Preliminary and Final Drainage Report The Beach at Woodmoor Filing No. 1 El Paso County, Colorado

> Prepared for: Lake Woodmoor Development Inc. 1755 Telstar Drive, Suite 211 Colorado Springs, Colorado 80920



1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 16059

January 16, 2018

January 16, 2018

Ms. Elizabeth Nijkamp, P.E. El Paso County Development Services 2880 International Circle Colorado Springs, Colorado 80910

RE: The Beach at Woodmoor Filing No. 1 (Kiowa Project No. 16059)

Dear Elizabeth:

This report is titled *Preliminary and Final Drainage Report The Beach at Woodmoor Filing No. 1* and addresses the drainage issues for the property. The report was prepared according to current County drainage criteria and is being submitted for approval.

If there are any questions or if we may be of further assistance, please feel free to call at any time.

Sincerely, Kiowa Engineering Corporation

Christopher J. Castelli, P.E. Senior Civil Engineer

## TABLE OF CONTENTS

| Table  | of Contents                                      | <b>i</b> |
|--------|--------------------------------------------------|----------|
| Staten | nents and Approvals                              | ii       |
| I.     | General Location and Description                 | 1        |
| Major  | Drainage Basins and Subbasins                    | 1        |
| Draina | ıge Design Criteria                              | 3        |
| II.    | Drainage Facility Design                         | 4        |
|        | A. Stormwater Detention and Water Quality Design | 6        |
|        | B. Cost of Proposed Private Drainage Facilities  | 7        |
|        | C. Drainage and Bridge Fees                      | 7        |
| III.   | Conclusions                                      | 7        |
| IV.    | References                                       | B        |
| Apper  | ndix Table of Contents                           | 9        |

List of Figures and Tables (Refer to the Appendix Table of Contents)

## STATEMENTS AND APPROVALS

## **ENGINEER'S STATEMENT:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

Christopher J. Castelli, P.E. (PE #38842) For and on Behalf of Kiowa Engineering Corporation

Date

#### **DEVELOPER'S STATEMENT:**

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Thomas Taylor, Director of Development Services Lake Woodmoor Development Inc.

Date

Print Name: \_\_\_\_\_

Address: <u>Lake Woodmoor Development Inc.</u> <u>1755 Telstar Drive, Suite 211</u> <u>Colorado Springs, Colorado 80920</u>

## **EL PASO COUNTY:**

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E. El Paso County Engineer/ECM Administrator Date

## I. GENERAL LOCATION AND DESCRIPTION

The Beach at Woodmoor Filing No. 1 will be developed as a single-family residential subdivision located in the Woodmoor area of El Paso County near Monument, Colorado. The subject property is split north and south of Lake Woodmoor Drive and just west of Lower Lake Road. The site is located in the northeast quarter of Section 14, Township 11 South, Range 67 West of the 6th Principal Meridian, in El Paso County, Colorado. The site is bounded to the north by Lake Woodmoor reservoir and the Lake Woodmoor single-family residential subdivision, to the west by the Lake Woodmoor spillway, to the east by Lower Lake Road and to the south by the Brookmoor Filing No. 3 development. The property covers approximately 12.30 acres and is currently undeveloped. A vicinity map of the site is shown on Figure 1 included in the Appendix.

The existing vegetative cover within the property consists primarily of native grasses in fair to good condition throughout the site. There are a few trees along the north property boundary and adjacent to the existing drainageway at the south property boundary. There are scattered riparian shrubs along the Lake Woodmoor shoreline. The existing ground slopes within the property range from approximately 2.5 to 7 percent for the majority of the site, and approximately 4:1 (horizontal:vertical) closer to Lake Woodmoor. The majority of the soils within the subject site are classified to be within Hydrologic Soil Group B (Tomah-Crowfoot loamy sands #92). As shown in the El Paso County Custom Soil Resource Report, there is also a small area in the northeast corner of the site that is identified to be within Hydrologic Soil Group D (Alamosa loam #1). Excerpts from the report are included in the Appendix. Hydrologic Soil Group B was used for the purposes of computing the existing and proposed hydrology for the site, since it is the dominant soil group that encompasses the majority of the site area.

The site drains northwest to Lake Woodmoor, west to the Lake Woodmoor spillway, and south to an existing storm sewer system within the Brookmoor Filing No. 3 development, where runoff is conveyed west to the Lake Fork Dirty Woman Creek. Lake Woodmoor is located along Lake Fork Dirty Woman Creek, which continues in a southerly direction to the Dirty Woman Creek main branch. Dirty Woman Creek is a tributary to Monument Creek.

There are no active irrigation ditches or facilities within or adjacent to the site.

Existing utilities within the site include a sanitary sewer main that runs southwest parallel to Lake Woodmoor and southeast across Lake Woodmoor Drive to the Brookmoor Filing No. 3 development. There is also a waterline that runs from Lake Woodmoor generally along the west property line to Lake Woodmoor Drive. There is an underground electric line with associated meter and two vaults near the west property boundary, that connects between two electric transformers and runs generally south between the west property line and the Lake Woodmoor spillway. There is a 30-inch RCP located at the south property boundary that conveys offsite flows south through the Brookmoor Filing No. 3 development. Existing utilities within public rights-of-way include a sanitary sewer line, water line and two telephone lines along Lake Woodmoor Drive, and a water line, gas line and telephone line along Lower Lake Road. There are two 24-inch culverts and two 30-inch culverts that cross Lake Woodmoor Drive and Lower Lake Road near the intersection of these two streets. The culverts convey offsite flows from the east to the 30-inch RCP at the south property boundary. The existing water and sanitary sewer lines are owned by the Woodmoor Water and Sanitation District.

## MAJOR DRAINAGE BASINS AND SUBBASINS

The site lies within the Dirty Woman Creek drainage basin. The northern approximately 15% of the site drains by sheet flow northwest directly to Lake Woodmoor (Sub-basin EX-2). Sub-basin EX-1 is located south of Sub-basin EX-2 and drains by sheet flow southwest to Lake Woodmoor Drive. Lake

Woodmoor drive has a rural street section with roadside ditches that convey runoff west from its high point (located approximately 200 feet west of Lower Lake Road) to its low point at the Lake Woodmoor spillway (DP EX1). Since the spillway/Lake Woodmoor Drive crossing is an at-grade crossing (is not grade separated), runoff that reaches the spillway on the north side of Lake Woodmoor Drive sheet flows south across Lake Woodmoor Drive, then continues south along the concrete-lined spillway channel. Sub-Basin EX-3 is located south of Lake Woodmoor Drive and just north of the existing Brookmoor Filing No. 3 development. Sub-basin EX-3 drains west by sheet flow to the Lake Woodmoor spillway (DP EX3). Runoff that reaches the spillway on the south side of Lake Woodmoor Drive combines with runoff from Sub-basin EX-1 and continues south along the concrete-lined spillway channel.

There is currently offsite runoff that enters the site from the east. The offsite basins consist of existing residential developments, a portion of the Lewis Palmer Elementary School and the Lake Woodmoor Drive right-of-way.

<u>Sub-basin OS-1</u> is located south of Lake Woodmoor Drive and East of Lower Lake Road. Runoff from Sub-basin OS-1 is conveyed east in a 30-inch CMP and 24-inch CMP across an existing gravel access road (across Lake Woodmoor Drive from Lower Lake Road), where it is combined with runoff from Sub-basin OS-2 and conveyed south through an eroded channel to an existing 30-inch RCP at the south property boundary (DP OS13). Flow is conveyed south in the 30-inch RCP, then west in a 36inch RCP through the Brookmoor Filing No. 3 development to a 66-inch CMP trunkline. The trunkline discharges to a riprap-lined channel (Lake Fork Dirty Woman Creek), where flow is conveyed southerly to Dirty Woman Creek.

<u>Sub-basin OS-2</u> is located north of Lake Woodmoor Drive and east of Lower Lake Road. Runoff from Sub-basin OS-2 collects in the ditch along the north side of Lake Woodmoor Drive, is conveyed west in a 24-inch CMP across Lower Lake Road, then continues in the ditch for approximately 100 feet to a 30-inch RCP that conveys flow south across Lake Woodmoor Drive to Sub-basin OS-1.

<u>Sub-basin OS-3</u> is located south of Sub-basin OS-1 and drains by sheet flow to the southeast corner of the site. Runoff from Sub-basin OS-3 combines with runoff from Sub-basin OS-1 along the south property boundary to DP OS13.

The existing drainage patterns for the site are shown on the Existing Condition Drainage Plan (Sheet DP1) provided in a map pocket at the end of this report.

The reports and plans that were reviewed in the process of preparing this drainage report are included in the References section. The Beach at Woodmoor Filing No. 1 area was studied as a part of the Dirty Woman and Crystal Creeks Drainage Basin Planning Study (DBPS) (Reference 1). As previously stated, Lake Woodmoor is located along the Lake Fork tributary to Dirty Woman Creek. The portion of the Lake Fork tributary that is adjacent to The Beach at Woodmoor Filing No. 1 property is identified as "Reach LFDW-A-24" in the DBPS. The DBPS recommends improvements on the adjacent property owned by the Woodmoor Water and Sanitation District and within the Lake Woodmoor Drive right-of-way, including lowering the Lake Woodmoor spillway so it can be conveyed through a 16' wide by 4' high box culvert (instead of the current at-grade crossing), and installation of a check structure and series of drop structures to stabilize the downstream channel section (Lake Fork Dirty Woman Creek) that flows in a southerly direction to Dirty Woman Creek. In lieu of the DBPS recommendations, the Brookmoor Preliminary/Final Drainage Report (Reference 2) states that a 66-inch CMP trunkline would be constructed to collect runoff from the development and the Lake Woodmoor spillway and convey it south to a riprap-lined channel (Lake Fork Dirty Woman Creek) to outlet at Dirty Woman Creek. These drainage improvements appear to have been constructed as described in the Brookmoor report.

Runoff leaving the subject site will be at or less than the existing (undeveloped) condition, so the development of the property will not adversely affect or impact any downstream properties, improvements or drainageways. Therefore, there are no outstanding improvements identified in the DBPS which need to be constructed as part of the development of this site.

The subject property limits are shown on Flood Insurance Rate Map (FIRM) 08041C0276 F (with an effective date of March 17, 1997). The FIRM was subsequently revised to reflect a Letter of Map Revision (LOMR) with Case Number 99-08-012P and an effective date of November 9, 1998. The FIRM showing the project site is included in the Appendix. The Developed Condition Drainage Plan shows that the portion of the property to be developed with buildable lots is located outside of the FEMA regulated floodplain in an unshaded Zone X area, which is described as "Areas determined to be outside the 500-year floodplain".

## DRAINAGE DESIGN CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the *El Paso County Drainage Criteria Manual* (DCM). Topography for the site was compiled using a one-foot contour interval and is presented on the drainage plans. The hydrologic calculations were made for the existing and proposed site conditions. The drainage plans present the drainage patterns for the site, including the sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor Storm) and 100-year (Major Storm) recurrence intervals were determined. The one-hour rainfall depth was determined from Table 6-2 in Volume 1 of the City of Colorado Springs Drainage Criteria Manual. These depths are shown in the runoff calculations spreadsheet. The peak flow data generated using the rational method was used to verify street capacities and to size inlets, storm sewers, culverts and swales within the development. The drainage basin area, time of concentration, and rainfall intensity were determined for each of the sub-basins within the property. As discussed in the General Location and Description section, Hydrologic Soil Group B was used for the purposes of computing the existing and proposed hydrology for the site. For existing conditions, runoff coefficients for the on-site basins were determined using historic, packed gravel and pavement land uses. The land uses for the proposed development will be paved streets, lawns and residential with a density of approximately 4.1 lots per acre for the proposed lots north of Lake Woodmoor Drive and 3.6 lots per acre for the proposed lots south of Lake Woodmoor Drive. Runoff coefficients for the offsite basins were obtained from the Brookmoor Preliminary/Final Drainage Report (Reference 2).

The sizing of the onsite hydraulic structures was made using the methods outlined in both the El Paso County and City of Colorado Springs Drainage Criteria Manuals. Colorado Department of Transportation (CDOT) Type R curb inlets and a Type C grated inlet will be used within the site. The hydraulic capacities of the Type R curb inlets were determined using the UDINLET spreadsheet developed by the Urban Drainage and Flood Control District (UDFCD), and Figure 8-10 (refer to Appendix C) was utilized for the Type C grated inlet capacities.

El Paso County Type C curbs will be used throughout the development, except between curb returns and at curb inlets, where a 6-inch vertical curb will be used. The UD-Inlet spreadsheet was used to determine the capacity of each street within the site, considering the County criteria for the Minor (5-year) and Major (100-year) Storms.

Storm sewer pipes and culverts were sized based on their full-flow capacity using the Manning's equation. Hydraulic calculations are provided in Appendix C for the proposed street, inlet, pipe and culvert capacities.

The UD-Culvert spreadsheet was used to determine the extent and size of riprap erosion protection for storm sewer system and culvert outlets. These calculations are also included in Appendix C.

The on-site detention basin is planned to be Extended Detention Basins that use Full Spectrum Detention. The UD-Detention spreadsheet created by the UDFCD was used to size and design the detention basin with water quality enhancement, per the County's recommendation. The supporting calculations associated with the sizing of the hydraulic facilities for this development are included in Appendix B of this report.

## II. DRAINAGE FACILITY DESIGN

The drainage of the site will be accomplished through a combination of sheet flow, open channel flow, gutter flow and storm sewer flow. Curb inlets will be placed at low points (sump areas) and on a continuous grade within the site to accept the developed runoff and convey it to the proposed detention basin prior to being discharged off site. Riprap outlet protection will be placed at the end of each pipe outfall and culvert outlet to reduce erosion.

Detention Basin A will include a concrete-lined presedimentation forebay at each proposed storm sewer outlet and a concrete trickle channel to convey flow to the outlet structure. The detention basin will have a micropool and water quality orifice plate onto an outlet structure, an emergency spillway and a maintenance access trail. The detention basin will be a private facility owned and maintained by the homeowner's association for The Beach at Woodmoor Filing No. 1 development.

The evaluation related to the sizing of the onsite drainage improvements was carried out in accordance with the *El Paso County Drainage Criteria Manual*. The capacities of the proposed onsite facilities were calculated in accordance with the Criteria Manual.

The proposed drainage patterns for the site are shown on the Developed Condition Drainage Plan (Sheet DP2) provided in the map pocket at the end of this report. The hydrologic and hydraulic calculations are provided in Appendices A, B and C, refer to the Drainage Design Criteria section for additional information on the hydrologic and hydraulic calculations.

Following is a description of the on-site drainage sub-basins:

<u>Sub-basin A-1</u> is approximately 0.70 acres in area, is located north of Lake Woodmoor Drive and just east of the Lake Woodmoor spillway. Runoff from this basin will sheet flow south, combine with carry-over flow from Sub-basin A-3, and gutter flow south in Coronado Beach Drive to a swale along the north side of Lake Woodmoor Drive. The combined runoff will be conveyed west to the Lake Woodmoor spillway (DP A1), then sheet flow south across Lake Woodmoor Drive (as it does currently) to the concrete-lined spillway.

<u>Sub-basin A-2</u> is approximately 2.09 acres in area and is located north of Sub-basins A-1 and A-3 along the north property boundary. This basin includes backyards and undeveloped land, and will drain by sheet flow northwest directly to Lake Woodmoor.

<u>Sub-basin A-3</u> is approximately 2.08 acres in area and is located north of Coronado Beach Drive between Sub-basins A-1 and A-6. Runoff from this basin will sheet flow southwest then gutter flow westerly along the north flowline of Coronado Beach Drive to a 15' Type R Inlet on a continuous grade connected to an 18-inch RCP (DP A3).

<u>Sub-basin A-4</u> is approximately 1.31 acres in area and is located south of Coronado Beach Drive and north of Sub-basin A-5. Runoff from this basin will sheet flow west-northwest then gutter flow westerly along the south flowline of Coronado Beach Drive to a 10' Type R Inlet on a continuous grade (DP A4). Captured runoff at DP A4 will combine with captured runoff from DP A3 and be conveyed in a 24" RCP to a Type C Inlet in a sump condition within Sub-basin A-5 (DP A5).

<u>Sub-basin A-5</u> is approximately 2.22 acres in area and is located north of Lake Woodmoor Drive between Sub-basins A-1 and A-7. This basin includes backyards, open space and a portion of the

north half of Lake Woodmoor Drive. Grass-lined Swale 3 captures and conveys runoff to a Type C Inlet in a sump condition (DP A5). Carry-over flow from Sub-basin A-4 is also conveyed to the Type C Inlet at DP A5. The combined runoff is then conveyed in an 24-inch RCP south across Lake Woodmoor Drive to Detention Basin A.

<u>Sub-basin A-6</u> is approximately 0.10 acres in area and is located just west of Lower Lake Road and north of Coronado Beach Drive. Runoff from this basin will sheet flow to grass-lined Swale 1 and be conveyed south to an 18-inch RCP culvert across Coronado Beach Drive (DP A6).

<u>Sub-basin A-7</u> is approximately 0.38 acres in area and is located just west of Lower Lake Road and north of Lake Woodmoor Drive. Runoff from this basin will sheet flow south and west to a proposed Type C Inlet in a sump condition. An existing 24-inch CMP that crosses Lower Lake Road just north of Lake Woodmoor Drive will be extended west with a 24-inch RCP to the Type C Inlet, where offsite runoff from Sub-basin OS-5 will combine with runoff from Sub-basins A-6 and A-7 (DP 8). The combined runoff will continue south in an existing 30-inch RCP that crosses Lake Woodmoor Drive.

<u>Sub-basin B-1</u> is approximately 0.25 acres in area and is located south of Lake Woodmoor Drive and west of the public access to Captiva Beach Lane. This basin will accept runoff from Sub-basin B-2, include a portion of the south half of Lake Woodmoor Drive, and convey runoff through grass-lined Swale 6 to an 18-inch RCP (DP 11). The 18-inch RCP will connect to the 24-inch RCP that will cross Lake Woodmoor Drive from the north at a 4' diameter manhole, where runoff from Sub-basins A-3, A-4, A-5, B-1 and B-2 will combine and be conveyed south in an 24-inch RCP to Detention Basin A.

<u>Sub-basin B-2</u> is approximately 0.47 acres in area and is located south of Lake Woodmoor Drive and west of Lower Lake Road. This basin includes a portion of the south half of Lake Woodmoor Drive and grass-lined Swale 5, and will convey runoff to an 18-inch RCP culvert across the public access to Captiva Beach Lane (DP B2). Offsite runoff from Sub-basin OS-4 will be conveyed west in a 30-inch RCP storm sewer system that will combine with runoff from Sub-basins OS-5, A-6 and A-7 and continue south in a 30-inch RCP through Sub-basin B-4.

<u>Sub-basin B-3</u> is approximately 0.77 acres in area and is located south of Lake Woodmoor Drive and just east of the Lake Woodmoor spillway. This basin represents the area directly tributary to and including proposed Detention Basin A.

<u>Sub-basin B-4</u> is approximately 1.26 acres in area and is located south of Lake Woodmoor Drive and north of Captiva Beach Lane. This basin will drain by sheet flow and gutter flow south to Captiva Beach Lane, then continue west along the north Captiva Beach Lane flowline to a 5' curb inlet in a sump condition (DP B4). Runoff captured at DP B4 will be conveyed south in an 18-inch RCP to DP 13. Offsite runoff from Sub-basin OS-4 will be conveyed west in a 24-inch RCP storm sewer system that will combine with runoff from Sub-basins OS-5, A-6 and A-7 and continue southerly in a 30-inch RCP through Sub-basin B-5.

<u>Sub-basin B-5</u> is approximately 2.14 acres in area and is located south of Captiva Beach Lane along the south property boundary. This basin will accept runoff from Sub-basin OS-6, continue north as sheet flow to Captiva Beach Lane, then west along the south Captiva Beach Lane flowline to a 5' curb inlet in a sump condition (DP 13). At DP 13, runoff from Sub-basins OS-6 and B-5 will combine with runoff from Sub-basin B-4, and be conveyed through an 18-inch RCP storm sewer system to proposed Detention Basin A (DP 14). The 30-inch RCP storm sewer system described for Sub-basin B-4 crosses Sub-basin B-5 and connects to an existing 30-inch RCP (DP 9), where it continues south then west through the Brookmoor Filing No. 3 development and eventually south to Dirty Woman Creek (refer to the Major Drainage Basins and Subbasins section for additional discussion of this storm sewer system).

<u>Sub-basin C-1</u> is approximately 0.24 acres in area and is located south of Lake Woodmoor Drive, and just east of the Lake Woodmoor spillway. Runoff from a portion of this basin will sheet flow north to a swale along the north side of Lake Woodmoor Drive (Swale 7), while the remaining area will sheet flow west to the property adjacent to the Lake Woodmoor spillway. The 24-inch RCP outlet pipe from Detention Basin A will cross Sub-basin C-1 and daylight to Swale 7 along the south side of Lake Woodmoor Drive. A swale capacity analysis has been performed to handle the major and minor storms from Detention Basin A and can be seen in Appendix C.

The offsite drainage sub-basins are described in detail in the Major Drainage Basins and Subbasins section.

## A. STORMWATER DETENTION AND WATER QUALITY DESIGN

## **Stormwater Detention**

One full spectrum detention basin is planned for the proposed development:

Detention Basin A is a private detention basin with the home owners association being responsible for maintenance of the subject drainage facilities. The required WQCV for a 40-hour drain time is 0.15 acre-feet. The required excess urban runoff volume (EURV) for a 72-hour drain time is 0.40 acre-feet. The storage volume required for detention is 0.87 acre-feet, which includes 0.79 acre-feet for the 100-year storm event plus one-half of the WQCV in accordance with County criteria. The proposed outlet structure will include an external micropool and one chamber that controls the release of the WQCV and the EURV. An orifice plate will drain the WQCV and EURV into the chamber of the outlet structure. Approximately  $Q_{100}$ =31.6 cfs (DP 15) will drain to the proposed detention basin. 100-year storm event or greater flows will spill over the top of the chamber through a steel grate. Runoff released from the detention basin will be restricted to 15.4 cfs for the 100-year storm event. A proposed 24-inch RCP equipped with a restrictor plate will convey runoff released from the detention basin to the south roadside swale along Lake Woodmoor Drive just east of the Lake Woodmoor spillway. If the outlet structure becomes plugged, a 35-foot wide emergency spillway will convey the runoff to the roadside swale.

## Stormwater Quality

Stormwater quality measures are required as stated in the County's Drainage Criteria Manual. The selection of appropriate BMPs is based on the site's characteristics and potential pollutants. The County requires that a Four-Step Process be followed in the BMP selection process:

## **Step 1: Employ Runoff Reduction Practices**

The natural drainage patterns were generally maintained for the site. The proposed site includes the construction of streets, driveways and sidewalks to the minimum widths necessary in order to minimize imperviousness while still maintaining the functionality of the site as intended, providing for adequate parking, snow management, public safety and fire access. Low Impact Development (LID) techniques were implemented as much as possible (and practical) through the use of long grass-lined swales adjacent to Lower Lake Road and Lake Woodmoor Drive. Runoff was also routed by sheet flow through grass areas in select locations to encourage infiltration.

## Step 2: Stabilize Drainageways

There are no drainageways within the site that require stabilization. There are grass-lined swales proposed along the existing streets as stated under Step 1. The swales will be

designed such that runoff will be conveyed along them at non-erosive velocities, and riprap erosion protection will be provided at culvert outlets.

## Step 3: Provide Water Quality Capture Volume (WQCV)

Since water quality capture volume (WQCV) will be required for the proposed development, full spectrum Detention Basin A will also be used for stormwater quality treatment. A presedimentation forebay will be installed at each storm sewer outlet into the detention basin. The outlet structure will include a water quality orifice plate and a micropool.

## Step 4: Consider Need for Industrial and Commercial BMPs

The proposed development is not an industrial or commercial site, so no specialized BMPs were considered.

## B. COST OF PROPOSED PRIVATE DRAINAGE FACILITIES

Table 2 presents a cost estimate for the construction of private drainage improvements for The Beach at Woodmoor Filing No. 1 development.

## C. DRAINAGE AND BRIDGE FEES

The site lies within the Dirty Woman Creek Drainage Basin. The current drainage basin fee associated with the Dirty Woman Creek Drainage Basin is \$17,197 per impervious acre. The current bridge fee associated with the Dirty Woman Creek Drainage Basin is \$941 per impervious acre. The Beach at Woodmoor Filing No. 1 development encompasses 12.30 acres. Table 1 details the fees due as part of this development.

## III. CONCLUSIONS

The Beach at Woodmoor Filing No. 1 will be a single-family residential development covering approximately 12.30 acres. Onsite drainage will include the use of curb inlets, storm sewers, culverts and grass-lined swales to route runoff from the site to an extended detention basin. Detained runoff from the site will be conveyed to the Lake Woodmoor spillway, which is located along the Lake Fork Tributary of Dirty Woman Creek. With the site discharging its runoff at or below existing rates to an armored spillway located along a major drainageway, the development of The Beach at Woodmoor Filing No. 1 property will not adversely impact or deteriorate improvements or natural drainageways downstream of the property.

## IV. REFERENCES

- 1) <u>Drainage Basin Planning Study, Dirty Woman Creek and Crystal Creek, El Paso County,</u> <u>Colorado</u>, prepared by Kiowa Engineering Corporation, dated September 1993.
- 2) <u>Brookmoor Preliminary/Final Drainage Report</u>, prepared by Nolte and Associates, dated June 1995.
- 3) <u>Flood Insurance Study, El Paso County, Colorado and Incorporated Areas</u>, prepared by the Federal Emergency Management Agency, dated August 1999.
- 4) <u>El Paso County Drainage Criteria Manual (Volumes 1 and 2) and Engineering Criteria</u> <u>Manual</u>, current editions.
- 5) <u>City of Colorado Springs Drainage Criteria Manual, Volumes 1 and 2</u>, May 2014.
- 6) <u>Flood Insurance Rate Map</u>, Map Number 08041C0276F, by Federal Emergency Management Agency, dated March 17, 1997.
- 7) <u>Letter of Map Change</u>, Letter of Map Revision Case Number 99-08-012P, Community Number 080059, by Federal Emergency Management Agency, dated November 9, 1998.
- 8) Excerpts from the <u>Custom Soil Resource Report for El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Natural Resources Conservation Service, dated April 12, 2017.

