _t [%]	-	1.14%	0.76%	0.80%	1.00%	0.70%			1.00%
TRAVEL VELOCITY, Vt [FT/SEC] ³	V=1.486/n * R ^{2/3} * S ^{1/2}	3.15	2.58	2.64	2.95	2.47			2.95
TRAVEL TIME, t _t [MIN]	-	2.65	4.92	3.79	3.05	1.75			3.67
TIME OF CONCENTRATION, t _c	t _i +t _t	7.70	13.67	8.31	7.59	5.09	10.01	6.39	7.24
	-								
5-YR RUN-OFF COEFFICIENT, C ₅	-	0.60	0.60	0.60	0.69	0.73	0.40	0.60	0.85
5-YR RAINFALL INTENSITY, I ₅ [IN/HR]	-	4.50	3.61	4.39	4.52	5.08	4.10	4.77	4.59
5-YR MAXIMUM RUN-OFF, Q_5 [CFS]	Q=CIA	5.3	7.5	5.2	3.1	2.1	4.0	9.2	30.8
100-YR RUN-OFF COEFFICIENT, C ₁₀₀		0.70	0.70	0.70	0.78	0.81	0.53	0.70	0.90
100-YR RAINFALL INTENSITY, I ₁₀₀ [IN/HR]	-	8.00	6.41	7.79	8.04	9.03	7.28	8.48	8.16
100-YR MAXIMUM RUN-OFF, Q ₁₀₀ [CFS]	Q=CIA	10.9	15.5	10.7	6.2	4.2	9.4	19.2	58.0

PROJECT NAME: Carriage Meadows Filing No. 1 FDR PROJECT NUMBER: 100.002 ENGINEER: RLS DATE: 9/1/2006, Rev. 11/1/2017

DEVELOPED CONDITIONS HYDROLOGY CALC

BASIN	CRITERIA					
	REFERENCE'	E2.2	E2.3	E2.4	E2.5	E2.1 to 2.5
AREA, A [ACRE]	-	0.57	2.00	1.14	1.28	12.89
RUN-OFF COEFFICIENT, C5	-	0.80	0.71	0.87	0.82	0.85
OVERLAND DROP [FT]	-	0.52	1.00	1.22	1.00	1.00
OVERLAND FLOW LENGTH, L _O [FT]	-	26.00	50.00	61.00	50.00	100.00
OVERLAND SLOPE, S _O [%]	-	2.00%	2.00%	2.00%	2.00%	1.00%
OVERLAND FLOW TIME, t _i [MIN]	-	2.19	3.99	2.54	2.87	4.50
TRAVEL FLOW DROP [FT]	-	9.43	3.50	6.01	3.00	6.50
TRAVEL FLOW LENGTH, Lt [FT]	-	519.00	480.00	489.00	300.00	650.00
TRAVEL SLOPE, S _t [%]	-	1.82%	0.73%	1.23%	1.00%	1.00%
TRAVEL VELOCITY, Vt [FT/SEC] ³	V=1.486/n * R ^{2/3} * S ^{1/2}	3.98	2.52	3.27	2.95	2.95
TRAVEL TIME, t _t [MIN]	-	2.18	3.18	2.49	1.70	3.67
TIME OF CONCENTRATION, t _c	t _i +t _t	5.00	7.17	5.00	5.00	8.17
	-					
5-YR RUN-OFF COEFFICIENT, C ₅	-	0.80	0.71	0.87	0.82	0.85
5-YR RAINFALL INTENSITY, I₅ [IN/HR]	-	5.10	4.61	5.10	5.10	4.41
5-YR MAXIMUM RUN-OFF, Q₅ [CFS]	Q=CIA	2.3	6.5	5.1	5.3	48.3
100-YR RUN-OFF COEFFICIENT, C ₁₀₀		0.95	0.81	0.93	0.88	0.90
100-YR RAINFALL INTENSITY, I ₁₀₀ [IN/HR]	-	9.07	8.19	9.07	9.07	7.84
100-YR MAXIMUM RUN-OFF, Q ₁₀₀ [CFS]	Q=CIA	4.9	13.3	9.6	10.2	90.9

PROJECT NAME: PROJECT NUMBER: ENGINEER: DATE: Carriage Meadows-FDR 100.002 RLS 9/8/2006

BASIN RUNOFF COEFFICIENTS									
Basin	Area (AC.)	Cover (%)	C 5	Wtd. C 5	C 100	Wtd. C 100	CN	Wtd. CN	Type of Cover
E1.1	0.60	18.24%	0.30	0.05	0.45	0.08			Grass
	2.29	69.60%	0.60	0.42	0.70	0.49			1/8 Ac. Lots
	0.40	12.16%	0.90	0.11	0.95	0.12			Pavement//ROW
	3.29	100.00%		0.58		0.68			
E1.2	0.50	19.53%	0.30	0.06	0.45	0.09			Grass
	1.66	64.84%	0.60	0.39	0.70	0.45			1/8 Ac. Lots
	0.40	15.63%	0.90	0.14	0.95	0.15			Pavement
	2.56	100.00%		0.59		0.69			
E1.3	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	1.53	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	1.53	100.00%		0.60		0.70			
E1.4	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	4.13	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	4.13	100.00%		0.60		0.70			
E1.4A & b	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	0.66	73.33%	0.60	0.44	0.70	0.51			1/8 Ac. Lots
	0.24	26.67%	0.90	0.24	0.95	0.25			Pavement
	0.90	100.00%		0.68		0.77			
E1.5	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	0.93	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	0.93	100.00%		0.60		0.70			
E1.6	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	2.43	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	2.43	100.00%		0.60		0.70			

PROJECT NAME: PROJECT NUMBER: ENGINEER: DATE: Carriage Meadows-FDR 100.002 RLS 9/8/2006

BASIN RUNOFF COEFFICIENTS									
Basin	Area (AC.)	Cover (%)	C5	Wtd. C 5	C 100	Wtd. C 100	CN	Wtd. CN	Type of Cover
E1.7	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	1.95	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	1.95	100.00%		0.60		0.70			
E1.8	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	3.46	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	3.46	100.00%		0.60		0.70			
E1.9	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	1.96	100.00%	0.60	0.60	0.70	0.70			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	1.96	100.00%		0.60		0.70			
E1.10	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	0.70	70.00%	0.60	0.42	0.70	0.49			1/8 Ac. Lots
	0.30	30.00%	0.90	0.27	0.95	0.29			Pavement
	1.00	100.00%		0.69		0.78			
E1.11	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	0.35	56.45%	0.60	0.34	0.70	0.40			1/8 Ac. Lots
	0.27	43.55%	0.90	0.39	0.95	0.41			Pavement
	0.62	100.00%		0.73		0.81			
E1.12	1.62	66.94%	0.30	0.20	0.45	0.30			Grass
	0.80	33.06%	0.60	0.20	0.70	0.23			1/8 Ac. Lots
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	2.42	100.00%		0.40		0.53			
F ((0	0.00	0.000/	0.00	0.00	0.45	0.00			0
E1.13	0.00	0.00%	0.30	0.00	0.45	0.00			Grass
	4.23	100.00%	0.60	0.60	0.70	0.70			1/8 AC. LOIS
	0.00	0.00%	0.90	0.00	0.95	0.00			Pavement
	4.23	100.00%		0.60		0.70		<u> </u>	
E2 2	0.20	10.00%	0.20	0.02	0.45	0.05			Cross
E2.3	0.20	0.00%	0.30	0.03	0.40	0.00			
	1.00	0.00%	0.00	0.00	0.70	0.00		<u> </u>	1/0 AU. LUIS
	2.00	100 00%	0.75	0.00	0.00	0.77			CUITITIETCIAI
	2.00	100.0070		0.71		0.01		+	
F2 4	0.05	4 55%	0 30	0.01	0.45	0.02		<u> </u>	Grass
L2.7	0.00	0.00%	0.50	0.01	0.40	0.02			1/8 An Inte
	1.05	95 45%	0.00	0.86	0.95	0.00			navement
	1.00	100 00%	0.30	0.87	0.30	0.97			ρανοιποιπ
	1.10	100.0070		0.07		0.00			
F2 5	0.18	14.06%	0.30	0.04	0 45	0.06			Grass
LL.0	0.00	0.00%	0.60	0.07	0.70	0.00			1/8 Ac Lots
	1,10	85.94%	0.90	0.77	0.95	0.82			Pavement
	1.28	100.00%	0.00	0.82	0.00	0.88			
Carriage Meadows North #100.002 Inlet DP-1 (Basin E1.1)

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	_
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	5.9	12.4	cfs
Water Spread Width	T =	14.8	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.1	6.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.7	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.403	0.298	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	3.5	8.7	cfs
Discharge within the Gutter Section W	Q _w =	2.4	3.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	2.31	4.03	sq ft
Velocity within the Gutter Section W	V _W =	2.6	3.1	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	9.3	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	_
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.096	0.076	ft/ft
Required Length L_T to Have 100% Interception	L _T =	13.21	21.42	ft
Under No-Clogging Condition		MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q _i =	5.4	8.4	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	5.3	8.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.6	4.3	cfs
Summary	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	5.30	8.08	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	4.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	90	65	%

Carriage Meadows North #100.002 Inlet DP-2 (Basin E1.2)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	_
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	6.6	17.4	cfs
Water Spread Width	Τ=	15.5	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.2	7.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.4	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.385	0.264	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.1	12.7	cfs
Discharge within the Gutter Section W	Q _w =	2.5	4.5	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	2.53	5.04	sq ft
Velocity within the Gutter Section W	V _w =	2.6	3.4	fps
Water Depth for Design Condition	d _{LOCAL} =	8.2	10.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	1
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.092	0.070	ft/ft
Required Length L_T to Have 100% Interception	$L_T =$	14.22	26.36	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q _i =	5.9	9.9	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	1
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	5.7	9.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.9	7.9	cfs
Summary		MINOR	MAJOR	•
Total Inlet Interception Capacity	Q =	5.69	9.49	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	7.9	cfs
Capture Percentage = Q_a/Q_o =	C% =	86	55	%

Carriage Meadows North #100.002 Inlet DP-3 (Basin E1.3)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	_
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	3.5	7.3	cfs
Water Spread Width	T =	11.9	16.2	ft
Water Depth at Flowline (outside of local depression)	d =	4.4	5.4	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.497	0.369	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.8	4.6	cfs
Discharge within the Gutter Section W	Q _w =	1.7	2.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	1.53	2.74	sq ft
Velocity within the Gutter Section W	V _W =	2.3	2.7	fps
Water Depth for Design Condition	d _{LOCAL} =	7.4	8.4	inches
Grate Analysis (Calculated)	-	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	1
Under No-Clogging Condition	-	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	1
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	1
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.113	0.089	ft/ft
Required Length L_T to Have 100% Interception	L _T =	9.36	15.19	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	9.36	10.00	ft
Interception Capacity	Q _i =	3.5	6.2	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	1
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	3.5	6.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	1.2	cfs
Summary		MINOR	MAJOR	•
Total Inlet Interception Capacity	Q =	3.50	6.05	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.2	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	83	%

