Drainage Letter/Report

for the

Manley Tract El Paso County, Colorado

April, 2022

Prepared for: Ms. Nancy Manley 4645 North Curtis Road Falcon, Colorado 80831

Prepared by:

Kenneth C. Harrison, P.E. KCH Engineering Solutions 5228 Cracker Barrel Circle Colorado Springs, Colorado 80917 719-246-4471 ksharrison5228@msn.com

El Paso County Project Number

Add "VR2310"

Job No: 2021-101

TABLE OF CONTENTS

	Certifications and Approvals	2
١.	Report Purpose	4
11.	General Property Description and	
	Acreage	4
III.	Design Criteria and Methodology	5
IV.	FEMA Floodplain	
V.	Hydrologic Soils Information	
VI.	Offsite Drainage Conditions	
VII.	Onsite Drainage Characteristics	
/III.	Offsite/Onsite Proposed Drainage Conditions	
IX.	Full Spectrum Detention Pond	9
Χ.	Four Step Process	10
XI.	Drainage/ Bridge Fees	
XII.	Summary	11
	APPENDIX	
	Exhibit 1: Location Maps	

Exhibit 1:	Location Maps
Exhibit 2:	FEMA FIRM Map
Exhibit 3:	SCS Soils Map and Data
Exhibit 4	Charts, Tables and Correspondence
Exhibit 5:	Drainage Basin Planning Study Exhibits
Exhibit 6	Existing Plat and Replat
Exhibit 7	Hydrologic Summary per Existing Plat
Exhibit 8:	Hydrologic Summary per Replat
Exhibit 9:	Hydraulic Summary for Replat
Exhibit 10:	Drainage Conditions Map (map pocket)

Certifications and Approvals

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report had been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparation this report

Signature	(Kenneth C. Harrison, P.E.)	
Developer/Owner S		n all of the
	(Business Name)	
Ву:	(Doto)	
(Signature	e) (Date)	
Print Name and Title	9	
Address:		
Please revise EPC signature block to the following:	El Paso County: Filed in accordance with the requirements of the Drainag Manual, Volumes 1 and 2, El Paso County Engineering County	
For El Paso County	and Land Development Code as amended.	
(Signature)	Joshua Palmer, P.E. County Engineer / ECM Administrator	Date
(Print name) Flood Plain Statem	Conditions:	

See Section V of this report

I. REPORT PURPOSE

The purpose of this replat is to **only** modify the existing lot lines. No surface improvements are proposed. As a result, there will be **no changes** to the existing drainage patterns as described in the approved Drainage Report (September 2000) prepared by Law and Marrioti. This Letter/ Report is submitted as required by El Paso County for replats of previously platted parcels when there are to be **no** or only negligible changes to the drainage characteristics. This report will also address any criteria changes that have occurred since 2000. Included in the Appendix (*Exhibit 4*) is correspondence with El Paso County outlining the information that is to be addressed in this Letter/ Report.

The purpose of this project is to relocate lot lines only. **No** surface improvements are proposed. Therefore, there will be **no changes** to the current drainage conditions are

A Preliminary/ Final Drainage Report was prepared by Law and Marrioti Consultants Inc. The plat included four (4) lots and an out parcel labeled as Future Phase Two. The plat was recorded July 29, 2002. The report was filed by El Paso on September 20, 2000. Pertinent sections of this report are included in *Exhibit 5 of the Appendix*. The purpose of this Drainage Letter is to show that the replat will have **no impact** on the characteristics of the existing stormwater runoff as described in the approved Drainage Report. Greater detail for this report was required only to identify any impacts that the reduced flows from offsite areas (sub basin OS1) may have.

II. GENERAL PROPERTY DESCRIPTION AND ACREAGE

Manley Subdivision is located in the Southwest quarter of the Southwest quarter of Section 22, Township 13 south, Range 64 West, of the 6th PM in the County of El Paso, State of Colorado. More precisely, the parcel is located in the northeast corner of the Curtis Road/ Jones Road intersection (*Exhibit 1, Appendix*). The site is located in the Black Squirrel Creek Drainage Rosin Revise to "Solberg Ranch"

Manley Subdivision presently consists of four (4) lots and an "out-parcel labelled as Future Phase 2 Several structures have been constructed on the property These structures were there when the Law and Marrioti report was prepared (*Exhibits 2, Appendix*). The development is covered with native grasses and weeds. General site topography is characterized by a gentle slope from the northwest to the southeast at an average slope of approximately 2.5%.

Topography

The topographic map was obtained from GIS mapping obtained from EI Paso County. The site is gently rolling from an elevation of 6610.0 at the northwest corner and 6566.0 at the southwest corner over 2,700 feet in length resulting in an average slope of 1.6%.

Clarify the term property. Are you referring

to the existing subdivision, lots 1-4, or the "out-parcel".

Structures

There are several single-family residential structures on the project site. They are located on Lots 2, 3, and 4 of the original plat. The approximate location is shown on *Exhibit 2 in the Appendix*. There are currently are no plans to add additional structures as part of this replat.

III. DESIGN CRITERIA AND METHODOGY

El Paso County Drainage Criteria Manual, Volume I.

City of Colorado Springs Drainage Criteria Manual (where included with the El Paso County Drainage Criteria Manual).

Soil Survey of El Paso County Area, Colorado United States Department

Detention/ Water Quality

Please revise FEMA Map Number to 08041C0568G effective 12/7/2018.

IV. FEMA FLOODPLAIN

The project site is located in FEMA map 080059 (eff 10/2020) (Exhibit 2, Appendix). The entire site is located outside the 100-year floodplain in Zone X which is an "Area of Minimal Disturbance" for which there are no special requirements for the construction of commercial or industrial structures.

V. HYDROLOGIC SOILS INFORMATION

A Custom Soil Resource Report (*Exhibit 3, Appendix*) was obtained that shows the approximate location as well as a description of the soil associated groups. All of the soils are classified as either hydraulic group A or B. The soils are identified as follows:

- Blakeland loamy sand (SCS No. 8)
- Blendon Sandy Loam (Blendon Sandy Loam (SCS No. 10)
- Ellicot Loamy coarse Sam (SCS No. 28)
- Stapleton Sandy loam (SCS No. 83)
- Tructon Loamy Sand (SCS No. 98)
- Ustic Torrifluvents (SCS No. 101)

Please add "Existing" to the header if these are existing conditions.

VI. OFFSITE DRAINAGE CONDITIONS

All areas for offsite and onsite sub basins were determined using GIMS mapping provided by El Paso County. This mapping was also used to compare the technical sections of the Law and Marrioti report with similar sections of this report (Exhibit 10).

Offsite Areas North of the subdivision

Storm water from areas north of the Manley subdivision is collected by swales #1 and #3. At no point does water from these swales enter the project site. Analysis of these swales is beyond the scope of this project.

Offsite Sub Basin OS-1 and Swale 4 (adjacent to Curtis Road)

This area is located directly west of the Manley tract. OS1 has an area of approximately 208.5 acres. It has an average slope of 1.6%, and is vegetated with long prairie grasses and an occasional bush. The storm water from the west sheet flows east and then is collected by a roadside swale (S4) which functions as a borrow ditch along the westerly side of Curtis Road. The water is then routed southerly to DP1 where a 24" CMP has been installed to carry the water under Curtis Road. The water discharges into a natural swale with no distinction features. The water then is routed through the subdivision via a small grass lined nondescript swale.

This area has been described in two (2) other drainage reports. Each report has different areas and storm water flows. The following summarizes the area, method used to determine storm flow rates, and resulting flow rates. The Design point is the same for all three (3) and is located at the upstream end of the existing 24" CMP culvert installed under Curtis Road approximately 200 feet north of the Curtis Road/ Jones Road intersection.

1. <u>Law and Marrioti Report</u>: Preliminary/ Final Drainage Report for Manly Subdivision.

Prepared by Law and Marrioti, approved by EPC September, 2000.

- Design Point: DP1
- Offsite area: 185 acres per the USGS mapping.
- Method: Rational. The current EPS design standard states that the upper limit for using the Report Rational Method is 110 acres

Flow Rates at DP1

Q5: 78.7 cfs

Q100: 207 cfs

Clarify this is referring to the location of DP1 for this current drainage report and not from the referenced report.

2 Windmill Flats Final Drainage Report,

Prepared by Berge-Brewer, March 2002

Design Point: DP3

• Offsite area: 43 = (plus or minus) acres per the EPC GIS mapping.

Method: TR55

■ Flow Rates at DP1

Q5: 20.4 cfs Q100: 92.5 cfs

Change to DP3

Area increased by over 2 times. Flow rates should not be the same with that big of a change.

eplat Report (this report): Preliminary/Final Drainage Letter/ report for e Manley Subdivision Replat:

repared by KCH Engineering Solutions, April 2022, to be reviewed and recorded by EPC.

Design Point: DP1

Offsite area: 208.5 acres per the EPC GIS mapping.

Method: TR55

Flow Rates at DP1

Q5: 20.4 cfs Q100: 92.5 cfs

Copies of pertinent pages of each of the existing drainage reports are included in *Exhibit 5* of the Appendix

Please clarify statement. How are design flows being reduced?

VII. ONSITE DRAINAGE CHARACTERISTICS

It should be noted that the following hydrologic and hydraulic analyses were **only** done to determine the impact that the reduction in flows which is assume to be minimal.

This brief analysis was done only to note any impact that the reduction of the design flows would have on the existing drainage features. The **only** purpose for this replat is to change several lot lines and **not alter** or add to present drainage features. Therefore, there are no changes to any drainage facilities described in the Law and Marrioti report.

Onsite Drainage

The onsite subbasins shown on this Drainage Map are different than those shown on the Law and Marrioti Drainage Map. The Drainage Map developed for this report used the most up-to-date GIS Mapping to prepare a detailed and accurate location of hydrologic sub basins.

The following is a comparison of the stormwater generated by the **entire site** for both this report and the Law and Marrioti report;

Law and Marrioti Report (Exhibit 7, Appendix)

Contributing sub basins

Sub Basin OS-A (185 acres), sub basin A (23.4 acres) and subbasin B

(16.5 acres)

Total Drainage Area: 224.90 acres

Law and Marrioti reports shows 6.8 cfs. Please revise.

Q5 Design Flows at DP2 and DP3

Q5: discharge at DP2 = 88.9 cfs, discharge at DP3 = 5.6 cfs;

Total Discharge from Onsite and offsite basins: 94.5 cfs:,

Q100 Design Flows:

Q5: discharge at DP2 = 227 cfs, discharge at DP3 = 17.4 cfs;

Different maps should be different exhibit #'s

Total Discharge from Onsite and offsite basins: 244.4 cfs:,

KCH Engineering Solutions (Exhibit 7, Appendix)

The following summarizes the area and storm discharge at pertinent Design Points

Drainage Areas

Area draining to DP2:

Sub Basin OS1 (208.50 acres), Sub basins A (14.3 acres), D (6.63 acres), and E (2.23 acres).

Total Drainage Area draining to DP2 231.66 acres...

Area draining to DP3:

Sub basin B (13.82 acres)

Total Drainage Area draining from DP3: 13.82 acres

Total area draining from the entire site: 245.48 acres

Design storm summary

The following summarizes the total runoff from the site (Exhibit 8, Appendix)

Q5 Design Flows at DP2 and DP3 and Sub basin C

The following combines storm water runoff amounts where the Rational Method was used (B and C) and amounts where the TR55 method was used (OS1, A, D, and E) (Exhibit 8, Appendix). It is assumed that the runoff amounts are additive.

This heading and paragraph is confusing, as DP3 and Basin C should not add to anything, as released flows are in different locations.

5-year storm

Sub basin B: 3.7 cfs (Rational) Sub basin C:0.5 cfs (Rational) Sub basins OS1, A, D, E (TR55)

Q5: 20.44 cfs

Total Q5: 24.64 cfs

100-year storm

Change basin name to

Sub basin B: 27.3 cfs (Rational) Sub basin C:3.5 cfs (Rational)

Sub basins OS1, A, D, E (TR55): 92.5 cfs

Total Q100: runoff: 123.3 cfs

The following is a summary of the estimated design flows at each design point. Since the location of the design points are different in the Law and Marrioti report only the total outflow from the site was compared. It should be noted the TR55 Method was used for drainage areas greater than 110 acres instead of the Rational Method used in the Law and Marrioti report.

Highlighted items do not match

so both tables match. OS-1 to match drainage map and text **Existing Runoff Total Acres** Design **Sub Basins** Point Q5 100 (acres) cfs cfs OS-A 1 208.56 20.4 88 TR55 Method OS-A, TR55/Rational 2 231.69 23.8 119.1 A, D, E Methods Rational 3 В 13.82 3.7 27.3 Method TR55/Rational 4 ÒS- A, A, D, 23.4 229.4 116.10 Methods

Please discuss swales 3,4,5,6,7, and 8. They are shown on the drainage map but are not discussed in the report.

Swales 4 & 7 do not need discussed as they are off but do include Swale 2.

with summary table on drainage map in appendix. Please revise

Include discussion of existing 24" cmp. Does it overtop? If so, by how much? Outlet velocity? Does it have outlet protection, etc? Also include discussions for structures 2 and 3 which are labeled on the drainage map.

OS-A is not shown on the drainage map. Please revise map.

Design Point 4

Design Point 4 is located along the southerly boundary of the site adjacent to Jones Road at the location where the private driveway enters the site

Hydrological Characteristics:

Drainage Area: 208.53 (OS-A, A, D)

Design Flow: OS-A: Q5= 23.9 cfs, Q100= 92.5cfs

Area and flows do not match with information on summary table on drainage map. Please revise accordingly.

Swale 2 (onsite):

Drainage Area: OS-A, A, D

Design Flow: 5yr 23.9:, 100yr: 92.5

Slope = 2.6% + / -

Depth of flow: 5yr= 0.6 ft, 100yr= 1.22 ft Velocity: 5yr = 4.9 fps, 100yr = 7.3 fps Max velocity for a natural swale per DCM table 10-4. Include discussion that current swale is stable, no signs of erosion, etc and no grading or changes to site, shall continue to remain stable. Include what overall depth of channel is and how much freeboard is provided, if any.