### **APPENDIX TABLE OF CONTENTS**

#### APPENDIX

Figures and Exhibits
Figure 1: Vicinity Map
Excerpts from USDA NRCS Custom Soil Resource Report
FEMA Flood Insurance Rate Map (Panel 276)
Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculations
Table 2: Opinion of Cost – Private Drainage Facilities

#### **APPENDIX A**

Existing and Developed Condition Hydrologic Calculations Runoff Coefficient Calculations Time of Concentration Calculations Runoff Calculations

#### **APPENDIX A.1**

Supporting Hydrologic Tables and Figures

## **APPENDIX B**

Detention Basin Calculations Full Spectrum Detention Basin/Extended Detention Basin Emergency Spillway Calculations Outlet Structure Calculations Forebay Sizing and Trickle Channel Calculations

#### **APPENDIX B.1**

Supporting Detention Basin Tables and Figures

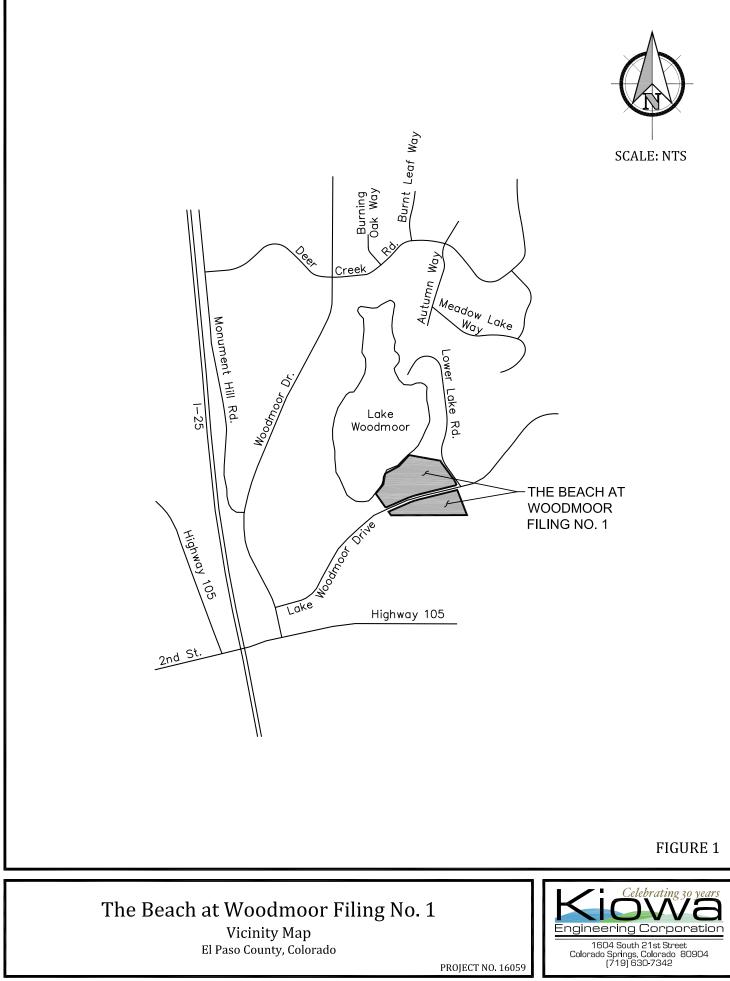
#### **APPENDIX C**

Hydraulic Calculations Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet and Hand Calcs Pipe Sizing Calculations Pipe Outlet Erosion Protection Calculations Swale Capacity Calculations

#### **APPENDIX D**

Referenced Information

Excerpt from Dirty Woman and Crystal Creeks Drainage Basin Planning Study


## **APPENDIX E**

Existing and Proposed Drainage Plans Sheet DP1 - Existing Condition Drainage Plan Sheet DP2 - Developed Condition Drainage Plan

## <u>APPENDIX</u>

## **Figures and Exhibits**

Figure 1: Vicinity Map Excerpts from USDA NRCS Custom Soil Resource Report FEMA Flood Insurance Rate Map (Panel 276) Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculations Table 2: Opinion of Cost – Private Drainage Facilities



16059 Drainage Plan.dwg/May 12, 2017



United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for El Paso County Area, Colorado

The Beach at Woodmoor Filing No. 1





|                                | MAP L                  | EGEND            | )                                      | MAP INFORMATION                                                                                                                                                                                                                             |
|--------------------------------|------------------------|------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area of Int                    | terest (AOI)           | 33               | Spoil Area                             | The soil surveys that comprise your AOI were mapped at                                                                                                                                                                                      |
|                                | Area of Interest (AOI) | ٥                | Stony Spot                             | 1:24,000.                                                                                                                                                                                                                                   |
| Soils                          | Soil Map Unit Polygons | 0                | Very Stony Spot                        | Warning: Soil Map may not be valid at this scale.                                                                                                                                                                                           |
| ~                              | Soil Map Unit Lines    | \$               | Wet Spot                               | Enlargement of maps beyond the scale of mapping can cause                                                                                                                                                                                   |
|                                | Soil Map Unit Points   | $\bigtriangleup$ | Other                                  | misunderstanding of the detail of mapping and accuracy of soil                                                                                                                                                                              |
| _                              |                        | , <b>*</b> **    | Special Line Features                  | line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed                                                                                                                     |
| Special Point Features Blowout |                        | Water Fea        |                                        | scale.                                                                                                                                                                                                                                      |
|                                | Borrow Pit             | $\sim$           | Streams and Canals                     |                                                                                                                                                                                                                                             |
| ×                              | Clay Spot              | Transpor         | tation<br>Rails                        | Please rely on the bar scale on each map sheet for map<br>measurements.                                                                                                                                                                     |
| 0                              | Closed Depression      | ++++             | Interstate Highways                    | incasulenents.                                                                                                                                                                                                                              |
| x                              | Gravel Pit             | ~                | US Routes                              | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:                                                                                                                                                               |
|                                | Gravelly Spot          | ~                |                                        | Coordinate System: Web Mercator (EPSG:3857)                                                                                                                                                                                                 |
| 0                              | Landfill               | ~                | Major Roads                            | Mana from the Math Only Oversey are based on the Math Marsada                                                                                                                                                                               |
| Ā                              | Lava Flow              | ~                | Local Roads                            | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts                                                                                                                 |
| als                            | Marsh or swamp         | Backgrou         | Aerial Photography                     | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more                                                                                                              |
| ~                              | Mine or Quarry         | N. Car           | · ···································· | accurate calculations of distance or area are required.                                                                                                                                                                                     |
|                                | Miscellaneous Water    |                  |                                        |                                                                                                                                                                                                                                             |
| 0                              | Perennial Water        |                  |                                        | This product is generated from the USDA-NRCS certified data as<br>of the version date(s) listed below.                                                                                                                                      |
| 0                              | Rock Outcrop           |                  |                                        |                                                                                                                                                                                                                                             |
| ×                              | Saline Spot            |                  |                                        | Soil Survey Area: El Paso County Area, Colorado<br>Survey Area Data: Version 14, Sep 23, 2016                                                                                                                                               |
| +                              | ·                      |                  |                                        | ···· <b>,</b> ································                                                                                                                                                                                              |
| °°°                            | Sandy Spot             |                  |                                        | Soil map units are labeled (as space allows) for map scales<br>1:50.000 or larger.                                                                                                                                                          |
| ÷                              | Severely Eroded Spot   |                  |                                        |                                                                                                                                                                                                                                             |
| <u>ہ</u>                       | Sinkhole               |                  |                                        | Date(s) aerial images were photographed: Apr 15, 2011—Sep 22, 2011                                                                                                                                                                          |
|                                | Slide or Slip          |                  |                                        | <i>LL</i> , <i>L</i> <b>U</b>   1                                                                                                                                                                                                           |
| ø                              | Sodic Spot             |                  |                                        | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident. |

## **Map Unit Legend**

|                             | El Paso County Area, Colorado (CO625)                |              |                |  |  |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------------------|--------------|----------------|--|--|--|--|--|--|--|--|--|
| Map Unit Symbol             | Map Unit Name                                        | Acres in AOI | Percent of AOI |  |  |  |  |  |  |  |  |  |
| 1                           | Alamosa loam, 1 to 3 percent slopes                  | 1.8          | 7.4%           |  |  |  |  |  |  |  |  |  |
| 92                          | Tomah-Crowfoot loamy sands,<br>3 to 8 percent slopes | 18.0         | 73.0%          |  |  |  |  |  |  |  |  |  |
| 111                         | Water                                                | 4.8          | 19.6%          |  |  |  |  |  |  |  |  |  |
| Totals for Area of Interest |                                                      | 24.6         | 100.0%         |  |  |  |  |  |  |  |  |  |

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The

## El Paso County Area, Colorado

## 1—Alamosa loam, 1 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 3670 Elevation: 7,200 to 7,700 feet Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

#### **Map Unit Composition**

Alamosa and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Alamosa**

#### Setting

Landform: Flood plains, fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

#### **Typical profile**

A - 0 to 6 inches: loam Bt - 6 to 14 inches: clay loam Btk - 14 to 33 inches: clay loam Cg1 - 33 to 53 inches: sandy clay loam Cg2 - 53 to 60 inches: sandy loam

#### **Properties and qualities**

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 12 to 18 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Very slightly saline to strongly saline (2.0 to 16.0 mmhos/cm)
Available water storage in profile: High (about 10.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: Mountain Meadow (R048AY241CO) Hydric soil rating: Yes

#### **Minor Components**

#### Other soils

Percent of map unit: Hydric soil rating: No

### 92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

#### Map Unit Setting

National map unit symbol: 36b9 Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Tomah and similar soils:* 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Tomah**

#### Setting

Landform: Alluvial fans, hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

#### **Typical profile**

A - 0 to 10 inches: loamy sand

- E 10 to 22 inches: coarse sand
- C 48 to 60 inches: coarse sand

#### **Properties and qualities**

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy Divide (R049BY216CO) Hydric soil rating: No

#### **Description of Crowfoot**

#### Setting

Landform: Alluvial fans, hills

Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

#### **Typical profile**

A - 0 to 12 inches: loamy sand E - 12 to 23 inches: sand Bt - 23 to 36 inches: sandy clay loam C - 36 to 60 inches: coarse sand

#### **Properties and qualities**

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.7 inches)

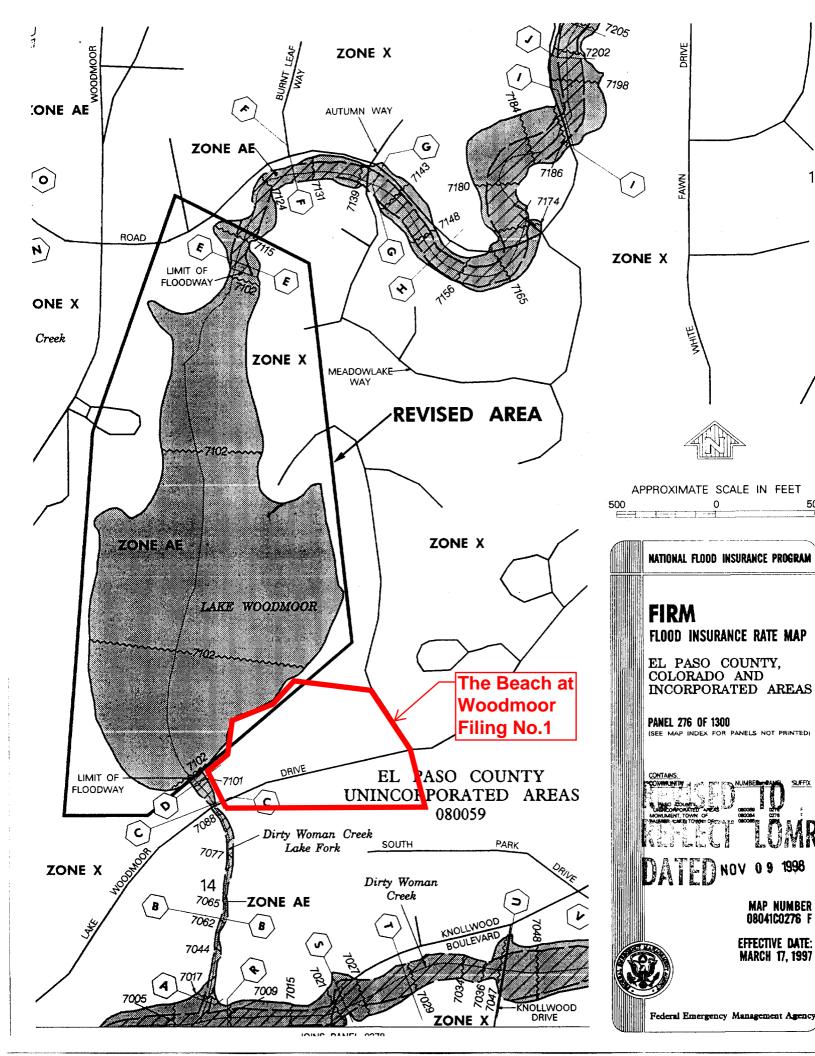
#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy Divide (R049BY216CO) Hydric soil rating: No

#### Minor Components

#### Other soils

Percent of map unit: Hydric soil rating: No


#### Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

#### 111—Water

#### Map Unit Composition

*Water:* 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 



#### The Beach at Woodmoor Filing No. 1 Drainage Basin and Bridge Fees

#### Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculation

| Total Lots =                                                        | 35 lots              |
|---------------------------------------------------------------------|----------------------|
| Total Development Area =                                            | 12.304 ac            |
| Total Area =                                                        | 12.304 ac            |
| Building/Patio/Drive Per Lot =<br>Total Building/Patio/Drive Area = | 3,775 sf<br>3.033 ac |
| Total Street/Sidewalk Area =                                        | 1.385 ac             |
| Total Impervious Area =                                             | 4.418 ac             |
| % Impervious Area =                                                 | 35.90 %              |

#### Dirty Woman Creek Drainage Basin

| Drainage Basin Fee and Bridge Fee Calculations |               |                      |              |  |  |  |  |  |  |  |  |
|------------------------------------------------|---------------|----------------------|--------------|--|--|--|--|--|--|--|--|
| Drainage Basin Fee =                           | \$17,197 / ac | Drainage Basin Fee = | \$ 75,968.87 |  |  |  |  |  |  |  |  |
| Bridge Fee =                                   | \$941 / ac    | Bridge Fee =         | \$ 4,156.93  |  |  |  |  |  |  |  |  |

Impervious Area = Acreage x (% Impervious)

Drainage Basin Fee = Impervious Area x (Drainage Basin Fee per Acre)

Bridge Fee = Impervious Area x (Bridge Fee per Acre)

#### The Beach at Woodmoor Filing No. 1 **Opinion of Cost**

#### Table 2: Opinion of Cost - Private Drainage Facilities

| Item                                                        | Quantity      | Unit       | Unit Cost                | Item Total    |
|-------------------------------------------------------------|---------------|------------|--------------------------|---------------|
| Drainage Improvements                                       | •             |            |                          |               |
| 18" Reinforced Concrete Pipe (RCP)                          | 608           | LF         | \$ 69.00                 | \$ 41,952.00  |
| 24" Reinforced Concrete Pipe (RCP)                          | 356           | LF         | \$ 84.00                 | \$ 29,904.00  |
| 30" Reinforced Concrete Pipe (RCP)                          | 479           | LF         | \$ 94.00                 | \$ 45,026.00  |
| Flared End Section (FES) RCP 18"                            | 5             | EA         | \$ 800.00                | \$ 4,000.00   |
| Flared End Section (FES) RCP 24"                            | 1             | EA         | \$ 900.00                | \$ 900.00     |
| Curb Inlet (Type R) $L=5'$ , Depth $< 5$ feet               | 2             | EA         | \$ 3,791.00              | \$ 7,582.00   |
| Curb Inlet (Type R) L=10', Depth < 5 feet                   | 1             | EA         | \$ 5,528.00              | \$ 5,528.00   |
| Curb Inlet (Type R) L=15', Depth < 5 feet                   | 1             | EA         | \$ 7,923.00              | \$ 7,923.00   |
| Grated Inlet (Type C), Depth < 5 feet                       | 2             | EA         | \$ 3,270.00              | \$ 6,540.00   |
| 5' Dia. Storm Sewer Manhole, Slab Base, Depth < 15 feet     | 12            | EA         | \$ 4,575.00              | \$ 54,900.00  |
| 5' Dia. Storm Sewer Manhole, Slab Base, Depth < 15 feet     | 1             | EA         | \$ 5,575.00              | \$ 5,575.00   |
| Soil Riprap, d50 9" and 12"                                 | 57            | CY         | \$ 98.00                 | \$ 5,586.00   |
| Channel Lining, Concrete (Trickle Channel)                  | 12            | CY         | \$ 450.00                | \$ 5,400.00   |
| Channel Lining, Grass                                       | 0.83          | AC         | \$ 1,287.00              | \$ 1,068.21   |
| Concrete Cutoff Wall (18" RCP FES)                          | 2             | EA         | \$ 300.00                | \$ 600.00     |
| Concrete Collar                                             | 2             | EA         | \$ 500.00                | \$ 1,000.00   |
| Detention Outlet Structure                                  | 1             | EA         | \$ 8,000.00              | \$ 8,000.00   |
| Detention Emergency Spillway (incl. riprap and cutoff wall) | 1             | EA         | \$ 14,000.00             | \$ 14,000.00  |
| Presedimentation Forebay                                    | 2             | EA         | \$ 3,000.00              | \$ 6,000.00   |
| Gravel Maintenance Access Trail                             | 440           | SY         | \$ 20.00                 | \$ 8,800.00   |
| Type II Bedding                                             | 16            | CY         | \$ 35.00                 | \$ 560.00     |
| Detention Basin Seeding and Mulch                           | 0.7           | AC         | \$ 520.00                | \$ 364.00     |
|                                                             | Estimated Sto | orm Draina | :<br>ige Facilities Cost | \$ 261,208.21 |
|                                                             |               |            | Engineering 10%          | \$ 26 120 82  |

Engineering 10% \$ 26,120.82 Contingency 5% \$ 13,060.41 \$ 300,389.44

Total Estimated Cost

## **APPENDIX A**

Existing and Developed Condition Hydrologic Calculations Runoff Coefficient Calculations

Time of Concentration Calculations Runoff Calculations

#### The Beach at Woodmoor Filing No. 1 Existing Condition Runoff Coeficient and Percent Impervious Calculation

|               |                                   |         |           | PV       | Area 1           | Land   | Use                    | HI       | Area             | 2 Land I | Use                    | GR       | Area 3           | Land   | Use                    | RO       | Area 4           | Land   | Use                    | CO       | Area 5           | Land   | Use                    |                   |      |                                      |
|---------------|-----------------------------------|---------|-----------|----------|------------------|--------|------------------------|----------|------------------|----------|------------------------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|-------------------|------|--------------------------------------|
| Basin /<br>DP | Basin or D<br>(DP contri<br>basin | buting  | Soil Type | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area   | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | Basin %<br>Imperv |      | Runoff<br>icient<br>C <sub>100</sub> |
| EX-1/EX1      | 247,950 sf                        | 5.69ac  | В         | 100%     | 0.19ac           | 3%     | 3%                     | 2%       | 5.45ac           | 96%      | 2%                     | 40%      | 0.05ac           | 1%     | 0%                     | 90%      |                  | 0%     | 0%                     | 95%      |                  | 0%     | 0%                     | 5.7%              | 0.11 | 0.38                                 |
| EX-2          | 84,646 sf                         | 1.94ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 2%       | 1.84ac           | 95%      | 2%                     | 40%      | 0.10ac           | 5%     | 2%                     | 90%      |                  | 0%     | 0%                     | 95%      |                  | 0%     | 0%                     | 4.0%              | 0.09 | 0.37                                 |
| EX-3/EX3      | 133,500 sf                        | 3.06ac  | В         | 100%     | 0.19ac           | 6%     | 6%                     | 2%       | 2.87ac           | 94%      | 2%                     | 40%      |                  | 0%     | 0%                     | 90%      |                  | 0%     | 0%                     | 95%      |                  | 0%     | 0%                     | 8.2%              | 0.12 | 0.39                                 |
| 0S-1          | 548,856 sf                        | 12.60ac | В         |          |                  |        |                        |          |                  |          |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35 | 0.45                                 |
| 0S-2          | 509,652 sf                        | 11.70ac | В         |          |                  |        |                        |          |                  |          |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35 | 0.45                                 |
| 0S-3          | 22,185 sf                         | 0.51ac  | В         | 100%     | 0.01ac           | 2%     | 2%                     | 2%       | 0.47ac           | 92%      | 2%                     | 40%      | 0.03ac           | 5%     | 2%                     | 90%      | 0.00ac           | 1%     | 1%                     | 95%      |                  | 0%     | 0%                     | 6.4%              | 0.11 | 0.39                                 |
| DP OS13       | 0\$1,0\$2,0\$3                    | 24.81ac | В         |          |                  |        |                        |          |                  |          |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35 | 0.45                                 |

| Basin Runoff Coefficient is based on UDFCD % Imperviousness Calculation |     |      |                |                |                 |                 |                 |                  |          |  |  |  |  |
|-------------------------------------------------------------------------|-----|------|----------------|----------------|-----------------|-----------------|-----------------|------------------|----------|--|--|--|--|
| Runoff Coefficients and Percents Impervious                             |     |      |                |                |                 |                 |                 |                  |          |  |  |  |  |
| Hydrologic Soil Type:                                                   | В   |      |                | Runoff         | Coef C          | alc Me          | ethod           | %Imp             |          |  |  |  |  |
| Land Use                                                                | Abb | %    | C <sub>2</sub> | C <sub>5</sub> | C <sub>10</sub> | C <sub>25</sub> | C <sub>50</sub> | C <sub>100</sub> | Weighted |  |  |  |  |
| Commercial Area                                                         | CO  | 95%  | 0.79           | 0.81           | 0.83            | 0.85            | 0.87            | 0.88             | %Imp     |  |  |  |  |
| Drives and Walks                                                        | DR  | 90%  | 0.71           | 0.73           | 0.75            | 0.78            | 0.80            | 0.81             | A        |  |  |  |  |
| Streets - Gravel (Packed)                                               | GR  | 40%  | 0.23           | 0.30           | 0.36            | 0.42            | 0.46            | 0.50             | в        |  |  |  |  |
| Historic Flow Analysis                                                  | HI  | 2%   | 0.03           | 0.08           | 0.17            | 0.26            | 0.31            | 0.36             | С        |  |  |  |  |
| Lawns                                                                   | LA  | 0%   | 0.02           | 0.08           | 0.15            | 0.25            | 0.30            | 0.35             | D        |  |  |  |  |
| Off-site flow-Undeveloped                                               | OF  | 45%  | 0.26           | 0.32           | 0.38            | 0.44            | 0.48            | 0.51             |          |  |  |  |  |
| Park                                                                    | PA  | 7%   | 0.05           | 0.12           | 0.20            | 0.29            | 0.34            | 0.39             |          |  |  |  |  |
| Playground                                                              | PL  | 13%  | 0.07           | 0.16           | 0.24            | 0.32            | 0.37            | 0.42             |          |  |  |  |  |
| Streets - Paved                                                         | PV  | 100% | 0.89           | 0.90           | 0.92            | 0.94            | 0.95            | 0.96             |          |  |  |  |  |
| Roofs                                                                   | RO  | 90%  | 0.71           | 0.73           | 0.75            | 0.78            | 0.80            | 0.81             |          |  |  |  |  |
| User Input 1                                                            | US1 | 50%  | 0.29           | 0.35           | 0.40            | 0.46            | 0.50            | 0.52             |          |  |  |  |  |
| User Input 2                                                            | US2 | 42%  | 0.24           | 0.31           | 0.37            | 0.43            | 0.47            | 0.50             |          |  |  |  |  |

| Equations (% Impervious Calculation):                           |
|-----------------------------------------------------------------|
| $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6] |

 $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$  [Eqn RO-7]

weighted  $C_B = (C_A + C_{CD}) / 2$ 

I = % imperviousness/100 as a decimal (See Table RO-3) C<sub>A</sub> = Runoff coefficient for NRCS Type A Soils

C<sub>B</sub> = Runoff coefficient for NRCS Type B Soils

C<sub>CD</sub> = Runoff coefficient for NRCS Type C and D Soils

K<sub>A</sub> = Correction Factor for NRCS Type A Soils - Table RO-4  $K_{A}(2-yr)=0$  $K_A (5-yr) = -0.08i + 0.09$  $K_A (10-yr) = -0.14i + 0.17$  $K_A (25-yr) = -0.19i + 0.24$  $K_A (50-yr) = -0.22i + 0.28$ K<sub>A</sub> (100-yr)= -0.25i + 0.32 K<sub>CD</sub>=Correct Factor for NRCS Type C & D Soils-Table RO-4  $K_{CD} (2-yr) = 0$  $K_{CD}$  (5-yr)= -0.10i + 0.11 K<sub>CD</sub> (10-yr)= -0.18i + 0.21 K<sub>CD</sub> (25-yr)= -0.28i + 0.33  $K_{CD}$  (50-yr)= -0.33i + 0.40  $K_{CD}$  (100-yr)= -0.39i + 0.46

#### The Beach at Woodmoor Filing No. 1 Existing Condition Time of Concentration Calculation

|              | Sub-Basin Data |         | Time of Concentration Estimate                |          |             |                        |              |       |          |                |                      |          |           |                      |
|--------------|----------------|---------|-----------------------------------------------|----------|-------------|------------------------|--------------|-------|----------|----------------|----------------------|----------|-----------|----------------------|
| Basin /      | Contributing   |         |                                               | Initial/ | 'Overland ' | Time (t <sub>i</sub> ) |              |       | Trave    | l Tin          | ne (t <sub>t</sub> ) |          | Comp.     | Final t <sub>c</sub> |
| Design Point |                | Area    | ea C <sub>5</sub> Length Slope t <sub>i</sub> |          | Length      | Slone                  | Land<br>Type | Cv    | Velocity | t <sub>t</sub> | t <sub>c</sub>       |          |           |                      |
| EX-1/EX1     |                | 5.69ac  | 0.11                                          | 300lf    | 5.0%        | 18.4 min.              | 500lf        | 4.0%  | GW       | 15             | 3.0 ft/sec           | 2.8 min. | 21.2 min. | 21.2 min.            |
| EX-2         |                | 1.94ac  | 0.09                                          | 50lf     | 4.0%        | 8.2 min.               | 300lf        | 12.0% | GW       | 15             | 5.2 ft/sec           | 1.0 min. | 9.2 min.  | 9.2 min.             |
| EX-3/EX3     |                | 3.06ac  | 0.12                                          | 120lf    | 8.8%        | 9.5 min.               | 630lf        | 2.5%  | GW       | 15             | 2.4 ft/sec           | 4.4 min. | 13.9 min. | 13.9 min.            |
| 0S-1         |                | 12.60ac | 0.35                                          | 230lf    | 8.0%        | 10.4 min.              | 1970lf       | 6.5%  | GW       | 15             | 3.8 ft/sec           | 8.6 min. | 19.0 min. | 19.0 min.            |
| OS-2         |                | 11.70ac | 0.35                                          | 200lf    | 9.0%        | 9.3 min.               | 1850lf       | 11.5% | GW       | 15             | 5.1 ft/sec           | 6.1 min. | 15.4 min. | 15.4 min.            |
| 0S-3         |                | 0.51ac  | 0.11                                          | 50lf     | 6.0%        | 7.0 min.               | 300lf        | 6.0%  | GW       | 15             | 3.7 ft/sec           | 1.4 min. | 8.4 min.  | 8.4 min.             |
| DP OS13      | OS1,0S2,0S3    | 24.81ac | 0.35                                          | 230lf    | 8.0%        | 10.5 min.              | 1970lf       | 6.5%  | GW       | 15             | 3.8 ft/sec           | 8.6 min. | 19.1 min. | 19.1 min.            |

Equations:

 $t_i$  (Overland) = 0.395(1.1-C\_5)L  $^{0.5}$  S  $^{-0.333}$ 

 $C_5$  = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

Velocity (Travel Time) = CvS<sup>0.5</sup>

Cv = Conveyance Coef (see Table RO-2)

S = Watercourse slope (ft/ft)

#### Table RO-2

| Type of Land Surf   | Land Type | Cv  |
|---------------------|-----------|-----|
| Grassed Waterway    | GW        | 15  |
| Heavy Meadow        | HM        | 2.5 |
| Nearly Bare Ground  | NBG       | 10  |
| Paved Area          | PV        | 20  |
| Riprap (Not Buried) | RR        | 6.5 |
| Short Pasture/Lawns | SP        | 7   |
| Tillage/Fields      | TF        | 5   |