Carriage Meadows North #100.002 Inlet DP-4 (Basin E1.4)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	7.5	15.6	cfs
Water Spread Width	T =	16.5	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.5	6.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.2	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.361	0.272	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	4.8	11.3	cfs
Discharge within the Gutter Section W	Q _w =	2.7	4.2	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	2.85	4.78	sq ft
Velocity within the Gutter Section W	V _W =	2.6	3.2	fps
Water Depth for Design Condition	d _{LOCAL} =	8.5	9.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	_	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.088	0.071	ft/ft
Required Length L_{T} to Have 100% Interception	L _T =	15.47	24.68	ft
Under No-Clogging Condition	_	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q _i =	6.3	9.4	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	6.1	9.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.4	6.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.15	9.02	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	6.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	82	58	%

Project: Inlet ID:

Carriage Meadows North #100.002 Inlet DP-4a (Basin E1.4a)

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	_	MINOR	MAJOR	_
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	6.3	16.7	cfs
Water Spread Width	T =	15.4	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.2	7.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.4	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.388	0.265	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	3.9	12.1	cfs
Discharge within the Gutter Section W	Q _w =	2.4	4.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.2	cfs
Flow Area within the Gutter Section W	A _W =	2.49	5.00	sq ft
Velocity within the Gutter Section W	V _W =	2.5	3.3	fps
Water Depth for Design Condition	d _{LOCAL} =	8.2	10.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	· F	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L, =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R, =	N/A	N/A	-
Actual Interception Capacity	Q. =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_0 (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	5	MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.093	0.070	ft/ft
Required Length L_T to Have 100% Interception	L _T =	13.80	25.70	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	10.00	10.00	ft
Interception Capacity	Q; =	5.7	9.7	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Uncloaged) Length	L- =	8.75	8.75	ft
Actual Interception Capacity	 Q_ =	5.5	93	cfs
Carry-Over Flow = $Q_{h/GPATE}$		0.8	7.4	cfs
	- uso	MINOR	MAJOR	1-10
Total Inlet Intercention Capacity	٦_ ٥	5 53	9.31	cfs
Total Inlet Carry-Over Flow (flow hynassing inlet)		0.9	7.4	cfs
Canture Percentage = $0/0$ =	≪b =	0.0	1.4 EC	0/2
oupraie i ciocinage - @a@	u% =	00	30	/0

Project = Inlet ID = Carriage Meadows North #100.002

Inlet DP-4b-Sump

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1]
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see LISDCM Figure ST-5)	Theta –	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{w}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAIOR	
Clogging Coefficient for Multiple Units	Coef -	N/A	N/A	Г
	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on LIDECD - CSU 2010 Study)	Citing -	MINOR	MA IOP	_
Interception without Clogging	0	NI/A	NI/A	ofo
Interception with Clogging	Q -	N/A	N/A	ofo
mercepadri war Ciogging	Gewa –	IN/A		CIS
Grate Capacity as a Online (based on ODFCD - CSO 2010 Study)	o F	MINOR	MAJOR	
Interception with Closering	Q ₀ -	N/A	N/A	cis
Interception with Clogging	Q _{oa} –	IN/A	IN/A	cis
Grate Capacity as Mixed Flow	o _	MINOR	MAJOR	
Interception with Closering	Qmi =	N/A	N/A	cis
interception with Clogging	Q _{ma} =	N/A	N/A	ofo
	Grate =	N/A	N/A	CIS
Curb Opening Flow Analysis (Calculated)	а <i>с</i> Г	MINOR	MAJOR	٦
	Coef =	1.31	1.31	-
	Clog =	0.04	0.04	J
Curb Opening as a weir (based on UDFCD - CSU 2010 Study)	o _	MINUK	MAJUR	ofo
	Q _{wi} =	10.03	21.10	
interception with Clogging	Q _{wa} =	10.36	20.25	us
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	o _	MINUK	MAJUR	ofo
Interception without Clogging		29.58	33.57	
interception with Clogging	Q _{oa} =	28.29	32.11	cis
Curb Opening Capacity as Mixed Flow	~ Г	MINOR	MAJOR	7
Interception without Clogging	Q _{mi} =	16.65	24.80	
Interception with Clogging	Q _{ma} =	15.92	23.72	
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.36	20.25	CIŚ
Resultant Street Conditions		MINOR	MAJOR	7
I otal Iniet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	T =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
	~ F	MINOR	MAJOR	7-1-
I otal Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.4	20.3	CIS
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	5.7	17.5	cfs

Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _D =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Factor for Multiple Units	Clog =	N/A	N/A	4
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on LIDECD - CSU 2010 Study)	··wa	MINOR	MAJOR	010
Intercention without Clogging	Q _{ei} =	N/A	N/A	cfs
Interception with Clogging	Q., =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	- Jua	MINOR	MAIOR	010
Intercention without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q=	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)		N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-Grate -	MINOR	MAIOR	013
	Coof -	1.00	1 00	7
Clogging Eactor for Multiple Units	Clog =	0.10	0.10	-
Curb Opening as a Weir (based on LIDECD - CSU 2010 Study)	Clog –	MINOR	MA IOP	4
Intercention without Clogging	Q =	6.29	10.97	cfs
Interception with Clogging	Q =	5.66	9.87	cfs
Curb Opening as an Orifice (based on LIDECD - CSU 2010 Study)	∽wa –	MINOP		
Interception without Clogging	Q.; =	9.86	11 19	cfs
Interception with Clogging	- ₀₁ - Q =	8.87	10.07	cfs
Curb Opening Capacity as Mixed Flow		MINOP		
Interception without Clogging	Q =	7.33	10.30	cfs
Interception with Clogging	Q =	6.59	9.27	cfs
Resulting Curb Opening Canacity (assumes clogged condition)		5.66	9.27	cfs
Resultant Street Conditions	-curb -	MINOR	MA IOP	
Total Inlet Length	, _ [5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	L = T _	19.3	27.0	ft >T=Crown
Resultant Flow Denth at Street Crown	depower =	0.5	21.0	inches
	SCROWN -	MINOP		
Total Inlet Intercention Canacity (assumes closed condition)	Q. =	5.7	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)		22	5.9	cfs
and expandy to eeob for minor and major ocornia (set Errity	- FEAR REGORED -	6.6	0.0	0.0

Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	-
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	4
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	4
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	1
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	4
Interception without Clogging	Q _{wi} =	9.38	17.34	cfs
Interception with Clogging	Q _{wa} =	8.79	16.26	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	- 1	MINOR	MAJOR	-4
Interception without Clogging	Q _{oi} =	19.72	22.38	cfs
Interception with Clogging	Q _{oa} =	18.49	20.98	cfs
Curb Opening Capacity as Mixed Flow	[MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	12.65	18.32	cfs
Interception with Clogging	Q _{ma} =	11.86	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.79	16.26	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	Т =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
	L	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.8	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	5.1	10.5	cfs

Project = Inlet ID =

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	4
Length of a Unit Curb Opening	$L_{0}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta –	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _o =	2.00	2 00	feet
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$C_{\epsilon}(C) =$	0.10	0.10	1001
Curb Opening Weir Coefficient (typical value 2 3-3 7)	C (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 2.0 6.1 /	$C_{w}(C) = C_{v}(C) = C_{v}(C)$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAIOR	
Clogging Coefficient for Multiple Units	Coef -	N/A	N/A	1
Cleaging Easter for Multiple Units		N/A	N/A	-
Crote Canadity as a Wair (based on UDECD - CSU 2040 Study)	Ciby =	MINOD		J
Grate Capacity as a weir (based on ODFCD - CSO 2010 Study)	o _ľ	MINOR	MAJOR	.
Interception without Clogging	Q _{wi} =	N/A	N/A	crs
Interception with Clogging	Q _{wa} =	N/A	N/A	crs
Grate Capacity as a Orffice (based on UDFCD - CSU 2010 Study)	o [MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	N/A	N/A	cts
Interception with Clogging	Q _{oa} =	N/A	N/A	cts
Grate Capacity as Mixed Flow	a	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cts
Interception with Clogging	Q _{ma} =	N/A	N/A	cts
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	r	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	o I	MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	9.38	17.34	cts
Interception with Clogging	Q _{wa} =	8.79	16.26	cts
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	~ r	MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	19.72	22.38	cts
Interception with Clogging	Q _{oa} =	18.49	20.98	cts
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	12.65	18.32	cts
Interception with Clogging	Q _{ma} =	11.86	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.79	16.26	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
		MINOR	MAJOR	۰.
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.8	16.3	cts
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	5.3	10.9	cfs

Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	9.38	17.34	cfs
Interception with Clogging	Q _{wa} =	8.79	16.26	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	19.72	22.38	cfs
Interception with Clogging	Q _{oa} =	18.49	20.98	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	12.65	18.32	cfs
Interception with Clogging	Q _{ma} =	11.86	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.79	16.26	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.8	16.3	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	8.4	23.4	cfs

Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	0()	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on LIDECD - CSU 2010 Study)	olog –	MINOR	MAIOR	_
Intercention without Clogging	Q _{uri} =	N/A	N/A	cfs
Interception with Clogging	Q =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on LIDECD - CSU 2010 Study)	-wa	MINOR	MAIOR	013
Intercention without Clogging	Q.; =	N/A	N/A	cfe
Interception with Clogging	Q., =	N/A	N/A	cfe
Grate Capacity as Mixed Flow	ua	MINOR	MALOR	013
Interception without Clogging	0: =	N/A	N/A	cfe
Interception with Clogging	Q=	N/A	N/A	cfe
Reculting Grate Consolity (accurace clagged condition)		N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Grate -	MINOR	MALOR	C13
	Conf	1.00	1 00	7
Clogging Easter for Multiple Units		0.10	0.10	-
Curb Opening as a Weir (based on UDECD CSU 2010 Study)	Ciug =	MINOR	MALOR	4
Interception without Clogging	Q · =	6 20	10.97	cfs
Interception with Clogging	Q. =	5.66	0.87	cfe
Curb Opening as an Orifice (based on LIDECD _ CSU 2010 Study)	≺ _{wa} −	MINOP	MAIOP	010
Intercention without Clogging	0.=	9.86	11 19	cfs
Interception with Clogging	a₀ -	8.87	10.07	ofe
Curb Opening Canacity of Mixed Flow	≪ ₀₈ −	MINOR	MALOR	013
Curb Opening Capacity as mixed Flow	o	7.33		cfs
Interception with Clogging	Q _{mi} =	6 50	0.00	ofe
Interception with Clogging	• ma =	0.39	9.27	ofo
Resultant Street Conditions	≪Curb =	3.00 MIN/OD	3.21 MA IOD	013
resultant Street Conditions	. г	MINUR	MAJOR	
	L =	5.00	5.00	
Resultant Street Flow Spread (based on sneet Q-Allow geometry)	T =	19.3	27.0	IT.>I-Crown
Resultant Flow Depth at Street Crown	u _{CROWN} =	0.5	2.4	inches
Total Inlat Intercontion Consolity (common standard constitution)	0 -	MINOR	MAJOR	ofe
i otal inter interception Capacity (assumes clogged condition)	⊶a –	5.7	9.3	
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	PEAK REQUIRED =	5.2	10.7	CIS