Design Point 5

Please show design point 5 on the drainage map.

DP 5 is located in a sump area located along the north side of Jones Road approximately 1,250 feet west of the southeast corner of the site. Currently, stormwater ponds in this area and then overtops the embankment and is routed to the Jones and Curtis Road intersection.

Design Point 6

Please show design point 6 on the drainage map.

DP 6 is located at the northeasterly corner of the site. Runoff from Sub basin C sheet flows offsite to a natural field. Not grading in this area is to be accomplished.

VIII. OFFSITE / ONSITE PROPOSED DRAINAGE CONDITIONS

The Proposed Conditions Map is the same as the Existing Conditions Map. Only one (1) map is required since the developed conditions is no different than the existing conditions.

IX. FULL SPECTRUM DETENTION POND

Criteria

El Paso County Engineering Criteria Manual, Appendix I, contains the policies and procedures for Stormwater Quality. Section I.7.1.B provides for exclusions to the requirements to provide Post Construction Stormwater Quality facilities. All areas of the *Manley Subdivision* project qualify for the allowed exemptions. No water quality or detention facilities are required for this site as discussed below.

The project consists of large single-family residential lots. No improvements are planned as part of this replat. There are no activities or improvements that require permanent water quality facilities for this project based on the exclusions found in Section I.7.1.5.B.2, Section I.7.1.5.B.3 and Section

Please clarify which exclusions are being referenced from the ECM. Provide the name of the exclusion for example ECM Appendix I.7.1.B.5 Large Lot Single Family Sites.

The total area of the site is 23.776 acres. All of the property is comprised of 5-acre (minimum), and greater, single-family residential lots. The total lot imperviousness for 5-acre rural residential lots is less than 10%. The Manley Tract will not need a detention pond since there will be no changes are proposed.

Please revise statement. Exclusions pertain to permanent water quality only.

X. FOUR STEP PROCESS

Since no physical changes are proposed from those described in the approved Law and Marrioti report. A discussion regarding the Four Step Process is not required.

XI. <u>DRAINAGE/ BRIDGE FEE CALCULATIONS</u>

Drainage Fees have already been paid and therefor none are due.

XII. SUMMARY

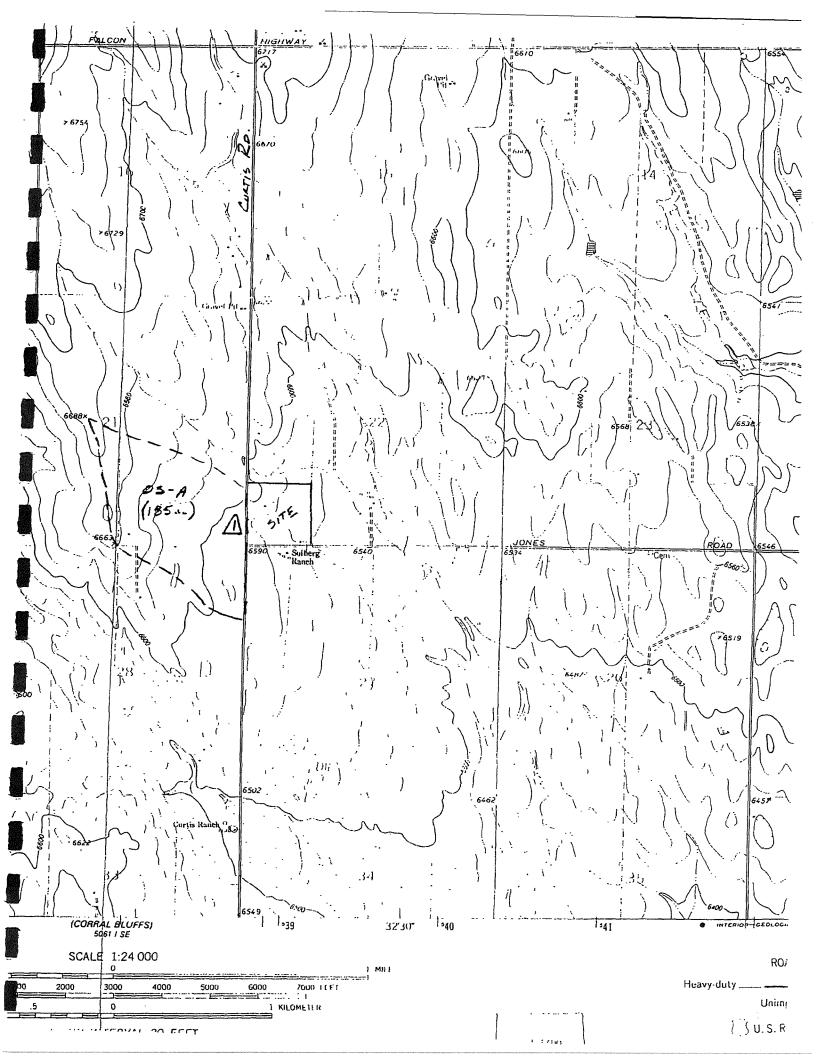
The initial Drainage Report for this site was prepared by Law and Marrioti and recorded by El Paso County in September of 2000. It was initially assumed that only a Drainage Letter would be required since the purpose of the replat was only to change a few the lot lines. However, since the runoff from the OS1 parcel was significantly lower than in the Law and Marrioti, a preliminary analysis of the downstream facilities was accomplished. Those changes are discussed in the above report.

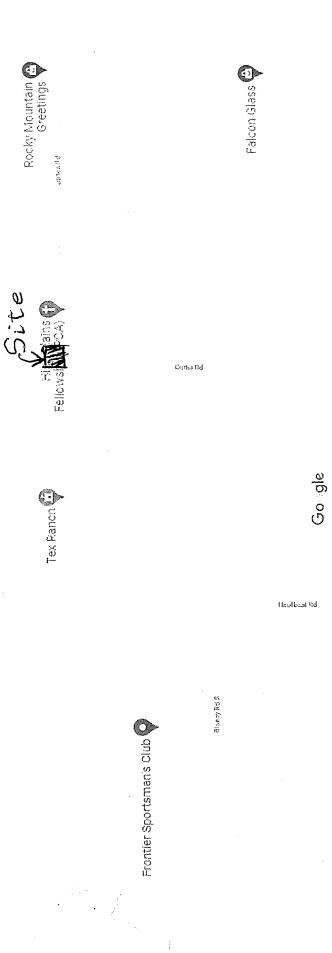
The following was accomplished in this report;

- a. Impacts due to changes in design flows and changes to the criteria.
- b. The requirement for a FSD pond was also evaluated.
- c. Additional preliminary analysis for the reduced offsite flow as it is routed through the Manley property. This routing is the same as the conditions when the Law and Marrioti report was approved.
- d. This Drainage Letter was prepared in accordance with the current criteria.

Even though this report was prepared in greater detail in order to meet current El Paso County Drainage criteria, **no drainage improvements** are required.

Please confirm there will be no adverse impacts to downstream properties or existing stormwater runoff patterns.


Specify drainage fees were paid with Manley Subdivision Filing No.


1. Please clarify if the drainage fees paid accounted for the "out parcel" per ECM Appendix L drainage fees are due if platting a tract. The drainage fees would be assessed only for the tract and impervious area if fees were not paid for the tract previously.

APPENDIX

Exhibit 1: Location Maps

Falcon Hnry

Feleson May

(3/50/1 H/sp

Falcon Meadow Campground

धन्ताः हत

Curtis Road

U-Haul Orling Dealer

Ploneer Sand

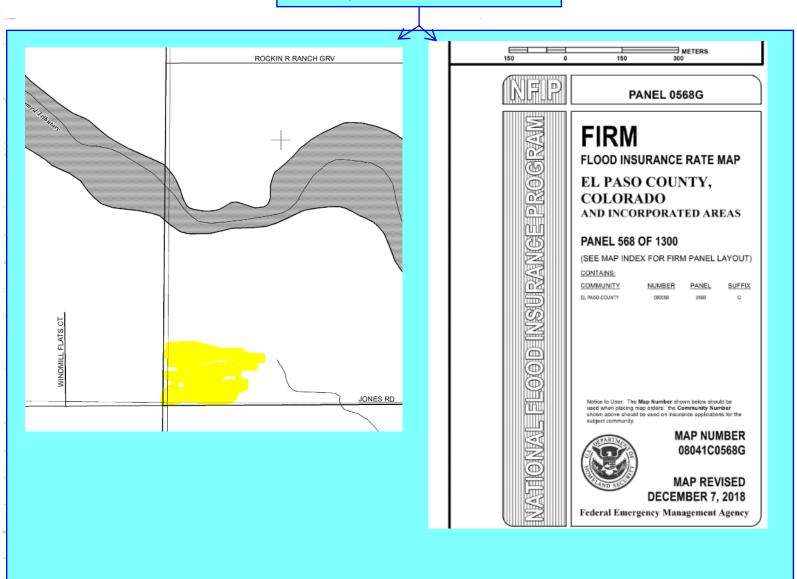
Currett Ad

Garrett sig

Mandian Fd

បំណងអត

Hidden Greek © Ecuestrian Center


F Weden

Orrcle K 🗨

Man data 22022 United States Terms Privacy S

Exhibit 2: FEMA FIRM Man

Please verify the FEMA FIRM Map provided on page 18. The map does not appear to be the correct one or most recent FIRM Map. Please see attached images below showing the FIRM Map from FEMA.

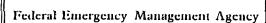
NATIONAL FLOOD INSURANCE PROGRAM

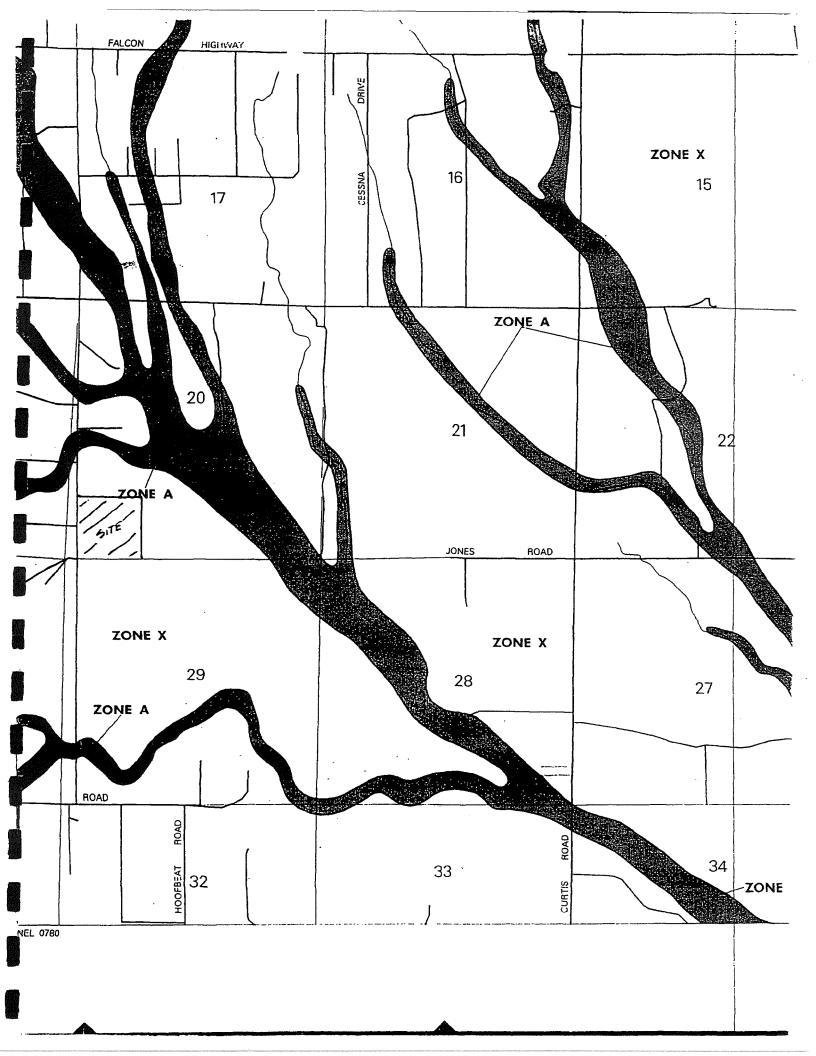
FIRM

FLOOD INSURANCE RATE MAP

See comment from the last page. This does not seem to be the correct FIRM # or map.