#### The Beach at Woodmoor Filing No. 1 Existing Condition Runoff Calculation

| Basin /             | Contributing Basins | Drainage |                |                  | Time of       | Rainfall       | Intensity        | Rui      | noff                    | Basin / DP  |
|---------------------|---------------------|----------|----------------|------------------|---------------|----------------|------------------|----------|-------------------------|-------------|
| <b>Design Point</b> | Contributing Dashis | Area     | C <sub>5</sub> | C <sub>100</sub> | Concentration | i <sub>5</sub> | i <sub>100</sub> | $Q_5$    | <b>Q</b> <sub>100</sub> | Dasiii / Dr |
| EX-1/EX1            |                     | 5.69 ac  | 0.11           | 0.38             | 21.2 min.     | 3.0 in/hr      | 5.0 in/hr        | 1.8 cfs  | 11.0 cfs                | EX-1/EX1    |
| EX-2                |                     | 1.94 ac  | 0.09           | 0.37             | 9.2 min.      | 4.3 in/hr      | 7.1 in/hr        | 0.8 cfs  | 5.2 cfs                 | EX-2        |
| EX-3/EX3            |                     | 3.06 ac  | 0.12           | 0.39             | 13.9 min.     | 3.6 in/hr      | 6.1 in/hr        | 1.4 cfs  | 7.4 cfs                 | EX-3/EX3    |
| 0S-1                |                     | 12.60 ac | 0.35           | 0.45             | 19.0 min.     | 3.0 in/hr      | 5.4 in/hr        | 13.2 cfs | 30.5 cfs                | 0S-1        |
| OS-2                |                     | 11.70 ac | 0.35           | 0.45             | 15.4 min.     | 3.4 in/hr      | 5.8 in/hr        | 13.9 cfs | 30.8 cfs                | OS-2        |
| OS-3                |                     | 0.51 ac  | 0.11           | 0.39             | 8.4 min.      | 4.4 in/hr      | 7.4 in/hr        | 0.2 cfs  | 1.4 cfs                 | OS-3        |
|                     |                     |          |                |                  |               |                |                  |          |                         |             |
| DP OS13             | 0\$1,0\$2,0\$3      | 24.81 ac | 0.35           | 0.45             | 19.1 min.     | 3.2 in/hr      | 5.3 in/hr        | 27.1 cfs | 59.1 cfs                | DP OS13     |

C = Runoff coef representing a ratio of peak runoff rate to ave rainfall

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

 $i_2$ =-1.19 ln(T<sub>c</sub>) + 6.035

Q = Peak Runoff Rate (cubic feet/second)

$$\begin{split} &i_5{=}{-}1.50 \ln(T_c) + 7.583 \\ &i_{10}{=}{-}1.75 \ln(T_c) + 8.847 \\ &i_{25}{=}{-}2.00 \ln(T_c) + 10.111 \\ &i_{50}{=}{-}2.25 \ln(T_c) + 11.375 \end{split}$$

intensity for a duration equal to the runoff time of concentration. i = average rainfall intensity in inches per hour

 $i_{100}$ =-2.52 ln(T<sub>c</sub>) + 12.735

A = Drainage area in acres

Q = CiA

| P1     | Inches  |
|--------|---------|
| WQCV   | 0.60 in |
| 2 yr   | 1.19 in |
| 5 yr   | 1.50 in |
| 10 yr  | 1.75 in |
| 25 yr  | 2.00 in |
| 50 yr  | 2.25 in |
| 100 yr | 2.52 in |

#### The Beach at Woodmoor Filing No. 1 Developed Condition Runoff Coeficient and Percent Impervious Calculation

|               |                                        |         |           | PV       | Area 1           | Land   | Use                    | LA       | Area 2           | Land   | Use                    | US1      | Area 3           | Land   | Use                    | US2      | Area 4           | Land   | Use                    | GR       | Area 5           | Land   | Use                    |                   |                                  |                                      |
|---------------|----------------------------------------|---------|-----------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|----------|------------------|--------|------------------------|-------------------|----------------------------------|--------------------------------------|
| Basin /<br>DP | Basin or DP<br>(DP contribu<br>basins) | uting   | Soil Type | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | % Imperv | Land Use<br>Area | % Area | Comp Land<br>Use % Imp | Basin %<br>Imperv | Basin<br>Coefi<br>C <sub>5</sub> | Runoff<br>icient<br>C <sub>100</sub> |
| A1            | 30,400 sf                              | 0.70ac  | В         | 100%     | 0.08ac           | 11%    | 11%                    | 0%       | 0.17ac           | 25%    | 0%                     | 41%      | 0.41ac           | 59%    | 25%                    | 37%      |                  | 0%     | 0%                     | 40%      | 0.03ac           | 5%     | 2%                     | 37.5%             | 0.28                             | 0.49                                 |
| A2            | 90,950 sf                              | 2.09ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       | 0.91ac           | 44%    | 0%                     | 41%      | 1.06ac           | 51%    | 21%                    | 37%      |                  | 0%     | 0%                     | 40%      | 0.11ac           | 5%     | 2%                     | 23.2%             | 0.21                             | 0.45                                 |
| A3            | 90,730 sf                              | 2.08ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       |                  | 0%     | 0%                     | 41%      | 2.08ac           | 100%   | 41%                    | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 41.4%             | 0.30                             | 0.50                                 |
| A4            | 57,260 sf                              | 1.31ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       |                  | 0%     | 0%                     | 41%      | 1.31ac           | 100%   | 41%                    | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 41.4%             | 0.30                             | 0.50                                 |
| A5            | 96,700 sf                              | 2.22ac  | В         | 100%     | 0.30ac           | 14%    | 14%                    | 0%       | 0.87ac           | 39%    | 0%                     | 41%      | 1.05ac           | 47%    | 20%                    | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 33.3%             | 0.26                             | 0.48                                 |
| A6            | 4,250 sf                               | 0.10ac  | В         | 100%     | 0.03ac           | 35%    | 35%                    | 0%       | 0.06ac           | 65%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 34.6%             | 0.27                             | 0.48                                 |
| A7            | 16,600 sf                              | 0.38ac  | В         | 100%     | 0.12ac           | 33%    | 33%                    | 0%       | 0.26ac           | 67%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 32.7%             | 0.26                             | 0.48                                 |
| B1            | 10,680 sf                              | 0.25ac  | В         | 100%     | 0.12ac           | 50%    | 50%                    | 0%       | 0.12ac           | 50%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 50.4%             | 0.35                             | 0.53                                 |
| B2            | 20,480 sf                              | 0.47ac  | В         | 100%     | 0.23ac           | 49%    | 49%                    | 0%       | 0.24ac           | 51%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 49.2%             | 0.35                             | 0.52                                 |
| B3            | 33,520 sf                              | 0.77ac  | В         | 100%     |                  | 0%     | 0%                     | 0%       | 0.48ac           | 63%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      | 0.29ac           | 37%    | 14%                    | 40%      |                  | 0%     | 0%                     | 13.9%             | 0.16                             | 0.42                                 |
| B4            | 54,900 sf                              | 1.26ac  | В         | 100%     | 0.13ac           | 10%    | 10%                    | 0%       | 0.29ac           | 23%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      | 0.84ac           | 67%    | 25%                    | 40%      |                  | 0%     | 0%                     | 35.2%             | 0.27                             | 0.48                                 |
| B5            | 93,340 sf                              | 2.14ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       |                  | 0%     | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      | 2.14ac           | 100%   | 37%                    | 40%      |                  | 0%     | 0%                     | 37.3%             | 0.28                             | 0.49                                 |
| C1            | 10,570 sf                              | 0.24ac  | В         | 100%     | 0.08ac           | 32%    | 32%                    | 0%       | 0.17ac           | 68%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      |                  | 0%     | 0%                     | 31.9%             | 0.26                             | 0.47                                 |
| 0S-4          | 466,608 sf                             | 10.71ac | В         |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35                             | 0.45                                 |
| OS-5          | 455,452 sf                             | 10.46ac | В         |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35                             | 0.45                                 |
| 0S-6          | 14,347 sf                              | 0.33ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       | 0.30ac           | 92%    | 0%                     | 41%      |                  | 0%     | 0%                     | 37%      |                  | 0%     | 0%                     | 40%      | 0.03ac           | 8%     | 3%                     | 3.1%              | 0.09                             | 0.37                                 |
| DP 4          | A3, A4                                 | 3.40ac  | в         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       | 0.00ac           | 0%     | 0%                     | 41%      | 3.40ac           | 100%   | 41%                    | 37%      | 0.00ac           | 0%     | 0%                     | 40%      | 0.00ac           | 0%     | 0%                     | 41.4%             | 0.30                             | 0.50                                 |
| DP 6          | A3, A4, A5                             | 5.62ac  | В         | 100%     | 0.30ac           | 5%     | 5%                     | 0%       | 0.87ac           | 15%    | 0%                     | 41%      | 4.45ac           | 79%    | 33%                    | 37%      | 0.00ac           | 0%     | 0%                     | 40%      | 0.00ac           | 0%     | 0%                     | 38.2%             | 0.29                             | 0.49                                 |
| DP 8          | OS5, A6, A7                            | 10.93ac | В         |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35                             | 0.45                                 |
| DP 9          | OS4, OS5, A6, A7                       | 21.65ac | В         |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |          |                  |        |                        |                   | 0.35                             | 0.45                                 |
| DP 11         | B1, B2                                 | 0.72ac  | В         | 100%     | 0.35ac           | 50%    | 50%                    | 0%       | 0.36ac           | 50%    | 0%                     | 41%      | 0.00ac           | 0%     | 0%                     | 37%      | 0.00ac           | 0%     | 0%                     | 40%      | 0.00ac           | 0%     | 0%                     | 49.6%             | 0.35                             | 0.52                                 |
| DP 12         | A3,A4,A5,B1,B2                         | 6.33ac  | В         | 100%     | 0.66ac           | 10%    | 10%                    | 0%       | 1.23ac           | 19%    | 0%                     | 41%      | 4.45ac           | 70%    | 29%                    | 37%      | 0.00ac           | 0%     | 0%                     | 40%      | 0.00ac           | 0%     | 0%                     | 39.5%             | 0.29                             | 0.49                                 |
| DP 13         | OS6, B5                                | 2.47ac  | В         | 100%     | 0.00ac           | 0%     | 0%                     | 0%       | 0.30ac           | 12%    | 0%                     | 41%      | 0.00ac           | 0%     | 0%                     | 37%      | 2.14ac           | 87%    | 32%                    | 40%      | 0.03ac           | 1%     | 0%                     | 32.8%             | 0.26                             | 0.48                                 |
| DP 14         | OS6, B4, B5                            | 3.73ac  | В         | 100%     | 0.13ac           | 3%     | 3%                     | 0%       | 0.59ac           | 16%    | 0%                     | 41%      | 0.00ac           | 0%     | 0%                     | 37%      | 2.99ac           | 80%    | 30%                    | 40%      | 0.03ac           | 1%     | 0%                     | 33.6%             | 0.27                             | 0.48                                 |
| DP 15         | OS6,A3-A5,B1-B5                        | 10.83ac | В         | 100%     | 0.79ac           | 7%     | 7%                     | 0%       | 2.30ac           | 21%    | 0%                     | 41%      | 4.45ac           | 41%    | 17%                    | 37%      | 3.27ac           | 30%    | 11%                    | 40%      | 0.03ac           | 0%     | 0%                     | 35.6%             | 0.28                             | 0.48                                 |
| DP 15A        | A3-A5,B1-B5                            | 10.51ac | В         | 100%     | 0.79ac           | 7%     | 7%                     | 0%       | 2.00ac           | 19%    | 0%                     | 41%      | 4.45ac           | 42%    | 18%                    | 37%      | 3.27ac           | 31%    | 12%                    | 40%      | 0.00ac           | 0%     | 0%                     | 36.7%             | 0.28                             | 0.49                                 |

| Basin Runoff Coefficient is b     | oased on UE | OFCD 9                         | 6 Impe         | erviousne      | ss Calo         | culatio         | n               |                  |          |  |  |
|-----------------------------------|-------------|--------------------------------|----------------|----------------|-----------------|-----------------|-----------------|------------------|----------|--|--|
| <b>Runoff Coefficients and Pe</b> | ercents Im  | pervio                         | us             |                |                 |                 |                 |                  |          |  |  |
| Hydrologic Soil Type:             | В           | B Runoff Coef Calc Method %Imp |                |                |                 |                 |                 |                  |          |  |  |
| Land Use                          | Abb         | %                              | C <sub>2</sub> | C <sub>5</sub> | C <sub>10</sub> | C <sub>25</sub> | C <sub>50</sub> | C <sub>100</sub> | Weighted |  |  |
| Commercial Area                   | CO          | 95%                            | 0.79           | 0.81           | 0.83            | 0.85            | 0.87            | 0.88             | %Imp     |  |  |
| Drives and Walks                  | DR          | 90%                            | 0.71           | 0.73           | 0.75            | 0.78            | 0.80            | 0.81             | Α        |  |  |
| Streets - Gravel (Packed)         | GR          | 40%                            | 0.23           | 0.30           | 0.36            | 0.42            | 0.46            | 0.50             | в        |  |  |
| Historic Flow Analysis            | HI          | 2%                             | 0.03           | 0.08           | 0.17            | 0.26            | 0.31            | 0.36             | С        |  |  |
| Lawns                             | LA          | 0%                             | 0.02           | 0.08           | 0.15            | 0.25            | 0.30            | 0.35             | D        |  |  |
| Off-site flow-Undeveloped         | OF          | 45%                            | 0.26           | 0.32           | 0.38            | 0.44            | 0.48            | 0.51             |          |  |  |
| Park                              | PA          | 7%                             | 0.05           | 0.12           | 0.20            | 0.29            | 0.34            | 0.39             |          |  |  |
| Playground                        | PL          | 13%                            | 0.07           | 0.16           | 0.24            | 0.32            | 0.37            | 0.42             |          |  |  |
| Streets - Paved                   | PV          | ####                           | 0.89           | 0.90           | 0.92            | 0.94            | 0.95            | 0.96             |          |  |  |
| Roofs                             | RO          | 90%                            | 0.71           | 0.73           | 0.75            | 0.78            | 0.80            | 0.81             |          |  |  |
| Residential A Lots                | US1         | 41%                            | 0.24           | 0.30           | 0.37            | 0.43            | 0.47            | 0.50             |          |  |  |
| Residential B Lots                | US2         | 37%                            | 0.22           | 0.28           | 0.35            | 0.41            | 0.45            | 0.49             |          |  |  |

Equations (% Impervious Calculation):  $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$  [Eqn RO-6]  $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04) [Eqn RO-7]$  $C_{10} = K_{10} + (USS 81 + U.7001 + U.7741 + U.974) [eqn ReC-7]$ moves  $C_{B} = (C_{A} + C_{10}) / 2$   $A = C_{A} = Runoff coefficient for NRCS Type A Soils
<math display="block">C_{10} = Runoff coefficient for NRCS Type A Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS Type B Soils
C_{10} = Runoff coefficient for NRCS$ 

C<sub>CD</sub> = Runoff coefficient for NRCS Type C and D Soils

 $\rm K_A$  = Correction Factor for NRCS Type A Soils - Table RO-4 K<sub>A</sub> (2-yr)= 0  $K_A (5-yr) = -0.08i + 0.09$  $K_A (10-yr) = -0.14i + 0.17$  $K_A (25-yr) = -0.19i + 0.24$  $K_A (20 \text{ yr}) = -0.22i + 0.28$  $K_A (100 \text{ yr}) = -0.25i + 0.32$ K<sub>CD</sub>=Correct Factor for NRCS Type C & D Soils-Table RO-4  $K_{CD} = correct ratio in Mass r$  $K_{CD} (2-yr) = 0$  $K_{CD} (5-yr) = -0.10i + 0.11$  $K_{CD} (10-yr) = -0.18i + 0.21$ 

$$\begin{split} & K_{CD} \ (10^{\circ} yr) = -0.101 + 0.21 \\ & K_{CD} \ (25^{\circ} yr) = -0.28i + 0.33 \\ & K_{CD} \ (50^{\circ} yr) = -0.33i + 0.40 \\ & K_{CD} \ (100^{\circ} yr) = -0.39i + 0.46 \end{split}$$

| North A Lot | Interpolation |      |      | South A Lot Interpolation |             |      |      |  |  |  |
|-------------|---------------|------|------|---------------------------|-------------|------|------|--|--|--|
| Lots/ac     | %Impervious   | 5    | 100  | Lots/ac                   | %Impervious | 5    | 100  |  |  |  |
| 4           | 0.40          | 0.30 | 0.50 | 4                         | 0.41        | 0.30 | 0.50 |  |  |  |
| 4.15        | 0.41          | 0.31 | 0.50 | 4.07                      | 0.42        | 0.31 | 0.50 |  |  |  |
| 8           | 0.65          | 0.45 | 0.6  | 8                         | 0.65        | 0.45 | 0.59 |  |  |  |

#### B Lot Interpolation

| Lots/ac | %Impervious | 5    | 100  |
|---------|-------------|------|------|
| 3       | 0.30        | 0.25 | 0.47 |
| 3.73    | 0.37        | 0.29 | 0.49 |
| 4       | 0.40        | 0.30 | 0.50 |

#### The Beach at Woodmoor Filing No. 1 Developed Condition Time of Concentration Calculation

|              | Sub-Basin Data   |         |                       |          |          |                          | Time of ( | Concent | ratior       | ı Esti | imate      |                |                | Min. To         |                      |                        |
|--------------|------------------|---------|-----------------------|----------|----------|--------------------------|-----------|---------|--------------|--------|------------|----------------|----------------|-----------------|----------------------|------------------------|
| Basin /      | Contributing     |         |                       | Initial/ | Overland | l Time (t <sub>i</sub> ) |           |         | Trave        | el Tin | Comp.      | Tc Chee        | ck (urban)     | Final t.        |                      |                        |
| Design Point | Basins           | Area    | <b>C</b> <sub>5</sub> | Length   | Slope    | t <sub>i</sub>           | Length    | Slope   | Land<br>Type | Cv     | Velocity   | t <sub>t</sub> | t <sub>c</sub> | Total<br>Length | t <sub>c</sub> Check | i illui t <sub>c</sub> |
| A1           |                  | 0.70ac  | 0.28                  | 50lf     | 5.0%     | 6.2 min.                 | 240lf     | 6.0%    | SP           | 7      | 1.7 ft/sec | 2.3 min.       | 8.5 min.       | 290lf           | 11.6 min.            | 8.5 min.               |
| A2           |                  | 2.09ac  | 0.21                  | 50lf     | 10.0%    | 5.3 min.                 | 330lf     | 15.0%   | SP           | 7      | 2.7 ft/sec | 2.0 min.       | 7.4 min.       | 380lf           | 12.1 min.            | 7.4 min.               |
| A3           |                  | 2.08ac  | 0.30                  | 70lf     | 10.0%    | 5.7 min.                 | 700lf     | 4.0%    | PV           | 20     | 4.0 ft/sec | 2.9 min.       | 8.6 min.       | 770lf           | 14.3 min.            | 8.6 min.               |
| A4           |                  | 1.31ac  | 0.30                  | 70lf     | 4.0%     | 7.7 min.                 | 700lf     | 4.0%    | PV           | 20     | 4.0 ft/sec | 2.9 min.       | 10.6 min.      | 770lf           | 14.3 min.            | 10.6 min.              |
| A5           |                  | 2.22ac  | 0.26                  | 80lf     | 4.5%     | 8.3 min.                 | 510lf     | 3.6%    | GW           | 15     | 2.8 ft/sec | 3.0 min.       | 11.3 min.      | 590lf           | 13.3 min.            | 11.3 min.              |
| A6           |                  | 0.10ac  | 0.27                  | 60lf     | 2.5%     | 8.7 min.                 | 90lf      | 6.7%    | GW           | 15     | 3.9 ft/sec | 0.4 min.       | 9.1 min.       | 150lf           | 10.8 min.            | 9.1 min.               |
| A7           |                  | 0.38ac  | 0.26                  | 40lf     | 15.0%    | 3.9 min.                 | 255lf     | 2.0%    | GW           | 15     | 2.1 ft/sec | 2.0 min.       | 5.9 min.       | 295lf           | 11.6 min.            | 5.9 min.               |
| B1           |                  | 0.25ac  | 0.35                  | 50lf     | 2.5%     | 7.1 min.                 | 180lf     | 2.5%    | GW           | 15     | 2.4 ft/sec | 1.3 min.       | 8.4 min.       | 230lf           | 11.3 min.            | 8.4 min.               |
| B2           |                  | 0.47ac  | 0.35                  | 50lf     | 2.2%     | 7.5 min.                 | 450lf     | 2.2%    | GW           | 15     | 2.2 ft/sec | 3.4 min.       | 10.9 min.      | 500lf           | 12.8 min.            | 10.9 min.              |
| B3           |                  | 0.77ac  | 0.16                  | 50lf     | 4.0%     | 7.7 min.                 | 190lf     | 8.0%    | SP           | 7      | 2.0 ft/sec | 1.6 min.       | 9.3 min.       | 240lf           | 11.3 min.            | 9.3 min.               |
| B4           |                  | 1.26ac  | 0.27                  | 70lf     | 2.0%     | 10.0 min.                | 400lf     | 1.0%    | PV           | 20     | 2.0 ft/sec | 3.3 min.       | 13.4 min.      | 470lf           | 12.6 min.            | 12.6 min.              |
| B5           |                  | 2.14ac  | 0.28                  | 70lf     | 2.0%     | 9.9 min.                 | 400lf     | 1.0%    | PV           | 20     | 2.0 ft/sec | 3.3 min.       | 13.3 min.      | 470lf           | 12.6 min.            | 12.6 min.              |
| C1           |                  | 0.24ac  | 0.26                  | 40lf     | 6.0%     | 5.4 min.                 | 90lf      | 4.0%    | GW           | 15     | 3.0 ft/sec | 0.5 min.       | 5.9 min.       | 130lf           | 10.7 min.            | 5.9 min.               |
| OS-4         |                  | 10.71ac | 0.35                  | 230lf    | 8.0%     | 10.4 min.                | 1620lf    | 6.5%    | GW           | 15     | 3.8 ft/sec | 7.1 min.       | 17.5 min.      | 1850lf          | 20.3 min.            | 17.5 min.              |
| OS-5         |                  | 10.46ac | 0.35                  | 200lf    | 9.0%     | 9.3 min.                 | 1730lf    | 11.5%   | GW           | 15     | 5.1 ft/sec | 5.7 min.       | 15.0 min.      | 1930lf          | 20.7 min.            | 15.0 min.              |
| 0S-6         |                  | 0.33ac  | 0.09                  | 50lf     | 6.0%     | 7.2 min.                 | 185lf     | 6.0%    | GW           | 15     | 3.7 ft/sec | 0.8 min.       | 8.1 min.       | 235lf           | 11.3 min.            | 8.1 min.               |
| DP 4         | A3, A4           | 3.40ac  | 0.30                  | 70lf     | 4.0%     | 7.7 min.                 | 700lf     | 4.0%    | PV           | 20     | 4.0 ft/sec | 2.9 min.       | 10.6 min.      | 770lf           | 14.3 min.            | 10.6 min.              |
| DP 6         | A3, A4, A5       | 5.62ac  | 0.29                  | 70lf     | 4.0%     | 7.8 min.                 | 740lf     | 3.7%    | PV           | 20     | 3.8 ft/sec | 3.2 min.       | 11.0 min.      | 810lf           | 14.5 min.            | 11.0 min.              |
| DP 8         | OS5, A6, A7      | 10.93ac | 0.35                  | 200lf    | 9.0%     | 9.4 min.                 | 1900lf    | 10.7%   | GW           | 15     | 4.9 ft/sec | 6.5 min.       | 15.8 min.      | 2100lf          | 21.7 min.            | 15.8 min.              |
| DP 9         | OS4, OS5, A6, A7 | 21.65ac | 0.35                  | 200lf    | 9.0%     | 9.4 min.                 | 1900lf    | 10.7%   | GW           | 15     | 4.9 ft/sec | 6.5 min.       | 15.8 min.      | 2100lf          | 21.7 min.            | 16.5 min.              |
| DP 11        | B1, B2           | 0.72ac  | 0.35                  | 50lf     | 2.2%     | 7.5 min.                 | 760lf     | 2.5%    | GW           | 15     | 2.4 ft/sec | 5.3 min.       | 12.8 min.      | 810lf           | 14.5 min.            | 12.8 min.              |
| DP 12        | A3,A4,A5,B1,B2   | 6.33ac  | 0.29                  | 70lf     | 4.0%     | 7.8 min.                 | 800lf     | 3.6%    | GW           | 15     | 2.8 ft/sec | 4.7 min.       | 12.5 min.      | 870lf           | 14.8 min.            | 12.5 min.              |
| DP 13        | OS6, B5          | 2.47ac  | 0.26                  | 70lf     | 2.0%     | 10.2 min.                | 400lf     | 1.0%    | PV           | 20     | 2.0 ft/sec | 3.3 min.       | 13.5 min.      | 470lf           | 12.6 min.            | 12.6 min.              |
| DP 14        | OS6, B4, B5      | 3.73ac  | 0.27                  | 70lf     | 2.0%     | 10.1 min.                | 400lf     | 1.0%    | PV           | 20     | 2.0 ft/sec | 3.3 min.       | 13.5 min.      | 470lf           | 12.6 min.            | 13.5 min.              |
| DP 15        | OS6,A3-A5,B1-B5  | 10.83ac | 0.28                  | 70lf     | 1.9%     | 10.2 min.                | 630lf     | 2.7%    | PV           | 20     | 3.3 ft/sec | 3.2 min.       | 13.4 min.      | 700lf           | 13.9 min.            | 14.3 min.              |

#### Equations:

- $t_i$  (Overland) = 0.395(1.1-C<sub>5</sub>)L<sup>0.5</sup> S<sup>-0.333</sup>
- $C_5$  = Runoff coefficient for 5-year
- L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS<sup>0.5</sup>

Cv = Conveyance Coef (see Table RO-2) S = Watercourse slope (ft/ft)

#### Table RO-2

| Type of Land Surface | Land Type | Cv  |
|----------------------|-----------|-----|
| Grassed Waterway     | GW        | 15  |
| Heavy Meadow         | HM        | 2.5 |
| Nearly Bare Ground   | NBG       | 10  |
| Paved Area           | PV        | 20  |
| Riprap (Not Buried)  | RR        | 6.5 |
| Short Pasture/Lawns  | SP        | 7   |
| Tillage/Fields       | TF        | 5   |