Project = Inlet ID = Carriage Meadows North #100.002

Inlet DP-10-Sump

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see LISDCM Figure ST-5)	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0,10	0.10	4
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	4
Grate Flow Analysis (Calculated)	- 0 (- 7	MINOR	MAIOR	
Clogging Coefficient for Multiple Units	Coef -	N/A	N/A	7
	Clog =	N/A	N/A	-
Grote Canacity as a Weir (based on UDECD CSU 2010 Study)	Citing -	MINOR		4
Brate Capacity as a weir (based on ODFCD - COO 2010 Study)	o - [NINOR	IVIAJOK	
Interception with Clogging	Q _w =	N/A	N/A	cis
merception with Clogging	Q _{wa} –	IN/A	IN/A	cis
Grate Capacity as a Ornice (based on ODFCD - CSO 2010 Study)	~ [MINOR	MAJOR	٦.
Interception without Clogging		N/A	N/A	CIS
	Q _{oa} =	N/A	N/A	CIS
Grate Capacity as Mixed Flow	0	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cts
Interception with Clogging	Q _{ma} =	N/A	N/A	cts
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cts
Curb Opening Flow Analysis (Calculated)	r	MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	4
Clogging Factor for Multiple Units	Clog =	0.06	0.06]
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	.	MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	9.38	17.34	cts
Interception with Clogging	Q _{wa} =	8.79	16.26	cts
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	~ •	MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	19.72	22.38	cts
Interception with Clogging	Q _{oa} =	18.49	20.98	cts
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	12.65	18.32	cts
Interception with Clogging	Q _{ma} =	11.86	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.79	16.26	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
		MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.8	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.1	14.7	cfs

Project = Inlet ID =

Carriage Meadows North #100.002

Inlet DP-11-Sump

Design Information (Input)		MINOR	MAJOR	-
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	٦
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{ust} =	N/A	N/A	cfs
Interception with Clogging	Q =	N/A	N/A	cfs
Grate Canacity as a Orifice (based on UDECD - CSU 2010 Study)	-wa	MINOR	MAJOR	
Interception without Clogging	Q_; =	N/A	N/A	cfs
Interception with Clogging		N/A	N/A	cfe
Grate Canacity as Mixed Flow	aoa -		MALOR	613
Interception without Clogging	Q . =	N/A	N/A	cfe
Interception with Clogging	⊂mi –	N/A	N/A	cfe
Resulting Grate Canacity (assumes clogged condition)	Q	N/A	N/A	cfe
Curb Opening Flow Analysis (Coloulated)	Grate -	MINOR	MALIOR	C13
	Cast	1.00	1.00	٦
Clogging Coencient for Multiple Units	Coel =	0.10	0.10	4
Clogging Factor for Multiple Onits	Clog =	U. IU	0.10	1
Laterception without Clogging	o _	6 20		cfs
		5.66	0.97	ofe
	⊲ _{wa} =	3.00 MINOR	3.07	013
Curb Opening as an Onnice (based on ODFCD - CSU 2010 Study)	o _ 「			cfs
Interception without Clogging		3.00	10.07	ofo
Interception with Clogging	Q _{oa} =	0.07	10.07	0.5
Curb Opening Capacity as Mixed Flow	~ Г	MINUK	MAJOR	1
Interception without Clogging	Q _{mi} =	1.33	10.30	cis -4-
Interception with Clogging	Q _{ma} =	6.59	9.27	CIS
	Q _{Curb} =	5.66	9.27	CIS
Resultant Street Conditions	. r	MINOR	MAJOR	٦
	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T=	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
	~ 5	MINOR	MAJOR	
lotal inlet interception Capacity (assumes clogged condition)	Qa =	5.7	9.3	CIS
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	2.1	4.2	cfs

Project = Inlet ID =

Carriage Meadows North #100.002 Inlet DP-17-Sump

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63 40	dearees
Side Width for Depression Pan (typically the outter width of 2 feet)	W _p =	2.00	2.00	feet
Clooging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{c}(C) =$	0.67	0.67	4
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on LIDECD - CSU 2010 Study)	olog -	MINOR	MAJOR	4
Interception without Clogging	Q: =	N/A	N/A	cfe
	Q. =	N/A	N/A	cfe
Grate Capacity as a Orifice (based on LIDECD _ CSU 2010 Study)	Swa –			613
Interception without Cleaning	0	N/A	N/A	ofo
Interception without Clogging	Q ₀ -	N/A	N/A	cis
mercepadri war ologang	G 08 -	IN/A	IN/A	CIS
Grate Capacity as Mixed Flow	o -	MINOR	MAJOR	- 40
Interception without Clogging	Qmi =	N/A	N/A	cis
niterception with Clogging	Q _{ma} =	N/A	N/A	cis
Resulting Grate Capacity (assumes clogged condition)	Grate =	N/A	N/A	cis
Curb Opening Flow Analysis (Calculated)	o(MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	4
	Clog =	0.03	0.03	
Curb Opening as a weir (based on ODFCD - CSU 2010 Study)	o _ F	12.74	MAJUK	ofo
Interception with Cleaning	Q _{wi} =	13.74	20.07	ofo
interception with Clogging	Q _{wa} =	13.29	25.98	us
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	o _	MINUK	MAJOR	ofo
Interception with Clogging		১ খ.44	44.70	uis efe
Interception with Clogging	Q _{oa} =	30.13	43.28	us
Curb Opening Capacity as Mixed Flow	~ F	MINUK	MAJOR	ofo
Interception without Clogging		20.02	32.20	uis
Interception with Clogging	Q _{ma} =	20.93	31.18	cis
	Q _{Curb} =	13.29	25.98	CIS
Kesuitant Street Conditions	. г	MINOR	MAJOR	1
n otar mier Length	L =	20.00	20.00	reet
Resultant Street Flow Spread (based on sneet Q-Allow geometry)	1 =	19.3	27.0	IT.>I-Crown
Resultant Flow Depth at Street Crown	u _{CROWN} =	0.5	2.4	inchés
	o -F	MINOR	MAJOR	lofo
i otal inter interception Capacity (assumes clogged condition)	•••a =	13.3	20.0	
iniet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	PEAK REQUIRED =	11.6	22.2	CIS

Project = Inlet ID = Carriage Meadows North #100.002

Inlet DP-18-Sump

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see LISDCM Figure ST-5)	Theta =	63.40	63 40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0,10	0.10	4
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	4
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAIOR	
Clogging Coefficient for Multiple Units	Coef -	N/A	N/A	7
	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on LIDECD CS11 2010 Study)	Citing -	MINOR		4
Brate Capacity as a Weir (based on ODFCD - COO 2010 Study)	o	NINOR	INIAJOK	
Interception with Clossing	Q _m =	N/A	N/A	cis
merception with Clogging	Q _{wa} =	IN/A	IN/A	cis
Grate Capacity as a Ornice (based on ODFCD - CSO 2010 Study)	o f	MINOR	MAJOR	٦.
Interception without Clogging		N/A	N/A	cis
	Q _{oa} =	N/A	N/A	CIS
Grate Capacity as Mixed Flow	~ [MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cts
Interception with Clogging	Q _{ma} =	N/A	N/A	cts
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cts
Curb Opening Flow Analysis (Calculated)	r	MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	4
Clogging Factor for Multiple Units	Clog =	0.10	0.10]
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	~ [MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	6.29	10.97	cts
Interception with Clogging	Q _{wa} =	5.66	9.87	cts
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	~ •	MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	9.86	11.19	cts
Interception with Clogging	Q _{oa} =	8.87	10.07	cts
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	7.33	10.30	cfs
Interception with Clogging	Q _{ma} =	6.59	9.27	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.66	9.27	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	19.3	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.5	2.4	inches
		MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.7	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	2.6	4.9	cfs

Channel Report

Hydraflow Express by Intelisolve

Existing 60-inch RCP at JCC

Circular

Circular		Highlighted	
Diameter (ft)	= 5.00	Depth (ft)	= 3.50
		Q (cfs)	= 213.05
		Area (sqft)	= 14.71
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 14.48
Slope (%)	= 0.95	Wetted Perim (ft)	= 9.92
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.75
		Top Width (ft)	= 4.58
Calculations		EGL (ft)	= 6.76
Compute by:	Q vs Depth		
No. Increments	= 10		

Reach (ft)

Hydraflow Express by Intelisolve

Overflow from Coyote to Carriage Meadows Drive

Trapezoidal		Highlighted	
Botom Width (ft)	= 18.00	Depth (ft)	= 0.74
Side Slope (z:1)	= 4.00	Q (cfs)	= 65.00
Total Depth (ft)	= 1.00	Area (sqft)	= 16.06
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.05
Slope (%)	= 0.90	Wetted Perim (ft)	= 25.55
N-Value	= 0.025	Crit Depth, Yc (ft)	= 0.70
		Top Width (ft)	= 25.40
Calculations		EGL (ft)	= 0.99
Compute by:	Known Q		
Known Q (cfs)	= 65.00		

Reach (ft)

