MASTER DEVELOPMENT DRAINAGE PLAN FOR JAYNES PROPERTY

Prepared for: CLASSIC COMPANIES 2138 FLYING HORSE CLUB DRIVE COLORADO SPRINGS CO 80921 (719) 592-9333

Prepared by:
CLASSIC CONSULTING
619 N. CASCADE AVE SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job No. 1305.02
PCD File No. SKP-225

CONSULTING

MASTER DEVELOPMENT DRAINAGE PLAN FOR

JAYNE PROPERTY

ENGINEERS STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused byan女 ロegfigêitacts, errors, or omissions on my part in preparing this report.

OWNER’S/DEVELOPER'S STATEMENT:

I , the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: CLASSIC COMPANIES

By :

Title:

Address:
2138 Flying Horse Club Drive

Colorado Springs, CO 80921

EL PAVO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Pass County Engineering Criteria Manual and Land Development Code as amended.

For County Engineer, / ECM Administrator
Date

Conditions:

MASTER DEVELOPMENT DRAINAGE PLAN FOR JAYNES PROPERTY

TABLE OF CONTENTS:

| PURPOSE | Page 1 |
| :--- | :---: | :---: |
| GENERAL DESCRIPTION | Page 1 |
| EXISTING DRAINAGE CONDITIONS | Page 1 |
| PROPOSED DRAINAGE CHARACTERISTICS | Page 8 |
| DETENTION FACILITIES / STORMWATER QUALITY | Page 13 |
| DRAINAGE CRITERIA | Page 15 |
| FLOODPLAIN STATEMENT | Page 17 |
| DRAINAGE AND BRIDGE FEES | Page 18 |
| SUMMARY | Page 20 |

APPENDICES

VICINITY MAP
SOILS MAP (S.C.S. SURVEY)
F.E.M.A. MAP

WETLANDS JURISDICTIONAL DETERMINATION (JD)
HYDROLOGIC / STORMWATER QUALITY CALCULATIONS
DRAINAGE MAPS

MASTER DEVELOPMENT DRAINAGE PLAN FOR JAYNES PROPERTY

PURPOSE

The intent of the owner/developer is to develop the Jaynes Property. The purpose of this Master Development Drainage Plan, as part of the Jaynes Property Sketch Plan, is to identify major drainage features and facilities and to estimate peak rates of stormwater runoff, from on-site and off-site sources. Also, the purpose is to outline the necessary improvements to safely route developed storm water runoff to adequate outfall facilities. The drainage improvements proposed in this report are preliminary in nature and final drainage reports are required upon any development within the Jaynes Property that detail the 'to be constructed' drainage systems and detention ponds.

GENERAL DESCRIPTION

Jaynes Property is a 142.127-acre site located in a portion of sections 28 and 33 , township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north by Poco Road, to the south and east by Vollmer Road and to the west by existing platted large lot residential subdivisions. The site is within the upper portion of the Sand Creek drainage basin. The proposed uses as shown on the Sketch Plan are as follows: Varying density single family residential, neighborhood commercial, neighborhood park and open space/greenway buffers with a density cap of 450 dwelling units. All roadway access will be from Vollmer Road and the proposed Briargate Parkway extension. No direct roadway access to Poco Road.

The average soil condition reflects Hydrologic Group " B " (Pring coarse sandy loam) as determined by the "Soil Survey of El Paso County Area," prepared by the Soil Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Jaynes property is located in the upper reaches of the Sand Creek Basin. Existing conditions in this basin are largely rolling hills vegetated with native grasses, yucca and sparse pine trees
on the northwestern portion of the site with natural ravines and swales with little to no trees on the south portion of the property. Existing slopes range from 20% to 2% across the site. The entire property generally drains in a southerly direction through numerous natural ravines created from the off-site flows north of Poco Road. This property is not specifically discussed in the Sand Creek DBPS (March 1996), however, improvements along Vollmer Road to handle flows from and through the property are detailed on the following excerpt from the DBPS. The existing culvert crossing Vollmer Road is shown to be replaced with a 60" CMP for 100-yr capacity. This improvement along with the downstream channel improvements within the Sterling Ranch property are currently being constructed as a part of the adjacent Vollmer Road improvements and Homestead North at Sterling Ranch Filing No. 1 development. These plans also include the construction of public storm sewer within Vollmer Road to handle the anticipated developed flows from the urbanization of this stretch of the Vollmer Road corridor.

There are three major off-site basins north of Poco Road represented by EX-3, EX-4A and EX-4B. This nomenclature matches this same area as presented in the Sterling Ranch MDDP. Currently there are multiple corrugated metal culverts within Poco Road allowing these off-site flows from the north to enter the site. However, a recent site investigation reports that these culverts are badly silted in with minimal flow able to be conveyed. They also appear to only be sized for the smaller storm events. As presented on the drainage map, it is recommended that El Paso County visually inspect these facilities and consider up-sizing for larger storm events based on the current basin hydrology or at a minimum clean out the current facilities to allow for better conveyance. However, no evidence of the road overtopping at these crossing locations was found. This off-site property north of Poco Road seems to be all large lot residential with property sizes ranging from 5 -acre to 35 -acres. As this off-site basin stretches north it starts to get into the Black Forest north of Wildflower Road.

At the northern edge of the property there remains an out parcel with a home accessed from Poco Road that is not a part of this development. This area is also a highpoint in Poco Road and

creates the two major natural ravines running north to south through the Jaynes Property. Near the corner of Poco Road and Vollmer Road there is also another exiting home that also accesses Poco Road. This home is part of the development property and will eventually be abandoned and demolished. There are existing natural ravines on both sides of this existing home site that eventually combine into one and continue to travel in a southerly direction through the site towards an on-site stock pond near Vollmer Road. There are no records or design plans for this stock pond. For this existing condition analysis this pond was removed from the project model. In the central portion of the property exists several structures with gravel driveway access directly to Vollmer Road. These structures will also eventually be abandoned and demolished. The natural ravine along the western portion of the property travels due south all the way to Vollmer Road. A few minor off-site basins (OS-1 and OS-2) from the neighboring large lot residential development to the west also drain onto the property. The entire site drains towards Vollmer Road and into the side road ditch along the west side of

Vollmer. Only a very small portion of the site, represented by Basin EX-D, in the extreme northwest corner of the property sheet flows off-site.

As mentioned earlier, the stretch of Vollmer Road adjacent to the Jaynes property is planned for widening improvements along with the Sterling Ranch development to the east (Homestead North at Sterling Ranch Filing 1). As recommended in the Final Drainage Report for this project and shown on the street and storm improvement plans for Vollmer Road, multiple storm sewer stubs will be provided for the Jaynes property and the off-site properties to the north of Poco Road. Given that these facilities will most likely be approved and constructed prior to the development of the Jaynes property, this report assumes these will be in place as described and shown on the maps. Please also reference the Appendix for the Homestead North drainage maps as reference material.

These ravines and stock pond areas contain some wetlands vegetation. These wetlands were field delineated by CORE Consultants, Inc. and provided on the drainage maps as shown. However, a Jurisdictional Determination (Action No. SPA-2022-00123) was provided by the Corps of Engineers finding that none of these wetland areas contain waters of the U.S. As such, these areas are NOT regulated by the U.S. Army Corps of Engineers under Section 404 of the Federal Clean Water Act. (See Appendix for JD) Given the non-jurisdictional status of these wetlands and the urban nature of this development, the majority of the wetlands within the urban lots will be removed with overlot grading, public roadway and utility construction. The wetlands through the large lots on the north end of the development and the existing stock pond will be saved to the greatest extent possible. However, final site plan and lot layouts will ultimately determine the ability to save these areas. The future final drainage report(s) will better define the extent of any wetland mitigation along with possible monitoring/mitigation on the high groundwater areas.

Page 4

The following descriptions represent the existing on and off-site basins and design points affecting this property:

Design Point E1 ($Q_{5}=14 \mathbf{c f s}, Q_{100}=\mathbf{8 2} \mathbf{c f s}$) consists of the approximated 77.0-acre off-site tributary area from Basin EX-4A. As mentioned earlier, this area is developed as large lot residential (lots ranging from 5-acre to 35 -acre) all draining towards Poco Road and the existing 24 " CMP that is silted in. These off-site flows then enter the property within one of the natural ravines and convey the flows to the south towards the existing stock pond.

Design Point E2 ($\mathbf{Q}_{\mathbf{5}}=\mathbf{1 0} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{5 8} \mathbf{~ c f s}$) consists of the approximated 70.0-acre off-site tributary area from Basin EX-4B. As mentioned earlier, this area is also developed as large lot residential (lots ranging from 5 -acre to 35 -acre) all draining towards an off-site stock pond at the northwest corner of Poco Road and Vollmer Road. Verified visually in the field, this facility appears to have an 18 " CMP outlet crossing Poco Road to the south. These off-site flows then enter the property within one of the natural ravines and convey the flows to the south towards the existing stock pond.

Design Point E3 ($\left.\mathbf{Q}_{5}=\mathbf{1} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{7 c f s}\right)$ consists of the 3.6-acre tributary area from Basins EX-A and EX-B. This on-site area drains in a southerly direction towards the side road ditch along Vollmer Road and then captured by a Type D CDOT Inlet with a 24 " RCP storm outfall. These facilities are detailed in the "Homestead North at Sterling Ranch Filing No. 1" Final Drainage Report and CDs, prepared by JR Engineering, approved Sept. 2022. The location of this facility is represented by Design Point 10 within the Homestead North at Sterling Ranch Filing No. 1 development $\left(Q_{5}=\mathbf{0 . 8} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{6 . 0} \mathbf{c f s}\right)$. (See Reference Material in Appendix) These improvements will be constructed with that development and the Vollmer Road improvements. The existing 24 " CMP culvert near this location will be removed.

Page 5

Design Point E4 ($\left.Q_{5}=\mathbf{2 5} \mathbf{c f s}, \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{1 5 5} \mathbf{c f s}\right)$ consists of the 41.4-acre tributary area from on-site Basin EX-C along with the combined off-site flows from Design Points E1 and E2. These combined flows travel in the natural ravine towards the existing stock pond on-site. As mentioned earlier, this facility was removed for this existing drainage model. The total flows then travel towards Vollmer Road where they are then captured by a (Sterling Ranch designed) 6' diameter overflow Manhole with grate and a 48 " RCP storm outfall into the planned Vollmer roadway widening improvements. The location of this facility is represented by Design Point 20 within the Homestead North at Sterling Ranch Filing No. 1 development ($\mathbf{Q}_{5}=\mathbf{2 7 . 1} \mathbf{c f s}, \mathrm{Q}_{100}=190.9 \mathrm{cfs}$). (See Reference Material in Appendix)

Again, these improvements will be constructed with the Homestead North development and the Vollmer Road improvements. The existing 24 " CMP culvert near this location will be removed.

Design Point E5 ($\mathrm{Q}_{5}=\mathbf{1 2} \mathbf{~ c f s , ~} \mathrm{Q}_{100}=\mathbf{7 0} \mathbf{~ c f s}$) consists of the approximated 44.3-acre off-site tributary area from Basin EX-3. As mentioned earlier, this area is developed as large lot residential (lots ranging from 5-acre to 35 -acre) all draining towards Poco Road and the existing 24 " CMP that is silted in. These off-site flows then enter the property within the westerly natural ravine and convey the flows to the south through the property.

Design Point E6 ($\mathbf{Q}_{5}=\mathbf{2 c f s}, \mathbf{Q}_{100}=\mathbf{1 3} \mathbf{c f s}$) consists of the 8.3-acre tributary area from the minor on-site Basin EX-G. These pre-developed flows travel in a southerly direction towards the road side ditch along the west side of Vollmer Road. An existing CDOT Type D inlet (Sterling Ranch designed) captures these flows and routes them under Vollmer Road in a 24 " RCP system. The location of the CDOT Type D Inlet facility is represented by Design Point 10 within the Homestead at Sterling Ranch Filing No. 1 development ($\mathrm{Q}_{5}=\mathbf{4 . 8} \mathbf{~ c f s ,} \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{2 6 . 3} \mathbf{~ c f s}$). (See Reference Material in Appendix)

Page 6

Design Point E7 ($\left.\mathbf{Q}_{5}=\mathbf{1} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{1 0} \mathbf{c f s}\right)$ consists of the 6.5-acre tributary area from the minor on-site Basin EX-H. These pre-developed flows travel in a southerly direction towards the road side ditch along the west side of Vollmer Road. An existing CDOT Type C inlet (Sterling Ranch designed) captures these flows and routes them under Vollmer Road in an 18" RCP system. The location of this CDOT Type C Inlet facility is represented by Design Point 11 within the Homestead at Sterling Ranch Filing No. 1 development ($\mathbf{Q}_{5}=\mathbf{2 . 2} \mathbf{~ c f s ,} \mathbf{Q}_{\mathbf{1 0 0}}=\mathbf{1 2 . 3} \mathbf{~ c f s}$). (See Reference Material in Appendix)

Design Point E8 ($\left.\mathbf{Q}_{\mathbf{5}}=\mathbf{2 0} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{1 2 5} \mathbf{c f s}\right)$ consists of the 72.4-acre tributary area from the onsite Basin EX-E, the off-site basin OS-2 (5.3 ac .) along with the flows from Design Point E5. These combined flows travel in a southerly direction within the on-site natural ravines towards the side road ditch along Vollmer Road and an existing 24 " RCP culvert. This facility seems to be silted in and thus conveys little flow. Rather, the flows continue to be conveyed by the ditch in a southeasterly direction along the north side of Vollmer Road into basin EX-F.

Design Point E9 ($\left.\mathbf{Q}_{5}=\mathbf{2 0} \mathbf{c f s}, Q_{100}=\mathbf{1 2 7} \mathbf{c f s}\right)$ consists of the 8.7-acre tributary area from the onsite Basin EX-F, the off-site basin OS-1 (2.0 ac.) along with the flows from Design Point E8. These combined flows travel in a southeasterly direction within the side road ditch along Vollmer Road to the corner of the property. At this location, within the sideroad ditch and ROW for Vollmer Road, an exist. modified 4'x14' CDOT Type D Inlet was constructed along with the Homestead at Sterling Ranch Filing No. 1 Development to capture these off-site flows. This facility has an existing 54" public RCP storm outfall that crosses Vollmer Road and passes through the Homestead at Sterling Ranch Filing No. 1 development and daylights directly into Sand Creek. The location of the CDOT Type D Inlet facility is represented by Design Point 12 within the Homestead at Sterling Ranch Filing No. 1 development ($\mathbf{Q}_{\mathbf{5}}=\mathbf{1 8 . 9} \mathbf{~ c f s ,} \mathrm{Q}_{100}=\mathbf{1 3 3 . 7} \mathbf{~ c f s}$). (See Reference Material in Appendix)

Design Point E10 ($\mathbf{Q}_{5}=\mathbf{0 . 4} \mathbf{~ c f s , ~} \mathbf{Q}_{100}=\mathbf{3} \mathbf{c f s}$) consists of the 1.3-acre tributary area from the onsite Basin EX-D. This minor portion of the property sheet flows off-site into a natural ravine and then into a private stock pond on Lot 3A or Sunrise Meadow Subd. No. 2.

PROPOSED DRAINAGE CONDITIONS

Development within the Jaynes Property is proposed to be urban residential and commercial with associated curb, gutter, sidewalk and paved streets. Overlot grading is anticipated for the majority of the development along with installation of urban services provided through the Sterling Ranch Metropolitan District. Proposed impervious areas will sheet flow across yards and landscape areas to slow runoff and increase time of concentration. This will minimize the effects of impervious areas. At design points where developed flows are greater than in the existing condition, detention facilities will be proposed providing an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. Prior to development within the Jaynes property, final drainage reports and construction plans will be required detailing the requirements and specifics of proposed facilities.

Per the Sand Creek DBPS, this area was planned for both large lot residential and single family residential. There were no recommendations for detention facilities within the area but due to current drainage criteria, detention/stormwater quality facilities are proposed. The following

Page 8
are concept design points for developed conditions with descriptions of anticipated basin areas and conceptual major storm systems:

Design Point D1 ($\mathrm{Q}_{5}=\mathbf{1} \mathbf{c f s}, \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{6} \mathbf{c f s}$) consists of developed flows from Basin $\mathrm{B}(2.3 \mathrm{Ac}$.). This on-site area drains in a southerly direction towards the side road ditch along Vollmer Road and then captured by the planned Type D CDOT Inlet with a $24^{\prime \prime}$ RCP storm outfall into the Vollmer roadway widening improvements. These improvements required with the construction of Homestead North replace the original culvert crossing of Vollmer Road at this location. The location of this facility is represented by Design Point 10 within the Homestead North at Sterling Ranch Filing No. 1 development ($Q_{5}=\mathbf{0 . 8} \mathbf{c f s}, Q_{100}=\mathbf{6 . 0} \mathbf{c f s}$). (See Reference Material in Appendix) Also described in the Homestead North FDR is that these developed flows were accounted for in the design of the off-site Pond C within the Sterling Ranch development. This facility provides detention/stormwater quality and thus, upon development within Basin B, no further detention/stormwater quality will be required.

Design Point D2 ($Q_{5}=\mathbf{3 1} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{1 5 6} \mathbf{c f s}$) consists of the pre-developed off-site flows from Basins EX-4A and EX-4B and the developed flows from Basin $A(33.1 \mathrm{Ac}$.). The final design for this area will likely involve some overlot grading and removal of the natural ravine through Basin A. The off-site flows from the north are anticipated to be collected in a public storm system defined based on the final site plan for this area. This storm system will also be routed towards Design Point D2 where all these flows combine and are continued to be conveyed downstream towards Design Point D3A. Also described in the Homestead North FDR is that these significant off-site developed flows were accounted for in the design of the off-site Pond C within the Sterling Ranch development. This facility provides detention/stormwater quality and thus, upon development within Basin A, no further detention/stormwater quality will be required. The final design for this area must follow the maximum flow and percent impervious as described in the Homestead North FDR. (See Appendix for applicable reference material)

Page 9

Design Point D3 ($\left.\mathbf{Q}_{5}=\mathbf{3} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{1 3} \mathbf{c f s}\right)$ consists of developed flows from Basin $\mathrm{C}(6.8 \mathrm{Ac}$.). This area is shown as park area on the Sketch Plan with the intent to leave the natural stock pond and drainageway as passive open space. The west edge of this basin is anticipated to be rear yards of the future planned residential adjacent to the park area. This developed basin will continue to drain in a southerly direction and routed towards Design Point D3. The final drainage report(s) will address the ultimate design of this stock pond open space feature and any necessary water rights, formal embankment analysis and outlet control design required. Ownership and maintenance for this facility is anticipated to be by the Jaynes Homeowners Assoc.

Design Point D3A ($\mathrm{Q}_{\mathbf{5}}=\mathbf{3 1} \mathbf{c f s}, \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{1 5 7} \mathbf{c f s}$) represents the total developed flows tributary to the planned (Sterling Ranch designed) 6' diameter overflow Manhole with grate and 48" RCP storm outfall mentioned earlier at this location, represented by Design Point 20 within the Homestead North at Sterling Ranch Filing No. 1 development ($\mathbf{Q}_{5}=\mathbf{2 7 . 1} \mathbf{c f s}, \mathrm{Q}_{100}=190.9 \mathrm{cfs}$). These total off-site flows, along with collected flows from the Vollmer Road improvements, then travel via a planned 60" RCP (Sterling Ranch designed) south down Vollmer then southeast down Briargate Parkway towards Pond C just north of Briargate Parkway and west of Sand Creek within the Homestead North development. (See Reference Material in Appendix) This is the maximum developed flows allowed to be released at this location and treated further downstream in Pond C with the Sterling Ranch Development. The final design for this area must follow this maximum flow and percent impervious as described in the Homestead North FDR. (See Appendix for applicable reference material) At the MDDP level of design, the total anticipated off-site flows from the Jaynes property are fairly consistent with what was previously shown in the Homestead North FDR. However, the percent impervious is higher as the Homestead North FDR assumed all the off-site area as undeveloped, whereas the following chart better defines the developed imperviousness for this property. The intent of this MDDP is to maintain what was previously planned for the total off-site flows and imperviousness tributary to Pond C. The final drainage report(s) for the Jaynes property will better define the exact flow amounts being released along with site imperviousness based on a formalized site plan. At that time, it will be determined if

additional developed property within this development will need to be routed elsewhere to remain consistent with the approved Pond C design and outlet structure.

EFFECTIVE OFF-SITE IMPERVIOUSNESS TRIBUTARY TO POND C

(Excluding Vollmer Rd. Basins)

(JAYNES MDDP)

Basin	Acreage	Imp.\%
EX-4A	77.0	5%
EX-4B	70.0	5%
A	33.1	27%
B	2.3	30%
C	6.8	16%

Total $189.2 \quad 9.6 \%$
(HOMESTEAD NORTH FDR)

Basin	Acreage	Imp.\%
OS-1	2.84	2%
OS-2	179.61	2.5%
OS-3	11.98	2%
Total	194.43	$\mathbf{2 . 5} \%$

Design Point $\mathrm{D}_{4}\left(\mathrm{Q}_{\mathbf{5}}=\mathbf{1 3} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{2 9} \mathbf{~ c f s}\right)$ consists of developed flows from Basin $\mathrm{D}(9.3 \mathrm{Ac}$.). This area will drain in a southeasterly direction and be routed via an on-site storm system alignment determined with final design. These flows are then routed towards the proposed onsite Pond 1 at the south end of the property.

Design Point D5 ($Q_{5}=\mathbf{1 7} \mathbf{c f s}, Q_{100}=\mathbf{3 1}$ cfs) consists of developed flows from the Commercial area, Basin E (5.8 Ac.). This area will drain in a southeasterly direction and be routed via an onsite storm system alignment determined with final design. These flows combine with the
previously mentioned developed flows from DP D4 and then are routed towards the proposed on-site Pond 1 at the south end of the property.

Design Point D6 ($\mathbf{Q}_{5}=\mathbf{1 1} \mathbf{~ c f s ,} \mathbf{Q}_{\mathbf{1 0 0}}=\mathbf{3 4} \mathbf{~ c f s}$) consists of developed flows from Basin $\mathrm{F}(13.2 \mathrm{Ac}$.). This on-site area drains in a southerly direction and will be routed via an on-site storm system alignment within Briargate Parkway and then towards the proposed on-site Pond 1 at the south end of the property.

Design Point D7 ($\left.Q_{5}=\mathbf{2 5} \mathbf{c f s}, Q_{100}=\mathbf{1 0 8} \mathbf{c f s}\right)$ consists of the pre-developed off-site flows from Basin EX-3 (44.3 Ac.), approx. 1/2 of OS-2 (5.3 Ac.) and the developed flows from Basin G (26.8 Ac.). The final design for this area will likely involve some overlot grading and removal of the natural ravine through Basin G. The off-site flows from the north are anticipated to be collected in a public storm system defined based on the final site plan for this area. The total developed flows are then routed via a proposed storm system towards Design Point 7. These flows combine with the previously mentioned developed flows within Briargate Parkway and then routed towards the proposed on-site Pond 1 at the south end of the property.

Design Point D8 ($\left.\mathrm{Q}_{5}=\mathbf{1 7} \mathrm{cfs}, \mathrm{Q}_{100} \mathbf{= 3 6} \mathbf{c f s}\right)$ consists of developed flows from Basin I (11.7 Ac.). This area will drain in a southerly direction and be routed via an on-site storm system alignment determined with final design. These flows combine with the previously mentioned developed flows and then routed towards the proposed on-site Pond 1 at the south end of the property.

Design Point D9 ($\left.Q_{5}=\mathbf{1 6} \mathbf{c f s}, Q_{100}=\mathbf{5 3} \mathbf{c f s}\right)$ consists of pre-developed flows from approx. $1 / 2$ of Basin OS-2 (5.3 Ac.) and developed flows from Basin J (20.4 Ac .). This area will drain in a southerly direction and be routed via an on-site storm system alignment determined with final design. These flows combine with the previously mentioned developed flows and then routed towards the proposed on-site Pond 1 to the south.

Design Point D10 ($\mathbf{Q}_{5}=\mathbf{0 . 7} \mathbf{~ c f s , ~} \mathrm{Q}_{100}=\mathbf{3} \mathbf{~ c f s}$) consists of the 1.3-acre tributary area from the onsite Basin L. This minor portion of the development will consist of the rear yards for the anticipated 1.0 Ac. and 1/2-Ac. lots in this area. This minor area will continue to sheet flow offsite into a natural ravine and into an off-site stock pond on Lot 3A or Sunrise Meadow Subd. No. 2. The final drainage report will determine if any on-site private BMP treatment will be required depending upon lot configuration and house placement.

Design Point D11 ($\left.Q_{5}=\mathbf{6 9} \mathbf{c f s}, Q_{100}=\mathbf{2 2 2} \mathbf{c f s}\right)$ consists of pre-developed flows from Basin OS-1 (2.0 Ac.), developed flows from Basin $\mathrm{K}(6.9 \mathrm{Ac}$.) which is mainly made up of the pond area itself and the total routed storm flows from on-site. This represents the total developed flows tributary to the proposed on-site Pond 1. (See the following section of this report for Pond 1 details)

Basin $H\left(Q_{5}=13 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{2 4} \mathbf{c f s}\right)$ consists of the 4.8-acre tributary area from the anticipated Briargate Parkway ROW. This basin will collect the developed flows with proposed Type R curb inlets which then connect directly to the conceptual public storm system within the roadway. This system then routes the developed flows towards Pond 1.

Off-site basins EX-3, EX-4A, EX-4B, OS-1 and OS-2 all contain currently developed large-lot rural residential properties that will remain in their current condition with no anticipated change in flows.

DETENTION FACILITIES / STORMWATER QUALITY

Final design of this recommended facility that include planning for water quality management of storm water runoff features will be designed during final design and construction of the proposed improvements. Storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to Full Spectrum Extended Detention Basin Sedimentation Facilities, Sand Filter Basins, and Rain Gardens. Site Planning and design techniques should limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to

decrease the rate and volume of stormwater runoff. Facilities that require detention will provide an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the Jaynes Property. These measures will be taken into consideration upon final design of the individual detention facilities as well as the development of the individual land uses within the Jaynes Property.

The proposed Pond 1 is intended to provide detention and stormwater quality for nearly the entire property, including the off-site basin EX-3 north of Poco Road and excluding Basin L (1.3 Ac.) and any area that is tributary and being treated by the off-site Pond C within the Sterling Ranch Development (Basins EX-A, EX-B, A, B and C - Total of 189.20 Ac.). The total anticipated developed flows entering this facility are as follows:
(See Appendix for MHFD-Detention pond design sheets):

Pond 1 (Full Spectrum EDB)

Total Tributary Acreage: $\quad 150.5$ ac.
Total Site Impervious tributary to Pond 1: 30.1\%
1.904 Ac.-ft. WQCV required

2.747 Ac.-ft. EURV required with 4:1 max. slopes

5.367 Ac.-ft. 100-yr. required storage
10.017 Ac.-ft. required total
10.298 Ac.-ft. provided

Total Peak In-flow:	$Q_{5}=69 \mathrm{cfs}, \mathrm{Q}_{100}=222 \mathrm{cfs}$
Pond Peak Design Release:	$Q_{5}=14.5 \mathrm{cfs}, \mathrm{Q}_{100}=130.3 \mathrm{cfs}$
Release per Homestead at Sterling Ranch Filing 1 (DP-12):	$Q_{5}=18.9 \mathrm{cfs}, \mathrm{Q}_{100}=133.7 \mathrm{cfs}$

This proposed detention facility is to be private with maintenance by the Jaynes Homeowners Association with all drainage facilities within the public Right of Way be public with maintenance

EFFECTIVE IMPERVIOUSNESS - POND 1

Basin	Acreage	Imp. $\%$
EX-3	44.3	
OS-1	2.0	5%
OS-2	5.3	10%
D	9.3	10%
E	5.8	65%
F	13.2	95%
G	26.8	30%
H	4.8	30%
I	11.7	95%
J	20.4	65%
K	6.9	30%
	150.5	7%
Total		30.1%

by El Paso County. As mentioned previously in this report, just outside of the very southwest corner of the property, within the Vollmer Road ROW exists a (Sterling Ranch designed) 4'x14' modified CDOT Type D inlet with a 54 " RCP storm outfall. This facility was planned to accept and convey treated developed flows per the "Homestead at Sterling Ranch Filing No. 1" Final Drainage Report and CDs, prepared by M\&S Civil Consultants, Inc. approved Nov. 2018. It is anticipated that the proposed Pond 1 storm outfall will connect directly to this facility. These flows are then routed via the existing 54" RCP storm system (maintained by Sterling Ranch Metro. District) directly to Sand Creek.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual basin design used for detention/SWQ basin

sizing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-DurationFrequency (IDF) curves in Figure 6-5. Mile High Flood District (MHFD)-Detention spreadsheet Ver. 4.05 used for Preliminary Detention/SWQ design. (See Appendix)

The City of Colorado Springs/EI Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed urban lot impervious areas (roof tops, patios, etc.) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or detention facilities. This will minimize directly connected impervious areas within the project site.
2. Stabilize Drainageways: The two major natural drainageways on-site within basins A, G and J will be overlot graded and urbanized with the proposed residential development. Within this development, urban street sections will be constructed along with buried storm systems to handle the developed runoff. The larger residential lots towards the north portion of these basins will be planned such to adequately accept these off-site flows within their natural corridors. The final drainage report(s) will better detail these capture methods and any required improvements to do so along with necessary hydraulic

analysis and emergency overflow routing methods per County standards. After developed flows utilize the runoff reduction practices through the front and rear yards, developed flows will travel via curb and gutter within the public streets and eventually public storm systems. These collected flows are then routed directly to the proposed extended detention basin (full-spectrum facility).
3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the proposed Full-Spectrum permanent Extended Detention Basin designed per current El Paso County drainage criteria.
4. Consider need for Industrial and Commercial BMPs: No industrial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative will be submitted along with the grading and erosion control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's for commercial use will be detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are anticipated based on specific phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

No portion of this site is located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C0533G and 0841C0535G, effective date, December 7, 2018 (See Appendix).

DRAINAGE AND BRIDGE FEES

Any applicable fees shall be provided prior to final plat recordation of any development within this site. The following represents the anticipated overall fees for the property:

Sand Creek Drainage Basin

The property has a total area of 142.127-acres and lies entirely within the Sand Creek Drainage Basin boundaries. The following are fees based on the proposed land uses as defined on the Sketch Plan and calculated using the following impervious acreage method approved by El Paso County. The proposed Right-of-way area has been added to the adjacent residential uses:

Fees for Detention Facilities, Open Space buffers \& Park

(Per El Paso County Percent Impervious Chart: 7\%)
14.5 Ac. x 7\% = 1.02 Impervious Ac.

Fees for 1.0 Ac. lots

(Per El Paso County Percent Impervious Chart: 20\%)
12.8 Ac. x 20\% = 2.56 Impervious Ac.

Fees for 1/2 Ac. Avg. lots

(Per El Paso County Percent Impervious Chart: 25\%)
14.4 Ac. x 25\% = 3.6 Impervious Ac.

Fees for 1/3 Ac. Avg. lots

(Per El Paso County Percent Impervious Chart: 30\%)
66.5 Ac. x 30\% = 19.95 Impervious Ac.

Fees for 1/8 Ac. Avg. or less lots

(Per El Paso County Percent Impervious Chart: 65\%)
29.4 Ac. x 65\% = 19.11 Impervious Ac.

Fees for Commercial Site

(Per El Paso County Percent Impervious Chart: 95\%)
4.5 Ac. $\times 95 \%=4.28$ Impervious Ac.

Total Impervious Acreage:
 50.52 Imp. Ac.

The following calculations are based on the 2022 Sand Creek drainage/bridge fees:

ESTIMATED FEE TOTALS:

Bridge Fees

$\$ 8,923.00 \times 50.52$ Impervious Ac. $=\$ 450,789.96$

Drainage Fees
$\$ 21,814.00 \times 50.52$ Impervious Ac. $=\$ \mathbf{1 , 1 0 2 , 0 4 3 . 2 8}$

Final fee estimates for individual future filings will be handled under separate drainage reports upon submission of individual filing plats.

Page 19

SUMMARY

The proposed Jaynes property development is within the Upper reach of the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that may be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. This development does not impact any downstream facility or property to an extent greater than that which currently exists in the 'historic' conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements. Upon development of the individual parcels within the Jaynes property, separate Final Drainage Reports will be required to be submitted and approved by El Paso County that details all storm systems, pond design and fee calculation.

PREPARED BY:

Classic Consulting Engineers \& Surveyors, LLC

Marc A. Whorton, P.E.
Project Manager

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3" Urban Drainage and Flood Control District, dated January 2016.
3. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
4. "2018 Sterling Ranch MDDP", M\&S Civil Consultants, Inc., June 2018
5. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
6. "Final Drainage Report for Homestead North at Sterling Ranch Filing No. 1", JR Engineering, LLC, dated June 2022
7. "Final Drainage Report for Homestead at Sterling Ranch Filing No. 1", M\&S Civil Consultants, Inc. dated Nov. 2018
8. "MDDP Amendment for Sterling Ranch", JR Engineering, LLC, dated June 2022 ENGINEERS \& SURVEYORS

APPENDIX

VICINITY MAP

Google Maps Jaynes Property Vicinity Map

Imagery ©2022 CNES / Airbus, Maxar Technologies, USDA/FPAC/GEO, Map data @2022
500 ft \qquad

SOILS MAP (S.C.S SURVEY)

MAP LEGEND

Area of Interest (AOI)	
Area of Interest (AOI)	
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	

Special Point Features
(0) Blowout

B Borrow Pit
减 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
(8) Landfill
A. Lava Flow
A. Marsh or swamp

Q Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
E Severely Eroded Spot
- Sinkhole

2. Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
8	Blakeland loamy sand, 1 to 9 percent slopes		Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	7.2	2.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	433.5	1.7%
Totals for Area of Interest		$\mathbf{4 5 4 . 5}$	95.4%

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting
National map unit symbol: 369k
Elevation: 6,800 to 7,600 feet
Farmland classification: Not prime farmland
Map Unit Composition
Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects ofthe mapunit.
Description of Pring
Setting
Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock
Typical profile
A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)
Interpretive groupsLand capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO - Loamy Park
Hydric soil rating: No
Minor Components
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit:
Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021

F.E.M.A. MAP

\square seccall LEGEND

Then flome \square OTHER HOOO AREAS

\square OTHERAREAS

(A)-(A) coss scotonnmin
(23----(3) Tronestime

${ }^{45}$
emonoo ot
OX5510.
-M.5

MAP SCALE $\mathbf{1 ' ~}^{\prime \prime}=1000^{\prime}$	
\%	$\square_{\text {moxeres }}$
NW	PANEL 0535 G

FIRM

flood insurance rate map
el paso county
COLPARADO
AND INCORPORATED AREAS
PANEL 535 OF 1300

(20)

DECEMBER 7,2018

WETLANDS JURISDICTIONAL DETERMINATION (JD)

DEPARTMENT OF THE ARMY
CORPS OF ENGINEERS, ALBUQUERQUE DISTRICT SOUTHERN COLORADO REGULATORY BRANCH

201 WEST 8TH STREET, SUITE 350
PUEBLO, COLORADO 81003
June 30, 2022
Regulatory Division
SUBJECT: Jurisdictional Determination- Action No.SPA-2022-00123

Classic Communities
Attn: Loren Moreland
6385 Corporate Dr., Suite 200
Colorado Springs, Colorado 80919
lorenm@classichomes.com
Dear Mr. Moreland:

This letter responds to your request for a jurisdictional determination (JD) for forty (40) wetlands and one man-made pond associated with the Classic Communities-Jayne's Parcel, residential development. The approximately 141-acre project site is located near Sand Creek, centered at latitude 38.976682°, longitude -104.668357°, Colorado Springs, El Paso County, Colorado. We have assigned Action No. SPA-2022-00123 to your request. Please reference this number in all future correspondence concerning the site.

Based on the information provided, we concur with your aquatic resource delineation for the site, as depicted on the enclosed drawing labeled, SPA-2022-00123, Figure 1, prepared by Core Consultants, Inc. (enclosure 1). We have determined that the site does not contain waters of the United States that are subject to regulation under Section 404 of the Clean Water Act. The approximately 9.66 -acres of aquatic resources identified as Wetlands WT-A1 through WT-A40 and one man-made pond, on the above drawing are intrastate isolated aquatic resources with no apparent interstate or foreign commerce connection. As such, these aquatic resources are not regulated by the U.S. Army Corps of Engineers. This disclaimer of jurisdiction is only for Section 404 of the Federal Clean Water Act.

We are enclosing a copy of the Approved Jurisdictional Determination Form for your site (enclosure 2). A copy of this JD is also available at http://www.spa.usace.army.mil/reg/JD. This approved JD is valid for five years unless new information warrants revision of the determination before the expiration date.

You may accept or appeal this approved JD or provide new information in accordance with the attached Notification of Administration Appeal Options and Process and Request for Appeal (NAAOP-RFA) (enclosure 3). If you elect to appeal this approved JD, you must complete Section II of the form and return it to the Army Engineer Division, South Pacific, CESPD-PDS-O, Attn: Tom Cavanaugh, Administrative

Appeal Review Officer, P.O. Box 36023, 450 Golden Gate Ave, San Francisco, CA 94102 within 60 days of the date of this notice. Failure to notify the Corps within 60 days of the date of this notice means that you accept the approved JD in its entirety and waive all rights to appeal the approved JD.