EL PASO COUNTY, COLORADO AND INCORPORATED AREAS


PANEL 575 OF 1300


(SEE MAP INDEX FOR PANELS NOT PRINTED)

CONTAINS: COMMUNITY	NUMBER	PANEL	SUFFIX
COLORADO SPRINGS CHY OF	080060	0575	F
UNINCORPORATED AREAS	080059	0575	F

MAP NUMBER 08041C0575 F

EFFECTIVE DATE: MARCH 17, 1997

National Flood lazard Layer TIRiMeile

FHMA

Legend

SEE FIS REPORT FOR DETAILED LE

SPECIAL FLOOD HAZARD AREAS

OTHER AREAS OF FLOOD HAZARD

NO SCREE OTHER AREAS

GENERAL - ---- STRUCTURES

8 — — 8 mm \$13 mm

OTHER FEATURES

The point

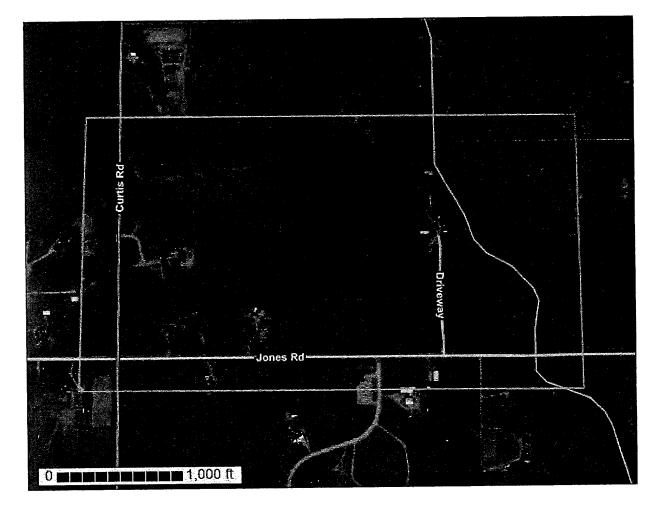
MAP PANELS

digital flood maps if it is This map complies with

The basemap shown cc accuracy standards

The flood hazard inform

Exhibit 3: SCS Soils Map and Data

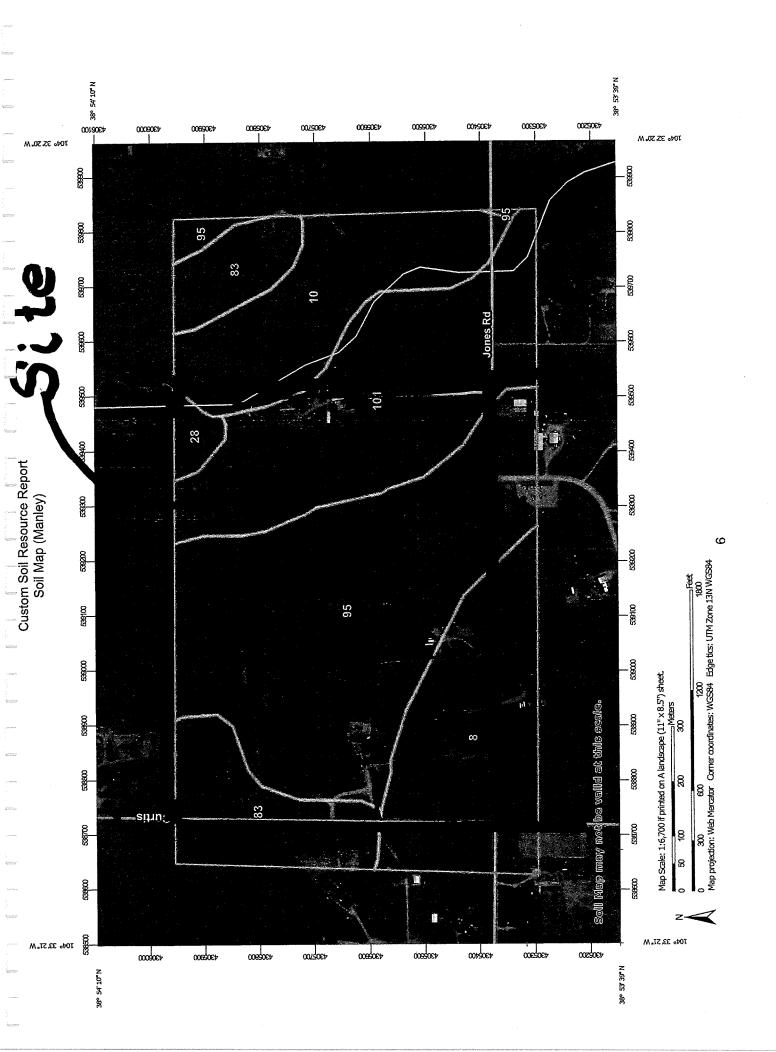

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Manley Subdivision



Contents

Preface	2
Soil Map	5
Soil Map (Manley)	6
Legend	7
Map Unit Legend (Manley)	8
Map Unit Descriptions (Manley)	8
El Paso County Area, Colorado	10
8—Blakeland loamy sand, 1 to 9 percent slopes	10
10—Blendon sandy loam, 0 to 3 percent slopes	11
28—Ellicott loamy coarse sand, 0 to 5 percent slopes	12
83—Stapleton sandy loam, 3 to 8 percent slopes	13
95—Truckton loamy sand, 1 to 9 percent slopes	14
101—Ustic Torrifluvents, loamy	16
References	18
I CICI CITACO IN THE STATE OF T	

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

12ppy 10P

parents : : : :

MAP LEGEND ÷

	;			
Area of I	Area of Interest (AOI)	I	Spoil Area	The soil surveys that compr
	(100) tourseless on v	ij	_	1:24,000.
	Area or interest (AUI)	7	Stony Spot	al
Soils	٠		Very Stony Spot	Warning: Soil Map may not
	Soil Map Unit Polygons	§ 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,
Š	Soil Map Unit Lines	Þ	wer spor	Finlandement of maps bevoi
		◁	Other	misunderstanding of the de
	Soil Map Unit Points	•	Special Line Features	line placement. The maps of
Specie	Special Point Features			contrasting soils that could
- 10 10 10	Blowout	Water Features	fures	scale.
)		}	Streams and Canals	
	Borrow Pit	, L	\$ 0 0	ologo and any no ylor ecolo
*	Clay Spot	iransportation	auori Raik	riease reiy on ure bar scars measurements.
	Closed Depression		Interestate Ulaburane	
>			inerstate nigilways	Source of Map: Natural R
×	Gravel Pit	Section 2	US Routes	Web Soil Survey URL:
64	Gravelly Spot	; <u>)</u>	Major Roads	Coordinate system: web
٩	Landfill	\\ \{	Local Roads	Maps from the Web Soil Su
ST.	Lava Flow	Background	pu	projection, which preserves
	Marsh or swamp		Aerial Photography	Albers equal-area conic pro
*	Mine or Quarry			accurate calculations of dis
٩	Miscellaneous Water			This product is generated f
0	Perennial Water			of the version date(s) listed
﴾	Rock Outcrop			
+	Saline Spot		,	Survey Area Data: Versio
***	Sandy Spot			Soil map units are labeled
ф	Severely Eroded Spot			Tou, dud or larger.
	,			

MAP INFORMATION

prise your AOI were mapped at

of be valid at this scale.

I have been shown at a more detailed letail of mapping and accuracy of soil do not show the small areas of ond the scale of mapping can cause

le on each map sheet for map

Resources Conservation Service b Mercator (EPSG:3857)

ection that preserves area, such as the projection, should be used if more listance or area are required. Survey are based on the Web Mercator es direction and shape but distorts

from the USDA-NRCS certified data as ed below.

so County Area, Colorado ion 19, Aug 31, 2021

d (as space allows) for map scales

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

Slide or Slip Sodic Spot

A 10

Sinkhole

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend (Manley)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	31.9	16.3%
10	Blendon sandy loam, 0 to 3 percent slopes	25.9	13.3%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	2.5	1.3%
83	Stapleton sandy loam, 3 to 8 percent slopes	23.8	12.2%
95	Truckton loamy sand, 1 to 9 percent slopes	67.8	34.7%
101	Ustic Torrifluvents, loamy	43.5	22.3%
Totals for Area of Interest		195.4	100.0%

Map Unit Descriptions (Manley)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or eolian deposits

derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand

C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

10-Blendon sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3671 Elevation: 6,000 to 6,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blendon and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blendon

Setting

Landform: Terraces, alluvial fans Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

Typical profile

A - 0 to 10 inches: sandy loam
Bw - 10 to 36 inches: sandy loam
C - 36 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 2 percent

Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions

Hydric soil rating: Yes

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet

Mean annual precipitation: 13 to 15 inches

Mean annual air temperature: 47 to 50 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 97 percent Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ellicott

Setting

Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand

C - 4 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: FrequentNone

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: A

Ecological site: R069XY031CO - Sandy Bottomland LRU's A and B Other vegetative classification: SANDY BOTTOMLAND (069AY031CO)

Hydric soil rating: No

Minor Components

Fluvaquentic haplaquoll

Percent of map unit: 1 percent

Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

83—Stapleton sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369z Elevation: 6,500 to 7,300 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Stapleton and similar soils: 97 percent

Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stapleton

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

Typical profile

A - 0 to 11 inches: sandy loam

Bw - 11 to 17 inches: gravelly sandy loam C - 17 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R049XY214CO - Gravelly Foothill

Hydric soil rating: No

Minor Components

Fluvaquentic haplaquolls

Percent of map unit: 1 percent

Landform: Swales
Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent

Landform: Depressions Hydric soil rating: Yes

95—Truckton loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2yvrm

Elevation: 5,800 to 7,100 feet

Mean annual precipitation: 12 to 19 inches

Mean annual air temperature: 46 to 50 degrees F

Frost-free period: 90 to 155 days

Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 87 percent

Minor components: 13 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Fan remnants, interfluves

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Wind re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: loamy sand Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent

Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Blakeland

Percent of map unit: 5 percent Landform: Hills, interfluves

Landform position (two-dimensional): Shoulder, backslope, summit

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Convex, linear Across-slope shape: Convex, linear

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Rrasser

Percent of map unit: 5 percent Landform: Terraces, interfluves

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Urban land

Percent of map unit: 2 percent

Hydric soil rating: No

Ellicott, occasionally flooded

Percent of map unit: 1 percent

Landform: Drainageways, flood plains

Down-slope shape: Linear

Across-slope shape: Concave, linear

Ecological site: R067BY031CO - Sandy Bottomland

Hydric soil rating: No

101—Ustic Torrifluvents, loamy

Map Unit Setting

National map unit symbol: 3673 Elevation: 5,500 to 7,000 feet

Mean annual precipitation: 13 to 16 inches Mean annual air temperature: 47 to 52 degrees F

Frost-free period: 125 to 155 days

Farmland classification: Not prime farmland

Map Unit Composition

Ustic torrifluvents and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ustic Torrifluvents

Setting

Landform: Flood plains, stream terraces

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy, clayey, stratified loamy

Typical profile

A - 0 to 6 inches: variable

C - 6 to 60 inches: stratified loamy sand to clay loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B

Ecological site: R069XY037CO - Saline Overflow LRU's A and B Other vegetative classification: OVERFLOW (069BY036CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Exhibit 4: Charts, Tables and Correspondence

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

							Runoff Co	efficients					
and Use or Surface	Percent Impervious	2-y	ear	5-y	ear	10-γ	ear	25-y	ear	50-y	rear	100-1	
haracteristics			HSG C&D	HSG A&B	HSG C&D	HSG A&8	HSG C&D	HSG A&B	HSG C&D	HSG A&B	H2@ C&D	HSG A&B	HSG C&D
		HSG A&B	H2G CWD	1130 Auc	1120 422					<u> </u>			
lusiness		L	0.80	0.81	0.82	0.83	0.84	0.85	0,87	0.87	88,0	0.88	0,89
Commercial Areas	95	0.79	0,49	0.49	0.53	0.53	0.57	0.58	0.62	0,60	0.65	0.62	0.68
Neighborhood Areas	70	0.45	0.49	0.43	0.55								1,4
- 1446f		 						 	0.59	0.57	0.62	0.59	_0.65
Residential 1/8 Acre or less	65	0,41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.46	0.54	0.50 %	0.58
1/4 Acre	40	0,23	0.28	0.30	0.35	0,36	0.42	0.42	0.30	0.43	0.52	0.47	0.57
1/3 Acre	30	0.18	0.22	0,25	0.30	0,32	0.38	0.39	0.47	0.41	0.51	0.46	0.56
1/2 Acre	25	0.15	0,20	0.22	0.28	0,30	0.36	0,37	0.46	0.40	0.50	0.44	0,55
1Acre	20	0.12	0.17	0,20	0.26	0.27	0.34	0.33	0,44	0.40			
	<u> </u>									1 000	0.72	0.70	0.74
Industrial	80	0.57	0.60	0.59	0.63	0,63	0,66	0,66	0.70	0,68	0.82	0.81	0.83
Light Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0,80	0,80	10,02	1 4	1
Heavy Areas	1-30-	1 0.7.2					<u> </u>	0.30	0,40	0.34	0.46	0.39	0.52
Parks and Cemeterles	7	0.05	0.09	0.12	0.19	0,20	0.29	0,30	0.42	0.37	0.48	0.41	0.54
Playgrounds	13	0.07	0.13	0.16	0,23	0,24	0.31		0.50	. 0.46	0.54	0.50	0.58
Relicoad Yard Areas	40	0,23	0,28	0.30	0,35	0,36	0,42	0.42	0.50	1. 0.70	1	1	
Halitoan taid Aleas					 			╂					
Undeveloped Areas				-		+	 	1					1
Historic Flow Analysis	2				0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0:51
Greenbelts, Agriculture		0.03	0.05	0.09	0.15	0.15	0.25	0,25	0.37	0.30	0.44-	0.35	0,50
Pasture/MeadoW	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0,37	0,30	0.44	0.35	0,50
Forest .	0	0,02	0,04	0.90	0.90	0.92	0.92	0,94	0.94	0,95	0,95	0,95	0,96
Exposed Rock	100	0.89	0.83	0.30	1-0,54						.	-	1
Offsite Flow Analysis (when	45		1	0.00	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
landuse is undefined)		0.26	0,31	0,32	0,37	0.50	-				1	┼	
Streets	+	+					1	0.94	0.94	0.95	0.95	0.96	0.9
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.66	0.70		0.72	0.70	0.7
Gravel	80	0.57	0.60	0.59	0,63	0.63	0,66	0,66	0.70	- V.00	+	1	\top
Glavei	1							+	0.94	0.95	0.95	0.96	0.9
Drive and Walks	100	0,89	0.89	0.90			0,92				0,82	0.81	0.8
	90	0.71	0.73	0,73			0.77				0.44	0.35	0.5
Roofs Lawns	- 0	0.02	0.04	0.08	0.15	0.15	0.25	- 0.25	0,37	0,30	<u> </u>		

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_i$$

(Eq. 6-7)

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

Overland (Initial) Flow Time 3,2.1

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_{l} = \frac{0.395(1.1 - C_{5})\sqrt{L}}{S^{0.33}}$$
 (Eq. 6-8)

Where:

 t_l = overland (initial) flow time (min)

 C_5 = runoff coefficient for 5-year frequency (see Table 6-6)

L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Travel Time 3.2.2

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_i , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_0 , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_{\nu} S_{\nu\nu}^{0.5}$$
 (Eq. 6-9)

Where:

V = velocity (ft/s)

 C_{ν} = conveyance coefficient (from Table 6-7)

 $S_w = \text{watercourse slope (ft/ft)}$

Table 6-7. Conveyance Coefficient, C,

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5 .
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C, value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_l) and the travel time (t_l) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L =waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

	<u> </u>	thudwala ala	-		Pre-Devel	pment CN	1
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)				68	79	86	89
Fair condition (grass cover 50% to 75%)				49	69	79	84
Good condition (grass cover > 75%)				39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98
Streets and roads:	L						
Paved; curbs and storm sewers (excluding right-of-way)	*****			98	98	98	98
Paved; open ditches (including right-of-way)				83	89	92	93
Gravel (including right-of-way)				76	85	89	91
Dirt (including right-of-way)			***	72	82	87	89
Western desert urban areas:							
Natural desert landscaping (pervious areas only)				63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert				96	96	96	96
shrub with 1- to 2-inch sand or gravel mulch and basin borders)							ļ <u>. </u>
Urban districts: .							
Commercial and business			85	89	92	94	95
Industrial	*****		72	81	88	91	93
Residential districts by average lot size:							
1/8 acre or less (town houses)			65	77	85	90	92
1/4 acre			38	61	75	83	87
1/3 acre			30	57	72	81	86
1/2 acre			25	54	70	. 80	85
1 acre			20	51	68	79	84
2 acres			12	46	65	* 77	82
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	%1	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)		*****		77	86	91	94
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
	Bare soil		_	77	86	91	94
Fallow	Çrop residue	Poor		. 76	85	90	93
	cover (CR)	Good		74	83	88	90
	Straight row	Poor		72	81	88	91
	(SR)	Good		67	78	85	89
		Poor		71	80	87	90
	SR+CR	Good		64	75	82	85
		Poor		70	79	84	88
	Contoured (C)	Good		65	75	82	86
Row crops	0.00	Poor		69	78	83	87
	C+CR	Good		64	74	81	85
' - ' -	Contoured &	Paor		66	74	80	82
	terraced (C&T)	Good		62	71	78	81
-		Poor		65	73	79	81
	C&T+ CR	Good		61	70	77	.80
· · · · · · · · · · · · · · · · · · ·	-	Poor		65	76	84	88
* a	SR	Good		63	75	83	87
		Poor		64	75	83	86
				60	72	80	84
	SR + CR	Good					
	· · · · · · · · · · · · · · · · · · ·	Good Poor		63	74	82	85
	SR + CR					82 81	85 84
Small grain	С	Poor		63	74		
Small grain	· · · · · · · · · · · · · · · · · · ·	Poor Good		63 61	74 73	81	84
Small grain	C C+CR Poor	Poor Good Poor		63 61 62	74 73 73	81 81	84 84
Small grain	С	Poor Good Poor Good		63 61 62 60	74 73 73 72	81 81 80	84 84 83
Small grain →	C C+CR Poor	Poor Good Poor Good Poor		63 61 62 60 61	74 73 73 72 72	81 81 80 79	84 84 83 82

Most Conservation Cosse Course

Table 4B-6 Values of the roughness coefficient, "n."

	Type of Channel and Description	Manning's "n" (Normal)	Type of Channel and Description	Manning's "n" (Normal)
Α.	Constructed Channels		6. Sluggish reaches, weedy	
	a. Earth, straight and uniform		deep pools	0.070
	Clean, recently completed	0.018	7. Very weedy reaches, deep	
	2. Gravel, uniform selection,	0.025	pools, or floodways with	
	clean		heavy stand of timber and	
	3. With short grass, few	0.027	underbrush	0.100
	weeds		b. Mountain streams, no vegetation	
	b. Earth, winding and sluggish		in channel, banks usually steep,	
	1. No vegetation	0.025	trees and brush along banks	
	2. Grass, some weeds	0.030	submerged at high stages	
	3. Dense weeds or aquatic		1. Bottom: gravel, cobbles, and	
	plants in deep channels	0.035	few boulders	0.040
	4. Earth bottom and rubble		2. Bottom: cobbles with large	-
	sides	0.030	boulders	0.050
-	5. Stony bottom and weedy		B-2 Flood plains	
	banks	0.035	a. <i>Pasture, no brush</i>	
	6. Cobble bottom and clean		1. Short grass	0.030
	sides	0.040	2. High grass	0.035
	c. Rock-lined		b. <i>Cultivated areas</i>	
	1. Smooth and uniform	0.035	1. No crop	0.030
	2. Jagged and irregular	0.040	2. Mature row crops	0.035
	d. Channels not maintained,		3. Mature field crops	0.040
	weeds and brush uncut		c. Brush	
	1. Dense weeds, high as flow		Scattered brush, heavy	
	depth	0.080	weeds	0.050
	2. Clean bottom, brush on		2. Light brush and trees	0.060
	sides	0.050	3. Medium to dense brush	0.070
	3. Same, highest stage of		4. Heavy, dense brush	0.100
	flow	0.070	d. <i>Trees</i>	
	4. Dense brush, high stage	0.100	Dense willows, straight	0.150
B.	Natural Streams		2. Cleared land with tree	
B-	1 Minor streams (top width at		stumps, no sprouts	0.040
	flood stage < 100 ft.)		3. Same as above, but with	
	a. Streams on plain		heavy growth of sprouts	0.060
	 Clean, straight, full stage, 		4. Heavy stand of timber, a few	
	no rifts or deep pools	0.030	downed trees, little	
	2. Same as above, but more		undergrowth, flood stage	
	stones and weeds	0.035	below branches	0.100
	3. Clean, winding, some		5. Same as above, but with	
	pools and shoals	0.040	flood stage reaching	
	4. Same as above, but some		branches	0.120
	weeds	0.040		
	5. Same as 4, but more stones	0.050	11-11-11-11-11-11-11-11-11-11-11-11-11-	

^{*}Note: These "n" values are "normal" values for use in analysis of channels. For conservative design for channel capacity, the maximum values listed in other references should be considered. For channel bank stability, the minimum values should be considered.

From: Daniel Torres

Sent: Thursday, March 18, 2021 8:22 AM

To: 'KEN HARRISON'

Subject: RE: Rural Road Construction Document examples

Hi Ken,

I have provided answers to your questions below in blue:

Does the Drainage Letter need to address the updated criteria? Yes. The drainage letter should be done per the current criteria. There are also several mistakes in the report. It uses the Rational Method for 185 acres which is currently limited to less than 100 acres. Does this need to be addressed in the Drainage Letter? Any previous errors should be noted/addressed in the report. Nothing was stated in the report about a FSD pond either. Will this have to be addressed even though the Drainage Report was approved? Yes. Detention should be addressed for the site in question. Whether detention is needed depends on your analysis of the site and development proposed. Also does El Paso County have similar requirements for Drainage Letters since they have adopted the majority of the C/CS Drainage Criteria Manuals? Our drainage criteria manual can be found on the County website (Engineering - El Paso County Planning Development). DCM vol. 1 Chapter 4 has the requirements for drainage letters and reports.

If this is for a specific project that you have submitted for review in the County, I can get you in touch with the review engineer that has been assigned the project to better answer any of your questions. Additionally, the review engineer would know the specifics of the project and can tell you what you will need to provide. My answers above are for most projects in general.

Respectfully,

Daniel Torres, P.E.
Engineer II
El Paso County
Planning and Community Development
2880 International Circle, Suite 110
Colorado Springs, CO 80910
(719) 520-6300 (Main)
(719) 520-6305 (Direct)
www.elpasoco.com

PERSONAL WORK SCHEDULE

Monday - Thursday, 7:00 am to 5:30 pm

DEPARTMENT HOURS

Monday - Friday, 7:30 am to 4:30 pm

NOTE: In an effort to be respectful of the health of our employees, family, and all citizens in El Paso County, we are limiting our face-to-face public interactions. During this timeframe we will be making every effort to operate "business as usual". All phone calls and emails will be returned, projects reviewed, and necessary meetings held via conference call. Thank you for your patience. Be safe!

WE NEED YOUR HELP! The Planning and Community Development Department has been working on revising the Master Plan for El Paso County. Once adopted, this plan will help guide development for the next 20 years. The draft version of this plan is now available for public review and we are seeking public comments on the draft plan until April 9, 2021. You may do so here: https://elpaso.hlplanning.com/pages/draft-plan-outreach Thank you in advance for your feedback!

From: KEN HARRISON < ksharrison5228@msn.com>

Sent: Friday, March 12, 2021 4:18 PM

To: Daniel Torres < Daniel Torres@elpasoco.com>

Subject: RE: Rural Road Construction Document examples

CAUTION: This email originated from outside the El Paso County technology network. Do not click links or open attachments unless you recognize the sender and know the content is safe. Please call IT Customer Support at 520-6355 if you are unsure of the integrity of this message.

Thanks Daniel. I have another issue that I would like to discuss with you. An existing tract was platted in 2001 with a Drainage Report submitted and approved. The owners wish to replat the property and need a Drainage Letter. The purpose of the replat is only to reconfigure lots and not change anything about the development. The proposed development will stay the same. However, the current approved report was prepared using the 2001 criteria. The current criteria has a significant revisions. Does the Drainage Letter need to address the updated criteria? There are also several mistakes in the report. It uses the Rational Method for 185 acres which is currently limited to less than 100 acres. Does this need to be addressed in the Drainage Letter? Nothing was stated in the report about a FSD pond either. Will this have to be addressed even though the Drainage Report was approved? Also does El Paso County have similar requirements for Drainage Letters since they have adopted the majority of the C/CS Drainage Criteria Manuals?

Thanks for you time!

Kenneth Harrison KCH Engineering Solutions, LLC 719-246-4471 ksharrison5228@msn.com

From: Daniel Torres

Sent: Tuesday, March 9, 2021 1:20 PM

To: KEN HARRISON

Subject: Rural Road Construction Document examples

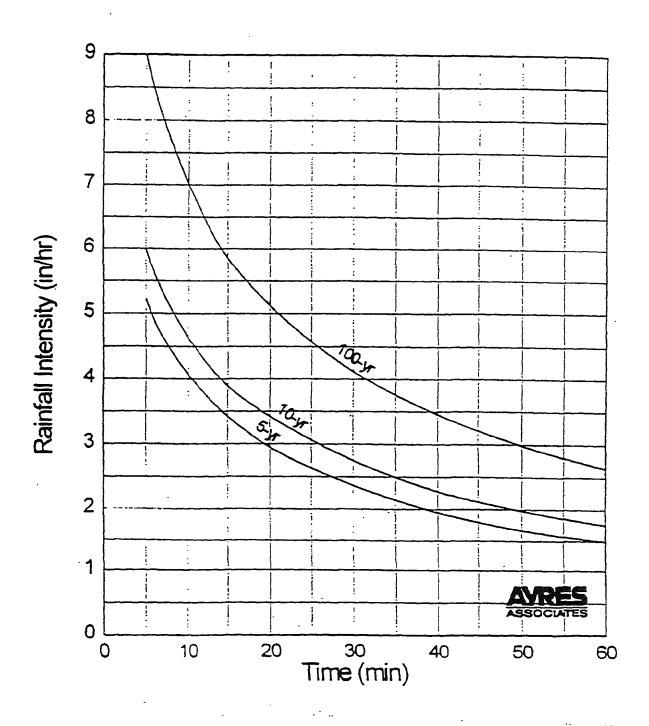
Hi Ken,

I have provided a few projects that have a rural local roadways within their construction documents. They can be found on EDARP by searching the following file numbers or clicking on the link provided.

SF207: Project Details - EDARP (epcdevplanreview.com)
SF1911: Project Details - EDARP (epcdevplanreview.com)
SF1824: Project Details - EDARP (epcdevplanreview.com)

Respectfully,

Daniel Torres, P.E.
Engineer II
El Paso County
Planning and Community Development
2880 International Circle, Suite 110
Colorado Springs, CO 80910
(719) 520-6300 (Main)
(719) 520-6305 (Direct)
www.elpasoco.com

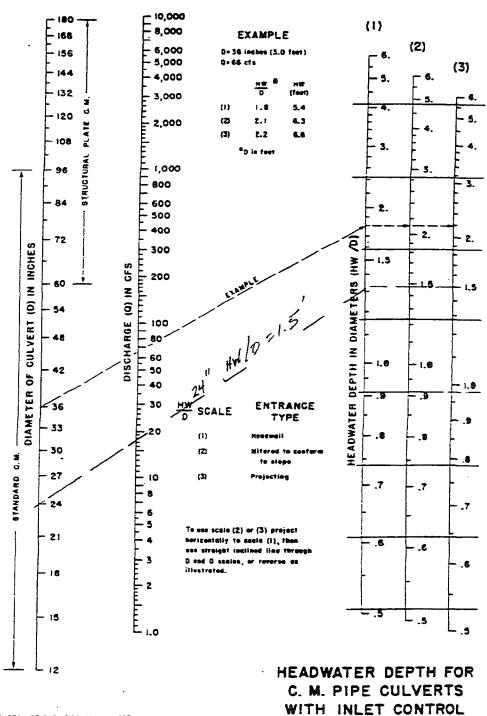

PERSONAL WORK SCHEDULE

Monday - Thursday, 7:00 am to 5:30 pm

DEPARTMENT HOURS

Monday - Friday, 7:30 am to 4:30 pm

NOTE: In an effort to be respectful of the health of our employees, family, and all citizens in El Paso County, we are limiting our face-to-face public interactions. During this timeframe we will be making every effort to operate "business as usual". All phone calls and emails will be returned, projects reviewed, and necessary meetings held via conference call. Thank you for your patience. Be safe!



Interim Release October 12, 1994, Rainfall Intensity Curves City Of Colorado Springs Drainage Criteria Manual

TABLE 5-1 -- RECOMMENDED AVERAGE RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS

"C" FREQUENCY LAND USE OR PERCENT 100 SURFACE CHARACTERISTICS **IMPERVIOUS** A&B* C&D* A&B* C&D* Business Commercial Areas 95 0.90 0.90 0.90 0.90 Neighborhood Areas 70 0.75 0.75 0.80 0.80 Residential 1/8 Acre or less 65 0.60 0.70 0.70 0.80 1/4 Acre 40 0.50 0.60 0.60 0.70 1/3 Acre 30 0.40 0.50 0.55 0.60 1/2 Acre 25 0.35 0.45 0.45 0.55 1 Acre 20 0.30 0.40 0.40 0.50 Industrial Light Areas 80 0.70 0.70 0.80 0.80 Heavy Areas 90 0.80 0.80 0.90 0.90 Parks and Cemeteries 7 0.30 0.35 0.55 0.60 Playgrounds 13 0.30 0.35 0.60 0.65 Railroad Yard Areas 40 0.50 0.55 0.60 0.65 Undeveloped Areas Historic Flow Analysis-2 0.15 0.25 0.20 0.30 Greenbelts, Agricultural Pasture/Meadow 0 0.25 0.30 0.35 0.45 Forest . 0 0.10 0.15 0.15 0.20 Exposed Rock 100 0.90 0.90 0.95 0.95 Offsite Flow Analysis 45 0.55 0.60 0.65 0.70 (when land use not defined) Streets Paved 100 0.90 0.90 0.95 0.95 Gravel 80 0.80 0.80 0.85 0.85 Drive and Walks 100 0.90 0.90 0.95 0.95 Roofs 90 0.90 0.90 0.95 0.95 Lawns 0 0.25 0.30 0.35 0.45

^{*} Hydrologic Soil Group

BUREAU OF PUBLIC ROADS JAN. 1963

HDR Infrastructure, Inc.
A Centera Company

The City of Colorado Springs / El Paso County Drainage Criteria Manual

Dete

OCT. 1987

Figure

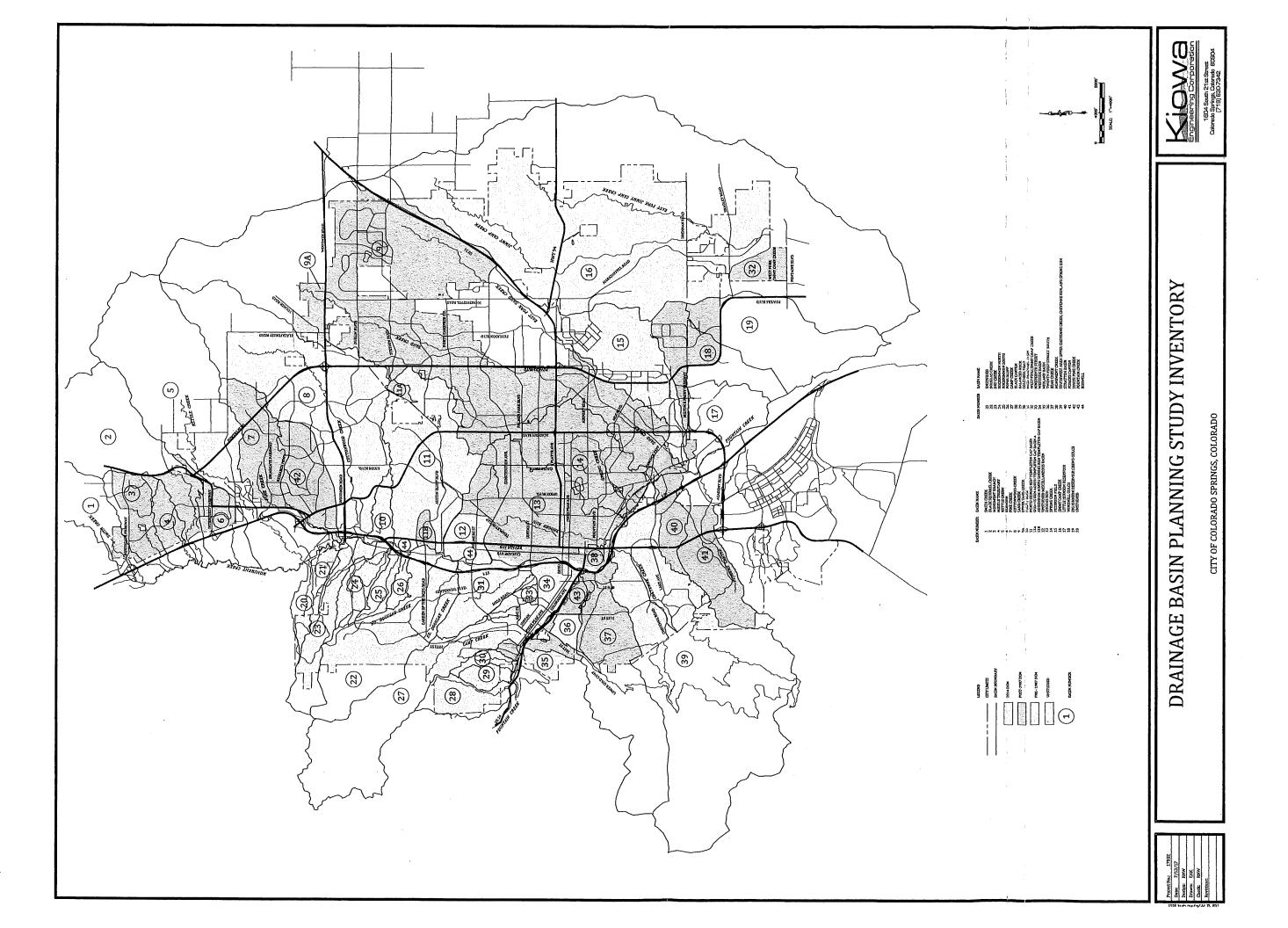
9-37

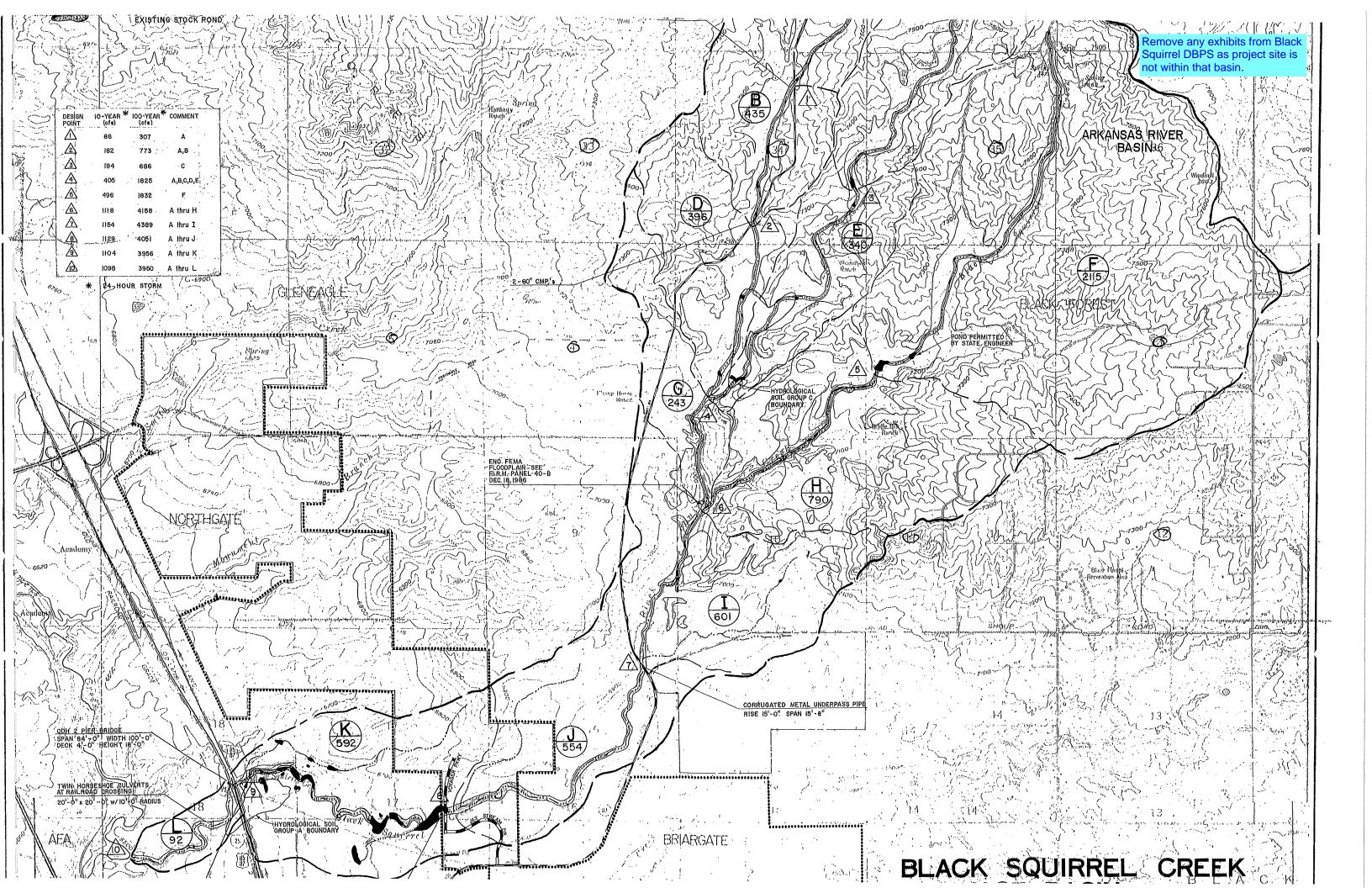
9-65

Exhibit 5: Drainage Basin Planning Study Exhibits

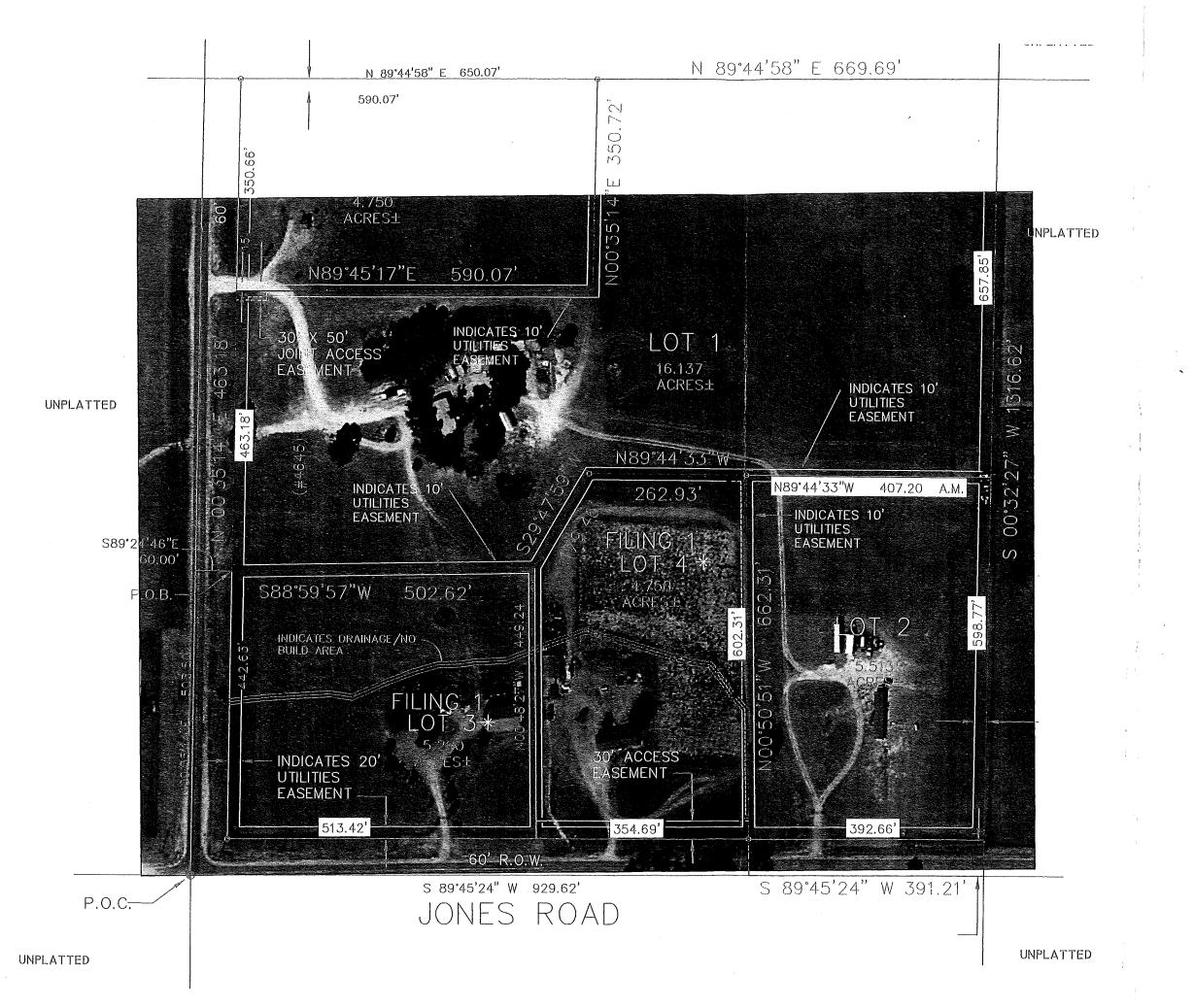
El Paso County Drainage Basin Fees

Resolution No. 21-468


Basin	Receiving	Year	Drainage Basin Name	2022 Drainage Fee	2022 Bridge Fee
Number	Waters	Studied	Dramage Basin Name	(per Impervious Acre)	(per Impervious Acre)
		Studieu	I	[(bay yamba yama yama)]	
Drainage Basins with				\$44.004	04 755
CHMS0200	Chico Creek	2013	Haegler Ranch	\$11,891	\$1,755 \$5,406
CHWS1200	Chico Creek	2001	Bennett Ranch	\$13,312	\$5,106 \$4,697
CHWS1400	Chico Creek	2013	Falcon	\$34,117	\$4,687
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$14,470	\$4,281
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$21,134 \$21,434	\$2,729 _. \$0
FOFO2800	Fountain Creek	1988*	Widefield	\$21,134 \$21,134	\$0 \$0
FOFO2900	Fountain Creek	1988*	Security	\$21,134 \$21,134	\$317
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$21,134 \$12,891	\$0
FOFO3100 / FOFO3200		1988*	Carson Street / Little Johnson Peterson Field	\$15,243	\$1,156
FOFO3400	Fountain Creek	1984*		\$21,134	\$0
FOFO3600	Fountain Creek	1991*	Fisher's Canyon Sand Creek	\$21,134 \$21,814	\$8,923
FOFO4000	Fountain Creek	1996	Spring Creek	\$10,961	\$0,925 \$0
FOFO4200	Fountain Creek	1977 1984*	Southwest Area	\$21,134	\$0 \$0
FOFO4600	Fountain Creek	1991	Bear Creek	\$21,134	\$1,156
FOFO4800	Fountain Creek Fountain Creek	1991	Camp Creek	\$2,342	\$0
FOFO5800	Monument Creek	1981	Douglas Creek	\$13,291	\$294
FOMO1000 FOMO1200	Monument Creek	1977	Templeton Gap	\$13,644	\$317
FOMO2000	Monument Creek	1971	Pulpit Rock	\$7,008	\$0 ;
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$21,134	\$1,156
, FOMO2400	Monument Creek	1966	Dry Creek	\$16,684	\$604
FOMO3600	Monument Creek	1989*	Black Squirrel Creek	\$9,595	\$604
FOMO3700	Monument Creek	1987*	Middle Tributary	\$17,636	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$21,134	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$8,616	\$1,156
FOMO4200	Monument Creek	1989*	Black Forest	\$21,134	\$575
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$21,134	\$1,156
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$21,134 Area 1	alls within Solbert
Miscellaneous Drain	age Basins: 1				drainage basin not
CHBS0800	Chico Creek		Book Ranch	\$19,830 Black	Squirrel Creek
CHEC0400	Chico Creek		Upper East Chico	\$10,803	\$313
CHWS0200	Chico Creek		Telephone Exchange	\$11,870	\$278
CHWS0400	Chico Creek		Livestock Company	\$19,552	\$233
CHWS0600	Chico Creek		West Squirrel	\$10,192	\$4,229
CHWS0800	Chico Creek		Solberg Ranch	\$21,134	\$ 0
FOFO1200	Fountain Creek		Crooked Canyon	\$6,381	\$ 0
FOFO1400	Fountain Creek		Calhan Reservoir	\$5,327	\$310
FOFO1600	Fountain Creek		Sand Canyon	\$3,849	\$0
FOFO2000	Fountain Creek		Jimmy Camp Creek ³	\$21,134	\$989
FOFO2200	Fountain Creek		Fort Carson	\$16,684	\$604
FOFO2700	Fountain Creek		West Little Johnson	\$1,392	\$0
FOFO3800	Fountain Creek		Stratton	\$10,137	\$453
FOFO5000	Fountain Creek		Midland	\$16,684	\$604
FOFO6000	Fountain Creek		Palmer Trail	\$16,684	\$604
FOFO6800	Fountain Creek		Black Canyon	\$16,684	\$604
FOMO4600	Monument Creek		Beaver Creek	\$12,635	\$ 0
FOMO3000	Monument Creek		Kettle Creek	\$11,413	\$ 0
FOMO3400	Monument Creek		Elkhorn	\$1,917	. \$0
FOMO5000	Monument Creek		Monument Rock	\$9,160	\$0 ***
FOMO5400	Monument Creek		Palmer Lake	\$14,647	\$0 \$0
FOMO5600	Monument Creek		Raspberry Mountain	\$4,927	\$0 ***
PLPL0200	Monument Creek		Bald Mountain	\$10,500	\$0
Interim Drainage Bas			=	A0 W	A C
FOFO1800	Fountain Creek		Little Fountain Creek	\$2,702	\$ 0
FOMO4400	Monument Creek		Jackson Creek	\$8,365	\$0 \$972
FOMO4800	Monument Creek		Teachout Creek	\$5,809	\$873


^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

3. This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per
impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee.
Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).


	will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).
EPC Stormwater Management	Jennifer Irvine, P.E.

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

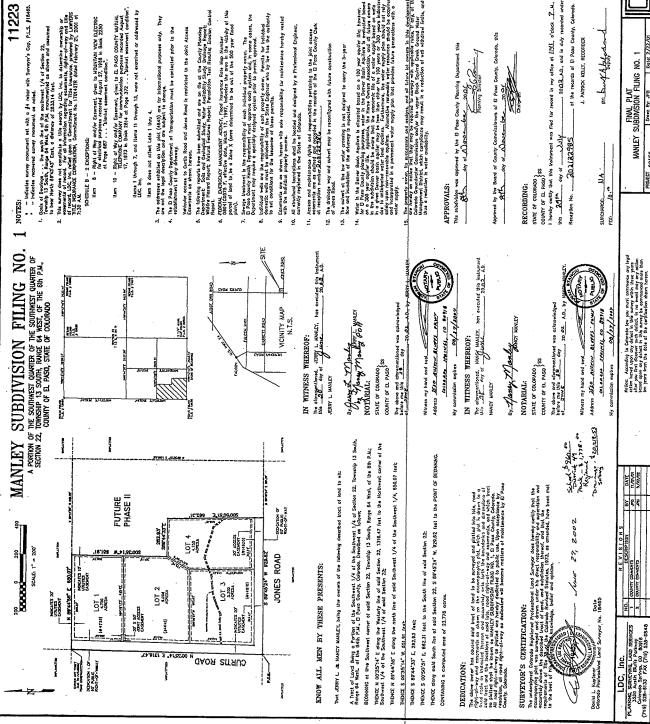


Exhibit 6: Existing Plat and Replat

Replat

11223

- indicates survey monument set with a \$4 rebor with Surveyor's Cap, P.L.S. \$18465.
 - indicates recovered survey monument as noted.

lisms 1 brough 7, and lisms 11 through 13, were not examined or addinessed by LDG, Inc.

Vehicular occess to Outla Road and Jones Road is restricted to the Joint Access Essentents as shown herean.

٠,

The febroking reports how been submitted and are an its at the County Planning Department. Soits and Redocked Shop's free Anaboling Shops' Discoperations Report Wide's frand Report Natural Features Report, Persodolon Test Results Estalan Conto

**REBAL EMEICHET MANUFLENT ACCHET, Road haurance Rate Luco Number DEGNICOSTS F, effective dete, March 17, 1997, indicates the area in the vicinity of posteriol land to; be a Zane X (area determined to be out of the 500 year flood play).

Deposits and the uncernate on earliest and all follow be never to this development on the free or enterly on makes the third the respect of the companies of th

MANLEY SUBDIVISION FILING NO. 1

PROJECT 99158

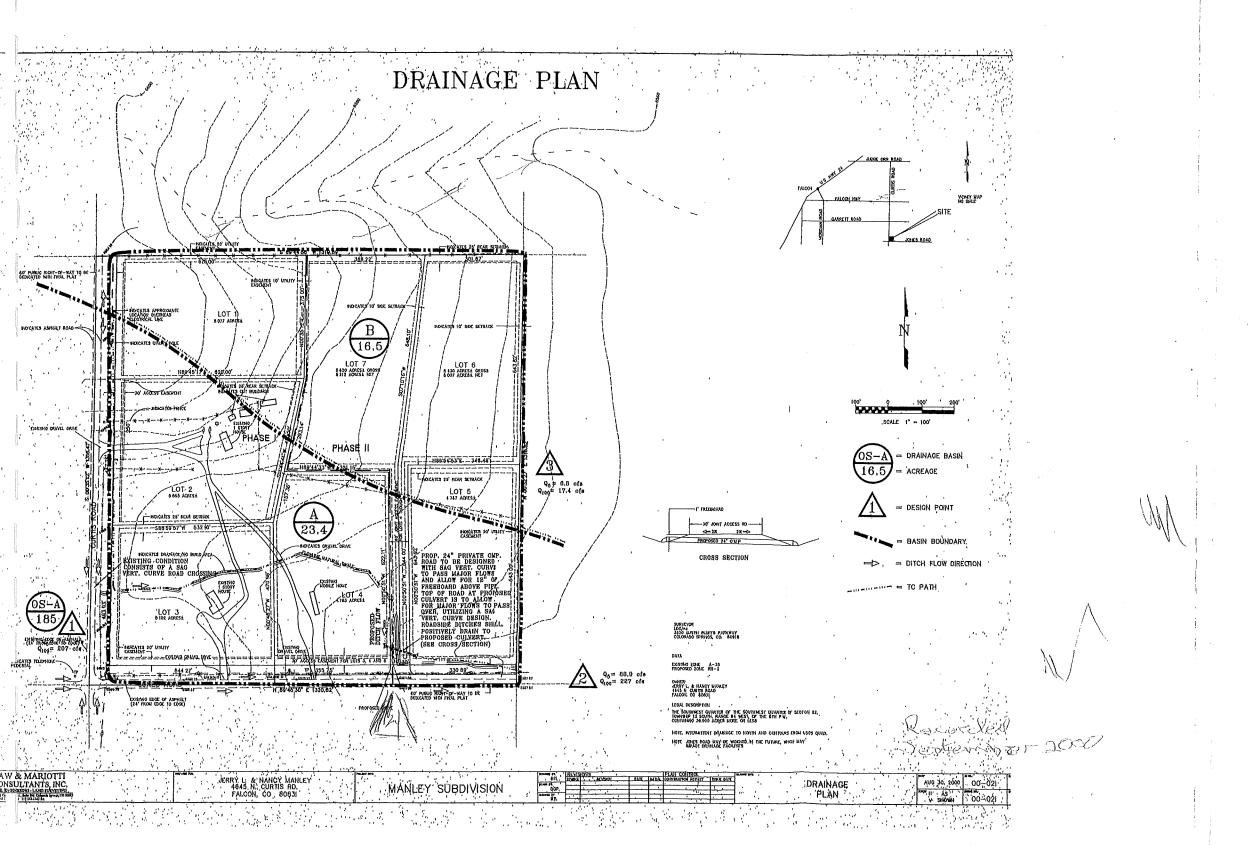

Deem Br. JPB Date: 2/22/01 Decknd Br. Shret 1st 1

Exhibit 7: Hydrologic Summary per Existing Plat

Exhibit 7: Hydrologic Summary per Existing Plat

Remove duplicate page

Indicate which report the various pieces in this section came from.

CUTIL ENGINEERING: * LAND SURVEYING:

619 N. Cascade Ave., Suite 206 Colorado Springs, CO 80903 719-442-1541 voice 719-442-1542 fax

/ JO / L5JING

51/00/1

RETURN PERIOD

C. D. C. D.

METHOD RATIONAL

i

HYDROLOGIC COMPUTATIONS

										*	1. 571	1('>-	TE = 1.871 (- C,) 6.5 -0.33		
POINT OF	SUBAREA(S)		AREA	FLOW		RACTERIS	TICS	J.	U	A × O	- - -	_	a FLOW (CFS)	CFS)	REMARKS
CONCENTRATION	CONTRIBUTING	ACRE	SQ.MI.	DESCRIPTION	(FT)	(FT)	(FPS)	MIN.				2	TOTAL PIPE	STREET	
0 0	05-A	531		0.0	000	20	1	40/35							
		_		CHANDEL	2500	25	7	Ø.							
		135				N	7/2	48	0.25	46.3	1.2 78.7	1.			-
						700	7/, 00/	43	0.35	64.0	3.2 207	-			
	-														
260	05-H +	209		o.i.	1000	20	i	* /on							
	A			2. (Innad	5000	55	7	ú						·	
						8	YR	25	52.0	11 6.25	1.7 88.9	. 63			,
						180	×2	47	25	75.2 3.1	3.) 227	<u></u>			
								l							
003	0	2		0.2.	0001	30	١	51/15				-			
		.			500	01	5	, 1			·				
,					,	ر >	L	23	52.0	4.0.	1.1 6.8	ai			
						100 15	V.	47	25.0	3.	7.	بود			
•												-			

Exhibit 8: Hydrologic Summary per Re-plat

XCH Engineezing Solutions
5228 Cracker Barrel Circle
Colorado Springs, CO 80917
(719) 246-4471

JOB	
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE

(* 257 = **								
		SCALE						
Timeof		MCC	v fiza	tc				
Cale skale of each not)							
- Care 1900 - 100								
A. Man Top web	3 \		~			- 100 m		
Distarce oleng Northerly P	سا.	650,	07=	669,	64=1	317,11		
Distance (rule) 63/160	L -	6 18	375					
Scle 11=213,3 we!								
1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1								
		<u> </u>						
1/1/7 1000								
Distance along north	32KA	PL	-137	20				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~		1 1 1	1 1				
3 cd= 209 = use		A -	11 -00	O^{I}				
1 3 CO2 3 04 7 WSC	. et 1()						
B. 05-A		<u> </u>	ļ					
300100 14/ Eall (Bubal	gno	<i>b</i>)	<u> </u>					
- MADI SWO Chall to Culu	حل	uno	ler (205	315			
Distance along Noth	35/1/	71	- 17	300	> 1			
Distance greated violen	= A VM	(1) a law						
Lines Inche "								
scale 2,91								
5 cole 1320/2,9= 5	155	157	0.5	l = 7	90			
2 2 1								
C 05-A			1					
(1) Overland 200-/48		13.41	21.0					
1 1 × Z60-/42	55 5	5 07 1	7111					
455/t 200								
					1			
F31 = 6								
2 Shallow Swale (To Cul	1)~ -	trees	~ 0 0.	1 met) e			
				0-1				
Atulon Paper 7 10.2			1_	1	b/ 14			
Scaled Sustainer 45	6 Yt	٣. ٢	10,2	- -	ro i i			
V712, F.D. 6700-	65	70 =	110)	<u> </u>				
	Per P							
	7	6						
3 5 hollow to Fasterly	211	v				1.		
3 5 hollow to Easterly	P.L.					-		
	1 7 1 6	m: :				<u> </u>	1.7	^ ^
1 = dnother 1200 FT = 1	<i>N</i>	- 6	700-6	554	= 146	5=	146/3	1800 27

Chors ",

XCH Engineezing Solutions
5228 Cracker Barrel Circle
Colorado Springs, CO 80917
(719) 246-4471

JOB	
SHEET NO.	OF
CALCULATED BY K. HATTISON	DATE 1/18/22
CHECKED BY	DATE

	SCALE
To Cco	
0, 5, 9 han A	
- Sheet Flow- 100 Pt	
Fall = 31 510pe = 3	%
- shallow swells to Ed	
length=1050 Vest Dron-76580-658	
Vert 700 - 6580 - 650 51ape - 26/1050 - 26	54 = 7 = 2 5 % = 500
) ape = 20/1080 = 26	7 708 0 7 3 7 7 7 7
E. J. Sbazin B	
- Frallow Shart Flore	= 1008, V= 6" 5=6/100-6%
- shellow drangel	Flour
Distance to East Pl	850'
1 1 - (6592 - 6554) = 381	
5-38/8607=4,47	
F, 5 wobasin C	
- 5hdlow 5heet = (0,6")=	210/1000 - 100
- Shallow Swall	= 74
6592 - 6568 = 24', 5 Pisconce: 4,3" (pages) \$ 31	61/10g0 = 903 P
Stope = 24/903 = 2.77%	
G, S, Q b, b, D (53)	
= Shul ou Sheet : 6200 Der	+ 10, co= 20 5= 20/200 = 10%
- Jaylow Bound book nie ?	
Distance To East Plis	P-(1/5/50)
T. 10 rope, 6588=6562-2	
5/ope, 2,48.	

Manley Subdivision Drainage Calculations Developed Conditions (Area Runoff Coefficient Summary)

				12.4				
RUNOFF COEFFICIENT	C ₁₀₀	0.36	0.35	0.35	0.36	0.35	0.49	0.35
EFF								
FCO								
NOF	Ç	60.0	0.08	0.08	0.00	0.08	0.28	80.0
RI)))		
┢								
	\mathbf{C}_{100}	0.35	0.35	0.35	0.35	0.35	0.35	0.35
II								
NATURAL	్ర	80.0	80.0	0.08	80.0	80.0	0.08	0.08
NA)		
	AREA (Acres)	14.08	13.82	2.19	6.51	2.23	06:	208.53
	AF (Ac	14	13	2	9	2	0	70
	00	1	11	.1	11	:1	Ξ.	113
	C100	0.81	0.81	0.81	0.81	0.81	0.81	0.81
SS								
Buildings	င်	0.73	0.73	0.73	0.73	0.73	0.73	0,73
B								
	AREA (Acres)	0.09	0.00	0.00	0.07	0.00	00'0	00'0
	AI A	0	0	0	•	0	0	0
	00	0	0	0	0	0	0	0
	C ₁₀₀	0.70	0.70	0.70	0.70	0.70	0.70	0.70
oad								
Gravel Road	င်း	0.59	0.59	0.59	0.59	0.59	0.59	0.59
Gr								
	AREA (Acres)	0.13	0.00	0.00	0.05	0.00	0.60	0.00
Ш	A 2							
	TOTAL AREA (Acres)	14.30	13.82	2.19	6.63	2.23	1.50	1,53
	TOTAJ AREA (Acres)	14	13,	6	õ	2.	÷	208.53
	5 7							
	BASIN	Y	В	C	D	Э	F	0S-A
Ш	H							

Existing and Developed conditions Manley Subdivision FINAL DRAINAGE REPORT (Area Drainage Summary)

				_			_		_
	ELOWS	Q ₁₀₀	(c.f.s.)	19.3	27.3	3.5	8.8	3.0	86.3
	TOTAL FLOWS	රි	(c.f.s.)	2.9	3.7	0.5	1.3	0.4	5.0
	SITY *	1,200	(in/hr)	3.8	5,6	4.5	3.7	3.9	0,5
	INTENSITY *	I,	(in/hr)	2.3	3.4	2.7	2.2	2.3	0.3
	Time of Travel (T _t)	TOTAL	(min)	34.8	16.6	26.0	35.7	33.7	128.5
	М	T,	(min)	22.1	2.0	18.3	23.7	7.7	119,9
10	SHALLOW CHANNEL FLOW	Velocity	(sdf)	8.0	1.1	8.0	8.0	6'0	0.8
<i>(r</i>	ытом сн	Slope	(%)	2.5%	4.5%	2.7%	2.4%	3.0%	2.6%
- 0	AS.	Length	(t)	1050	126	503	1100	400	2800
		${ m T_{c}}$	(min)	12.7	14.7	7.7	12.1	26.0	8.6
	4ND	Height	(U)	3	2	14	20	2	10
	OVERLANI	Length	(tt)	100	100	100	200	200	100
		Č.		60:0	0.08	0.08	0.09	0.08	0.08
		C ₁₀₀	From DCM Table 5-1	0.36	0.35	0.35	0.36	0.35	, 0.35
	From Area Runoff Coefficient Summary	ڻ ٽ	From DCA	0.09	0.08	0.08	0.09	0.08	0.08
	Area Rumoff Coe	AREA TOTAL	(Acres)	14.30	13,82	2.19	6.63	2.23	208.53
	From.	BASIN		1	В	۲	а	E	0S-A

* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: Ken H
Date: 1/20/2022
Checked by:

Page 1

Mun tey

Harrison

Manley

El Paso County, Colorado

Hydrograph Peak/Peak Time Table

Sub-Area or Reach Identifier	
SUBAREAS OS A	19.18 87.99-/ 13.46 13.36
A	3.23 15.78 12.31 12.24
D .	1.45 7.11 12.34 12.27
E	12.30 .12.25
REACHES	Olassi
OUTLET	(20.44) (92.50) - Design Plaws
	$\mathcal{A}^{-1/2}$

Arele
05-A Acre
07336

A 208.5 0333284 0023344

B 13.8

C 2:72

D 6.6 0.61386 0.01036

E 2.2 0.663

Imile * Acres 640 A

W

WinTR-20 TR20.inp	Printed Pa	ge File	Beginni	ng of Inpu	t Data Lis	t
Manley	Version 1 t subtitle			0	0	0.05
SUB-AREA:	OS A A D E	Outlet Outlet Outlet Outlet		.32583 .02234 .01036 .00348		2.1 .57 .595
STREAM RE	ACH:					
STORM ANA	LYSIS: 5-Yr 100-Yr			2.7	Type II Type II	2 2
STRUCTURE	RATING:					
GLOBAL OU	TPUT:	0.05		YYYYN	YYYYNN	

WinTR-20 Printed Page File

End of Input Data List

Manley no project subtitle provided

Name of printed page file: TR20.out

STORM 5-Yr

Reach Identifier	Area (sq mi)	Rain Gage ID or Location	Runoff Amount (in)	Elevation (ft)		Flow Rate (cfs) 19.18	Rate (csm)
OS A	0.326		0.409		13.40	19.10	30.07
Line Start Time (hr)	(cfs)	Flow (cfs)	Values @ ti (cfs)	me increment (cfs)	(cfs)	(cfs)	(cfs)
11.868	0.10	0.57	1.51	2.84	4.70	7.18	10.06
12.797	12.79	15.12	16.91	18.17	18.97	19.18	19.08
13.725	18.64	17.80	16.66	15.59	14.67	13.79	13.00
14.654	12.30	11.63	11.00	10.42	9.91	9.44	9.02
15.582	8.63	8.28	7.95	7.65	7.38	7.13	6.89
16.510	6.66	6.45	6.25	6.06	5.88	5.72	5.57
17.439	5.44	5.31	5.20	5.09	4.98	4.89	4.79
18.367	4.70	4.61	4.54	4.47	4.39	4.32	4.26
19.296	4.19	4.12	4.06	3.99	3.93	3.86	3.79
20.224	3.73	3.66	3.60	3.53	3.47	3.41	3.36
21.152	3.31	3.26	3.22	3.18	3.14	3.11	3.08
22.081	3.06	3.04	3.01	3.00	2.98	2.96	2.94
23.009	2.93	2.92	2.90	2.89	2.87	2.86	2.85
23.938	2.84	2.82	2.80	2.75	2.69	2.60	2.47
24.866	2.31	2.13	1.93	1.72	1.51	1.31	1.13
25.795	0.96	0.81	0.68	0.58	0.49	0.42	0.35
26.723	0.30	0.26	0.22	0.18	0.16	0.13	0.11
27.651	0.09	0.08	0.07	0.06			

WinTR-20 Pr TR20.inp	inted Pag	re File	Beginning of	Input Data	a List		
WinTR-20: V	ersion 1.	10	0	0	0.05		(continued)
y no project	subtitle	provided	qı	TORM 5-Yr			(concernada)
SUB-AREA:			J.	\sim			
	S A	Outlet	,325		2.1		
A		Outlet	.022		.57		
D)	Outlet	.010		.595		
		no p	roject subtitl	e provided			
+ *							
Line		Flow	Values @ time	increment	of 0.035	hr	
Start Time (hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
(111.)							
27.899	0.07	0.07	0.06	0.06	0.06	0.05	0.05
			S	TORM 100-Y:	r		
			D 66		Dook El	OT-T	
Area or	Drainage	Rain Gage	Runoff	Elomation	Time	Dw	Rate
Reach Identifier	Area	ID OF	Amount (in)	(ft)	(hr)	(cfs)	(csm)
Identiffer	(Sq mil)	HOCACION	Amount (in)	(20)	(112)	(020)	(/
OS A			1.461		13.36	87.99	270.06
00 11							
Line					100	,	
Start Time		Flow	Values @ time	increment	of 0.133	hr	/
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(CIS)	(cfs)
11 270	0.00	0.18	0.42	1 10	3 16	7.48	13.98
11.370 12.298		34 00	47 29	60 49	71.60	79.88	
13.226	22.71 87.87	87.99	85.98	82.56	71.60 77.59	71.27	
14.155		54.45	47.29 85.98 50.16 30.46	46.42	43.08	39.96	37.13
15.083	34.65	32.45	30.46	28.69	43.08 27.11	25.67	
16.012		22.19	21.23 16.26	20.35	19.53 15.32	18.77	
16.940	17 /1	16.82	16,26	15.77	15.32	14.91	
17.869	14.15			13.16 11 51	12.86	12.59	12.36
18.797	12.14	11.92			11.31	11.11	10.92
19.725					9.96	9.77	9.58 8.51
20.654				8.91 8.13	8.76 8.06	8.63 7.99	7.93
21.582	8.40			7 70	7.68	7.63	7.59
22.511	7.87 7.55	7.82	7.77 7.47 6.69	7.43	7.39	7.34	7.26
23.439 24.367			6.69	6.34	5.90	5.40	4.87
25.296	7.13 4.33 1.44	6.95 3.79	6.69 3.29	2.82	2.39	2.01	
26.224	1.44			0.88	0.75	0.63	0.54
27.153	0.46	0.39		0.28			0.17
28.081	0.14	0.12		0.08	0.07	0.06	
					- 1 -1		
		Rain Gage					Rate
Reach		ID or		Elevation (ft)	(hr)	(cfs)	
Identifier	(sq mi)	Location	(in)	(IL)	(111.)	(CTD)	(Com)
A	0.022		1.460		12.24	15.78	706.47
T.	0.022		2.100		·- ·	•	
Line							
Start Time			Values @ time	increment	of 0.036	hr	
(hr)		(cfs)		(cfs)	(cfs)	(cfs)	(cfs)
	_		0.00	0 11	0 13	0.16	0.10
11.271	0.05			0.11	0.13 0.47	0.16 0.60	0.19 0.79
11.523	0.22		0.31 1.99	0.38 2.76	3.78	5.07	6.64
11.775	1.06			13.59	14.78	15.51	15.78
12.027	8.42	. 10.27	12.00	10.00	_1		

Beginning of Input Data List WinTR-20 Printed Page File TR20.inp 0.05 0 0 WinTR-20: Version 1.10 (continued) y no project subtitle provided · STORM 100-Yr SUB-AREA: 66. .32583 2.1 OS A Outlet .57 .595 .02234 Outlet Α D .

.01036

66.

Outlet

WinTR-20 Version 1.10

Page 12

01/20/2022 13:14

Exhibit 9: Hydraulic Summary for Re-plat

Manley Subdivision

Swale Summary

, i	Contributing		Slope	Desig	Design Flow	Depth (Depth of Flow	Velc	Velocity	Frou	Fronde #
Swaie #	Subbasins	Location		Q5	Q100	QS	Q100	90	Ø100		
			%	cfs	cfs	Ħ	Ħ	sdj	sdj	5 year	100 year
1 at DP1	OS 1	along west side of curtis	2.4	19.2	88.0	9.0	1.3	4.5	6.6	1.24	1.36
2	OS 1, A, D	see map	3.0	20.4	92.5	9.0	1.2	4.9	7.3	1.38	1.52
3	081	for reference									
4	Swale north of site					for refe	for reference				
5	a	inside SB	3.5	3.7	27.3	0.3	0.7	3.2	5.6	1.29	1.49
9	Borrow ditch along no. side of Jones fromSW corner to DP4					for refe	for reference				
7	Borrow ditch along west. side of Jones					for refe	for reference				
8	OS1,A,D,E	DP4 to DP2	3.5	20.4	92.5	9.0	1.3	5.2	7.7	1.47	1.63

Design Point Summary

Design	Sub Basins	Total Acres	Existing Runoff		
Point	Sub Basilis		Q5	Q100	
		(acres)	cfs	cfs	
1	OS-A	208.53	19.2	88	TR55 Method
2	OS- A, A, D, E	231.69	20.4	92.5	TR55Rational and Method
3	В	13.82	3.7	19.3	Rational Method
4	OS- A, A, D, E	231.5	20.4	92.5	TR55 and Rational Method

Highlighted values do not match with values shown in summary table in report.
Please revise so same information is shown in all locations.

Jude 1 e DPL

The open channel flow calculator Along Collins R			
Select Channel Type: Trapezoid 🗸	July July	Triangle Circle	
Depth from Q ~	Select unit system: Feet(ft)		
Channel slope: 0.024 ft/ft	Water depth(y): 0.63 ft	Bottom width(b) 3 ft	
Flow velocity 4.472 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 19.2 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 10.69	Flow area 4.29 ft^2	Top width(T) 10.59	
Specific energy 0.94	Froude number 1.24	Flow status Supercritical flow	
Critical depth 0.71	Critical slope 0.015 ft/ft	Velocity head 0.31	

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Per DCM Section 10.7, Fr # should be less than 0.9. Address this in the report and explain if existing swales appear to be stable, sufficient vegetation, no erosion, etc and reiterate that flows will not change as no additional improvements are being made. (For all swales)

Swole 1

The open channel flow calculator flong Cuctus E			
Select Channel Type: ☐ Trapezoid ✔	I	Triangle Circle	
Depth from Q 💙	Select unit system: Feet(ft)		
Channel slope: 0.024 ft/ft	Water depth(y): 1.26 ft	Bottom width(b) 3 ft	
Flow velocity 6.62 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 88 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 18.32	Flow area 13.29 ft^2	Top width(T) 18.11	
Specific energy 1.94	Froude number 1.36	Flow status Supercritical flow	
Critical depth 1.46	Critical slope 0.0122 ft/ft	Velocity head 0.68	

		Swale 2@ DP4	
The open channel flow calculator			
Select Channel Type:		$\begin{array}{c c} \hline T \\ z_1 \\ z_2 \end{array} \begin{array}{c c} \hline y \\ \hline Circle \end{array}$	
Depth from Q 🗸	Select unit system: Feet(ft)		
Channel slope: 0.030 ft/ft	Water depth(y): 0.62 ft	Bottom width(b) 3 ft	
Flow velocity 4.928	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 20.4 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 10.51	Flow area 4.14 ft^2	Top width(T) 10.41	
Specific energy 0.99	Froude number 1.38	Flow status Supercritical flow	
Critical depth 0.73	Critical slope 0.015 ft/ft	Velocity head 0.38	

Swall Z @DP4 1604-stork

The open channel flow calculator			
Select Channel Type: │Trapezoid ❤│	I	Triangle Circle	
Depth from Q	Select unit system: Feet(ft)		
Channel slope: 0.030	Water depth(y): 1.22 ft	Bottom width(b) 3 ft	
Flow velocity 7.296 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 92.5 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 17.9	Flow area 12.68 ft^2	Top width(T) 17.7	
Specific energy 2.05	Froude number 1.52	Flow status Supercritical flow	
Critical depth 1.49	Critical slope 0.0121 ft/ft	Velocity head 0.83	

Swale 5

The open channel flow calculator			
Select Channel Type: Trapezoid 🕶	Ty 21 Jy Rectangle Trapezoid	z1 z2 y z B y y	
Depth from Q 🗸	Select unit system: Feet(ft)		
Channel slope: .035	Water depth(y): 0.25 ft	Bottom width(b) 3 ft	
Flow velocity 3.206411 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 3.7 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 6.1	Flow area 1.15 ft^2	Top width(T) 6.06	
Specific energy 0.41	Froude number 1.29	Flow status Supercritical flow	
Critical depth 0.3	Critical slope 0.0183 ft/ft	Velocity head 0.16	

Swell 5

Swell 5

100

100

100

The open channel flow calculator			
Select Channel Type: Trapezoid 🕶	T	Triangle Circle	
Depth from Q ✓	Select unit system: Feet(ft)		
Channel slope: .035 ft/ft	Water depth(y): 0.69 ft	Bottom width(b) 3 ft	
Flow velocity 5.592 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 27.3 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 11.35	Flow area 4.88 ft^2	Top width(T) 11.23	
Specific energy 1.17	Froude number 1.49	Flow status Supercritical flow	
Critical depth 0.84	Critical slope 0.0144 ft/ft	Velocity head 0.49	

sware & akng No. side of Jones

The open channel flow calculator DP 4 to DPZ			
Select Channel Type: Trapezoid >	I I I I I I I I I I	Triangle Circle	
Depth from Q 🗸	Select unit system: Feet(ft)		
Channel slope: .035	Water depth(y): 1.25 ft	Bottom width(b) 2 ft	
Flow velocity 7.741 ft/s	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 92.5 ft^3/s	Input n value 0.028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 17.26 ft	Flow area 11.95 ft^2	Top width(T) 17.05	
Specific energy 2.18	Froude number 1.63	Flow status Supercritical flow	
Critical depth 1.56	Critical slope 0.0122 ft/ft	Velocity head 0.93	

		Label what swale this is for and which storm	
The open channel flow calculator			
Select Channel Type: Trapezoid ✔		Triangle Circle	
Depth from Q 🗸	Select unit system: Feet(ft)		
Channel slope: .035	Water depth(y): 0.6 ft	Bottom width(b) 3 ft	
Flow velocity 5.181	LeftSlope (Z1): 6 to 1 (H:V)	RightSlope (Z2): 6 to 1 (H:V)	
Flow discharge 20.4 ft^3/s	Input n value .028 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 10.27	Flow area 3.94 ft^2	Top width(T) 10.17	
Specific energy 1.01	Froude number 1.47	Flow status Supercritical flow	
Critical depth 0.73	Critical slope 0.015 ft/ft	Velocity head 0.42	

NDOT – Drainage Design and Erosion Control Manual Appendix F: Nomographs and Charts for Culvert Design

August 2006 Page F-4

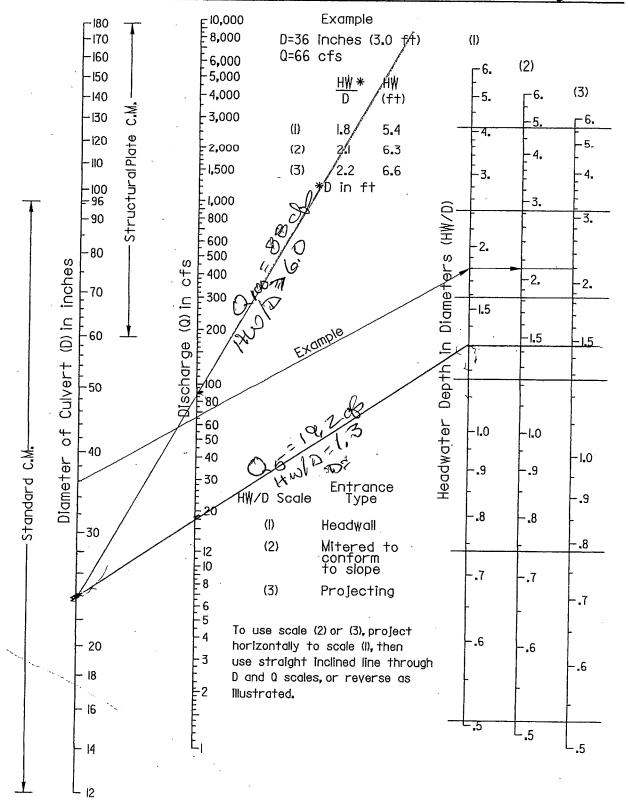


Exhibit F.2 Headwater Depth for CMP Culverts with Inlet Control (Source: Reference F.1)

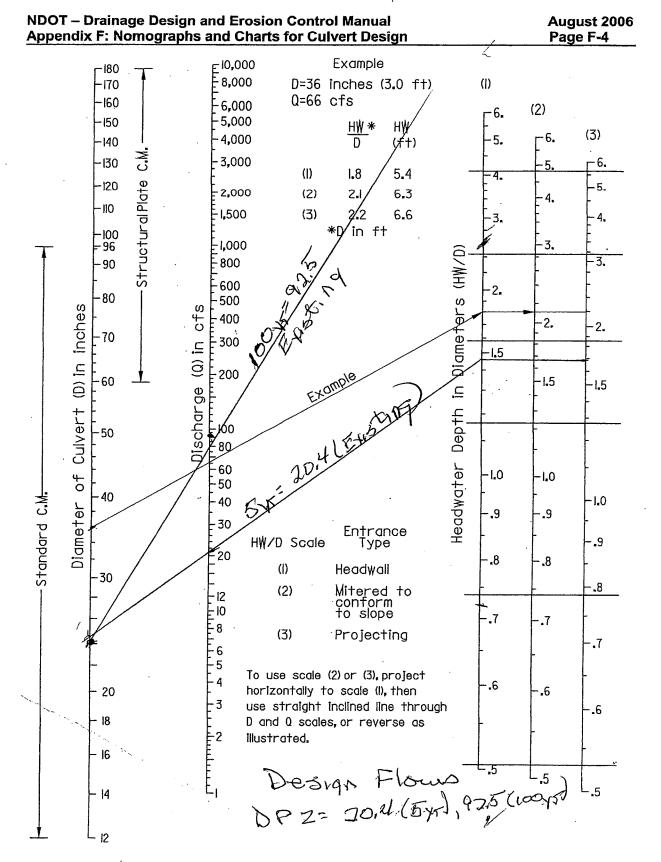
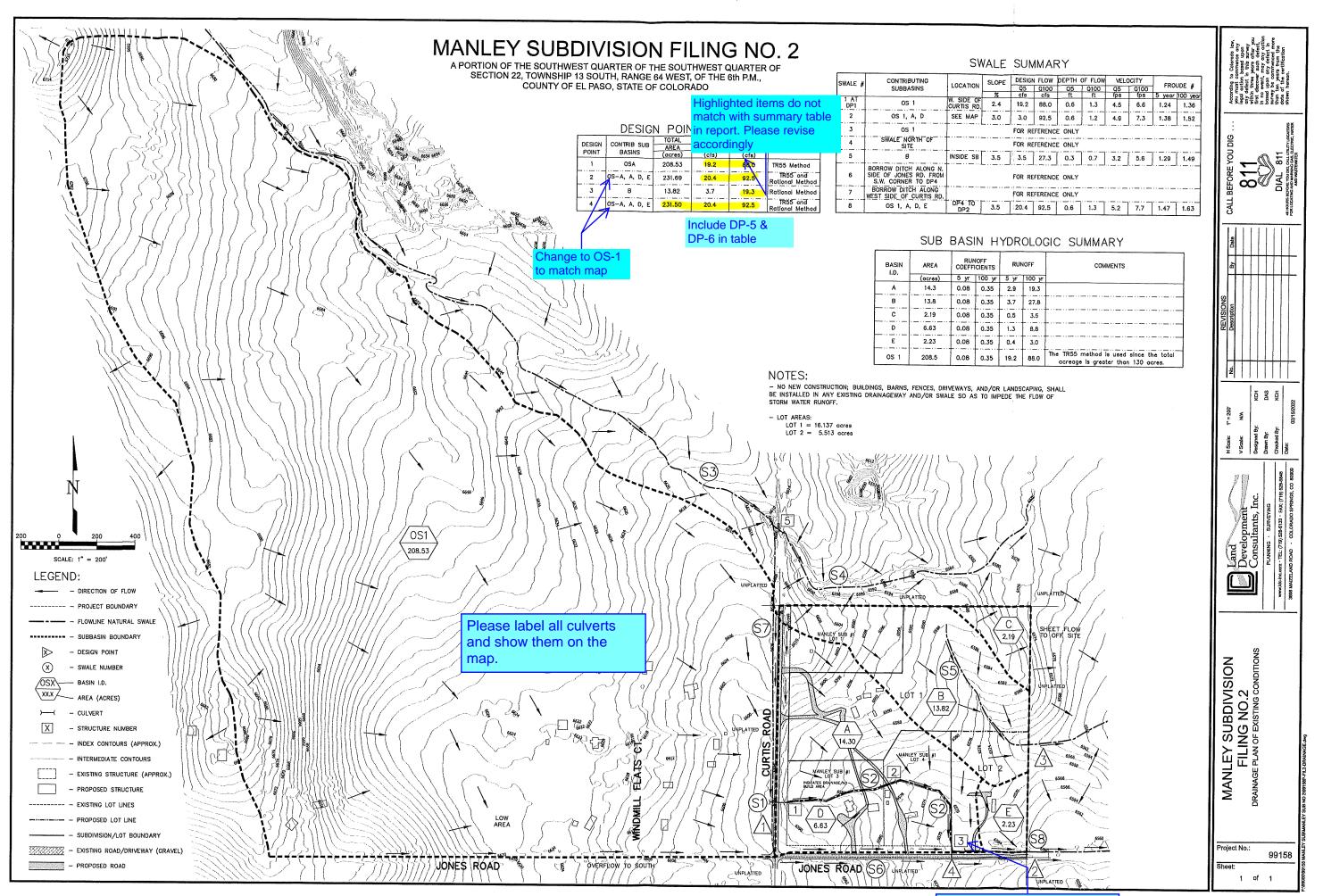



Exhibit F.2 Headwater Depth for CMP Culverts with Inlet Control (Source: Reference F.1)

Exhibit 10: Drainage Conditions (map pocket)

Exhibit 10 Drainage Conditions (map pocket)

Please identify this symbol.