APPENDIX D – STORM SEWER SCHEMATIC & HDR FDR excerpts

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	47.87	42 c	71.9	5706.00	5706.37	0.514	5708.55	5708.56	0.18	5708.73	End
2	2	47.53	42 c	202.2	5706.47	5708.27	0.890	5709.25	5710.38	n/a	5710.38 j	1
3	3	43.68	42 c	39.2	5708.40	5708.70	0.765	5711.02	5710.90	0.37	5711.27	2
4	4	25.18	42 c	22.0	5709.30	5709.50	0.913	5711.77	5711.75	0.23	5711.98	3
5	5	22.19	36 c	213.6	5710.00	5711.50	0.702	5712.06	5713.00	n/a	5713.00 j	4
6	6	17.47	36 c	36.0	5711.60	5711.90	0.830	5713.52	5713.44	0.35	5713.79	5
7	7	15.72	36 c	34.2	5712.20	5712.44	0.701	5714.07	5714.04	0.26	5714.30	6
8	8	11.28	24 c	54.3	5713.94	5714.32	0.699	5715.05	5715.52	0.52	5716.03	7
9	9	11.96	24 c	402.1	5714.32	5717.14	0.701	5716.32	5718.37	n/a	5718.37 j	8
10	10	7.59	18 c	399.8	5717.64	5720.42	0.695	5718.72	5721.50	0.48	5721.98	9
11	11	7.60	18 c	13.8	5720.52	5720.62	0.724	5722.18*	5722.25*	0.29	5722.54	10
12	12	14.10	24 c	271.8	5710.80	5713.62	1.038	5711.93	5714.95	n/a	5714.95	3
13	13	14.29	24 c	123.5	5713.72	5715.01	1.044	5715.26	5716.35	n/a	5716.35 j	12
14	14	9.69	24 c	312.2	5715.01	5717.33	0.743	5716.73	5718.47	n/a	5718.47 j	13
15	15	6.78	18 c	271.5	5717.93	5719.95	0.744	5718.90	5720.94	0.00	5720.94	14
16	16	6.81	18 c	35.4	5720.05	5720.31	0.735	5721.18	5721.31	n/a	5721.31 j	15
17	17	3.50	18 c	9.9	5718.03	5718.14	1.111	5718.94	5718.86	0.00	5718.86	14
18	18	5.57	18 c	31.7	5715.51	5715.77	0.822	5716.83	5716.85	0.00	5716.85	13
19	19	2.28	18 c	14.9	5713.40	5713.55	1.006	5714.12	5714.13	n/a	5714.13 j	6
20	20	2.29	18 c	7.6	5713.65	5713.73	1.060	5714.31	5714.31	0.00	5714.31	19
21	21	4.85	18 c	9.7	5717.74	5717.84	1.027	5718.79	5718.74	0.00	5718.74	9
22	22	15.36	24 c	62.0	5706.00	5707.40	2.261	5708.00	5708.79	n/a	5708.79 j	End
23	23	13.95	24 c	32.6	5707.50	5707.80	0.931	5709.16	5709.13	n/a	5709.13 j	22
24	24	11.56	24 c	29.9	5708.29	5708.47	0.603	5709.53	5709.68	0.00	5709.68	23
25	25	8.41	18 c	37.9	5708.97	5709.20	0.606	5710.09	5710.32	0.00	5710.32	24
26	26	19.20	30 c	348.0	5702.00	5703.74	0.500	5706.38*	5707.14*	0.12	5707.26	End
27	27	16.90	30 c	65.0	5703.74	5704.07	0.507	5707.32*	5707.43*	0.09	5707.52	26
28	28	5.30	18 c	50.0	5705.07	5705.34	0.540	5707.56*	5707.69*	0.14	5707.83	27
5-yr st	torm sewer-Carriage						Nun	nber of line	s: 28	Run I	Date: 11-02	-2017

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	87.35	42 c	71.9	5706.00	5706.37	0.515	5709.12	5709.72	0.26	5709.99	End
2	2	87.35	42 c	202.2	5706.47	5708.27	0.890	5710.02	5711.20	0.32	5711.52	1
3	3	87.35	42 c	39.2	5708.40	5708.70	0.765	5711.84	5712.09	0.52	5712.61	2
4	4	63.12	42 c	22.0	5709.30	5709.50	0.909	5713.25*	5713.34*	0.67	5714.01	3
5	5	52.22	36 c	213.6	5710.00	5711.50	0.702	5714.01*	5715.32*	0.25	5715.57	4
6	6	41.72	36 c	36.0	5711.60	5711.90	0.833	5715.88*	5716.02*	0.16	5716.18	5
7	7	35.82	36 c	34.2	5712.20	5712.44	0.701	5716.32*	5716.42*	0.16	5716.58	6
8	8	18.32	24 c	54.3	5713.94	5714.32	0.699	5716.58*	5716.94*	0.11	5717.04	7
9	9	18.32	24 c	402.1	5714.32	5717.14	0.701	5717.04*	5719.68*	0.16	5719.84	8
10	10	9.02	18 c	399.8	5717.64	5720.42	0.695	5719.96*	5722.91*	0.08	5723.00	9
11	11	9.02	18 c	13.8	5720.52	5720.62	0.724	5723.00*	5723.10*	0.41	5723.50	10
12	12	24.23	24 c	271.8	5710.80	5713.62	1.038	5712.99*	5716.11*	0.09	5716.21	3
13	13	24.23	24 c	123.5	5713.72	5715.01	1.044	5716.21*	5717.62*	0.37	5717.99	12
14	14	14.73	24 c	312.2	5715.01	5717.33	0.743	5718.58*	5719.90*	0.10	5720.00	13
15	15	8.63	18 c	271.5	5717.93	5719.95	0.744	5720.00*	5721.84*	0.11	5721.95	14
16	16	8.63	18 c	35.4	5720.05	5720.31	0.735	5721.95*	5722.19*	0.07	5722.26	15
17	17	6.10	18 c	9.9	5718.03	5718.14	1.111	5720.16*	5720.19*	0.04	5720.23	14
18	18	9.50	18 c	31.7	5715.51	5715.77	0.822	5718.47*	5718.73*	0.09	5718.82	13
19	19	5.90	18 c	14.9	5713.40	5713.55	1.006	5716.55*	5716.60*	0.05	5716.65	6
20	20	5.90	18 c	7.6	5713.65	5713.73	1.060	5716.65*	5716.67*	0.03	5716.71	19
21	21	9.30	18 c	9.7	5717.74	5717.84	1.027	5719.94*	5720.02*	0.09	5720.10	9
22	22	42.42	24 c	62.0	5706.00	5707.40	2.258	5708.00*	5710.18*	0.85	5711.03	End
23	23	40.30	24 c	32.6	5707.50	5707.80	0.919	5711.31*	5712.35*	0.77	5713.11	22
24	24	25.60	24 c	29.9	5708.29	5708.47	0.603	5714.64*	5715.02*	0.21	5715.23	23
25	25	16.30	18 c	37.9	5708.97	5709.20	0.606	5715.23*	5716.14*	0.00	5716.14	24
26	26	37.10	30 c	348.0	5702.00	5703.74	0.500	5704.04*	5707.18*	0.44	5707.62	End
27	27	32.20	30 c	65.0	5703.74	5704.07	0.507	5707.84*	5708.24*	0.33	5708.57	26
28	28	10.00	18 c	50.0	5705.07	5705.34	0.540	5708.74*	5709.20*	0.50	5709.70	27
100-уі	r storm sewer-Carriage	•					Nun	nber of line	s: 28	Run I	Date: 11-02	2-2017

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown).

Line	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	t				Gutter					Inlet		Byp
		(cfs)	(cfs)	(cfs)	(cfs)	()pc	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		2 12	0.00	0.00	2 12	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		5.07	0.00	0.00	5.07	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	011
2		6 /1	0.00	0.00	6.41	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	Off
4	DP-7	5 20	0.00	5.20	0.00	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.000	0.000	0.000	0.00	8.80	0.00	8.80	0.00	Off
- 5	DP-6	5.20	0.00	5.05	0.00	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.000	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
6	Di O	0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
7	DP-4b	4 94	0.00	5.73	0.00	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.000	0.000	0.013	0.00	10.00	0.00	10.00	0.00	Off
8		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
9		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
10		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
11	DP-4	7.60	0.00	6.15	1.45	Genr	0.0	0.00	0.00	0.00	0.00	0.007	2.00	0.050	0.050	0.013	0.43	8.62	0.43	8.62	0.00	21
12		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
13		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
14		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
15		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
16	DP-1	6.81	0.00	6.81	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.51	9.10	0.62	9.10	2.00	Off
17	DP-3	3.50	0.00	3.50	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.35	5.82	0.46	5.82	2.00	Off
18	DP-2	5.57	0.00	5.57	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.46	7.95	0.56	7.95	2.00	Off
19		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
20	DP-5	2.29	0.00	2.29	0.00	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
21	DP-4a	4.85	1.45	5.50	0.80	Genr	6.0	6.00	0.00	0.00	0.00	0.007	2.00	0.080	0.050	0.013	0.45	7.80	0.45	7.80	0.00	7
22	DP-11	2.12	0.00	2.12	0.00	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
5-yr s	r storm sewer-Carriage												Number	of lines:	28	I	R	un Date:	11-02-20 ⁷	17	I	
-																						

NOTES: Inlet N-Values = 0.016; Intensity = 39.98 / (Inlet time + 10.00) ^ 0.76; Return period = 5 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Curb Inlet Grate Inlet						Gutter					Inlet		Вур	
NO		CIA (cfs)	carry (cfs)	capt (cfs)	byp (cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
23	DP-10	3.07	0.00	3.07	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.33	5.33	0.43	5.33	2.00	22
24	DP-9	5.23	0.00	5.23	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.44	7.62	0.55	7.62	2.00	Off
25	DP-8	8.41	0.00	7.41	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.54	9.63	0.65	9.63	2.00	Off
26	DP-18	2.30*	0.00	2.30	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.32	11.83	0.40	11.83	2.00	Off
27	DP-17	11.60*	0.00	11.60	0.00	Curb	6.0	14.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.51	21.11	0.59	21.11	2.00	Off
28	DP-17a	5.30*	0.00	5.30	0.00	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.50	20.70	0.50	20.70	0.00	Off
5-yr s	torm sewer-Carriage	2													of lines:	28		R	un Date:	11-02-20	17	
5-yr s	r storm sewer-Carriage													Number	of lines:	28		R	un Date:	11-02-20	17	
NOTE	S: Inlet N-Values = (0.016 ; Int	ensity =	39.98 / (Inlet time	e + 10.00) ^ 0.76;	Return	period :	= 5 Yrs.	; * Indic	ates Kn	own Q a	dded								