#### The Beach at Woodmoor Filing No. 1 Developed Condition Runoff Calculation

| Basin /             | Contributing Basins | Drainage |                |                  | Time of       | Rainfall Intensity              | Rui      | noff                    | Basin / DP  |
|---------------------|---------------------|----------|----------------|------------------|---------------|---------------------------------|----------|-------------------------|-------------|
| <b>Design Point</b> | Contributing Dasins | Area     | C <sub>5</sub> | C <sub>100</sub> | Concentration | i <sub>5</sub> i <sub>100</sub> | $Q_5$    | <b>Q</b> <sub>100</sub> | Dasiii / DP |
| A1                  |                     | 0.70 ac  | 0.28           | 0.49             | 8.5 min.      | 4.4 in/hr 7.3 in/hr             | 0.9 cfs  | 2.5 cfs                 | A1          |
| A2                  |                     | 2.09 ac  | 0.21           | 0.45             | 7.4 min.      | 4.6 in/hr 7.7 in/hr             | 2.1 cfs  | 7.3 cfs                 | A2          |
| A3                  |                     | 2.08 ac  | 0.30           | 0.50             | 8.6 min.      | 4.4 in/hr 7.3 in/hr             | 2.8 cfs  | 7.6 cfs                 | A3          |
| A4                  |                     | 1.31 ac  | 0.30           | 0.50             | 10.6 min.     | 4.0 in/hr 6.8 in/hr             | 1.6 cfs  | 4.4 cfs                 | A4          |
| A5                  |                     | 2.22 ac  | 0.26           | 0.48             | 11.3 min.     | 3.9 in/hr 6.6 in/hr             | 2.3 cfs  | 7.0 cfs                 | A5          |
| A6                  |                     | 0.10 ac  | 0.27           | 0.48             | 9.1 min.      | 4.3 in/hr 7.2 in/hr             | 0.1 cfs  | 0.3 cfs                 | A6          |
| A7                  |                     | 0.38 ac  | 0.26           | 0.48             | 5.9 min.      | 4.9 in/hr 8.2 in/hr             | 0.5 cfs  | 1.5 cfs                 | A7          |
| B1                  |                     | 0.25 ac  | 0.35           | 0.53             | 8.4 min.      | 4.4 in/hr 7.4 in/hr             | 0.4 cfs  | 1.0 cfs                 | B1          |
| B2                  |                     | 0.47 ac  | 0.35           | 0.52             | 10.9 min.     | 4.0 in/hr 6.7 in/hr             | 0.6 cfs  | 1.6 cfs                 | B2          |
| B3                  |                     | 0.77 ac  | 0.16           | 0.42             | 9.3 min.      | 4.2 in/hr 7.1 in/hr             | 0.5 cfs  | 2.3 cfs                 | B3          |
| B4                  |                     | 1.26 ac  | 0.27           | 0.48             | 12.6 min.     | 3.8 in/hr 6.3 in/hr             | 1.3 cfs  | 3.9 cfs                 | B4          |
| B5                  |                     | 2.14 ac  | 0.28           | 0.49             | 12.6 min.     | 3.8 in/hr 6.3 in/hr             | 2.3 cfs  | 6.6 cfs                 | B5          |
| C1                  |                     | 0.24 ac  | 0.26           | 0.47             | 5.9 min.      | 4.9 in/hr 8.3 in/hr             | 0.3 cfs  | 1.0 cfs                 | C1          |
| 0S-4                |                     | 10.71 ac | 0.35           | 0.45             | 17.5 min.     | 3.3 in/hr 5.5 in/hr             | 12.3 cfs | 26.6 cfs                | 0S-4        |
| OS-5                |                     | 10.46 ac | 0.35           | 0.45             | 15.0 min.     | 3.5 in/hr 5.9 in/hr             | 12.9 cfs | 27.8 cfs                | OS-5        |
| 0S-6                |                     | 0.33 ac  | 0.09           | 0.37             | 8.1 min.      | 4.5 in/hr 7.5 in/hr             | 0.1 cfs  | 0.9 cfs                 | 0S-6        |
|                     |                     |          |                |                  |               |                                 |          |                         |             |
| DP 4                | A3, A4              | 3.40 ac  | 0.30           | 0.50             | 10.6 min.     | 4.0 in/hr 6.8 in/hr             | 4.2 cfs  | 11.5 cfs                | DP 4        |
| DP 6                | A3, A4, A5          | 5.62 ac  | 0.29           | 0.49             | 11.0 min.     | 4.0 in/hr 6.7 in/hr             | 6.4 cfs  | 18.4 cfs                | DP 6        |
| DP 8                | OS5, A6, A7         | 10.93 ac | 0.35           | 0.45             | 15.8 min.     | 3.4 in/hr 5.8 in/hr             | 13.0 cfs | 28.5 cfs                | DP 8        |
| DP 9                | OS4, OS5, A6, A7    | 21.65 ac | 0.35           | 0.45             | 16.5 min.     | 3.4 in/hr 5.7 in/hr             | 25.4 cfs | 55.3 cfs                | DP 9        |
| DP 11               | B1, B2              | 0.72 ac  | 0.35           | 0.52             | 12.8 min.     | 3.8 in/hr 6.3 in/hr             | 0.9 cfs  | 2.4 cfs                 | DP 11       |
| DP 12               | A3,A4,A5,B1,B2      | 6.33 ac  | 0.29           | 0.49             | 12.5 min.     | 3.8 in/hr 6.4 in/hr             | 7.1 cfs  | 19.9 cfs                | DP 12       |
| DP 13               | OS6, B5             | 2.47 ac  | 0.26           | 0.48             | 12.6 min.     | 3.8 in/hr 6.3 in/hr             | 2.4 cfs  | 7.5 cfs                 | DP 13       |
| DP 14               | OS6, B4, B5         | 3.73 ac  | 0.27           | 0.48             | 13.5 min.     | 3.7 in/hr 6.2 in/hr             | 3.7 cfs  | 11.0 cfs                | DP 14       |
| DP 15               | OS6,A3-A5,B1-B5     | 10.83 ac | 0.28           | 0.48             | 14.3 min.     | 3.6 in/hr 6.0 in/hr             | 10.7 cfs | 31.6 cfs                | DP 15       |

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

 $i_5 = -1.50 \ln(T_c) + 7.583$  $i_{10}$ =-1.75 ln(T<sub>c</sub>) + 8.847  $i_{25}$ =-2.00 ln(T<sub>c</sub>) + 10.111

 $i_2$ =-1.19 ln(T<sub>c</sub>) + 6.035

C = Runoff coef representing a ratio of peak runoff rate to ave rainfall

intensity for a duration equal to the runoff time of concentration. i = average rainfall intensity in inches per hour

 $i_{50}$ =-2.25 ln(T<sub>c</sub>) + 11.375  $i_{100}$ =-2.52 ln(T<sub>c</sub>) + 12.735

A = Drainage area in acres

| P1     | Inches  |
|--------|---------|
| WQCV   | 0.60 in |
| 2 yr   | 1.19 in |
| 5 yr   | 1.50 in |
| 10 yr  | 1.75 in |
| 25 yr  | 2.00 in |
| 50 yr  | 2.25 in |
| 100 yr | 2.52 in |

APPENDIX A.1 Supporting Hydrologic Tables and Figures

| hand the surface                                  | Burnet                |         |         |         |         |         | Runoff Co | efficients |         |         |         |         |         |
|---------------------------------------------------|-----------------------|---------|---------|---------|---------|---------|-----------|------------|---------|---------|---------|---------|---------|
| Land Use or Surface<br>Characteristics            | Percent<br>Impervious | 2-у     | ear     | 5-y     | ear     | 10-1    | /ear      | ر-25       | /ear    | 50-year |         | 100-    | year    |
|                                                   |                       | HSG A&B | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D   | HSG A&B    | HSG C&D | HSG A&B | HSG C&D | HSG A&B | HSG C&D |
| Business                                          |                       |         |         |         |         |         |           |            |         |         |         |         |         |
| Commercial Areas                                  | 95                    | 0.79    | 0.80    | 0.81    | 0.82    | 0.83    | 0.84      | 0.85       | 0.87    | 0.87    | 0.88    | 0.88    | 0.89    |
| Neighborhood Areas                                | 70                    | 0.45    | 0.49    | 0.49    | 0.53    | 0.53    | 0.57      | 0.58       | 0.62    | 0.60    | 0.65    | 0.62    | 0.68    |
| Residential                                       |                       |         |         |         |         |         |           |            |         |         |         |         |         |
| 1/8 Acre or less                                  | 65                    | 0.41    | 0.45    | 0.45    | 0.49    | 0.49    | 0.54      | 0.54       | 0.59    | 0.57    | 0.62    | 0.59    | 0.65    |
| 1/4 Acre                                          | 40                    | 0.23    | 0.28    | 0.30    | 0.35    | 0.36    | 0.42      | 0.42       | 0.50    | 0.46    | 0.54    | 0.50    | 0.58    |
| 1/3 Acre                                          | 30                    | 0.18    | 0.22    | 0.25    | 0.30    | 0.32    | 0.38      | 0.39       | 0.47    | 0.43    | 0.52    | 0.47    | 0.57    |
| 1/2 Acre                                          | 25                    | 0.15    | 0.20    | 0.22    | 0.28    | 0.30    | 0.36      | 0.37       | 0.46    | 0.41    | 0.51    | 0.46    | 0.56    |
| 1 Acre                                            | 20                    | 0.12    | 0.17    | 0.20    | 0.26    | 0.27    | 0.34      | 0.35       | 0.44    | 0.40    | 0.50    | 0.44    | 0.55    |
| Industrial                                        |                       |         |         |         |         |         |           |            |         |         |         |         |         |
| Light Areas                                       | 80                    | 0.57    | 0.60    | 0.59    | 0.63    | 0.63    | 0.66      | 0.66       | 0.70    | 0.68    | 0.72    | 0.70    | 0.74    |
| Heavy Areas                                       | 90                    | 0.71    | 0.73    | 0.73    | 0.75    | 0.75    | 0.77      | 0.78       | 0.80    | 0.80    | 0.82    | 0.81    | 0.83    |
| Parks and Cemeteries                              | 7                     | 0.05    | 0.09    | 0.12    | 0.19    | 0.20    | 0.29      | 0.30       | 0.40    | 0.34    | 0.46    | 0.39    | 0.52    |
| Playgrounds                                       | 13                    | 0.07    | 0.13    | 0.16    | 0.23    | 0.24    | 0.31      | 0.32       | 0.42    | 0.37    | 0.48    | 0.41    | 0.54    |
| Railroad Yard Areas                               | 40                    | 0.23    | 0.28    | 0.30    | 0.35    | 0.36    | 0.42      | 0.42       | 0.50    | 0.46    | 0.54    | 0.50    | 0.58    |
| Undeveloped Areas                                 |                       |         |         |         |         |         |           |            |         |         |         |         |         |
| Historic Flow Analysis<br>Greenbelts, Agriculture | 2                     | 0.03    | 0.05    | 0.09    | 0.16    | 0.17    | 0.26      | 0.26       | 0.38    | 0.31    | 0.45    | 0.36    | 0.51    |
| Pasture/Meadow                                    | 0                     | 0.02    | 0.04    | 0.08    | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |
| Forest                                            | 0                     | 0.02    | 0.04    | 0.08    | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |
| Exposed Rock                                      | 100                   | 0.89    | 0.89    | 0.90    | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |
| Offsite Flow Analysis (when landuse is undefined) | 45                    | 0.26    | 0.31    | 0.32    | 0.37    | 0.38    | 0.44      | 0.44       | 0.51    | 0.48    | 0.55    | 0.51    | 0.59    |
| Chrosete                                          |                       |         |         |         |         |         |           |            |         |         |         |         |         |
| Streets<br>Paved                                  | 100                   | 0.89    | 0.89    | 0.90    | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |
| Gravel                                            | 80                    | 0.89    | 0.89    | 0.90    | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |
| Gravei                                            | 80                    | 0.57    | 0.60    | 0.59    | 0.63    | 0.63    | 0.66      | 0.66       | 0.70    | 0.68    | 0.72    | 0.70    | 0.74    |
| Drive and Walks                                   | 100                   | 0.89    | 0.89    | 0.90    | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96    | 0.96    |
| Roofs                                             | 90                    | 0.71    | 0.73    | 0.73    | 0.75    | 0.75    | 0.77      | 0.78       | 0.80    | 0.80    | 0.82    | 0.81    | 0.83    |
| Lawns                                             | 0                     | 0.02    | 0.04    | 0.08    | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35    | 0.50    |

## Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

## **3.2** Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration  $(t_c)$  consists of an initial time or overland flow time  $(t_i)$  plus the travel time  $(t_i)$  in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time  $(t_i)$  plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion  $(t_i)$  of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

| Type of Land Surface                 | $C_{v}$ |
|--------------------------------------|---------|
| Heavy meadow                         | 2.5     |
| Tillage/field                        | 5       |
| Riprap (not buried) <sup>*</sup>     | 6.5     |
| Short pasture and lawns              | 7       |
| Nearly bare ground                   | 10      |
| Grassed waterway                     | 15      |
| Paved areas and shallow paved swales | 20      |
| Paved areas and shallow paved swales |         |

| <b>Table 6-7.</b> | Conveyance | Coefficient, $C_{v}$ |
|-------------------|------------|----------------------|
|-------------------|------------|----------------------|

<sup>\*</sup> For buried riprap, select  $C_v$  value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration  $(t_c)$  is then the sum of the overland flow time  $(t_i)$  and the travel time  $(t_i)$  per Equation 6-7.

## 3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 $t_c$  = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

## 3.2.4 Minimum Time of Concentration

If the calculations result in a  $t_c$  of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum  $t_c$  for urbanized areas is 5 minutes.

## 3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

| Return<br>Period | 1-Hour<br>Depth | 6-Hour<br>Depth | 24-Hour<br>Depth |
|------------------|-----------------|-----------------|------------------|
| 2                | 1.19            | 1.70            | 2.10             |
| 5                | 1.50            | 2.10            | 2.70             |
| 10               | 1.75            | 2.40            | 3.20             |
| 25               | 2.00            | 2.90            | 3.60             |
| 50               | 2.25            | 3.20            | 4.20             |
| 100              | 2.52            | 3.50            | 4.60             |

 Table 6-2. Rainfall Depths for Colorado Springs

Where Z= 6,840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves<sup>2</sup> and should produce similar depth calculation results.

## 2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

## APPENDIX B

# **Detention Basin Calculations**

Full Spectrum Detention Basin/Extended Detention Basin Emergency Spillway Calculations Outlet Structure Calculations Forebay Sizing and Trickle Channel Calculations

Kiowa Engineering Corporation

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

#### UD-Detention, Version 3.07 (February 2017)

5

# Project: The Beach at Woodmoor Filing No. 1 Basin ID: Detention Basin A

#### ZONE 3 ORFICE

| PERMANENT | 1       | 20ME 1<br>ORIFICE |               | CHARLE           |
|-----------|---------|-------------------|---------------|------------------|
| POOL      | Example | Zone              | Configuration | (Retention Pond) |

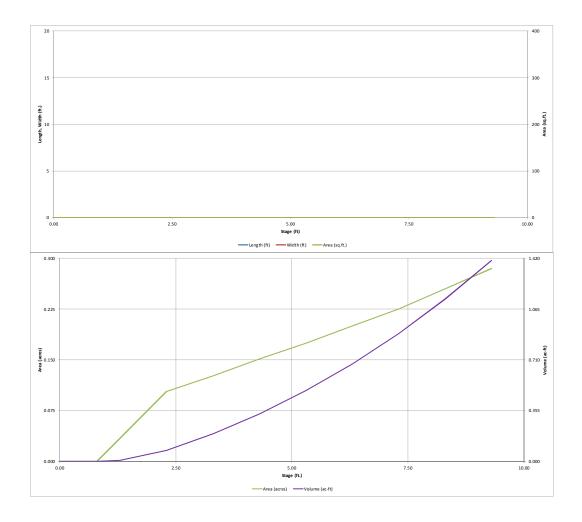
|                                         |            | • • •     | ,              |        |
|-----------------------------------------|------------|-----------|----------------|--------|
| Required Volume Calculation             |            |           |                |        |
| Selected BMP Type =                     | EDB        | ]         |                |        |
| Watershed Area =                        | 10.51      | acres     |                |        |
| Watershed Length =                      | 700        | ft        |                |        |
| Watershed Slope =                       | 0.027      | ft/ft     |                |        |
| Watershed Imperviousness =              | 36.70%     | percent   |                |        |
| Percentage Hydrologic Soil Group A =    | 0.0%       | percent   |                |        |
| Percentage Hydrologic Soil Group B =    | 100.0%     | percent   |                |        |
| Percentage Hydrologic Soil Groups C/D = | 0.0%       | percent   |                |        |
| Desired WQCV Drain Time =               | 40.0       | hours     |                |        |
| Location for 1-hr Rainfall Depths =     | User Input | -         |                |        |
| Water Quality Capture Volume (WQCV) =   | 0.150      | acre-feet | Optional Use   |        |
| Excess Urban Runoff Volume (EURV) =     | 0.402      | acre-feet | 1-hr Precipita | ation  |
| 2-yr Runoff Volume (P1 = 1.19 in.) =    | 0.315      | acre-feet | 1.19           | inches |
| 5-yr Runoff Volume (P1 = 1.5 in.) =     | 0.441      | acre-feet | 1.50           | inches |
| 10-yr Runoff Volume (P1 = 1.75 in.) =   | 0.639      | acre-feet | 1.75           | inches |
| 25-yr Runoff Volume (P1 = 2 in.) =      | 0.990      | acre-feet | 2.00           | inches |
| 50-yr Runoff Volume (P1 = 2.25 in.) =   | 1.225      | acre-feet | 2.25           | inches |
| 100-yr Runoff Volume (P1 = 2.52 in.) =  | 1.533      | acre-feet | 2.52           | inches |
| 500-yr Runoff Volume (P1 = 3.2 in.) =   | 2.193      | acre-feet | 3.20           | inches |
| Approximate 2-yr Detention Volume =     | 0.294      | acre-feet |                |        |
| Approximate 5-yr Detention Volume =     | 0.413      | acre-feet |                |        |
| Approximate 10-yr Detention Volume =    | 0.578      | acre-feet |                |        |
| Approximate 25-yr Detention Volume =    | 0.653      | acre-feet |                |        |
| Approximate 50-yr Detention Volume =    | 0.686      | acre-feet |                |        |
| Approximate 100-yr Detention Volume =   | 0.794      | acre-feet |                |        |
|                                         |            |           |                |        |

#### Stage-Storage Calculation

|   | Zone 1 Volume (WQCV) =                                  | 0.150 | acre-feet |
|---|---------------------------------------------------------|-------|-----------|
|   | Zone 2 Volume (EURV - Zone 1) =                         | 0.253 | acre-feet |
| 2 | Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =             | 0.466 | acre-feet |
|   | Total Detention Basin Volume =                          | 0.869 | acre-feet |
|   | Initial Surcharge Volume (ISV) =                        | user  | ft/3      |
|   | Initial Surcharge Depth (ISD) =                         | user  | ft        |
|   | Total Available Detention Depth (H <sub>total</sub> ) = | user  | ft        |
|   | Depth of Trickle Channel (H <sub>TC</sub> ) =           | user  | ft        |
|   | Slope of Trickle Channel (S <sub>TC</sub> ) =           | user  | ft/ft     |
|   | Slopes of Main Basin Sides (Smain) =                    | user  | H:V       |
|   | Basin Length-to-Width Ratio (R <sub>L/W</sub> ) =       | user  |           |
|   |                                                         |       |           |

\_

| Initial Surcharge Area (A <sub>tSV</sub> ) =  | user | ft′2  |
|-----------------------------------------------|------|-------|
| Surcharge Volume Length (L <sub>ISV</sub> ) = | user | ft    |
| Surcharge Volume Width (WISV) =               | user | ft    |
| Depth of Basin Floor (H <sub>FLOOR</sub> ) =  | user | ft    |
| Length of Basin Floor (L <sub>FLOOR</sub> ) = | user | ft    |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =  | user | ft    |
| Area of Basin Floor (A <sub>FLOOR</sub> ) =   | user | ft′2  |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) = | user | ft′'3 |
| Depth of Main Basin (H <sub>MAIN</sub> ) =    | user | ft    |
| Length of Main Basin (L <sub>MAIN</sub> ) =   | user | ft    |
| Width of Main Basin (W <sub>MAN</sub> ) =     | user | ft    |
| Area of Main Basin (A <sub>MAIN</sub> ) =     | user | ft′2  |
| Volume of Main Basin (V <sub>MAIN</sub> ) =   | user | ft′'3 |
|                                               |      |       |


| oth of Basin Floor (H <sub>FLOOR</sub> ) | = | user | ft   |
|------------------------------------------|---|------|------|
| gth of Basin Floor (L <sub>FLOOR</sub>   | = | user | ft   |
| th of Basin Floor (W <sub>FLOOR</sub>    | = | user | ft   |
| ea of Basin Floor (A <sub>FLOOR</sub>    | = | user | ft/2 |
| me of Basin Floor (V <sub>FLOOR</sub>    | = | user | ft/3 |
| epth of Main Basin (H <sub>MAIN</sub>    | = | user | ft   |
| ngth of Main Basin (L <sub>MAIN</sub>    | = | user | ft   |
| dth of Main Basin (W <sub>MAN</sub>      | = | user | ft   |
| Area of Main Basin (A <sub>MAIN</sub>    | = | user | ft/2 |
| and the second second                    |   |      |      |

 $\label{eq:constraint} \begin{array}{c} \mbox{volume} \mbox{ under Main Basin (V_{MAIN}) = } & \mbox{user} \\ \mbox{Calculated Total Basin Volume (V_{total}) = } & \mbox{user} \\ \end{array}$ 

| Depth Increment = |       | Optional   |        |       |        | Optional    |        |          |       |
|-------------------|-------|------------|--------|-------|--------|-------------|--------|----------|-------|
| Stage - Storage   | Stage | Override   | Length | Width | Area   | Override    | Area   | Volume   | Volun |
| Description       | (ft)  | Stage (ft) | (ft)   | (ft)  | (ft*2) | Area (ft/2) | (acre) | (ft/3)   | (ac-f |
| Top of Micropool  |       | 0.00       | -      |       | -      | 0           | 0.000  |          |       |
|                   |       | 0.80       | -      |       |        | 20          | 0.000  | 8        | 0.000 |
|                   |       | 1.30       |        |       |        | 1,500       | 0.034  | 373      | 0.009 |
|                   |       | 2.30       |        |       |        | 4,500       | 0.103  | 3,388    | 0.078 |
|                   |       | 3.30       |        |       |        | 5,500       | 0.126  | 8,388    | 0.193 |
|                   |       | 4.30       |        |       |        | 6,600       | 0.152  | 14,438   | 0.331 |
|                   |       | 5.30       |        |       |        | 7,600       | 0.174  | 21,538   | 0.494 |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       | 6.30       |        |       |        | 8,700       | 0.200  | 29,688   | 0.682 |
|                   |       | 7.30       |        |       |        | 9,800       | 0.225  | 38,938   | 0.894 |
|                   |       | 8.30       | -      |       |        | 11,100      | 0.255  | 49,388   | 1.134 |
|                   |       | 9.30       |        |       |        | 12,400      | 0.285  | 61,138   | 1.404 |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       | +          |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       |        |             |        | +        |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       |        |             |        |          |       |
|                   |       |            | -      |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        | 1        |       |
|                   |       |            |        |       |        |             |        | 1        |       |
|                   |       |            |        |       |        |             |        | 1        |       |
|                   |       |            |        |       |        |             |        | -        |       |
|                   |       | +          | -      |       | -      | -           |        |          |       |
|                   |       |            |        |       |        |             |        | -        |       |
|                   |       |            | -      |       | -      |             |        | l        |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        | 1        |       |
|                   |       | 1          |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       | +          |        |       |        |             |        |          |       |
|                   |       | -          |        |       |        |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            | -      |       | -      |             |        |          |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   | -     |            |        |       | -      |             |        |          |       |
|                   |       |            | -      |       | -      |             |        | 1        | -     |
|                   |       |            |        |       |        | -           |        |          |       |
|                   |       |            |        |       | -      | 1           |        | 1        |       |
|                   | -     |            |        |       | -      |             |        |          |       |
|                   |       |            |        |       | -      |             |        | 1        | -     |
|                   |       |            |        |       | -      |             |        | +        |       |
|                   |       |            |        |       | -      |             |        | 1        |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            | -      |       |        |             |        | l        |       |
|                   |       |            |        |       | -      |             |        | +        |       |
|                   |       |            |        |       |        |             |        | 1        |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        | l        |       |
|                   | -     |            |        |       | -      | 1           |        | 1        |       |
|                   | -     |            |        | -     | -      |             |        |          |       |
|                   |       |            | -      |       | -      |             |        | 1        | -     |
|                   |       |            |        |       |        | -           |        |          |       |
|                   |       | +          |        |       | -      | -           |        |          |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            |        |       | -      |             |        | 1        |       |
|                   |       |            |        |       | -      |             |        | <b> </b> |       |
|                   |       | 1          | -      |       | -      | -           |        |          |       |
|                   |       |            |        | -     | -      |             |        | 1        |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        | -           |        |          |       |
|                   | -     |            | -      |       | -      | 1           |        | 1        |       |
|                   |       |            | -      | -     | -      |             |        | 1        |       |
|                   |       |            |        |       | -      |             |        |          |       |
|                   |       |            | -      |       |        |             |        | <u> </u> |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        |       |        |             |        |          |       |
|                   |       |            |        | -     |        |             |        |          |       |
|                   |       |            |        | -     |        |             |        |          |       |

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)



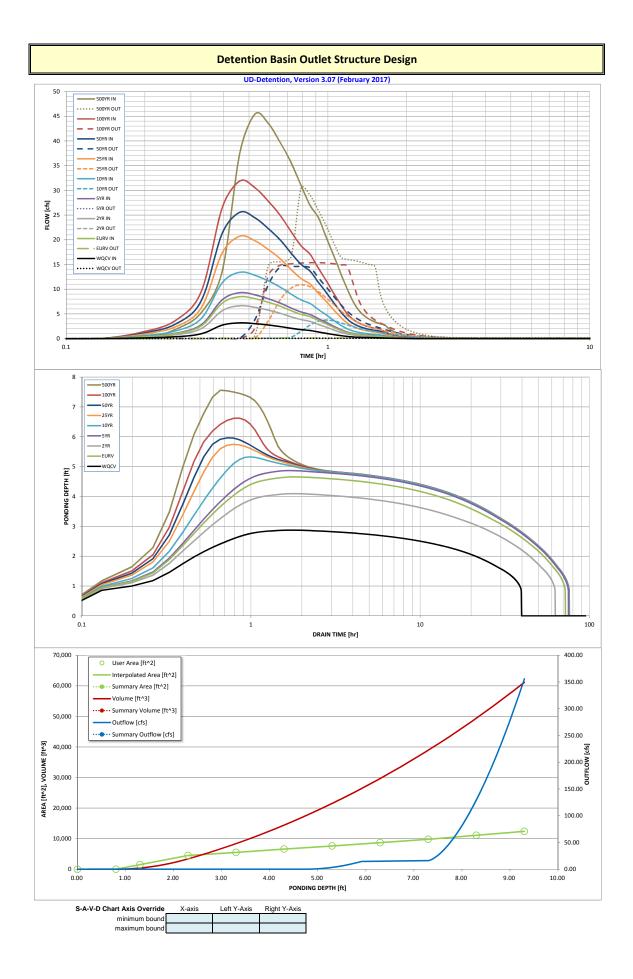
### The Beach at Woodmoor Filing No. 1 Detention Area Calculations

### **Emergency Spillway Calculation**

| Detention<br>Area | n 100-yr<br>Flow | 120%<br>100yr<br>Flow | Water<br>Surf Elev | Crest Elev | Crest<br>Length | Z   | С   | Flow<br>Depth<br>(H) | Calc'd<br>Flow | Check |
|-------------------|------------------|-----------------------|--------------------|------------|-----------------|-----|-----|----------------------|----------------|-------|
| A - DP 15         | 31.6 cfs         | 38.0 cfs              | 7,105.5            | 7,105.00   | 35 ft           | 3:1 | 3.0 | 0.50 ft              | 38 cfs         | ОК    |

Broad Crested Weir Equation (USDCM Eqn 12-20 and 12-21):

