FINAL DRAINAGE REPORT FOR LAZY Y AND ROCKING J SUBDIVISION

September 2024

Prepared For: Scott Smith

1172 Greenland Forest Drive Monument, CO 80106 (719) 499-7764

Prepared By:

JR Engineering, LLC

5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

Project No. 25228.00

PCD Filing No: PPR-23-XXX

SEP 2024

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage letter has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Bryan T. Law, Colorad	o P.E. # 25043	Date	
For and On Behalf of J	R Engineering, LLC		
DEVELOPER'S STA			
I, the developer, have report and plan.	read and will comply with all	of the requirements specified in this drainage	зe
Business Name:	Scott Smith		
Ву:			
Title:			
Address:	1172 Greenland Forest Monument, CO 80106	Drive	
	th the requirements of the El Pa nes 1 and 2 and Engineering Cri	aso County Land Development Code, Drainagiteria Manual, as amended.	ge
Joshua Palmer, P.E. County Engineer/ ECM	I Administrator	Date	
Conditions:	. i Kamimon utoi		

Table of Contents

Purpose	1
General Site Description	1
General Location	1
Description of Property	1
Floodplain Statement	1
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	2
Proposed Drainage Conditions	3
Proposed Drainage Conveyance	3
Proposed Sub-basin Drainage	3
Comparison of Flows	<i>6</i>
Drainage Design Criteria	<i>6</i>
Development Criteria Reference	<i>6</i>
Hydrologic Criteria	<i>6</i>
Hydraulic Criteria	7
Drainage Facility Design	
General Concept	7
Specific Details	7
Four Step Process to Minimize Adverse Impacts of Urbanization	7
Water Quality	8
Erosion Control Plan	
Operation & Maintenance	
Drainage and Bridge FeesConstruction Cost Opinion	
Summary	
References	

APPENDICES

Appendix A – Vicinity Map, Soil Descriptions, FEMA Floodplain Map

Appendix B – Hydrologic Calculations

Appendix C – Hydraulic Calculations

Appendix D - Reference Material

Appendix E – Drainage Maps

PURPOSE

This document is the Final Drainage Report for Lazy Y and Rocking J Subdivision. The purpose of this report is to identify on-site and off-site drainage patterns, culverts, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Lazy Y and Rocking J Subdivision (hereby referred to as the "site") is a proposed development with a total area of approximately 34 acres. The site presently is used as a commercial equipment building. The site is located in the south half of Section 7, Township 12 South, Range 63 West of the Sixth Principal Meridian in El Paso County, State of Colorado. The site is bounded by Peyton Highway to the east, Longhorn Acres Subdivision to the south, and unplatted land to the west and north. Refer to the vicinity map in Appendix A for additional information.

DESCRIPTION OF PROPERTY

The site has a split drainage pattern with a ridge running across the site. The site generally slope(s) as follows: to the north at 1 to 9% off-site to unplatted land, to the northeast at 1 to 15% to the existing roadside ditch along Peyton Highway, and to the south at 1 to 9% off-site to Longhorn Acres Subdivision. The site is currently comprised of gravel roads, a building, a shed, concrete pads, a cell tower, dry utilities, trees and vegetation. A wire fence wraps around the perimeter of the site along the west, north, and east sides.

The proposed site development proposes asphalt and gravel drive aisles, asphalt and gravel parking spaces, tent sites, buildings, concrete sidewalks, two full-spectrum Extended Detention Basins (EDBs) and associated utility infrastructure.

Soils located on the project site are Stapleton sandy loam. These soils are classified as Hydrologic Soil Group B. Group B soils exhibit moderate infiltration rates when thoroughly wet, and consist mainly of moderately deep, moderately well drained to well drained soils. Refer to the soil survey map in Appendix A for additional information.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Map number 08041C0375G, dated December 7, 2018, the entire site lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. Refer to the FIRM Map in Appendix A for additional information.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

Based on the map of the Drainage Basins for El Paso County, the site lies within both the Upper Bracket Creek and the La Vega Ranch Drainage Basins. Neither of these basins have been studied, and therefore no Drainage Basin Planning Studies are available. The site is split into two major basins, but the Upper Bracket Creek Basin is tributary to the La Vega Ranch Basin. The La Vega Ranch drainageway flows south about 10 miles where the Hook and Line Ranch Basin, La Vega Ranch Basin, and Baggett Basin combine just north of State Highway 94.

The site generally drains towards the north, northeast, and south from the middle of the site. Brackett Creek is located to the north and east of the site and runs from northwest to southeast. An unnamed tributary of Brackett Creek is located to the south of the site and runs from northwest to southeast. The proposed condition will send more of the site to the proposed full-spectrum extended detention basin to the north, and this will have no impact on the major basins. The additional area going to the Upper Bracket Creek basin is negligible in the overall major basin analysis.

EXISTING SUB-BASIN DRAINAGE

The existing condition of the site was broken into three on-site sub-basins. The basin delineation is shown on the existing drainage map in Appendix E and is described as follows:

Basin EXA is 7.84 acres with a 2% percent impervious and is located on the northwestern portion of the site. This basin is comprised of existing vegetation and undeveloped area. Runoff from this basin $(Q_5=1.8 \text{ cfs}, Q_{100}=12.3 \text{ cfs})$ sheet flows overland northeast onto the unplatted adjacent property at design point (DP) 1. Runoff then follows historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin EXB is 11.2 acres with a 5% percent impervious and is located on the northeastern portion of the site. This basin is comprised of part of gravel roads, buildings, shed, dry utilities, trees, existing vegetation, and undeveloped area. Runoff from this basin ($Q_5=3.7$ cfs, $Q_{100}=21.1$ cfs) sheet flows overland northeast to DP2 and along the existing Peyton Hwy roadside swale combining at DP2.1.

Basin OS1 is approximately 0.61 acres with a 42% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin (Q_5 =0.9 cfs, Q_{100} =2.2 cfs) flows within the existing swale to DPO1. Flows then combine within the existing Peyton Hwy swale at DP2.1 (Q_5 =4.5 cfs, Q_{100} =23.0 cfs). Runoff then follows historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin EXC is 14.9 acres with a 4% percent impervious and is located on the southern portion of the site. This basin is comprised of part of gravel roads, building, a cell tower, concrete pads, dry utilities, existing vegetation, and undeveloped area. Runoff from this basin ($Q_5=3.9$ cfs, $Q_{100}=23.2$ cfs) sheet flows overland south onto the adjacent Longhorn Acres Subdivision property at DP3. Runoff then follows historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

PROPOSED DRAINAGE CONDITIONS

PROPOSED DRAINAGE CONVEYANCE

In general, developed flows are collected in proposed swales, which convey water to the proposed water quality and detention areas, Pond 1 and Pond 2. Proposed swale sections were designed to ensure they are stable and have required capacity to satisfy criteria. A swale is considered stable with a velocity of 5 ft/s of less. Erosion protection shall be provided where velocities exceed 5 ft/s. To ensure capacity, swales will have a minimum of 1 ft. of freeboard over the water surface for flows anticipated in a 100-year storm event. In addition to the swales, a proposed culvert also conveys flows under the access roadway. The culvert was sized to not overtop the roadways with flows from a 100-year storm event. Detailed swale calculations, sections, and culvert calculations are located in Appendix C.

PROPOSED SUB-BASIN DRAINAGE

The proposed basin delineation for the site as shown on the map within Appendix E is as follows:

Basin A is approximately 1.51 acres with a 21% percent impervious and is comprised of proposed gravel roadways, gravel parking areas, concrete sidewalks and RV parking spots. Runoff generated by this basin ($Q_5=1.3$ cfs, $Q_{100}=4.3$ cfs) sheet flows overland to the proposed swale at DP1. Flows enter Basin B and combine at DP2.1.

Basin B is approximately 2.51 acres with a 10% percent impervious and is comprised of proposed asphalt roadways, gravel parking areas, concrete sidewalk and RV hookup sites. Runoff generated by this basin (Q_5 =1.2 cfs, Q_{100} =5.5 cfs) sheet flows overland to the proposed swale at DP2. Flows then combine with DP1 at DP2.1 (Q_5 =2.3 cfs, Q_{100} =9.3 cfs) and enter into the proposed culvert. DP2.1 flows continue within a proposed swale to the combination at DP3.1.

Basin C is approximately 4.27 acres with a 20% percent impervious and is comprised of proposed gravel parking areas, concrete sidewalks and RV hookup sites. Runoff generated by this basin (Q_5 =3.4 cfs, Q_{100} =11.8 cfs) sheet flows overland to the proposed swale at DP3. Flows then combine with DP2.1 at DP3.1 (Q_5 =5.1 cfs, Q_{100} =18.9 cfs) and are captured by the proposed culvert at DP5.2.

Basin D is approximately 4.96 acres with a 24% percent impervious and is comprised of proposed asphalt and gravel roadways, parking areas, septic field, concrete sidewalk and RV hookup sites. Runoff generated by this basin (Q_5 =3.6 cfs, Q_{100} =11.8 cfs) sheet flows overland to the proposed swale at DP4. Flows then enter into the proposed culvert and combine at DP5.1.

Basin E is approximately 2.64 acres with a 20% percent impervious and is comprised of proposed asphalt roadways, concrete sidewalk and RV hookup sites. Runoff generated by this basin ($Q_5=1.9$ cfs, $Q_{100}=6.5$ cfs) sheet flows overland to the proposed swale at DP5. Flows then combine with DP4 at DP5.1 ($Q_5=4.9$ cfs, $Q_{100}=16.3$ cfs) and are captured by the proposed culvert. DP5.1 flows then combine with DP3.1 at DP5.2 ($Q_5=9.4$ cfs, $Q_{100}=32.9$ cfs) and are captured by the proposed inflow culvert. Flows then are combined within the proposed full-spectrum EDB (Pond 1) at DP6.1.

Basin F is approximately 0.84 acres with a 16% percent impervious and is comprised of proposed Pond 1 and associated infrastructure. Runoff generated by this basin (Q_5 =0.7 cfs, Q_{100} =2.5 cfs) sheet flows to Pond 1 at DP6. Flow at DP6.1 (Q_5 =9.8 cfs, Q_{100} =34.6 cfs) combines the flow of DP5.2 and DP6, representing the total inflow into Pond 1. Flows will be released through the outlet structure at DP6.2 (Q_5 =2.1 cfs, Q_{100} =11.9 cfs). Flows will then enter Basin H and follow the drainage patterns of the basin as described below, combining at DP8.1.

Basin OS1 is approximately 0.43 acres with a 43% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin (Q_5 =0.8 cfs, Q_{100} =2.0 cfs) flows within the existing swale to DPO1. Flows combine at the proposed DP7.1 culvert.

Basin G is approximately 1.57 acres with a 2% percent impervious and is comprised of existing undeveloped land to remain undeveloped. Runoff generated by this basin (Q_5 =0.6 cfs, Q_{100} =4.3 cfs) sheet flows overland to the proposed swale at DP7. Flows combine at the proposed DP7.1 culvert. DP7.1 flows (Q_5 =1.4 cfs, Q_{100} =6.3 cfs) enter the culvert and continue within the existing Peyton Hwy swale combining at DP8.1.

Basin OS2 is approximately 0.18 acres with a 56% percent impervious and is comprised of existing west half of Peyton Hwy roadway and swale. Runoff generated by this basin (Q_5 =0.5 cfs, Q_{100} =1.0 cfs) flows within the existing swale to DPO2. Flows combine at the existing Peyton Hwy swale at DP8.1.

Basin H is approximately 0.74 acres with a 24% percent impervious and is comprised of proposed riprap, part of the access roadway and undeveloped land. Runoff generated by this basin (Q_5 =0.6 cfs, Q_{100} =1.9 cfs) sheet flows overland to the existing Peyton Hwy swale at DP8. DP6.2, DP7.1, DPO2 and DP8 flows combine at the existing Peyton Hwy swale at DP8.1 (Q_5 =4.1 cfs, Q_{100} =19.0 cfs). Flows continue flowing north off-site per the historic conditions and eventually outfall to Brackett Creek.

Basin I is approximately 1.00 acres with a 2% percent impervious and is comprised of existing undeveloped land to remain undeveloped. Runoff generated by this basin (Q_5 =0.5 cfs, Q_{100} =3.1 cfs) sheet flows overland north following the historic drainage patterns off-site and eventually outfalls to Brackett Creek.

Basin J is approximately 2.99 acres with a 24% percent impervious and is comprised of proposed gravel roadways, gravel parking areas, building and RV hookup sites. Runoff generated by this basin ($Q_5=2.6$ cfs, $Q_{100}=8.4$ cfs) sheet flows overland to the proposed swale at DP10. Flows then enter into the proposed culvert and combine at DP11.1.

Basin K is approximately 0.78 acres with a 35% percent impervious and is comprised of proposed gravel roadway and concrete sidewalks. Runoff generated by this basin (Q_5 =0.9 cfs, Q_{100} =2.5 cfs) sheet flows overland to the proposed swale at DP11. Flows then enter into the proposed culvert and combine at DP12.1.

Basin L is approximately 0.45 acres with a 40% percent impervious and is comprised of proposed gravel roadway and concrete sidewalks. Runoff generated by this basin (Q_5 =0.6 cfs, Q_{100} =1.5 cfs) sheet flows overland to the proposed swale at DP12 and are captured by the proposed sump inlet. In the case where this inlet becomes clogged, the emergency overflow path would overtop the maintenance trail and flow into Pond 2. DP12 flows then combine within proposed Pond 2 at DP14.1.

Basin M is approximately 2.01 acres with a 25% percent impervious and is comprised of proposed gravel roadways, concrete sidewalk and RV hookup sites. Runoff generated by this basin ($Q_5=1.5$ cfs, $Q_{100}=4.9$ cfs) sheet flows overland to the proposed swale at DP13. Flows then enter into the proposed culvert and combine within proposed Pond 2 at DP14.1.

Basin N is approximately 2.12 acres with a 26% percent impervious is comprised of proposed gravel roadways, concrete sidewalk, RV hookup sites, Pond 2 and associated infrastructure. Runoff generated by this basin (Q_5 =1.9 cfs, Q_{100} =6.1 cfs) sheet flows to Pond 2 at DP14. Flow at DP14.1 (Q_5 =6.6 cfs, Q_{100} =20.6 cfs) combines the flow of DP12.1, DP13 and DP14, representing the total inflow into Pond 2. Flows will be released through the outlet structure at DP14.2 (Q_5 =1.5 cfs, Q_{100} =7.8 cfs). Flows will then enter Basin O and then flow off-site to the south following historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

Basin O is approximately 5.56 acres with an 8% percent impervious located within Lot 2 and is comprised of a single-family residence and private driveway. Runoff generated by this basin (Q_5 =2.9 cfs, Q_{100} =14.6 cfs) sheet flows overland to the basin boundary at DP15. Flows then continue off-site to the south following historic drainage patterns off-site and eventually outfalls to the unnamed tributary of Brackett Creek.

COMPARISON OF FLOWS

There are several locations where the existing and proposed flows leave the site:

- Flows leave the northern part of the site at existing DP1 and proposed DP9. Existing DP1 flows ($Q_5=1.8$ cfs, $Q_{100}=12.3$ cfs) are greater than the proposed DP9 flows ($Q_5=0.5$ cfs, $Q_{100}=3.1$ cfs).
- Flows leave the north-eastern part of the site at existing DP2.1 and proposed DP8.1. Existing DP2.1 flows (Q_5 =4.5 cfs, Q_{100} =23.0 cfs) are greater than the proposed DP8.1 flows (Q_5 =4.1 cfs, Q_{100} =19.0 cfs).
- Flows leave the southern part of the site at existing DP3 and proposed DP14.2 & DP15. Existing DP3 flows (Q_5 =3.9 cfs, Q_{100} =23.2 cfs) are greater in the major storm than the proposed DP14.2 flows (Q_5 =1.5 cfs, Q_{100} =7.8 cfs) & DP15 (Q_5 =2.9 cfs, Q_{100} =14.6 cfs) for a total proposed flow of Q_5 =4.4 cfs, Q_{100} =22.4 cfs.

All proposed flows in the major storm leave the site at less than or equal to the historic flow rates. Therefore, there is no negative impact anticipated to downstream properties.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. On-site drainage improvements were designed based on the 5-year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One-hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 1: 1-hr Point Rainfall Data

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used to size the roadside ditches and drainage swales per criteria. Per Section 6.4.1 of the EPCDCM, culverts were sized as to not overtop the road in the 100-year storm. The MHFD-Detention_v4.06 spreadsheet was utilized for evaluating proposed detention and water quality for the five ponds. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. See Appendix C for hydraulic calculations. The hydraulic design will be finalized with the Final Drainage Report.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed site flows to one of two full-spectrum EDBs via swales, culverts, inlets and storm sewer infrastructure. The proposed full-spectrum EDBs will be designed to release flows at less than historic to minimize adverse impacts downstream. Due to this, there are no drainage problems anticipated downstream of the site.

SPECIFIC DETAILS

All full-spectrum EDBs will have proposed forebays at inflow points, concrete trickle channels, and outlet structures. The proposed pond forebays and weir contain the required percentage of the Water Quality Capture Volume (WQCV). The forebays weir will release 1% or 2% of the undetained peak 100-year inflow (depending on impervious acres per EDB-4) into the full-spectrum EDB to the proposed concrete trickle channel. The trickle channel will direct flows into the proposed full-spectrum EDB outlet structure, which will detain water per times specified by criteria. The WQCV will be released within 40 hours and the EURV will be released within 72 hours.

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1: Reducing Runoff Volumes - The site development consists of gravel drive aisles and parking spaces with lawn areas interspersed within the development. This layout will allow for increased infiltration and reduce runoff volume.

Step 2: Treat the WQCV - Runoff from this development is treated through capture and slow release of the WQCV in the on-site permanent full-spectrum EDBs that are designed per current El Paso County drainage criteria. The 2.5-acre (minimum) residential house on Lot 2 will be limited to a maximum of 10% imperviousness to meet the requirements of Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for water quality through a plat note. Should Lot 2 exceed 10% imperviousness, a lot specific drainage report addressing the increased imperviousness must be submitted.

Step 3: Stabilize Drainageways - The site lies within the Upper Bracket Creek Drainage Basin and the La Vega Ranch Drainage Basin. Both these basins are not studied and therefore no basin and bridge fees are due. The site does not discharge directly into the open drainageway of Brackett Creek, and developed flows leaving the site are limited to below existing rates, therefore no downstream stabilization will be required with this project.