Line	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb	Inlet	G	rate Inle	t				Gutter					Inlet		Byp
		(cfs)	(cfs)	(cfs)	(cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
1		3 78	0.00	0.00	3 78	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.00	0.00	0.00	0.00	0.00	Off
2		10.63	0.00	0.00	10.63	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	011
2		11 40	0.00	0.00	11 40	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
4	DP-7	10.90*	0.00	10.90	0.00	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
5	DP-6	10.50*	0.00	10.50	0.00	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
6		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
7	DP-4b	17.50*	0.00	17.50	0.00	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.050	0.050	0.013	0.50	10.00	0.50	10.00	0.00	Off
8		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
9		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
10		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
11	DP-4	9.02*	0.00	9.02	0.00	Genr	0.0	0.00	0.00	0.00	0.00	0.007	2.00	0.050	0.050	0.013	0.46	9.20	0.46	9.20	0.00	21
12		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
13		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
14		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
15		0.00	0.00	0.00	0.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
16	DP-1	8.63*	0.00	8.63	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.59	10.66	0.70	10.66	2.00	Off
17	DP-3	6.10*	0.00	6.10	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.48	8.45	0.59	8.45	2.00	Off
18	DP-2	9.50*	0.00	9.50	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.63	11.37	0.73	11.37	2.00	Off
19		0.00	0.00	0.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.013	0.00	0.00	0.00	0.00	0.00	Off
20	DP-5	5.90*	0.00	5.90	0.00	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
21	DP-4a	9.30*	0.00	9.30	0.00	Genr	6.0	6.00	0.00	0.00	0.00	0.007	2.00	0.080	0.050	0.013	0.51	9.08	0.51	9.08	0.00	7
22	DP-11	4.20*	0.00	2.12	2.08	Genr	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.50	8.80	0.50	8.80	0.00	Off
100-у	r storm sewer-Carria	ige												Number	of lines:	28		R	un Date:	11-02-20 ⁷	17	
													I									

NOTES: Inlet N-Values = 0.016; Intensity = 71.16 / (Inlet time + 10.00) ^ 0.76; Return period = 100 Yrs.; * Indicates Known Q added

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb	Curb Inlet Grate Inlet						Gutter					Inlet		Вур	
NO		(cfs)	(cfs)	(cfs)	(cfs)	type	Ht (in)	L (ft)	area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	No
23	DP-10	14.70*	0.00	14.70	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.82	15.23	0.93	15.23	2.00	22
24	DP-9	9.30*	0.00	9.30	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.62	11.21	0.73	11.21	2.00	Off
25	DP-8	16.30*	0.00	16.30	0.00	Curb	6.0	6.00	0.00	0.00	0.00	Sag	2.00	0.080	0.050	0.013	0.80	14.84	0.91	14.84	2.00	Off
26	DP-18	4.90*	0.00	4.90	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.48	19.63	0.56	19.63	2.00	Off
27	DP-17	22.20*	0.00	22.20	0.00	Curb	6.0	14.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.74	32.62	0.82	32.62	2.00	Off
28	DP-17a	10.20*	0.00	10.00	0.20	Genr	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.063	0.020	0.013	0.50	20.70	0.50	20.70	0.00	Off
100-y	r storm sewer-Carria	age												Number	of lines:	28		R	un Date:	11-02-20	17	
100-y	r storm sewer-Carria	age												Number	of lines:	28		R	un Date:	11-02-20	17	
NOTE	S: Inlet N-Values = 0	0.016 ; Int	ensity =	71.16 / (Inlet time	+ 10.00) ^ 0.76;	Return	period =	= 100 Y	rs.; * In	dicates I	Known C	added								

Page 2

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		179.5	60 c	56.0	5716.00	5716.25	0.446	5719.78	5720.38	1.00	5721.38	End
2		179.5	60 c	740.0	5716.25	5719.60	0.453	5721.74*	5725.26*	1.17	5726.43	1
3		104.1	48 c	96.0	5721.00	5729.32	8.664	5726.66	5732.34	n/a	5732.34	2
4		75.40	48 c	438.0	5720.60	5722.83	0.509	5727.17*	5728.38*	0.56	5728.94	2
5	Ex 4'x7' CBC	75.40	48 x 84 b	18.0	5723.31	5723.70	2.167	5729.15*	5729.16*	0.01	5729.17	4
6	Ex. 4x7 CBC	75.40	48 x 84 b	68.0	5723.70	5725.18	2.176	5729.17*	5729.19*	0.07	5729.26	5
Projec	t File: peaceful-storm-re	elocation.st	m				Num	nber of line:	s: 6	Run [Date: 12-01	-2017

Print Date: 8/31/2015			Sheet Revisions				As Constructed	MARKSHEFFEL ROAD	Project No./Code
File Name: South-Marksheffel_HYDR_Profile012.dgn		Date:	Comments	Init.		.		DRAINAGE PROFILE	····;
Horiz. Scale: 1:30 Vert. Scale: As Noted					FI PASO	Ion	No Revisions:	224+00.00 TD 238+00.00	
Unit Information Unit Leader Initials					<u>LL TASO A COUNTI</u>		Revised:	Designer: E. STATEN Structure	
					COLORADO	×		Detailer: A. QUINTANA Numbers	
	$\overline{0}$				Colokabo		Void:	Sheet Subset: DRAINAGE Subset Sheets: 7 of 20	D-62

1. INSTALL CULVERT APRON AND TOE WALL PER M-601-20. 2. WINGWALLS PER M-601-20. SKEW=85 DEGREES, M=5.33', K=1'

ADDIC
ADO LICA
BAN BETHY IS AND
Chine Martin
38974 2
Ø \$309/01/2015€ A
V. O
K Sch ENGI
Y SUNAL EN
ADDOLLS

Pagin ID	Area (aa)	5	-Year	100- Year		
Dasinid	Area (ac)	С	Q (cfs)	С	Q (cfs)	
470L	0.23	0.90	0.97	0.95	2.11	
469L	60.3	0.25	11.8	0.35	35.9	
448R	0.62	0.90	2.30	0.95	5.01	
448L	164	0.26	47.4	0.35	140	
438R	0.68	0.90	2.68	0.95	5.83	
422R	0.34	0.90	0.81	0.95	1.77	
405L	3.05	0.90	5.59	0.95	12.2	
404L	206	0.26	44.1	0.36	132	
403R	0.20	0.90	0.81	0.95	1.77	
403L	0.36	0.90	1.51	0.95	3.28	
394L	0.18	0.90	0.77	0.95	1.67	
377L	0.50	0.90	1.98	0.95	4.30	
376R	15.47	0.43	5.79	0.52	14.4	
376L	82.3	0.26	25.4	0.36	75.1	
ZONE 3						
256L	0.77	0.90	2.46	0.95	6.97	
256R	0.77	0.90	2.46	0.95	6.97	
247L	0.96	0.90	2.41	0.95	6.83	
246R	1.01	0.90	2.54	0.95	7.19	
229R	0.31	0.90	0.99	0.95	2.81	
226L	65.2	0.28	19.7	0.38	72.6	
212L	1.55	0.90	2.65	0.95	7.48	
212R	1.55	0.90	2.65	0.95	7.48	
210L	125	0.31	55.4	0.43	205	
208R	0.44	0.90	1.33	0.95	3.77	
206L	0.74	0.90	1.99	0.95	5.63	
205L	2.87	0.25	1.23	0.35	4.61	
178L	79.9	0.34	23.4	0.46	87.1	
178R	3.32	0.90	4.51	0.95	12.8	
152L	2.49	0.90	3.05	0.95	8.68	
152R	2.53	0.90	3.10	0.95	8.82	
151R	39.3	0.42	12.2	0.56	44.4	
150L	124	0.25	16.5	0.35	64.2	
148L	0.41	0.90	0.92	0.95	2.62	
148R	0.55	0.90	1.05	0.95	2.96	
ZONE 4						
125R	1.08	0.90	2.06	0.95	5.82	
103L	4.65	0.90	4.69	0.95	13.5	
103R	0.57	0.90	1.09	0.95	3.07	
92L	0.53	0.90	1.01	0.95	2.85	
92R	0.58	0.90	1.09	0.95	3.07	
70L	1.72	0.90	2.43	0.95	6.86	
70R	0.27	0.90	0.68	0.95	1.92	

3.3.2 Colorado Regional Regression

As mentioned in the Drainage Design Criteria section of this report the Regional Regression Equations were utilized instead of the SCS method. Using the SCS (TR-55) method for the same basin yields a $Q_5 = 0.00$ cfs and $Q_{100} = 21.2$ cfs. This is a significantly lower estimate than the