 $Q = CLH^{1.5} + 2x((2/5)CZH^{5/2})$ 


C = Weir coefficient, C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

H = Head above weir crest, in ft

Z = Side slope (horizontal:vertical)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dete                                                                                                                                                                                                                                                                                                                                                                                                       | ention Basin (                                                                                                                                                                                                                                                                                    | Outlet Struct                                                                                                                                          | ure Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Decision of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                            | UD-Detention, Ve                                                                                                                                                                                                                                                                                  | rsion 3.07 (Februar                                                                                                                                    | y 2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The Beach at Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Imoor Filing No. 1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| ZONE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detention Dasin A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| ZONE 2<br>ZONE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   | Stage (ft)                                                                                                                                             | Zone Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outlet Type                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| VOLUME EURY WOCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   | 2.95                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                     |                                                                                                                                                        | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| ZONE 1 AND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-YEA<br>ORIFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 2 (EURV)                                                                                                                                                                                                                                                                                     | 4.76                                                                                                                                                   | 0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Configuration (Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tantian Dand)                                                                                                                                                                                                                                                                                                                                                                                              | (100+1/2WQCV)                                                                                                                                                                                                                                                                                     | 7.19                                                                                                                                                   | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weir&Pipe (Restrict)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Jser Input: Orifice at Underdrain Outlet (typically u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed Parameters for Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |
| Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                                                                                                                                                                                                                                                                                                                                                                                                        | ne filtration media sur                                                                                                                                                                                                                                                                           | face)                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rdrain Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inches                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | Underdra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |
| Jser Input: Orifice Plate with one or more orifices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | lated Parameters for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Invert of Lowest Orifice =<br>= Depth at top of Zone using Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00<br>4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                        | bottom at Stage = 0 ft<br>bottom at Stage = 0 ft                                                                                                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rifice Area per Row =<br>Iliptical Half-Width =                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | π<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inches                                                                                                                                                                                                                                                                                                                                                                                                     | Jottom at Stage – O It                                                                                                                                                                                                                                                                            | )                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ptical Slot Centroid =                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inches                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | EIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elliptical Slot Area =                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inches                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Emptical Slot / I ca                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In the second se |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Jser Input: Stage and Total Area of Each Orifice I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Row (numbered from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n lowest to highest)                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 1 (required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 2 (optional)                                                                                                                                                                                                                                                                                                                                                                                           | Row 3 (optional)                                                                                                                                                                                                                                                                                  | Row 4 (optional)                                                                                                                                       | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Row 6 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                     | Row 7 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Row 8 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                           |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.60                                                                                                                                                                                                                                                                                                                                                                                                       | 3.20                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ]                                                                                                                                                                                           |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.690                                                                                                                                                                                                                                                                                                                                                                                                      | 0.690                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 9 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 10 (optional)                                                                                                                                                                                                                                                                                                                                                                                          | Row 11 (optional)                                                                                                                                                                                                                                                                                 | Row 12 (optional)                                                                                                                                      | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Row 14 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 15 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Row 16 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                           |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| User Input: Vertical Orifice (Cire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameters for Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Selected                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 7                                                                                                                                                                                         |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   | ottom at Stage = 0 ft                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ertical Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft <sup>2</sup>                                                                                                                                                                             |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   | ottom at Stage = 0 ft                                                                                                                                  | ) Verti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cal Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet                                                                                                                                                                                        |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                        | inches                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| User Input: Overflow Weir (Dropbox) and G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trate (Flat or Sloped)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculater                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameters for Ove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rflow Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                           |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                        | ft (relative to basin bot                                                                                                                                                                                                                                                                         | tom at Stage = 0 ft)                                                                                                                                   | Height of Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ate Upper Edge, H, =                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                        | feet                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet                                                                                                                                                                                        |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                        | Over Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.80<br>4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>feet                                                                                                                                                                                |
| Overflow Weir Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                        | H:V (enter zero for fl                                                                                                                                                                                                                                                                            | at grate)                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   | at grate)                                                                                                                                              | Grate Open Area /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fl                                                                                                                                                                                                                                                                            |                                                                                                                                                        | Grate Open Area /<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                         | 4.12<br>9.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>should be ≥ 4                                                                                                                                                                       |
| Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                        | H:V (enter zero for fl<br>feet                                                                                                                                                                                                                                                                    |                                                                                                                                                        | Grate Open Area /<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                 | 4.12<br>9.32<br>11.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be ≥ 4<br>ft <sup>2</sup>                                                                                                                                                    |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                          | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                                       |                                                                                                                                                        | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/ Debris =                                                                                                                                                                                                                                                                                                                                         | 4.12<br>9.32<br>11.54<br>5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                             |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan                                                                                                                                                                                                                                                                                                                                                                 | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                                       |                                                                                                                                                        | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/ Debris =                                                                                                                                                                                                                                                                                                                                         | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                             |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected                                                                                                                                                                                                                                                                                                                                                 | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)                                                                                                                                                                                                                     | otal area                                                                                                                                              | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/ Debris =<br><b>Calculated Parameter</b>                                                                                                                                                                                                                                                                                                          | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                            |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                          | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi                                                                                                                                                                                          |                                                                                                                                                        | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br><b>calculated Parameter</b><br>Outlet Orifice Area =                                                                                                                                                                                                                                                                                 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup>                                                                                                   |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 4.00<br>= 70%<br>= 50%<br>= 50%<br>= Zone 3 Restrictor<br>= 0.50<br>= 24.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                                | otal area<br>n bottom at Stage = 0 f                                                                                                                   | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br><b>calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =                                                                                                                                                                                                                                                       | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi                                                                                                                                                                                          | otal area<br>n bottom at Stage = 0 f                                                                                                                   | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br><b>calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =                                                                                                                                                                                                                                                       | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup>                                                                                                   |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                                | otal area<br>n bottom at Stage = 0 f                                                                                                                   | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =                                                                                                                                                                                                                             | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % –<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                                      | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Out<br>Central Angle of Rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/ o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b>                                                                                                                                                                                                         | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>Spillway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                 |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>I<br>ft (relative to basin l                                                                                                                                                                                                                                                                                                    | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                                | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Central Angle of Rest<br>Spillway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=                                                                                                                                                                                                 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00<br>70%<br>50%<br>irrcular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin h<br>feet                                                                                                                                                                                                                                                                                                 | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                                      | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Contral Angle of Rest<br>Spillway<br>Stage a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =                                                                                                                                                                          | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>I<br>ft (relative to basin l                                                                                                                                                                                                                                                                                                    | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                                      | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Contral Angle of Rest<br>Spillway<br>Stage a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=                                                                                                                                                                                                 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin f<br>feet<br>H:V                                                                                                                                                                                                                                                                                          | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                                      | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Contral Angle of Rest<br>Spillway<br>Stage a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =                                                                                                                                                                          | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                 |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin f<br>feet<br>H:V                                                                                                                                                                                                                                                                                          | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                                      | otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>t)<br>Contral Angle of Rest<br>Spillway<br>Stage a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =                                                                                                                                                                          | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin I<br>feet<br>H:V<br>feet<br>EURV                                                                                                                                                                                                                                                                          | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year                                                                                                                                  | otal area<br>n bottom at Stage = 0 f<br>Half-(<br>)<br>5 Year                                                                                          | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>c<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =                                                                                                                                                  | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians<br>500 Year                                                                    |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>NOT Selected<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>LURV<br>1.07                                                                                                                                                                                                                                                                    | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>boottom at Stage = 0 ft<br>2 Year<br>1.19                                                                                                                         | otal area<br>n bottom at Stage = 0 f<br>Half-(<br>)<br><u>5 Year</u><br>1.50                                                                           | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00                                                                                                                 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians                                                                                                        |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Calcudated Hydrograph Results<br>Ore-Hour Rainfall Depth (n) =<br>Calcudated Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                           | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin I<br>feet<br>H:V<br>feet<br>EURV                                                                                                                                                                                                                                                                          | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year                                                                                                                                  | otal area<br>n bottom at Stage = 0 f<br>Half-(<br>)<br>5 Year                                                                                          | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>c<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =                                                                                                                                                  | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians<br>500 Year                                                                    |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL Override Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                       | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.402                                                                                                                                                                                                                                                  | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315                                                                                                                 | otal area<br>n bottom at Stage = 0 f<br>Half-4<br>)<br><u>5 Year<br/>1.50</u><br>0.441                                                                 | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>c<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990                                                                                                                      | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.20<br>2.193                                                         |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Calcudated Hydrograph Results<br>Ore-Hour Rainfall Depth (n) =<br>Calcudated Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                           | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>NOT Selected<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>LURV<br>1.07                                                                                                                                                                                                                                                                    | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>boottom at Stage = 0 ft<br>2 Year<br>1.19                                                                                                                         | otal area<br>n bottom at Stage = 0 f<br>Half-(<br>)<br><u>5 Year</u><br>1.50                                                                           | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>(<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00                                                                                                                 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians                                                                                                        |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % –<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Crest Length =<br>Spillway Crest Length =<br>OPTIONAL Override Rundft Volume (acre-ft) =<br>OPTIONAL Override Rundft Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                                                                                                                                                                                                      | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>35.00<br>1.00<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ft (relative to basin I<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.402                                                                                                                                                                                                                                                                                   | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314                                                                                                        | otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br><u>5 Year<br/>1.50<br/>0.441<br/>0.440</u>                                                      | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.639<br>0.639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991                                                                                                                                     | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.20<br>2.194                                                              |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Crest Length =<br>Spillway Crest Length =<br>OPTIONAL Overrick Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre)<br>Predevelopment Peak Q (cfs) =                                                                                                                                                                                                              | 4.00<br>70%<br>50%<br>irrcular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>35.00<br>3.00<br>1.00<br>WQCV<br>0.53<br>0.150<br>0.149<br>0.00<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A<br>N/A<br>N/A<br>Selected<br>N/A<br>N/A<br>N/A<br>ft (relative to basin I<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.402<br>0.402<br>0.00<br>0.0<br>8.5                                                                                                                                                                                                                                        | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7                                                                                  | otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.441<br>0.441<br>0.440<br>0.3<br>9.3                                         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.639<br>0.28<br>3.0<br>1.3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7                                                                                      | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.533<br>1.62<br>1.62<br>1.7.1<br>3.1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acreft) =<br>Inflow Hydrograph Volume (acreft) =<br>Inflow Hydrograph Volume (acreft) =<br>Predevelopment Unit Peak Flow, q (cfs) =<br>Peak Nuftow Q (cfs) =                                                                                                                                                       | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>24.00<br>10.00<br>24.00<br>10.00<br>24.00<br>10.00<br>24.00<br>10.00<br>20.00<br>3.00<br>3.00<br>1.00<br>0.00<br>0.149<br>0.00<br>0.0<br>3.2<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.402<br>0.00<br>0.0<br>0.0<br>8.5<br>0.1                                                                                                                                                                                                                                        | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1                                                                           | 5 Year<br>1.50<br>0.441<br>0.03<br>0.3<br>0.3                                                                                                          | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.639<br>0.28<br>3.0<br>13.4<br>3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>been Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9                                                                             | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A           N/A           N/A           N/A           N/A           Flow Restriction Pla           Not Selected           N/A           Ioov           Ioov           Ioov           Ioov           Ioov           Ioov           Ioov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Seer Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Noted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in)<br>Calculated Runoff Volume (acreft) =<br>OPTIONAL. Override Runoff Volume (acreft) =<br>Inflow Hydrograph Volume (acreft) =<br>Predevelopment Unit Peak Flow, q (ds/acre) =<br>Peak Inflow Q (ds) =<br>Peak Untflow Q (ds) =<br>Ratio Peak Outflow to Predevelopment Q =                    | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>24.00<br>10.00<br>24.00<br>10.00<br>24.00<br>10.00<br>20.00<br>3.00<br>3.00<br>3.00<br>3.00<br>0.53<br>0.150<br>0.150<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A           N/A           N/A           N/A           ctor Plate, or Rectan           Not Selected           N/A           ft (relative to basin lifeet           H:V           feet           U.07           0.402           0.402           0.00           0.0           0.1           N/A                                                                                                             | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br><u>2 Year</u><br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A                                                             | 5 Year<br>1.50<br>0.441<br>0.440<br>0.3<br>0.3<br>0.3<br>0.8                                                                                           | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Gr | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>been Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2                                                                                            | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.226<br>1.28<br>2.5.6<br>14.6<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A           N/A           N/A           N/A           N/A           Plow Restriction Pla           Not Selected           N/A           Spillway           feet           feet           acres           1.533           1.62           17.1           31.9           15.4           0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians                                                                                     |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>OPTIONAL Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre)<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Q Utflow Q (cfs) =                                                                                       | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>24.00<br>10.00<br>35.00<br>3.00<br>1.00<br>0.130<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.1<br>N/A<br>Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>NOT Selected<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>LORV<br>1.07<br>0.402<br>0.402<br>0.402<br>0.402<br>0.00<br>0.0<br>8.5<br>0.1<br>N/A<br>Plate                                                                                                                                                                                                  | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A<br>Plate                                                           | otal area<br>h bottom at Stage = 0 f<br>Half-4<br>)<br>5 Year<br>1.50<br>0.441<br>0.440<br>0.03<br>0.3<br>9.3<br>0.3<br>0.3<br>0.8<br>Overflow Grate 1 | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>0.639<br>0.639<br>0.28<br>0.028<br>0.028<br>3.0<br>113.4<br>3.8<br>1.3<br>Overflow Grate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1                                                   | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.226<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A           N/A           N/A           N/A           N/A           Flow Restriction Pla           Not Selected           N/A           1.533           1.533           1.54           0.9           Outlet Plate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Restrictor Plate Height Above Pipe Invert Stage<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Calculated Runoff Volume (acre-ft)<br>Inflow Hydrograph Volume (acre-ft)<br>Inflow Hydrograph Volume (acre-ft)<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q (cfs)<br>Ratio Peak Autflow to Predevelopment 1 (fps) =                                                                                                                   | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>1.00<br>0.100<br>0.53<br>0.150<br>0.149<br>0.00<br>0.00<br>0.0<br>3.2<br>0.1<br>N/A<br>Plate<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.402<br>0.402<br>0.402<br>0.402<br>0.00<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                 | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A<br>Plate<br>N/A                                                    | 5 Year<br>1.50<br>0.441<br>0.440<br>0.03<br>0.3<br>0.3<br>0.3<br>0.8<br>Overflow Grate 1<br>0.0                                                        | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.639<br>0.28<br>3.0<br>13.4<br>3.8<br>1.3<br>Overflow Grate 1<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>ictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1<br>0.9            | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23                                                                                                                                                                                                                                                                                                                                                                              | N/A           N/A           N/A           N/A           N/A           Flow Restriction Pla           Not Selected           N/A           1.533           1.62           17.1           31.9           15.4           0.9           Outlet Plate 1           1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Reuted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre)<br>Peak Unflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =                                                                                                     | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>24.00<br>10.00<br>35.00<br>3.00<br>1.00<br>0.130<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.1<br>N/A<br>Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>NOT Selected<br>N/A<br>N/A<br>ft (relative to basin l<br>feet<br>H:V<br>feet<br>LORV<br>1.07<br>0.402<br>0.402<br>0.402<br>0.402<br>0.00<br>0.0<br>8.5<br>0.1<br>N/A<br>Plate                                                                                                                                                                                                  | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A<br>Plate                                                           | otal area<br>h bottom at Stage = 0 f<br>Half-4<br>)<br>5 Year<br>1.50<br>0.441<br>0.440<br>0.03<br>0.3<br>9.3<br>0.3<br>0.3<br>0.8<br>Overflow Grate 1 | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>0.639<br>0.639<br>0.28<br>0.028<br>0.028<br>3.0<br>113.4<br>3.8<br>1.3<br>Overflow Grate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1                                                   | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.226<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A           N/A           N/A           N/A           N/A           Flow Restriction Pla           Not Selected           N/A           1.533           1.533           1.54           0.9           Outlet Plate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Volume (acre-ft) =<br>Predevelopment Volume (acre-ft) =<br>Predevelopment Peak R (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Nufflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =                       | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>gular or Trapezoidal)<br>7.30<br>35.00<br>3.00<br>3.00<br>0.100<br>0.00<br>0.149<br>0.00<br>0.00<br>3.2<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A           N/A           N/A           N/A           Not Selected           N/A           N/A           ft (relative to basin l<br>feet           H:V           feet           H:V           0.402           0.00           0.402           0.00           0.1           N/A           Plate           N/A           N/A           N/A                                                                  | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A                                             | otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.441<br>0.03<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.                 | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Out<br>Central Angle of Resti<br>Spillway<br>Stage a<br>Basin Area a<br>Basin Area a<br>0.639<br>0.28<br>3.0<br>13.4<br>1.3<br>0.639<br>0.28<br>3.0<br>13.4<br>1.3<br>0.0<br>3.8<br>1.3<br>0verflow Grate 1<br>0.3<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weir Slope Length =<br>100-yr Orifice Area =<br>an Area w/o Debris =<br>been Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1<br>0.9<br>N/A            | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for S<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A           N/A           N/A           N/A           N/A           Plow Restriction Pla           Not Selected           N/A           N/A           N/A           N/A           N/A           Spillway           feet           feet           1.533           1.62           17.1           31.9           15.4           0.9           Outlet Plate 1           1.3           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                           |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Cutflow to Predevelopment Q<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours)        | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>2one 3 Restrictor<br>0.50<br>24.00<br>10.00<br>24.00<br>10.00<br>35.00<br>3.00<br>1.00<br>0.150<br>0.150<br>0.150<br>0.150<br>0.150<br>0.149<br>0.00<br>0.00<br>0.0<br>3.2<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A           N/A           N/A           N/A           Not Selected           N/A           N/A           ft (relative to basin lifeet           H:V           feet           H:V           feet           0.402           0.402           0.00           0.0           8.5           0.1           N/A           Plate           N/A           66                                                        | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>0.2<br>0.314<br>0.02<br>0.2<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A<br>58<br>61<br>4.10 | otal area<br>n bottom at Stage = 0 f<br>Half-0<br>1.50<br>0.441<br>0.03<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.                                | Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>Calcula<br>Design Flow Depth=<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1<br>0.9<br>N/A<br>63<br>71<br>5.75        | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.23<br>1.23<br>1.24<br>1.24<br>1.25<br>1.24<br>1.25<br>1.24<br>1.25<br>1.24<br>1.25<br>1.24<br>1.25<br>1.25<br>1.22<br>1.28<br>1.25<br>1.23<br>1.24<br>1.24<br>1.24<br>1.24<br>1.25<br>1.25<br>1.25<br>1.22<br>1.28<br>1.25<br>1.22<br>1.28<br>1.28<br>1.23<br>1.24<br>1.24<br>1.24<br>1.24<br>1.25<br>1.25<br>1.22<br>1.28<br>1.25<br>1.23<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24<br>1.24 | N/A           N/A           N/A           N/A           N/A           Not Selected           N/A           N/A           N/A           N/A           N/A           N/A           Spillway           feet           feet           1.533           1.62           1.7.1           31.9           15.4           0.9           Outlet Plate 1           1.3           N/A           59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>2.193<br>2.194<br>2.43<br>2.5.5<br>45.4<br>30.4<br>1.2<br>Spillway<br>1.4<br>N/A<br>54 |
| Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan,<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length<br>Spillway End Storges<br>Freeboard above Max Water Surface =<br>Freeboard above Max Water Surface =<br>Cone-Hour Rainfall Depth (in)<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Predevelopment Unit Peak Altow Q (cfs) =<br>Peak Autflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) = | 4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>24.00<br>10.00<br>24.00<br>35.00<br>35.00<br>1.00<br>0.0<br>0.130<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.150<br>0.149<br>0.00<br>0.0<br>3.2<br>0.149<br>0.00<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>3.2<br>0.10<br>0.0<br>0.0<br>0.0<br>3.2<br>0.10<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | N/A           N/A           N/A           N/A           ctor Plate, or Rectan           Not Selected           N/A           n/A           n/A           N/A           ft (relative to basin I           feet           H:V           feet           0.402           0.00           0.00           0.0           8.5           0.1           N/A           Plate           N/A           N/A           N/A | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.315<br>0.314<br>0.02<br>0.2<br>6.7<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A<br>N/A<br>S8<br>61                                    | otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.441<br>0.440<br>0.03<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0         | Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>0.639<br>0.639<br>0.28<br>3.0<br>13.4<br>3.8<br>1.3<br>Overflow Grate 1<br>0.3<br>N/A<br>67<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>0.990<br>0.991<br>0.88<br>9.3<br>20.7<br>10.9<br>1.2<br>Overflow Grate 1<br>0.9<br>N/A<br>63<br>71 | 4.12<br>9.32<br>11.54<br>5.77<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>1.24<br>0.48<br>1.40<br>ted Parameters for 5<br>0.44<br>8.74<br>0.27<br>50 Year<br>2.25<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.225<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23<br>1.23                                                                                                                                                                                                                                                                                                                                        | N/A           N/A           N/A           N/A           N/A           Plow Restriction Pla           Not Selected           N/A           Spillway           feet           feet           feet           1.533           1.62           1.7.1           31.9           15.4           0.9           Outlet Plate 1           1.3           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>2.194<br>2.43<br>30.4<br>1.2<br>Spillway<br>1.4<br>N/A<br>N/A<br>S4<br>66              |



#### **Detention Basin Outlet Structure Design**

Outflow Hydrograph Workbook Filename:

|               | Storm Inflow H     |              |              | ention, Version |              |               | anhs developed | in a separate pro | aram           |                |
|---------------|--------------------|--------------|--------------|-----------------|--------------|---------------|----------------|-------------------|----------------|----------------|
|               | SOURCE             | WORKBOOK     | WORKBOOK     | WORKBOOK        | WORKBOOK     | WORKBOOK      | WORKBOOK       | WORKBOOK          | WORKBOOK       | WORKBOOK       |
| Time Interval | TIME               | WQCV [cfs]   | EURV [cfs]   | 2 Year [cfs]    | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs]  | 50 Year [cfs]     | 100 Year [cfs] | 500 Year [cfs] |
| 3.95 min      | 0:00:00            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 0:03:57            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
| Hydrograph    | 0:07:54            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
| Constant      | 0:11:51            | 0.15         | 0.38         | 0.30            | 0.42         | 0.60          | 0.91           | 1.11              | 1.38           | 1.95           |
| 1.266         | 0:15:48<br>0:19:45 | 0.39         | 1.02<br>2.62 | 0.80            | 1.11<br>2.86 | 1.60<br>4.12  | 2.46<br>6.32   | 3.02              | 3.76<br>9.66   | 5.33<br>13.68  |
|               | 0:23:42            | 2.74         | 7.19         | 5.66            | 7.87         | 11.31         | 17.35          | 21.34             | 26.53          | 37.55          |
|               | 0:27:39            | 3.19         | 8.49         | 6.66            | 9.29         | 13.43         | 20.72          | 25.57             | 31.90          | 45.44          |
|               | 0:31:36            | 3.03         | 8.09         | 6.34            | 8.86         | 12.81         | 19.80          | 24.44             | 30.52          | 43.53          |
|               | 0:35:33<br>0:39:30 | 2.76         | 7.36         | 5.77            | 8.06         | 11.66         | 18.03          | 22.25             | 27.78          | 39.62          |
|               | 0:43:27            | 2.44         | 6.56<br>5.64 | 5.13            | 7.19<br>6.19 | 10.42<br>8.99 | 16.13<br>13.97 | 19.94<br>17.28    | 24.92 21.62    | 35.59<br>30.97 |
|               | 0:47:24            | 1.83         | 4.93         | 3.85            | 5.40         | 7.84          | 12.15          | 15.03             | 18.79          | 26.93          |
|               | 0:51:21            | 1.65         | 4.46         | 3.48            | 4.89         | 7.10          | 11.02          | 13.63             | 17.04          | 24.40          |
|               | 0:55:18            | 1.34         | 3.66         | 2.85            | 4.02         | 5.86          | 9.13           | 11.31             | 14.18          | 20.36          |
|               | 0:59:15<br>1:03:12 | 1.08<br>0.81 | 2.98         | 2.31            | 3.27         | 4.78<br>3.68  | 7.48<br>5.80   | 9.29<br>7.23      | 11.67<br>9.11  | 16.80<br>13.19 |
|               | 1:07:09            | 0.59         | 1.68         | 1.29            | 1.85         | 2.74          | 4.36           | 5.45              | 6.91           | 10.07          |
|               | 1:11:06            | 0.43         | 1.22         | 0.95            | 1.35         | 1.99          | 3.15           | 3.97              | 5.05           | 7.42           |
|               | 1:15:03            | 0.34         | 0.95         | 0.74            | 1.05         | 1.54          | 2.43           | 3.04              | 3.85           | 5.63           |
|               | 1:19:00            | 0.28         | 0.78         | 0.61            | 0.86         | 1.27          | 1.99           | 2.49              | 3.15           | 4.57           |
|               | 1:22:57<br>1:26:54 | 0.24         | 0.67         | 0.52            | 0.73         | 1.07<br>0.94  | 1.69<br>1.48   | 2.11              | 2.66           | 3.86<br>3.37   |
|               | 1:30:51            | 0.19         | 0.53         | 0.40            | 0.58         | 0.85          | 1.33           | 1.66              | 2.09           | 3.02           |
|               | 1:34:48            | 0.18         | 0.49         | 0.38            | 0.54         | 0.78          | 1.23           | 1.53              | 1.92           | 2.77           |
|               | 1:38:45            | 0.13         | 0.36         | 0.28            | 0.39         | 0.57          | 0.90           | 1.12              | 1.41           | 2.05           |
|               | 1:42:42<br>1:46:39 | 0.10         | 0.26         | 0.20            | 0.29         | 0.42          | 0.66           | 0.82              | 1.03           | 1.49           |
|               | 1:46:39            | 0.07         | 0.19         | 0.15            | 0.21         | 0.31          | 0.48           | 0.60              | 0.76           | 0.81           |
|               | 1:54:33            | 0.04         | 0.10         | 0.08            | 0.11         | 0.16          | 0.26           | 0.32              | 0.41           | 0.59           |
|               | 1:58:30            | 0.02         | 0.07         | 0.05            | 0.08         | 0.12          | 0.18           | 0.23              | 0.29           | 0.42           |
|               | 2:02:27            | 0.02         | 0.05         | 0.04            | 0.05         | 0.08          | 0.13           | 0.16              | 0.21           | 0.31           |
|               | 2:06:24<br>2:10:21 | 0.01         | 0.03         | 0.02            | 0.04         | 0.05          | 0.09           | 0.11              | 0.14           | 0.21           |
|               | 2:10:21            | 0.00         | 0.02         | 0.01            | 0.02         | 0.03          | 0.03           | 0.07              | 0.05           | 0.13           |
|               | 2:18:15            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.01           | 0.01              | 0.02           | 0.03           |
|               | 2:22:12            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.01           |
|               | 2:26:09<br>2:30:06 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:34:03            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:38:00            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:41:57            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:45:54            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:49:51<br>2:53:48 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 2:57:45            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:01:42            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:05:39            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:09:36<br>3:13:33 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:17:30            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:21:27            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:25:24<br>3:29:21 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:29:21<br>3:33:18 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:37:15            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:41:12<br>3:45:09 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:49:06            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:53:03            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 3:57:00<br>4:00:57 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:04:54            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:08:51<br>4:12:48 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:12:48<br>4:16:45 | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:20:42            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:24:39            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:28:36 4:32:33    | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:36:30            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:40:27            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |
|               | 4:44:24            | 0.00         | 0.00         | 0.00            | 0.00         | 0.00          | 0.00           | 0.00              | 0.00           | 0.00           |

### The Beach at Woodmoor Filing No. 1 Detention Calculations

### **Presedementation / Forebay Sizing**

|         |         |           | Total Req'd |           | % Total | Required |       |           |        | Discharge          | Calc'd Open |          |
|---------|---------|-----------|-------------|-----------|---------|----------|-------|-----------|--------|--------------------|-------------|----------|
|         | 100 Yr  | Detention | Forebay Vol | Tributary | Trib    | Forebay  | Fo    | orebay De | sign   | <b>Design</b> Flow | Width       | Design   |
| Forebay | Flow    | WQCV      | 3.0% WQCV   | Area      | Area    | Volume   | Area  | Depth     | Volume | 2.0% 100yr         | (1" min)    | Width    |
| DP 12   | 19.9cfs | 6,515cf   | 195cf       | 6.33ac    | 62.9%   | 123cf    | 100sf | 1.25-ft   | 125 cf | 0.40 cfs           | 4.1-inch    | 4.0-inch |
| DP 14   | 11.0cfs |           |             | 3.73ac    | 37.1%   | 72cf     | 60sf  | 1.25-ft   | 75 cf  | 0.22 cfs           | 3.6-inch    | 3.5-inch |
|         |         |           |             |           | 0.0%    |          |       |           |        |                    |             |          |
| Totals  |         | 6,515cf   | 195cf       | 10.07ac   | 100.0%  |          |       |           |        |                    |             |          |

Opening Width Equation for Rectangular Opening

L = Q / (CH<sup>1.5</sup>) x 12 + 0.2xHx12 (UD-BMP Spreadsheet -- EDB tab)

C = 3.0

Flow =  $(1.49/n)AR_n^{2/3} S^{1/2}$ 

### **Forebay Overflow Calculation**

| Forebay | Water<br>Surf Elev | Crest Elev | Crest Length | Flow<br>Depth | Calc'd<br>Flow |
|---------|--------------------|------------|--------------|---------------|----------------|
| DP 12   | 100.25             | 100.0      | 6.0 ft       | 0.25 ft       | 2.3 cfs        |
| DP 14   | 100.25             | 100.0      | 6.0 ft       | 0.25 ft       | 2.3 cfs        |
|         |                    |            |              |               |                |

Weir Equation:

 $Q = CLH^{1.5}$ 

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

#### **Trickle Channel Calculation**

| Location | 100yr<br>Flow | Req'd Flow<br>1.0% 100yr | Bottom<br>Width | Flow<br>Depth | Side<br>Slope | Slope | Manning<br>'n' | Top<br>Width | Flow Area | Wetted<br>Perimeter | Hydraulic<br>Radius | Flow<br>Velocity | Capacity |
|----------|---------------|--------------------------|-----------------|---------------|---------------|-------|----------------|--------------|-----------|---------------------|---------------------|------------------|----------|
| Det A    | 31.6cfs       | 0.3cfs                   | 2.0 ft          | 0.50 ft       | 0.0:1         | 0.5%  | 0.013          | 2.0 ft       | 1.00 sf   | 3.0 ft              | 0.33 ft             | 3.9 ft/sec       | 3.9 cfs  |

Equations:

d = depth

Area (A) =  $b(d)+zd^2$  Perimeter (P) =  $b+2d^*(1+z^2)^{0.5}$ b = width z = side slope

Hydraulic Radius = A/P

Velocity =  $(1.49/n)R_n^{2/3}S^{1/2}$ 

S = Slope of the channel

n = Manning's number

C = 3.0

R<sub>n</sub> = Hydraulic Radius (Reynold's Number)

# APPENDIX B.1 Supporting Detention Basin Tables and Figures

beneficial if a project is being phased or when adequate land is not available to combine all of the elements in one facility.