Step 4: Implementing Long Term Source Controls - A site specific stormwater quality and erosion control plan and narrative shall be prepared in conjunction with the final drainage report. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in that plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full-spectrum water quality and detention will be provided for all of the development site not meeting exclusions present in the ECM - Stormwater Quality Policy and Procedures Section I.7.1.B. As previously stated, the applicable exclusions for Basin O located within Lot 2 fall under Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for areas with large single-family lots (2.5-acre min.). In addition, Basins G, H and I fall under the Section I.7.1.B.7 of the ECM Stormwater Quality Policy and Procedure for sites with land disturbance to undeveloped land that will remain undeveloped. A portion of Basins G and H are comprised of a portion of the asphalt roadway which are not able to be undetained or treated. This area is under the maximum allowable of 1.0 total acres. The remaining basins will be treated within the proposed full-spectrum EDBs (Pond 1 and Pond 2). Outlet structure release rates will be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities.

See Table 2 below for the water quality treatment summary table indicating which basins are treated and which are excluded.

PBMP Summary Table Tributary Area **PBMP Basins** (acres) A-F 16.73 POND 1 G-I 3.18 **EXCLUDED*** Part of H EXCLUDED*** 0.13 J-N 8.35 POND 2 0 5.56 **EXCLUDED**** *EXCLUDED BASED ON LAND DISTURBANCE TO UNDEVELOPED LAND THAT WILL REMAIN UNDEVELOPED PER ECM APP. 1.7.B.7 **EXCLUDED BASED ON LARGE LOT SINGLE FAMILY SITES PER ECM APP. 1.7.B.5 ***UNTREATED/UNDETAINED AREA (< 1 TOTAL ACRE)

Table 2 - Water quality treatment summary table.

Proposed Full-Spectrum EDBs

Water quality is provided for the site by two private full-spectrum detention and water quality EDBs. Table 3 below shows the basin parameters for the two ponds. Refer to Appendix C for the MHFD-Detention design sheets that include the tributary basin parameters as well as the stage-storage table and outlet structure design. The outlet structure includes an orifice plate, overflow grate, and restrictor plate to release stormwater at the appropriate rates. The WQCV will be released within 40 hours, the EURV will be released within 72 hours, and the minor and major flows will be released at or below the pre-development flow rate. Table 4 below gives the designed results for Pond 1 and 2.

Table 3 - Watershed design parameters for both EDBs.

Name	Watershed Area	Percent Impervious	Watershed Slope
Pond 1	17.0 ac	19.5%	0.030 ft/ft
Pond 2	8.5 ac	26.5%	0.030 ft/ft

Table 4- Full-spectrum EDB design for both EDBs.

Name	Required Volume (ac-ft)	Provided Volume (ac-ft)	WQCV (ac-ft)	EURV (ac-ft)	5-year Release (cfs)	100-year Release (cfs)
Pond 1	0.88	1.03	0.16	0.33	2.1	11.9
Pond 2	0.52	0.54	0.10	0.23	1.5	7.8

Calculations and pond design parameters are presented in Appendix C.

- For Pond 1, a broad-crested weir lined with buried soil riprap is provided as an emergency spillway along the eastern embankment of the pond. Pond 1 emergency flows are conveyed overland to the existing Peyton Hwy roadside ditch before going off-site to the north, following the historic drainage patterns.
- For Pond 2, a broad-crested weir lined with concrete is provided as an emergency spillway along the southern embankment of the pond. Pond 2 emergency flows are conveyed overland before going off-site to the south, following the historic drainage patterns.

Erosion Control Plan

We respectfully request that the Final Erosion Control Plan and associated Cost Estimate to be submitted in conjunction with the construction drawings and plat prior to obtaining a grading permit.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within any platted County R.O.W. (roadside ditches and local road culverts) will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts (full-spectrum water quality ponds, drainageway culverts and drainageway improvements) will be owned and maintained by the property owner unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Inspection access for El Paso County will be provided through a maintenance easement.

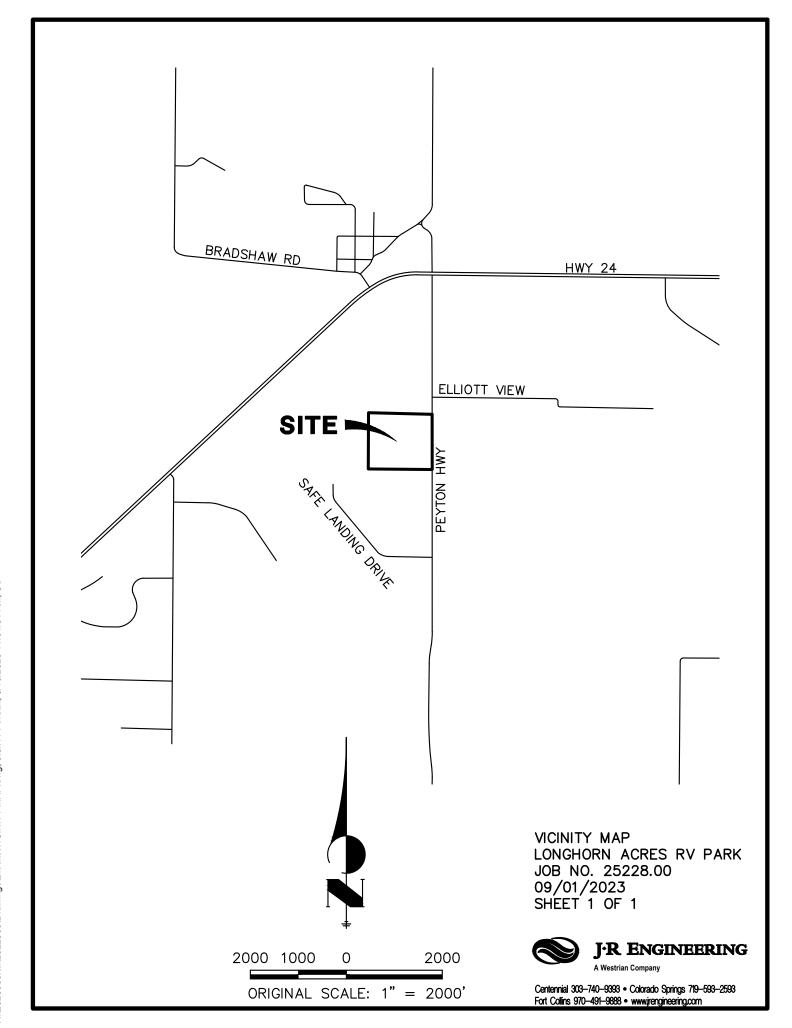
Drainage and Bridge Fees

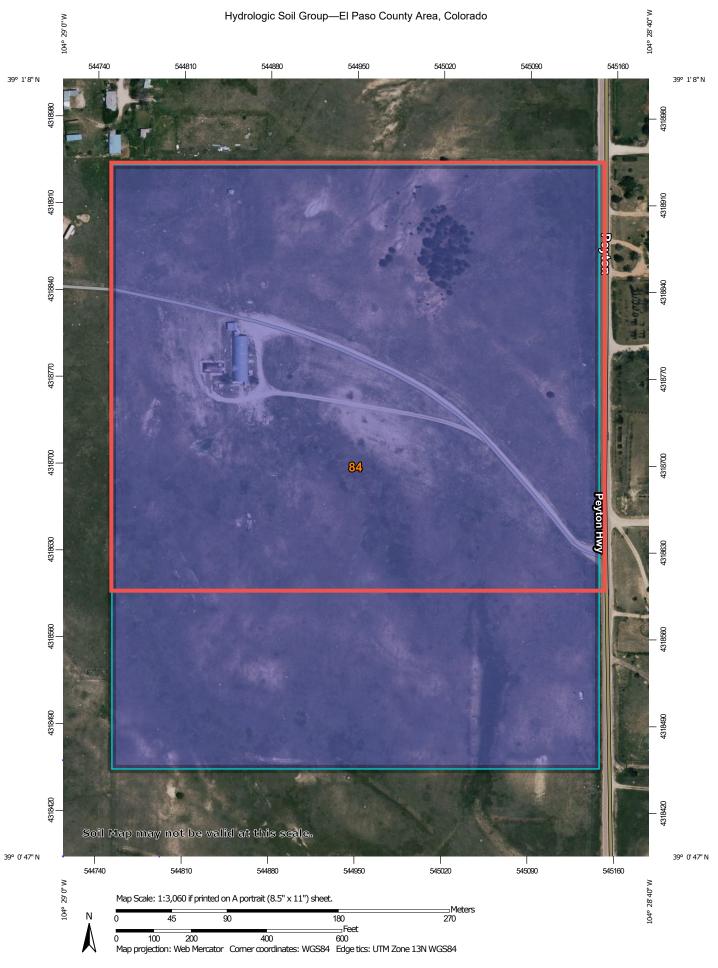
The site lies within the Upper Bracket Creek Drainage Basin and the La Vega Ranch Drainage Basin. Both these basins are not studied and therefore no basin and bridge fees are due.

Construction Cost Opinion

SUMMARY

The proposed Lazy Y and Rocking J Subdivision drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the off-site drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.


REFERENCES


- 1. Engineering Criteria Manual, El Paso County, October 14, 2020.
- 2. <u>City of Colorado Springs Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, CO, May 2014.
- 3. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- 4. <u>Drainage Basins: El Paso County Colorado</u>, El Paso County, 2005.

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 9, 2021—Jun 12. 2021 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
84	Stapleton sandy loam, 8 to 15 percent slopes	В	47.7	100.0%
Totals for Area of Intere	st		47.7	100.0%

Description

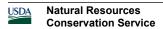
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It do not necessarily identify all areas subject to flooding, particularly from local drainage ources of small size. The community map repository should be consulted for the control of t

obtain more detailed information in areas where Base Flood Elevations (BFE To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood profession and the floodway Data and/or Summany of Sillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-flood levations. Accordingly clearly the profession of the profession of the profession of the profession of the should not be used as the sole source of flood elevation information. Accordingly cod delevation data presented in the FIS report should be utilized in conjunction with FIRM for purposes of construction and/or floodplain management

coastal Base Flood Elevations shown on this map apply only landward of 0 lorth American Vertical Datum of 1988 (NAVD88). Users of this FIRM should I ware that coastal flood elevations are also provided in the Summary of Stillivat levations table in the Flood Insurance Study report for this jurisdiction. Elevation nevalunts table in the root insufance study report of this pursuitable. Elevation shown in the Summary of Stillwater Elevations table should be used for construct and/or floodplain management purposes when they are higher than the elevation shown on this FIRM.

Soundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations witle egard to requirements of the National Flood Insurance Program. Floodway width and other pertinent floodway data are provided in the Flood Insurance Study repor

The projection used in the preparation of this map was Universal Transversi Mercator (UTM) zone 13. The horizontal datum was NAD33, GRS80 spheroic Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positions differences in map features across jurisdiction boundaries. These differences do no

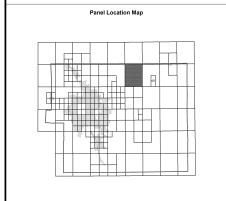
Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure an orgound elevations referenced to the same verifical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following dress:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 ilver Spring, MD 20910-3282

o obtain current elevation, description, and/or location information for bench mar nown on this map, please contact the Information Services Branch of the Nation eodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pasc County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management Autional Oceanic and Atmospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

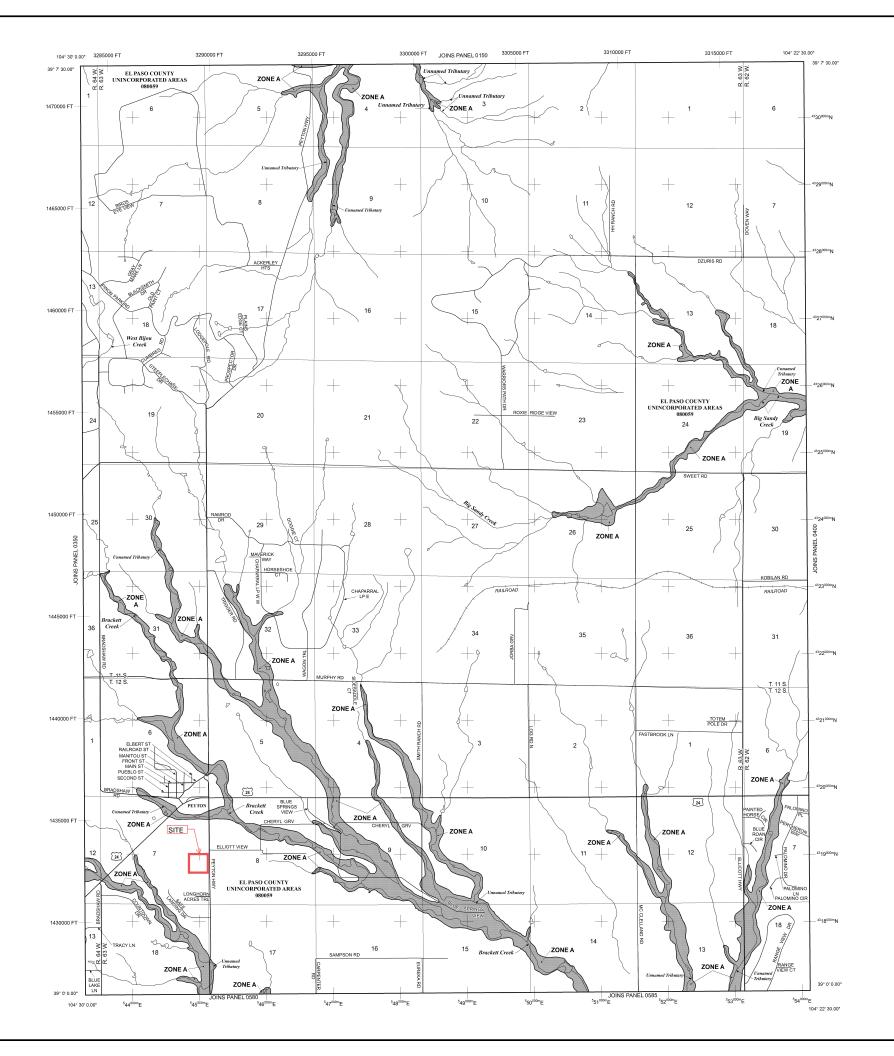
This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood insurance Study Report (which contains authoritative hydratic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.


Please refer to the separately printed **Map Index** for an overview map of the count whowing the layout of map panels; community map repository addresses; and sisting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

ontact FEMA Map Service Center (MSC) via the FEMA Map Information eXchar contact FEM with particle Center (MSC) with FEMA with primarition of Achienge FEMAL 18, 1877-338-2627 for information on available products associated with this FEMAL Available products may include previously issued Letters of Map Change, FEMAL 18, 1876-1876, and FEMAL 1876-1876, and FEMAL 1876-1876, and FEMAL 1876-1876, and Justice Presched by Fax at 1-800-358-9620 and its website a titp://www.msched.

you have **questions about this map** or questions concerning the National Floc isurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) isit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County	vertical Datum Offset Table
Flooding Source	Vertical Datum Offset (ft)


REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

available from local communities and the Colorad Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A93, V, and VE. The Base Flood Bevelon is the water-surface elevation of the 1% annual chance flood.

No Base Flood Elevations determined.
Base Flood Elevations determined.
Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also

Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.

Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. ZONE VE

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplain ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas

Floodway boundary

Zone D Boundary CBRS and OPA boundary

.....

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet*

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

(A)—(A) Cross section line

97° 07' 30.00" 32° 22' 30.00" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)

DX5510_

M1.5

MAP REPOSITORIES Refer to Map Repositories list on Map Index

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood E Special Flood Hazard Areas, to update map format, to add roads and road incorporate previously issued Letters of Map Revision.

For community map revision history prior to countywide mapping, refer to the Co Map History Table located in the Flood Insurance Study report for this jurisdiction

MAP SCALE 1" = 2000'

NEE

1000 0 2000 4000 HHH FEET METERS 800 1200

FIRM

FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS

PANEL 0375G

PANEL 375 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT

CONTAINS:

08041C0375G MAP REVISED

MAP NUMBER

DECEMBER 7, 2018

Appendix B Hydrologic Calculations

COMPOSITE % IMPERVIOUS & COMPOSITE PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Subdivision:		Project Name: Lazy Y and Rocking J Subdivision
Location:	El Paso County	Project No.: 25228.00
		Calculated By: GAG
		Checked By:
		Date: 9/26/23

	Total Area (ac)			and Wa Impervio	-	Roofs (90% Impervious)			Streets-Gravel (80% Impervious)			Historical Analysis (2% Impervious)				Basin: Weighted	Basins Total Weighted %			
Basin ID	Alea (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Imp.
EXA	7.84	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	7.84	2.0%	0.09	0.36	2.0%
EXB	11.20	0.90	0.96	0.00	0.0%	0.73	0.81	0.05	0.4%	0.59	0.70	0.42	3.0%	0.09	0.36	10.73	1.9%	0.11	0.37	5.3%
EXC	14.90	0.90	0.96	0.01	0.1%	0.73	0.81	0.11	0.7%	0.59	0.70	0.27	1.4%	0.09	0.36	14.51	1.9%	0.10	0.37	4.1%
OS1	0.61	0.90	0.96	0.25	41.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.36	1.2%	0.42	0.61	42.2%
TOTAL ON-SITE	33.94																			4.0%

PRE-DEVELOPMENT STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	Project Name: Lazy Y and Rocking J Subdivision
Location: El Paso County	Project No.: 25228.00
	Calculated By: GAG
	Checked By:
	Date: 9/26/23

		SUB-I	BASIN			INITI	AL/OVER	LAND	TRAVEL TIME								
		DA	ATA				(T_i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	S_o	t i	L_t	S_t	K	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t_c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EXA	7.84	В	2%	0.09	0.36	300	1.5%	27.6	345	8.0%	7.0	2.0	2.9	30.5	645.0	27.9	27.9
EXB	11.20	В	5%	0.11	0.37	300	8.5%	15.3	570	5.0%	7.0	1.6	6.1	21.3	870.0	29.5	21.3
EXC	14.90	В	4%	0.10	0.37	300	1.0%	31.1	420	3.0%	7.0	1.2	5.8	36.9	720.0	29.5	29.5
OS1	0.61	В	42%	0.42	0.61	25	8.0%	3.1	865	3.5%	7.0	1.3	11.0	14.1	890.0	24.0	14.1

NOTES:

Where:

 $t_c = t_i + t_t$

Equation 6-2

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$$

Equation 6-3

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

Where:

 t_i = overland (initial) flow time (minutes) C_S = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft)

 S_0 = average slope along the overland flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Equation 6-4 $t_c = (26-17i) + \frac{L_t}{60(14i+9)\sqrt{S_c}}$

Equation 6-5

Where:

 t_t = channelized flow time (travel time, min)

 \dot{L}_t = waterway length (ft)

 S_o = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_I = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_i = slope of the channelized flow path (ft/ft).

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K				
Heavy meadow	2.5				
Tillage/field	5				
Short pasture and lawns	7				
Nearly bare ground	10				
Grassed waterway	15				
Paved areas and shallow paved swales	20				

STANDARD FORM SF-3 - PRE-DEVELOPMENT STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Lazy Y and Rocking J Subdivision
Subdivision:	Project No.: 25228.00
Location: El Paso County	Calculated By: GAG
Design Storm: 5-Year	Checked By:
	Date: 9/26/23

				DIRE	CT RUI	NOFF			TO	OTAL F	RUNOI	FF	STRE	et/sw	/ALE		PII	PE		TRAV	EL TIN	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_{c} (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
																							Sheet flows overland to DP1
	1	EXA	7.84	0.09	27.9	0.71	2.59	1.8															Flows off-site to the north
																							Sheet flows overland to DP2
	2	EXB	11.20	0.11	21.3	1.25	2.99	3.7															Combines at swale at DP2.1
																							Flows in ex. roadside swale
	01	OS1	0.61	0.42	14.1	0.26	3.61	0.9															Combines at swale at DP2.1
																							Combines DP2 and DP-O1
	2.1								21.3	1.51	2.99	4.5											Flows off-site to the north in swale
																							Sheet flows overland to DP3
	3	EXC	14.90	0.10	29.5	1.55	2.51	3.9															Flows off-site to the south

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 - PRE-DEVELOPMENT STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

		Lazy Y and Rocking J Subdivision
Subdivision:	Project No.:	25228.00
Location: El Paso County	Calculated By:	GAG
Design Storm: 100-Year	Checked By:	
	Date:	9/26/23

				DIR	ECT RU	JNOFF			T	OTAL F	RUNOF	F	STRE	ET/SW	ALE		PIP	E		TRAV	EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_{c} (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	I (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EXA	7.84	0.36	27.9	2.82	4.35	12.3															Sheet flows overland to DP1 Flows off-site to the north
	2	EXB	11.20	0.37	21.3	4.20	5.02	21.1															Sheet flows overland to DP2 Combines at swale at DP2.1
	01	OS1	0.61	0.61	14.1	0.37	6.07	2.2															Flows in ex. roadside swale Combines at swale at DP2.1
	2.1							·	21.3	4.57	5.02	23.0											Combines DP2 and DP-O1 Flows off-site to the north in swale
	3	EXC	14.90	0.37	29.5	5.51	4.20	23.2															Sheet flows overland to DP3 Flows off-site to the south

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Lazy Y and Rocking J Subdivision

Location: El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00

Calculated By: GAG

Checked By:

Date: 9/4/24

	Total		Sid	ets-Paveo ewalks mpervio			(90%	Roofs Impervi	ous)			ts-Grave		ŀ		l Analysis/L mpervious		Basins Weighted		Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	lmp.
Α	1.51	0.90	0.96	0.07	4.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.28	14.8%	0.09	0.36	1.16	1.5%	0.22	0.45	21.0%
В	2.51	0.90	0.96	0.09	3.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.13	4.1%	0.09	0.36	2.29	1.8%	0.14	0.40	9.6%
С	4.27	0.90	0.96	0.43	10.1%	0.73	0.81	0.00	0.0%	0.59	0.70	0.42	7.9%	0.09	0.36	3.42	1.6%	0.22	0.45	19.5%
D	4.96	0.90	0.96	0.26	5.2%	0.73	0.81	0.01	0.2%	0.59	0.70	1.05	16.9%	0.09	0.36	3.64	1.5%	0.24	0.46	23.8%
E	2.64	0.90	0.96	0.19	7.2%	0.73	0.81	0.00	0.0%	0.59	0.70	0.38	11.5%	0.09	0.36	2.07	1.6%	0.22	0.45	20.3%
F	0.84	0.90	0.96	0.05	6.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.09	8.6%	0.09	0.36	0.70	1.7%	0.19	0.43	16.2%
G	1.57	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	1.57	2.0%	0.09	0.36	2.0%
Н	0.74	0.90	0.96	0.13	17.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.05	5.4%	0.09	0.36	0.56	1.5%	0.27	0.49	24.5%
1	1.00	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	1.00	2.0%	0.09	0.36	2.0%
J	2.99	0.90	0.96	0.11	3.7%	0.73	0.81	0.11	3.3%	0.59	0.70	0.58	15.5%	0.09	0.36	2.19	1.5%	0.24	0.46	24.0%
K	0.78	0.90	0.96	0.05	6.4%	0.73	0.81	0.00	0.0%	0.59	0.70	0.27	27.7%	0.09	0.36	0.46	1.2%	0.32	0.52	35.3%
L	0.45	0.90	0.96	0.07	15.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.13	23.1%	0.09	0.36	0.25	1.1%	0.36	0.55	39.8%
М	2.01	0.90	0.96	0.07	3.5%	0.73	0.81	0.00	0.0%	0.59	0.70	0.50	19.9%	0.09	0.36	1.44	1.4%	0.24	0.47	24.8%
N	2.12	0.90	0.96	0.09	4.2%	0.73	0.81	0.00	0.0%	0.59	0.70	0.53	20.0%	0.09	0.36	1.50	1.4%	0.25	0.47	25.7%
0	5.56	0.90	0.96	0.01	0.2%	0.73	0.81	0.09	1.5%	0.59	0.70	0.29	4.2%	0.09	0.36	5.17	1.9%	0.13	0.39	7.7%
OS1	0.43	0.90	0.96	0.18	41.9%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.25	1.2%	0.43	0.61	43.0%
OS2	0.18	0.90	0.96	0.10	55.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.08	0.9%	0.54	0.69	56.4%
TOTAL (POND 1)	16.73																			19.4%
TOTAL (POND 2)	8.35																			26.5%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	Lazy Y and Rocking J Subdivision
Location:	El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00

Calculated By: GAG

Checked By:

Date: 9/4/24

		SUB-B	ASIN			INITI	AL/OVER	LAND			TRAVEL TII	ME					
DATA							(T _i)				(T _t)			(L	JRBANIZED BA	ASINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	κ	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
Α	1.51	А	21%	0.22	0.45	100	3.5%	10.5	310	3.0%	15.0	2.6	2.0	12.5	410.0	24.9	12.5
В	2.51	Α	10%	0.14	0.40	100	2.0%	13.7	679	4.0%	15.0	3.0	3.8	17.5	779.0	29.8	17.5
С	4.27	Α	20%	0.22	0.45	100	3.5%	10.5	575	3.3%	15.0	2.7	3.5	14.0	675.0	27.2	14.0
D	4.96	Α	24%	0.24	0.46	100	1.5%	13.6	860	2.0%	15.0	2.1	6.8	20.3	960.0	30.2	20.3
Е	2.64	Α	20%	0.22	0.45	100	3.0%	11.1	750	1.5%	15.0	1.8	6.8	17.9	850.0	31.2	17.9
F	0.84	Α	16%	0.19	0.43	100	15.0%	6.7	295	0.5%	20.0	1.4	3.5	10.2	395.0	29.4	10.2
G	1.57	Α	2%	0.09	0.36	20	14.0%	3.4	450	3.0%	10.0	1.7	4.3	7.7	470.0	30.3	7.7
Н	0.74	Α	24%	0.27	0.49	100	1.5%	13.2	345	1.2%	10.0	1.1	5.2	18.4	445.0	26.1	18.4
	1.00	Α	2%	0.09	0.36	40	30.0%	3.8	0	0.0%	10.0	0.0	0.0	3.8	40.0	25.7	5.0
J	2.99	Α	24%	0.24	0.46	85	3.0%	10.0	525	2.0%	15.0	2.1	4.1	14.1	610.0	26.9	14.1
K	0.78	Α	35%	0.32	0.52	65	2.0%	9.1	355	1.0%	15.0	1.5	3.9	13.0	420.0	24.2	13.0
L	0.45	Α	40%	0.36	0.55	100	1.5%	11.7	335	2.0%	15.0	2.1	2.6	14.3	435.0	21.9	14.3
М	2.01	Α	25%	0.24	0.47	100	1.0%	15.5	455	1.2%	15.0	1.6	4.6	20.1	555.0	27.3	20.1
N	2.12	Α	26%	0.25	0.47	100	3.0%	10.7	350	1.5%	15.0	1.8	3.2	13.9	450.0	25.4	13.9
0	5.56	Α	8%	0.13	0.39	100	7.5%	9.0	375	6.5%	15.0	3.8	1.6	10.7	475.0	27.1	10.7
OS1	0.43	А	43%	0.43	0.61	25	8.0%	3.0	675	3.5%	15.0	2.8	4.0	7.1	700.0	22.7	7.1
OS2	0.18	А	56%	0.54	0.69	25	4.0%	3.2	270	3.5%	15.0	2.8	1.6	4.8	295.0	17.8	5.0

PROPOSED

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Lazy Y and Rocking J Subdivision **Location:** El Paso County

Project Name: Lazy Y and Rocking J Subdivision

Project No.: 25228.00

Calculated By: GAG

Checked By:

Date: 9/4/24

		SUB-B/	ASIN			INIT	IAL/OVER	LAND			TRAVEL TI	ME					
DATA			(T _i)				(T _t)		(U	FINAL							
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t,	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t c	t _c

NOTES:

 $t_c = t_i + t_t$

Equation 6-2

Equation 6-3

Where

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

Where:

 t_i = overland (initial) flow time (minutes)

 C_5 = runoff coefficient for 5-year frequency (from Table 6-4)

 $L_i =$ length of overland flow (ft)

So = average slope along the overland flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

 t_t = channelized flow time (travel time, min)

 L_t = waterway length (ft)

So = waterway slope (ft/ft)

 V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

Equation 6-4 $t_c = (26-17i) + \frac{L_t}{60(14i+9)\sqrt{S_t}}$

Equation 6-5

Where:

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 $S_t =$ slope of the channelized flow path (ft/ft).

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Lazy Y and Rocking J Subdivision
Subdivision: Lazy Y and Rocking J Subdivision	Project No.: 25228.00
Location: El Paso County	Calculated By: GAG
Design Storm: 5-Year	Checked By:
	Date: 9/4/24

				DIREC	T RUN	OFF			TC	OTAL F	RUNOI	F	STREE	T/SW	/ALE		PII	PE		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	А	1.51	0.22	12.5	0.33	3.80	1.3					1.3	0.33	2.0					275	2.8	1.6	Sheet flows overland to DP1 swale Combines flow within swale at DP2.1
	2	В	2.51	0.14	17.5	0.36	3.29	1.2															Sheet flows overland to DP2 swale Combines flow within swale at DP2.1
	2.1								17.5	0.69	3.29	2.3	2.3	0.69	2.5					410	3.2	2.2	Combines flow of DP1 and DP2 at DP2.1 culvert Flows along in swale to DP3.1
	3	С	4.27	0.22	14.0	0.94	3.62	3.4															Sheet flows overland to DP3 at swale Combines flow within swale at DP3.1
	3.1								19.7	1.63	3.12	5.1											Combines flow of DP2.1 and DP3 Combines flow at DP5.2 inlet
	4	D	4.96	0.24	20.3	1.19	3.06	3.6					3.6	1.19	1.3					570	2.3	4.2	Sheet flows overland to DP4 culvert Combines flow within swale at DP5.1
	5	E	2.64	0.22	17.9	0.58	3.26	1.9					4.0	1 77	10.0					150	()	0.4	Sheet flows overland to DP5 swale Combines flow within swale at DP5.1
	5.1								24.5	1.77	2.78	4.9		1.77	10.0					150	6.3	0.4	Combines flow of DP4 and DP5 at culvert Flows along in swale to D5.2 Combines flow of DP3.1 and DP5.1 at DP5.2 culvert
	5.2								24.9	3.40	2.76	9.4											Flows into Pond 1 forebay and combines at DP6.1 Sheet flows overland to Pond 1 at DP6
	6	F	0.84	0.19	10.2	0.16	4.10	0.7															Combines flow at Pond 1 outlet structure at DP6.1
	6.1								24.9	3.56	2.76	9.8											Combines flow of DP5.2 and DP6 Released through Pond 1 outlet pipe at DP6.2
	6.2								-	-	-	2.1											Controlled released through Pond 1 outlet pipe Combines in existing roadside swale at DP8.1
	01	OS1	0.43	0.43	7.1	0.18	4.65	0.8															Flows along Peyton Hwy ditch to DPO1 Combines flow at DP7.1 culvert
	7	G	1.57	0.09	7.7	0.14	4.51	0.6					1.4	0.22	1.5					100	2.4	1.0	Sheet flows to Peyton Hwy ditch and then to DP7 Combines flow at DP7.1 culvert
	7.1								7.7	0.32	4.51	1.4	1.4	0.32	1.5					190	2.4	1.3	Combines flow of DPO1 and DP7 at culvert Continues along Peyton Hwy ditch to DP8.1
	02	OS2	0.18	0.54	5.0	0.10	5.17	0.5															Flows along Peyton Hwy ditch to DPO2 Combines flow at DP8.1 ditch
	8	Н	0.74	0.27	18.4	0.20	3.21	0.6															Sheet flows to Peyton Hwy ditch and then to DP8 Combines flow at DP8.1 ditch
	8.1								18.4	0.62	3.21	4.1											Combines flow of DP6.2, DP7.1, DPO2 and DP8 Continues along Peyton Hwy ditch off-site north

STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Lazy Y and Rocking J Subdivision
Subdivision: Lazy Y and Rocking J Subdivision	Project No.: 25228.00
Location: El Paso County	Calculated By: GAG
Design Storm: 5-Year	Checked By:
	Date: 9/4/24

				DIREC	T RUN	OFF			TOTAL RUNOFF				STREET/SWALE				PII	PE		TRAVEL TIME			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	I (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	ı	1.00	0.09	5.0	0.09	5.17	0.5															Sheet flows off-site to DP9 Follows historic path off-site
	10	J	2.99	0.24	14.1	0.72	3.62	2.6					2.6	0.72	1.0					40	2.0	0.3	Sheet flows overland to DP10 culvert Combines flow at DP11.1 culvert
	11	K	0.78	0.32	13.0	0.25	3.73	0.9															Sheet flows overland to DP10 culvert Combines flow at DP11.1 culvert
	11.1								14.4	0.97	3.58	3.5	3.5	0.97	2.0					190	2.8	1.1	Combines flow of DP10 and DP11 at culvert Flows along in swale to D12.1 inlet
	12	L	0.45	0.36	14.3	0.16	3.59	0.6															Sheet flows to swale at DP12 Combines flow at DP12.1 inlet
	12.1								15.5	1.13	3.47	3.9											Combines flow of DP11.1 and DP12 at inlet Flows into Pond 2 forebay and combines at DP14.1
	13	М	2.01	0.24	20.1	0.49	3.08	1.5															Sheet flows to swale at DP13 Flows into Pond 2 forebay and combines at DP14.1
	14	N	2.12	0.25	13.9	0.53	3.64	1.9															Sheet flows overland to Pond 2 at DP14 Combines flow at Pond 2 outlet structure at DP14.1
	14.1								20.1	2.15	3.08	6.6											Combines flow of DP12.1, DP13 and DP14 Released through Pond 2 outlet pipe at DP14.2
	14.2								-	-	-	1.5											Controlled released through Pond 2 outlet pipe Continues flowing off-site south
	15	0	5.56	0.13	10.7	0.71	4.03	2.9															Sheet flows overland to DP15 Continues flowing off-site south
Notes:																							

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Lazy Y and Rocking J Subdivision
Location:	El Paso County
Design Storm:	100-Year

Project Name: Lazy Y and Rocking J Subdivision
Project No.: 25228.00
Calculated By: GAG
Checked By:

Date: 9/4/24

	DIRECT RUNOFF					Т	OTAL F	RUNOF	F	STRE	ET/SW	ALE		PIP	E		TRAV	EL TIN	ΛE				
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	I (in/hr)	O (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	1	А	1.51	0.45	12.5	0.68	6.37	4.3					4.3	0.68	2.0				_	275	2.8	1.6	Sheet flows overland to DP1 swale Combines flow within swale at DP2.1
	2	В	2.51	0.40	17.5	1.00	5.52	5.5															Sheet flows overland to DP2 swale Combines flow within swale at DP2.1
	2.1								17.5	1.68	5.52	9.3	9.3	1.68	2.5					410	3.2	2.2	Combines flow of DP1 and DP2 at DP2.1 culvert Flows along in swale to DP3.1
	3	С	4.27	0.45	14.0	1.94	6.08	11.8															Sheet flows overland to DP3 at swale Combines flow within swale at DP3.1
	3.1								19.7	3 62	5.23	18.9											Combines flow of DP2.1 and DP3 Combines flow at DP5.2 inlet
	4	D	4.96	0.46	20.3	2.30	5.14	11.8	.,,,	0.02	0.20	1017	11.8	2.30	1.3					570	2.3	4.2	Sheet flows overland to DP4 culvert Combines flow within swale at DP5.1
	5	F	2.64					6.5															Sheet flows overland to DP5 swale Combines flow within swale at DP5.1
	5.1		2.01	0.10	.,,,	,	0.17	0.0	24.5	3 /10	4.67	16.3	16.3	3.49	10.0					150	6.3	0.4	Combines flow of DP4 and DP5 at culvert Flows along in swale to D5.2
	5.2								24.9														Combines flow of DP3.1 and DP5.1 at DP5.2 culvert Flows into Pond 1 forebay and combines at DP6.1
	6	F	0.84	0.43	10.2	0.36	6.89	2.5	24.7	7.11	4.03	32.7											Sheet flows overland to Pond 1 at DP6 Combines flow at Pond 1 outlet structure at DP6.1
			0.04	0.43	10.2	0.30	0.07	2.0	24.9	7 47	4.63	24.6											Combines flow of DP5.2 and DP6
	6.1								24.9	7.47	4.03												Released through Pond 1 outlet pipe at DP6.2 Controlled released through Pond 1 outlet pipe
	6.2 O1	OS1	0.42	0./1	7.1	0.27	7.81	2.0	-	-	-	11.9											Combines in existing roadside swale at DP8.1 Flows along Peyton Hwy ditch to DP01
			0.43	0.61	7.1	0.26		2.0															Combines flow at DP7.1 culvert Sheet flows to Peyton Hwy ditch and then to DP7
	7	G	1.57	0.36	7.7	0.57	7.58	4.3					6.3	0.83	1.5					190	2.4	1.3	Combines flow at DP7.1 culvert Combines flow of DPO1 and DP7 at culvert
	7.1	000	0.40	0.40		0.40	0.10		7.7	0.83	7.58	6.3											Continues along Peyton Hwy ditch to DP8.1 Flows along Peyton Hwy ditch to DP02
	02	OS2	0.18				8.68	1.0															Combines flow at DP8.1 ditch Sheet flows to Peyton Hwy ditch and then to DP8
	8	Н	0.74	0.49	18.4	0.36	5.39	1.9															Combines flow at DP8.1 ditch Combines flow of DP6.2, DP7.1, DPO2 and DP8
	8.1								18.4	1.31	5.39	19.0											Continues along Peyton Hwy ditch off-site north

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Lazy Y and Rocking J Subdivision
Location:	El Paso County
Design Storm:	100-Year

Project Name: Lazy Y and Rocking J Subdivision
Project No.: 25228.00
Calculated By: GAG
Checked By:

Date: 9/4/24

DIRECT RUNOFF				Т	OTAL F	RUNOF	F	STREET/SWALE				PIP	E		TRAV	EL TIN	ΛE						
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_{c} (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	9	I	1.00	0.36	5.0	0.36	8.68	3.1															Sheet flows off-site to DP9 Follows historic path off-site
	10	J	2.99	0.46	14.1	1.39	6.07	8.4					8.4	1.39	1.0					40	2.0	0.3	Combines flow at DP11.1 culvert
	11	K	0.78	0.52	13.0	0.40	6.26	2.5															Sheet flows overland to DP10 culvert Combines flow at DP11.1 culvert
	11.1								14.4	1.79	6.01	10.8	10.8	1.79	2.0					190	2.8	1.1	Flows along in swale to D12.1 inlet
	12	L	0.45	0.55	14.3	0.25	6.03	1.5															Sheet flows to swale at DP12 Combines flow at DP12.1 inlet
	12.1								15.5	2.04	5.82	11.9											Combines flow of DP11.1 and DP12 at inlet Flows into Pond 2 forebay and combines at DP14.1
	13	М	2.01	0.47	20.1	0.94	5.17	4.9															Sheet flows to swale at DP13 Flows into Pond 2 forebay and combines at DP14.1
	14	N	2.12	0.47	13.9	1.00	6.11	6.1															Sheet flows overland to Pond 2 at DP14 Combines flow at Pond 2 outlet structure at DP14.1
	14.1								20.1	3.98	5.17	20.6											Combines flow of DP12.1, DP13 and DP14 Released through Pond 2 outlet pipe at DP14.2
	14.2										1	7.8											Controlled released through Pond 2 outlet pipe Continues flowing off-site south
	15	0	5.56	0.39	10.7	2.15	6.77	14.6															Sheet flows overland to DP15 Continues flowing off-site south
Notes:																							

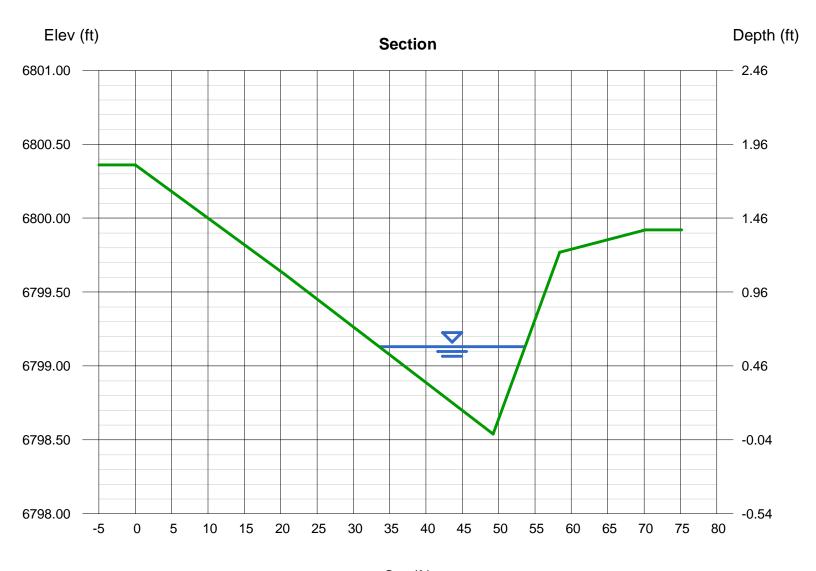
Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Appendix C Hydraulic Calculations

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Monday, Aug 19 2024

Ex. DP2.1-Existing Roadside Swale

User-defined		Highlighted	
Invert Elev (ft)	= 6798.54	Depth (ft)	= 0.59
Slope (%)	= 3.30	Q (cfs)	= 23.00
N-Value	= 0.030	Area (sqft)	= 5.91
		Velocity (ft/s)	= 3.89
Calculations		Wetted Perim (ft)	= 20.08
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.65
Known Q (cfs)	= 23.00	Top Width (ft)	= 20.03
		EGL (ft)	= 0.83

(Sta, El, n)-(Sta, El, n)...

(0.00, 6800.36) -(20.58, 6799.62, 0.030) -(49.23, 6798.54, 0.030) -(58.38, 6799.77, 0.030) -(70.18, 6799.92, 0.030)

Channel Report

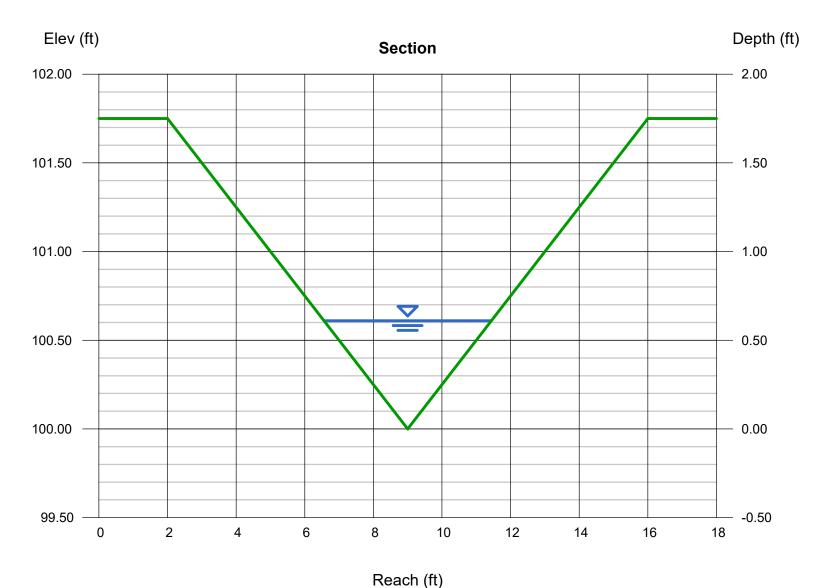
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024

DP1 Swale

Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 1.75
Invert Elev (ft)	= 100.00

Invert Elev (ft) = 100.00 Slope (%) = 2.00 N-Value = 0.030


Calculations

Compute by: Known Q Known Q (cfs) = 4.50

Depth (ft)	= 0.61
Q (cfs)	= 4.500
Area (sqft)	= 1.49
Velocity (ft/s)	= 3.02
Wetted Perim (ft)	= 5.03
Crit Depth, Yc (ft)	= 0.61

Highlighted

Top Width (ft) = 4.88EGL (ft) = 0.75

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 2.00

= 0.030

Thursday, Sep 12 2024

DP2.1 Swale

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 100.00

Calculations

Slope (%)

N-Value

Compute by: Known Q Known Q (cfs) = 9.50

Highlighted	
Depth (ft)	= 0.80
Q (cfs)	= 9.500
Area (sqft)	= 2.56
Velocity (ft/s)	= 3.71
Wetted Perim (ft)	= 6.60
Crit Depth, Yc (ft)	= 0.82
Top Width (ft)	= 6.40
EGL (ft)	= 1.01

Reach (ft)

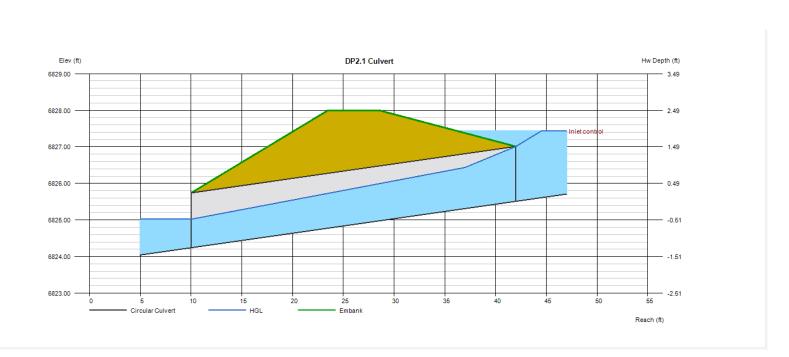
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 100.00

= 5.00

Thursday, Sep 12 2024

= Inlet Control


DP2.1 Culvert

Top Width (ft)

Crest Width (ft)

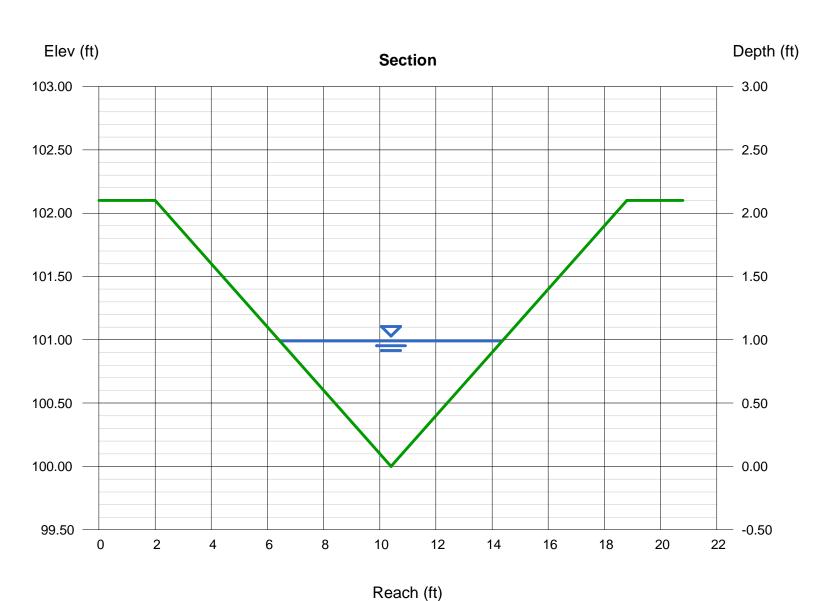
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6824.24 = 32.00 = 3.97 = 6825.51 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 9.50 = 9.50 = Normal
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 9.50
No. Barrels	= 1	Qpipe (cfs)	= 9.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 10.24
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 6.32
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6825.02
		HGL Up (ft)	= 6826.70
Embankment		Hw Elev (ft)	= 6827.43
Top Elevation (ft)	= 6828.00	Hw/D (ft)	= 1.28

Flow Regime

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 19.00

Thursday, Sep 12 2024


DP3.1 Swale

Known Q (cfs)

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.99
Total Depth (ft)	= 2.10	Q (cfs)	= 19.00
		Area (sqft)	= 3.92
Invert Elev (ft)	= 100.00	Velocity (ft/s)	_= 4.85
Slope (%)	= 2.65	Wetted Perim (ft)	7 = 8.16
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.08
		Top Width (ft)	= 7.92
Calculations		EGL (ft)	= 1.36
Compute by:	Known Q		

For slopes greater than 2.8% the velocities exceed 5 ft/s and erosion

protection shall be provided

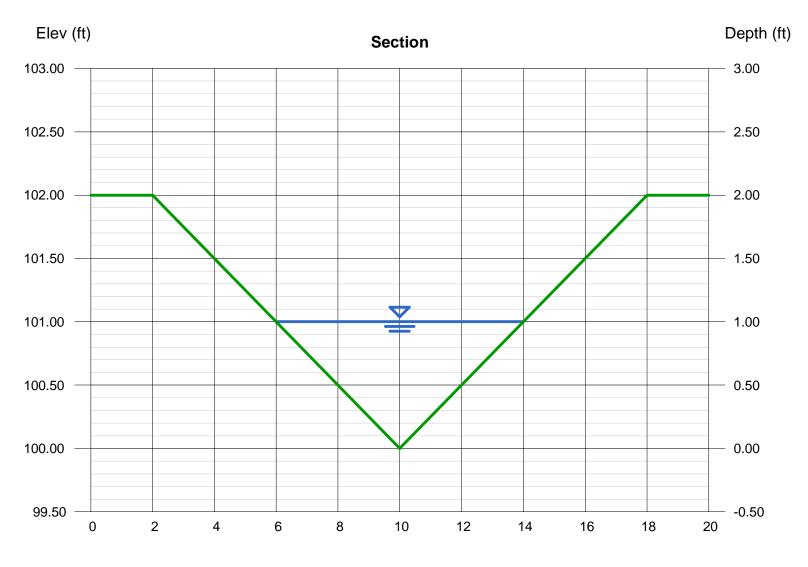
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP4 Swale

= 4.00, 4.00

Total Depth (ft) = 2.00

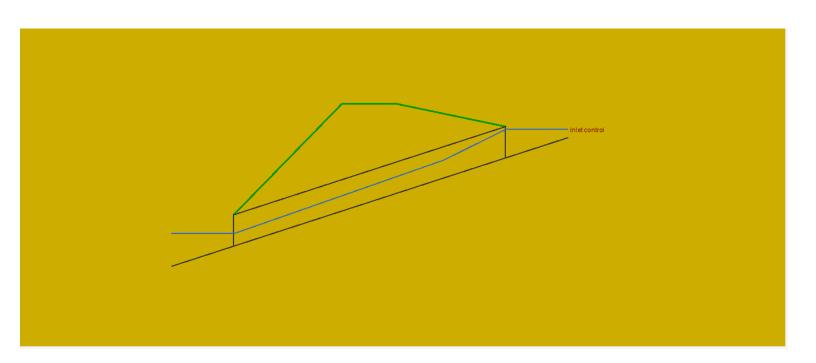

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 12.00

Highlighted

<u> </u>	
Depth (ft)	= 1.00
Q (cfs)	= 12.00
Area (sqft)	= 4.00
Velocity (ft/s)	= 3.00
Wetted Perim (ft)	= 8.25
Crit Depth, Yc (ft)	= 0.90
Top Width (ft)	= 8.00
EGL (ft)	= 1.14


Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

DP4 Culvert

Invert Elev Dn (ft)	= 6826.93	Calculations	
Pipe Length (ft)	= 219.20	Qmin (cfs)	= 12.00
Slope (%)	= 2.57	Qmax (cfs)	= 12.00
Invert Elev Up (ft)	= 6832.56	Tailwater Elev (ft)	= Normal
Rise (in)	= 24.0	. ,	
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 12.00
No. Barrels	= 1	Qpipe (cfs)	= 12.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 10.30
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 5.85
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6827.73
		HGL Up (ft)	= 6833.80
Embankment		Hw Elev (ft)	= 6834.38
Top Elevation (ft)	= 6836.00	Hw/D (ft)	= 0.91
Top Width (ft)	= 45.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00	_	
` '			

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 16.50

Thursday, Sep 5 2024

DP5.1 Swale

Known Q (cfs)

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 1.12
Total Depth (ft)	= 2.15	Q (cfs)	= 16.50
		Area (sqft)	= 5.02
Invert Elev (ft)	= 100.00	Velocity (ft/s)	_= 3.29
Slope (%)	= 1.00	Wetted Perim (ft)	7 = 9.24
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.02
		Top Width (ft)	= 8.96
Calculations		EGL (ft)	= 1.29
Compute by:	Known Q		

For slopes greater than 3.1% the velocities exceed 5 ft/s and erosion

protection shall be provided

Elev (ft) Depth (ft) **Section** 103.00 -3.00 102.50 -- 2.50 102.00 -- 2.00 101.50 — - 1.50 101.00 -- 1.00 100.50 -- 0.50 100.00 -- 0.00 99.50 -0.50 0 2 6 8 4 10 12 14 16 18 20 22

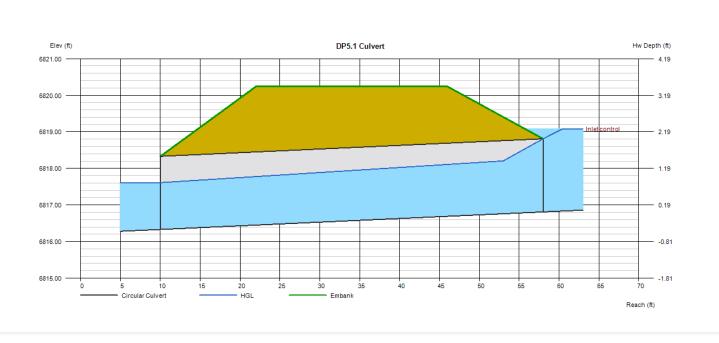
Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

= 1.14

= Inlet Control


DP5.1 Culvert

Invert Elev Dn (ft) Pipe Length (ft)	= 6816.33 = 48.00	Calculations Qmin (cfs)	= 16.50
Slope (%)	= 1.00	Qmax (cfs)	= 16.50
Invert Elev Up (ft)	= 6816.81	Tailwater Elev (ft)	= Normal
Rise (in)	= 24.0	rammator Elev (it)	rtorman
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 16.50
No. Barrels	= 1	Qpipe (cfs)	= 16.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.77
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 6.70
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6817.61
		HGL Up (ft)	= 6818.27
Embankment		Hw Elev (ft)	= 6819.09

Hw/D (ft)

Flow Regime

Top Elevation (ft) = 6820.24 Top Width (ft) = 24.00Crest Width (ft) = 100.00

Top Elevation (ft)

Top Width (ft)

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

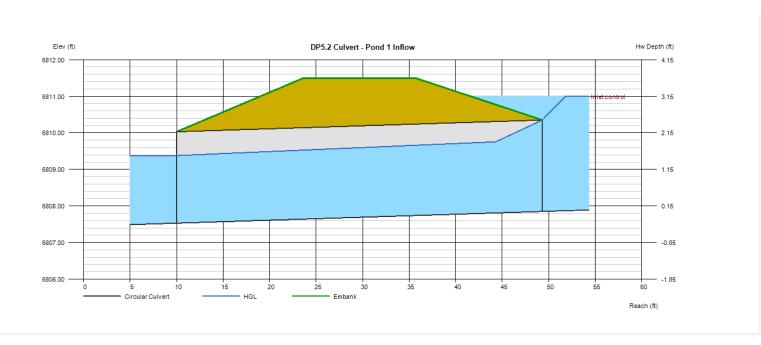
= 6811.50

= 12.00

= 100.00

Thursday, Sep 12 2024

= 1.26


= Inlet Control

DP5.2 Culvert - Pond 1 Inflow

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6807.53 = 39.30 = 0.82 = 6807.85 = 30.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 33.00 = 33.00 = 6808.99
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 33.00
No. Barrels	= 1	Qpipe (cfs)	= 33.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 8.48
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 8.00
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6809.38
		HGL Up (ft)	= 6809.81
Embankment		Hw Elev (ft)	= 6811.00

Hw/D (ft)

Flow Regime

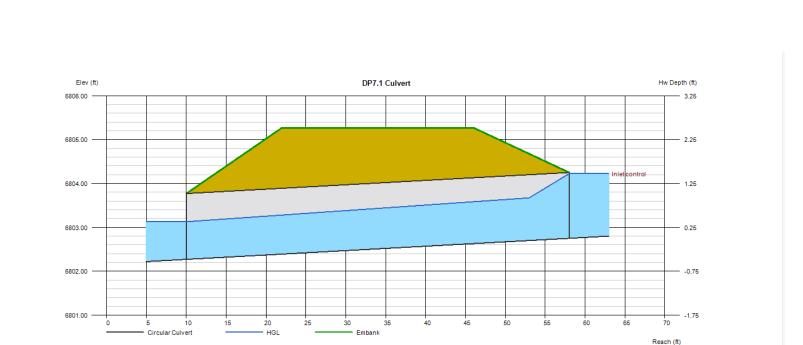
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 24.00

= 100.00

Thursday, Sep 5 2024

= Inlet Control


DP7.1 Culvert

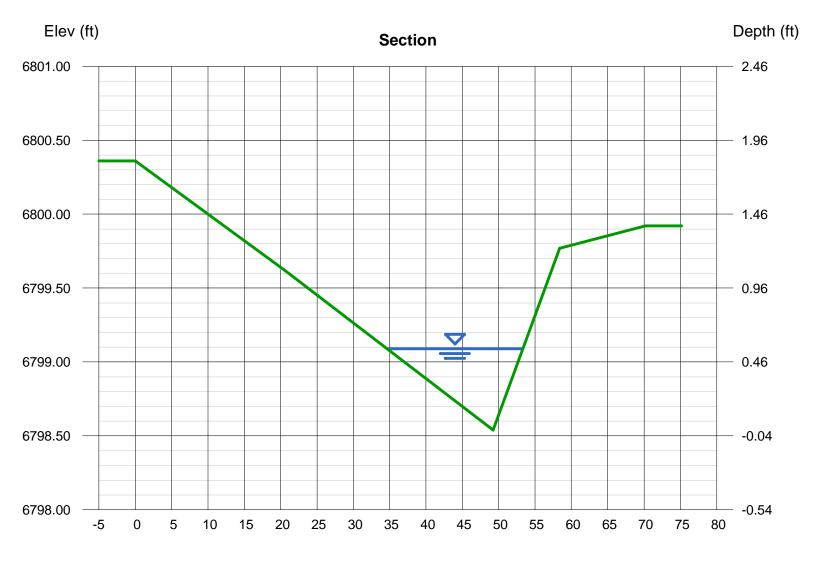
Top Width (ft)

Crest Width (ft)

Invert Elev Dn (ft)	= 6802.27	Calculations	
Pipe Length (ft)	= 48.00	Qmin (cfs)	= 6.50
Slope (%)	= 1.00	Qmax (cfs)	= 6.50
Invert Elev Up (ft)	= 6802.75	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.50
No. Barrels	= 1	Qpipe (cfs)	= 6.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.22
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 5.28
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6803.13
		HGL Up (ft)	= 6803.74
Embankment		Hw Elev (ft)	= 6804.22
Top Elevation (ft)	= 6805.27	Hw/D (ft)	= 0.98
Top \\/: dth /ft\	24.00	Flour Dogimo	Inlat Cantral

Flow Regime

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Thursday, Sep 5 2024

DP8.1-Existing Roadside Swale

User-defined		Highlighted	
Invert Elev (ft)	= 6798.54	Depth (ft)	= 0.55
Slope (%)	= 3.30	Q (cfs)	= 19.00
N-Value	= 0.030	Area (sqft)	= 5.13
		Velocity (ft/s)	= 3.70
Calculations		Wetted Perim (ft)	= 18.72
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.61
Known Q (cfs)	= 19.00	Top Width (ft)	= 18.67
		EGL (ft)	= 0.76

(Sta, El, n)-(Sta, El, n)...

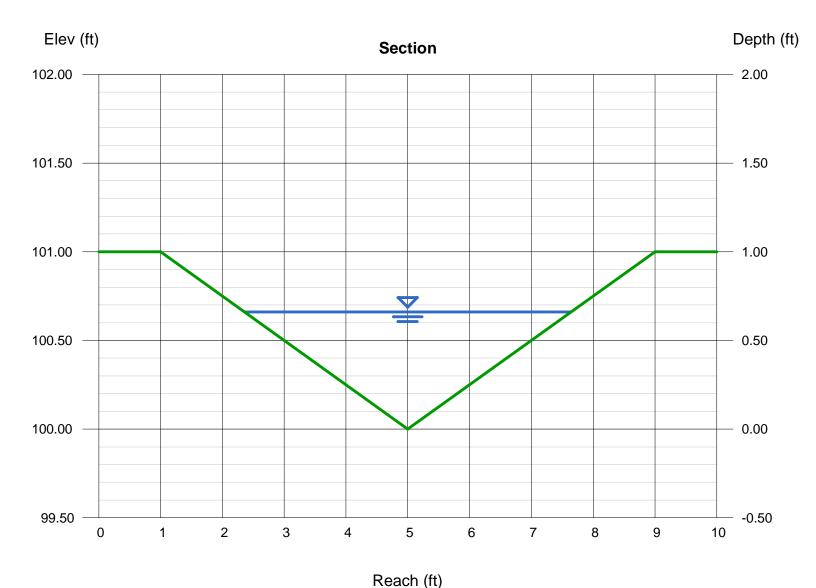
(0.00, 6800.36) -(20.58, 6799.62, 0.030) -(49.23, 6798.54, 0.030) -(58.38, 6799.77, 0.030) -(70.18, 6799.92, 0.030)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP10 (Half-Flows) Swale

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 1.00


Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 4.00

Highlighted Depth (ft) = 0.66 Q (cfs) = 4.000 Area (sqft) = 1.74

Area (sqft) = 4.000
Area (sqft) = 1.74
Velocity (ft/s) = 2.30
Wetted Perim (ft) = 5.44
Crit Depth, Yc (ft) = 0.58
Top Width (ft) = 5.28
EGL (ft) = 0.74

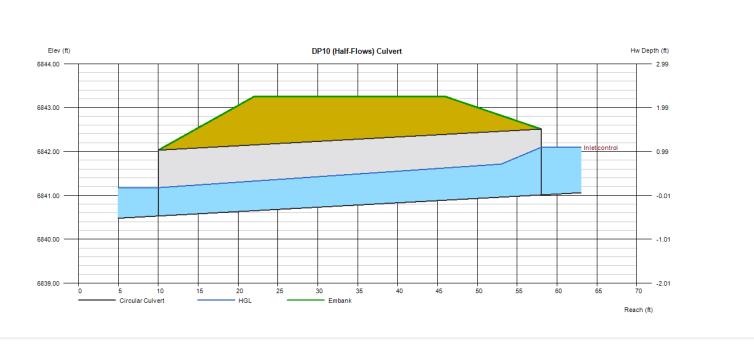
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

= 0.72

= Inlet Control

DP10 (Half-Flows) Culvert


Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6840.53 = 48.00 = 1.00 = 6841.01 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 4.00 = 4.00 = Normal
Shape Span (in) No. Barrels n-Value	= Circular = 18.0 = 1 = 0.013	Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs)	= 4.00 = 4.00 = 0.00
Culvert Type Culvert Entrance Coeff. K,M,c,Y,k Embankment	= Circular Concrete= Groove end projecting (C)= 0.0045, 2, 0.0317, 0.69, 0.2	Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft)	= 5.51 = 4.42 = 6841.17 = 6841.77 = 6842.09

Hw/D (ft)

Flow Regime

Embankment

Top Elevation (ft) = 6843.25Top Width (ft) = 24.00Crest Width (ft) = 100.00

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

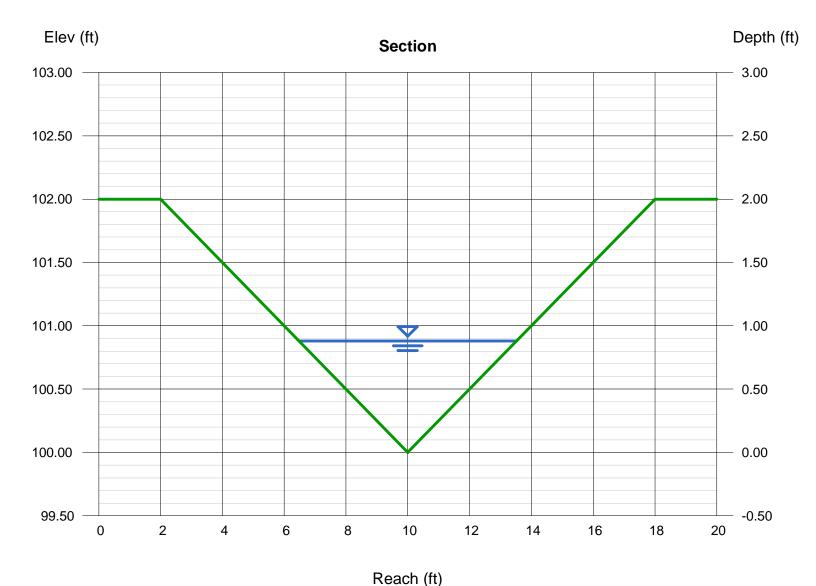
DP10 Swale

Triangular

Side Slopes (z:1) = 4.00, 4.00

Total Depth (ft) = 2.00

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.030


Calculations

Compute by: Known Q Known Q (cfs) = 8.50

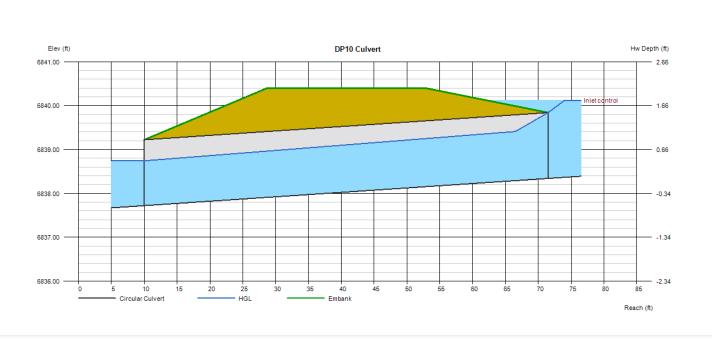
Highlighted

Depth (ft) = 0.88 Q (cfs) = 8.500 Area (sqft) = 3.10 Velocity (ft/s) = 2.74 Wetted Perim (ft) = 7.26 Crit Depth, Yc (ft) = 0.78 Top Width (ft) = 7.04

EGL (ft) = 1.00

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024


= Inlet Control

DP10 Culvert

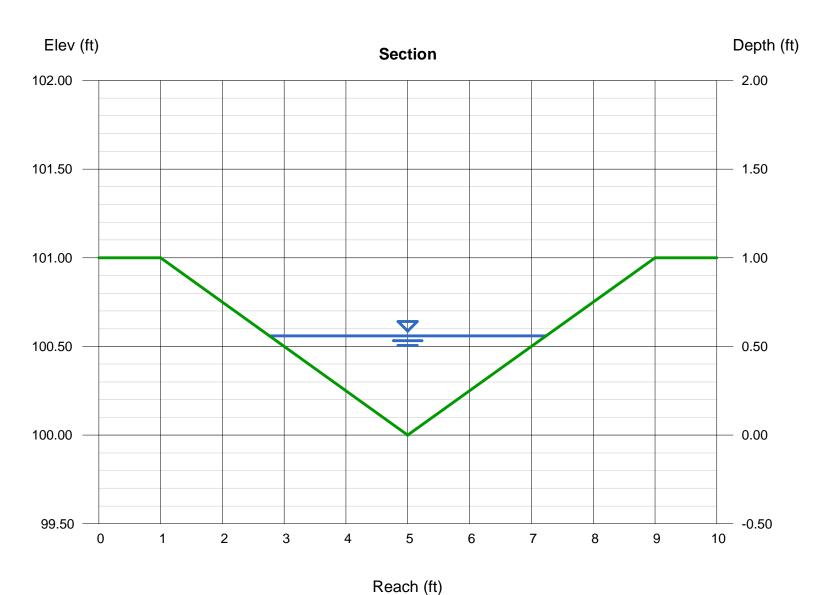
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 6837.72 = 61.50 = 1.01 = 6838.34	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 8.50 = 8.50 = Normal
Rise (in)	= 18.0	TP-LP-LG-L	
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 8.50
No. Barrels	= 1	Qpipe (cfs)	= 8.50
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.64
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 5.96
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6838.74
		HGL Up (ft)	= 6839.47
Embankment		Hw Elev (ft)	= 6840.12
Top Elevation (ft)	= 6840.40	Hw/D (ft)	= 1.18
			_

Flow Regime

Top Elevation (ft) = 6840.40 Top Width (ft) = 24.00Crest Width (ft) = 100.00

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024


DP11 Swale

Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 1.00
Invert Elev (ft)	= 100.00
Slope (%)	= 1.00
N-Value	= 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 2.50

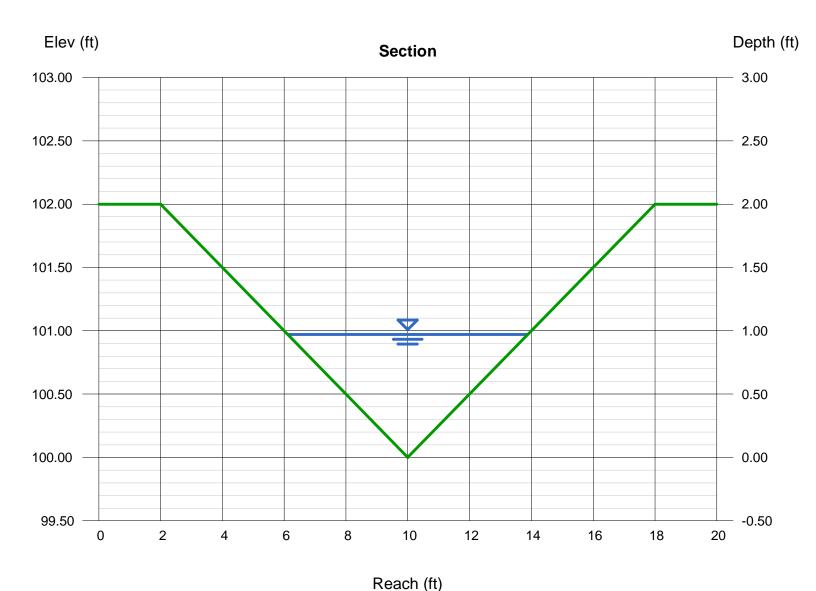
Highlighted	
Depth (ft)	= 0.56
Q (cfs)	= 2.500
Area (sqft)	= 1.25
Velocity (ft/s)	= 1.99
Wetted Perim (ft)	= 4.62
Crit Depth, Yc (ft)	= 0.48
Top Width (ft)	= 4.48
EGL (ft)	= 0.62

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP11.1 Swale

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00


Calculations

Compute by: Known Q (cfs) Known Q = 11.00

Depth (ft) = 0.97Q (cfs) = 11.00Area (sqft) = 3.76

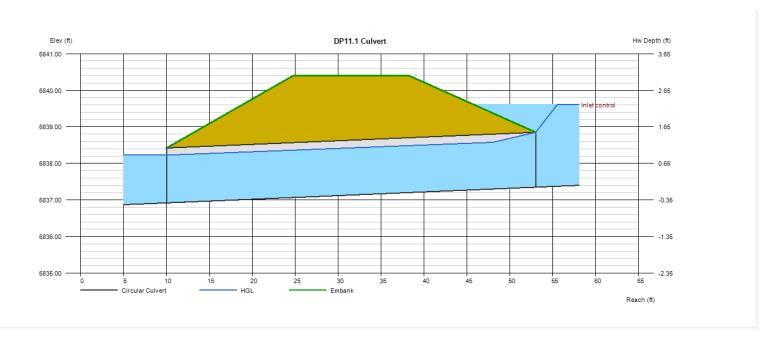
Highlighted

Area (sqft) = 3.76
Velocity (ft/s) = 2.92
Wetted Perim (ft) = 8.00
Crit Depth, Yc (ft) = 0.86
Top Width (ft) = 7.76
EGL (ft) = 1.10

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024

= 1.50


= Inlet Control

DP11.1 Culvert

Invert Elev Dn (ft)	= 6836.92	Calculations	
Pipe Length (ft)	= 43.00	Qmin (cfs)	= 11.00
Slope (%)	= 1.00	Qmax (cfs)	= 11.00
Invert Elev Up (ft)	= 6837.35	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 11.00
No. Barrels	= 1	Qpipe (cfs)	= 11.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.74
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 6.89
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6838.23
		HGL Up (ft)	= 6838.62
Embankment		Hw Elev (ft)	= 6839.61

Embankment

Top Elevation (ft) = 6840.40 Top Width (ft) = 13.50Crest Width (ft) = 100.00

Hw/D (ft)

Flow Regime

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP12.1 Swale

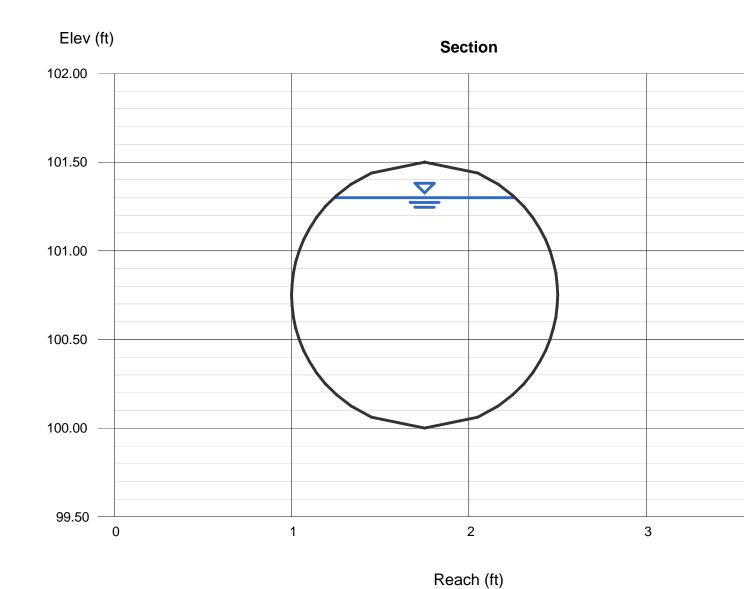
Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00

Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 12.00

Highlighted		
Depth (ft)	=	1.00
Q (cfs)	=	12.00
Area (sqft)	=	4.00
Velocity (ft/s)	=	3.00
Wetted Perim (ft)	=	8.25
Crit Depth, Yc (ft)	=	0.90
Top Width (ft)	=	8.00
EGL (ft)	=	1.14



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP12.1-Preliminary Pipe

Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 1.30
		Q (cfs)	= 12.00
		Area (sqft)	= 1.63
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.37
Slope (%)	= 1.20	Wetted Perim (ft)	= 3.59
N-Value	= 0.013	Crit Depth, Yc (ft)	= 1.32
		Top Width (ft)	= 1.02
Calculations		EGL (ft)	= 2.15
Compute by:	Known Q		
Known Q (cfs)	= 12.00		

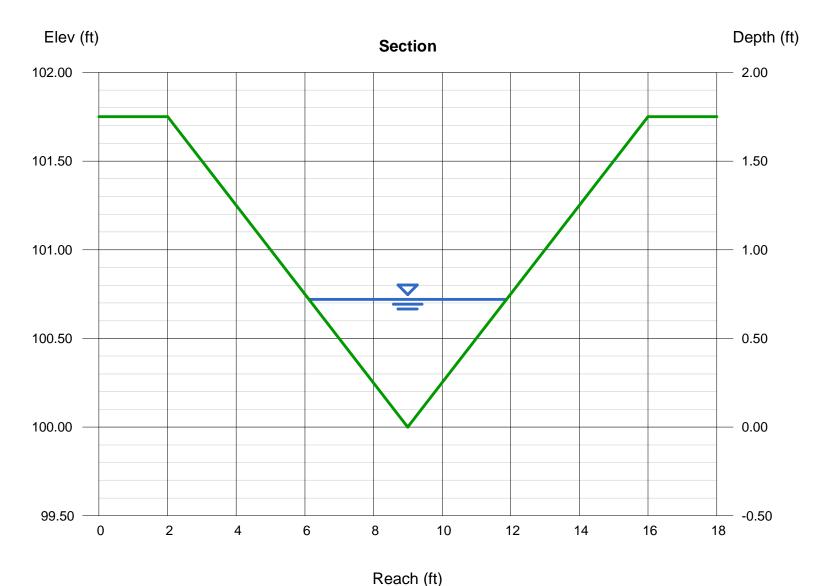
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Aug 29 2024

DP13 Swale

Triangular	
Side Slopes (z:1)	= 4.00, 4.00

Total Depth (ft) = 1.75


Invert Elev (ft) = 100.00 Slope (%) = 1.00 N-Value = 0.030

Calculations

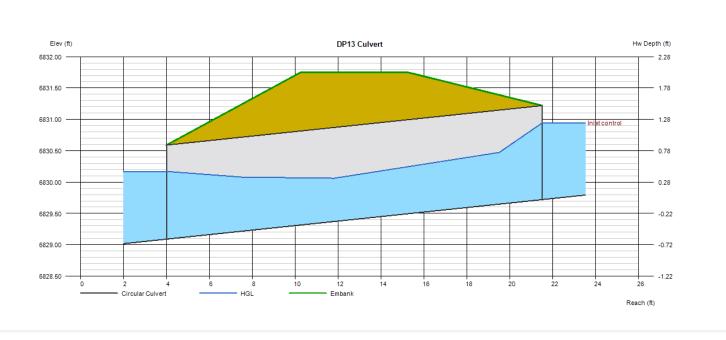
Compute by: Known Q Known Q (cfs) = 5.00

Highlighted

Depth (ft) = 0.72Q (cfs) = 5.000= 2.07Area (sqft) Velocity (ft/s) = 2.41Wetted Perim (ft) = 5.94Crit Depth, Yc (ft) = 0.63Top Width (ft) = 5.76EGL (ft) = 0.81

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 5 2024


= Inlet Control

DP13 Culvert

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Pice (ip)	= 6829.09 = 17.50 = 3.60 = 6829.72 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 5.00 = 5.00 = 6830.17
Rise (in) Shape	= 16.0 = Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 5.00
No. Barrels	= 1	Qpipe (cfs)	= 5.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.67
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 4.77
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6830.17
		HGL Up (ft)	= 6830.58
Embankment		Hw Elev (ft)	= 6830.94
Top Elevation (ft)	= 6831.75	Hw/D (ft)	= 0.82
			_

Flow Regime

Top Elevation (ft) = 6831.75Top Width (ft) = 5.00Crest Width (ft) = 30.00

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>DP12.1</u>
Site Type (Urban or Rural)	RURAL
Inlet Application (Street or Area)	AREA
Hydraulic Condition	Swale
Inlet Type	CDOT Type C

USER-DEFINED INPUT

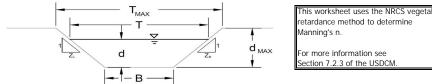
User-Defined Design Flows	
Minor Q _{Known} (cfs)	4.0
Major Q _{Known} (cfs)	12.0
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstream
Receive Bypass Flow from:	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0
Subcatchment Area (acres) Percent Impervious	
NRCS Soil Type	
Watershed Profile	
Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

Major Storm Rainfall Input

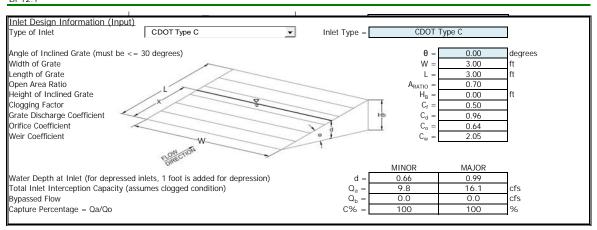
wajor storiii kairiiaii fiiput	
Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	


CALCULATED OUTPUT

0
U
.0
0
0

AREA INLET IN A SWALE

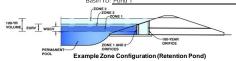
Lazy Y and Rocking J Subdivision


DP12 1

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E) A, B, C, D, or E =Manning's n (Leave cell D16 blank to manually enter an n value) 0.030 n = Channel Invert Slope ft/ft So = 0.0100 Bottom Width B = 0.00 eft Side Slope Z1 = 4.00 ft/ft Right Side Sloe Z2 = 4.00 ft/ft Check one of the following soil types: Choose One: Max. Velocity (V_{MAX}) Soil Type: Max Froude No. (F_{MAX}) Non-Cohesive Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps Cohesive 0.80 ○ Paved N/A Paved N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor & Major Storm 8.00 8.00 T_{MAX} = Maximum Allowable Water Depth in Channel for Minor & Major Storm d_{MAX} 2.00 2.00 Allowable Channel Capacity Based On Channel Geometry Minor Storm MINOR STORM Allowable Capacity is based on Top Width Criterion $\mathsf{Q}_{\mathsf{allow}}$ 12.3 12.3 cfs MAJOR STORM Allowable Capacity is based on Top Width Criterion 1.00 1.00 $d_{\text{allow}} \\$ Water Depth in Channel Based On Design Peak Flow Q_o = Design Peak Flow 12.0 4.0 cfs Water Depth d = 0.66 0.99 Minor storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

AREA INLET IN A SWALE

Lazy Y and Rocking J Subdivision DP12.1



Warning 04: Froude No. exceeds USDCM Volume I recommendation.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Lazy Y and Rocking J Subdivision
Basin ID: Pond 1

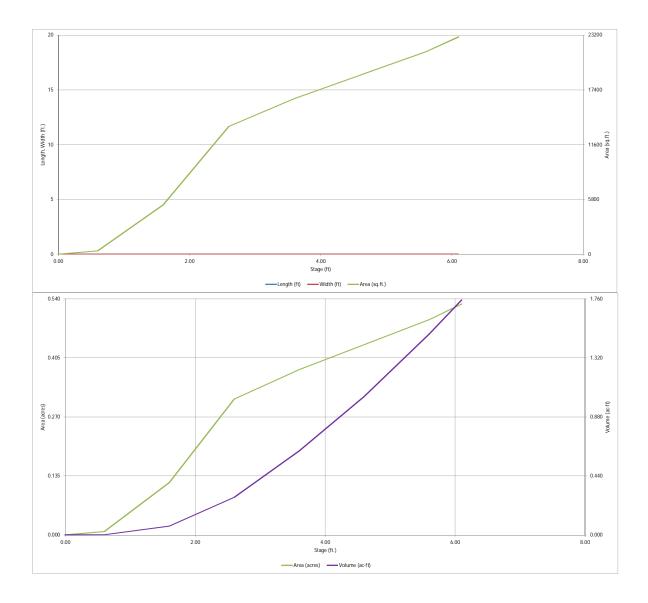
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	17.00	acres
Watershed Length =	2,220	ft
Watershed Length to Centroid =	1,610	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	19.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Utban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.						
Water Quality Capture Volume (WQCV) =	0.161	acre-feet				
Excess Urban Runoff Volume (EURV) =	0.329	acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	0.365	acre-feet				
5-yr Runoff Volume (P1 = 1.5 in.) =	0.670	acre-feet				
10-yr Runoff Volume (P1 = 1.75 in.) =	0.961	acre-feet				
25-yr Runoff Volume (P1 = 2 in.) =	1.436	acre-feet				
50-yr Runoff Volume (P1 = 2.25 in.) =	1.776	acre-feet				
100-yr Runoff Volume (P1 = 2.52 in.) =	2.249	acre-feet				
500-yr Runoff Volume (P1 = 3.14 in.) =	3.133	acre-feet				
Approximate 2-yr Detention Volume =	0.225	acre-feet				
Approximate 5-yr Detention Volume =	0.334	acre-feet				
Approximate 10-yr Detention Volume =	0.543	acre-feet				
Approximate 25-yr Detention Volume =	0.676	acre-feet				
Approximate 50-yr Detention Volume =	0.714	acre-feet				
Approximate 100-yr Detention Volume =	0.879	acre-feet				

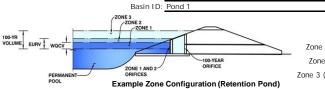
Optional User Overrides			
	acre-feet		
	acre-feet		
1.19	inches		
1.50	inches		
1.75	inches		
2.00	inches		
2.25	inches		
2.52	inches		
	inches		


Define Zones and Basin Geometry

		Define Zones and Basin Geometry
acre-fe	0.161	Zone 1 Volume (WQCV) =
acre-fe	0.168	Zone 2 Volume (EURV - Zone 1) =
acre-fe	0.550	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fe	0.879	Total Detention Basin Volume =
ft ³	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (Smain) =
	user	Basin Length-to-Width Ratio (R _{L/W}) =

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

ſ	Depth Increment =	0.00	ft Optional				Optional			
	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
.4	Top of Micropool		0.00				10	0.000	()	(32 11)
į	6806		0.60	1			335	0.008	103	0.002
	6807		1.60				5,216	0.120	2,879	0.066
ŀ	6808 6809		2.60 3.60				13,531	0.311	12,252	0.281
ł	6810-Crest		4.60				16,478 18,961	0.378	27,257 44,976	0.626 1.033
ł	6811		5.60				21,443	0.492	65,178	1.496
Ì	6811.50-Top		6.10				23,000	0.528	76,289	1.751
ŀ										
ł										
İ										
ļ										
ł										
ł		-		-						
Į										
ļ										
ł										
ł										
ļ		**								
ŀ										
į		**								
ł										
ł										
ł										
ł				-						
ł										
İ										
ł										
ł										
İ										
ŀ										
ł										
į		-		-						
ļ										
ł										
ł				-						
ļ										
ł										
ļ		-		1 1						
ļ				-						
ļ										
ŀ										
ł										
ļ				1						
ļ										
ł										
ł										
ļ										
ļ		1 1		1 1						
ļ										
ŀ				-						
ł										
ļ										
ŀ										
ł										
Ì				-						
ļ										
ļ										
ł										


2522800_MHFD-Detention_v4-06_Pond 1.xism, Basin 9/12/2024, 1:32 PM

2522800_MHFD-Detention_v4-06_Pond 1.xism, Basin 9/12/2024, 1:32 PM

MHFD-Detention, Version 4.06 (July 2022)

Project: Lazy Y and Rocking J Subdivision

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
ne 1 (WQCV)	2.16	0.161	Orifice Plate
one 2 (EURV)	2.76	0.168	Orifice Plate
3 (100-year)	4.24	0.550	Weir&Pipe (Restrict)
	Total (all zones)	0.879	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

N/A ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	3.60	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	N/A	inches
Orifice Plate: Orifice Area per Row =	N/A	sq. inches

n BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.10	1.80					
Orifice Area (sq. inches)	0.90	0.45	0.30					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected
Invert of Vertical Orifice =	N/A	N/A
Depth at top of Zone using Vertical Orifice =	N/A	N/A
Vertical Orifice Diameter =	N/A	N/A

ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft) inches

Calculated Parameters for Vertical Orifice Not Selected Not Selected Vertical Orifice Area N/A N/A Vertical Orifice Centroid : N/A N/A feet

Calculated Parameters for Overflow Weir

feet

feet

radians

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.85	N/A	ft (
Overflow Weir Front Edge Length =	4.00	N/A	fee
Overflow Weir Grate Slope =	0.00	N/A	H:\
Horiz. Length of Weir Sides =	4.00	N/A	fee
Overflow Grate Type =	Close Mesh Grate	N/A	
Debris Clogging % =	50%	N/A	%

Zone 3 Weir Not Selected (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht 2.85 N/A et Overflow Weir Slope Length 4.00 N/A v Grate Open Area / 100-yr Orifice Area : 9.26 N/A et Overflow Grate Open Area w/o Debris : 12.66 N/A Overflow Grate Open Area w/ Debris = 6.33 N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

18.00

13.00

Odtiet ripe W/ riow restriction riate	Toli calai Office, it	conictor riute, or n	ccturiquiai Orinec)
	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)

N/A

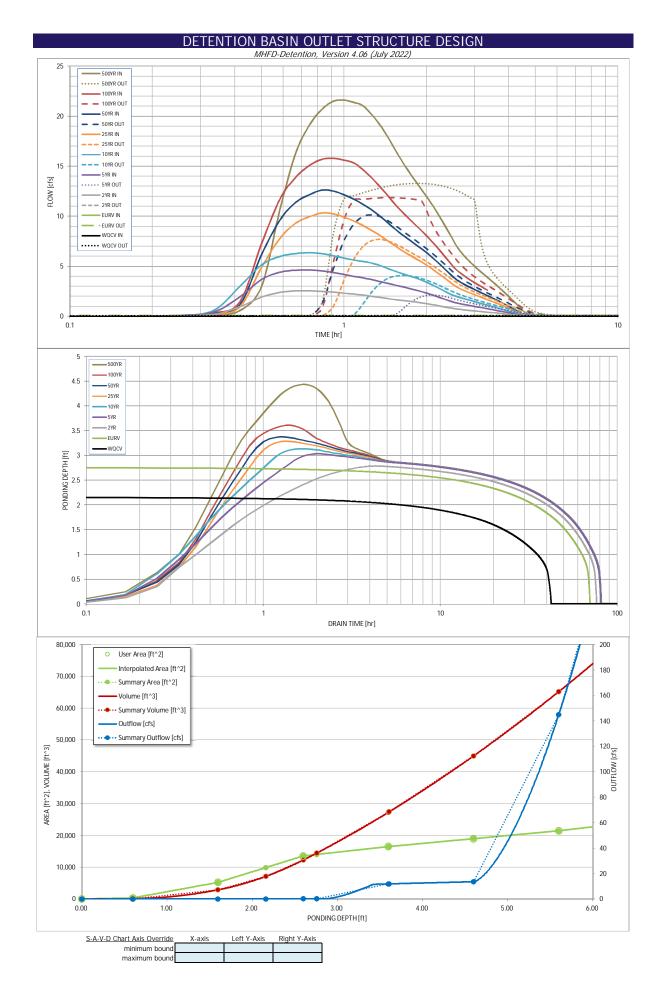
	Calculated Parameters	for Outlet Pipe w/	Flow Restriction Plant	ate
		Zone 3 Restrictor	Not Selected	
m at Stage = 0 ft)	Outlet Orifice Area =	1.37	N/A	ft ²
	Outlet Orifice Centroid =	0.60	N/A	feet
Half-Central Angle of	of Restrictor Plate on Pipe =	2.03	N/A	radia

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Restrictor Plate Height Above Pipe Invert

Outlet Pipe Diameter

Spillway Invert Stage=	4.60	ft (rela
Spillway Crest Length =	40.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet


ative to basin bottom at Stage = 0 ft)

inches

inches

	Calculated Parame	ters for Spillway
Spillway Design Flow Depth=	0.26	feet
Stage at Top of Freeboard =	5.86	feet
Basin Area at Top of Freeboard =	0.51	acres
Basin Volume at Top of Freeboard =	1.62	acre-ft

Routed Hydrograph Results Design Storm Return Period WOCV 5 Year 50 Yea 100 Ye 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 CUHP Runoff Volume (acre-ft) 1.776 0.161 0.329 0.365 0.670 0.961 1.436 2.249 3.133 Inflow Hydrograph Volume (acre-ft) N/A N/A 0.365 0.670 0.961 1.436 1.776 2.249 3.133 CUHP Predevelopment Peak Q (cfs) N/A 18.9 N/A 1.0 2.8 4.4 8.2 10.4 13.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre)
Peak Inflow Q (cfs) N/A N/A 0.06 0.17 0.26 0.48 0.61 0.79 1.11 15.8 N/A N/A 2.6 4.6 6.4 10.3 12.6 21.6 Peak Outflow Q (cfs) 0.1 0.1 0.1 2.1 4.1 10.2 11.9 13.3 Ratio Peak Outflow to Predevelopment Q N/A N/A 0.8 0.9 0.9 N/A 1.0 0.9 0.7 Structure Controlling Flow Plate Plate Plate Overflow Wei rflow Weir rflow Weir rflow Wei Outlet Plate Outlet Plate Max Velocity through Grate 1 (fps) N/A N/A N/A 0.2 0.3 0.6 0.8 0.9 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 40 71 72 69 52 65 65 62 Time to Drain 99% of Inflow Volume (hours) 41 77 71 68 74 76 74 73 69 Maximum Ponding Depth (ft) 2.78 2.16 2.76 3.13 3.28 3.37 3.61 4.43 Area at Maximum Ponding Depth (acres) 0.43 0.23 0.32 0.32 0.34 0.35 0.36 0.36 0.38 Maximum Volume Stored (acre-ft) 0.163 0.338 0.421 0.455 0.959

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]			500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:20:00	0.00	0.00	0.05 0.19	0.08	0.10 0.57	0.07	0.09	0.08	0.12 0.57
	0:25:00	0.00	0.00	0.19	1.94	2.99	0.93	1.15	1.44	2.97
	0:30:00	0.00	0.00	1.93	3.68	5.13	4.88	6.14	7.23	10.61
	0:35:00	0.00	0.00	2.39	4.40	5.98	7.78	9.61	11.70	16.32
	0:40:00	0.00	0.00	2.55	4.61	6.27	9.31	11.39	13.90	19.15
	0:45:00	0.00	0.00	2.56	4.62	6.36	9.96	12.17	15.10	20.72
	0:50:00	0.00	0.00	2.50	4.55	6.26	10.34	12.62	15.71	21.52
	0:55:00	0.00	0.00	2.42	4.38	6.05	10.24	12.52	15.80	21.62
	1:05:00	0.00	0.00	2.32	4.17 4.00	5.82 5.64	9.91 9.54	12.15 11.73	15.61 15.36	21.40 21.10
	1:10:00	0.00	0.00	2.13	3.86	5.50	9.11	11.24	14.72	20.32
	1:15:00	0.00	0.00	2.02	3.70	5.35	8.66	10.72	13.96	19.39
	1:20:00	0.00	0.00	1.91	3.53	5.14	8.19	10.15	13.16	18.30
	1:25:00	0.00	0.00	1.81	3.35	4.87	7.72	9.57	12.33	17.17
	1:30:00	0.00	0.00	1.71	3.18	4.61	7.24	8.98	11.53	16.07
	1:35:00	0.00	0.00	1.62	3.05	4.40	6.80	8.43	10.80	15.08
	1:40:00	0.00	0.00	1.55 1.49	2.90 2.76	4.20 4.01	6.42	7.97 7.55	10.18 9.62	14.22
	1:50:00	0.00	0.00	1.49	2.76	3.82	6.08 5.75	7.55	9.62	12.69
	1:55:00	0.00	0.00	1.35	2.47	3.63	5.44	6.76	8.57	11.98
	2:00:00	0.00	0.00	1.27	2.33	3.42	5.13	6.38	8.07	11.29
	2:05:00	0.00	0.00	1.19	2.17	3.19	4.81	5.97	7.55	10.55
	2:10:00	0.00	0.00	1.10	2.01	2.96	4.47	5.56	7.02	9.81
	2:15:00	0.00	0.00	1.02	1.86	2.73	4.14	5.15	6.51	9.08
	2:20:00	0.00	0.00	0.94	1.70 1.55	2.51	3.81	4.74	5.99 5.48	8.36 7.65
	2:30:00	0.00	0.00	0.85	1.43	2.29	3.46	3.94	4.99	6.98
	2:35:00	0.00	0.00	0.73	1.33	1.98	2.92	3.64	4.61	6.46
	2:40:00	0.00	0.00	0.69	1.26	1.86	2.73	3.40	4.30	6.03
	2:45:00	0.00	0.00	0.65	1.19	1.75	2.56	3.20	4.03	5.65
	2:50:00	0.00	0.00	0.61	1.12	1.65	2.42	3.01	3.79	5.31
	2:55:00	0.00	0.00	0.58	1.06	1.55	2.28	2.84	3.56	4.99
	3:00:00 3:05:00	0.00	0.00	0.54	0.99	1.46	2.15	2.67	3.36	4.70
	3:10:00	0.00	0.00	0.51 0.48	0.93	1.37 1.28	2.03 1.91	2.52	3.16 2.98	4.42 4.16
	3:15:00	0.00	0.00	0.45	0.82	1.20	1.79	2.23	2.80	3.91
	3:20:00	0.00	0.00	0.42	0.76	1.12	1.68	2.08	2.63	3.66
	3:25:00	0.00	0.00	0.39	0.71	1.04	1.57	1.94	2.45	3.42
	3:30:00	0.00	0.00	0.36	0.66	0.96	1.45	1.80	2.28	3.17
	3:35:00	0.00	0.00	0.33	0.60	0.89	1.34	1.67	2.10	2.93
	3:40:00 3:45:00	0.00	0.00	0.31	0.55	0.81	1.23	1.53	1.93	2.68
	3:50:00	0.00	0.00	0.28	0.45	0.66	1.12	1.26	1.76 1.59	2.44
	3:55:00	0.00	0.00	0.22	0.40	0.59	0.91	1.12	1.42	1.97
	4:00:00	0.00	0.00	0.20	0.35	0.52	0.80	0.99	1.25	1.73
	4:05:00	0.00	0.00	0.17	0.30	0.45	0.69	0.86	1.08	1.49
	4:10:00 4:15:00	0.00	0.00	0.14 0.12	0.25 0.20	0.37	0.58 0.48	0.72 0.59	0.91 0.74	1.26 1.02
	4:20:00	0.00	0.00	0.09	0.15	0.23	0.37	0.46	0.58	0.79
	4:25:00	0.00	0.00	0.06	0.11	0.17	0.27	0.33	0.42	0.57
	4:30:00 4:35:00	0.00	0.00	0.05	0.08	0.13 0.11	0.18 0.13	0.22 0.16	0.28	0.40
	4:40:00	0.00	0.00	0.03	0.05	0.11	0.13	0.16	0.20	0.29
	4:45:00	0.00	0.00	0.02	0.04	0.07	0.07	0.09	0.10	0.16
	4:50:00 4:55:00	0.00	0.00	0.02	0.03	0.06 0.05	0.05	0.07	0.07	0.11
	5:00:00	0.00	0.00	0.01	0.03	0.04	0.04	0.04	0.03	0.06
	5:05:00	0.00	0.00	0.01	0.02	0.03	0.02	0.03	0.03	0.04
	5:10:00 5:15:00	0.00	0.00	0.01	0.01	0.02	0.02 0.01	0.02	0.02	0.03
	5:20:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.02
	5:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
,										

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft²]	[acres]	[ft 3]	[ac-ft]	[cfs]	Ļ
6805.4-Top of Micropool	0.00	10	0.000	0	0.000	0.00	Fo
6806.00	0.60	335	0.008	103	0.002	0.02	st
6807.00	1.60	5,216	0.120	2,879	0.066	0.05	ch fro
6807.56-WQCV	2.16	9,872	0.227	7,104	0.163	0.07	_Sr
6808.00	2.60	13,531	0.311	12,252	0.281	0.08	١,,
6808.16-EURV 6809.00	2.76 3.60	14,003 16,478	0.321 0.378	14,455 27,257	0.332 0.626	0.08 11.86	Al:
6809.01-100 year	3.61	16,503	0.379	27,422	0.630	11.88	O۷
6810.00-Spillway Crest	4.60	18,961	0.435	44,976	1.033	13.56	w
6811.00	5.60	21,443	0.492	65,178	1.496	144.67	
6811.50-Top of Pond	6.10	23,000	0.528	76,289	1.751	262.68	
							4
							4
							_
							-
							4
							\dashv
							\exists
							1
							-
							1
							1
							1
							1
							4
							-
							-
							1
							1
							1
							1
							1
							1
							1
							4
							-
							1
							1
]
							4
							4
							1
							4
							\dashv
							1
							1
							_]
							4
							4
							1
							7
			t	t	t		-1

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Lazy Y and Rocking J Subdivision
Basin ID: Pond 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZONE 2

ZO

TOOLINE EURY WOO'V TOOLINE EURY WOO'V TOOLINE EURY WOO'V TOOLINE EVAND TOOLINE EVAND TOOLINE EXAMPLES TOOLIN

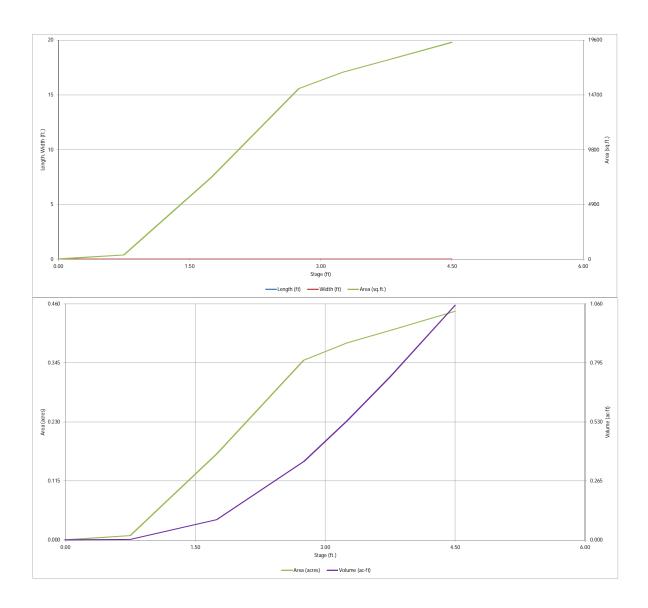
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	8.50	acres
Watershed Length =	1,175	ft
Watershed Length to Centroid =	750	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	26.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Mydrograph Procedure.

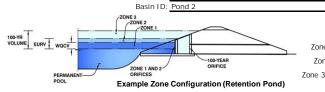
the embedded Colorado Urban Hydrograph Procedure.				
Water Quality Capture Volume (WQCV) =	0.099	acre-feet		
Excess Urban Runoff Volume (EURV) =	0.229	acre-feet		
2-yr Runoff Volume (P1 = 1.19 in.) =	0.236	acre-feet		
5-yr Runoff Volume (P1 = 1.5 in.) =	0.397	acre-feet		
10-yr Runoff Volume (P1 = 1.75 in.) =	0.547	acre-feet		
25-yr Runoff Volume (P1 = 2 in.) =	0.778	acre-feet		
50-yr Runoff Volume (P1 = 2.25 in.) =	0.950	acre-feet		
100-yr Runoff Volume (P1 = 2.52 in.) =	1.183	acre-feet		
500-yr Runoff Volume (P1 = 3.14 in.) =	1.627	acre-feet		
Approximate 2-yr Detention Volume =	0.162	acre-feet		
Approximate 5-yr Detention Volume =	0.234	acre-feet		
Approximate 10-yr Detention Volume =	0.351	acre-feet		
Approximate 25-yr Detention Volume =	0.415	acre-feet		
Approximate 50-yr Detention Volume =	0.437	acre-feet		
Approximate 100-yr Detention Volume =	0.524	acre-feet		

Opt	Optional User Overrides			
		acre-feet		
		acre-feet		
	1.19	inches		
	1.50	inches		
	1.75	inches		
	2.00	inches		
	2.25	inches		
	2.52	inches		
		inches		


Define Zones and Basin Geometry

Jeffne Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.099	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.130	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	0.295	acre-fe
Total Detention Basin Volume =	0.524	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet


	Donth Increment	0.00	ft							
	Depth Increment = Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
7.25	Top of Micropool		0.00				10	0.000		
	6828 6829		0.75 1.75				380 7,331	0.009	146 4,002	0.003
	6830		2.75				15,259	0.350	15,297	0.351
	6830.50-Crest		3.25				16,723	0.384	23,292	0.535
	6831 6831.75-Top		3.75 4.50				17,785 19,405	0.408	31,919 45,865	0.733 1.053
	6831.75-10p		4.50				19,405	0.445	45,865	1.053
es										
t										
t										
				-						
				-						
				-						
		1 1		1 1	1 1					
		1 1		1 1	1 1					
				-						
				-						
				-						
				-	1 1					
				-						
		1 1		1 1	1 1					
				-						
		-		-	-					
									l	l

2522800_MHFD-Detention_v4-06_Pond 2.xlsm, Basin

2522800_MHFD-Detention_v4-06_Pond 2.xlsm, Basin 9/12/2024, 1:07 PM

Project: Lazy Y and Rocking J Subdivision

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
e 1 (WQCV)	1.80	0.099	Orifice Plate
ne 2 (EURV)	2.37	0.130	Orifice Plate
3 (100-year)	3.23	0.295	Weir&Pipe (Restrict)
•	Total (all zones)	0.524	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid : N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

0.00 Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate 3.60 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing N/A inches Orifice Plate: Orifice Area per Row N/A sq. inches

Calculated Parameters for Plate WQ Orifice Area per Row N/A Elliptical Half-Width N/A feet Elliptical Slot Centroid : N/A feet Elliptical Slot Area N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	1.40					
Orifice Area (sq. inches)	0.56	0.38	0.30					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected
Invert of Vertical Orifice =	N/A	N/A
Depth at top of Zone using Vertical Orifice =	N/A	N/A
Vertical Orifice Diameter =	N/A	N/A

ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft)

inches

inches

Calculated Parameters for Vertical Orifice Not Selected Not Selected Vertical Orifice Area N/A N/A Vertical Orifice Centroid : N/A N/A

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 3 Weir	Not Selected	_
Overflow Weir Front Edge Height, Ho =	2.30	N/A	ft
Overflow Weir Front Edge Length =	3.00	N/A	fe
Overflow Weir Grate Slope =	0.00	N/A	H:
Horiz. Length of Weir Sides =	3.00	N/A	fe
Overflow Grate Type =	Close Mesh Grate	N/A	
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht 2.30 N/A eet Overflow Weir Slope Length 3.00 N/A :V Grate Open Area / 100-yr Orifice Area : 7.24 N/A Overflow Grate Open Area w/o Debris eet 7.12 N/A Overflow Grate Open Area w/ Debris : 3.56 N/A

Half-Central Angle of Restrictor

User Input: Outlet P

ut: Outlet Pipe W/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orlfice)
	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below bas
Outlet Pipe Diameter =	18.00	N/A	inches

9.80

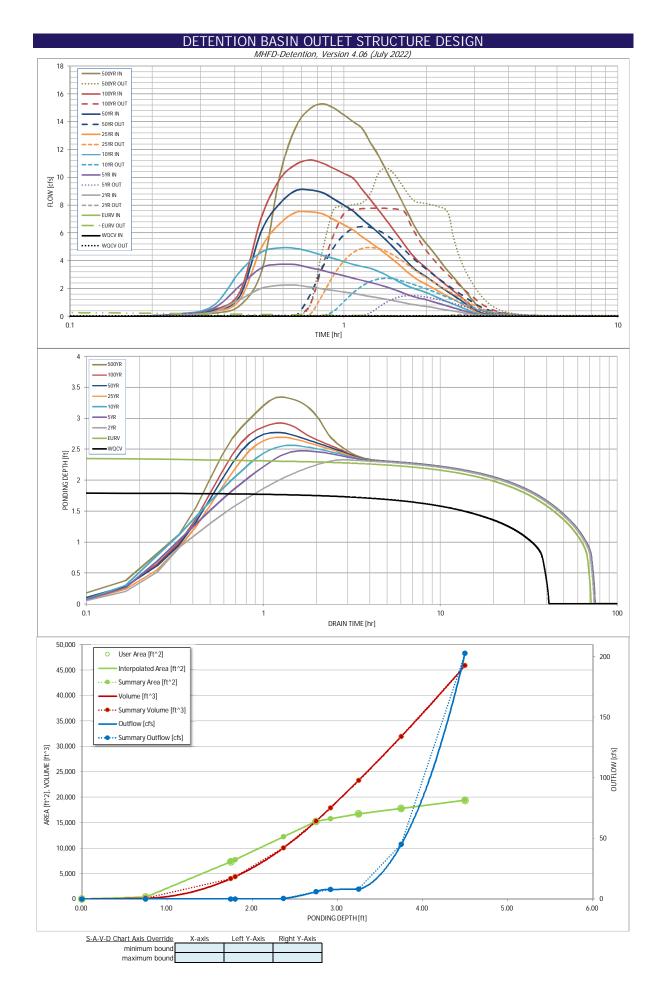
,u		
	ft (distance below basin bottom at Stage = 0 ft)	Outle
	inches	Outlet Or

	Zone 3 Restrictor	Not Selected	
et Orifice Area =	0.98	N/A	ft ²
rifice Centroid =	0.47	N/A	feet
Plate on Pipe =	1.66	N/A	radians

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

feet

feet


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Restrictor Plate Height Above Pipe Invert =

Spillway Invert Stage=	3.25	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	26.00	feet
Spillway End Slopes =	20.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.25 feet Stage at Top of Freeboard : 4.50 feet Basin Area at Top of Freeboard 0.45 acres Basin Volume at Top of Freeboard = 1.05 acre-ft

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through							lumns W through A	I <i>F).</i>	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.099	0.229	0.236	0.397	0.547	0.778	0.950	1.183	1.627
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.236	0.397	0.547	0.778	0.950	1.183	1.627
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.7	2.0	3.0	5.5	6.9	8.9	12.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.08	0.23	0.36	0.65	0.81	1.04	1.46
Peak Inflow Q (cfs) =	N/A	N/A	2.2	3.7	4.9	7.5	9.1	11.3	15.3
Peak Outflow Q (cfs) =	0.0	0.3	0.1	1.5	2.7	5.0	6.5	7.8	10.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.9	0.9	0.9	0.9	0.9
Structure Controlling Flow =	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	0.05	0.01	0.2	0.4	0.7	0.9	1.1	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	66	68	66	63	60	58	55	50
Time to Drain 99% of Inflow Volume (hours) =	40	69	72	71	70	68	67	66	64
Maximum Ponding Depth (ft) =	1.80	2.37	2.33	2.47	2.56	2.69	2.77	2.92	3.34
Area at Maximum Ponding Depth (acres) =	0.18	0.28	0.27	0.30	0.32	0.34	0.35	0.36	0.39
Maximum Volume Stored (acre-ft) =	0.101	0.231	0.217	0.260	0.288	0.330	0.355	0.412	0.569

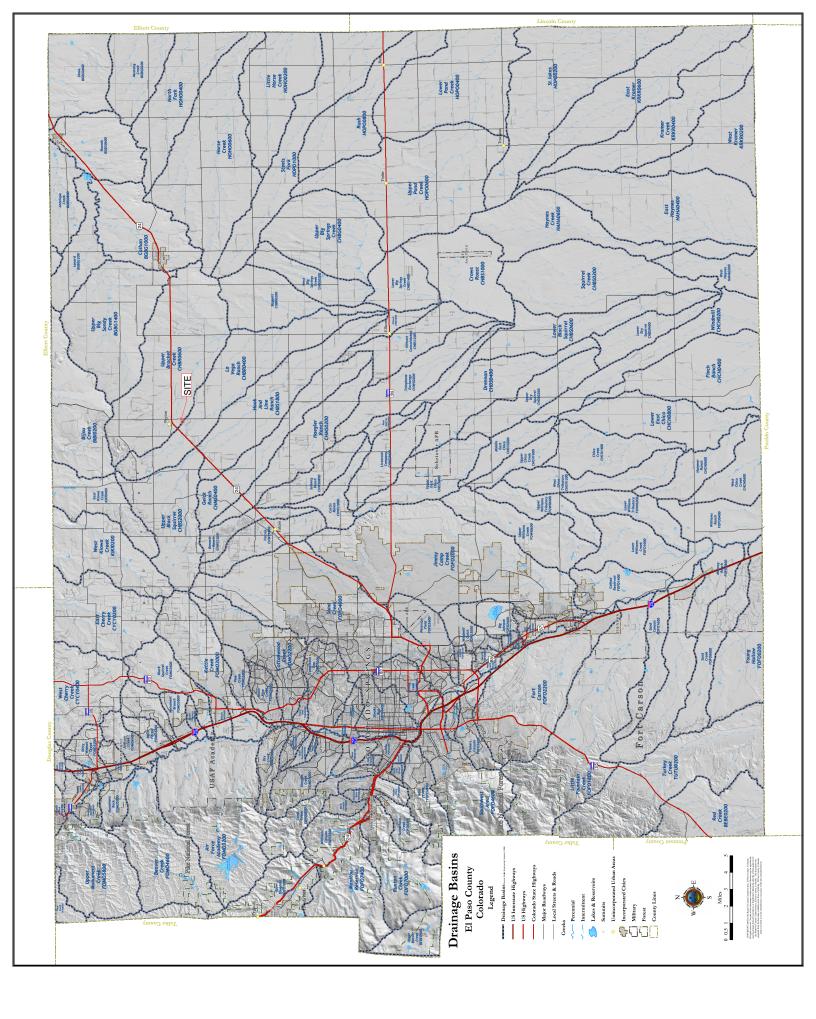
DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

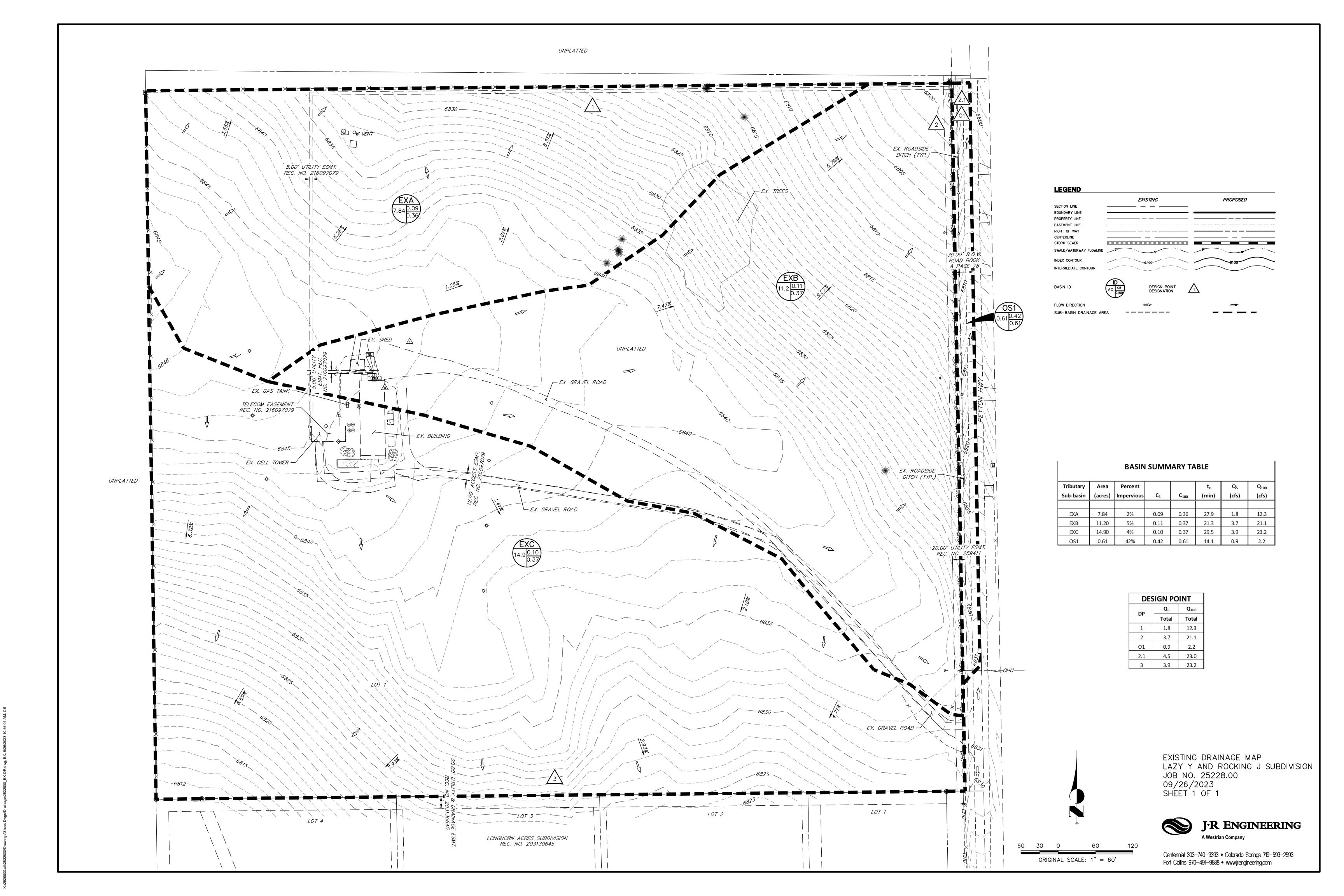
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03
	0:15:00	0.00	0.00	0.09	0.15	0.18	0.12	0.15	0.15	0.22
	0:20:00	0.00	0.00	0.33	0.57	0.77	0.32	0.39	0.46	0.78
	0:25:00	0.00	0.00	1.22 2.02	2.20 3.49	3.21 4.63	1.20 4.96	1.46 6.15	1.74 7.14	3.22 10.13
	0:35:00	0.00	0.00	2.22	3.75	4.93	6.67	8.12	9.87	13.61
	0:40:00	0.00	0.00	2.25	3.72	4.89	7.48	9.04	10.93	14.93
	0:45:00	0.00	0.00	2.11	3.51	4.67	7.52	9.08	11.25	15.29
	0:50:00	0.00	0.00	1.98	3.31	4.40	7.39	8.92	11.04	15.00
	0:55:00 1:00:00	0.00	0.00	1.86	3.11 2.92	4.17 3.94	6.98	8.45 8.00	10.65 10.28	14.49 14.00
	1:05:00	0.00	0.00	1.66	2.74	3.73	6.20	7.56	9.91	13.51
	1:10:00	0.00	0.00	1.54	2.59	3.58	5.71	6.98	9.11	12.49
	1:15:00	0.00	0.00	1.43	2.45	3.45	5.32	6.52	8.41	11.60
	1:20:00	0.00	0.00	1.34	2.29	3.25	4.91	6.02	7.69	10.60
	1:25:00	0.00	0.00	1.24	2.13	3.00	4.52	5.54	7.00	9.65
	1:35:00	0.00	0.00	1.15 1.05	1.98 1.82	2.75 2.51	4.12 3.74	5.05 4.58	6.36 5.74	8.75 7.88
	1:40:00	0.00	0.00	0.96	1.64	2.28	3.36	4.12	5.15	7.05
	1:45:00	0.00	0.00	0.88	1.49	2.09	3.00	3.68	4.58	6.28
	1:50:00	0.00	0.00	0.83	1.37	1.96	2.71	3.33	4.13	5.69
	1:55:00	0.00	0.00	0.77	1.28	1.84	2.49	3.06	3.78	5.22
	2:00:00	0.00	0.00	0.72	1.19	1.71 1.55	2.30	2.84	3.48	4.81 4.37
	2:10:00	0.00	0.00	0.60	0.99	1.41	1.91	2.35	2.86	3.95
	2:15:00	0.00	0.00	0.54	0.89	1.27	1.73	2.13	2.59	3.56
	2:20:00	0.00	0.00	0.48	0.80	1.13	1.56	1.92	2.33	3.19
	2:25:00	0.00	0.00	0.43	0.71	1.01	1.40	1.72	2.09	2.85
	2:35:00	0.00	0.00	0.38	0.63 0.55	0.89	1.24	1.52	1.86	2.52
	2:40:00	0.00	0.00	0.29	0.47	0.67	0.94	1.15	1.41	1.89
	2:45:00	0.00	0.00	0.24	0.39	0.56	0.80	0.98	1.19	1.58
	2:50:00	0.00	0.00	0.20	0.32	0.45	0.65	0.80	0.97	1.27
	2:55:00 3:00:00	0.00	0.00	0.16 0.12	0.24	0.35	0.51	0.63	0.76 0.56	0.97
	3:05:00	0.00	0.00	0.12	0.18	0.20	0.36	0.40	0.39	0.70
	3:10:00	0.00	0.00	0.07	0.11	0.17	0.19	0.24	0.28	0.37
	3:15:00	0.00	0.00	0.06	0.09	0.14	0.14	0.18	0.21	0.28
	3:20:00 3:25:00	0.00	0.00	0.05	0.08	0.12	0.11	0.14	0.15	0.21
	3:30:00	0.00	0.00	0.04	0.06	0.10	0.08	0.11	0.11	0.16 0.11
	3:35:00	0.00	0.00	0.03	0.04	0.06	0.05	0.07	0.06	0.08
	3:40:00	0.00	0.00	0.02	0.03	0.05	0.04	0.05	0.04	0.06
	3:45:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.05
	3:50:00 3:55:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.04
	4:00:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	4:05:00	0.00	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.02
	4:10:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

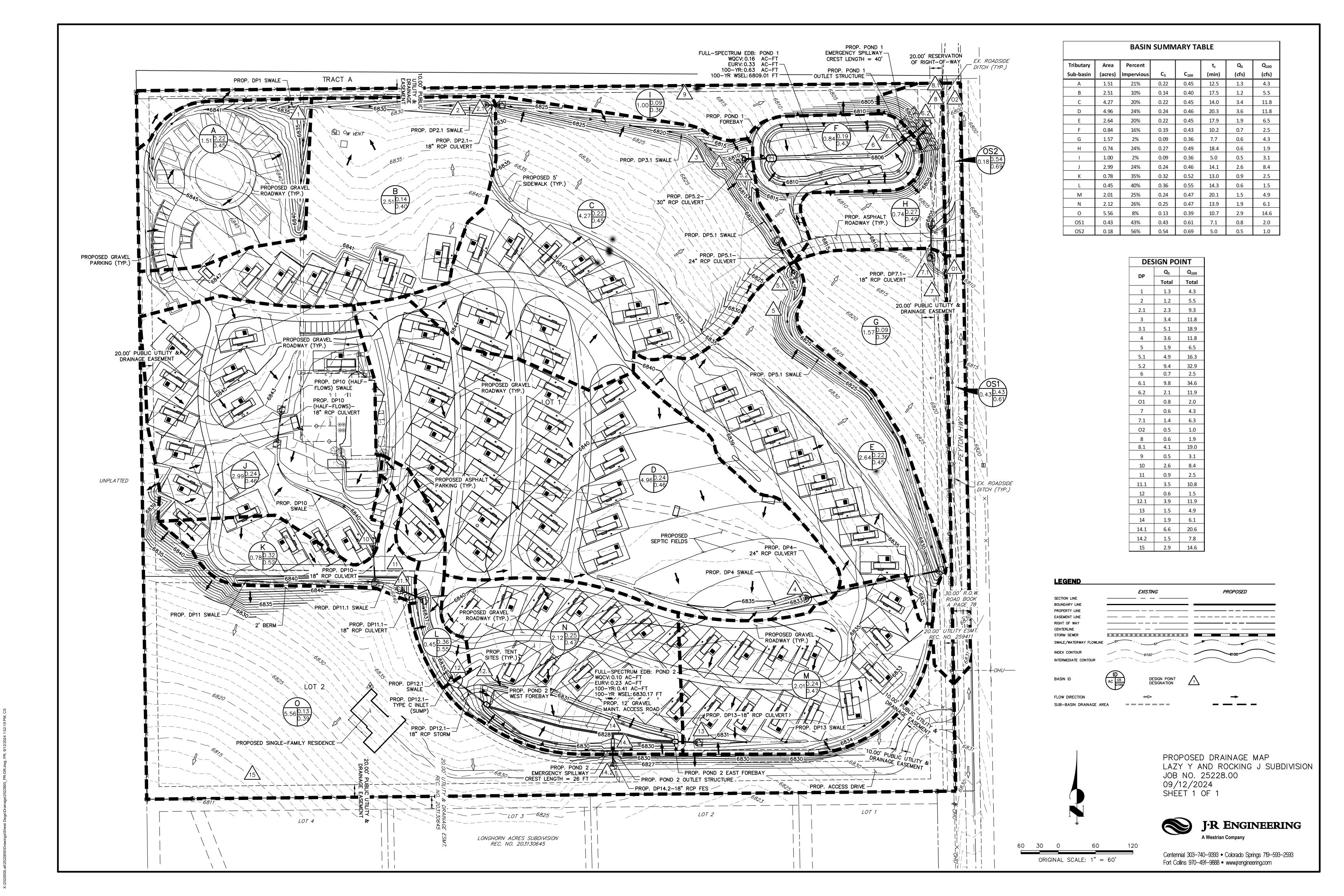
MHFD-Detention, Version 4.06 (July 2022)

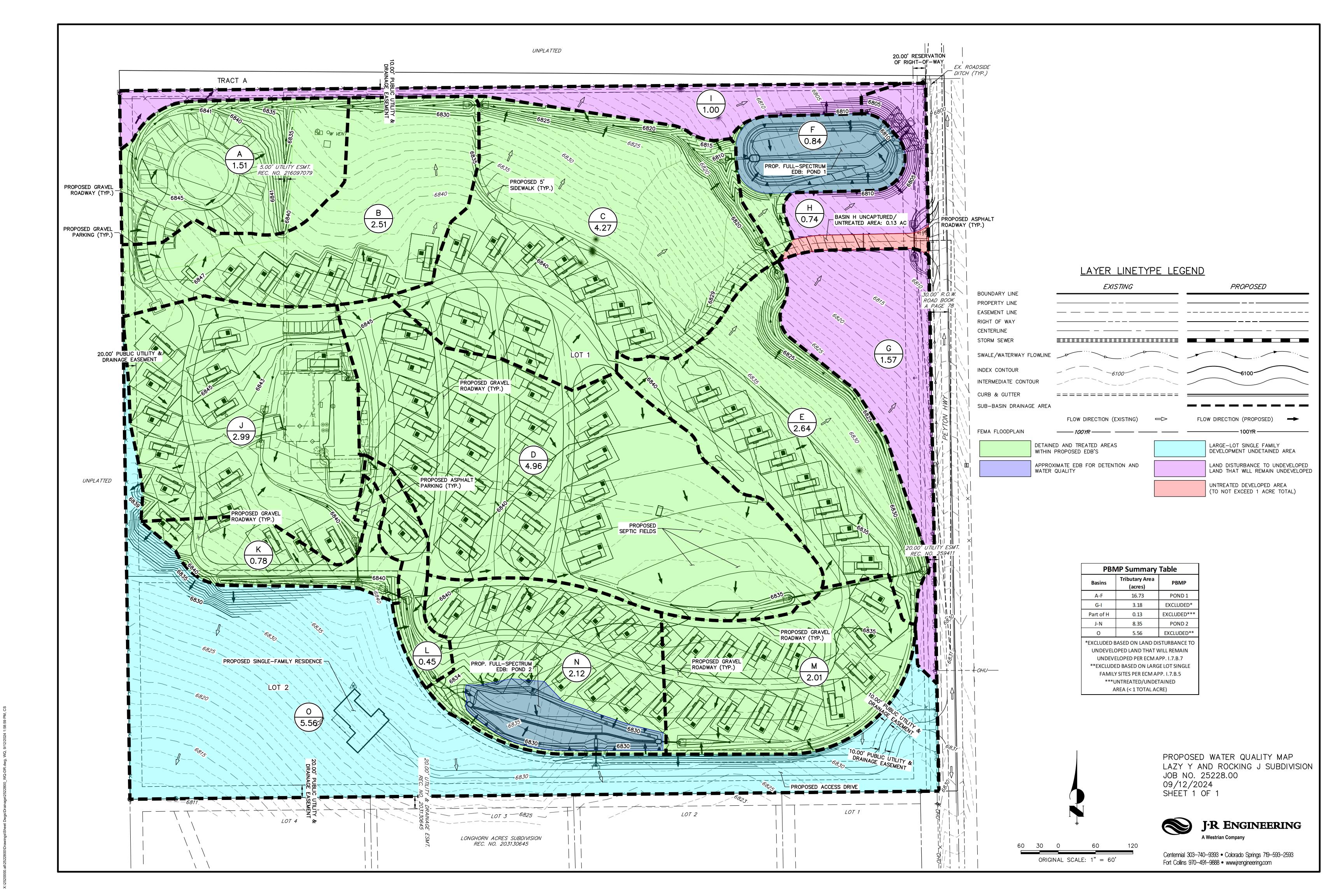

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The user should graphically cor	npare the sumi	nary S-A-V-D tai	ole to the full 5-	A-V-D table in t	ne chart to com		key transition points.
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
6827.25-Top of Micropool	0.00	10	0.000	0	0.000	0.00	For best results, include the
6828.00	0.75	380	0.009	146	0.003	0.02	stages of all grade slope
6829.00	1.75	7,331	0.168	4,002	0.092	0.04	changes (e.g. ISV and Floor) from the S-A-V table on
6829.05-WQCV	1.80	7,727	0.177	4,378	0.101	0.04	Sheet 'Basin'.
6829.62-EURV	2.37	12,246	0.281	10,071	0.231	0.42	
6830.00	2.75	15,259	0.350	15,297	0.351	6.08	Also include the inverts of all
6830.17 - 100 year	2.92	15,757	0.362	17,933	0.412	7.78	outlets (e.g. vertical orifice, overflow grate, and spillway,
6830.50-Spillway Crest	3.25	16,723	0.384	23,292	0.535	8.25	where applicable).
6831.00	3.75	17,785 19,405	0.408 0.445	31,919 45,865	0.733 1.053	44.96 202.66	
6831.75-Top of Pond	4.50	19,405	0.445	40,600	1.053	202.66	
							-
							-
							•
							•
							1
							1
							1
							1
							1
							1
							1
		1					1


Appendix D Reference Materials





Appendix E Drainage Maps