Detention Basin Outlet Structure Design									
UD-Detention, Version 3.07 (February 2017) Project: Carriage Meadows North Filing No. 1									
Basin ID: ZONE 3	Pond 1								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.52	0.513	Orifice Plate			
	100-YEA	R	Zone 2 (EURV)	4.08	0.899	Rectangular Orifice			
ZONE 1 AND 2' PERMANENT ORIFICES	ORIFICE		'one 3 (100-year)	5.77	1.180	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	etention Pond)			2.592	Total			
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV in	n a Filtration BMP)				Calculate	ed Parameters for Un	derdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	n BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	ottom at Stage = 0 ft)	WQ Or	rifice Area per Row =	1.208E-02	ft ²	
Depth at top of Zone using Orifice Plate =	2.52	ft (relative to basin b	ottom at Stage = 0 ft)	E	lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	10.50	inches	1 1 (2 :======)		Ellij	ptical Slot Centroid =	N/A	feet	
Office Plate: Office Area per Row =	1.74	sq. incries (diameter	= 1-1/2 incres)			Elliptical Slot Area =	N/A	π	
User Input: Stage and Total Area of Each Orifice F	low (numbered from	n lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.90	1.80						
Orifice Area (sq. inches)	1./4	1./4	1./4						I
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
							D		
User Input: Vertical Orifice (Circ	Jular or Rectangular)	Not Selected	1			Calculated	Parameters for Vert	Not Selected	1
Invert of Vertical Orifice =	2.52	N/A	ft (relative to basin b	ottom at Stage = 0 ft) v	ertical Orifice Area =	0.33	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	4.08	N/A	ft (relative to basin b	ottom at Stage = 0 ft) Vertio	cal Orifice Centroid =	0.25	N/A	feet
Vertical Orifice Height =	6.00	N/A	inches						
Vertical Orifice Width =	7.92	<u> </u>	inches						
User Input: Overflow Weir (Dronhov) and G	rate (Flat or Sloped)					Calculater	Parameters for Ove	rflow Weir	
osci input. Overnow wen (Diopbox) and e	Zone 3 Weir	Not Selected				calculatee	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.20	N/A	ft (relative to basin bot	tom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H _t =	5.20	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet		Over Flow	Weir Slope Length =	6.08	N/A	feet
Overflow Weir Slope =	6.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /	100-yr Orifice Area =	6.74	N/A	should be <u>></u> 4
Horiz, Length of Weir Sides =	6.00		e .			. /			- 2
Overflow Grate Open Area % =	70%	N/A N/A	feet % grate open area/t	otalarea	Overflow Grate Ope	en Area w/o Debris = pen Area w/ Debris =	17.03	N/A	ft ²
Overflow Grate Open Area % = Debris Clogging % =	70%	N/A N/A N/A	feet %, grate open area/t %	otal area	Overflow Grate Ope Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris =	8.52	N/A N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % =	70%	N/A N/A N/A	feet %, grate open area/t %	otal area	Overflow Grate Ope Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris =	8.52	N/A N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	70% 50% rcular Orifice, Restri	N/A N/A N/A ctor Plate, or Rectan	feet %, grate open area/t % gular Orifice)	otal area	Overflow Grate Ope Overflow Grate Op	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	8.52 s for Outlet Pipe w/	N/A N/A	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	70% 50% rcular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A ctor Plate, or Rectany Not Selected	feet %, grate open area/t % gular Orifice)	otal area	Overflow Grate Ope Overflow Grate Op C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	8.52 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A Flow Restriction Plat Not Selected	ft ² ft ²
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	70% 50% rcular Orifice, Restri Zone 3 Restrictor 0.00 24 00	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches	otal area n bottom at Stage = 0 fi	Overflow Grate Ope Overflow Grate Op C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor 2.53	N/A N/A Flow Restriction Plat Not Selected N/A	ft ² ft ² ft foot
Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00	N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	otal area n bottom at Stage = 0 ff Half-C	Overflow Grate Ope Overflow Grate Op C t) Out Central Angle of Restr	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09	N/A N/A Flow Restriction Plat Not Selected N/A N/A	ft ² ft ² ft ² ft ² feet radians
User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00	N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet % grate open area/t % gular Orifice) ft (distance below basi inches inches	otal area n bottom at Stage = 0 fl Half-C	Overflow Grate Ope Overflow Grate Op C C C t) Central Angle of Restr	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	ft ² ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectand	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 ular or Trapezoidal)	N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	otal area n bottom at Stage = 0 fl Half-C	Overflow Grate Ope Overflow Grate Op C C C t) Central Angle of Restr	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage=	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 ular or Trapezoidal) 6.00	N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A I t (relative to basin b	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft	otal area n bottom at Stage = 0 ff Half-C)	Overflow Grate Ope Overflow Grate Op C C t) Central Angle of Restr Spillway	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length =	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 18.00 24.00 18.00 21.00 2.1.00	N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	feet % grate open area/t % gular Orifice) ft (distance below basi inches inches inches	otal area n bottom at Stage = 0 fi Half-C)	Overflow Grate Ope Overflow Grate Op C C t) Central Angle of Restr Spillway Stage a	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.03	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length = Spillway Crest Len	70% 50% 50% Zone 3 Restrictor 0.00 24.00 18.00 24.00 18.00 21.00 4.00 1.00	N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A t (relative to basin t feet H:V feet	feet % grate open area/t % gular Orifice) ft (distance below basi inches inches inches	otal area n bottom at Stage = 0 fi Half-C)	Overflow Grate Ope Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres	ft ² ft ² ft ² feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	70% 50% ircular Orifice, Restri 20ne 3 Restrictor 0.00 24.00 18.00 iular or Trapezoidal) 6.00 21.00 4.00	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin b feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	otal area n bottom at Stage = 0 fi Half-C)	Overflow Grate Ope Overflow Grate Op Overflow Grate Op C Out Central Angle of Restr Spillway Stage a Basin Area a	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres	ft ² ft ft ft feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 iular or Trapezoidal) 6.00 21.00 4.00 1.00	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches inctom at Stage = 0 ft	otal area n bottom at Stage = 0 ff Half-C)	Overflow Grate Ope Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres	ft ² ft ft feet radians
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One Max Paird Death (in)	70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 iular or Trapezoidal) 6.00 21.00 4.00 1.00 WQCV 0.52	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet H:V feet	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches ottom at Stage = 0 ft <u>2 Year</u>	otal area n bottom at Stage = 0 ff Half-C) S Year	Overflow Grate Ope Overflow Grate Op Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 0.93	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet acres	ft ² ft ft feet radians 500 Year
Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acret) =	XXXX 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 jular or Trapezoidal) 6.00 21.00 4.00 1.00 0.53 0.513	N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.412	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft <u>2 Year</u> 1.16 1.295	otal area n bottom at Stage = 0 ff Half-C) <u>5 Year 1.44 1.891</u>	Overflow Grate Ope Overflow Grate Op Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.42 4.838	ft ² ft ² fee feet radians <u>500 Year</u> 0.00 0.000
Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	XXXX 70% 50% ircular Orifice, Restri 20ne 3 Restrictor 0.00 24.00 18.00 xular or Trapezoidal) 6.00 21.00 4.00 1.00 0.53 0.513	N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin b feet H:V feet H:V feet 1.07 1.412	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>1.295</u>	otal area n bottom at Stage = 0 ff Half-C) <u>5 Year 1.44</u> 1.891	Overflow Grate Ope Overflow Grate Op Overflow Grate Op Out Central Angle of Restr Spillway Stage a Basin Area a 1.68 1.68 2.431	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996	N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.42 4.838	ft ² ft ² fee feet radians 500 Year 0.00 0.00
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	XXXX 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 zular or Trapezoidal) 6.00 21.00 4.00 1.00 WQCV 0.53 0.512 0.00	N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.412 	feet % grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft <u>2 Year</u> <u>1.16</u> <u>1.295</u> <u>0.01</u>	otal area n bottom at Stage = 0 ff Half-C) 5 Year 1.44 1.891 1.891 0.00	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Out Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.68 2.431 2.431 0.24	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 0.57	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 	N/A N/A N/A Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.42 4.838 1.00	ft ² ft ² fee feet radians 500 Year 0.00 0.000 #N/A #N/A
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway (rest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	With the second secon	N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 1.412 	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 2 Year 1.16 1.295 1.295 0.01 0.3	otal area n bottom at Stage = 0 fr Half-C) 5 Year 1.44 1.891 1.891 0.09 2.6	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Out Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.68 2.431 2.431 0.24 7.1	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 	17.03 8.52 8.52 2 one 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 	N/A N/A N/A Not Selected N/A N/A N/A N/A interval 2.42 4.838 1.00 29.8	ft ² ft ² feet radians 500 Year 0.00 0.000 #N/A 0.00 0.0
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway (rest Length Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	With the second secon	N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 18.2	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7	otal area n bottom at Stage = 0 ft Half-C) 5 Year 1.44 1.891 1.891 0.09 2.6 2.6 2.6 2.4.2	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 0.57 17.1 42.3	17.03 8.52 8.52 20ne 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 2.2.6 50.7	N/A N/A N/A Plow Restriction Plat Not Selected N/A Pillway feet acres 100 Year 4.838 1.00 29.8 61.1	ft ² ft ² feet radians 500 Year 0.00 0.000 #N/A 0.00 0.0 0.0 0.0 0.0
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway (rest Length Spillway Crest Length Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Peak Cuttlow Q (cfs) = Peak Outflow Q (cfs) =	With the second secon	N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 18.2 1.8 N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 1.7	otal area n bottom at Stage = 0 ft Half-C) 5 Year 1.44 1.891 1.891 0.09 2.6 24.2 2.6 1.0	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C C C C C C C C C C C C C C C C C C C	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 0.57 17.1 42.3 17.1 1 0	17.03 8.52 8.52 20ne 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 2.2.6 50.7 24.6	N/A N/A N/A Flow Restriction Plat Not Selected N/A 100 Year 2.42 4.838 1.00 29.8 61.1 27.2 0.9	ft ² ft ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectany Spillway (rest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow To Predevelopment Q = Structure Controlling Flow =	0.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 gular or Trapezoidal) 6.00 21.00 4.00 1.00 0.513 0.512 0.00 0.0 6.7 0.2 N/A Plate	N/A N/A N/A N/A ctor Plate, or Rectan, N/A N/A N/A ft (relative to basin t feet H:V feet H:V feet H:V feet 1.07 1.412 1.411 0.00 0.0 18.2 1.8 N/A Vertical Orifice 1	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1	otal area n bottom at Stage = 0 fl Half-C) 5 Year 1.44 1.891 1.890 0.09 2.6 24.2 2.6 1.0 Overflow Grate 1	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate 1	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 3.323 0.57 17.1 42.3 17.1 1.0 Overflow Grate 1	17.03 8.52 8.52 2 one 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 2.2.6 50.7 22.6 50.7 24.6 1.1 Overflow Grate 1	N/A N/A N/A Not Selected N/A N/A N/A n/A N/A interval interval <td>tt² ft² feet radians</td>	tt ² ft ² feet radians
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway (Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Miflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Water 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 gular or Trapezoidal) 6.00 21.00 4.00 1.00 0.513 0.512 0.00 6.7 0.2 N/A Plate N/A	N/A N/A N/A Ctor Plate, or Rectan, Not Selected N/A N/A ft (relative to basin t feet H:V feet H:V feet 1.07 1.412 1.411 0.00 0.0 1.8.2 1.8 1.8 N/A Vertical Orifice 1 N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1 N/A	otal area n bottom at Stage = 0 ff Half-C) 5 Year 1.44 1.891 1.891 1.890 0.09 2.6 24.2 2.6 2.4.2 2.6 1.0 Overflow Grate 1 0.0	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate 1 0.3	en Area w/o Debris = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> <u>1.92</u> <u>3.323</u> <u>3.322</u> 0.57 <u>17.1</u> 42.3 17.1 1.0 Overflow Grate 1 0.8	17.03 8.52 8.52 20ne 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 22.6 50.7 22.6 50.7 22.6 50.7 22.6 50.7 22.6 1.1 0verflow Grate 1 1.3	N/A N/A N/A Not Selected N/A 0.0 Year 2.42 4.838 1.00 29.8 61.1 2.2 0.9 Outlet Plate 1 1.4	tt ² tt ² fee feet radians 500 Year 0.00 0.000 0.000 0.000 0.00 0.00 0.00
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectany Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Auflow Q (cfs) = Peak Auflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	0.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 gular or Trapezoidal) 6.00 21.00 4.00 1.00 0.513 0.512 0.00 6.7 0.2 N/A Plate N/A N/A	N/A N/A N/A N/A Ctor Plate, or Rectan, N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 1.8.2 1.8 N/A V/A Vertical Orifice 1 N/A N/A N/A	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1 N/A N/A N/A	otal area n bottom at Stage = 0 ff Half-O) 5 Year 1.44 1.891 1.891 1.890 0.09 2.6 24.2 2.6 2.6 2.6 2.6 2.6 2.6 0.0 Overflow Grate 1 0.0 N/A 50	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Spillway Stage a Basin Area a 10 Year 1.68 2.431 0.24 7.1 31.1 7.3 1.0 Overflow Grate 1 0.3 N/A 40	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 3.323 3.322 0.57 1.7.1 42.3 1.7.1 1.0 Overflow Grate 1 0.8 N/A 46	17.03 8.52 8.52 20ne 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 22.6 50.7 22.6 50.7 22.6 50.7 22.6 1.1 0verflow Grate 1 1.3 N/A 4/4	N/A N/A N/A Not Selected N/A N/A N/A N/A illoway feet feet 2.42 4.838 1.00 29.8 66.1.1 27.2 0.9 Outlet Plate 1 1.4 N/A	tt ² ft ² feet radians 500 Year 0.00 0.000 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectany Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Aufflow Q (cfs) = Peak Aufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	0.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 gular or Trapezoidal) 6.00 21.00 4.00 1.00 0.513 0.512 0.00 6.7 0.2 N/A Plate N/A 39 40	N/A N/A N/A N/A Ctor Plate, or Rectany N/A N/A ft (relative to basin the feet H:V feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 18.2 1.8 N/A Vertical Orifice 1 N/A N/A 49 52	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 49 52	otal area n bottom at Stage = 0 ff Half-C) 5 Year 1.44 1.891 1.890 0.09 2.6 24.2 2.6 2.4 2.6 1.0 Overflow Grate 1 0.0 N/A 50 54	Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Spillway Stage a Basin Area a Basin Area a 10 Year 1.68 2.431 0.24 7.1 31.1 7.3 1.0 Overflow Grate 1 0.3 N/A 49 54	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.92 3.323 3.322 0.57 17.1 42.3 17.1 0.0 0verflow Grate 1 0.8 N/A 46 53	17.03 8.52 s for Outlet Pipe w/ Zone 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 22.6 50.7 22.6 50.7 22.6 50.7 22.6 50.7 22.6 51.7 22.6 51.7 24.6 1.1 Overflow Grate 1 1.3 N/A 44 53	N/A N/A N/A Not Selected N/A N/A N/A illoway feet feet 2.42 4.838 1.00 29.8 66.1.1 27.2 0.9 Outlet Plate 1 1.4 N/A	ft ² ft ² feet radians
Overflow Grate Open Area % Debris Clogging % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectany Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Predevelopment Volume (acreth = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Max Velocity through Grate 2 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 9% of Inflow Volume (hours) = Time to Drain 9% of Inflow Volume (hours) =	0.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 gular or Trapezoidal) 6.00 21.00 4.00 1.00 0.513 0.512 0.00 6.7 0.2 N/A Plate N/A 39 40 2.44	N/A N/A N/A N/A Ctor Plate, or Rectany Not Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 1.8.2 1.8 N/A Vertical Orifice 1 N/A N/A 49 52 3.70	feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.16 1.295 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1 N/A N/A 49 52 3.55	otal area n bottom at Stage = 0 ff Half-O) 5 Year 1.44 1.891 1.891 1.890 0.09 2.6 24.2 2.6 1.0 Overflow Grate 1 0.0 N/A 50 54 4.32	Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Spillway Stage a Basin Area a Basin Area a Coverflow Grate 1 Coverflow Grate 1 Coverflow Grate 1 Overflow Grat	en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 3.322 0.57 17.1 42.3 17.1 1.0 Overflow Grate 1 0.8 N/A 46 53 5.17	17.03 8.52 8.52 2009 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 22.6 50.7 22.6 50.7 22.6 5.0.7 22.6 1.1 0verflow Grate 1 1.3 N/A 44 53 5.39	N/A N/A N/A Not Selected N/A N/A N/A pillway feet feet 2.42 4.838 1.00 29.8 66.1.1 27.2 0.9 Outlet Plate 1 1.4 N/A 42 52 5.82	tt ² tf ft ² feet radians 500 Year 0.00 0.00 10,000
Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Predevelopment Vinit Peak Riow, q (cfs/acce) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Atexianum Ponding Depth (it) = Atexianum Volume Strong Incert) =	70% 50% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 24.00 18.00 3ular or Trapezoidal) 6.00 21.00 4.00 1.00 0.0 0.0 0.53 0.513 0.512 0.00 0.0 6.7 0.2 N/A Plate N/A Plate N/A 39 40 2.44 0.52 0.467	N/A N/A N/A N/A Ctor Plate, or Rectany Not Selected N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 1.412 1.411 0.00 0.0 1.8.2 1.8 N/A Vertical Orifice 1 N/A N/A 49 52 3.70 0.61 1.170	feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.16 1.295 0.01 0.3 16.7 1.7 N/A Vertical Orifice 1 N/A N/A 49 52 3.55 0.60 1 083	otal area n bottom at Stage = 0 ft Half-O) 5 Year 1.44 1.891 1.890 0.09 2.6 24.2 2.6 1.0 Overflow Grate 1 0.0 N/A 50 54 4.32 0.65 54 1.570	Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Coverflow Grate Ope Spillway Stage a Basin Area a Basin Area a Coverflow Grate 1 Coverflow Grat	en Area w/o Debris = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.92 3.323 3.322 0.57 1.7.1 1.0 Overflow Grate 1 0.8 N/A 46 53 5.17 0.72 2 146	17.03 8.52 8.52 2009 3 Restrictor 2.53 0.83 2.09 ted Parameters for S 0.92 7.92 0.93 50 Year 2.16 3.996 3.995 0.76 22.6 50.7 22.6 50.7 22.6 5.0.7 22.6 5.0.7 24.6 1.1 0verflow Grate 1 1.3 N/A 44 53 5.39 0.73 2.313	N/A N/A N/A Not Selected N/A Dillway feet feet acres 100 Year 2.42 4.838 1.00 29.8 61.1 27.2 0.9 Outlet Plate 1 1.4 N/A 42 52 5.82 0.76 2.636	tt ² ft ² feet radians 500 Year 0.00 0.000 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: R Company: C Date: N Project: C Location:	UD-BMP Core Engineering Group Iovember 2, 2017 Carriage Meadows North Filing No. 1 FDR - Pond CMN-1 foreba	(Version 3.06, November 2016) y design	Sheet 1 of 4
 Basin Storage Volu Biffective Impervi Tributary Area's Contributing Wa For Watershed 	me iousness of Tributary Area, I_a Imperviousness Ratio (i = $I_a/100$) atershed Area s Outside of the Denver Region, Depth of Average	$l_a = 50.0$ % i = 0.500 Area = 29.840 ac $d_6 = $ in	
Runoff Producir E) Design Concept (Select EURV w	ng Storm t hen also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)	
 F) Design Volume (V_{DESIGN} = (1.0⁻¹) G) For Watersheds Water Quality C (V_{WQCV OTHER} = 	(WQCV) Based on 40-hour Drain Time * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area) s Outside of the Denver Region, apture Volume (WQCV) Design Volume (d _e *(V _{DESIGN} /0.43))	V _{DESIGN} = 0.513 ac-ft V _{DESIGN OTHER} = ac-ft	
 H) User Input of W (Only if a differe I) Predominant Wa 	ater Quality Capture Volume (WQCV) Design Volume ant WQCV Design Volume is desired) itershed NRCS Soil Group	V _{DESIGN USER} = ac-ft	
J) Excess Urban R For HSG A: EL For HSG B: EL For HSG C/D:	tunoff Volume (EURV) Design Volume JRV _A = 1.68 * i ^{1.28} JRV _B = 1.36 * i ^{1.08} EURV _{C/D} = 1.20 * i ^{1.08}	EURV = ac-f t	
 Basin Shape: Lengt (A basin length to w 	th to Width Ratio <i>r</i> idth ratio of at least 2:1 will improve TSS reduction.)	L : W = : 1	
 Basin Side Slopes A) Basin Maximum (Horizontal dista 	i Side Slopes ance per unit vertical, 4:1 or flatter preferred)	Z = <u>0.25</u> ft / ft TOO STEEP (< 3)	
 Inlet A) Describe means inflow locations: 	s of providing energy dissipation at concentrated	wall in forebay	