If you have any questions, please contact Senior Project Manager Kyle Zibung by email at kyle.d.zibung@usace.army.mil, or telephone at (651) 290-5877. For program information or to complete our Customer Survey, visit our website at https://www.spa.usace.army.mil/Missions/Regulatory-Program-and-Permits/.

Sincerely,

for
Kara Hellige
Chief, Southern Colorado Branch

Enclosures

cc:
Natalie Graves, Core Consultants, Inc. (ngraves@liveyourcore.com)

Figure 4.4 Potential WOTUS Loc ation Map (North)

Figure 4.4 Potential WOTUS Location Map (South)

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): June 30, 2022

B. ST PAUL, MN DISTRICT OFFICE, FILE NAME, AND NUMBER: SPA-2022-00123, Classic

Communities-Jayne's Parcel AJD

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State:Colorado County/parish/borough: El Paso City: Colorado Springs
Center coordinates of site (lat/long in degree decimal format): Lat. $38.976682^{\circ}{ }^{\mathbf{N}}$, Long. $-104.668357^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 13
Name of nearest waterbody: Sand Creek

Name of watershed or Hydrologic Unit Code (HUC): 11020003-Fountain
\boxtimes Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

\boxtimes Office (Desk) Determination. Date: June 2, 2022
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are no"waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.: N/A

2. Non-regulated waters/wetlands (check if applicable): ${ }^{1}$

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: The review area for this determination is comprised of 40 individual Wetlands (identified as WT A1 through WT-A40) totaling 9.51 acres and one man-made pond totaling 0.15 acre located on the approximately 141acre tract. Based on a review of the National Hydrography Dataset (NHD) the nearest mapped potential relatively permanant water (RPW) is Sand Creek located approximately 1,500 feet southeast of the review area. The National Wetland Inventory (NWI) and NHD shows mapped wetland drainages with two mapped ephemeral streams in the eastern and western portion of the review area, however, the February 2022 Core Consultants, Inc., wetland delineation report (Core Report) did not find any defined bed/banks nor ordinary high water mark indicators within these two mapped features. The Core Report determined the mapping layers to be inaccurate and best characterized both features as multiple depressional wetlands seperated by upland swales. The upland swales sever a surface connection between the wetlands, pond, and Sand Creek. The Core Report notes that a culvert is present under Vollmer Road in the eastern portion of the review area near WT-A38, however, the outlet channel is comprised of a meandering upland swale with no observed surface connection to Sand Creek. Much of the land south of the JD review area has been previously graded for residential development resulting in altered surface hydrology patterns. Due to their small size and/or disturbed characteristics, Wetlands WT-A1 through WT-A40 and the man-made pond provide limited habitat functions to surrounding areas and exhibit tenuous ecological connections to nearby surface waters. Based on this information, the Corps has determined that Wetlands WT-A1 through WT-A40 and the man-made pond are isolated features with no surface or shallow subsurface hydrologic connection or ecological connection to a RPW or TNW. Wetlands WT-A1 through WT-A40 and the man-made pond do not border, neighbor, nor are contiguous with another water of the U.S. Wetlands WT-A1 through WT-A40 and the man-made pond are not seperated from other WOTUS by man-made dikes, barriers, or berms. Wetlands WT-A1 through WT-A40 and the man-made pond do not support a link to interstate or foreign commerce; they are not known to be used by interstate or foreign travelers for recreation or

[^0]other purposes; They do not produce fish or shellfish that could be taken and sold in interstate or foreign commerce; and they are not known to be used for industrial purposes by industries in interstate commerce. Therefore, the Corps has determined that Wetlands WT-A1 through WT-A40 and the man-made pond are isolated and therfore not regulated by the Corps under Section 404 of the CWA.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs: N/A
B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY): N/A
C. SIGNIFICANT NEXUS DETERMINATION: N/A
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): N/A
E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): N/A
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
Prior to the Jan 2001 Supreme Court decision in "SWANCC", the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
\square Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
Lakes/ponds: 0.15 acres.
\square Other non-wetland waters: acres. List type of aquatic resource:
\boxtimes Wetlands: 9.51 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: February 2022 Core Consultants, Inc. Wetland Delineation Report
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant.
\boxtimes Office concurs with data sheets/delineation report.
\square Office does not concur with data sheets/delineation report.Data sheets prepared by the Corps:
Corps navigable waters' study:
\boxtimes U.S. Geological Survey Hydrologic Atlas:
\boxtimes USGS NHD data.
USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale \& quad name:1:24K Falcon NW
\boxtimes USDA Natural Resources Conservation Service Soil Survey. Citation: El Paso County Soil Survey
National wetlands inventory map(s). Cite name: USFWS National Wetland Inventory
\square State/Local wetland inventory map(s):
\square FEMA/FIRM maps:
\square 100-year Floodplain Elevation is:
(National Geodectic Vertical Datum of 1929)
\boxtimes Photographs: \boxtimes Aerial (Name \& Date):2020, 2018, 2017, 2015, 2013, 2010 2008, 2006, 2005, 2000, 1994 or \square Other (Name \& Date):Previous determination(s). File no. and date of response letter:
Applicable/supporting case law:
\square
Applicable/supporting scientific literature:
Other information (please specify):
B. ADDITIONAL COMMENTS TO SUPPORT JD:

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applicant: Classic Communities c/o Loren
Moreland
File No.: SPA-2022-00123
Date: June 30, 2022
Attached is:
See Section below
INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission) \quad A
PROFFERED PERMIT (Standard Permit or Letter of permission)
B
PERMIT DENIAL \quad C
APPROVED JURISDICTIONAL DETERMINATION \quad D
PRELIMINARY JURISDICTIONAL DETERMINATION
SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://www.usace.army.mil/cecw/pages/reg_materials.aspx or Corps regulations at 33 CFR Part 331.
A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer (address on reverse). This form must be received by the division engineer within 60 days of the date of this notice.
C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer (address on reverse). This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer (address on reverse). This form must be received by the division engineer within 60 days of the date of this notice.
E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.
POINT OF CONTACT FOR QUESTIONS OR INFORMATION:
If you have questions regarding this decision and/or the appeal process you may contact:

Kyle Zibung
U.S. Army Corps of Engineers

201 West 8th Street, Suite 350
Pueblo, Colorado 81003
Phone: 651-290-5877
Email: kyle.d.zibung@usace.army.mil

If you only have questions regarding the appeal process you may also contact:

Thomas J. Cavanaugh
Administrative Appeal Review Officer
U.S. Army Corps of Engineers

South Pacific Division
P.O. Box 36023, 450 Golden Gate Ave

San Francisco, California 94103-1399
Phone: 415-503-6574, FAX 415-503-6646)
Email: Thomas.J.Cavanaugh@usace.army.mil

RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation and will have the opportunity to participate in all site investigations.

Signature of appellant or agent.
Date:
Telephone number:

HYDROLOGIC / STORMWATER QUALITY CALCULATIONS

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	JAYNES PROPERTY MDDP									SUMMARY					
	1305.02														
	11/23/22														
	MAW														
FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY															
BASIN	TOTAL AREA (AC)	DEVELOPED AREA/IMPERVIOUS AREA				LANDSCAPE/UNDEVELOPED AREAS				WEIGHTED			WEIGHTED CA		
		AREA (AC)	$\mathrm{C}(2)$	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	$\mathrm{C}(5)$	C(100)	CA(2)	CA(5)	CA(100)
EX-A	0.78	0.00	0.03	0.09	0.36	0.78	0.03	0.09	0.36	0.03	0.09	0.36	0.02	0.07	0.28
EX-B	2.80	0.00	0.03	0.09	0.36	2.80	0.03	0.09	0.36	0.03	0.09	0.36	0.08	0.25	1.01
EX-C	41.40	0.00	0.03	0.09	0.36	41.40	0.03	0.09	0.36	0.03	0.09	0.36	1.24	3.73	14.90
EX-D	1.30	0.00	0.03	0.09	0.36	1.30	0.03	0.09	0.36	0.03	0.09	0.36	0.04	0.12	0.47
EX-E	72.40	0.00	0.03	0.09	0.36	72.40	0.03	0.09	0.36	0.03	0.09	0.36	2.17	6.52	26.06
EX-F	8.70	0.00	0.03	0.09	0.36	8.70	0.03	0.09	0.36	0.03	0.09	0.36	0.26	0.78	3.13
EX-G	8.30	0.00	0.03	0.09	0.36	8.30	0.03	0.09	0.36	0.03	0.09	0.36	0.25	0.75	2.99
EX-H	6.50	0.00	0.03	0.09	0.36	6.50	0.03	0.09	0.36	0.03	0.09	0.36	0.20	0.59	2.34
OS-1	2.00	2.00	0.06	0.13	0.40	0.00	0.02	0.08	0.35	0.06	0.13	0.40	0.12	0.26	0.80
OS-2	5.30	5.30	0.06	0.13	0.40	0.00	0.02	0.08	0.35	0.06	0.13	0.40	0.32	0.69	2.12
EX-3	44.30	44.30	0.04	0.11	0.38	0.00	0.02	0.08	0.35	0.04	0.11	0.38	1.77	4.65	16.61
EX-4A	77.00	77.00	0.04	0.11	0.38	0.00	0.02	0.08	0.35	0.04	0.11	0.38	3.08	8.09	28.88
EX-4B	70.00	70.00	0.04	0.11	0.38	0.00	0.02	0.08	0.35	0.04	0.11	0.38	2.80	7.35	26.25
A	33.10	33.10	0.17	0.24	0.47	0.00	0.02	0.08	0.35	0.17	0.24	0.47	5.46	7.78	15.39
B	2.30	1.30	0.18	0.25	0.47	1.00	0.05	0.12	0.39	0.12	0.19	0.44	0.28	0.45	1.00
C	6.80	1.10	0.41	0.45	0.59	5.70	0.05	0.12	0.39	0.11	0.17	0.42	0.74	1.18	2.87
D	9.30	9.30	0.41	0.45	0.59	0.00	0.02	0.08	0.35	0.41	0.45	0.59	3.81	4.19	5.49
E	5.80	5.80	0.79	0.81	0.88	0.00	0.02	0.08	0.35	0.79	0.81	0.88	4.58	4.70	5.10
F	13.20	13.20	0.18	0.25	0.47	0.00	0.02	0.08	0.35	0.18	0.25	0.47	2.38	3.30	6.20
G	26.80	26.80	0.18	0.25	0.47	0.00	0.02	0.08	0.35	0.18	0.25	0.47	4.82	6.70	12.60
H	4.80	4.80	0.79	0.81	0.88	0.00	0.02	0.08	0.35	0.79	0.81	0.88	3.79	3.89	4.22
I	11.70	11.70	0.41	0.45	0.59	0.00	0.02	0.08	0.35	0.41	0.45	0.59	4.80	5.27	6.90
J	20.40	20.40	0.18	0.25	0.47	0.00	0.02	0.08	0.35	0.18	0.25	0.47	3.67	5.10	9.59
K	6.90	6.90	0.05	0.12	0.39	0.00	0.02	0.08	0.35	0.05	0.12	0.39	0.35	0.83	2.69
L	1.30	0.65	0.12	0.20	0.44	0.65	0.03	0.09	0.36	0.08	0.15	0.40	0.10	0.19	0.52
Total to Off-site Pond C (Tributary Basins: EX-4A, EX-4B, A, B, C)	189.20														
Total to on-site Pond 1 (Tributary Basins: EX-3, OS-1, OS-2, D thru K)	150.50														

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

	WEIGHTED			OVERLAND				STREET / CHANNEL FLOW				Tc	INTENSITY			TOTAL FLOWS		
BASIN	$\mathrm{CA}(2)$	CA(5)	CA(100)	C(5)	Length (ft)	Height (ft)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$	TOTAL (min)	$\begin{gathered} \mid(2) \\ (i n / h r) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{l}(5) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \mathrm{I}(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { Q(2) } \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & Q(5) \\ & (c f s) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}(100) \\ \text { (cfs) } \end{gathered}$
EX-A	0.02	0.07	0.28	0.09	240	9	18.3					18.3	2.58	3.23	5.41	0.1	0.2	2
EX-B	0.08	0.25	1.01	0.09	300	24	15.9	120	2.0\%	1.0	2.0	17.9	2.60	3.25	5.46	0.2	0.8	6
EX-C	1.24	3.73	14.90	0.09	300	18	17.5	1300	2.9\%	1.7	12.7	30.2	1.98	2.47	4.15	2	9	62
EX-D	0.04	0.12	0.47	0.09	225	10	16.7					16.7	2.68	3.36	5.64	0.1	0.4	3
EX-E	2.17	6.52	26.06	0.09	280	20	15.9	3400	2.5\%	1.6	35.8	51.8	1.34	1.66	2.79	3	11	73
EX-F	0.26	0.78	3.13	0.09	300	12	20.0	560	2.0\%	1.4	6.6	26.6	2.13	2.66	4.47	1	2	14
EX-G	0.25	0.75	2.99	0.09	300	10	21.2	420	2.0\%	1.4	4.9	26.2	2.15	2.69	4.51	1	2	13
EX-H	0.20	0.59	2.34	0.09	300	10	21.2	800	2.0\%	1.4	9.4	30.7	1.96	2.45	4.11	0.4	1.4	10
OS-1	0.12	0.26	0.80	0.08	300	10	21.4					21.4	2.39	2.99	5.01	0.3	0.8	4
OS-2	0.32	0.69	2.12	0.08	300	12	20.2					20.2	2.46	3.08	5.16	1	2	11
EX-3	1.77	4.65	16.61	0.08	300	10	21.4	650	2.0\%	1.4	7.7	29.1	2.02	2.53	4.24	4	12	70
EX-4A	3.08	8.09	28.88	0.08	300	9	22.2	2400	2.0\%	1.4	28.3	50.5	1.37	1.70	2.85	4	14	82
EX-4B	2.80	7.35	26.25	0.08	300	10	21.4	3500	1.8\%	1.3	43.5	64.9	1.07	1.32	2.22	3	10	58

JOB NAME:	JAYNES PROPERTY MDDP
JOB NUMBER:	1305.02
DATE:	11/23/22
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	Intensity		Flow		Inlet Size
					I(5)	I(100)	Q(5)	Q(100)	
E1	EX-4A	8.09	28.88	50.5	1.70	2.85	14	82	$\begin{aligned} & \begin{array}{l} \text { EX. 24" CMP } \\ \text { CULVERT } \end{array} \\ & \hline \end{aligned}$
E2	EX-4B	7.35	26.25	64.9	1.32	2.22	10	58	$\begin{aligned} & \text { EX STOCK OFF- } \\ & \text { SITE POND } \end{aligned}$
E3	EX-A, EX-B	0.32	1.29	18.3	3.23	5.41	1	7	$\begin{aligned} & \text { TYPE D CDOT } \\ & \text { INLET W/ 24" RCP } \end{aligned}$
E4	EX-4A, EX-4B, EX-C	19.16	70.03	64.9	1.32	2.22	25	155	PLANNED 48" RCP W/ MH AND GRATE
E5	EX-3	4.65	16.61	29.1	2.53	4.24	12	70	$\begin{aligned} & \text { EX. 24" CMP } \\ & \text { CULVERT } \end{aligned}$
E6	EX-G	0.75	2.99	26.2	2.69	4.51	2	13	$\begin{aligned} & \text { TYPE D CDOT } \\ & \text { INLET W/ 24" RCP } \end{aligned}$
E7	EX-H	0.59	2.34	30.7	2.45	4.11	1	10	$\begin{aligned} & \text { TYPE C CDOT } \\ & \text { INLET W/ 18" RCP } \end{aligned}$
E8	EX-3, EX-E, OS-2	11.86	44.80	51.8	1.66	2.79	20	125	$\begin{aligned} & \text { EX. 24" CMP } \\ & \text { CULVERT } \end{aligned}$
E9	DP-E8, EX-F, OS-1	12.90	48.73	55.8	1.55	2.60	20	127	MODIFIED 4'X14' TYPE D CDOT INLET W/ 54" RCP
E10	EX-D	0.12	0.47	16.7	3.36	5.64	0.4	3	SHEET FLOW TO NATURAL RAVINE

JOB NAME:	JAYNES PROPERTY MDDP
JOB NUMBER:	1305.02
DATE:	11/23/22
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	Intensity		Flow		Inlet Size
Design Point(s)					I(5)	I(100)	Q(5)	Q(100)	
D1	B	0.45	1.00	17.0	3.33	5.59	1	6	TYPE D CDOT INLET W/ 24" RCP
D2	EX-4A, EX-4B, A	23.21	70.52	64.9	1.32	2.22	31	156	FUTURE PUBLIC STORM SYSTEM
D3	Basin C	1.18	2.87	24.3	2.80	4.69	3	13	PLANNED 48" RCP W/ MH AND GRATE
D3A	D2, Basin C	24.39	73.39	66.9	1.28	2.14	31	157	EXIST. 48" PUBLIC STORM OUTFALL
D4	D	4.19	5.49	19.4	3.14	5.27	13	29	FUTURE PUBLIC STORM SYSTEM
D5	E	4.70	5.10	14.1	3.61	6.07	17	31	FUTURE PUBLIC STORM SYSTEM
D6	F	3.30	6.20	18.2	3.23	5.43	11	34	FUTURE PUBLIC STORM SYSTEM
D7	EX-3, G, 1/2 OS-2	11.70	30.27	37.9	2.13	3.57	25	108	FUTURE PUBLIC STORM SYSTEM
D8	1	5.27	6.90	19.4	3.13	5.26	17	36	FUTURE PUBLIC STORM SYSTEM
D9	J, 1/2 OS-2	5.44	10.65	21.5	2.98	5.01	16	53	FUTURE PUBLIC STORM SYSTEM
D10	L	0.19	0.52	12.0	3.86	6.48	0.7	3	NATURAL RAVINE
D11	TOTAL INFLOW POND 1 (DP-4 thru DP-9, incl. K and OS 1)	35.68	68.11	42.9	1.94	3.26	69	222	FULL-SPECTRUM POND 1 FACILITY

EFFECTIVE IMPERVIOUSNESS - POND C		
Basin	Acreage	Imp. $\%$
EX-4A	77.0	5%
EX-4B	70.0	5%
A	33.1	27%
B	2.3	30%
C	6.8	16%
Total	189.2	9.6%

EFFECTIVE IMPERVIOUSNESS - POND 1		
	Acreage	Imp. $\%$
Basin		
	44.3	5%
EX-3	2.0	10%
OS-1	5.3	10%
OS-2	9.3	65%
D	5.8	95%
E	13.2	30%
F	26.8	30%
G	4.8	95%
H	11.7	65%
I	20.4	30%
J	6.9	7%
K		
Total	150.5	$\mathbf{3 0 . 1} \%$

Project: JAYNES PROPERTY - MDDP				
Basin ID: POND 1				
Watershed Information				
$\text { Selected BMP Type }=\text { EDB }$				
Watershed Area $=$	150.50	acres		
Watershed Length $=$	4,400	ft		
Watershed Length to Centroid =	2,200	ft		
Watershed Slope $=$	0.020	f / ft		
Watershed Imperviousness =	30.10\%	percent		
Percentage Hydrologic Soil Group A =	0.0\%	percent		
Percentage Hydrologic Soil Group B $=$	100.0\%	percent		
Percentage Hydrologic Soil Groups C/D $=$	0.0\%	percent		
Target WQCV Drain Time $=$	40.0	hours		
Location for 1-hr Rainfall Depths = User Input				
After providing required inputs above including 1 -hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.				
Water Quality Capture Volume (WQCV)Excess Urban Runoff Volume (EURV)	1.904	acre-feet acre-feet		acre-feet
	4.650			cre-feet
2-yr Runoff Volume (P1 = 1.19 in .) =	4.726	acre-feet	1.19	inches
$5-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$	7.661	acre-feet	1.50	inches
$10-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.75$ in.) $=$	10.364	acre-feet	1.75	inches
$25-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	14.440	acre-feet	2.00	inches
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$	17.523	acre-feet	2.25	inches
$100-$ yr Runoff Volume (P1 = 2.52 in .) $=$	21.638	-feet	2.52	inches
$500-\mathrm{yr}$ Runoff Volume (P1 = 3.48 in .) $=$	34.043	acre-feet	3.48	inches
Approximate 2-yr Detention Volume $=$	3.328	acre-feet		
Approximate 5 -yr Detention Volume $=$	4.761	acre-feet		
Approximate 10-yr Detention Volume $=$	6.939	acre-feet		
Approximate $25-\mathrm{yr}$ Detention Volume $=$	8.044	acre-feet		
Approximate 50-yr Detention Volume $=$	8.475	acre-feet		
Approximate $100-\mathrm{yr}$ Detention Volume $=$	10.017	acre-feet		

Define Zones and Basin Geometry
Zone 1 Volume (Zone 2 Volume (EURV - Zone 1)
 Total Detention Basin Volume $=10.017$ acre-feet Initia Surcharge Volume (ISV) Total Avaital Surcharge Depth (ISD) Depth of Trickle Channel $\left(H_{T C}\right)=$
Dital Available Detention Depth $\left(\mathrm{H}_{\text {tol }}\right)$ Slope of Trickle Channel (S_{TC}) Slopes of Main Basin Sides $\left(\mathrm{S}_{\text {main }}\right)=$ Basin Length-to-Width Ratio ($R_{L / w}$)

1.904	acre-feet
2.747	acre-feet
5.367	acre-feet
10.017	acre-feet
user	ft^{3}
user	ft
user	ft
user	ft
user	f / ft
user	$\mathrm{H}: \mathrm{V}$
user	

Depth Increment =	1.00								
Stage - Storage	$\begin{aligned} & \text { Stage } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \hline \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \end{aligned}$	Length (f)	Width (t)	$\begin{aligned} & \text { Area } \\ & \left(t^{2}\right) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Optional } \\ \text { Overide } \\ \text { Area }\left(\mathrm{ft}^{2}\right) \\ \hline \end{array}$	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(t^{3}\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac}-\mathrm{ft}) \end{aligned}$
Top of Micropool	--	0.00	--	--	--	300	0.007		
7096	--	1.50	--	--	--	9,226	0.212	7,144	0.164
7098	--	3.50	--	--	--	55,588	1.276	71,958	1.652
7100	--	5.50	--	--	--	116,539	2.675	244,085	5.603
7102	--	7.50	--	--	--	132,547	3.043	493,171	11.322
7104	--	9.50	--	--	--	144,509	3.317	770,227	17.682
7106	--	11.50	--	--	--	156,874	3.601	1,071,610	24.601
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		--	--	--				
	--		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	--	\cdots				
	--		--	--	--				
	--		--	\cdots	\cdots				
	--		--	--	\cdots				
	--		--	--	\cdots				
	\cdots		\cdots	\cdots	--				
	--		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	--	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		--	\cdots	\cdots				
	-		\cdots	\cdots	\cdots				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches		Zone 3 Restrictor	Not Selected
	2.50	N/A		Outlet Orifice Area $=$ Outlet Orifice Centroid = e of Restrictor Plate on Pipe $=$	9.62	N/A
	42.00	N/A			1.75	N/A
	42.00		inches		3.14	N/A
ser Input: Emergency Spillway (Rectangular or Trapezoidal)		ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Spillway Design Flow Depth $=$ feet Stage at Top of Freeboard $=$ $\mathrm{H}: \mathrm{V}$ Basin Area at Top of Freeboard feet Basin Volume at Top of Freeboard$=$			Calculated Parameters for Spillway	
Spillway Invert Stage=	8.50				0.94	feet feet acres acre-ft
Spillway Crest Length =	100.00				10.44	
Spillway End Slopes =	3.00				3.45	
Freeboard above Max Water Surface =	1.00				20.86	

Routed Hydrograph Results Design Storm Return Period =	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.48
CUHP Runoff Volume (acre-ft) =	1.904	4.650	4.726	7.661	10.364	14.440	17.523	21.638	34.043
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	4.726	7.661	10.364	14.440	17.523	21.638	34.043
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	12.7	35.9	55.4	100.6	126.4	162.7	264.0
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A		18.9				133.7	
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.08	0.13	0.37	0.67	0.84	0.89	1.75
Peak Inflow Q (cfs) $=$	N/A	N/A	48.3	78.9	102.9	154.8	186.9	228.6	353.8
Peak Outflow Q (cfs) $=$	1.0	1.7	1.6	14.5	34.7	71.8	99.5	130.3	208.6
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.8	0.6	0.7	0.8	1.0	0.8
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.5	1.1	1.5	2.0	2.2
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	40	60	62	68	66	63	60	58	51
Time to Drain 99\% of Inflow Volume (hours) =	42	65	66	75	74	72	71	69	65
Maximum Ponding Depth (ft) $=$	3.69	5.13	5.02	5.82	6.11	6.52	6.77	7.16	8.86
Area at Maximum Ponding Depth (acres) $=$	1.41	2.42	2.33	2.73	2.79	2.86	2.91	2.98	3.23
Maximum Volume Stored (acre-ft)	1.907	4.661	4.376	6.469	7.270	8.399	9.120	10.298	15.555

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.01	0.70
	0:15:00	0.00	0.00	1.18	1.97	2.47	1.67	2.23	2.07	4.14
	0:20:00	0.00	0.00	5.31	8.66	11.42	5.79	6.96	7.67	14.79
	0:25:00	0.00	0.00	18.09	31.16	44.09	18.40	22.31	26.01	56.63
	0:30:00	0.00	0.00	35.29	60.25	81.76	67.45	83.22	96.77	168.78
	0:35:00	0.00	0.00	45.52	75.92	99.80	119.53	146.29	174.57	280.67
	0:40:00	0.00	0.00	48.27	78.88	102.95	146.65	177.81	214.82	336.82
	0:45:00	0.00	0.00	46.70	75.54	98.86	154.85	186.93	228.61	353.76
	0:50:00	0.00	0.00	43.26	70.20	92.20	151.77	182.68	225.60	347.62
	0:55:00	0.00	0.00	40.01	65.09	85.77	143.81	173.28	216.13	333.32
	1:00:00	0.00	0.00	37.19	60.24	79.91	133.77	161.55	205.36	316.97
	1:05:00	0.00	0.00	34.72	55.97	75.00	124.01	150.12	194.82	301.42
	1:10:00	0.00	0.00	32.39	52.58	71.30	114.29	138.82	181.41	282.33
	1:15:00	0.00	0.00	30.03	49.37	68.02	105.13	128.05	165.92	260.02
	1:20:00	0.00	0.00	27.71	45.82	63.89	96.11	117.15	149.85	235.53
	1:25:00	0.00	0.00	25.41	42.06	58.57	87.01	105.95	133.66	209.88
	1:30:00	0.00	0.00	23.15	38.33	52.84	77.97	94.83	118.47	185.59
	1:35:00	0.00	0.00	21.02	34.82	47.35	69.01	83.81	104.08	162.92
	1:40:00	0.00	0.00	19.20	31.72	43.22	60.67	73.67	91.18	143.81
	1:45:00	0.00	0.00	17.90	29.18	40.19	54.60	66.52	81.81	129.47
	1:50:00	0.00	0.00	16.95	27.03	37.62	49.79	60.75	74.25	117.58
	1:55:00	0.00	0.00	15.92	25.06	35.14	45.72	55.80	67.60	107.04
	2:00:00	0.00	0.00	14.77	23.17	32.48	42.00	51.26	61.57	97.42
	2:05:00	0.00	0.00	13.43	21.00	29.31	38.07	46.41	55.34	87.31
	2:10:00	0.00	0.00	11.96	18.63	25.88	33.84	41.16	48.91	76.79
	2:15:00	0.00	0.00	10.53	16.30	22.54	29.69	36.03	42.77	66.75
	2:20:00	0.00	0.00	9.18	14.08	19.37	25.73	31.14	37.00	57.26
	2:25:00	0.00	0.00	7.91	11.97	16.41	21.93	26.45	31.42	48.16
	2:30:00	0.00	0.00	6.69	9.96	13.62	18.27	21.95	25.99	39.37
	2:35:00	0.00	0.00	5.51	8.03	10.98	14.72	17.59	20.69	30.86
	2:40:00	0.00	0.00	4.39	6.22	8.54	11.31	13.42	15.58	22.97
	2:45:00	0.00	0.00	3.35	4.64	6.56	8.17	9.61	10.93	16.63
	2:50:00	0.00	0.00	2.54	3.60	5.26	5.88	7.05	7.93	12.42
	2:55:00	0.00	0.00	2.00	2.95	4.33	4.39	5.34	5.89	9.37
	3:00:00	0.00	0.00	1.64	2.44	3.57	3.36	4.12	4.36	7.04
	3:05:00	0.00	0.00	1.37	2.02	2.94	2.59	3.18	3.22	5.25
	3:10:00	0.00	0.00	1.15	1.66	2.42	2.02	2.49	2.37	3.90
	3:15:00	0.00	0.00	0.96	1.36	1.97	1.60	1.96	1.74	2.90
	3:20:00	0.00	0.00	0.79	1.11	1.59	1.26	1.54	1.30	2.20
	3:25:00	0.00	0.00	0.65	0.89	1.26	1.00	1.22	1.04	1.74
	3:30:00	0.00	0.00	0.54	0.70	0.98	0.79	0.96	0.83	1.37
	3:35:00	0.00	0.00	0.44	0.55	0.76	0.62	0.75	0.67	1.09
	3:40:00	0.00	0.00	0.34	0.42	0.59	0.48	0.58	0.52	0.84
	3:45:00	0.00	0.00	0.26	0.31	0.44	0.36	0.44	0.39	0.62
	3:50:00	0.00	0.00	0.19	0.22	0.32	0.26	0.32	0.28	0.44
	3:55:00	0.00	0.00	0.14	0.15	0.21	0.18	0.21	0.19	0.28
	4:00:00	0.00	0.00	0.09	0.10	0.13	0.11	0.13	0.11	0.16
	4:05:00	0.00	0.00	0.05	0.06	0.07	0.06	0.07	0.06	0.08
	4:10:00	0.00	0.00	0.03	0.03	0.03	0.03	0.03	0.02	0.02
	4:15:00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage-Storage Description	Stage [ft]	Area [ft $\left.{ }^{2}\right]$	Area [acres]	Volume [ft $\left.{ }^{3}\right]$	Volume [ac-ft]	Total Outflow [cfs]
stanges best results, include the all grade slope						
changes (e.g. ISV and Floor)						
from the S-A-V table on						
Sheet 'Basin'.						

				-		
	-		-	-		
				-		

REFERENCE MATERIAL

EXISTING DRAINAGE MAP HOMESTEAD NORTH

COMPOSITE \% IMPERVIOUS \& COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:		Home	ad No	rth Fil. 1			Pro	ame:	Homestea	Nor	Filing					
Location:		El Paso	County					No	25188.00							
								d By:	ARJ							
							Ch	d By:								
								Date:	6/15/22							
			/Pave	(100% Im	pervious)	Resid	ial (4	-65\%	mpervious)		wns (2	Imper	ious)	Basin		Basins Total
Basin ID	Area (ac)	C_{5}	C_{100}	Area (ac)	$\begin{array}{\|c\|} \hline \text { Weighted } \\ \text { \% Imp. } \end{array}$	C_{5}	C_{100}	Area (ac)	$\begin{array}{\|c\|} \hline \text { Weighted } \\ \text { \% Imp. } \end{array}$	C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Weighted } \\ \text { \%Imp. } \end{gathered}$			
C1	2.82	0.90	0.96	0.49	17.2\%	0.45	0.59	2.25	51.7\%	0.08	0.35	0.09	0.1\%	0.52	0.65	69.0\%
C2.1	0.20	0.90	0.96	0.18	90.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.02	0.2\%	0.82	0.90	90.7\%
C2.2	4.69	0.90	0.96	1.26	26.9\%	0.45	0.59	3.33	46.1\%	0.08	0.35	0.10	0.0\%	0.56	0.68	73.0\%
C2.3	0.83	0.90	0.96	0.28	34.1\%	0.45	0.59	0.41	32.4\%	0.08	0.35	0.13	0.3\%	0.54	0.68	66.9\%
C3.1	0.35	0.90	0.96	0.25	72.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.09	0.5\%	0.68	0.79	73.3\%
C3.2	1.66	0.90	0.96	0.42	25.1\%	0.45	0.59	0.96	37.7\%	0.08	0.35	0.28	0.3\%	0.50	0.64	63.2\%
C4.1	6.34	0.90	0.96	1.04	16.4\%	0.45	0.59	4.76	48.8\%	0.08	0.35	0.55	0.2\%	0.49	0.63	65.5\%
C4.2	3.59	0.90	0.96	0.59	16.4\%	0.45	0.59	2.20	39.8\%	0.08	0.35	0.65	0.4\%	0.44	0.58	56.6\%
C5	0.16	0.90	0.96	0.13	80.9\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.03	0.4\%	0.74	0.84	81.3\%
C6	2.59	0.90	0.96	0.27	10.6\%	0.45	0.59	0.32	8.1\%	0.08	0.35	1.89	1.5\%	0.21	0.43	20.2\%
36" Pipe w/ Forebay	23.23															61.3\%
D1	1.77	0.90	0.96	0.69	38.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	1.14	1.3\%	0.40	0.60	40.1\%
D2	1.44	0.90	0.96	0.79	54.9\%	0.45	0.59	0.00	0.0\%	0.08	0.35	1.02	1.4\%	0.55	0.78	56.4\%
D3	0.18	0.90	0.96	0.12	67.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.06	0.7\%	0.63	0.76	67.6\%
D4	0.19	0.90	0.96	0.11	56.6\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.08	0.9\%	0.54	0.70	57.5\%
D5	0.91	0.90	0.96	0.70	76.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.21	0.5\%	0.71	0.82	77.0\%
D6	0.83	0.90	0.96	0.57	68.4\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.26	0.6\%	0.64	0.77	69.0\%
D7	0.75	0.90	0.96	0.59	78.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.14	0.4\%	0.72	0.82	78.9\%
D8	0.72	0.90	0.96	0.49	68.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.17	0.5\%	0.64	0.74	69.3\%
OffSite Basins																
OS1	2.84	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	2.85	2.0\%	0.08	0.35	2.0\%
OS2	179.61	0.90	0.96	0.91	0.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	178.71	2.0\%	0.08	0.35	2.5\%
OS3	11.98	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	11.99	2.0\%	0.08	0.35	2.0\%
60" Pipe w/ Forebay	201.22															4.4\%
Pond C	224.4															10.3\%

point 5C, a 15' type R sump inlet. Basin C5 collects runoff from basin C3.2 and C5. The runoff from basin C ultimately outfalls into pond C . In the event the inlet clogs at Basin C 5 the runoff will overflow to pond C . A berm has been graded to ensure that the overflow path will go into pond C .

Basin C6 2.59 acres and 20% percent impervious, is comprised of pond C and some single-family residential area. Runoff ($\mathrm{Q}_{5}=2.5 \mathrm{cfs}, \mathrm{Q}_{100}=8.8 \mathrm{cfs}$) generated in Basin B 11 sheet flows into Pond C where it is treated for water-quality and is detained up until the 100 year-event. The MHFD Detention sheet for pond C is shown in Appendix C of this report.

Pond C has a tributary area of 224.3 acres and is 10.3% impervious. Pond C has been graded in to fit the design volume, as shown in Appendix C of this report. This pond will be built in phase 1 of Homestead North at Sterling Ranch. The Pond C overflow emergency spillway will overflow into Sand Creek. The WQCV, 5 year and 100 year volumes, releases rates and stages for pond C are shown in Table 2.3 below. These results correspond to the Routed Hydrograph results, as shown in Appendix C of this report.

	TABLE 2.3 Pond C				
	Stage -ft	Volume (Acres)	Release Rate (cfs)		
WQCV	3.32	1.288	0.7		
5 Year	6.22	4.310	20.6		
100 Year	9.94	9.263	173.8		

The following basins are tributary to the adjacent portion of Vollmer Road being designed by JR Engineering. Runoff will be detained within pond C and the runoff will then be released into Sand Creek adjacent to the crossing of Briargate road and Sand Creek.

Basin D1 has a tributary area of 1.77 acres and is 40.1% impervious. Basin D1 consists of the northwest portion of Vollmer road (Rural Cross Section). Runoff from basin D1 ($\mathrm{Q}_{5}=2.4$ cfs, $\mathrm{Q}_{100}=6.0 \mathrm{cfs}$) drains to an adjacent roadside swale and drains into a type C inlet at design point 1D runoff is then piped at design point 1.1D in confluence with upstream runoff from the inlet collect at design point 1o. From here on the runoff is piped with upstream runoff from basin OS1 into the Vollmer storm sewer system.

Basin D2 has a tributary area of 1.44 acres and is 56.4% impervious. Basin D2 consists of the northeast portion of Vollmer road (Rural Cross Section). Runoff from basin D2 ($\mathrm{Q}_{5}=2.8 \mathrm{cfs}, \mathrm{Q}_{100}=6.6$ cfs) drains to an adjacent roadside swale and drains into a type C inlet at design point 2D. From here

DETENTION BASIN OUTLET STRUCTURE DESIGN

DRAINAGE MAPS

[^0]: ${ }^{1}$ Supporting documentation is presented in Section III.F.