### 4.1.1 Flood Control Volume

UDFCD has developed empirical equations for estimating the total required storage volume that can be applied to on-site, multi-level ponds or to on-site or sub-regional FSD ponds. The empirical equations include:

| $V_i = K_i A$ | Equation 13-1 |
|---------------|---------------|
|---------------|---------------|

For NRCS soil types B, C and D.

| $\mathbf{K}_{100} = (1.78 \cdot \mathbf{I} - 0.002  \mathbf{I}^2 - 3.56) /900$ | Equation 13-2 |
|--------------------------------------------------------------------------------|---------------|
| $K_5 = (0.77 \cdot I - 2.65) / 1,000$                                          | Equation 13-3 |

For NRCS soil Type A:

 $K_{100A} = (-0.00005501 \cdot I^2 + 0.030148 \cdot I - 0.12) / 12$  Equation 13-4

Where:

 $V_i$  = required volume, with i= year storm, acre-feet  $K_i$  = empirical volume coefficient, with i= year storm

i = return period for storm event, years

I = fully developed tributary basin imperviousness, %

A = tributary drainage basin area, acres

These equations can be applied to calculate the total detention storage for drainage basins up to about 130 acres. When more than one soil type or land use is present in the drainage basin, the storage volume must be weighted by the proportionate areas of each soil type and/or land use. For FSDs, the EURV need not be added to this volume. See UDFCD Manual Volume 2, Storage Chapter for a full description of this method.

### 4.1.2 EURV

UDFCD has developed empirical equations for estimating the EURV portion of the storage volume that can be applied to on-site, sub-regional or regional FSD ponds.

The empirical equations are as follows:

For NRCS Soil Group A:

 $EURV_A = 1.1 (2.0491(I/100) - 0.1113)$ 

Equation 13-5

For NRCS Soil Group B:

 $EURV_B = 1.1 (1.2846(I/100) - 0.0461)$  Equation 13-6

For NRCS Soil Group C/D:

$$EURV_{CD} = 1.1 (1.1381(I/100) - 0.0339)$$
 Equation 13-7

Where:

 $EURV_{K} = Excess$  Urban Runoff Volume in watershed inches, K=A, B or C/D soil group

I = drainage basin imperviousness, %

These equations apply to all FSDs and the EURV need not be added to the flood control volume or to the WQCV. When more than one soil type or land use is present in the drainage basin, the EURV must be weighted by the proportionate areas of each soil type and/or land use. If hydrologic routing is used to size the flood control volume, the EURV remains the same as calculated by these equations and is included in the pond's stage/storage configuration for modeling.

## 4.1.3 Initial Surcharge Volume

The initial surcharge volume is at least 0.3 percent of the WQCV and should be 4- to 12-inches deep. The initial surcharge volume is included in the WQCV and does not increase the required total storage volume.

### 4.1.4 Design Worksheets

The Full Spectrum Worksheet in the UD-Detention Spreadsheet performs all of these calculations for the standard designs. For multi-level ponds, the flood control volumes are calculated for the two design storm frequencies: the major storm and the minor storm.

### 4.2 Allowable Release Rates

Allowable release rates from detention facilities vary with the type of facility and with the storage volume type, as follows:

- **Flood Storage Volume**: The flood storage release rates are determined by the allowable release rates that are intended to approximate storm event runoff rates from the undeveloped upstream drainage basin.
- **EURV**: The EURV release rate is determined based on a72-hour drain time. The purpose of this slow release rate is to mitigate the impacts of increased runoff volumes due to development by reducing the potential for downstream erosion.
- **WQCV**: The WQCV release rate is determined based on a 40-hour drain time for extended detention basins. The purpose of this slow release rate is to provide time for pollutants to settle, The WQCV is incorporated into the EURV and works with it to release less erosive flows. The method for determining this design rate is described in Chapter 3 of Volume 2 of this Manual.

# 4.2.1 Flood Storage Release Rates

Allowable releases rates from the flood storage element of detention may be based on generalized average unit runoff rates or estimates of pre-development runoff rates. Allowable unit release rates (cfs/ac) may be used for any type of detention, however, when a hydrograph routing method is applied (for regional or

### Safety Grates

Safety grates are intended to keep people and animals from inadvertently entering a storm drain. They are sometimes required even when debris entering a storm drain is not a concern. The grate on top of the outlet drop box is considered a safety grate and should be designed accordingly. The danger associated with outlet structures is the potential associated with pinning a person or animal to unexposed outlet pipe or grate. See the *Culverts and Bridges* chapter of Volume 2 of this manual for design criteria related to safety grates.

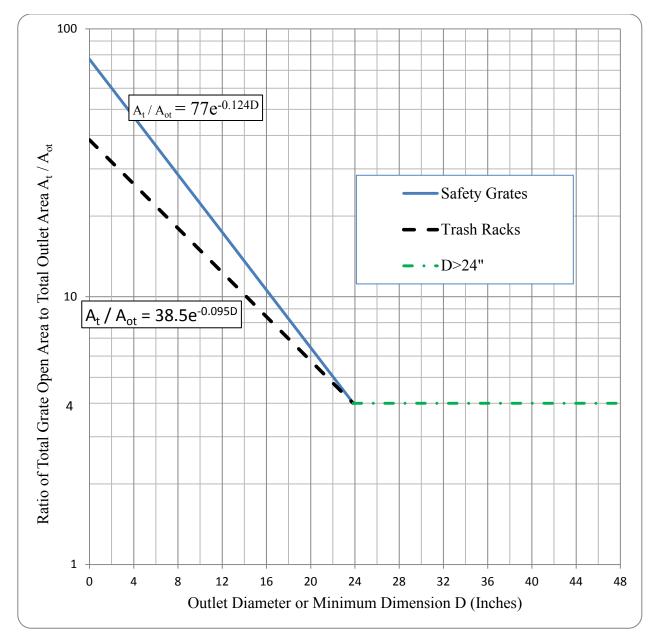



Figure OS-1. Trash Rack Sizing

| <b>T-12</b> |  |
|-------------|--|
|             |  |

|        | Steel plate thickness (in inches) based on design depth and span of plate |        |        |        |        |        |        |        |        |        |        |  |
|--------|---------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|        | Head (feet)                                                               |        |        |        |        |        |        |        |        |        |        |  |
|        |                                                                           | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |  |
| (C)    | 1                                                                         | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 |  |
| (feet) | 2                                                                         | 0.1875 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 |  |
|        | 3                                                                         | 0.2500 | 0.2500 | 0.3750 | 0.3750 | 0.3750 | 0.3750 | 0.3750 | 0.3750 | 0.3750 | 0.5000 |  |
| Span   | 4                                                                         | 0.2500 | 0.3750 | 0.3750 | 0.3750 | 0.3750 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 |  |

| Table OS-2. | Thickness | of steel | water | quality plate |  |
|-------------|-----------|----------|-------|---------------|--|
|-------------|-----------|----------|-------|---------------|--|

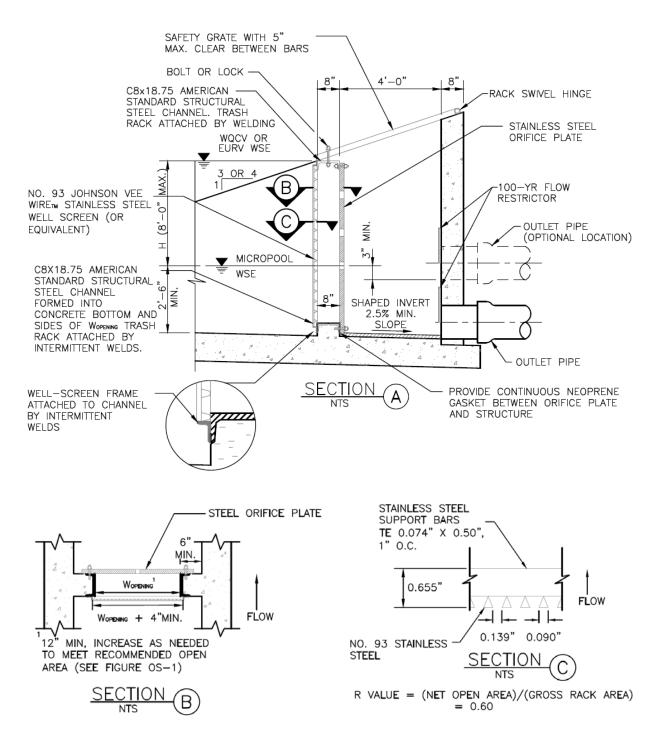
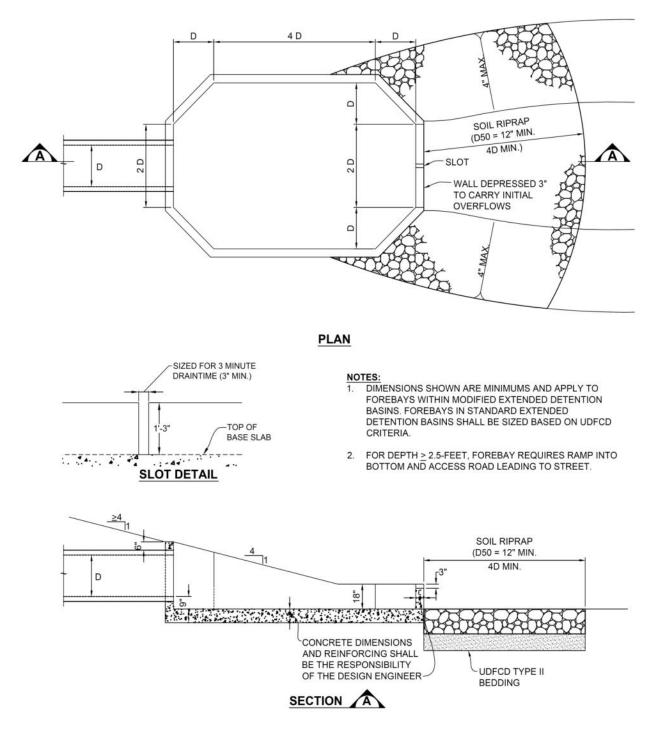
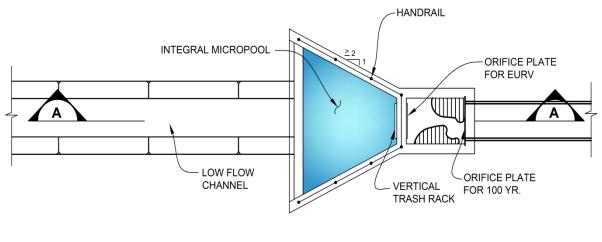
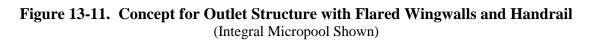
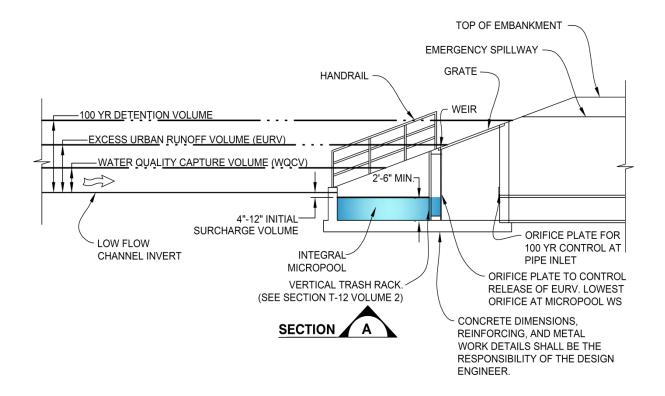






Figure OS-5. Typical outlet structure with well screen trash rack




### Figure 13-9. Concept for Integral Forebay at Pipe Outfall





PLAN VIEW



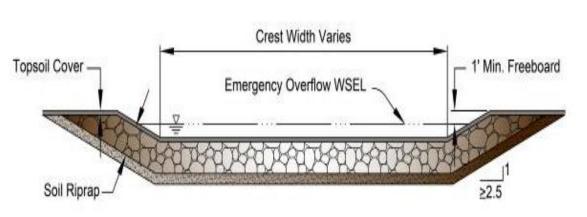
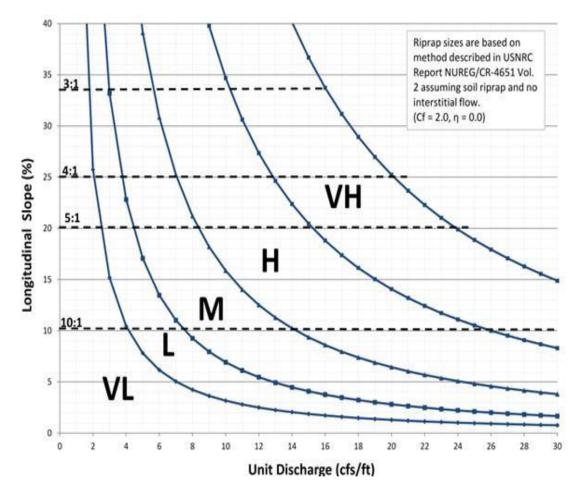




Figure 13-12c. Emergency Spillway Protection

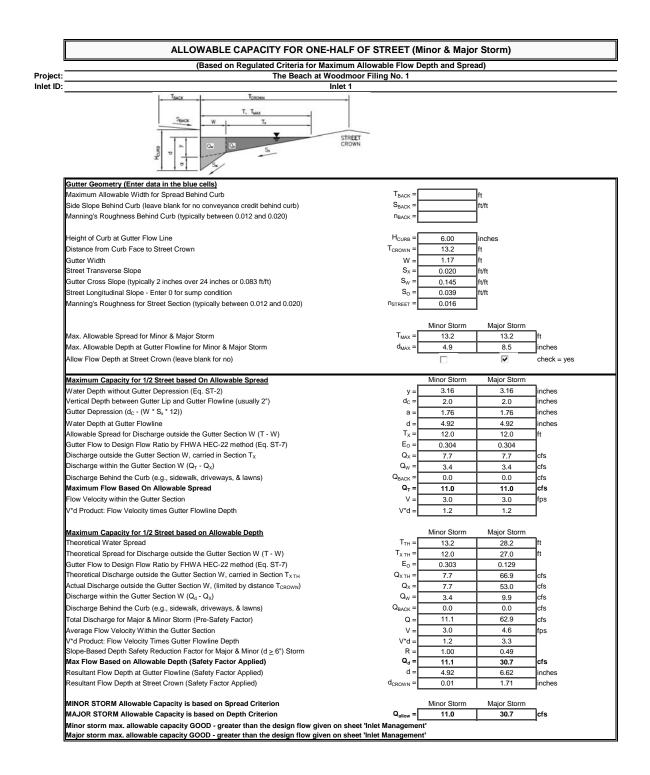
Figure 13-12d. Riprap Types for Emergency Spillway Protection



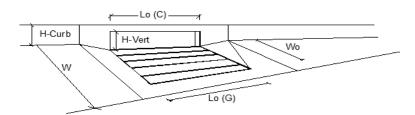
# APPENDIX C

# **Hydraulic Calculations**

Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet and Hand Calcs Pipe Sizing Calculations Pipe Outlet Erosion Protection Calculations Swale Capacity Calculations


### Inlet Management

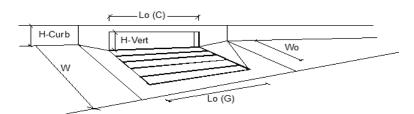
Worksheet Protected


| NLET NAME                                                                                             | Inlet 1                  | Inlet 2                  | Inlet 3                               | Inlet 4                  |
|-------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|
| Site Type (Urban or Rural)                                                                            | URBAN                    | URBAN                    | URBAN                                 | URBAN                    |
| nlet Application (Street or Area)                                                                     | STREET                   | STREET                   | STREET                                | STREET                   |
| lydraulic Condition                                                                                   | On Grade                 | On Grade                 | In Sump                               | In Sump                  |
| nlet Type                                                                                             | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening              | CDOT Type R Curb Opening |
| ER-DEFINED INPUT                                                                                      |                          |                          |                                       |                          |
| Jser-Defined Design Flows                                                                             |                          |                          |                                       |                          |
| /inor Q <sub>Known</sub> (cfs)                                                                        | 2.8                      | 1.6                      | 1.3                                   | 2.4                      |
| /lajor Q <sub>Known</sub> (cfs)                                                                       | 7.6                      | 4.4                      | 3.9                                   | 7.5                      |
| Bypass (Carry-Over) Flow from Upstream                                                                |                          |                          |                                       |                          |
| Receive Bypass Flow from:                                                                             | No Bypass Flow Received  | No Bypass Flow Received  | No Bypass Flow Received               | No Bypass Flow Received  |
| linor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                      | 0.0                      | 0.0                      | 0.0                                   | 0.0                      |
| Aajor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                      | 0.0                      | 0.0                      | 0.0                                   | 0.0                      |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type                                     |                          |                          |                                       |                          |
| Vatershed Profile                                                                                     |                          |                          |                                       |                          |
| Overland Slope (ft/ft)                                                                                |                          |                          |                                       |                          |
| Overland Length (ft)                                                                                  |                          |                          |                                       |                          |
| Channel Slope (ft/ft)                                                                                 |                          |                          |                                       |                          |
| Channel Length (ft)                                                                                   |                          |                          |                                       |                          |
| linor Storm Rainfall Input                                                                            |                          |                          | · · · · · · · · · · · · · · · · · · · |                          |
|                                                                                                       |                          |                          |                                       |                          |
| Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                          |                                       |                          |
| Design Storm Return Period, T <sub>r</sub> (years)<br>Dne-Hour Precipitation, P <sub>1</sub> (inches) |                          |                          |                                       |                          |
|                                                                                                       |                          |                          |                                       |                          |
| Dne-Hour Precipitation, P <sub>1</sub> (inches)                                                       |                          |                          |                                       |                          |

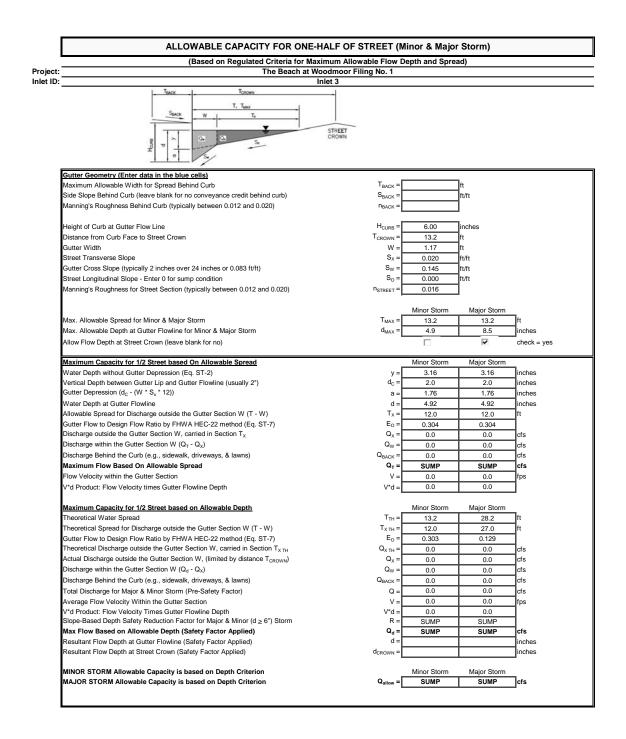
#### CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs)                | 2.8 | 1.6 | 1.3 | 2.4 |
|------------------------------------------------------|-----|-----|-----|-----|
| Major Total Design Peak Flow, Q (cfs)                | 7.6 | 4.4 | 3.9 | 7.5 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.0 | 0.0 | N/A | N/A |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.0 | 0.0 | N/A | N/A |

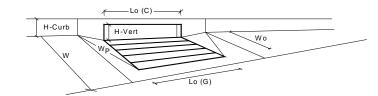



### INLET ON A CONTINUOUS GRADE

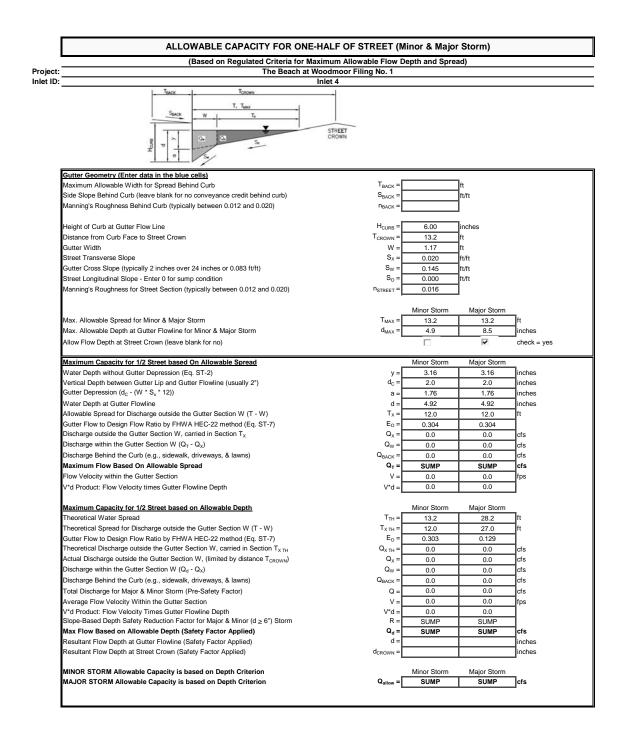



| Design Information (Input)                                                                         |                              | MINOR      | MAJOR        |            |
|----------------------------------------------------------------------------------------------------|------------------------------|------------|--------------|------------|
| Type of Inlet                                                                                      | Type =                       |            | Curb Opening | <b>п</b>   |
| Local Depression (additional to continuous gutter depression 'a')                                  |                              | 3.0        | 3.0          | inches     |
| Total Number of Units in the Inlet (Grate or Curb Opening)                                         | a <sub>LOCAL</sub> =<br>No = | 1          | 1            | inches     |
| Length of a Single Unit Inlet (Grate or Curb Opening)                                              | L <sub>o</sub> =             | 15.00      | 15.00        | ft         |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                                     | W <sub>o</sub> =             | N/A        | N/A          | ft         |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)                                 | C <sub>f</sub> -G =          | N/A        | N/A          | -"         |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.5)                          | C <sub>f</sub> -C =          | 0.10       | 0.10         | -          |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                                             | 0f-0 =                       | MINOR      | MAJOR        |            |
| Design Discharge for Half of Street (from Sheet Inlet Management)                                  | Q <sub>0</sub> =             | 2.8        | 7.6          | cfs        |
| Water Spread Width                                                                                 | <b>u</b> ₀ =<br>⊤ =          | 7.2        | 11.3         | ft         |
| Water Depth at Flowline (outside of local depression)                                              | d =                          | 3.5        | 4.5          | inches     |
| Water Depth at Street Crown (or at $T_{MAX}$ )                                                     | d <sub>CROWN</sub> =         | 0.0        | 0.0          | inches     |
| Ratio of Gutter Flow to Design Flow                                                                | E <sub>o</sub> =             | 0.566      | 0.360        |            |
| Discharge outside the Gutter Section W, carried in Section T <sub>x</sub>                          | Q <sub>x</sub> =             | 1.2        | 4.9          | cfs        |
| Discharge within the Gutter Section W                                                              | Q <sub>w</sub> =             | 1.6        | 2.7          | cfs        |
| Discharge Behind the Curb Face                                                                     | Q <sub>BACK</sub> =          | 0.0        | 0.0          | cfs        |
| Flow Area within the Gutter Section W                                                              | A <sub>W</sub> =             | 0.24       | 0.34         | sq ft      |
| Velocity within the Gutter Section W                                                               | Aw =<br>Vw =                 | 6.6        | 8.2          | fps        |
| Water Depth for Design Condition                                                                   | d <sub>LOCAL</sub> =         | 6.5        | 7.5          | inches     |
| Grate Analysis (Calculated)                                                                        | ULOCAL =                     | MINOR      | MAJOR        | incries    |
|                                                                                                    | . г                          | N/A        | N/A          | ft         |
| Total Length of Inlet Grate Opening                                                                | _ L=                         | N/A<br>N/A | N/A          | - "        |
| Ratio of Grate Flow to Design Flow                                                                 | E <sub>o-GRATE</sub> =       | MINOR      |              | _          |
| Under No-Clogging Condition                                                                        | V E                          | -          | MAJOR        | <b>1</b> 4 |
| Minimum Velocity Where Grate Splash-Over Begins                                                    | V <sub>o</sub> =             | N/A        | N/A          | fps        |
| Interception Rate of Frontal Flow                                                                  | R <sub>f</sub> =             | N/A        | N/A          | -          |
| Interception Rate of Side Flow                                                                     | R <sub>x</sub> =             | N/A        | N/A          | - <i>.</i> |
| Interception Capacity                                                                              | Q <sub>i</sub> =             | N/A        | N/A          | cfs        |
| Under Clogging Condition                                                                           | <b>.</b>                     | MINOR      | MAJOR        | 7          |
| Clogging Coefficient for Multiple-unit Grate Inlet                                                 | GrateCoef =                  | N/A        | N/A          | -          |
| Clogging Factor for Multiple-unit Grate Inlet                                                      | GrateClog =                  | N/A        | N/A          | -          |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                                          | L <sub>e</sub> =             | N/A        | N/A          | ft         |
| Minimum Velocity Where Grate Splash-Over Begins                                                    | V <sub>o</sub> =             | N/A        | N/A          | fps        |
| Interception Rate of Frontal Flow                                                                  | R <sub>f</sub> =             | N/A        | N/A          | -          |
| Interception Rate of Side Flow                                                                     | R <sub>x</sub> =             | N/A        | N/A          | -          |
| Actual Interception Capacity                                                                       | Q <sub>a</sub> =             | N/A        | N/A          | cfs        |
| Carry-Over Flow = Q <sub>o</sub> -Q <sub>a</sub> (to be applied to curb opening or next d/s inlet) | Q <sub>b</sub> =             | N/A        | N/A          | cfs        |
| Curb or Slotted Inlet Opening Analysis (Calculated)                                                |                              | MINOR      | MAJOR        | -          |
| Equivalent Slope S <sub>e</sub> (based on grate carry-over)                                        | S <sub>e</sub> =             | 0.212      | 0.142        | ft/ft      |
| Required Length $L_T$ to Have 100% Interception                                                    | L <sub>T</sub> =             | 7.29       | 14.57        | ft         |
| Under No-Clogging Condition                                                                        | -                            | MINOR      | MAJOR        | -, I       |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )                           | L =                          | 7.29       | 14.57        | ft         |
| Interception Capacity                                                                              | Q <sub>i</sub> =             | 2.8        | 7.6          | cfs        |
| Under Clogging Condition                                                                           |                              | MINOR      | MAJOR        | _          |
| Clogging Coefficient                                                                               | CurbCoef =                   | 1.31       | 1.31         | _          |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                                    | CurbClog =                   | 0.04       | 0.04         |            |
| Effective (Unclogged) Length                                                                       | L <sub>e</sub> =             | 13.03      | 13.03        | ft         |
| Actual Interception Capacity                                                                       | Q <sub>a</sub> =             | 2.8        | 7.6          | cfs        |
| Carry-Over Flow = Q <sub>b(GRATE)</sub> -Q <sub>a</sub>                                            | Q <sub>b</sub> =             | 0.0        | 0.0          | cfs        |
| Summary                                                                                            |                              | MINOR      | MAJOR        |            |
| Total Inlet Interception Capacity                                                                  | Q =                          | 2.8        | 7.6          | cfs        |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                                 | Q <sub>b</sub> =             | 0.0        | 0.0          | cfs        |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                                              | C% =                         | 100        | 100          | %          |

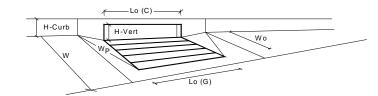



### INLET ON A CONTINUOUS GRADE

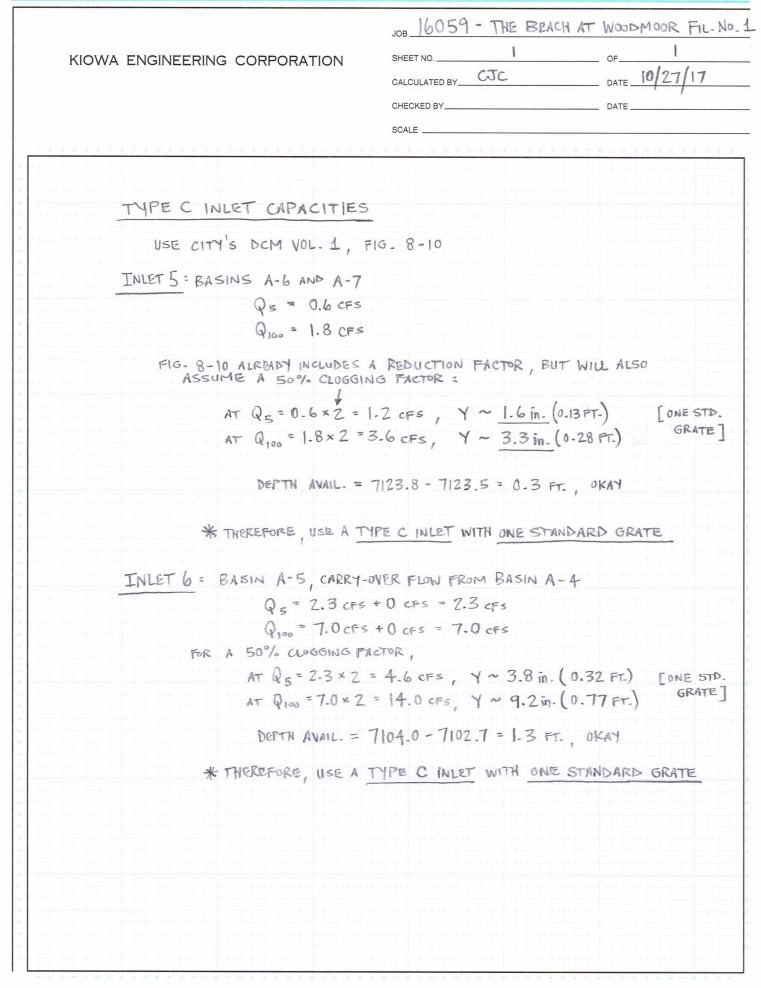



| Design Information (Input)                                                                                                         |                                             | MINOR         | MAJOR         |             |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|---------------|-------------|
| Type of Inlet                                                                                                                      | Type =                                      |               | Curb Opening  | ٦           |
| Local Depression (additional to continuous gutter depression 'a')                                                                  |                                             | 3.0           | 3.0           | inches      |
| Total Number of Units in the Inlet (Grate or Curb Opening)                                                                         | a <sub>LOCAL</sub> =<br>No =                | 1             | 1             | lincines    |
| Length of a Single Unit Inlet (Grate or Curb Opening)                                                                              | L <sub>0</sub> =                            | 10.00         | 10.00         | ft          |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                                                                     | W <sub>0</sub> =                            | N/A           | N/A           | ft          |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)                                                                 | C <sub>f</sub> -G =                         | N/A           | N/A           | -"          |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.0)                                                          | C <sub>f</sub> -C =                         | 0.10          | 0.10          | -           |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                                                                             | 0; 0 =                                      | MINOR         | MAJOR         |             |
| Design Discharge for Half of Street (from Sheet Inlet Management)                                                                  | Q., =                                       | 1.6           | 4.4           | cfs         |
| Water Spread Width                                                                                                                 | ч. –<br>Т =                                 | 5.3           | 8.9           | ft          |
| Water Depth at Flowline (outside of local depression)                                                                              | d =                                         | 3.0           | 3.9           | inches      |
| Water Depth at Street Crown (or at $T_{MAX}$ )                                                                                     | d <sub>CROWN</sub> =                        | 0.0           | 0.0           | inches      |
| Ratio of Gutter Flow to Design Flow                                                                                                | E <sub>o</sub> =                            | 0.719         | 0.462         |             |
| Discharge outside the Gutter Section W, carried in Section $T_x$                                                                   | Q <sub>x</sub> =                            | 0.5           | 2.4           | cfs         |
| Discharge within the Gutter Section W                                                                                              | Q <sub>w</sub> =                            | 1.2           | 2.0           | cfs         |
| Discharge Behind the Curb Face                                                                                                     | Q <sub>BACK</sub> =                         | 0.0           | 0.0           | cfs         |
| Flow Area within the Gutter Section W                                                                                              | A <sub>W</sub> =                            | 0.20          | 0.28          | sq ft       |
| Velocity within the Gutter Section W                                                                                               | V <sub>W</sub> =                            | 5.9           | 7.3           | fps         |
| Water Depth for Design Condition                                                                                                   | d <sub>LOCAL</sub> =                        | 6.0           | 6.9           | inches      |
| Grate Analysis (Calculated)                                                                                                        | GLOCAL -                                    | MINOR         | MAJOR         | indico      |
| Total Length of Inlet Grate Opening                                                                                                | L =                                         | N/A           | N/A           | ft          |
| Ratio of Grate Flow to Design Flow                                                                                                 | E =<br>E <sub>o-GRATE</sub> =               | N/A<br>N/A    | N/A           | - "         |
| Under No-Clogging Condition                                                                                                        | -o-GRATE                                    | MINOR         | MAJOR         | _           |
| Minimum Velocity Where Grate Splash-Over Begins                                                                                    | V <sub>o</sub> =                            | N/A           | N/A           | foo         |
|                                                                                                                                    |                                             | N/A<br>N/A    | N/A<br>N/A    | fps         |
| Interception Rate of Frontal Flow                                                                                                  | R <sub>f</sub> =                            | N/A<br>N/A    | N/A<br>N/A    | -           |
| Interception Rate of Side Flow<br>Interception Capacity                                                                            | R <sub>x</sub> =<br>Q <sub>i</sub> =        | N/A<br>N/A    | N/A<br>N/A    | cfs         |
| Under Clogging Condition                                                                                                           | Q; =                                        | MINOR         | MAJOR         | LIS         |
| Clogging Coefficient for Multiple-unit Grate Inlet                                                                                 | GrateCoef =                                 | N/A           | N/A           | ٦           |
| Clogging Eactor for Multiple-unit Grate Inlet                                                                                      | GrateClog =                                 | N/A<br>N/A    | N/A<br>N/A    | -           |
|                                                                                                                                    |                                             | N/A<br>N/A    | N/A<br>N/A    | ft          |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                                                                          |                                             | -             |               | -           |
| Minimum Velocity Where Grate Splash-Over Begins                                                                                    | V <sub>0</sub> =                            | N/A<br>N/A    | N/A<br>N/A    | fps         |
| Interception Rate of Frontal Flow                                                                                                  | R <sub>f</sub> =                            | N/A<br>N/A    | N/A<br>N/A    | -           |
| Interception Rate of Side Flow                                                                                                     | R <sub>x</sub> =<br><b>Q</b> <sub>a</sub> = | N/A<br>N/A    | N/A<br>N/A    | cfs         |
| Actual Interception Capacity<br>Carry-Over Flow = Q <sub>0</sub> -Q <sub>a</sub> (to be applied to curb opening or next d/s inlet) |                                             | N/A<br>N/A    | N/A<br>N/A    | cfs         |
| Curb or Slotted Inlet Opening Analysis (Calculated)                                                                                | Q <sub>b</sub> =                            | MINOR         | MAJOR         | cis         |
| Equivalent Slope S <sub>e</sub> (based on grate carry-over)                                                                        | S <sub>e</sub> =                            | 0.263         | 0.176         | ft/ft       |
| Required Length $L_T$ to Have 100% Interception                                                                                    |                                             |               |               | ft          |
| Under No-Clogging Condition                                                                                                        | L <sub>T</sub> =                            | 4.95<br>MINOR | 9.98<br>MAJOR | _I''        |
|                                                                                                                                    | . г                                         | 4.95          | 9.98          | ft          |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, L <sub>T</sub> )                                                  | L =                                         |               |               | -           |
| Interception Capacity                                                                                                              | $Q_i =$                                     | 1.6           | 4.4           | cfs         |
| Under Clogging Condition                                                                                                           | F                                           | MINOR         | MAJOR         | - I         |
| Clogging Coefficient                                                                                                               | CurbCoef =                                  | 1.25          | 1.25          | -           |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                                                                    | CurbClog =                                  | 0.06          | 0.06          | <b>-</b> [. |
| Effective (Unclogged) Length                                                                                                       | L <sub>e</sub> =                            | 8.75          | 8.75          | ft          |
| Actual Interception Capacity                                                                                                       | Q <sub>a</sub> =                            | 1.6           | 4.4           | cfs         |
| Carry-Over Flow = Q <sub>b(GRATE)</sub> -Q <sub>a</sub>                                                                            | Q <sub>b</sub> =                            | 0.0           | 0.0           | cfs         |
| Summary                                                                                                                            |                                             | MINOR         | MAJOR         | ٦.          |
| Total Inlet Interception Capacity                                                                                                  | Q=                                          | 1.6           | 4.4           | cfs         |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                                                                 | Q <sub>b</sub> =                            | 0.0           | 0.0           | cfs         |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                                                                              | C% =                                        | 100           | 100           | %           |




### INLET IN A SUMP OR SAG LOCATION




| Design Information (Input)                                                                                                                       |                                              | 1                                             | MINOR       | MAJOR          |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------|----------------|-----------------|
| Type of Inlet                                                                                                                                    | CDOT Type R Curb Opening                     | Type =                                        | CDOT Type F | R Curb Opening |                 |
| Local Depression (additional to cont                                                                                                             | inuous gutter depression 'a' from 'Q-Allow') | a <sub>local</sub> =                          | 3.00        | 3.00           | inches          |
| Number of Unit Inlets (Grate or Curl                                                                                                             | Opening)                                     | No =                                          | 1           | 1              |                 |
| Water Depth at Flowline (outside of                                                                                                              | local depression)                            | Ponding Depth =                               | 4.9         | 8.5            | inches          |
| Grate Information                                                                                                                                |                                              | -                                             | MINOR       | MAJOR          | Override Depths |
| Length of a Unit Grate                                                                                                                           |                                              | L <sub>o</sub> (G) =                          | N/A         | N/A            | feet            |
| Width of a Unit Grate                                                                                                                            |                                              | W <sub>o</sub> =                              | N/A         | N/A            | feet            |
| Area Opening Ratio for a Grate (typ                                                                                                              | ical values 0.15-0.90)                       | A <sub>ratio</sub> =                          | N/A         | N/A            |                 |
| Clogging Factor for a Single Grate (                                                                                                             | typical value 0.50 - 0.70)                   | $C_{f}(G) =$                                  | N/A         | N/A            |                 |
| Grate Weir Coefficient (typical value                                                                                                            | 2.15 - 3.60)                                 | C <sub>w</sub> (G) =                          | N/A         | N/A            |                 |
| Grate Orifice Coefficient (typical va                                                                                                            | ue 0.60 - 0.80)                              | C <sub>0</sub> (G) =                          | N/A         | N/A            |                 |
| Curb Opening Information                                                                                                                         |                                              | -                                             | MINOR       | MAJOR          |                 |
| Length of a Unit Curb Opening                                                                                                                    |                                              | $L_o(C) =$                                    | 5.00        | 5.00           | feet            |
| Height of Vertical Curb Opening in I                                                                                                             | nches                                        | H <sub>vert</sub> =                           | 6.00        | 6.00           | inches          |
| Height of Curb Orifice Throat in Incl                                                                                                            | ies                                          | H <sub>throat</sub> =                         | 6.00        | 6.00           | inches          |
| Angle of Throat (see USDCM Figure                                                                                                                | e ST-5)                                      | Theta =                                       | 63.40       | 63.40          | degrees         |
| Side Width for Depression Pan (typi                                                                                                              | cally the gutter width of 2 feet)            | W <sub>p</sub> =                              | 1.17        | 1.17           | feet            |
| Clogging Factor for a Single Curb C                                                                                                              | pening (typical value 0.10)                  | $C_{f}(C) =$                                  | 0.10        | 0.10           | -               |
| Curb Opening Weir Coefficient (typi                                                                                                              |                                              | C <sub>w</sub> (C) =                          | 3.60        | 3.60           | 1               |
| Curb Opening Orifice Coefficient (ty                                                                                                             |                                              | C <sub>0</sub> (C) =                          | 0.67        | 0.67           | 1               |
| Grate Flow Analysis (Calculated)                                                                                                                 |                                              | /                                             | MINOR       | MAJOR          |                 |
| Clogging Coefficient for Multiple Un                                                                                                             | its                                          | Coef =                                        | N/A         | N/A            | ٦               |
| Clogging Factor for Multiple Units                                                                                                               |                                              | Clog =                                        | N/A         | N/A            | -               |
| Grate Capacity as a Weir (based o                                                                                                                | on Modified HEC22 Method)                    | - F                                           | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                    |                                              | Q <sub>wi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>wa</sub> =                             | N/A         | N/A            | cfs             |
| Grate Capacity as a Orifice (base                                                                                                                | on Modified HEC22 Method)                    |                                               | MINOR       | MAJOR          | _               |
| Interception without Clogging                                                                                                                    |                                              | Q <sub>oi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>oa</sub> =                             | N/A         | N/A            | cfs             |
| Grate Capacity as Mixed Flow                                                                                                                     |                                              | u .                                           | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                    |                                              | Q <sub>mi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>ma</sub> =                             | N/A         | N/A            | cfs             |
| Resulting Grate Capacity (assum                                                                                                                  | es clogged condition)                        | Q <sub>Grate</sub> =                          | N/A         | N/A            | cfs             |
| Curb Opening Flow Analysis (Cal                                                                                                                  |                                              |                                               | MINOR       | MAJOR          |                 |
| Clogging Coefficient for Multiple Un                                                                                                             |                                              | Coef =                                        | 1.00        | 1.00           |                 |
| Clogging Factor for Multiple Units                                                                                                               |                                              | Clog =                                        | 0.10        | 0.10           |                 |
| Curb Opening as a Weir (based o                                                                                                                  | n Modified HEC22 Method)                     |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                    |                                              | Q <sub>wi</sub> =                             | 3.0         | 10.2           | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>wa</sub> =                             | 2.7         | 9.1            | cfs             |
| Curb Opening as an Orifice (base                                                                                                                 | d on Modified HEC22 Method)                  |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                    | · · · · ·                                    | Q <sub>oi</sub> =                             | 8.9         | 11.5           | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>oa</sub> =                             | 8.0         | 10.4           | cfs             |
| Curb Opening Capacity as Mixed                                                                                                                   | Flow                                         |                                               | MINOR       | MAJOR          | -               |
| Interception without Clogging                                                                                                                    |                                              | Q <sub>mi</sub> =                             | 4.8         | 10.1           | cfs             |
| Interception with Clogging                                                                                                                       |                                              | Q <sub>ma</sub> =                             | 4.3         | 9.1            | cfs             |
| Resulting Curb Opening Capacity                                                                                                                  | (assumes clogged condition)                  | Q <sub>Curb</sub> =                           | 2.7         | 9.1            | cfs             |
| Resultant Street Conditions                                                                                                                      |                                              | Curb                                          | MINOR       | MAJOR          | 1               |
| Total Inlet Length                                                                                                                               |                                              | L =                                           | 5.00        | 5.00           | feet            |
| Resultant Street Flow Spread (base                                                                                                               | d on sheet Q-Allow geometry)                 | T =                                           | 13.2        | 28.2           | ft.>T-Crown     |
| Resultant Flow Depth at Street Crov                                                                                                              |                                              | d <sub>CROWN</sub> =                          | 0.0         | 3.6            | inches          |
|                                                                                                                                                  |                                              | - GROWN                                       |             |                |                 |
| Low Head Performance Reductio                                                                                                                    | n (Calculated)                               |                                               | MINOR       | MAJOR          |                 |
| Depth for Grate Midwidth                                                                                                                         |                                              | d <sub>Grate</sub> =                          | N/A         | N/A            | ft              |
|                                                                                                                                                  | ion                                          | d <sub>Curb</sub> =                           | 0.24        | 0.54           | ft              |
| Depth for Curb Opening Weir Equat                                                                                                                |                                              | RF <sub>Combination</sub> =                   | 0.63        | 1.00           | 1               |
|                                                                                                                                                  | uction Factor for Long Inlets                |                                               |             | î              | -1              |
| Combination Inlet Performance Rec                                                                                                                | -                                            | RF <sub>Curb</sub> =                          | 1.00        | 1.00           |                 |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reduct                                                                             | on Factor for Long Inlets                    |                                               | 1.00<br>N/A | 1.00<br>N/A    | -               |
| Depth for Curb Opening Weir Equal<br>Combination Inlet Performance Rec<br>Curb Opening Performance Reducti<br>Grated Inlet Performance Reduction | on Factor for Long Inlets                    | RF <sub>Curb</sub> =<br>RF <sub>Grate</sub> = |             |                | 1               |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reduct                                                                             | on Factor for Long Inlets                    | RF <sub>Grate</sub> =                         |             |                | 1               |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reducti<br>Grated Inlet Performance Reduction                                      | on Factor for Long Inlets                    |                                               | N/A         | N/A            | cfs             |



### INLET IN A SUMP OR SAG LOCATION



| Design Information (Input)                                                                                                                                                       |                                              | 1                                             | MINOR       | MAJOR          |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------|----------------|-----------------|
| Type of Inlet                                                                                                                                                                    | CDOT Type R Curb Opening                     | Type =                                        | CDOT Type F | R Curb Opening |                 |
| Local Depression (additional to cont                                                                                                                                             | inuous gutter depression 'a' from 'Q-Allow') | a <sub>local</sub> =                          | 3.00        | 3.00           | inches          |
| Number of Unit Inlets (Grate or Curl                                                                                                                                             | o Opening)                                   | No =                                          | 1           | 1              |                 |
| Water Depth at Flowline (outside of                                                                                                                                              | local depression)                            | Ponding Depth =                               | 4.9         | 8.5            | inches          |
| Grate Information                                                                                                                                                                |                                              | _                                             | MINOR       | MAJOR          | Override Depths |
| Length of a Unit Grate                                                                                                                                                           |                                              | $L_{o}(G) =$                                  | N/A         | N/A            | feet            |
| Width of a Unit Grate                                                                                                                                                            |                                              | W <sub>o</sub> =                              | N/A         | N/A            | feet            |
| Area Opening Ratio for a Grate (typ                                                                                                                                              | ical values 0.15-0.90)                       | A <sub>ratio</sub> =                          | N/A         | N/A            |                 |
| Clogging Factor for a Single Grate (                                                                                                                                             | typical value 0.50 - 0.70)                   | $C_{f}(G) =$                                  | N/A         | N/A            |                 |
| Grate Weir Coefficient (typical value                                                                                                                                            | e 2.15 - 3.60)                               | C <sub>w</sub> (G) =                          | N/A         | N/A            | -               |
| Grate Orifice Coefficient (typical val                                                                                                                                           | ue 0.60 - 0.80)                              | C <sub>o</sub> (G) =                          | N/A         | N/A            | -               |
| Curb Opening Information                                                                                                                                                         |                                              | -                                             | MINOR       | MAJOR          |                 |
| Length of a Unit Curb Opening                                                                                                                                                    |                                              | $L_{o}(C) =$                                  | 5.00        | 5.00           | feet            |
| Height of Vertical Curb Opening in I                                                                                                                                             | nches                                        | H <sub>vert</sub> =                           | 6.00        | 6.00           | inches          |
| Height of Curb Orifice Throat in Incl                                                                                                                                            | nes                                          | H <sub>throat</sub> =                         | 6.00        | 6.00           | inches          |
| Angle of Throat (see USDCM Figure                                                                                                                                                |                                              | Theta =                                       | 63.40       | 63.40          | degrees         |
| Side Width for Depression Pan (typi                                                                                                                                              | cally the gutter width of 2 feet)            | W <sub>p</sub> =                              | 1.17        | 1.17           | feet            |
| Clogging Factor for a Single Curb C                                                                                                                                              | pening (typical value 0.10)                  | $C_{f}(C) =$                                  | 0.10        | 0.10           | -               |
| Curb Opening Weir Coefficient (typi                                                                                                                                              |                                              | C <sub>w</sub> (C) =                          | 3.60        | 3.60           | -               |
| Curb Opening Orifice Coefficient (ty                                                                                                                                             |                                              | $C_{o}(C) =$                                  | 0.67        | 0.67           | -               |
| Grate Flow Analysis (Calculated)                                                                                                                                                 |                                              | - 0 ( 7)                                      | MINOR       | MAJOR          |                 |
| Clogging Coefficient for Multiple Un                                                                                                                                             | its                                          | Coef =                                        | N/A         | N/A            | ٦               |
| Clogging Factor for Multiple Units                                                                                                                                               |                                              | Clog =                                        | N/A         | N/A            | -               |
| Grate Capacity as a Weir (based o                                                                                                                                                | on Modified HEC22 Method)                    |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                                                    |                                              | Q <sub>wi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>wa</sub> =                             | N/A         | N/A            | cfs             |
| Grate Capacity as a Orifice (base                                                                                                                                                | d on Modified HEC22 Method)                  | No.                                           | MINOR       | MAJOR          | -l              |
| Interception without Clogging                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·        | Q <sub>oi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>oa</sub> =                             | N/A         | N/A            | cfs             |
| Grate Capacity as Mixed Flow                                                                                                                                                     |                                              | u .                                           | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                                                    |                                              | Q <sub>mi</sub> =                             | N/A         | N/A            | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>ma</sub> =                             | N/A         | N/A            | cfs             |
| Resulting Grate Capacity (assum                                                                                                                                                  | es clogged condition)                        | Q <sub>Grate</sub> =                          | N/A         | N/A            | cfs             |
| Curb Opening Flow Analysis (Cal                                                                                                                                                  |                                              | -orace                                        | MINOR       | MAJOR          | 1               |
| Clogging Coefficient for Multiple Un                                                                                                                                             |                                              | Coef =                                        | 1.00        | 1.00           |                 |
| Clogging Factor for Multiple Units                                                                                                                                               |                                              | Clog =                                        | 0.10        | 0.10           | -               |
| Curb Opening as a Weir (based o                                                                                                                                                  | n Modified HEC22 Method)                     |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                                                    | ,                                            | Q <sub>wi</sub> =                             | 3.0         | 10.2           | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>wa</sub> =                             | 2.7         | 9.1            | cfs             |
| Curb Opening as an Orifice (base                                                                                                                                                 | d on Modified HEC22 Method)                  |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                                                    | ······································       | Q <sub>oi</sub> =                             | 8.9         | 11.5           | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>oa</sub> =                             | 8.0         | 10.4           | cfs             |
| Curb Opening Capacity as Mixed                                                                                                                                                   | Flow                                         |                                               | MINOR       | MAJOR          |                 |
| Interception without Clogging                                                                                                                                                    |                                              | Q <sub>mi</sub> =                             | 4.8         | 10.1           | cfs             |
| Interception with Clogging                                                                                                                                                       |                                              | Q <sub>ma</sub> =                             | 4.3         | 9.1            | cfs             |
| Resulting Curb Opening Capacity                                                                                                                                                  | (assumes clogged condition)                  | Q <sub>Curb</sub> =                           | 2.7         | 9.1            | cfs             |
| Resultant Street Conditions                                                                                                                                                      |                                              | -Curb -                                       | MINOR       | MAJOR          | 1               |
| Total Inlet Length                                                                                                                                                               |                                              | L =                                           | 5.00        | 5.00           | feet            |
| Resultant Street Flow Spread (base                                                                                                                                               | d on sheet Q-Allow geometry)                 | С-<br>Т=                                      | 13.2        | 28.2           | ft.>T-Crown     |
| Resultant Flow Depth at Street Crov                                                                                                                                              |                                              | d <sub>CROWN</sub> =                          | 0.0         | 3.6            | inches          |
| Contract of the second second                                                                                                                                                    |                                              | -GROWN -                                      | 0.0         | 1 0.0          |                 |
| Low Head Performance Reductio                                                                                                                                                    | n (Calculated)                               |                                               | MINOR       | MAJOR          |                 |
| Depth for Grate Midwidth                                                                                                                                                         |                                              | d <sub>Grate</sub> =                          | N/A         | N/A            | ft              |
|                                                                                                                                                                                  | ion                                          | d <sub>Curb</sub> =                           | 0.24        | 0.54           | ft              |
| Depth for Curb Opening Weir Equat                                                                                                                                                |                                              | RF <sub>Combination</sub> =                   | 0.63        | 1.00           | 7               |
|                                                                                                                                                                                  | luction Factor for Long Inlets               |                                               |             |                | -               |
| Combination Inlet Performance Rec                                                                                                                                                | -                                            |                                               | 1.00        | 1.00           |                 |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reduct                                                                                                             | on Factor for Long Inlets                    | RF <sub>Curb</sub> =                          | 1.00<br>N/A | 1.00<br>N/A    | -               |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reduct                                                                                                             | on Factor for Long Inlets                    |                                               |             |                | -               |
| Combination Inlet Performance Rec<br>Curb Opening Performance Reduct                                                                                                             | on Factor for Long Inlets                    | RF <sub>Curb</sub> =<br>RF <sub>Grate</sub> = |             |                |                 |
| Depth for Curb Opening Weir Equal<br>Combination Inlet Performance Red<br>Curb Opening Performance Reduct<br>Grated Inlet Performance Reduction<br>Total Inlet Interception Capa | on Factor for Long Inlets                    | RF <sub>Curb</sub> =                          | N/A         | N/A            |                 |



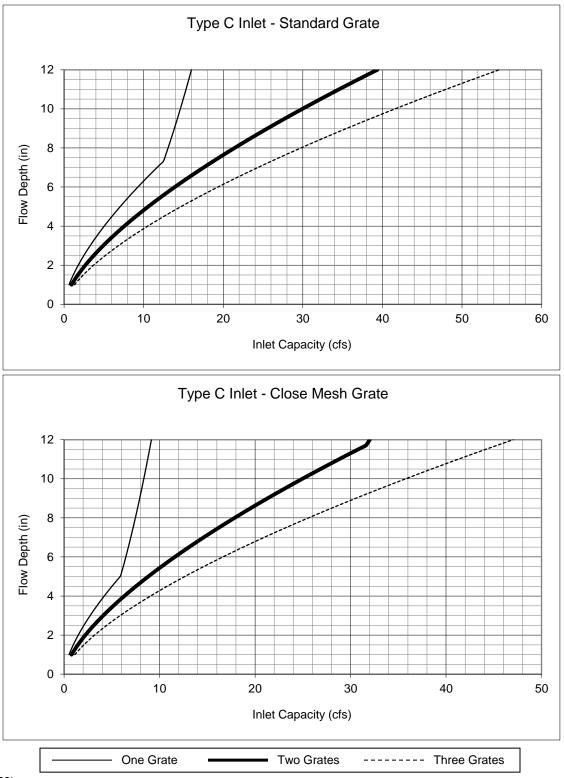



Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

#### Notes:

1. The standard inlet parameters must apply to use these charts.

### The Beach at Woodmoor Filing No. 1 **Pipe Diameter Calculations**

| Pipe #  | 100yr<br>Flow | Design<br>Flow | Contributing Flows | Manning<br>'n' | Pipe<br>Slope | Calculated Pipe<br>Diameter | Pipe<br>Diameter | Minimum<br>Slope of<br>Pipe | Full Pipe<br>Flow<br>Velocity | Head above<br>Pipe<br>Flowline | Н      | Pipe Inlet<br>Control<br>Capacity | Mannings<br>Pipe Capacity | Capacity<br>Check |
|---------|---------------|----------------|--------------------|----------------|---------------|-----------------------------|------------------|-----------------------------|-------------------------------|--------------------------------|--------|-----------------------------------|---------------------------|-------------------|
| S1      | 7.6 cfs       | 7.6 cfs        | Basin A3           | 0.013          | 1.0%          | 16-inch                     | 18-inch          | 0.52%                       | 6.0 ft/sec                    | 2.2 ft                         | 1.5 ft | 11.1 cfs                          | 10.5 cfs                  | ОК                |
| S2      | 11.5 cfs      | 11.5 cfs       | DP 4               | 0.013          | 0.5%          | 21-inch                     | 24-inch          | 0.26%                       | 5.1 ft/sec                    | 2.5 ft                         | 1.5 ft | 20.1 cfs                          | 16.0 cfs                  | ОК                |
| S3      | 18.4 cfs      | 18.4 cfs       | DP 6               | 0.013          | 1.0%          | 22-inch                     | 24-inch          | 0.66%                       | 7.2 ft/sec                    | 5.8 ft                         | 4.8 ft | 35.9 cfs                          | 22.7 cfs                  | ОК                |
| S4      | 19.9 cfs      | 19.9 cfs       | DP 12              | 0.013          | 1.0%          | 23-inch                     | 24-inch          | 0.78%                       | 7.2 ft/sec                    | 2.5 ft                         | 1.5 ft | 20.1 cfs                          | 22.7 cfs                  | ОК                |
| S4A     | 2.4 cfs       | 2.4 cfs        | DP 11              | 0.013          | 1.0%          | 10-inch                     | 18-inch          | 0.05%                       | 6.0 ft/sec                    | 3.5 ft                         | 2.8 ft | 15.3 cfs                          | 10.5 cfs                  | ОК                |
| S5      | 0.3 cfs       | 0.3 cfs        | Basin A6           | 0.013          | 1.0%          | 5-inch                      | 18-inch          | 0.00%                       | 6.0 ft/sec                    | 3.5 ft                         | 2.8 ft | 15.3 cfs                          | 10.5 cfs                  | ОК                |
| S6      | 26.6 cfs      | 26.6 cfs       | Basin OS-4         | 0.013          | 1.0%          | 26-inch                     | 30-inch          | 0.42%                       | 8.4 ft/sec                    | 3.5 ft                         | 2.3 ft | 38.4 cfs                          | 41.1 cfs                  | ОК                |
| S7      | 26.6 cfs      | 26.6 cfs       | Basin OS-4         | 0.013          | 1.4%          | 24-inch                     | 24-inch          | 1.39%                       | 8.5 ft/sec                    | 3.7 ft                         | 2.7 ft | 26.9 cfs                          | 26.8 cfs                  | ОК                |
| S8      | 27.8 cfs      | 27.8 cfs       | Basin OS-5         | 0.013          | 2.8%          | 21-inch                     | 24-inch          | 1.51%                       | 12.0 ft/sec                   | 3.9 ft                         | 2.9 ft | 27.9 cfs                          | 37.8 cfs                  | ОК                |
| S9      | 28.5 cfs      | 28.5 cfs       | DP 8               | 0.013          | 1.4%          | 25-inch                     | 30-inch          | 0.48%                       | 9.9 ft/sec                    | 3.7 ft                         | 2.5 ft | 40.1 cfs                          | 48.7 cfs                  | ОК                |
| S10     | 55.3 cfs      | 55.3 cfs       | DP 9               | 0.013          | 1.9%          | 30-inch                     | 30-inch          | 1.82%                       | 11.5 ft/sec                   | 9.9 ft                         | 8.7 ft | 75.3 cfs                          | 56.7 cfs                  | ОК                |
| S11     | 1.6 cfs       | 1.6 cfs        | Basin B2           | 0.013          | 1.0%          | 9-inch                      | 18-inch          | 0.02%                       | 6.0 ft/sec                    | 3.0 ft                         | 2.3 ft | 13.8 cfs                          | 10.5 cfs                  | ОК                |
| S12     | 3.9 cfs       | 3.9 cfs        | Basin B4           | 0.013          | 1.0%          | 12-inch                     | 18-inch          | 0.14%                       | 6.0 ft/sec                    | 3.3 ft                         | 2.5 ft | 14.6 cfs                          | 10.5 cfs                  | ОК                |
| S13     | 11.0 cfs      | 11.0 cfs       | DP 14              | 0.013          | 1.2%          | 18-inch                     | 18-inch          | 1.10%                       | 6.5 ft/sec                    | 3.3 ft                         | 2.5 ft | 14.6 cfs                          | 11.5 cfs                  | ОК                |
| S14     | 15.4 cfs      | 15.4 cfs       | DB A               | 0.013          | 1.0%          | 21-inch                     | 24-inch          | 0.46%                       | 7.2 ft/sec                    | 5.0 ft                         | 4.0 ft | 32.8 cfs                          | 22.7 cfs                  | ОК                |
| Ex. 30" | 28.5 cfs      | 28.5 cfs       | DP 8               | 0.013          | 1.8%          | 23-inch                     | 30-inch          | 0.48%                       | 11.2 ft/sec                   | 3.4 ft                         | 2.2 ft | 37.5 cfs                          | 55.2 cfs                  | ОК                |

#### Equations:

Pipe Dia=((2.16Qn)/(S<sup>0.5</sup>))<sup>0.375</sup>

Q = Discharge in cubic feet per second

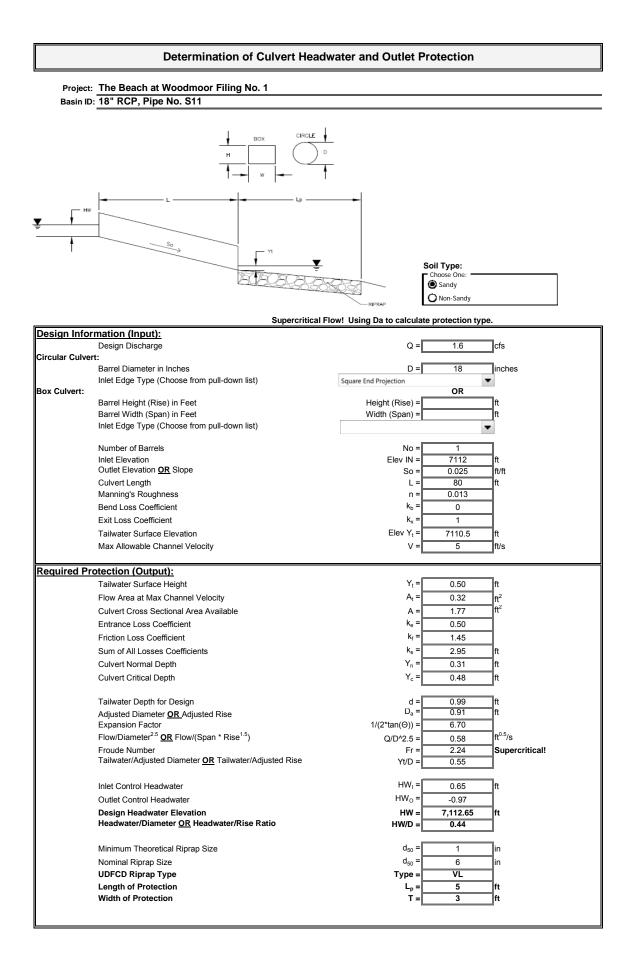
n = Manning's roughness coefficient

RCP=0.013, CMP=0.024, HDPE (smooth)=0.012

- S = Slope of the pipe
- R<sub>h</sub> = Hydraulic Radius

Flow Velocity =  $(1.49/n)R_h^{2/3}S^{1/2}$ Pipe Capacity =  $(1.49/n)AR_h^{2/3}S^{1/2}$  $R_h = A_w / W_p$ A = Cross-sectional area of pipe  $A=p(D^{2}/4)$ D = Inside Diameter of Pipe

 $A_{w} = p(d^{2}/4)$ A<sub>w</sub> = Water Cross Sectional Area d = Water (Flow) Depth Within Pipe  $W_p = pd$  (For Capacity Calculation) W<sub>p</sub>=Wetted Perimeter of Pipe

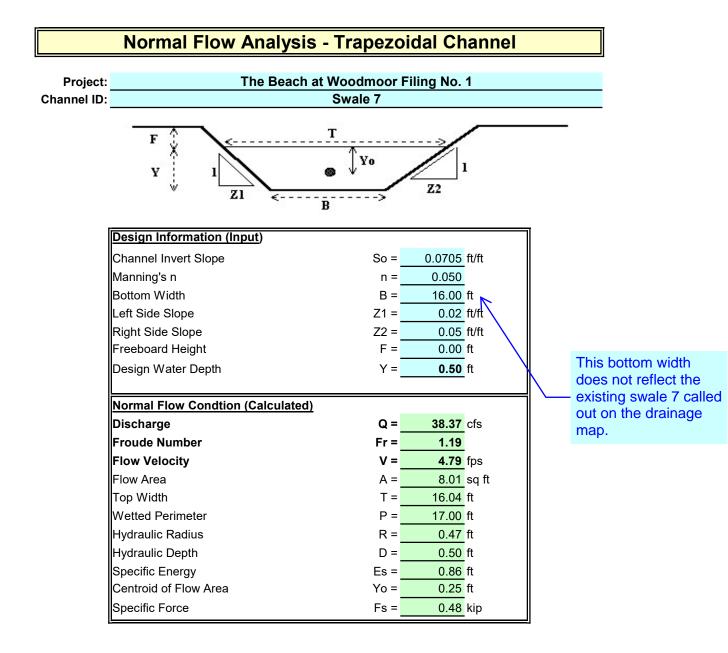

Orifice Equation:

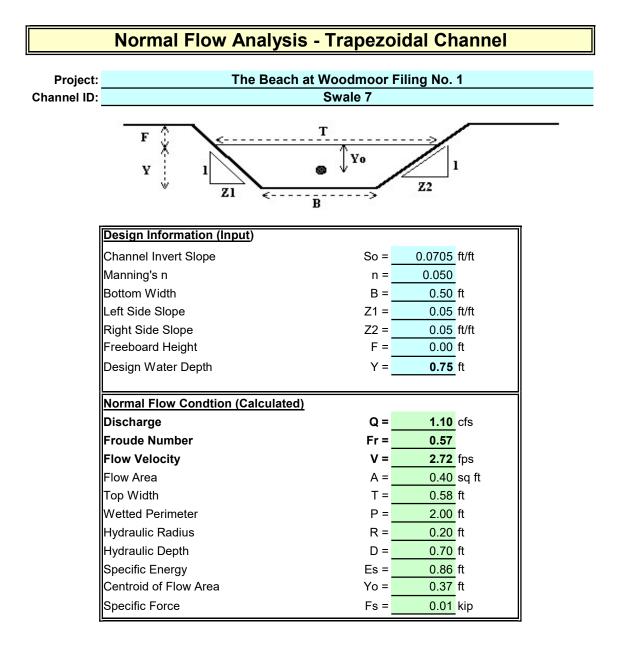
 $Q = CA(2gH)^{0.5}$ 

C = Orifice coefficient (dimensionless)

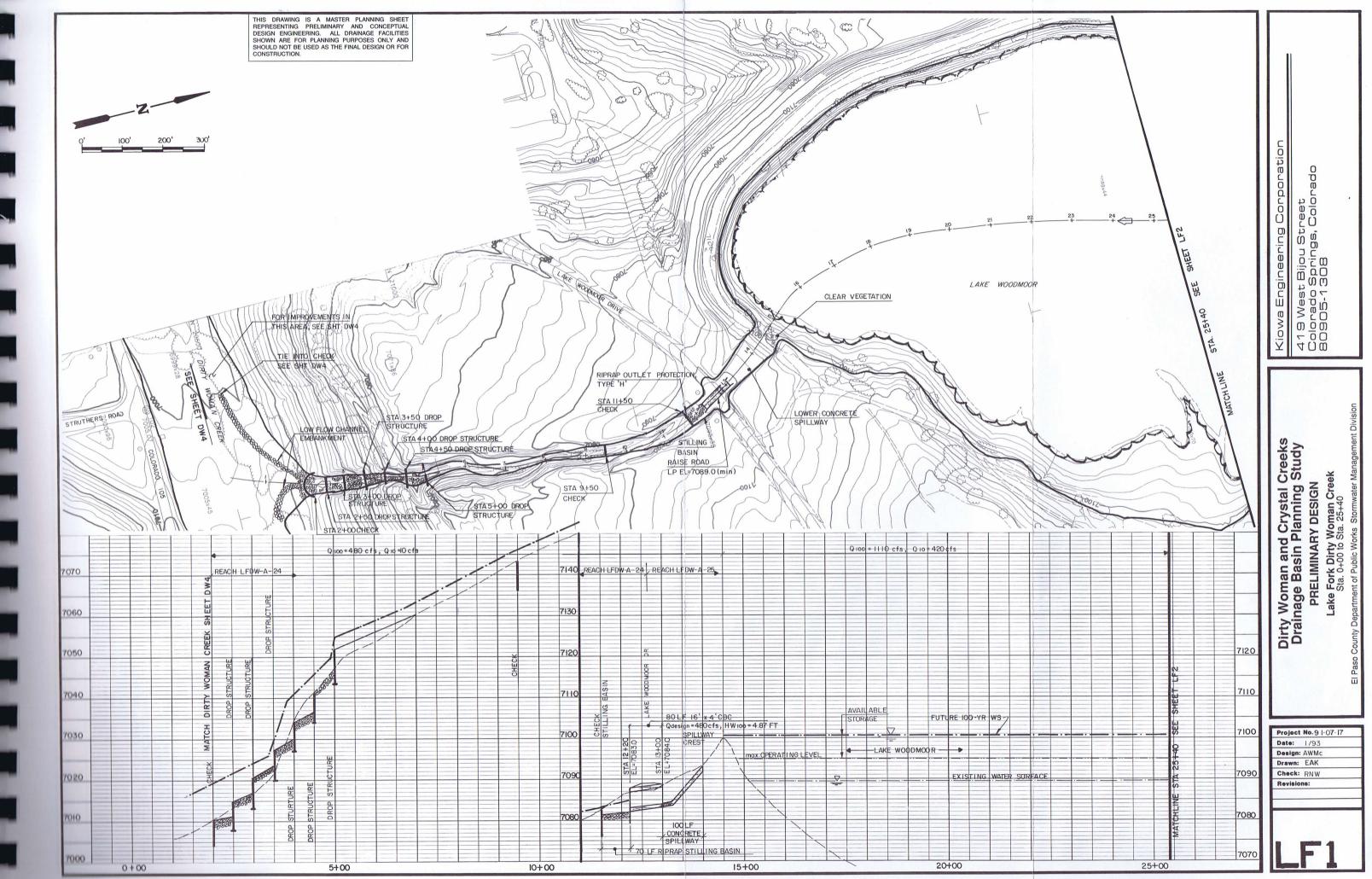
C = 0.65

- A = Cross-sectional area of opening, in sf
- g = Gravitational accel constant, 32.2 ft/sec<sup>2</sup>
- H = Head above centerline of pipe, ft





### The Beach at Woodmoor Filing No. 1 Swale Capacity Calculations

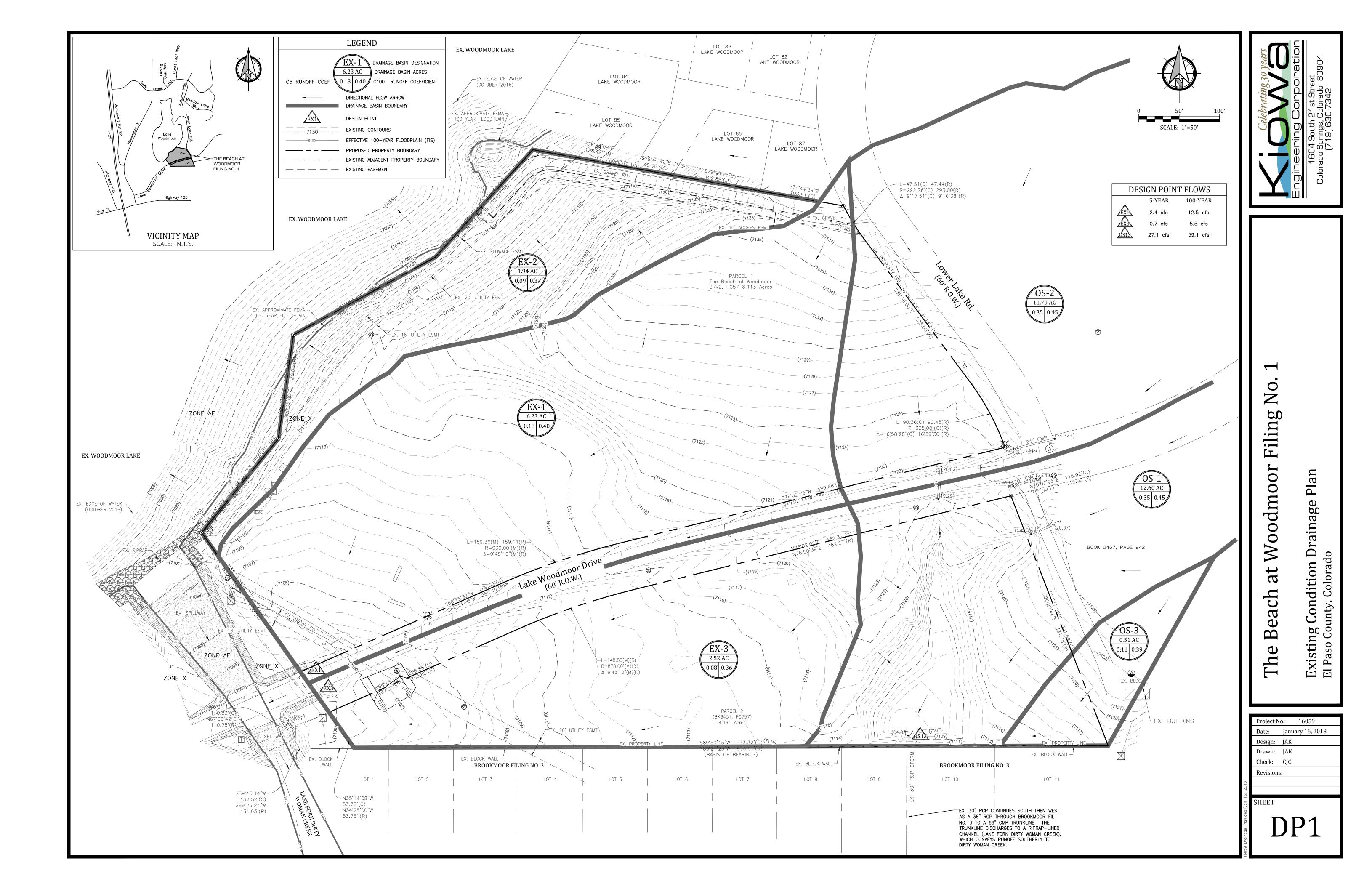
|             |              |         |        | Channel Side |       |         |         |         |        |         |           |           |            | Channel  |        |
|-------------|--------------|---------|--------|--------------|-------|---------|---------|---------|--------|---------|-----------|-----------|------------|----------|--------|
|             |              | Design  | Bottom | Slope        |       | Flow    | Channel | Manning | Тор    | Channel | Wetted    | Hydraulic | Flow       | Flow     | Swale  |
| Description | Design Point | Flow    | Width  | Left         | Right | Depth   | Slope   | "n"     | Width  | Area    | Perimeter | Radius    | Velocity   | Capacity | Lining |
| Swale 1     | A6           | 0.3 cfs | 0.0 ft | 4:1          | 4:1   | 0.20 ft | 7.2%    | 0.035   | 1.6 ft | 0.16 sf | 1.6 ft    | 0.10 ft   | 2.4 ft/sec | 0.4 cfs  | Grass  |
| Swale 3     | A5           | 7.0 cfs | 0.0 ft | 4:1          | 4:1   | 0.70 ft | 3.1%    | 0.035   | 5.6 ft | 1.96 sf | 5.8 ft    | 0.34 ft   | 3.6 ft/sec | 7.2 cfs  | Grass  |
| Swale 5     | B2           | 1.6 cfs | 0.0 ft | 4:1          | 4:1   | 0.42 ft | 2.3%    | 0.035   | 3.4 ft | 0.71 sf | 3.5 ft    | 0.20 ft   | 2.2 ft/sec | 1.6 cfs  | Grass  |
| Swale 6     | 11           | 2.4 cfs | 0.0 ft | 4:1          | 4:1   | 0.46 ft | 3.3%    | 0.035   | 3.7 ft | 0.85 sf | 3.8 ft    | 0.22 ft   | 2.8 ft/sec | 2.4 cfs  | Grass  |

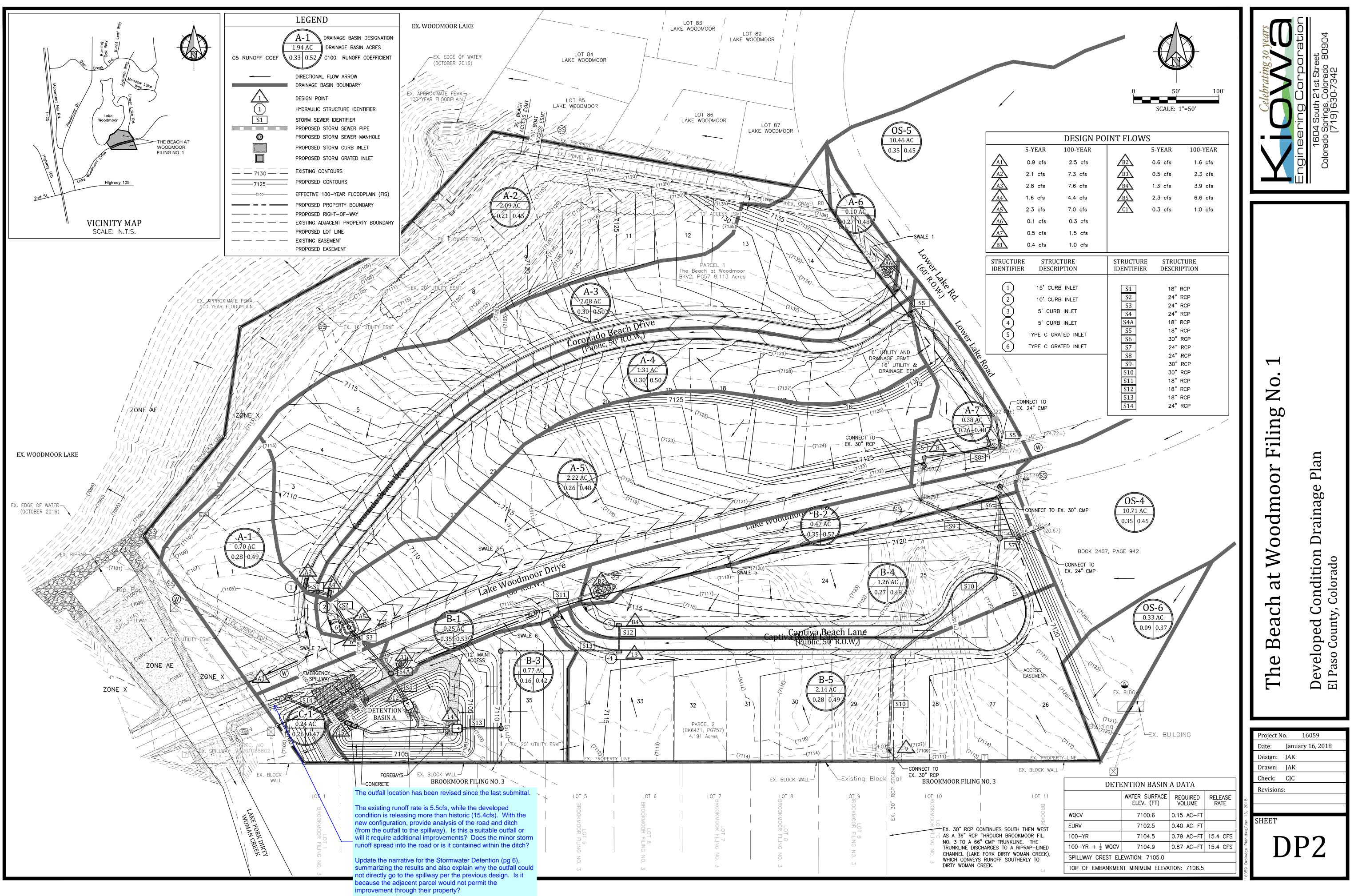

Equations:  $A_{res}(A) = h(d)$ 

Area (A) =  $b(d)+zd^2$ b = width d = depth Perimeter (P) =  $b+2d^*(1+z^2)^{0.5}$ z = side slope Hydraulic Radius = A/P 
$$\begin{split} & \text{Velocity} = (1.49/n) R_n^{2/3} \text{ S}^{1/2} \\ & \text{S} = \text{Slope of the channel} \\ & n = \text{Manning's number} \\ & \text{R}_n = \text{Hydraulic Radius (Reynold's Number)} \\ & \text{Flow} = (1.49/n) \text{A} R_n^{2/3} \text{ S}^{1/2} \end{split}$$






APPENDIX D Referenced Information Excerpt from Dirty Woman and Crystal Creeks Drainage Basin Planning Study




# APPENDIX E

**Existing and Proposed Drainage Plans** 

Sheet DP1 - Existing Condition Drainage Plan Sheet DP2 - Developed Condition Drainage Plan