Design Procedure Form: Extended Detention Basin (EDB)

		Sheet 2 of 4
Designer: Richard Schindler		
Date: November 2, 2017		
Project: Carriage Meadows North Filing No. 1	FDR - Pond CMN-1 forebay design	
Location:		
5. Forebay		
A) Minimum Forebay Volume (V _{FMIN} = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.015</u> ac-ft	
B) Actual Forebay Volume	$V_F = $ 0.025 ac-ft	
C) Forebay Depth $(D_F = 18$ inch maximum)	D _F = <u>18.0</u> in	
D) Forebay Discharge		
i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>61.10</u> cfs	
ii) Forebay Discharge Design Flow ($Q_F = 0.02 * Q_{100}$)	Q _F = <u>1.22</u> cfs	
E) Forebay Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir (flow	v too small for berm w/ pipe)
F) Discharge Pipe Size (minimum 8-inches)	Calculated D _P =	
G) Rectangular Notch Width	Calculated W _N =6.0 in	
6. Trickle Channel		
A) Type of Trickle Channel	Soft Bottom	
F) Slope of Trickle Channel	S =ft / ft	
7. Micropool and Outlet Structure		
A) Depth of Micropool (2.5-feet minimum)	D _M = ft	
B) Surface Area of Micropool (10 ft ² minimum)	$A_{\rm M} = \underline{56}$ sq ft	
C) Outlet Type		
-, ,	Choose One	
	Other (Describe):	
 D) Smallest Dimension of Orifice Opening Based on Hydro (Use UD-Detention) 	D _{orifice} =1.50 inches	
E) Total Outlet Area	$A_{ct} = \underline{26.85}$ square inches	

	Design Procedure Form	: Extended Detention Basin (EDB)				
		Shee	t 3 of 4			
Designer: Company:	Richard Schindler Core Engineering Group					
Date:	Ite: November 2, 2017 oject: Carriage Meadows North Filing No. 1 FDR - Pond CMN-1 forebay design					
Location:		, doogn				
8. Initial Surcharge	9 Volume					
A) Depth of Init (Minimum re	ial Surcharge Volume commended depth is 4 inches)	D _{IS} = in				
B) Minimum Initi (Minimum vol	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} = <u>67.0</u> cu ft				
C) Initial Surcha	rge Provided Above Micropool	V _s = <u>18.7</u> cu ft				
9. Trash Rack						
A) Water Qualit	ty Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	Ar = 896 square inches				
B) Type of Screin the USDCM, total screen are	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.				
	Other (Y/N): N					
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	Jser Ratio =				
D) Total Water (Quality Screen Area (based on screen type)	A _{total} = <u>1263</u> sq. in.				
E) Depth of Des (Based on des	sign Volume (EURV or WQCV) sign concept chosen under 1E)	H= <u>2.5</u> feet				
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = <u>58</u> inches				
G) Width of Wat	ter Quality Screen Opening (W _{opening})	W _{opening} = inches				
(Minimum of 1	2 inches is recommended)					
	Stainle					
	Stairing					
	Steel?					
			Sheet 4 of 4			
-----------------------------	--	--	--------------			
Designer:	Richard Schindler					
Company:	Core Engineering Group					
Date:	November 2, 2017					
Project:	Carriage Meadows North Filing No. 1 FDR - Pond CMN-1 fore	bay design				
Location:						
10. Overflow Emb	pankment					
A) Describe e	embankment protection for 100-year and greater overtopping:					
B) Slope of C (Horizonta	Overflow Embankment I distance per unit vertical, 4:1 or flatter preferred)					
11. Vegetation		Choose One O Irrigated O Not Irrigated				
12. Access						
A) Describe S	Sediment Removal Procedures					
N						
Notes:						

Hydraflow Express by Intelisolve

Pond CMN-1 forebay weir (wq=6.7cfs)

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.30
Bottom Length (ft)	= 12.00	Q (cfs)	= 6.700
otal Depth (ft)	= 0.50	Area (sqft)	= 3.65
		Velocity (ft/s)	= 1.84
Calculations		Top Width (ft)	= 12.00
Veir Coeff. Cw	= 3.33		
Compute by:	Known Q		
(nown Q (cfs)	= 6.70		
Crest Bottom Length (ft) Total Depth (ft) Calculations Veir Coeff. Cw Compute by: Known Q (cfs)	= Snarp = 12.00 = 0.50 = 3.33 Known Q = 6.70	Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Top Width (ft)	= 0.30 = 6.70 = 3.65 = 1.84 = 12.0

MAP POCKET

DES
RUNC

BASIN

EX-E1 EX-E2

226L

DESIGN POINT 226L

23

LEGEND

RUNOF	FF SUMMARY	TABLE	
	RUNOFF	RUNOFF	
RAINAGE	5 YR	100 YR	
AREA	(CFS)	(CFS)	COMMENTS
37.3	31.0	88.0	
12.4	7.0	31.0	
65.2	20	73	

DECION E	AMMUT CUMMAA	DV TADIE
DESIGN F	UNI SUMMA	NT TADLL
RUNOFF	RUNOFF	
5 YR	100 YR	
(CFS)	(CFS)	COMMENTS
20.0	73.0	from HDR's FDR
113	214	from Font/Old Glory/Mark. FDR

EXISTING CONDITIONS DRAINGE MAP EXISTING CONDITIONS DRAINGE MAP EXISTING CONDITIONS DRAINGE MAP FILING NO. 1 CARRIAGE MEADOWS FILING NO. 1 COLORADO SPRIVAS: COLORADO 80903 COLORADO 80903 COLORADO 80903 COLORADO 80013 COLORADO 80013 COLORAD		CORE	ENGINEERING GROUP	15004 1ST AVENUE S.	BURNSVILLE, MN 55306 PH: 719.570.1100	CONTACT: RICHARD L. SCHINDLER, P.E. EMAIL: Pich@ceal com	
EXISTING CONDITIONS DRAINGE MAP	DATE	×			<pre></pre>	AVE., SUITE 301	5-3200 JEFF MARK
EXISTING CONDITIONS DRAINGE MAP FILING NO. 1 FILING NO. 1 CARRIAGE MEADOWS FILING NO. 1 LORSON RANCH LASO COUNTY, COLORADO	NOILe			PREPARED FOR:	LORSON	212 N. WAHSATCH	COLONADO JI MINOS, (719) 635 CONTACT: U
DRAWN: LJA DESIGNED: RLS CHECKED: RLS CHECKED: RLS	DESCRIF	×			RIAGE MEADOWS	FILING NO. 1	L PASO COUNTY, COLORADO
EXISTING CONDITIONS DRAINGE MAP	ON DF DE CH	RAWN ESIGN	: L ED: R ED: R	JA LS LS	CAF		
				EXISTING CONDITIONS URAINGE MAP			
			SHEET	1	JMBE	ĒR	

COMMENTS
POND INFLOW FROM FULL SPECTRUM WKSHEETS
POND OUTFLOW FROM FULL SPECTRUM WKSHEETS
FLOW IN FMIC CHANNEL

DESIGN POINT SUMMARY TABLE				
DESIGN POINT	RUNOFF 5 YR (cfs)	RUNOFF 100 YR (cfs)	COMMENTS	
15	63	164	STM RUNOFF IN EXISTING 48" RCP FROM FMIC	
16	65.6	191.2	FLOW IN EXISTING 60" RCP	
17a	5.3	10.2		
17	11.6	22.2	STREET FLOW	
18	2.6	4.9	STREET FLOW	
19	48.3	90.9	TOTAL FLOW TO FONTAINE STORM SEWER	
20	20.0	75.4	FROM 4'x7' CBC	
21	40.7	104.1	DEVELOPED CONDITIONS	
22	60.7	179.5	DEVELOPED CONDITIONS	

Markup Summary

dedrice (32)		
La lange CO 2012	Subject: Cloud+ Page Label: 3 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/2/2018 4:39:00 PM Color:	is not?
Control and the Control and	Subject: Text Box Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 12:03:24 PM Color:	Address floodplain along north boundary.
Period In the specific of the	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 11:59:20 AM Color:	revise
Martin and a structure of Proceeding structure is a structure of the st	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 12:02:29 PM Color:	revise
Iname Source and LLC and Lonson LLC rt will consist of 155 t as commercial forvisce 15 Soght Regrets 12 context Regrets 12 context Regrets 13 context Regrets 13 context Regrets 14 context Regrets 14 context Regrets 14 context Regrets 15 context Regrets 15 context Regrets 16 cont	Subject: Cloud+ Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 12:02:19 PM Color:	revise
1.1.1 for Science Taylor to Teach 1 flags The Science Taylor to Science Taylor to Teach 1 flags the Science Taylor to Science Taylor to Teach 1 flags the Science Taylor to Science Taylor to Science Taylor weeks to Science Taylor to Science Taylor to Science Taylor weeks to Science Taylor to Science Taylor to Science Taylor weeks to Science Taylor	Subject: Cloud+ Page Label: 6 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 12:19:14 PM Color:	west?

	Subject: Callout Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:07:39 PM Color:	Address why this is so large.
and 100-year storm events. The stin to requirements set forth in Table 6. ³ proposed curb/gutter and storm ser pond or Jimmy Camp Creek whe year of the storm of the store of the year of the store of the store of the ge map and have been sized for eit See Appendix C for detailed hydr	Subject: Rectangle Page Label: 11 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 1:48:36 PM Color:	DELETE
	Subject: Callout Page Label: 20 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:03:21 PM Color:	Address pipe size transition, maintenance, potential for clogging
Norma I Norma III State St	Subject: Cloud+ Page Label: 21 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:05:19 PM Color:	Verify - this seems low, should be 52-55%?
y ba: Tao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la tau a i sha bao yangi la antinata la antinata la tau a i sha bao yangi la antinata	Subject: Cloud+ Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:27:49 PM Color:	revise
x = x	Subject: Text Box Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:28:04 PM Color:	Reference Resolution No. 17-71, Rec. No. 2017021072

	Subject: Cloud+ Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:06:29 PM Color:	This should not include Tracts D and E which will pay fees when they replat. If you want to include Tracts D and E, account for the commercial imperviousness. Residential 34.2 acres at 52-55% imperviousness(?)
nty or a yawah) tata the low all credits they have the data set of the set of the set of the provide latest update Datage Survly less are too and are calculated to	Subject: Callout Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 3:24:52 PM Color:	provide latest update
sows North Filing No. 1 contains 4 rage, Bridge and Surety fees. Th contage of 505 mage fees are 515,720 pringle fees are envirous acth. Tabalatis are due at pli \$16,270 tage/Bridge Fees Total Area Imperviousness	Subject: Cloud+ Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:27:30 PM Color:	\$16,270
lo. 1 contains 48.2 acres. The 48.1 Surety fees. This project is estima of the second state of the second s	Subject: Cloud+ Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:27:33 PM Color:	\$761
assessed Drain impervious percer The 2013 prana S7,285 Table 1: Draina Type of Land Use	Subject: Cloud+ Page Label: 22 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:27:24 PM Color:	\$7,285
na or ed	Subject: Highlight Page Label: 23 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 3:51:41 PM Color:	

	Subject: Cloud+ Page Label: 31 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:40:07 PM Color:	Use pre-development Tcs and C values. Reference DCM Update (City) Table 6-6.
	Subject: Cloud+ Page Label: 31 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 2:30:48 PM Color:	Provide pre-development calculations
	Subject: Cloud+ Page Label: 68 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:08:22 PM Color:	55%?
	Subject: Cloud+ Page Label: 72 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 8:40:58 AM Color:	Stainless Steel?
	Subject: Callout Page Label: 76 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 8:39:07 AM Color:	Label existing pond if it is here.
Label 600 connection CX. 60° KD	Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/2/2018 10:44:32 PM Color:	label 60" connection

	Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:11:52 PM Color:	Label manholes/junctions
	Subject: Arrow Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/2/2018 11:15:22 PM Color:	show swale
Laber floodplain elevations at property line 60" RCP	Subject: Text Box Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/3/2018 12:01:57 PM Color:	Label floodplain elevations at property line
28 29 20 20 20 20 20 20 20 20 20 20	Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/2/2018 10:48:13 PM Color:	provide type of connection
EF 60° ROP HEW DIPE IN GEP NEW DIPE IN	Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 2:10:48 PM Color:	show existing pipe in gray

Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/2/2018 10:41:03 PM Color:

remove?

Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 8:35:47 AM Color:

.

.....

Provide a swale flowing east to drain this area.

Add label describing where this outfalls

Subject: Callout Page Label: 77 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 1/4/2018 8:37:43 AM Color:

RSchindler (2)

Subject: Text Box Page Label: 28 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 11/2/2017 6:15:16 AM Color:

SITE

Subject: Polygonal Line Page Label: 28 Lock: Unlocked Status: Checkmark: Unchecked Author: RSchindler Date: 11/2/2017 6:14:41 AM Color:
