final drainage report for LATIGO TRAILS FILING No. 10

AND

AMENDMENT TO MDDP/PRELIMINARY DRAINAGE PLAN FOR LATIGO TRAILS

El Paso County, Colorado

September 2024

PCD FILE NO. SF-21-037

Prepared for:

BRJM, LLC

101 N. Cascade, Suite 200 Colorado Springs, CO 80903 (719) 475-7474

Prepared by:

Drexel, Barrell & Co.

101 Sahwatch Street, #100 Colorado Springs, CO 80903 Contact: Tim McConnell, P.E. (719) 260-0887

TABLE OF CONTENTS

1.0	CERTIFICATION STATEMENTS	III
2.0	PURPOSE	1
3.0	GENERAL SITE DESCRIPTION	1
4.0	MAJOR DRAINAGE BASINS & APPROVED REPORTS	2
5.0	ADDENDUM TO MDDP/PRELIMINARY DRAINAGE PLAN	2
6.0	MAJOR BASIN IMPROVEMENTS	2
7.0	DRAINAGE CRITERIA	3
8.0	EXISTING CONDITION	3
9.0	DEVELOPED CONDITION	7
10.0	PROPOSED FULL-SPECTRUM DETENTION FACILITIES	16
11.0	FOUR-STEP PROCESS	19
12.0	DRAINAGE/BRIDGE FEES	19
13.0	REFERENCES	20

APPENDICES

VICINITY MAP SOILS MAP FLOODPLAIN MAP HYDROLOGY CALCULATIONS HYDRAULIC CALCULATIONS EXCERPTS DRAINAGE MAPS

FINAL DRAINAGE REPORT for LATIGO TRAILS FILING No. 10 & ADDENDUM TO MDDP/PRELIMINARY PLAN LATIGO TRAILS

El Paso County, Colorado

1.0 CERTIFICATION STATEMENTS

ENGINEER'S STATEMENT

Tim D. McConnell, P.E.

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Date

For and on Behalf of Drexel, Barrell & Co.						
<u>DEVELOPER</u>	R'S STATEMENT					
	loper have read and will comply wit port and plan.	h all the requirements specified in this				
Business Na	me: BRJM, LLC					
By:						
Title:	Bob Irwin Owner	Date				
Address:	101 N. Cascade, Suite 200 Colorado Springs, CO 80903					

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.	Date	
County Engineer/ECM Administrator		
CONDITIONS:		

FINAL DRAINAGE REPORT for LATIGO TRAILS FILING No. 10 & ADDENDUM TO MDDP/PRELIMINARY PLAN LATIGO TRAILS

El Paso County, Colorado

2.0 PURPOSE

This report is prepared by Drexel, Barrel & Co in support of the Latigo Trails Filing No. 10 project. The purpose of this report is to identify onsite and offsite drainage patterns, size drainage facilities and to safely route developed storm water runoff to adequate outfall facilities.

3.0 GENERAL SITE DESCRIPTION

Location

The Latigo Trails Development is located within portions of Sections 8,9,16 & 17, Township 12 South, Range 64 West of the 6th Principal Meridian, El Paso County, Colorado. Latigo Trails Filing 10 is bound by Latigo Trails Filing 9 to the west, Latigo Trails Filings 11 & 12 to the north, unplatted land to the east and Falcon Regional Park to the south. A vicinity map is presented in the appendix.

Existing Site Conditions

The overall Latigo Trails Development contains approximately 497 acres and at full build-out will be comprised of 179, 2.5-acre or larger lots. Latigo Trails Filing 10 consists of 125.6 acres and covers 43 proposed lots. Filing No. 10 is currently undeveloped, with open grassland and sparse vegetation covering the ground. Latigo Trails Filings 2, 7, 8 & 9 are currently developed and as studied as part of the 2001 MDDP for Latigo Trails by URS and amended by subsequent drainage reports, will remain unchanged.

The Latigo Trails subdivision as a whole, is split by a major drainage basin boundary. In the ultimate full-build out condition approximately 263 acres will drain to the Gieck Ranch basin, while the remaining 234 acres will drain to the Upper Black Squirrel basin. In general, the Upper Black Squirrel basin drains from southwest to northeast across the site, while the Gieck Ranch basin flows from northwest to southeast. Latigo Trails Filing 10 sits at the southeast corner of the overall development, almost entirely within the Gieck Ranch Basin.

Soils

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Soil Conservation Service, the site is entirely underlain by Stapleton Sandy Loam (Soil No. 83). This soil is type 'B' hydrological soil group. See appendix for map.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panels 08041C0339G and 08041C0552G (December 7, 2018), no portion of Filing 10 lies within a designated 100-year floodplain.

4.0 MAJOR DRAINAGE BASINS & APPROVED REPORTS

As mentioned above, the subdivision as a whole lies within two major drainage basins: the Gieck Ranch Drainage Basin and the Upper Black Squirrel Drainage basins. A Master Development Drainage Plan (MDDP) was approved for Latigo Trails and is titled "Master Development/Preliminary Drainage Plan for Latigo Trails," by URS, dated October 2001; it is referenced and used as a Master Plan for the project.

The following reports have also been reviewed and referenced for the preparation of this report:

"Final Drainage Report for The Trails Filing No. 7 Subdivision," by URS, dated March 07, 2005.

"Final Drainage Report for Latigo Trails Filing No. 9 and Addendum to Master Development/Preliminary Drainage Plan," by JR Engineering, March 29, 2023.

Excerpts from referenced reports are presented in the appendix.

5.0 ADDENDUM TO MDDP/PRELIMINARY DRAINAGE PLAN

For Latigo Trails Filing No. 10, The Master Development/Preliminary Drainage Plan for Latigo Trails, by URS will be amended as follows:

- 1. The potential detention areas shown in the MDDP on the north side of Conestoga Trail are eliminated and instead flows are to be conveyed via roadside ditch and cross culverts to the proposed detention basin G14b (Location corresponds with MDDP Design Point G14b).
- 2. Proposed detention facilities G14b, G18 and G19 have been sized to meet current El Paso County Drainage Criteria. The existing South Pond sizing was established by the Filing 9 FDR/MDD Amendment and has been analyzed to confirm no modifications are necessary as part of this Filing 10 development.

6.0 MAJOR BASIN IMPROVEMENTS

Gieck Ranch Drainage Basin

This report proposes that the drainage system for Filing 10 will be compromised of swales, culverts, and detention ponds. The proposed drainage design is in conformance with the approved "Master Development/Preliminary Drainage Plan for Latigo Trails" report as runoff flows within the Gieck Ranch Basin generally follow the historic drainage pattern to the south and east.

Upper Black Squirrel Basin

A small portion of Filing 10 is currently located within the Upper Black Squirrel Basin. Flows from Basin A28 (NW corner of Lot 43) will follow the historic drainage pattern and discharge to the northwest into future Filing 11 and or 12. This area will be analyzed as an offsite basin in the design for Filings 11 and 12, with flows likely routed to the proposed Black Squirrel pond at the northeast corner of the Latigo Trails subdivision.

7.0 DRAINAGE CRITERIA

The drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual and the current Mile High Flood District Drainage Criteria Manual. Calculations were performed to determine runoff quantities during the 5-year and 100-year frequency storms for historic and developed conditions utilizing the Rational Method.

Mile High Flood District's UD-Detention, Version 4.06 workbook was used for pond sizing, with required detention volumes and allowable release rates designed per El Paso County criteria. Pond sizing spreadsheets are presented in the appendix.

The Federal Highway Administration's HY-8 program (Volume 8) was used to analyze the proposed culverts within the Latigo Trails development. Major cross culverts were sized as to not overtop the road in the 100 year storm event, driveway culverts were sized as to not exceed 6" overtopping of the driveway during the 100-year storm event. Culvert design sheets are presented in the appendix.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for roadside ditch and conveyance ditch design. For the purposes of this FDR/MDDP, the maximum roadside ditch size was determined based on peak 100-year flows and maximum roadway slopes within each basin. Swales were checked for velocity per the EPC DCM Chapter 10, Table 10-4. Swale cross sections with a 100-year velocity greater than 5 ft/ will be lined with turf reinforcing mat and native grasses, or another approved method of stabilization, to limit erosive potential. Swale design sheets are presented in the appendix.

8.0 EXISTING CONDITION

The existing project condition considers the adjacent filings in their current developed condition (2.5-acre residential subdivision). The undeveloped area is covered with native vegetation that consists mostly of grasses as well as some shrubs. The site generally slopes at approximately 1-15% to the east and to the south, where the flows leave the project site onto the adjacent properties. The site lies primarily within the Geick Ranch Drainage Basin, with a very small portion at the northwest corner lying within the Upper Black Squirrel Basin. See Existing Conditions Map in Appendix.

<u>A-group basins</u> represent flows for basins that are part of Filing 10, and offsite developed flows from adjacent filings. <u>B-group basins</u> represent offsite flows for tributary basins that are part of future Filing 12.

RATIONAL METHOD RUNOFF SUMMARY

		Area		
BASIN	DP	(Ac.)	Q₅ (cfs)	Q ₁₀₀ (cfs)
OSA1	OSA1	3.68	3.6	7.9
OSA2	OSA2	92.80	33.1	128.7
OSA3	OSA3	69.15	29.3	113.6
OSA4	OSA4	32.65	16.0	60.5
OSA5	OSA5	11.33	7.3	28.1
A1	1	7.08	1.6	11.8
A2		19.70	4.5	33.3
	2	232.68	73.1	288.2
A3		11.68	2.6	19.3
	3	12.43	2.4	17.6
A4	4	4.24	1.0	7.4
A5		10.58	2.3	17.1
	5	15.37	2.8	20.9
A6	6	7.35	1.7	12.5
A7		13.62	2.5	18.7
	7	20.51	3.8	28.1
A8	8	2.24	0.6	4.2
A9	9	2.16	0.6	4.2
A10	10	8.08	1.7	12.5
A11	11	7.30	1.6	11.8
A12		8.71	1.9	13.8
	12	10.31	2.3	16.8
A13		13.96	3.0	22.0
	13	26.36	4.7	34.7
A14	14	8.24	1.7	12.7
A15		0.61	0.2	1.2
OSA6	OSA6	3.29	10.3	18.5
B1	B1	3.36	8.0	6.0
B2	B2	0.75	0.2	1.3
B3	B3	4.78	1.1	8.2
B4	B4	6.89	1.7	12.5
B5	B5	1.61	0.4	3.2
B6	B6	12.40	2.6	19.3

Basin OSA1 is an offsite basin covering 3.68 acres of Conestoga Trail South to the west of the project site. Flows generated by this basin (Q_5 =3.6 cfs and Q_{100} =7.9 cfs) travel via roadside ditch to the south and east before entering Filing 10 at **Design Point DPOSA1**.

Basin OSA2 is an offsite basin covering 92.80 acres of Filing 9 to the north of Conestoga Trail South. Flows generated by this basin (Q_5 =33.1 cfs and Q_{100} =128.7 cfs) ultimately travel via roadside ditch to the south and east before entering Filing 10 at **Design Point DPOSA2**

Basin OSA3 is an offsite basin covering 69.15 acres of Filing 2-B to the northwest of Filing 10. Flows generated by this basin (Q_5 =29.3 cfs and Q_{100} =113.4 cfs) travel via roadside ditch and cross lot drainage ditch to the southeast before entering Filing 10 at **Design Point DPOSA3**.

Basin OSA4 is an offsite basin covering 32.65 acres of Filing 7-A to the northwest of Filing 10. Flows generated by this basin ($Q_5=16.0$ cfs and $Q_{100}=60.5$ cfs) travel via roadside ditch and cross lot drainage ditch to the southeast before entering Filing 10 at **Design Point DPOSA4**.

Basin OSA5 is an offsite basin covering 11.33 acres of Filing 7-A to the north of Filing 10. Flows generated by this basin (Q_5 =7.3 cfs and Q_{100} =28.1 cfs) travel via roadside ditch and cross lot drainage ditch to the south before entering Filing 10 at **Design Point DPOSA5**.

Existing Basin A1 is located at the southwest corner of the site. Flows generated by this basin ($Q_5=1.6$ cfs and $Q_{100}=11.8$ cfs) are directed southeast to **Design Point DP1** along the southern boundary of Filing 10.

Basin B1 is located at the northwest corner of future Filing 12. Flows generated by this basin (Q_5 =0.8 cfs and Q_{100} =6.0 cfs) are directed south before entering Filing 10 at **Design Point DPB1**.

Existing Basin A2 is located in the southwest portion of the site. Flows generated by this basin (Q_5 =4.5 cfs and Q_{100} =33.3 cfs) combine with those from offsite basins OSA1-OSA5 and B1 and are directed southeast to the existing South Pond at **Design Point DP2**.

Design Point DP2 is located at the bottom of the existing South Pond that was constructued previously and modified with the development of Filing 9. This design point represents the combining of flows of Basins OSA1-OSA5, B1 and A2.

Basin B2 is located along the south edge of future Filing 12. Flows generated by this basin (Q_5 =0.2 cfs and Q_{100} =1.3 cfs) are directed south before entering Filing 10 at **Design Point DPB2**.

Existing Basin A3 is located in the southwest portion of the site, just east of Basin A2. Flows generated by this basin (Q_5 =2.6 cfs and Q_{100} =19.3 cfs) combine with those from Basin B2 and are directed south to **Design Point DP3** along the southern boundary of Filing 10.

Existing Basin A4 is located in the middle portion of the site, along the southern boundary. Flows generated by this basin ($Q_5=1.0$ cfs and $Q_{100}=7.4$ cfs) are directed south to **Design Point DP4**, along the south boundary of Filing 10.

Basin B3 is located in the middle portion of the site. Flows generated by this basin ($Q_5=1.1$ cfs and $Q_{100}=8.2$ cfs) are directed to the south before entering Filing 10 at **Design Point DPB3**.

Existing Basin A5 is located in the middle portion of the site. Flows generated by this basin ($Q_5=2.3$ cfs and $Q_{100}=17.1$ cfs) combine with flows from Basin B3 and are directed south to **Design Point DP5**, along the southern boundary.

Existing Basin A6 is located in the middle portion of the site, along the southern boundary. Flows generated by this basin ($Q_5=1.7$ cfs and $Q_{100}=12.5$ cfs) are directed south to **Design Point DP6**, along the southern boundary.

Basin B4 is located in the middle portion of the future Filing 12 site. Flows generated by this

basin ($Q_5=1.7$ cfs and $Q_{100}=12.8$ cfs) are directed east before entering Filing 10 at **Design Point DPB4.**

Existing Basin A7 is located in the eastern portion of the site, along the southern boundary. Flows generated by this basin (Q_5 =2.5 cfs and Q_{100} =18.7 cfs) combine with those from Basin B4 and are directed south to **Design Point DP7**, along the southern boundary.

Existing Basin A8 is located in the southeast corner of the site, along the southern boundary. Flows generated by this basin (Q_5 =0.6 cfs and Q_{100} =4.2 cfs) are directed south to **Design Point DP8**, along the southern boundary.

Existing Basin A9 is located in the southeast corner of the site, along the eastern boundary. Flows generated by this basin (Q_5 =0.6 cfs and Q_{100} =4.2 cfs) are directed east to **Design Point DP9** before discharging into the roadside ditch along Eastonville Road and continuing south.

Existing Basin A10 is located in the middle portion of the site, along the eastern boundary. Flows generated by this basin (Q_5 =1.7 cfs and Q_{100} =12.5 cfs) are directed east to **Design Point DP10** before discharging into the roadside ditch along Eastonville Road. Flows continue in the roadside ditch until ultimately reaching an existing 30"x42" HECMP cross culvert to the south.

Existing Basin A11 is located in the middle portion of the site, along the eastern boundary. Flows generated by this basin (Q_5 =1.6 cfs and Q_{100} =11.8 cfs) are directed east to **Design Point DP11** before discharging into the roadside ditch along Eastonville Road. Flows continue in the roadside ditch until ultimately reaching an existing 30"x42" HECMP cross culvert to the south.

Basin B5 is located in the middle portion of the future Filing 11 site. Flows generated by this basin (Q_5 =0.4 cfs and Q_{100} =3.2 cfs) are directed east before entering Filing 10 at **Design Point DPB5**.

Existing Basin A12 is located in the middle portion of the site, along the eastern boundary. Flows generated by this basin ($Q_5=1.7$ cfs and $Q_{100}=12.5$ cfs) combine with those from basin B5 and are directed east to **Design Point DP12** before discharging into the roadside ditch along Eastonville Road. Flows continue in the roadside ditch until ultimately reaching an existing 30"x42" HECMP cross culvert to the south.

Basin B6 is located in the middle portion of the future Filing 11 site. Flows generated by this basin (Q_5 =2.6 cfs and Q_{100} =19.3 cfs) are directed northeast before entering Filing 10 at **Design Point DPB6**.

Existing Basin A13 is located in the middle portion of the site, along the eastern boundary. Flows generated by this basin (Q_5 =3.0 cfs and Q_{100} =22.0 cfs) combine with those from basin B6 and are directed east to **Design Point DP13** before discharging into the roadside ditch along Eastonville Road. Flows continue in the roadside ditch ultimately reach an existing 30" CMP cross culvert to the north.

Existing Basin A14 is located at the northeast corner of the site, along the eastern boundary.

Flows generated by this basin (Q_5 =4.9 cfs and Q_{100} =35.9 cfs) are directed east to **Design Point DP12** along the eastern boundary of Filing 10, before discharging into the roadside ditch along Eastonville Road. Flows ultimately reach an existing 30" CMP cross culvert to the south.

Basin OSA3 is the offsite basin just north of Basin A12. Flows generated by this basin ($Q_5=10.6$ cfs and $Q_{100}=18.9$ cfs) are directed east to **Design Point DPOSA3**, along the eastern boundary of Filing 10, before discharging into the roadside ditch along Eastonville Road.

Existing Basin A15 covers a small 0.61-acre area at the northwestern corner of Filing 10. This basin sits within the Upper Black Squirrel drainage basin. Flows generated by this basin (Q_5 =0.2 cfs and Q_{100} =1.2 cfs) follow natural drainage paths to the northwest into the adjacent future Filing 12.

9.0 DEVELOPED CONDITION

In the developed condition, as with the adjacent filings, the majority of the generated flows are designed to be collected in roadside ditches and conveyed to the proposed detention areas. Basins along the south side of Conestoga Trail South and the east side of Irish Hunter Trail cover lot areas outside of the roadway. As these areas are proposed as large lot single family sites (2.5-acre lots with imperviousness less than 10%) ECM I.7.1.B.5 applies and the areas are considered excluded from post-construction stormwater management requirements.

Roadside and conveyance ditches have been designed in accordance with County criteria and sized to accommodate developed flows with 1' of freeboard above the water surface elevation. Ditches with flowrates greater than 5fps will be reinforced with SC250 Vmax TRM (Turf Reinforcement Mat), or equivalent.

Cross culverts at Conestoga Trail South and Irish Hunter Trail have been designed to not overtop the roadway during the 100-year storm event. The inlets and outlets of the proposed culverts will be protected with riprap to aid in erosion control. Future driveway culverts have been sized with an overtopping allowance of 6" during the 100-year storm event, and sizing requirements are tabulated in the appendix. Future engineered site plans for the individual lots will provide final details for the driveway locations and culverts that will be constructed by others. Detailed swale, culvert and riprap calculations, sections and TRM specifications are included in the appendix.

For the purposes of site specific analysis, the project site has been divided into several grouped drainage basins as shown on the proposed drainage plan. **A-group basins** represent flows for basins that are part of Filing 10, along with offsite basins from adjacent filings and **B-group basins** represent flows for basins that are part of future Filing 11. These basins are considered in their anticipated future developed condition for the purposes of this analysis. Development of Filing 11 will require confirmation that the actual developed condition does not adversely affect the downstream drainage design presented in this report.

Rational Method Runoff Summary

BACIN	D.D.	Area	Q ₅	Q ₁₀₀
BASIN	DP	(Ac.)	(CFS)	(CFS)
OSA1	OSA1	3.68	3.6	7.9
OSA2	OSA2	96.30	29.4	127.3
OSA3	OSA3	69.15	29.3	113.4
OSA4	OSA4	32.65	16.0	60.5
OSA5	OSA5	11.33	7.3	28.1
A1		13.55	7.2	29.0
	1	226.18	69.0	279.5
A2		7.24	3.9	14.8
	2	237.10	73.7	291.8
South Pond Out	2A		17.0	293.5
A3	3	6.48	3.1	13.5
A4		6.03	3.3	13.0
	4	7.26	3.8	16.5
A5		8.02	4.3	17.5
	5	13.26	6.7	27.8
	5A	20.52	9.5	40.0
A6	6	4.02	2.1	7.9
	6A	24.53	10.2	42.3
A7	7	0.63	0.7	2.0
A8	8	7.21	3.2	12.8
	8A	32.36	13.3	54.3
A9	9	3.23	4.3	9.7
A10		0.58	0.1	1.1
	10	36.18	17.1	63.1
A10A		1.49	0.8	3.4
G14b Out			0.2	52.1
	10A	1.49	1.0	55.5
A11		3.61	1.9	7.9
	11	5.20	2.7	11.3
A12	12	2.36	1.4	5.5
	12A	7.56	3.8	15.4
A13		3.34	1.8	7.3
-	13	10.48	6.3	24.2
	13A	18.04	9.4	36.9
A14	14	1.25	2.2	4.9
A15	, .			
A15	14A	19.29 4.16	10.7	39.2 7.8

BASIN	DP	Area (Ac.)	Q₅ (CFS)	Q ₁₀₀ (CFS)
	15	23.45	11.5	43.4
A15A		2.08	1.1	4.6
G18 Out			0.1	27.1
	15A	2.08	1.2	31.7
A16	16	4.41	1.9	8.2
A17	17	4.02	2.1	8.9
A18	18	1.81	0.9	4.1
A19	19	2.40	1.1	4.7
A20	20	2.18	1.5	5.4
A21	21	0.73	0.7	2.2
A22	22	2.03	1.1	4.7
A23		0.44	0.2	1.1
	23	3.21	1.9	7.5
OSA6	OSA6	0.81	0.6	2.3
A24		11.59	6.6	26.3
	24	19.51	10.1	41.6
	24A	20.33	10.6	43.4
A25	25	1.61	2.8	6.3
	25A	21.94	11.4	42.9
A26		4.70	2.1	9.4
	26	26.64	12.4	47.9
A26A		1.00	0.6	2.6
G19 Out			0.1	34.3
	26A	1.00	0.7	36.9
A27	27	5.25	2.6	11.4
A28	28	2.75	1.4	5.9
A29	29	4.75	2.3	10.0
A30	30	0.61	0.3	1.3
OSA7	OSA7	2.44	1.2	5.1
B1	B1	3.20	1.9	8.0
B2	B2	0.78	0.5	2.1
В3	В3	5.24	2.9	12.5
B4	B4	7.14	5.0	18.9
B5	B5	1.59	1.0	4.2
В6	В6	7.92	4.4	19.0

Basin OSA1 is an offsite basin covering 3.68 acres of Conestoga Trail South to the west of the project site. Flows generated by this basin (Q_5 =3.6 cfs and Q_{100} =7.9 cfs) travel via roadside ditch to the south and east before entering Filing 10 at **Design Point DPOSA1**. The roadside ditch from this point is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Basin OSA2 is an offsite basin covering 92.80 acres of Filing 9 to the north of Conestoga Trail South. Flows generated by this basin ($Q_5=29.4$ cfs and $Q_{100}=127.3$ cfs) ultimately travel via

roadside ditch to the south and east before entering Filing 10 at **Design Point DPOSA2.** The roadside ditch from this point is proposed as a triangular section with a minimum of 3' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Basin OSA3 is an offsite basin covering 69.15 acres of Filing 2-B to the northwest of Filing 10. Flows generated by this basin (Q_5 =29.3 cfs and Q_{100} =113.4 cfs) travel via roadside ditch and cross lot drainage ditch to the southeast before entering Filing 10 at **Design Point DPOSA3**. Flows continue on from this point via a redefined trapezoidal ditch with a 10' bottom width and 4:1 side slopes to the southeast. This stretch of ditch through will be reinforced with TRF as described above.

Basin OSA4 is an offsite basin covering 32.65 acres of Filing 7-A to the northwest of Filing 10. Flows generated by this basin ($Q_5=16.0$ cfs and $Q_{100}=60.5$ cfs) travel via roadside ditch and cross lot drainage ditch to the southeast before entering Filing 10 at **Design Point DPOSA4**. Flows continue on from this point via a redefined trapezoidal ditch with a 6' bottom width and 4:1 side slopes to the south. This stretch of ditch through will be reinforced with TRF as described above.

Basin OSA5 is an offsite basin covering 11.33 acres of Filing 7-A to the north of Filing 10. Flows generated by this basin ($Q_5=7.3$ cfs and $Q_{100}=28.1$ cfs) travel via roadside ditch and cross lot drainage ditch to the south before entering Filing 10 at **Design Point DPOSA5**.

Basin B1 is a 3.20-acres offsite basin located in future Filing 12. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin (Q_5 =1.9 cfs and Q_{100} =8.0 cfs) follow natural drainage patterns to the southwest before entering Filing 10 at **Design Point DPB1**.

Basin A1 is a 13.55-acre onsite basin covering the majority of proposed Lots 22 through 26, north of Conestoga Trail South. Flows generated by this basin (Q_5 =7.2 cfs and Q_{100} =29.0 cfs) combine with those from offsite basins OS2-OS5 and Basin B1 and generally follow natural drainage patterns, some redefined, to the south towards **Design Point DP1**. The roadside ditch along the southern boundary of this basin is proposed as a triangular section with a minimum of 4' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Design Point DP1 represents the combined flows of Basins OSA3-OS5, B1 and A1. Flows continue from this point via the proposed 4-36" culverts that crosses under Conestoga Trail South. From there, a redefined trapezoidal ditch with a 10' bottom width and 4:1 side slopes will direct flows towards the existing South Pond detention facility. This stretch of ditch through Lot 2 will be reinforced with TRF as described above. The existing low-tailwater drop structure is sufficient to accommodate these flows.

Basin A2 (7.24-acres) covers Lot 18 and a portion of proposed Lot 19, south of Conestoga Trail South, along with the South Pond detention facility. Flows generated by this basin (Q_5 =3.9 cfs and Q_{100} =14.8 cfs) are directed to the South Pond at **Design Point DP2**.

Design Point DP2 is located at the bottom of the South Pond and represents the flows from Basins OS1 and A2 in addition to those from DP1 to the north. See further discussion below

for facility design and discharge rates.

Basin A3 (6.48-acres) covers Lots 20 & 21 and a portion of Lot 19, south of Conestoga Trail South. Flows generated by this basin (Q_5 =3.1 cfs and Q_{100} =13.5 cfs) follow natural drainage patterns to the south and **Design Point DP3**. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin B2 is a 0.78-acre offsite basin located in future Filing 12 to the north of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin (Q_5 =0.5 cfs and Q_{100} =2.1 cfs) follow natural drainage patterns to the south and **Design Point DPB2**.

Basin A4 (6.03-acres) covers the majority of Lots 27 & 28, north of Conestoga Trail South. Flows generated by this basin (Q_5 =3.3 cfs and Q_{100} =13.0 cfs) combine with those from upstream basin B2 and follow natural drainage paths to the south where they are captured by the roadside ditch and carried east to **Design Point DP4**.

Design Point DP4 represents the combined flows of Basins A4 and B2. Flows continue from this point via roadside ditch to the east. The roadside ditch from this point is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Basin B3 is a 5.24-acre offsite basin located in future Filing 12 to the north of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin ($Q_5=2.9$ cfs and $Q_{100}=12.5$ cfs) follow natural drainage patterns to the southeast and **Design Point DPB3**.

Basin A5 (8.02-acres) covers the majority of Lots 29-31, north of Conestoga Trail South. Flows generated by this basin (Q_5 =4.3 cfs and Q_{100} =17.5 cfs) combine with those from basin B3 and follow natural drainage paths to the south where they are captured by the roadside ditch and carried east to **Design Point DP5**.

Design Point DP5 represents the combined flows of Basins A5 and B3.

Design Point DP5A is located where the flows leave Basin A5 and represents the combined flows from DP4 and DP5. Flows continue from this point via roadside ditch to the east. The roadside ditch from this point is proposed as a triangular section with a minimum of 2.5' depth to accommodate flows and provide for 1' freeboard.

Basin A6 (4.02-acres) covers the majority of Lot 32 and portions of Lots 31 & 33, north of Conestoga Trail South. Flows generated by this basin (Q_5 =2.1 cfs and Q_{100} =7.9 cfs) are directed south where they are captured by the roadside ditch and carried east to **Design Point DP6.**

Design Point DP6A is located where the flows leave Basin A6 and represents the combined flows of DP5A and DP6. Flows continue from this point via roadside ditch to the east. The roadside ditch from this point is proposed as a triangular section with a minimum of 2.5'

depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Basin A7 (0.63-acres) covers the eastern side of Irish Hunter Trail just north of Conestoga Trail South. Flows generated by this basin (Q_5 =0.7 cfs and Q_{100} =2.0 cfs) follow the roadside ditch to the south where they are intercepted by a proposed public 18" culvert at **Design Point DP7.** Flows continue to the west via the culvert towards Basin A8. The roadside ditch along the west side of this basin is proposed as a triangular section with a minimum of 1.5' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Basin A8 (7.21-acres) covers the majority of Lots 34 & 35 and portions of Lots 32 & 33, at the northwest intersection of Conestoga Trail South & Irish Hunter Trail. Flows generated by this basin (Q_5 =3.2 cfs and Q_{100} =12.8 cfs) follow natural drainage paths to the south & east where they are captured by the roadside ditches and carried to the southeast corner and **Design Point DP8**. The roadside ditch along the southern edge of this basin is proposed as a triangular section with a minimum of 3' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Design Point DP8A represents the combined flows of DP 6A, 7 and 8. Flows continue southeast from this point via proposed public 36" culvert to ultimately reach the proposed G14b detention facility.

Basin A9 (3.23-acres) covers the southern half of Conestoga Trail and northern portion of Lots 12 through 17. Flows generated by this basin (Q_5 =4.3 cfs and Q_{100} =9.7 cfs) are directed to the roadside ditch and carried east towards a proposed Type D area inlet and low point at **Design Point DP9**. The roadside ditch along this basin is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Basin A10 covers a portion of Lots 11 & 12, south of Conestoga Trail South, and proposed detention facility G14b. Flows generated by this basin ($Q_5=0.1$ cfs and $Q_{100}=1.1$ cfs) are directed to the proposed G14b detention facility at **Design Point DP10**.

Design Point DP10 is located at the bottom of Pond G14b and represents the flows from DP8A, 9 and 10. See further discussion below for facility design and discharge rates.

Basin A10A covers the portion of Lots 11 & 12, that will not drain to the G14b detention facility. Flows generated by this basin (Q_5 =0.8 cfs and Q_{100} =3.4 cfs) will follow natural drainage patterns to the south towards **Design Point 10A** along the southern boundary of Filing 10, where they will combine with the discharge flows from G14b detention facility (Q_5 =0.2 cfs and Q_{100} =52.1 cfs). This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin B5 is a 1.59-acre offsite basin located in future Filing 12 to the west of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin ($Q_5=1.0$ cfs and $Q_{100}=4.2$ cfs) follow natural

drainage paths to the southeast and Design Point DPB5.

Basin A11 (3.61-acres) covers the majority of Lot 38 and a portion of Lot 39, west of Irish Hunter Trail. Flows generated by this basin ($Q_5=1.9$ cfs and $Q_{100}=7.9$ cfs) combine with those from upstream Basin B5 and follow natural drainage paths to the west where they are intercepted by the roadside ditch and carried to the south to **Design Point DP11**. The roadside ditch from this point is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Design Point DP11 is located where the flows leave Basin A11 and represents the combined flows of Basins A11 and B5.

Basin A12 (2.36-acres) covers the majority of Lot 37 and a portion of Lot 36, west of Irish Hunter Trail. Flows generated by this basin ($Q_5=1.4$ cfs and $Q_{100}=5.5$ cfs) are directed east where they are captured by the roadside ditch and carried to the south to **Design Point DP12.** The roadside ditch along this basin is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Design Point DP12A is located where the flows leave Basin A12 and represents the combined flows of DP11 and DP12.

Basin B4 is a 7.14-acre offsite basin located in future Filing 12 to the west of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin ($Q_5=5.0$ cfs and $Q_{100}=18.9$ cfs) will follow natural drainage patterns to the southeast and **Design Point DPB4.** The future development of Filing 12 currently proposed a cul-de-sac and redefined drainage channel for Basin B4. Future design of Filing 12 will need to be analyzed at that time to confirm compatibility with this Filing 10.

Basin A13 covers the majority of Lot 36 and a portion of Lots 35 & 37, west of Irish Hunter Trail. Flows generated by this basin ($Q_5=1.8$ cfs and $Q_{100}=7.3$ cfs) combine with those from Basin B4 and are directed east via redefined drainage channel where they are captured by the roadside ditch and carried to **Design Point DP13**. The roadside ditch along this basin is proposed as a triangular section with a minimum of 2.5' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above. The redefined drainage ditch through this area has been designed as a trapezoidal ditch with a 3' bottom width and 4:1 side slopes.

Design Point DP13A is located where the flows leave Basin A13 at a 36" culvert that crosses under Irish Hunter Trail to the east and represents the combined flows of DPB4, 12A and 13.

Basin A14 covers the eastern half of Irish Hunter Trail and the western portion of Lots 5-8. Flows generated by this basin (Q_5 =2.2 cfs and Q_{100} =4.9 cfs) are directed to the roadside ditch and carried to the south towards **Design Point DP14**. The roadside ditch from this point is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Design Point DP14A is located where the flows leave Basin A14 and represents the combined flows from DP13A and 14. Flows continue on from this point via a redefined

trapezoidal ditch with a 3' bottom width and 4:1 side slopes, and will direct flows towards the proposed G18 detention facility. This stretch of ditch through will be reinforced with TRF as described above. A low-tailwater drop structure with receive these flows before discharge into the proposed detention facility.

Basin A15 covers Lots 6 through 8 and a portion of Lots 9 & 10, east of Irish Hunter Trail, along with the proposed detention facility G18. Flows generated by this basin (Q_5 =4.8 cfs and Q_{100} =21.0 cfs) follow natural drainage paths that carry the flows to **Design Point DP15**.

Design Point DP15 is located at the bottom of Pond G18 and represents the flows from DP14A and Basin A15.

Basin A15A covers the portion of Lots 6, 8, 9 & 10, that will not drain to the G18 detention facility. Flows generated by this basin (Q_5 =1.1 cfs and Q_{100} =4.6 cfs) will follow natural drainage patterns to the east towards **Design Point 15A** along the eastern boundary of Filing 10, where they will combine with the discharge flows from G18 detention facility (Q_5 =0.1 cfs and Q_{100} =27.1 cfs). This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A16 covers the majority of Lots 16 & 17, south of Conestoga Trail South. Flows generated by this basin ($Q_5=1.9$ cfs and $Q_{100}=8.2$ cfs) follow natural drainage patterns to the south and **Design Point DP16** along the southern boundary of Filing 10. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A17 covers the majority of Lots 14 & 15, south of Conestoga Trail South. Flows generated by this basin (Q_5 =2.1 cfs and Q_{100} =8.9 cfs) are directed south to **Design Point DP17** along the southern boundary of Filing 10. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A18 covers a portion of Lots 13 & 14, south of Conestoga Trail South. Flows generated by this basin (Q_5 =0.9 cfs and Q_{100} =4.1 cfs) are directed south to **Design Point DP18** along the southern boundary of Filing 10. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A19 covers a portion of Lots 12 & 13, south of Conestoga Trail South. Flows generated by this basin (Q_5 =1.1 cfs and Q_{100} =4.7 cfs) are directed south to **Design Point DP19** along the southern boundary of Filing 10. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A20 covers a portion of Lots 9 & 10, north of Conestoga Trail South. Flows generated by this basin ($Q_5=1.1$ cfs and $Q_{100}=4.8$ cfs) are directed south where they are captured by the roadside ditch and carried east to **Design Point DP20** before discharging into the existing roadside ditch along Eastonville Road. As this is an area of roadway that is not able to be treated by a proposed detention facility, runoff reduction calculations have been included to indicate that 100% runoff reduction will be achieved in this location. The roadside ditch along this basin is proposed as a triangular section with a minimum of 2' depth to accommodate flows and provide for 1' freeboard.

Basin A21 covers the southern half of Conestoga Trail and northern portion of Lot 11. Flows generated by this basin (Q_5 =0.7 cfs and Q_{100} =2.2 cfs) are directed to the roadside ditch and carried east to **Design Point DP21** before discharging into the existing roadside ditch along Eastonville Road. As this is an area of roadway that is not able to be treated by a proposed detention facility, runoff reduction calculations have been included to indicate that 100% runoff reduction will be achieved in this location. The roadside ditch along this basin is proposed as a triangular section with a minimum of 1.5' depth to accommodate flows and provide for 1' freeboard.

Basin A22 covers the majority of Lot 11, south of Conestoga Trail South. Flows generated by this basin ($Q_5=1.1$ cfs and $Q_{100}=4.7$ cfs) follow natural drainage patterns south to **Design Point DP22** along the southern boundary of Filing 10. This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A23 covers a portion of Lot 11, south of Conestoga Trail South. Flows generated by this basin (Q_5 =0.2 cfs and Q_{100} =1.1 cfs) are directed east to **Design Point DP23** before discharging into the existing roadside ditch along Eastonville Road. This basin covers a potion of Lot 11 along Eastonville Road that is encumbered by easements and setbacks, as such it can be considered to remain undeveloped and not subject to any permanent stormwater treatment requirements.

Basin OSA6 is an offsite basin just north of Lot 43, west of Irish Hunter Trail at the north end of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin ($Q_5=0.6$ cfs and $Q_{100}=2.3$ cfs) follow natural drainage paths to the south and **Design Point DPOSA6**.

Basin B6 is a 7.92-acre offsite basin located in future Filing 12 to the west of Filing 10. This basin is considered in its developed condition in order to adequately size the downstream facilities. Flows generated by this basin (Q_5 =4.4 cfs and Q_{100} =19.0 cfs) are directed to **Design Point DPB6.**

Basin A24 covers the majority of Lots 39 through 43, west of Irish Hunter Trail. Flows generated by this basin (Q_5 =6.6 cfs and Q_{100} =26.3 cfs) combine with those from OSA6 and Basin B6 and follow natural drainage paths to the east where they are captured by the roadside ditch and carried south to a low point at **Design Point DP24**. The roadside ditch along this basin is proposed as a triangular section with a minimum of 2.5' depth to accommodate flows and provide for 1' freeboard. As the velocity exceeds 5fps, this section will be reinforced with TRM as described above.

Design Point DP24A is located where the flows leave Basin A24 via a 36" culvert that crosses under Irish Hunter Trail to the east and represents the combined flows of DPB6, DP24 and OSA2. Flows continue on from this point via a redefined trapezoidal ditch with a 3" bottom width and 4:1 side slopes, and will direct flows towards the proposed G19 detention facility. A low-tailwater drop structure with receive these flows before discharge into the proposed detention facility.

Basin A25 covers the eastern half of Irish Hunter Trail and the western portion of Lots 1-4. Flows generated by this basin (Q_5 =2.48cfs and Q_{100} =6.3 cfs) are directed to the roadside ditch and carried to a low point at **Design Point DP25**. The roadside ditch along this basin is proposed as a triangular section with a minimum of 2.5' depth to accommodate flows and provide for 1' freeboard.

Design Point DP25A is located where the flows leave Basin A25 via a redefined drainage ditch and represents the combined flows from DP24A and DP25.

Basin A26 covers Lots 1 through 4, east of Irish Hunter Trail. Flows generated by this basin ($Q_5=5.1$ cfs and $Q_{100}=22.1$ cfs) are directed to **Design Point DP26**.

Design Point DP26 is located at the bottom of Pond G19 and represents the flows from DP25A, OSA4 and Basin A26.

Basin A26A covers the portion of Lots 1-4, that will not drain to the G19 detention facility. Flows generated by this basin (Q_5 =0.6 cfs and Q_{100} =2.6 cfs) will follow natural drainage patterns to the east towards **Design Point 26A** along the eastern boundary of Filing 10, where they will combine with the discharge flows from G19 detention facility (Q_5 =0.1 cfs and Q_{100} =34.3 cfs). This basin covers large lots outside of any roadway, and as such ECM I.7.1.B.5 applies, allowing drainage from this lot to discharge without detention or treatment. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin OSA7 is an offsite basin just north of Lot 1, east of Irish Hunter Trail. Flows generated by this basin (Q_5 =1.2 cfs and Q_{100} =5.1 cfs) follow natural drainage patterns to the east and **Design Point DPOSA7.** This basin is not being developed as part of Filing 10, but is considered due to the proximity of the major basin line to the north. See below for a comparison of flows at similar design points in the existing and developed condition.

Basin A30 covers a small 0.61-acre area at the northwestern corner of Filing 10. This basin sits within the Upper Black Squirrel drainage basin. Flows generated by this basin (Q_5 =0.3 cfs and Q_{100} =1.3 cfs) will follow natural drainage paths to the northwest into the adjacent Filing 12. This area will need to be analyzed as part of the Filing 12 development to ensure adequate sizing of downstream facilities.

See below for a comparison of flows at similar design points in the existing and developed condition.

Flow Comparison

	Existing			Develo	ped
DP	Q₅ (CFS)	Q ₁₀₀ (CFS)	DP	Q₅ (CFS)	Q ₁₀₀ (CFS)
1	1.6	12.1	3	3.1	13.5
2	76.4	299.0	2A	17.0	293.5
3	2.4	18.0	16	1.9	8.2
4	1.0	7.5	17	2.1	8.9
5	2.9	21.4	18	0.9	4.1
6	1.7	12.7	19	1.1	4.7
7	3.9	28.7	10A	1.0	55.5
8	0.6	4.3	22	1.1	4.7
9	0.6	4.3	20	1.5	5.4
			21	0.7	2.2
			23	1.9	7.5
10	1.7	12.7	15A	1.2	31.7
11	1.6	12.1	29	2.3	10.0
12	2.3	17.1	28	1.4	5.9
13	4.8	35.4	26A	0.7	36.9
14	1.8	12.9	27	2.6	11.4

South boundary combined

Existing				Develo	ped
DP Q ₅ (CFS) Q ₁₀₀ (CFS)		DP	Q₅ (CFS)	Q ₁₀₀ (CFS)	
1-8	90.6	403.6		28.1	393.0

East boundary combined

Existing				Develo	ped
DP	Q₅ (CFS)	Q ₁₀₀ (CFS)	DP	Q₅ (CFS)	Q ₁₀₀ (CFS)
8-14	12.9	94.5		12.2	111.0

10.0 PROPOSED FULL-SPECTRUM DETENTION FACILITIES

Existing South Pond

The existing South Pond was originally built with the development of Filing 7 and reanalyzed with the development of Filing 9 with modifications currently under construction. The Filing 9 analysis determined that an upstream watershed of 237.1-acres at 13.8% impervious was tributary to the South Pond, resulting in developed flows of Q_5 =92 cfs and Q_{100} =347 cfs. This analysis accounts for the final design of this filing and results in a slightly lower imperviousness (13.3%) and subsequent flowrates (Q_5 =74 cfs and Q_{100} =292 cfs). The MHFD spreadsheet with the modified imperviousness has been included in the appendix for reference, but as the impact to the detention facility is minor, no changes are proposed.

Proposed Pond G14b

The G14b facility is proposed as a private full-spectrum Extended Detention Basin (EDB). MHFD-Detention v4.06 calculations are provided in the appendix. Based on a watershed area of 35.73 acres, with an effective site imperviousness of 14.879%, the required pond

volume for 100-yr detention is 1.57 acre-ft.

Flows enter the facility via 36" storm pipe and discharge directly into a concrete forebay. The forebay volume was calculated based on 3% of the WQCV volume. The forebay includes a dissipater as the flows enter, and a notch through which to exit to the trickle channel. In order to release the flows from the forebay at 2% of the peak 100-yr inflow the forebay has a minimum 6" wide notch. A 7' wide concrete trickle channel will run along the bottom of the pond from the forebay to the micropool.

The outlet structure will consist of a modified Type C outlet structure with an orifice plate and a grate on top. The orifice plate will have two 2.44 sq. inch orifices. The elevation of the grate is set at 7065.00, which is below the 100-year detention volume elevation. The outlet pipe has been set as a 36" private storm pipe that will release the 100-year flow at 100% of the predeveloped 100-year runoff rate, in accordance with drainage criteria. The outlet pipe discharges to the south following historic drainage patterns. A level spreader will be installed just downstream of the pipe outfall to mitigate the impact of the concentrated discharge point downstream. With these release rates the WQCV will drain in 40 hours, the EURV in 62 hours, and the 100-year storm volume in 77 hours. Given the smaller change in impervious coverage between the pre-developed and developed condition, the WQCV drain time becomes the controlling factor for the orifice plate. The lowest orifice hole has been sized to release the WQCV within 40 hours, the second hole is sized accordingly and results in a 62 hour release rate for the EURV.

A 25' long spillway is located on the south side of the pond and is placed 1.85' below the crest of the pond to allow for 1' of freeboard above the spillway design flow depth. In the event that water overtops the spillway, it will discharge to the south following historic drainage patterns.

Proposed Pond G18

The G18 facility is proposed as a private full-spectrum Extended Detention Basin (EDB). MHFD-Detention v4.06 calculations are provided in the appendix. Based on a watershed area of 23.45 acres, with an effective site imperviousness of 13.47%, the required pond volume for 100-yr detention is 0.98 acre-ft.

In place of a standard concrete forebay, a riprap low-tailwater basin (LTWB) is proposed at the base of the riprap rundown into the detention facility. This LTWB design was based on sizing guidance from MHFD Volume 2, Figures 9-37 and 9-39, equating the trapezoidal swale wetted perimeter as equivalent to a rectangular box culvert.

Pond G18	Top Width (ft)	Flow Depth + 1' freeboard (ft)
Trapezoidal Swale	11.8	2.1
Equivalent Box Culvert	12.0	2.5

From there, LTWB sizing was determined as D=1.5', W=12' and L=20', to be protected by Type L riprap. See appendix for calculations. The LTWB is proposed to discharge into a 6-ft wide concrete trickle channel along the bottom of the facility towards the proposed micropool and outlet structure.

The outlet structure will consist of a modified Type C outlet structure with an orifice plate and a grate on top. The orifice plate will have two 1.57 sq. inch orifices. The elevation of the grate is set at 7058.00, which is below the 100-year detention volume elevation. The outlet pipe has been set as a 36" private storm pipe that will release the 100-year flow at 100% of the predeveloped 100-year runoff rate, in accordance with drainage criteria. The outlet pipe discharges to the east into the roadside ditch along the west side of Eastonville Road following historic drainage patterns. With these release rates the WQCV will drain in 40 hours, the EURV in 62 hours, and the 100-year storm volume in 92 hours. Given the smaller change in impervious coverage between the pre-developed and developed condition, the WQCV drain time becomes the controlling factor for the orifice plate. The lowest orifice hole has been sized to release the WQCV within 40 hours, the second hole is sized accordingly and results in a 62 hour release rate for the EURV.

A 20' long spillway is located on the east side of the pond and is placed 1.74' below the crest of the pond to allow for 1' of freeboard above the spillway design flow depth. In the event that water overtops the spillway, it will discharge to the east following historic drainage patterns.

Maintenance access will be provided and is further outlined in the detention facility construction documents.

Proposed Pond G19

The G19 facility is proposed as a private full-spectrum Extended Detention Basin (EDB). MHFD-Detention v4.06 calculations are provided in the appendix. Based on a watershed area of 26.64 acres, with an effective site imperviousness of 12.75%, the required pond volume for 100-yr detention is 1.083 acre-ft.

In place of a standard concrete forebay, a riprap low-tailwater basin (LTWB) is proposed at the base of the riprap rundown into the detention facility. This LTWB design was based on sizing guidance from MHFD Volume 2, Figures 9-37 and 9-39, equating the trapezoidal swale wetted perimeter as equivalent to a rectangular box culvert.

Pond G19	Top Width (ft)	Flow Depth + 1' freeboard (ft)
Trapezoidal Swale	11.8	2.1
Equivalent Box Culvert	12.0	2.5

From there, LTWB sizing was determined as D=1.5', W=12' and L=20', to be protected by Type L riprap. See appendix for calculations. The LTWB is proposed to discharge into a 6-ft wide concrete trickle channel along the bottom of the facility towards the proposed micropool and outlet structure.

The outlet structure will consist of a modified Type C outlet structure with an orifice plate and a grate on top. The orifice plate will have two 1.83 sq. inch orifices. The elevation of the grate is set at 7057.75, which is below the 100-year detention volume elevation. The outlet pipe has been set as a 36" private storm pipe that will release the 100-year flow at 100% of the predeveloped 100-year runoff rate, in accordance with drainage criteria.

The outlet pipe discharges to the east into the roadside ditch along the west side of Eastonville Road following historic drainage patterns. With these release rates the WQCV will drain in 40 hours, the EURV in 61 hours, and the 100-year storm volume in 99 hours. Given the smaller change in impervious coverage between the pre-developed and developed condition, the WQCV drain time becomes the controlling factor for the orifice plate. The lowest orifice hole has been sized to release the WQCV within 40 hours, the second hole is sized accordingly and results in a 61 hour release rate for the EURV.

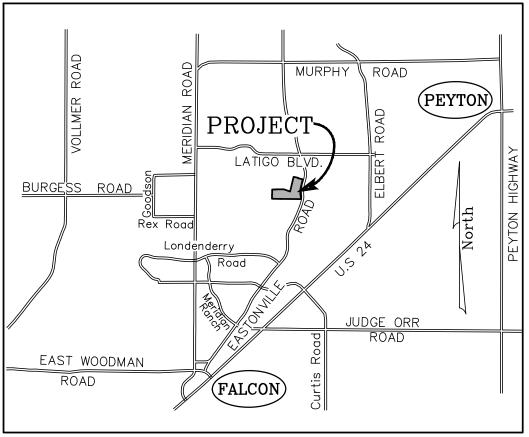
A 25' long spillway is located on the east side of the pond and is placed 1.85' below the crest of the pond to allow for 1' of freeboard above the spillway design flow depth. In the event that water overtops the spillway, it will discharge to the east following historic drainage patterns.

Maintenance access will be provided and is further outlined in the detention facility construction documents.

11.0 FOUR-STEP PROCESS

- 1. Employ Runoff Reduction Practices: The development of this project is proposed as single-family residential (2.5-acre). Roadways will utilize grass-lined roadside ditches to minimize directly connected impervious areas within the project site, while allowing for increased infiltration and reduced runoff volume.
- 2. Implement CM's that provide a Water Quality Capture Volume with slow release: The majority of runoff generated by this project will be treated through capture and slow release of the WQCV in one of 3 permanent full spectrum extended detention facilities designed per current drainage criteria. The areas tributary to each of the detention facilities is described above.
- 3. Stabilize Drainage Ways: This site will utilize roadside ditches with culvert crossings throughout the site. The roadside ditches will direct developed flows to the detention facilities, to be released at or below historic rates. In reaches were velocities exceed 4fps, the ditches are proposed to be reinforced with turf reinforcement mats.
- 4. Implement Site Specific and Other Source Control CM's: Standard residential source control will be utilized in order to minimize potential pollutants entering the drainage system. Site specific permanent and temporary source control BMPs will be established by the Stormwater Quality and Control Plan for the project to protect receiving waters.

12.0 DRAINAGE/BRIDGE FEES


The Gieck Ranch Basin (CHMS0400) is not in the El Paso County Drainage Basin Fee program, and as such no drainage or bridge fees are due at the time of plat recordation.

13.0 REFERENCES

The sources of information used in the development of this study are listed below:

- 1. El Paso County Drainage Criteria Manual, October 2018.
- 2. El Paso County Engineering Criteria Manual, October 2020.
- 3. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised April 2008.
- 4. Natural Resources Conservation Service (NRCS) Web Soil Survey
- 5. Final Drainage Report for The Trails Filing No. 7 Subdivision, by URS, March 2005.
- 6. Final Drainage Report for Latigo Trails Filing No. 9 and Addendum to Master Development/Preliminary Drainage Plan, by JR Engineering, March 2023.

Vicinity Map
Not to scale

LATIGO TRAILS FILING NO. 10 VICINITY MAP

Drexel, Barrell & Co.
Engineers • Surveyors

DATE:

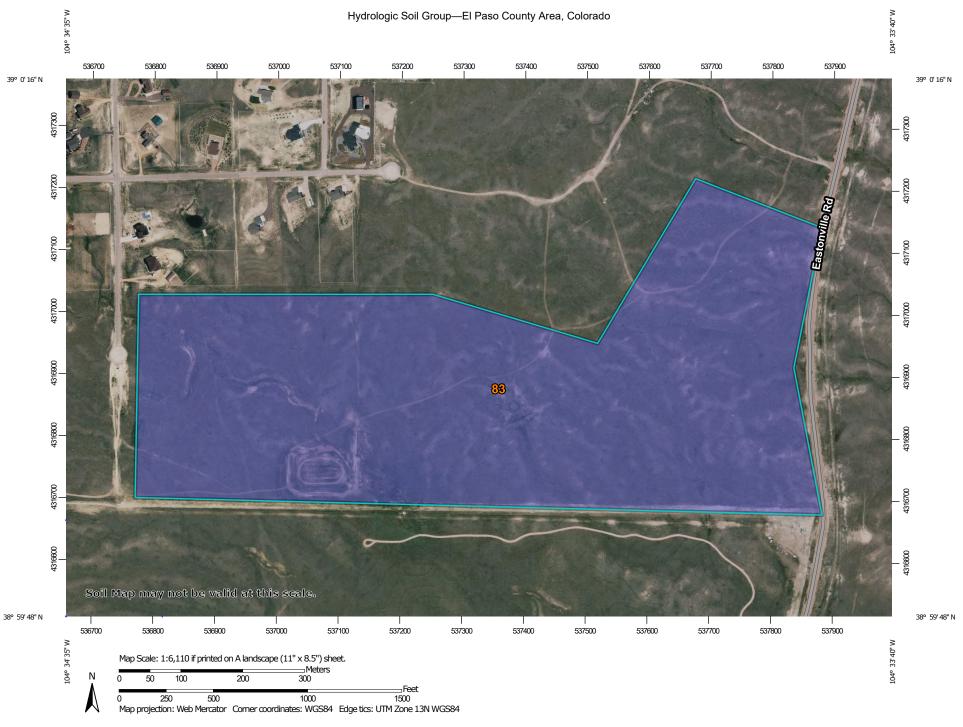
JOB NO:
21820-01CSCV

VMAP
SHEET 1 OF 1

DWG. NO.

National Flood Hazard Layer FIRMette

Legend SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD **HAZARD AREAS** Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLIL Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** ₩₩ 513 WW Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary — --- Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature Digital Data Available


No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/3/2024 at 1:17 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jun 9, 2021—Jun 12. 2021 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
83	Stapleton sandy loam, 3 to 8 percent slopes	В	98.4	100.0%
Totals for Area of Interest			98.4	100.0%

Description

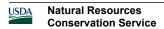
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

AGENCY: El Paso County

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

^{*}C-Values and Basin Imperviousness based on Table 6-6, City of Colorado Springs Drainage Criteria Manual

SUB-BASIN	SURFACE DESIGNATION	AREA	COM	% IMPERV				
002 27.0		ACRE	C2			C10 C100		
		EXISTIN	G A-BASII	NS				
OSA1	Residential - 2.5 Acre	0.00		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	1.65		0.08		0.35	0	
	Streets - Gravel	0.00		0.59		0.70	80	
	Streets - Paved	2.03		0.90		0.96	100	
OSA1 TOTAL	WEIGHTED AVERAGE	3.68		0.53		0.69	55	
OSA2	Residential - 2.5 Acre	92.80		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0	
	Streets - Gravel	0.00		0.59		0.70	80	
	Streets - Paved	3.50		0.90		0.96	100	
OSA2 TOTAL	WEIGHTED AVERAGE	96.30		0.19		0.43	13	
OSA3	Residential - 2.5 Acre	66.55		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0	
	Streets - Gravel	0.00		0.59		0.70	80	
	Streets - Paved	2.60		0.90		0.96	100	
OSA3 TOTAL	WEIGHTED AVERAGE	69.15		0.19		0.43	13	
OSA4	Residential - 2.5 Acre	31.11		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0	
	Streets - Gravel	0.00		0.59		0.70	80	
	Streets - Paved	1.55		0.90		0.96	100	
OSA4 TOTAL	WEIGHTED AVERAGE	32.65		0.20		0.44	14	
OSA5	Residential - 2.5 Acre	10.86		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0	
	Streets - Gravel	0.00		0.59		0.70	80	
	Streets - Paved	0.47		0.90		0.96	100	
OSA5 TOTAL	WEIGHTED AVERAGE	11.33		0.19		0.43	13	
A1	Residential - 2.5 Acre	0.00		0.16		0.41	9.2	
	Pasture/Meadow/Lawn	7.08	_	0.08		0.35	0	
	Streets - Paved	0.00		0.90		0.96	100	
A1 TOTAL	WEIGHTED AVERAGE	7.08		0.08		0.35	0	
A2	Residential - 2.5 Acre	0.00		0.16		0.41	9.2	

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

AGENCY: El Paso County

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

	Pasture/Meadow/Lawn	19.70	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A2 TOTAL	WEIGHTED AVERAGE	19.70	0.08	0.35	0
A3	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	11.68	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A3 TOTAL	WEIGHTED AVERAGE	11.68	0.08	0.35	0
A4	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	4.24	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A4 TOTAL	WEIGHTED AVERAGE	4.24	0.08	0.35	0
A5	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	10.58	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A5 TOTAL	WEIGHTED AVERAGE	10.58	0.08	0.35	0
A6	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	7.35	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A6 TOTAL	WEIGHTED AVERAGE	7.35	0.08	0.35	0
A 7	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	13.62	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A7 TOTAL	WEIGHTED AVERAGE	13.62	0.08	0.35	0
A8	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	2.24	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A8 TOTAL	WEIGHTED AVERAGE	2.24	0.08	0.35	0
A9	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	2.16	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
A9 TOTAL	WEIGHTED AVERAGE	2.16	0.08	0.35	0
A10	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	8.08	0.08	0.35	0

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

AGENCY: El Paso County

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

100
100
0
9.2
0
100
0
9.2
0
100
0
9.2
0
100
0
9.2
0
100
0
9.2
0
100
0
9.2
0
80
100
0
9.2
0
100
0
9.2
_

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

*C-Values and Basin	Imperviousness based on Table 6-6, City	of Colorado Springs	s Drainage Criteria Manual		
	Pasture/Meadow/Lawn	0.75	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
B2 TOTAL	WEIGHTED AVERAGE	0.75	0.08	0.35	0
33	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	4.78	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
B3 TOTAL	WEIGHTED AVERAGE	4.78	0.08	0.35	0
B4	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	6.89	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
B4 TOTAL	WEIGHTED AVERAGE	6.89	0.08	0.35	0
B5	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	1.61	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
B5 TOTAL	WEIGHTED AVERAGE	1.61	0.08	0.35	0
B6	Residential - 2.5 Acre	0.00	0.16	0.41	9.2
	Pasture/Meadow/Lawn	12.40	0.08	0.35	0
	Streets - Paved	0.00	0.90	0.96	100
B6 TOTAL	WEIGHTED AVERAGE	12.40	0.08	0.35	0

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

AGENCY: El Paso County

REPORT TYPE: Final DATE: 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED TIME OF CONCENTRATION STANDARD FORM SF-2

SUB-BASIN DATA					INITI	$\begin{array}{c} \text{INITIAL/OVERLAND} \\ \text{TIME } (t_{i}) \end{array}$			TRAVEL TIME (t _t)				TIME OF CONC.		
BASIN	DESIGN PT:	C_5	C ₁₀₀	AREA	LENGTH	SLOPE	t _i	LENGTH	SLOPE	VEL.	t_t	COMP.	MINIMUM		
				Ac	Ft	%	Min	Ft	%	FPS	Min	t _c	t _c	Min	
EXISTING A BASINS															
OSA1	OSA1	0.53	0.69	3.68	50	2.0	6.0	5815	1.0	1.5	64.6	70.6	42.3	42.3	
OSA2	OSA2	0.19	0.43	92.80	100	2.0	13.6	5495	1.0	1.5	61.1	74.6	40.5	40.5	
OSA3	OSA3	0.19	0.43	69.15	100	3.0	11.8	3750	1.5	1.8	34.0	45.8	30.8	30.8	
OSA4	OSA4	0.20	0.44	32.65	100	2.0	13.4	2798	2.0	2.1	22.0	35.4	25.5	25.5	
OSA5	OSA5	0.19	0.43	11.33	100	4.0	10.7	780	2.0	2.1	6.1	16.8	14.3	14.3	
A1	1	0.08	0.35	7.08	100	2.0	15.1	710	2.0	2.1	5.6	20.7	13.9	20.7	
A2		0.08	0.35	19.70	100	3.0	13.2	1090	3.0	2.6	7.0	20.2	16.1	20.2	
OSA1-OSA5+A2+B1	2	0.18	0.43	232.68	From	OSA1	42.3	710	2.0	2.1	5.6	47.9	13.9	47.9	
A3		0.08	0.35	11.68	100	3.0	13.2	1000	2.0	2.1	7.9	21.1	15.6	21.1	
B2+A3	3	0.08	0.35	12.43	Fror	n B2	20.0	1000	2.0	2.1	7.9	27.9	15.6	27.9	
A4	4	0.08	0.35	4.24	100	2.0	15.1	364	1.0	1.5	4.0	19.2	12.0	19.2	
A5		0.08	0.35	10.58	100	4.0	12.0	1260	2.0	2.1	9.9	21.9	17.0	21.9	
B3+A5	5	0.08	0.35	15.37	Fror	n B3	19.9	1260	2.0	2.1	9.9	29.8	17.0	29.8	
A6	6	0.08	0.35	7.35	100	3.0	13.2	878	2.0	2.1	6.9	20.1	14.9	20.1	
A7		0.08	0.35	13.62	100	1.0	19.1	1315	2.0	2.1	10.3	29.4	17.3	29.4	
B4+A7	7	0.08	0.35	20.51	Fror	n A7	29.4					29.4	10.0	29.4	
A8	8	0.08	0.35	2.24	100	2.0	15.1	150	2.0	2.1	1.2	16.3	10.8	16.3	
A9	9	0.08	0.35	2.16	100	3.0	13.2	300	3.0	2.6	1.9	15.1	11.7	15.1	
A10	10	0.08	0.35	8.08	100	2.0	15.1	1130	2.0	2.1	8.9	24.0	16.3	24.0	

A11	11	0.08	0.35	7.30	100	2.0	15.1	1050	3.0	2.6	6.7	21.9	15.8	21.9
A12		0.08	0.35	8.71	100	2.0	15.1	1190	3.0	2.6	7.6	22.8	16.6	22.8
B5+A12	12	0.08	0.35	10.31	Fror	m B6	14.2	1190	3.0	2.6	7.6	21.8	16.6	21.8
A13		0.08	0.35	13.96	100	2.0	15.1	1130	2.5	2.4	7.9	23.1	16.3	23.1
B6+A13	13	0.08	0.35	26.36	Fror	m B6	23.6	1130	2.5	2.4	7.9	31.6	16.3	31.6
A14	14	0.08	0.35	8.24	100	2.0	15.1	1150	2.0	2.1	9.0	24.2	16.4	24.2
A15		0.08	0.35	0.61	100	2.0	15.1	120	2.0	2.1	0.9	16.1	10.7	16.1
OSA6	OSA6	0.90	0.96	3.29	100	2.0	3.0	650	1.0	1.5	7.2	10.2	13.6	13.6
						EXISTING B	BASINS							
B1	B1	0.08	0.35	3.36	100	3.0	13.2	445	1.0	1.5	4.9	18.2	12.5	18.2
B2	B2	0.08	0.35	0.75	100	1.0	19.1	87	1.0	1.5	1.0	20.0	10.5	20.0
В3	B3	0.08	0.35	4.78	100	2.0	15.1	738	3.0	2.6	4.7	19.9	14.1	19.9
B4	B4	0.08	0.35	6.89	100	3.0	13.2	680	3.0	2.6	4.4	17.6	13.8	17.6
B5	B5	0.08	0.35	1.61	100	3.0	13.2	170	4.0	3.0	0.9	14.2	10.9	14.2
B6	B6	0.08	0.35	12.40	100	2.0	15.1	1080	2.0	2.1	8.5	23.6	16.0	23.6

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

REPORT TYPE: Final DATE: 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED	RUNOFF		5 YR STORM		И	P1=	1.46
				DIRECT RUNOF	F		
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
	EXISTI	NG A - BA	SINS			•	
OSA1	OSA1	3.68	0.53	42.3	1.96	1.86	3.6
OSA2	OSA2	92.80	0.19	40.5	17.34	1.91	33.1
OSA3	OSA3	69.15	0.19	30.8	12.99	2.25	29.3
OSA4	OSA4	32.65	0.20	25.5	6.37	2.51	16.0
OSA5	OSA5	11.33	0.19	14.3	2.16	3.39	7.3
A1	1	7.08	0.08	20.7	0.57	2.82	1.6
A2		19.70	0.08	20.2	1.58	2.86	4.5
OSA1-OSA5+A2+B1	2	232.68	0.18	47.9	42.67	1.71	73.1
A3		11.68	0.08	21.1	0.93	2.79	2.6
B2+A3	3	12.43	0.08	27.9	0.99	2.39	2.4
A4	4	4.24	0.08	19.2	0.34	2.93	1.0
A5		10.58	0.08	21.9	0.85	2.74	2.3
B3+A5	5	15.37	0.08	29.8	1.23	2.30	2.8
A6	6	7.35	0.08	20.1	0.59	2.86	1.7
A7		13.62	0.08	29.4	1.09	2.32	2.5
B4+A7	7	20.51	0.08	29.4	1.64	2.32	3.8
A8	8	2.24	0.08	16.3	0.18	3.18	0.6
A9	9	2.16	0.08	15.1	0.17	3.30	0.6
A10	10	8.08	0.08	24.0	0.65	2.60	1.7
A11	11	7.30	0.08	21.9	0.58	2.74	1.6
A12		8.71	0.08	22.8	0.70	2.68	1.9
B5+A12	12	10.31	0.08	21.8	0.83	2.74	2.3
A13		13.96	0.08	23.1	1.12	2.66	3.0
B6+A13	13	26.36	0.08	31.6	2.11	2.22	4.7
A14	14	8.24	0.08	24.2	0.66	2.59	1.7
A15		0.61	0.08	16.1	0.05	3.21	0.2
OSA6	OSA6	3.29	0.90	13.6	2.96	3.47	10.3
	EXIST	ING B BAS	SINS				
B1	B1	3.36	0.08	18.2	0.27	3.02	0.8
B2	B2	0.75	0.08	20.0	0.06	2.87	0.2
B3	B3	4.78	0.08	19.9	0.38	2.88	1.1
B4	B4	6.89	0.08	17.6	0.55	3.07	1.7
B5	B5	1.61	0.08	14.2	0.13	3.40	0.4
B6	B6	12.40	0.08	23.6	0.99	2.63	2.6

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: TDM

AGENCY: El Paso County

REPORT TYPE: Final 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED	RUNOFF		100	YR STOR	И	P1=	2.47
				DIRECT RUNOF	F		
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
	EXIST	ING A-BAS	SINS				
OSA1	OSA1	3.68	0.69	42.3	2.53	3.14	7.9
OSA2	OSA2	92.80	0.43	40.5	39.90	3.23	128.7
OSA3	OSA3	69.15	0.43	30.8	29.78	3.81	113.6
OSA4	OSA4	32.65	0.44	25.5	14.24	4.25	60.5
OSA5	OSA5	11.33	0.43	14.3	4.91	5.73	28.1
A1	1	7.08	0.35	20.7	2.48	4.77	11.8
A2		19.70	0.35	20.2	6.90	4.83	33.3
OSA1-OSA5+A2+B1	2	232.68	0.43	47.9	99.43	2.90	288.2
A3		11.68	0.35	21.1	4.09	4.73	19.3
B2+A3	3	12.43	0.35	27.9	4.35	4.04	17.6
A4	4	4.24	0.35	19.2	1.48	4.97	7.4
A5		10.58	0.35	21.9	3.70	4.63	17.1
B3+A5	5	15.37	0.35	29.8	5.38	3.89	20.9
A6	6	7.35	0.35	20.1	2.57	4.84	12.5
A7		13.62	0.35	29.4	4.77	3.92	18.7
B4+A7	7	20.51	0.35	29.4	7.18	3.92	28.1
A8	8	2.24	0.35	16.3	0.78	5.39	4.2
A9	9	2.16	0.35	15.1	0.76	5.58	4.2
A10	10	8.08	0.35	24.0	2.83	4.40	12.5
A11	11	7.30	0.35	21.9	2.56	4.63	11.8
A12		8.71	0.35	22.8	3.05	4.53	13.8
B5+A12	12	10.31	0.35	21.8	3.61	4.64	16.8
A13		13.96	0.35	23.1	4.89	4.50	22.0
B6+A13	13	26.36	0.35	31.6	9.23	3.76	34.7
A14	14	8.24	0.35	24.2	2.89	4.39	12.7
A15		0.61	0.35	16.1	0.21	5.42	1.2
OSA6	OSA6	3.29	0.96	13.6	3.16	5.87	18.5
	EXIST	ING B-BAS	SINS				
B1	B1	3.36	0.35	18.2	1.18	5.11	6.0
B2	B2	0.75	0.35	20.0	0.26	4.85	1.3
B3	B3	4.78	0.35	19.9	1.67	4.87	8.2
B4	B4	6.89	0.35	17.6	2.41	5.19	12.5
B5	B5	1.61	0.35	14.2	0.56	5.76	3.2
B6	B6	12.40	0.35	23.6	4.34	4.44	19.3

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: KGV

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

^{*}C-Values and Basin Imperviousness based on Table 6-6, City of Colorado Springs Drainage Criteria Manual

SUB-BASIN	SURFACE DESIGNATION	AREA	CIENTS	% IMPERV			
		ACRE	C2	C5	C10	C100	
		PROPOSI	ED A-BASI	NS			
OSA1	Residential - 2.5 Acre	0.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	1.65		0.08		0.35	0
	Streets - Gravel	0.00		0.59		0.70	80
	Streets - Paved	2.03		0.90		0.96	100
OSA1 TOTAL	WEIGHTED AVERAGE	3.68		0.53		0.69	55
OSA2	Residential - 2.5 Acre	92.80		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Gravel	0.00		0.59		0.70	80
	Streets - Paved	3.50		0.90		0.96	100
OSA2 TOTAL	WEIGHTED AVERAGE	96.30		0.19		0.43	13
OSA3	Residential - 2.5 Acre	66.55		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Gravel	0.00		0.59		0.70	80
	Streets - Paved	2.60		0.90		0.96	100
OSA3 TOTAL	WEIGHTED AVERAGE	69.15		0.19		0.43	13
OSA4	Residential - 2.5 Acre	31.11		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Gravel	0.00		0.59		0.70	80
	Streets - Paved	1.55		0.90		0.96	100
OSA4 TOTAL	WEIGHTED AVERAGE	32.65		0.20		0.44	14
OSA5	Residential - 2.5 Acre	10.86		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Gravel	0.00		0.59		0.70	80
_	Streets - Paved	0.47		0.90		0.96	100
OSA5 TOTAL	WEIGHTED AVERAGE	11.33		0.19		0.43	13
A1	Residential - 2.5 Acre	13.23		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: KGV

AGENCY: El Paso County

			C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.	5 Acre			0.16		0.41	9.2
Pasture/Meado	w/Lawn			0.08		0.35	0
Streets - Grave				0.59		0.70	80
Streets - Paved				0.90		0.96	100
*O.V-lu-a and Davin I	Table C.C. Oite	f O-1	Danis and Oritori	- Manual			
"C-values and Basin II	mperviousness based on Table 6-6, City of Streets - Paved	0.32	Drainage Criteria	0.90		0.96	100
A1 TOTAL	WEIGHTED AVERAGE	13.55		0.18		0.42	11
A2	Residential - 2.5 Acre	6.89		0.16		0.41	9.2
<u> </u>	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.35		0.90		0.96	100
A2 TOTAL	WEIGHTED AVERAGE	7.24		0.20		0.44	14
A3	Residential - 2.5 Acre	6.48		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A3 TOTAL	WEIGHTED AVERAGE	6.48		0.16		0.41	9
A4	Residential - 2.5 Acre	5.86		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.18		0.90		0.96	100
A4 TOTAL	WEIGHTED AVERAGE	6.03		0.18		0.43	12
A5	Residential - 2.5 Acre	7.83		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.19		0.90		0.96	100
A5 TOTAL	WEIGHTED AVERAGE	8.02		0.18		0.42	11
A6	Residential - 2.5 Acre	3.84		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.18		0.90		0.96	100
A6 TOTAL	WEIGHTED AVERAGE	4.02		0.19		0.43	13
A7	Residential - 2.5 Acre	0.50		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.12		0.90		0.96	100
A7 TOTAL	WEIGHTED AVERAGE	0.63		0.30		0.52	27
A8	Residential - 2.5 Acre	7.03		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.17		0.90		0.96	100
A8 TOTAL	WEIGHTED AVERAGE	7.21		0.18		0.42	11
A9	Residential - 2.5 Acre	0.00		0.16		0.41	9.2

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: KGV

AGENCY: El Paso County

			C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5	Acre			0.16		0.41	9.2
Pasture/Meadov	v/Lawn			0.08		0.35	0
Streets - Gravel				0.59		0.70	80
Streets - Paved				0.90		0.96	100
*C-Values and Basin In	nperviousness based on Table 6-6, City o		Drainage Criteri			0.05	0
	Pasture/Meadow/Lawn	1.62		0.08		0.35	0
	Streets - Paved	1.62		0.90		0.96	100
A9 TOTAL	WEIGHTED AVERAGE	3.23		0.49		0.66	50
A10	Residential - 2.5 Acre	0.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.58		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A10 TOTAL	WEIGHTED AVERAGE	0.58		0.08		0.35	0
A10A Res	Residential - 2.5 Acre	1.49		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A10A TOTAL	WEIGHTED AVERAGE	1.49		0.16		0.41	9
A11	Residential - 2.5 Acre	3.54		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.07		0.90		0.96	100
A11 TOTAL	WEIGHTED AVERAGE	3.61		0.17		0.42	11
A12	Residential - 2.5 Acre	2.27		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.09		0.90		0.96	100
A12 TOTAL	WEIGHTED AVERAGE	2.36		0.19		0.43	13
A13	Residential - 2.5 Acre	3.26		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.07		0.90		0.96	100
A13 TOTAL	WEIGHTED AVERAGE	3.34		0.18		0.42	11
A14	Residential - 2.5 Acre	0.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.63		0.08		0.35	0
	Streets - Paved	0.63		0.90		0.96	100
A14 TOTAL	WEIGHTED AVERAGE	1.25		0.49		0.66	50
A15	Residential - 2.5 Acre	3.70		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.46		0.08		0.35	0
	Streets - Paved	0.00		0.90	<u> </u>	0.96	100
A15 TOTAL	WEIGHTED AVERAGE	4.16		0.15	<u> </u>	0.40	8

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

			C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5	Acre			0.16		0.41	9.2
Pasture/Meadov	v/Lawn			0.08		0.35	0
Streets - Gravel				0.59		0.70	80
Streets - Paved				0.90		0.96	100
*C-Values and Basin Im	nperviousness based on Table 6-6, City of Residential - 2.5 Acre	2.08	Drainage Criteri	a Manual 0.16		0.41	9.2
AIJA	Pasture/Meadow/Lawn	0.00		0.70		0.47	0
	Streets - Paved	0.00		0.00		0.96	100
A15A TOTAL	WEIGHTED AVERAGE	2.08		0.90		0.90	9
A16	Residential - 2.5 Acre	4.41		0.16		0.41	9.2
A10	Pasture/Meadow/Lawn	0.00		0.08		0.41	0
	Streets - Paved	0.00		0.90		0.96	100
A16 TOTAL	WEIGHTED AVERAGE	4.41		0.16		0.41	9
A17	Residential - 2.5 Acre	4.02		0.16		0.41	9.2
A11	Pasture/Meadow/Lawn	0.00		0.08		0.35	0.2
	Streets - Paved	0.00		0.90		0.96	100
A17 TOTAL	WEIGHTED AVERAGE	4.02		0.16		0.41	9
A18	Residential - 2.5 Acre	1.81		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A18 TOTAL	WEIGHTED AVERAGE	1.81		0.16		0.41	9
A19	Residential - 2.5 Acre	2.40		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A19 TOTAL	WEIGHTED AVERAGE	2.40		0.16		0.41	9
A20	Residential - 2.5 Acre	1.65		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.33		0.08		0.35	0
	Streets - Paved	0.20		0.90		0.96	100
A20 TOTAL	WEIGHTED AVERAGE	2.18		0.21		0.45	16
A21	Residential - 2.5 Acre	0.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.58		0.08		0.35	0
	Streets - Paved	0.15		0.90		0.96	100
A21 TOTAL	WEIGHTED AVERAGE	0.73		0.25		0.47	20
A22	Residential - 2.5 Acre	2.03		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH REV. BY: KGV

AGENCY: El Paso County

			C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5	Acre			0.16		0.41	9.2
Pasture/Meadov	v/Lawn			0.08		0.35	0
Streets - Gravel				0.59		0.70	80
Streets - Paved				0.90		0.96	100
							•
	nperviousness based on Table 6-6, City of		Drainage Criteria	1		0.44	
A22 TOTAL	WEIGHTED AVERAGE	2.03		0.16		0.41	9
A23	Residential - 2.5 Acre	0.44		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A23 TOTAL	WEIGHTED AVERAGE	0.44		0.16		0.41	9
OSA6	Residential - 2.5 Acre	0.78		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.03		0.90		0.96	100
OSA6 TOTAL	WEIGHTED AVERAGE	0.81		0.19		0.43	13
A24	Residential - 2.5 Acre	11.25		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.34		0.90		0.96	100
A24 TOTAL	WEIGHTED AVERAGE	11.59		0.18		0.43	12
A25	Residential - 2.5 Acre	0.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.81		0.08		0.35	0
	Streets - Paved	0.81		0.90		0.96	100
A25 TOTAL	WEIGHTED AVERAGE	1.61		0.49		0.66	50
A26	Residential - 2.5 Acre	4.12		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.58		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A26 TOTAL	WEIGHTED AVERAGE	4.70		0.15		0.40	8
A26A	Residential - 2.5 Acre	1.00		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A26A TOTAL	WEIGHTED AVERAGE	1.00		0.16		0.41	9
A27	Residential - 2.5 Acre	5.25		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A27 TOTAL	WEIGHTED AVERAGE	5.25		0.16		0.41	9
A28	Residential - 2.5 Acre	2.75		0.16	<u> </u>	0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

			C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5	5 Acre			0.16		0.41	9.2
Pasture/Meadov	w/Lawn			0.08		0.35	0
Streets - Gravel				0.59		0.70	80
Streets - Paved				0.90		0.96	100
*C-Values and Basin Ir	mperviousness based on Table 6-6, City o	of Colorado Springs	Drainage Criteria	Manual			
	Streets - Paved	0.00	J. 1911	0.90		0.96	100
A28 TOTAL	WEIGHTED AVERAGE	2.75		0.16		0.41	9
A29	Residential - 2.5 Acre	4.75		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A29 TOTAL	WEIGHTED AVERAGE	4.75		0.16		0.41	9
A30	Residential - 2.5 Acre	0.61		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A30 TOTAL	WEIGHTED AVERAGE	0.61		0.16		0.41	9
OSA7	Residential - 2.5 Acre	2.44		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
OSA7 TOTAL	WEIGHTED AVERAGE	2.44		0.16		0.41	9
		PROPOSI	ED B-BASII	NS			
B1	Residential - 2.5 Acre	3.20		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
B1 TOTAL	WEIGHTED AVERAGE	3.20		0.16		0.41	9
B2	Residential - 2.5 Acre	0.78		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
B2 TOTAL	WEIGHTED AVERAGE	0.78		0.16		0.41	9
B3	Residential - 2.5 Acre	5.24		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
B3 TOTAL	WEIGHTED AVERAGE	5.24		0.16		0.41	9
B4	Residential - 2.5 Acre	6.79		0.16		0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.35		0.90		0.96	100
B4 TOTAL	WEIGHTED AVERAGE	7.14		0.20		0.44	14

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

REPORT TYPE: Final 9/17/2024

	C2*	C5*	C10*	C100*	% IMPERV
Residential - 2.5 Acre		0.16		0.41	9.2
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.59		0.70	80
Streets - Paved		0.90		0.96	100

*C-Values and Basin	Imperviousness based on Table 6-6, City of	Colorado Springs	Drainage Criteria	Manual		
B5	Residential - 2.5 Acre	1.59		0.16	0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.00		0.90	0.96	100
B5 TOTAL	WEIGHTED AVERAGE	1.59		0.16	0.41	9
B6	Residential - 2.5 Acre	7.92		0.16	0.41	9.2
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.00		0.90	0.96	100
B6 TOTAL	WEIGHTED AVERAGE	7.92		0.16	0.41	9

Pond Tributary Areas

South OSA1-OSA5, A1-A2, B1	237.10	13.28
G14b A4-A10, B2-3	35.73	14.87
G18 B4-B5, A11-A15	23.45	13.47
G19 B6, OSA6, A24-A26	26.64	12.75

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

REPORT TYPE: Final DATE: 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED TIME OF CONCENTRATION STANDARD FORM SF-2

SUB-BASIN				INITIAL/OVERLAND			TRAVEL TIME				TIME OF CONC.		FINAL			
	DATA				CA			TIME (t _i)			$(\mathbf{t_t})$			t _c		t _c
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	5	100	LENGTH	SLOPE	t _i	LENGTH	SLOPE	VEL.	t _t	COMP.	MINIMUM	
				Ac			Ft	%	Min	Ft	%	FPS	Min	t _c	t _c	Min
			•			PROI	POSED A BA	ASINS			•		•			
OSA1	OSA1	0.53	0.69	3.68	1.96	2.53	50	2.0	6.0	5815	1.0	1.5	64.6	70.6	42.3	42.3
OSA2	OSA2	0.16	0.41	96.30	15.41	39.48	100	2.0	14.0	5495	1.0	1.5	61.1	75.0	40.5	40.5
OSA3	OSA3	0.19	0.43	69.15	12.99	29.73	100	3.0	11.8	3750	1.5	1.8	34.0	45.8	30.8	30.8
OSA4	OSA4	0.20	0.44	32.65	6.37	14.24	100	2.0	13.4	2798	2.0	2.1	22.0	35.4	25.5	25.5
OSA5	OSA5	0.19	0.43	11.33	2.16	4.91	100	4.0	10.7	780	2.0	2.1	6.1	16.8	14.3	14.3
A1		0.18	0.42	13.55	2.40	5.73	100	3.0	12.0	835	2.0	2.1	6.6	18.5	14.6	18.5
A1+OSA2+OSA3+OSA4+OSA5+DPB1	1	0.18	0.42	226.18	39.84	95.40	From	OSA2	40.5	835	2.0	2.1	6.6	47.1	14.6	47.1
A2		0.20	0.44	7.24	1.42	3.16	50	1.0	12.0	1220	2.0	2.1	9.6	21.5	16.8	21.5
A2+OSA1+DP1	2	0.18	0.43	237.10	43.22	101.09	From	DP1	47.1	100	1.0	1.5	1.1	48.2	10.6	48.2
A3	3	0.16	0.41	6.48	1.04	2.66	100	2.0	14.0	500	1.5	1.8	4.5	18.5	12.8	18.5
A4		0.18	0.43	6.03	1.10	2.57	100	2.0	13.6	435	1.0	1.5	4.8	18.5	12.4	18.5
A4+DPB2	4	0.16	0.41	7.26	1.16	2.98	From	DPB2	10.4	435	1.0	1.5	4.8	15.3	12.4	15.3
A5		0.18	0.42	8.02	1.42	3.39	100	3.0	12.0	750	2.0	2.1	5.9	17.9	14.2	17.9
A5+DPB3	5	0.17	0.42	13.26	2.26	5.54	From	DPB3	13.9	435	1.0	1.5	4.8	18.7	12.4	18.7
DP5+DP4	5A	0.17	0.42	20.52	3.42	8.51	From	DP4	15.3	540	1.0	1.5	6.0	21.3	13.0	21.3
A6	6	0.19	0.43	4.02	0.77	1.74	100	1.0	17.0	540	1.0	1.5	6.0	23.0	13.0	23.0
DP5A+DP6	6A	0.17	0.42	24.53	4.19	10.26	From	DP5A	21.3	510	1.0	1.5	5.7	26.9	12.8	26.9
A7	7	0.30	0.52	0.63	0.19	0.32	50	3.0	7.3	300	1.5	1.8	2.7	10.0	11.7	11.7
A8	8	0.18	0.42	7.21	1.28	3.05	100	1.0	17.2	800	1.0	1.5	8.9	26.1	14.4	26.1
A8+DP7+DP6A	8A	0.18	0.42	32.36	5.67	13.63	From	DP6A	26.9	150	1.0	1.5	1.7	28.6	10.8	28.6
A9	9	0.49	0.66	3.23	1.58	2.12	50	4.0	5.1	1910	1.5	1.8	17.3	22.4	20.6	22.4
A10		0.08	0.35	0.58	0.05	0.20	100	2.0	15.1	150	1.5	1.8	1.4	16.5	10.8	16.5
A10+DP8A+DP9	10	0.20	0.44	36.18	7.30	15.95	DP	P8A	28.6	180	1.0	8.3	0.4	29.0	11.0	29.0
A10A		0.16	0.41	1.49	0.24	0.61	100	2.0	14.0	150	1.5	1.8	1.4	15.3	10.8	15.3
A10A+G14b Out	10A	0.16	0.41	1.49	0.24	0.61	From	A10A	15.3					15.3	10.0	15.3
A11		0.17	0.42	3.61	0.63	1.52	100	2.0	13.7	409	1.5	1.8	3.7	17.5	12.3	17.5
DPB5+A11	11	0.17	0.42	5.20	0.88	2.17	From	n A11	17.5					17.5	10.0	17.5

A12	12	0.19	0.43	2.36	0.45	1.02	100	2.0	13.5	385	2.5	2.4	2.7	16.2	12.1	16.2
DP11+DP12	12A	0.18	0.42	7.56	1.33	3.19	From [DP11	17.5	385	2.5	2.4	2.7	20.2	12.1	20.2
A13		0.18	0.42	3.34	0.59	1.41	100	2.0	13.7	440	1.5	1.8	4.0	17.7	12.4	17.7
A13+DPB4	13	0.19	0.43	10.48	1.99	4.53	From [OPB4	12.6	440	1.5	1.8	4.0	16.6	12.4	16.6
DP12A+DP13	13A	0.18	0.43	18.04	3.32	7.72	From D	P12A	20.2	50	1.5	1.8	0.5	20.6	10.3	20.6
A14	14	0.49	0.66	1.25	0.61	0.82	50	4.0	5.1	510	1.5	1.8	4.6	9.7	12.8	12.8
DP13A+DP14	14A	0.20	0.44	19.29	3.93	8.54	From D	P13A	20.6	150	1.0	1.5	1.7	22.3	10.8	22.3
A15		0.15	0.40	4.16	0.63	1.68	100	2.0	14.1	700	1.0	1.5	7.8	21.9	13.9	21.9
DP14A+A15	15	0.19	0.44	23.45	4.56	10.22	From D	P14A	22.3	300	1.0	1.5	3.3	25.6	11.7	25.6
A15A		0.16	0.41	2.08	0.33	0.85	100	2.0	14.0	200	1.0	1.5	2.2	16.2	11.1	16.2
DP15A+G18 Out	15A	0.16	0.41	2.08	0.33	0.85	From D	P15A	16.2					16.2	10.0	16.2
A16	16	0.16	0.41	4.41	0.71	1.81	100	1.0	17.6	450	1.0	1.5	5.0	22.6	12.5	22.6
A17	17	0.16	0.41	4.02	0.64	1.65	100	2.0	14.0	250	1.5	1.8	2.3	16.2	11.4	16.2
A18	18	0.16	0.41	1.81	0.29	0.74	100	2.0	14.0	250	2.0	2.1	2.0	15.9	11.4	15.9
A19	19	0.16	0.41	2.40	0.38	0.98	100	1.0	17.6	290	1.0	1.5	3.2	20.8	11.6	20.8
A20	20	0.21	0.45	2.18	0.47	0.98	50	4.0	7.4	900	1.5	1.8	8.2	15.5	15.0	15.5
A21	21	0.25	0.47	0.73	0.18	0.35	50	4.0	7.1	350	1.5	1.8	3.2	10.3	11.9	11.9
A22	22	0.16	0.41	2.03	0.33	0.83	100	2.0	14.0	115	2.0	2.1	0.9	14.9	10.6	14.9
A23		0.16	0.41	0.44	0.07	0.18	50	1.0	12.4	55	1.0	1.5	0.6	13.0	10.3	13.0
DP20+DP21+A23	23	0.18	0.42	3.21	0.58	1.36	From [DP22	14.9	55	1.0	1.5	0.6	15.5	10.3	15.5
OSA6	OSA6	0.19	0.43	0.81	0.16	0.35	50	3.0	8.3	200	3.0	2.6	1.3	9.6	11.1	11.1
A24		0.18	0.43	11.59	2.11	4.94	100	3.0	11.9	740	3.0	2.6	4.7	16.7	14.1	16.7
DPB6+A24	24	0.17	0.42	19.51	3.37	8.19	From [13.6	740	3.0	2.6	4.7	18.4	14.1	18.4
DPOSA3+DP24	24A	0.17	0.42	20.33	3.53	8.54	From [DP24	18.4					18.4	10.0	18.4
A25	25	0.49	0.66	1.61	0.79	1.06	50	4.0	5.1	550	1.5	1.8	5.0	10.1	13.1	13.1
DP24A+DP25	25A	0.20	0.44	21.94	4.32	9.60	From D	P24A	18.4	550	1.5	1.8	5.0	23.3	13.1	23.3
A26		0.15	0.40	4.70	0.71	1.89	100	2.0	14.1	650	2.0	2.1	5.1	19.2	13.6	19.2
DP25A+OSA4+A26	26	0.19	0.43	26.64	5.03	11.49	From D		23.3	400	2.0	2.1	3.1	26.5	12.2	26.5
A26A		0.16	0.41	1.00	0.16	0.41	50	2.0	9.9	200	1.5	1.8	1.8	11.7	11.1	11.7
A26A+G19 Out	26A	0.16	0.41	1.00	0.16	0.41	From		11.7					11.7	10.0	11.7
A27	27	0.16	0.41	5.25	0.84	2.15	100	2.0	14.0	425	2.5	2.4	3.0	16.9	12.4	16.9
A28	28	0.16	0.41	2.75	0.44	1.13	100	2.0	14.0	400	2.0	2.1	3.1	17.1	12.2	17.1
A29	29	0.16	0.41	4.75	0.76	1.95	100	2.0	14.0	438	1.5	1.8	4.0	17.9	12.4	17.9
A30	30	0.16	0.41	0.61	0.10	0.25	100	2.0	14.0	350	2.0	2.1	2.7	16.7	11.9	16.7
OSA7	OSA7	0.16	0.41	2.44	0.39	1.00	100	2.0	14.0	375	1.0	1.5	4.2	18.1	12.1	18.1
	PROPOSED B BASINS															
B1	B1	0.16	0.41	3.20	0.51	1.31	100	2.0	14.0	430	2.0	2.1	3.4	17.3	12.4	12.4
B2	B2	0.16	0.41	0.78	0.12	0.32	100	1.0	17.6	80	1.0	1.5	0.9	18.5	10.4	10.4
B3	B3	0.16	0.41	5.24	0.84	2.15	100	2.0	14.0	700	2.0	2.1	5.5	19.5	13.9	13.9
B4	B4	0.20	0.44	7.14	1.40	3.12	50	4.0	7.5	650	2.0	2.1	5.1	12.6	13.6	12.6
B5	B5	0.16	0.41	1.59	0.25	0.65	100	3.0	12.2	190	3.0	2.6	1.2	13.4	11.1	11.1
B6	B6	0.16	0.41	7.92	1.27	3.25	100	2.0	14.0	650	2.0	2.1	5.1	19.1	13.6	13.6
	•	•											•	•		

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

REPORT TYPE: Final 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED	RUNOFF		5	YR STOR	P1=	1.46				
				DIRECT RUNOF	F					
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)			
PROPOSED A-BASINS										
OSA1	OSA1	3.68	0.53	42.3	1.96	1.86	3.6			
OSA2	OSA2	96.30	0.16	40.5	15.41	1.91	29.4			
OSA3	OSA3	69.15	0.19	30.8	12.99	2.25	29.3			
OSA4	OSA4	32.65	0.20	25.5	6.37	2.51	16.0			
OSA5	OSA5	11.33	0.19	14.3	2.16	3.39	7.3			
A1		13.55	0.18	18.5	2.40	2.99	7.2			
A1+OSA2+OSA3+OSA4+OSA5+DPB1	1	226.18	0.18	47.1	39.84	1.73	69.0			
A2		7.24	0.20	21.5	1.42	2.76	3.9			
A2+OSA1+DP1	2	237.10	0.18	48.2	43.22	1.71	73.7			
South Pond Out	2A						17.0			
A3	3	6.48	0.16	18.5	1.04	2.99	3.1			
A4		6.03	0.18	18.5	1.10	2.99	3.3			
A4+DPB2	4	7.26	0.16	15.3	1.16	3.29	3.8			
A5		8.02	0.18	17.9	1.42	3.04	4.3			
A5+DPB3	5	13.26	0.17	18.7	2.26	2.97	6.7			
DP5+DP4	5A	20.52	0.17	21.3	3.42	2.78	9.5			
A6	6	4.02	0.19	23.0	0.77	2.67	2.1			
DP5A+DP6	6A	24.53	0.17	26.9	4.19	2.44	10.2			
A7	7	0.63	0.30	11.7	0.19	3.71	0.7			
A8	8	7.21	0.18	26.1	1.28	2.48	3.2			
A8+DP7+DP6A	8A	32.36	0.18	28.6	5.67	2.36	13.3			
A9	9	3.23	0.49	22.4	1.58	2.70	4.3			
A10		0.58	0.08	16.5	0.05	3.17	0.1			
A10+DP8A+DP9	10	36.18	0.20	29.0	7.30	2.34	17.1			
A10A		1.49	0.16	15.3	0.24	3.28	0.8			
G14b Out							0.2			
A10A+G14b Out	10A	1.49	0.16	15.3	0.24	3.28	1.0			
A11		3.61	0.17	17.5	0.63	3.08	1.9			
DPB5+A11	11	5.20	0.17	17.5	0.88	3.08	2.7			
A12	12	2.36	0.19	16.2	0.45	3.19	1.4			
DP11+DP12	12A	7.56	0.18	20.2	1.33	2.86	3.8			
A13		3.34	0.18	17.7	0.59	3.06	1.8			
A13+DPB4	13	10.48	0.19	16.6	1.99	3.15	6.3			
DP12A+DP13	13A	18.04	0.18	20.6	3.32	2.83	9.4			
A14	14	1.25	0.49	12.8	0.61	3.56	2.2			

A15 4.16 0.15 21.9 0.63 2 DP14A+A15 15 23.45 0.19 25.6 4.56 2 A15A 2.08 0.16 16.2 0.33 3 G18 Out 0.16 0.16 0.16 0.16 0.16 0.16	2.71 10.7 2.74 1.7 2.51 11.5 2.20 1.1 0.1
DP14A+A15 15 23.45 0.19 25.6 4.56 2 A15A 2.08 0.16 16.2 0.33 3 G18 Out 0.16	2.51 11.5 3.20 1.1
A15A 2.08 0.16 16.2 0.33 3 G18 Out	3.20 1.1
G18 Out	
	0.1
DP15A+G18 Out 15A 2.08 0.16 16.2 0.33 3	J 0.1
	3.20 1.2
A16 16 4.41 0.16 22.6 0.71 2	69 1.9
A17 17 4.02 0.16 16.2 0.64 3	3.19 2.1
A18 18 1.81 0.16 15.9 0.29 3	.22 0.9
A19 19 2.40 0.16 20.8 0.38 2	81 1.1
A20 20 2.18 0.21 15.5 0.47 3	i.26 1.5
A21 21 0.73 0.25 11.9 0.18 3	6.67 0.7
A22 22 2.03 0.16 14.9 0.33 3	3.33 1.1
A23 0.44 0.16 13.0 0.07 3	.53 0.2
DP20+DP21+A23 23 3.21 0.18 15.5 0.58 3	.27 1.9
OSA6 OSA6 0.81 0.19 11.1 0.16 3	.79 0.6
A24 11.59 0.18 16.7 2.11 3	6.15 6.6
DPB6+A24 24 19.51 0.17 18.4 3.37 3	3.00 10.1
DPOSA3+DP24 24A 20.33 0.17 18.4 3.53 3	.00 10.6
A25 25 1.61 0.49 13.1 0.79 3	5.53 2.8
DP24A+DP25 25A 21.94 0.20 23.3 4.32 2	64 11.4
A26 4.70 0.15 19.2 0.71 2	.93 2.1
DP25A+OSA4+A26 26 26.64 0.19 26.5 5.03 2	46 12.4
A26A 1.00 0.16 11.7 0.16 3	3.71 0.6
G19 Out	0.1
A26A+G19 Out 26A 1.00 0.16 11.7 0.16 3	3.71 0.7
A27 27 5.25 0.16 16.9 0.84 3	3.13 2.6
A28 28 2.75 0.16 17.1 0.44 3	3.11 1.4
A29 29 4.75 0.16 17.9 0.76 3	3.04 2.3
A30 30 0.61 0.16 16.7 0.10 3	.15 0.3
OSA7 OSA7 2.44 0.16 18.1 0.39 3	.02 1.2
PROPOSED B-BASINS	
B1 B1 3.20 0.16 12.4 0.51 3	i.61 1.9
B2 B2 0.78 0.16 10.4 0.12 3	.88 0.5
<u> </u>	44 00
B3 B3 5.24 0.16 13.9 0.84 3	.44 2.9
	5.44 2.9 5.58 5.0
B4 B4 7.14 0.20 12.6 1.40 3	

PROJECT: Latigo Trails Filing 10
PROJECT NO: 21820-01CSCV

DESIGN BY: CGH
REV. BY: KGV

AGENCY: El Paso County

REPORT TYPE: Final DATE: 9/17/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED DEVELOPED	RUNOFF			YR STOR	И	P1=	2.47
				DIRECT RUNOF	F		
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
	PROPO	SED A-BA	SINS				
OSA1	OSA1	3.68	0.69	42.3	2.53	3.14	7.9
OSA2	OSA2	96.30	0.41	40.5	39.48	3.23	127.3
OSA3	OSA3	69.15	0.43	30.8	29.73	3.81	113.4
OSA4	OSA4	32.65	0.44	25.5	14.24	4.25	60.5
OSA5	OSA5	11.33	0.43	14.3	4.91	5.73	28.1
A1		13.55	0.42	18.5	5.73	5.06	29.0
A1+OSA2+OSA3+OSA4+OSA5+DPB1	1	226.18	0.42	47.1	95.40	2.93	279.5
A2		7.24	0.44	21.5	3.16	4.67	14.8
A2+OSA1+DP1	2	237.10	0.43	48.2	101.09	2.89	291.8
South Pond Out	2A						293.5
A3	3	6.48	0.41	18.5	2.66	5.06	13.5
A4		6.03	0.43	18.5	2.57	5.06	13.0
A4+DPB2	4	7.26	0.41	15.3	2.98	5.56	16.5
A5		8.02	0.42	17.9	3.39	5.15	17.5
A5+DPB3	5	13.26	0.42	18.7	5.54	5.03	27.8
DP5+DP4	5A	20.52	0.42	21.3	8.51	4.70	40.0
A6	6	4.02	0.43	23.0	1.74	4.51	7.9
DP5A+DP6	6A	24.53	0.42	26.9	10.26	4.13	42.3
A7	7	0.63	0.52	11.7	0.32	6.27	2.0
A8	8	7.21	0.42	26.1	3.05	4.20	12.8
A8+DP7+DP6A	8A	32.36	0.42	28.6	13.63	3.98	54.3
A9	9	3.23	0.66	22.4	2.12	4.57	9.7
A10		0.58	0.35	16.5	0.20	5.36	1.1
A10+DP8A+DP9	10	36.18	0.44	29.0	15.95	3.96	63.1
A10A		1.49	0.41	15.3	0.61	5.55	3.4
G14b Out							52.1
A10A+G14b Out	10A	1.49	0.41	15.3	0.61	5.55	55.5
A11		3.61	0.42	17.5	1.52	5.21	7.9
DPB5+A11	11	5.20	0.42	17.5	2.17	5.21	11.3
A12	12	2.36	0.43	16.2	1.02	5.40	5.5
DP11+DP12	12A	7.56	0.42	20.2	3.19	4.84	15.4
A13		3.34	0.42	17.7	1.41	5.17	7.3
A13+DPB4	13	10.48	0.43	16.6	4.53	5.34	24.2
DP12A+DP13	13A	18.04	0.43	20.6	7.72	4.78	36.9
A14	14	1.25	0.66	12.8	0.82	6.02	4.9

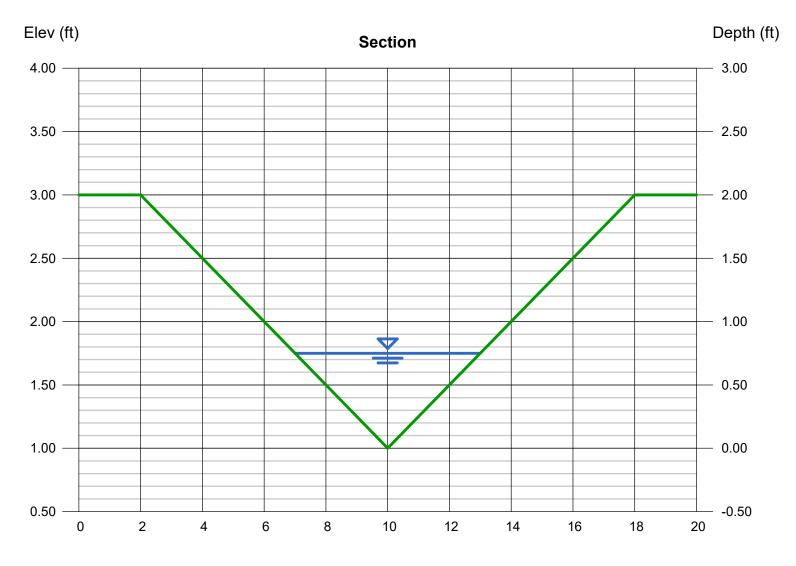
DP13A+DP14	14A	19.29	0.44	22.3	8.54	4.59	39.2
A15		4.16	0.40	21.9	1.68	4.63	7.8
DP14A+A15	15	23.45	0.44	25.6	10.22	4.25	43.4
A15A		2.08	0.41	16.2	0.85	5.41	4.6
G18 Out							27.1
DP15A+G18 Out	15A	2.08	0.41	16.2	0.85	5.41	31.7
A16	16	4.41	0.41	22.6	1.81	4.55	8.2
A17	17	4.02	0.41	16.2	1.65	5.40	8.9
A18	18	1.81	0.41	15.9	0.74	5.45	4.1
A19	19	2.40	0.41	20.8	0.98	4.76	4.7
A20	20	2.18	0.45	15.5	0.98	5.51	5.4
A21	21	0.73	0.47	11.9	0.35	6.21	2.2
A22	22	2.03	0.41	14.9	0.83	5.63	4.7
A23		0.44	0.41	13.0	0.18	5.98	1.1
DP20+DP21+A23	23	3.21	0.42	15.5	1.36	5.53	7.5
OSA6	OSA6	0.81	0.43	11.1	0.35	6.40	2.3
A24		11.59	0.43	16.7	4.94	5.33	26.3
DPB6+A24	24	19.51	0.42	18.4	8.19	5.08	41.6
DPOSA3+DP24	24A	20.33	0.42	18.4	8.54	5.08	43.4
A25	25	1.61	0.66	13.1	1.06	5.98	6.3
DP24A+DP25	25A	21.94	0.44	23.3	9.60	4.47	42.9
A26		4.70	0.40	19.2	1.89	4.96	9.4
DP25A+OSA4+A26	26	26.64	0.43	26.5	11.49	4.17	47.9
A26A		1.00	0.41	11.7	0.41	6.27	2.6
G19 Out							34.3
A26A+G19 Out	26A	1.00	0.41	11.7	0.41	6.27	36.9
A27	27	5.25	0.41	16.9	2.15	5.29	11.4
A28	28	2.75	0.41	17.1	1.13	5.26	5.9
A29	29	4.75	0.41	17.9	1.95	5.14	10.0
A30	30	0.61	0.41	16.7	0.25	5.32	1.3
OSA7	OSA7	2.44	0.41	18.1	1.00	5.11	5.1
	PROPO	SED B-BA	SINS	•		•	
B1	B1	3.20	0.41	12.4	1.31	6.12	8.0
B2	B2	0.78	0.41	10.4	0.32	6.57	2.1
B3	В3	5.24	0.41	13.9	2.15	5.81	12.5
B4	B4	7.14	0.44	12.6	3.12	6.06	18.9
B5	B5	1.59	0.41	11.1	0.65	6.42	4.2
B6	B6	7.92	0.41	13.6	3.25	5.87	19.0

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP OSA1

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1.00 Slope (%) = 2.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 7.90

Highlighted

= 0.75Depth (ft) Q (cfs) = 7.900Area (sqft) = 2.25Velocity (ft/s) = 3.51 Wetted Perim (ft) = 6.18Crit Depth, Yc (ft) = 0.76Top Width (ft) = 6.00EGL (ft) = 0.94

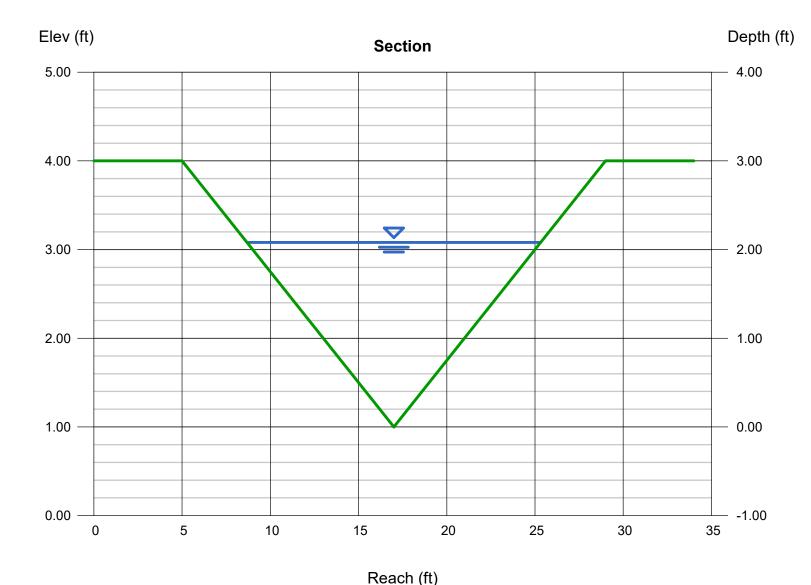
Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP OSA2

Triangular


Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 3.00

Invert Elev (ft) = 1.00 Slope (%) = 2.20 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 127.30 Highlighted

= 2.08Depth (ft) Q (cfs) = 127.30Area (sqft) = 17.31Velocity (ft/s) = 7.36Wetted Perim (ft) = 17.15 Crit Depth, Yc (ft) = 2.30Top Width (ft) = 16.64 EGL (ft) = 2.92

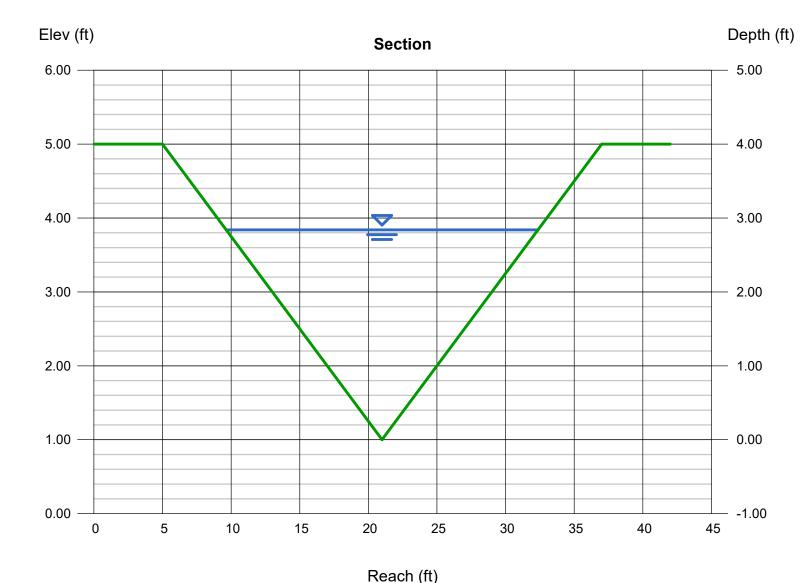
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 1

Triangular

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 4.00


Invert Elev (ft) = 1.00 Slope (%) = 2.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 279.50

Highlighted

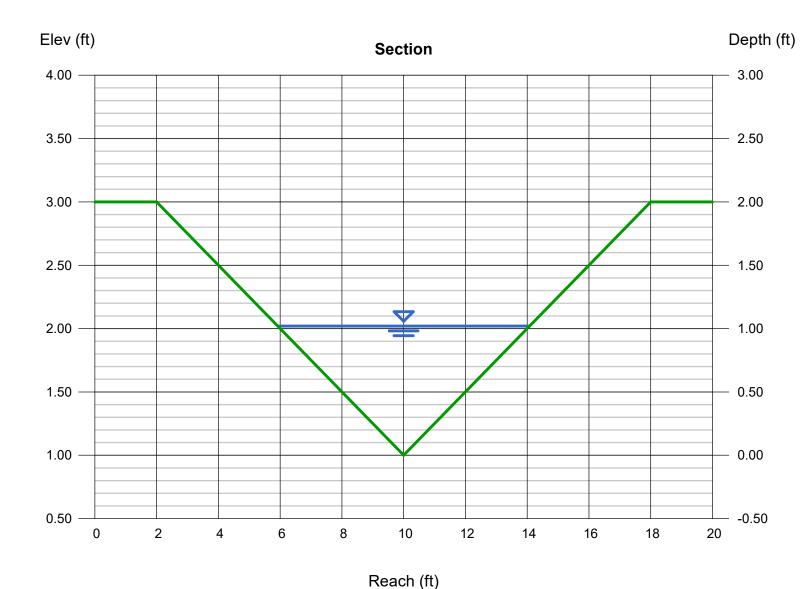
= 2.84Depth (ft) Q (cfs) = 279.50Area (sqft) = 32.26Velocity (ft/s) = 8.66 Wetted Perim (ft) = 23.42Crit Depth, Yc (ft) = 3.14Top Width (ft) = 22.72EGL (ft) = 4.01

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 4

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00


Invert Elev (ft) = 1.00 Slope (%) = 1.70N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 16.50

Highlighted = 1.02Depth (ft) Q (cfs)

= 16.50Area (sqft) = 4.16Velocity (ft/s) = 3.96Wetted Perim (ft) = 8.41 Crit Depth, Yc (ft) = 1.02Top Width (ft) = 8.16EGL (ft) = 1.26

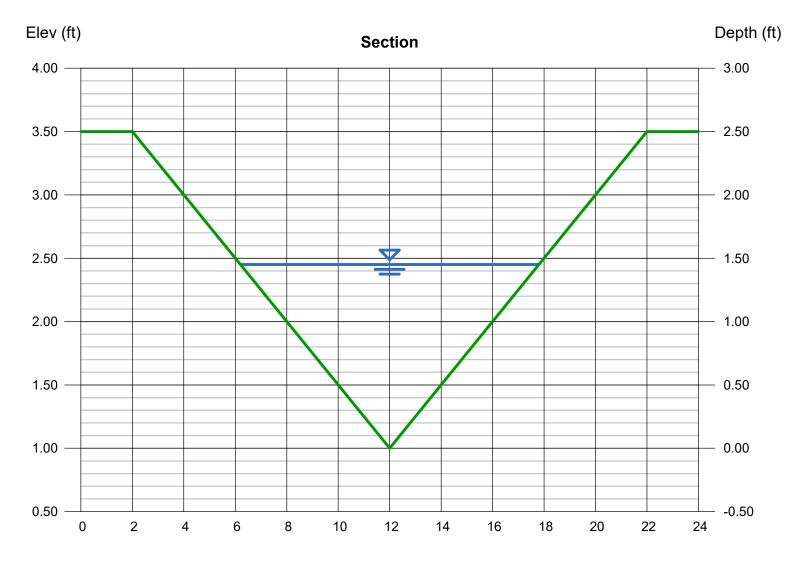
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 5A

Triangular

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.50


Invert Elev (ft) = 1.00 Slope (%) = 1.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 40.00

Highlighted

Depth (ft) = 1.45Q (cfs) = 40.00Area (sqft) = 8.41 Velocity (ft/s) = 4.76Wetted Perim (ft) = 11.96 Crit Depth, Yc (ft) = 1.45Top Width (ft) = 11.60EGL (ft) = 1.80

Reach (ft)

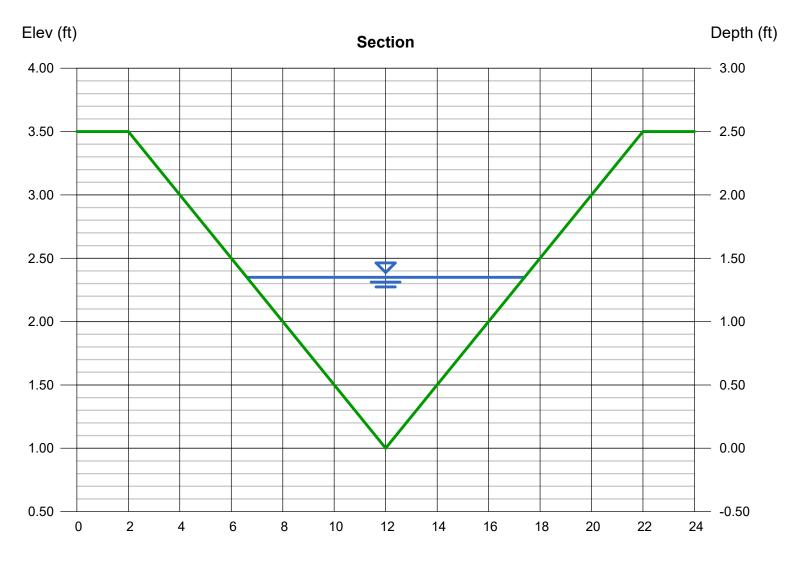
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 6A

_	-					
	rı	~	n	~		2
		-		u		
•		•		3	•	lar

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.50


Invert Elev (ft) = 1.00 Slope (%) = 2.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 42.30

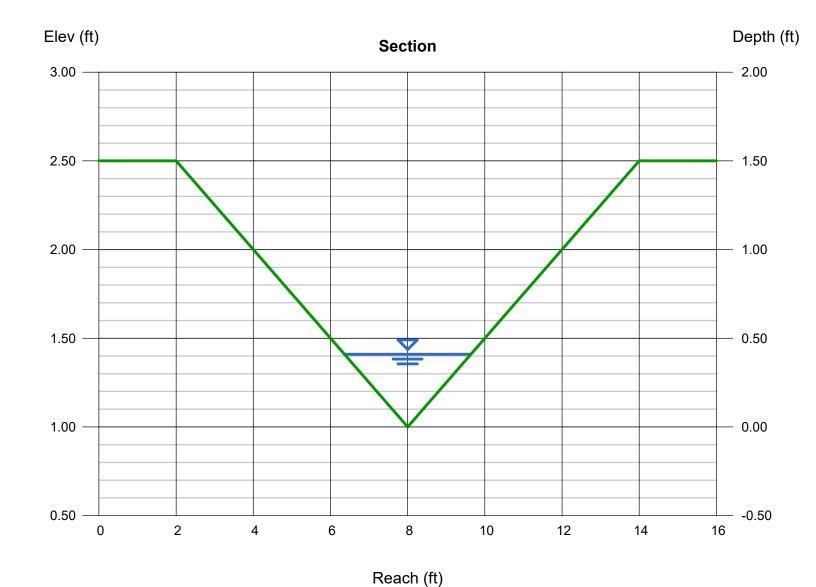
Highlighted

= 1.35Depth (ft) Q (cfs) = 42.30Area (sqft) = 7.29Velocity (ft/s) = 5.80 Wetted Perim (ft) = 11.13 Crit Depth, Yc (ft) = 1.48Top Width (ft) = 10.80EGL (ft) = 1.87

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024


Roadside Ditch - DP 7

Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 1.50
Invert Elev (ft)	= 1.00
Slope (%)	= 3.40
N-Value	= 0.030

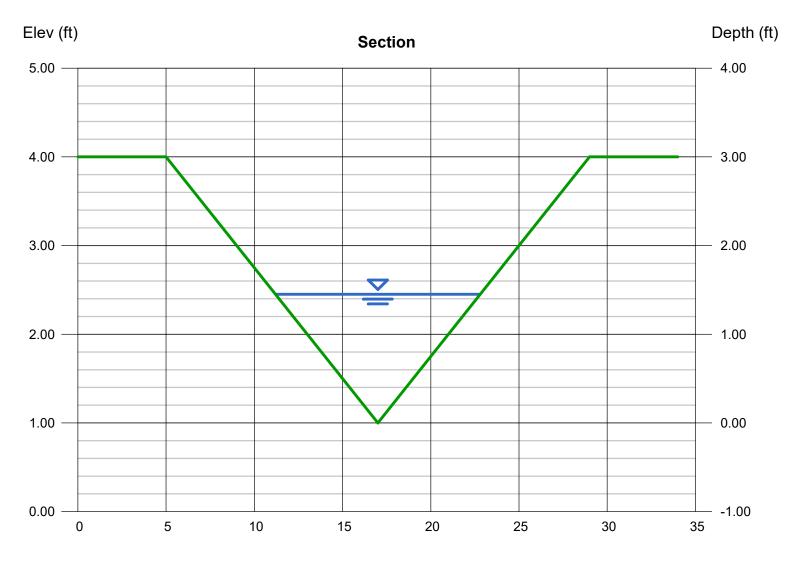
Calculations

Compute by: Known Q Known Q (cfs) = 2.00

Highlighted	
Depth (ft)	= 0.41
Q (cfs)	= 2.000
Area (sqft)	= 0.67
Velocity (ft/s)	= 2.97
Wetted Perim (ft)	= 3.38
Crit Depth, Yc (ft)	= 0.44
Top Width (ft)	= 3.28
EGL (ft)	= 0.55

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024


Roadside Ditch - DP 8A

Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 3.00
Invert Elev (ft)	= 1.00
Slope (%)	= 2.80
N-Value	= 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 54.30

Highlighted		
Depth (ft)	=	1.45
Q (cfs)	=	54.30
Area (sqft)	=	8.41
Velocity (ft/s)	=	6.46
Wetted Perim (ft)	=	11.96
Crit Depth, Yc (ft)	=	1.63
Top Width (ft)	=	11.60
EGL (ft)	=	2.10

Reach (ft)

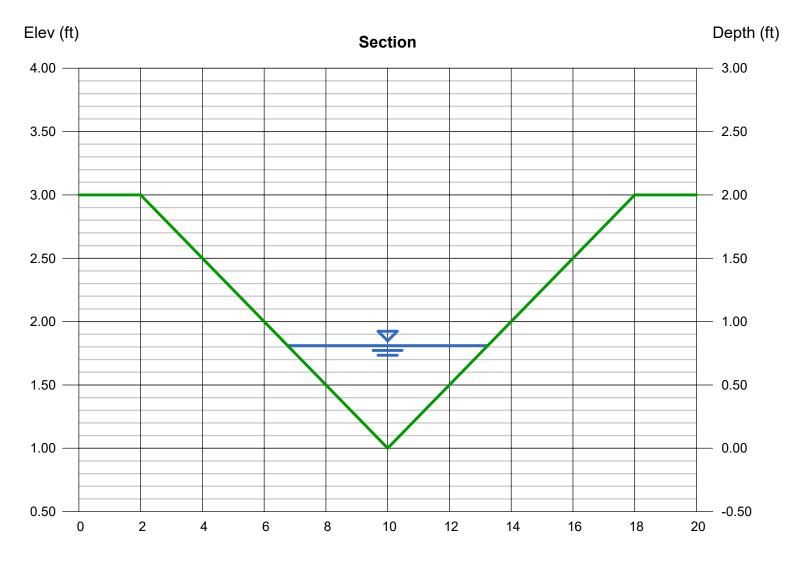
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 9

Triangula	r
-----------	---

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1.00 Slope (%) = 2.00 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 9.70

Highlighted

Depth (ft) = 0.81Q (cfs) = 9.700Area (sqft) = 2.62Velocity (ft/s) = 3.70Wetted Perim (ft) = 6.68Crit Depth, Yc (ft) = 0.82Top Width (ft) = 6.48EGL (ft) = 1.02

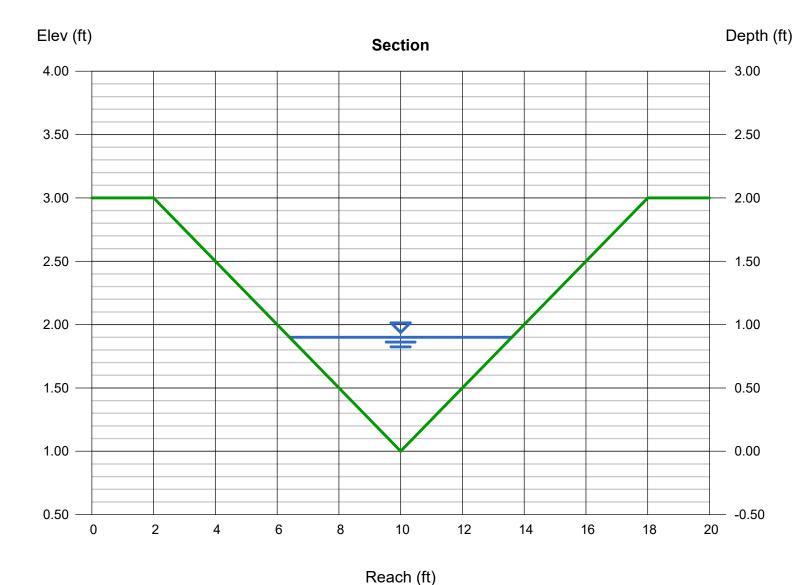
Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 11

Triangular	
Side Slopes (z:1)	= 4.00, 4.00
Total Depth (ft)	= 2.00


Invert Elev (ft) = 1.00 Slope (%) = 1.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 11.30

Highlighted Depth (ft) = 0.90 Q (cfs) = 11.30 Area (sqft) = 3.24

Q (cfs) = 11.30
Area (sqft) = 3.24
Velocity (ft/s) = 3.49
Wetted Perim (ft) = 7.42
Crit Depth, Yc (ft) = 0.87
Top Width (ft) = 7.20
EGL (ft) = 1.09

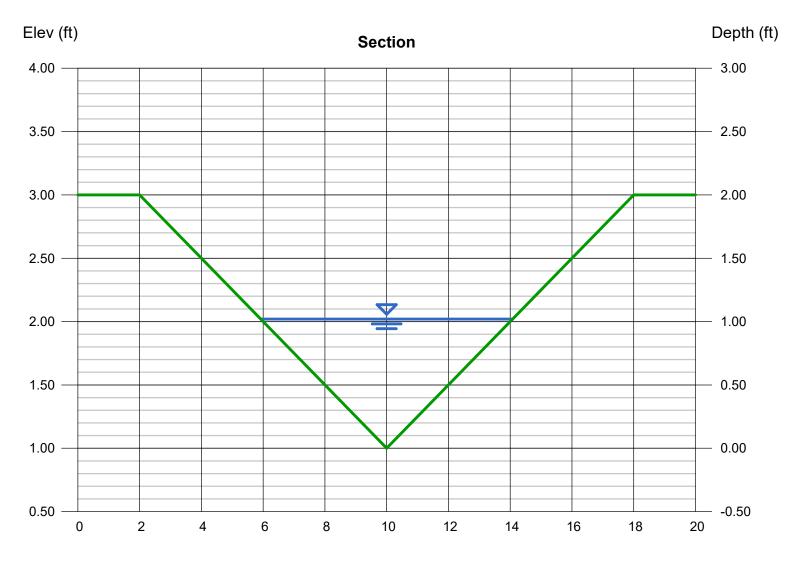
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 12A

Triangular	
Side Slopes (z:1)	

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.00


Invert Elev (ft) = 1.00 Slope (%) = 1.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 15.40

Highlighted

= 1.02 Depth (ft) Q (cfs) = 15.40 Area (sqft) = 4.16Velocity (ft/s) = 3.70Wetted Perim (ft) = 8.41 Crit Depth, Yc (ft) = 0.99Top Width (ft) = 8.16EGL (ft) = 1.23

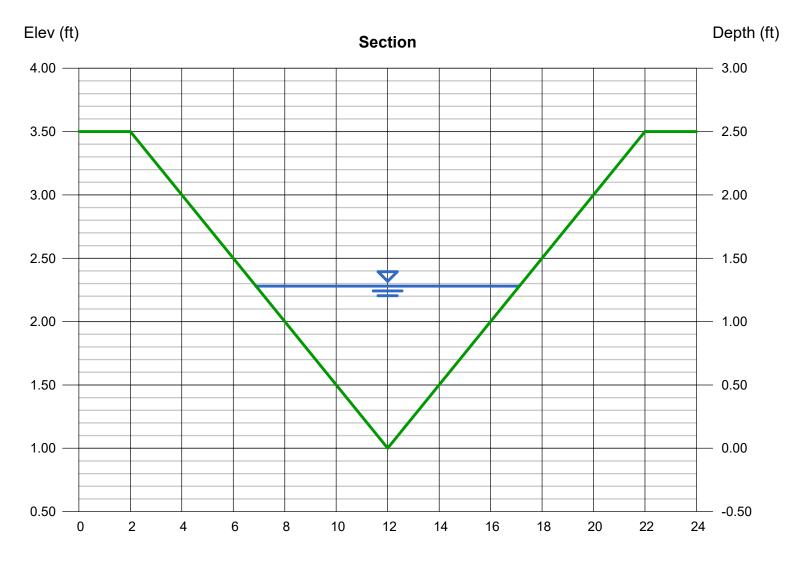
Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 13A

Triangular


Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.50

Invert Elev (ft) = 1.00 Slope (%) = 2.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 36.90 Highlighted

= 1.28Depth (ft) Q (cfs) = 36.90Area (sqft) = 6.55Velocity (ft/s) = 5.63 Wetted Perim (ft) = 10.56Crit Depth, Yc (ft) = 1.40Top Width (ft) = 10.24EGL (ft) = 1.77

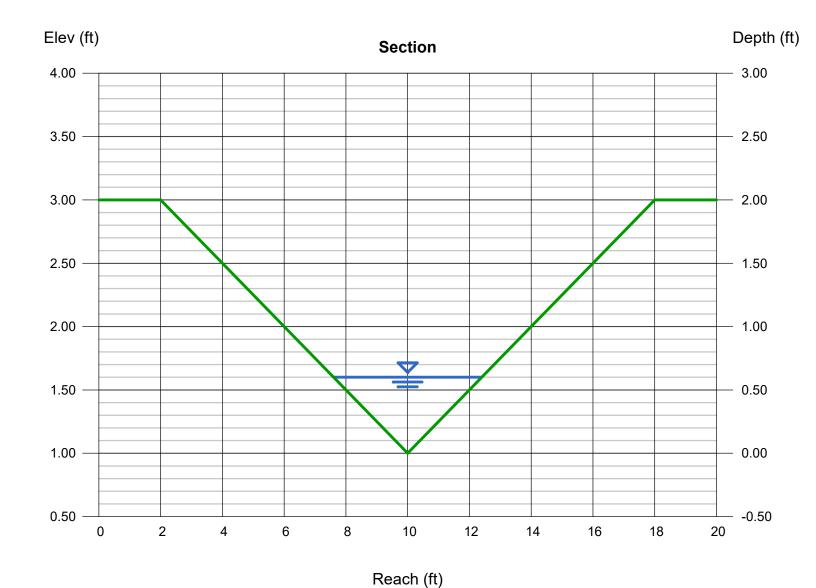
Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 0.030

Monday, Sep 16 2024

Roadside Ditch - DP 14


Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 2.00
Invert Elev (ft)	= 1.00
Slope (%)	= 2.50

Calculations

N-Value

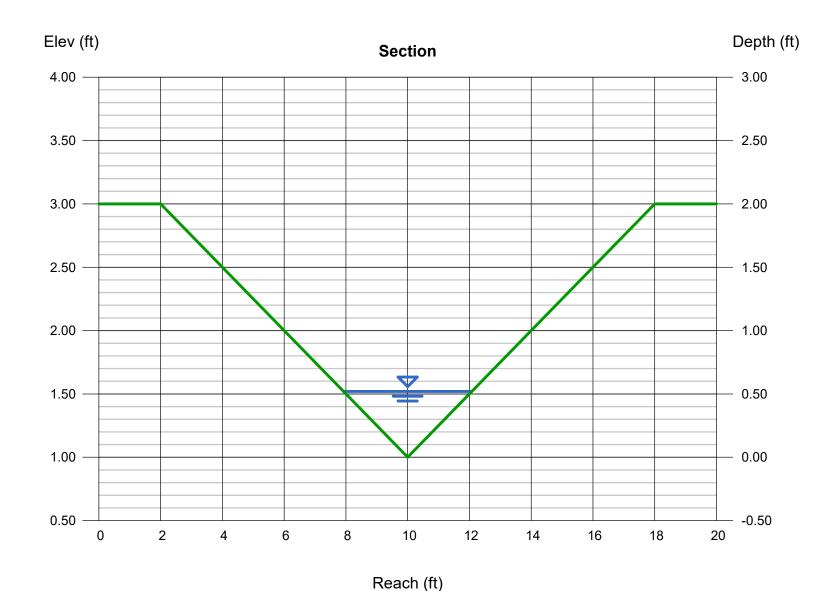
Compute by: Known Q Known Q (cfs) = 4.90

Highlighted	
Depth (ft)	= 0.60
Q (cfs)	= 4.900
Area (sqft)	= 1.44
Velocity (ft/s)	= 3.40
Wetted Perim (ft)	= 4.95
Crit Depth, Yc (ft)	= 0.63
Top Width (ft)	= 4.80
EGL (ft)	= 0.78

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 20


Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 2.00
Invert Flor (ft)	- 4.00

Invert Elev (ft) = 1.00 Slope (%) = 5.20 N-Value = 0.030

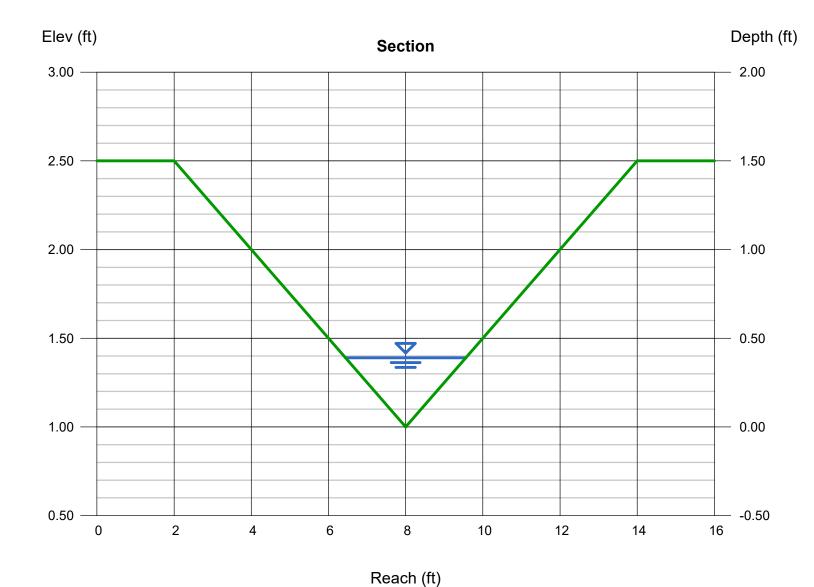
Calculations

Compute by: Known Q Known Q (cfs) = 4.80

Highlighted		
Depth (ft)	=	0.52
Q (cfs)	=	4.800
Area (sqft)	=	1.08
Velocity (ft/s)	=	4.44
Wetted Perim (ft)	=	4.29
Crit Depth, Yc (ft)	=	0.62
Top Width (ft)	=	4.16
EGL (ft)	=	0.83

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024


Roadside Ditch - DP 21

Triangular Side Slopes (z:1) Total Depth (ft)	= 4.00, 4.00 = 1.50
Invert Elev (ft)	= 1.00
Slope (%)	= 5.20
N-Value	= 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 2.20

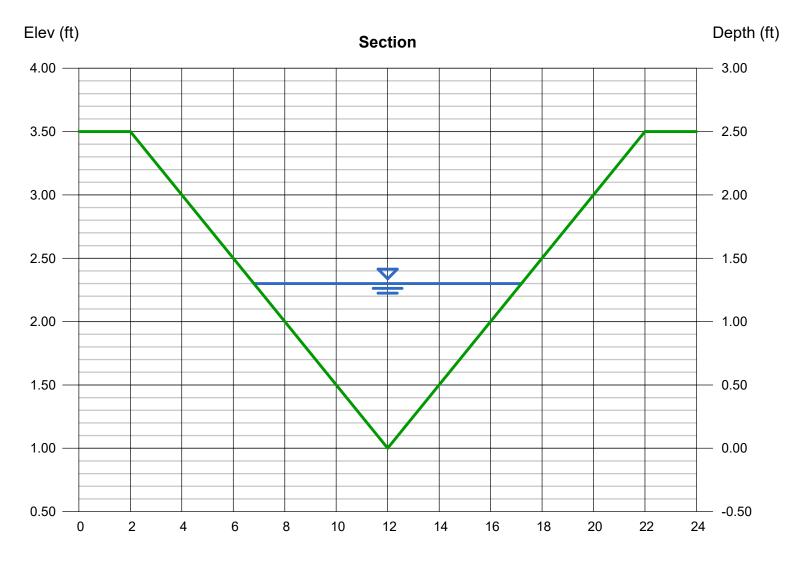
Highlighted	
Depth (ft)	= 0.39
Q (cfs)	= 2.200
Area (sqft)	= 0.61
Velocity (ft/s)	= 3.62
Wetted Perim (ft)	= 3.22
Crit Depth, Yc (ft)	= 0.46
Top Width (ft)	= 3.12
EGL (ft)	= 0.59

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 24A

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.50


Invert Elev (ft) = 1.00 Slope (%) = 3.20 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 43.40

Highlighted

Depth (ft) = 1.30Q (cfs) = 43.40Area (sqft) = 6.76Velocity (ft/s) = 6.42 Wetted Perim (ft) = 10.72Crit Depth, Yc (ft) = 1.49Top Width (ft) = 10.40EGL (ft) = 1.94

Reach (ft)

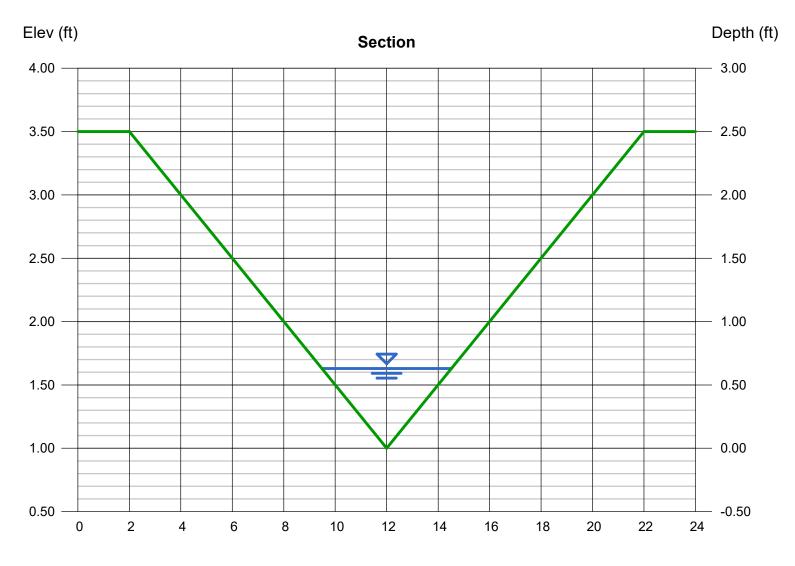
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Roadside Ditch - DP 25

rriariyulal	Triangula
-------------	-----------

Side Slopes (z:1) = 4.00, 4.00Total Depth (ft) = 2.50


Invert Elev (ft) = 1.00 Slope (%) = 3.20 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 6.30

Highlighted

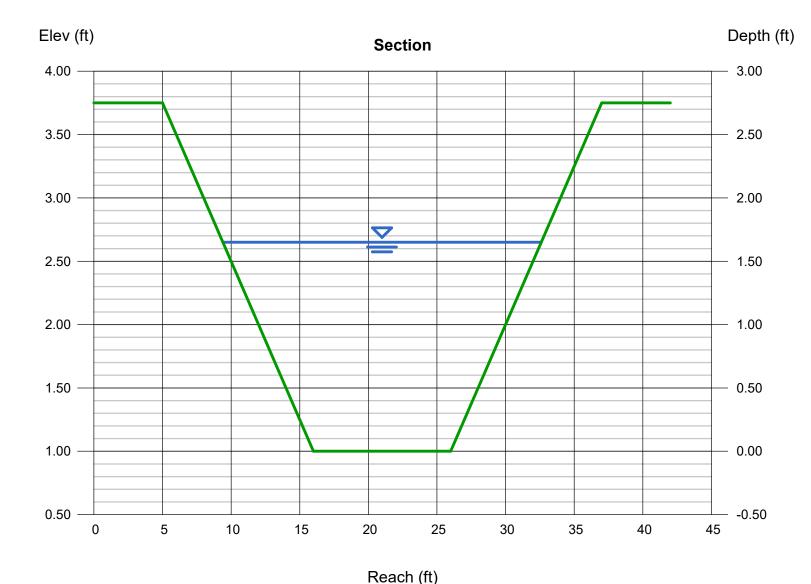
Depth (ft) = 0.63Q (cfs) = 6.300Area (sqft) = 1.59Velocity (ft/s) = 3.97Wetted Perim (ft) = 5.20Crit Depth, Yc (ft) = 0.69Top Width (ft) = 5.04EGL (ft) = 0.87

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - DP1


Trapezoidal

Bottom Width (ft) = 10.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.75 Invert Elev (ft) = 1.00 Slope (%) = 3.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 279.50 Highlighted

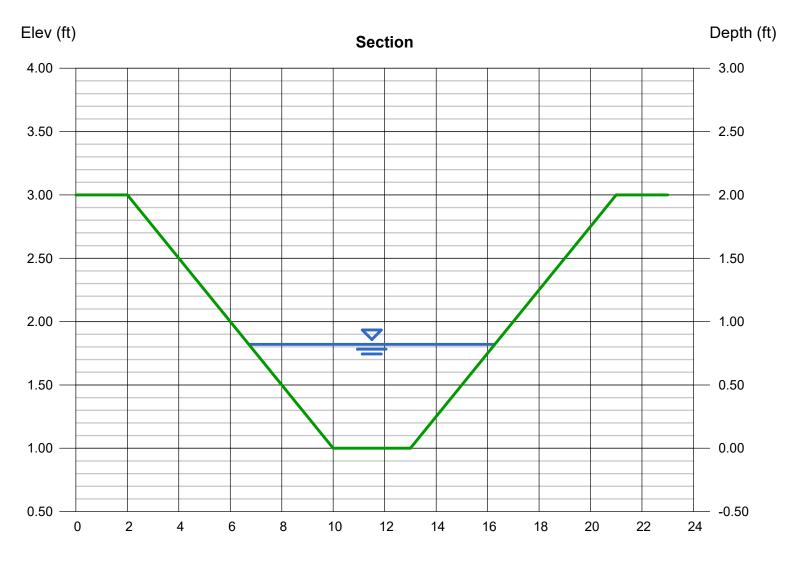
Depth (ft) = 1.65Q (cfs) = 279.50= 27.39Area (sqft) Velocity (ft/s) = 10.20 Wetted Perim (ft) = 23.61Crit Depth, Yc (ft) = 2.17Top Width (ft) = 23.20EGL (ft) = 3.27

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - DP13

	oidal


Bottom Width (ft) = 3.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 1.00 Slope (%) = 2.20 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 24.20

Highlighted

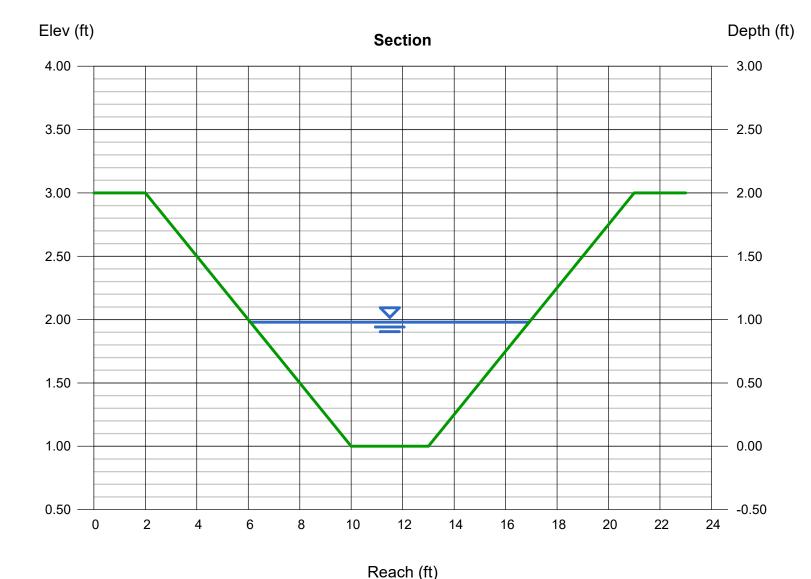
= 0.82Depth (ft) Q (cfs) = 24.20= 5.15Area (sqft) Velocity (ft/s) = 4.70Wetted Perim (ft) = 9.76Crit Depth, Yc (ft) = 0.88Top Width (ft) = 9.56EGL (ft) = 1.16

Reach (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - DP14A


Trapezoidal

Bottom Width (ft) = 3.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 2.00
Invert Elev (ft) = 1.00
Slope (%) = 2.70
N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 39.20 Highlighted

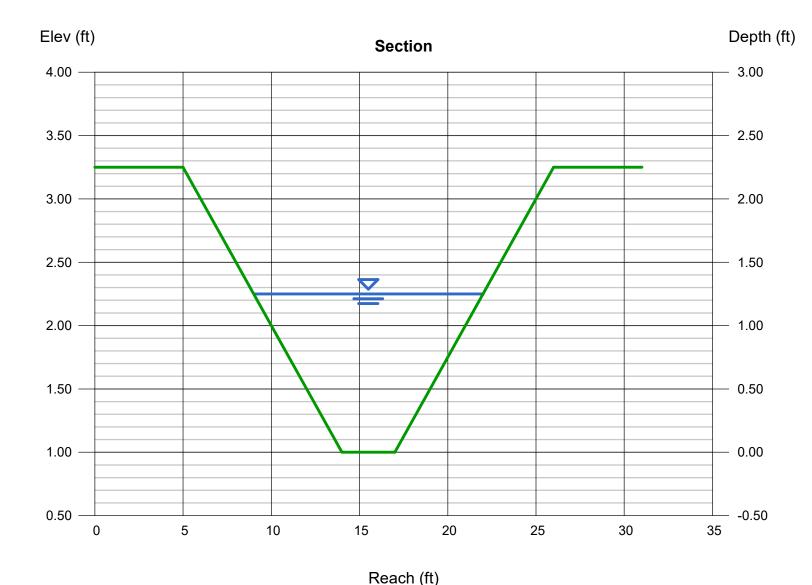
Depth (ft) = 0.98Q (cfs) = 39.20Area (sqft) = 6.78Velocity (ft/s) = 5.78 Wetted Perim (ft) = 11.08 Crit Depth, Yc (ft) = 1.12Top Width (ft) = 10.84EGL (ft) = 1.50

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - DP24A

Trapezoidal


Bottom Width (ft) = 3.00
Side Slopes (z:1) = 4.00, 4.00
Total Depth (ft) = 2.25
Invert Elev (ft) = 1.00
Slope (%) = 1.10
N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 42.90

Highlighted

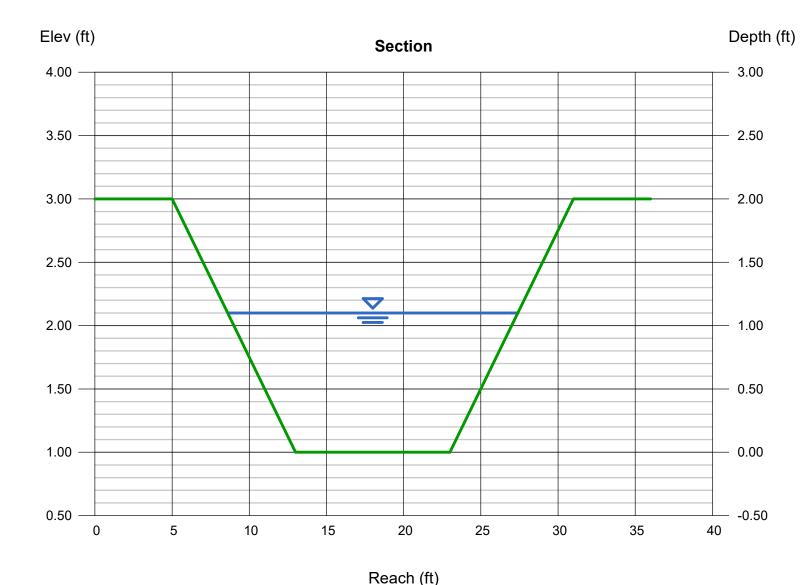
= 1.25Depth (ft) Q (cfs) = 42.90Area (sqft) = 10.00Velocity (ft/s) = 4.29Wetted Perim (ft) = 13.31Crit Depth, Yc (ft) = 1.17 Top Width (ft) = 13.00EGL (ft) = 1.54

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - OSA3


Trapezoidal

Bottom Width (ft) = 10.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 1.00 Slope (%) = 2.75 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 113.40 Highlighted

Depth (ft) = 1.10Q (cfs) = 113.40Area (sqft) = 15.84 Velocity (ft/s) = 7.16 Wetted Perim (ft) = 19.07Crit Depth, Yc (ft) = 1.33Top Width (ft) = 18.80EGL (ft) = 1.90

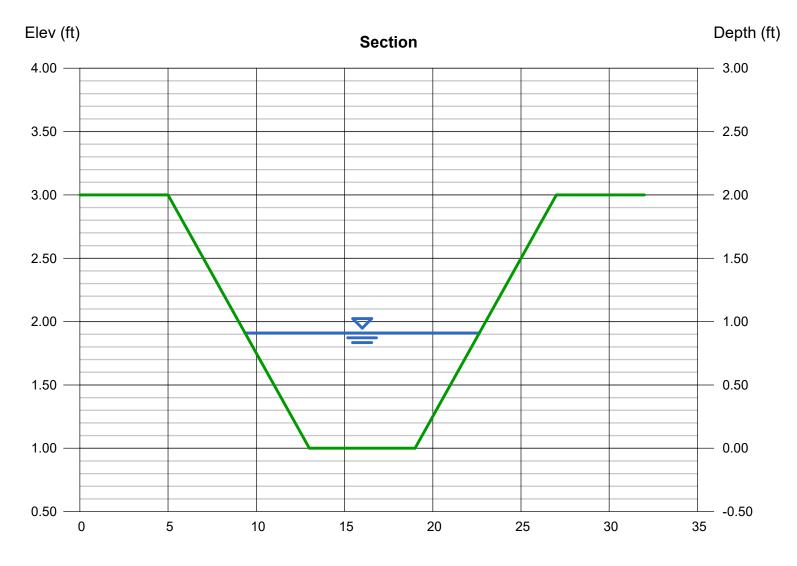
Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Sep 16 2024

Drainage ditch - OSA3

Trapezoi	dal
----------	-----


Bottom Width (ft) = 6.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 1.00 Slope (%) = 3.50 N-Value = 0.030

Calculations

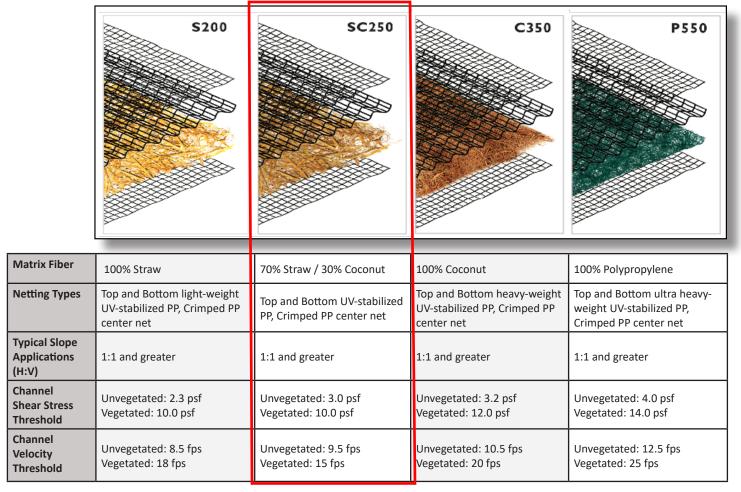
Compute by: Known Q Known Q (cfs) = 60.50

Highlighted

Depth (ft) = 0.91Q (cfs) = 60.50Area (sqft) = 8.77Velocity (ft/s) = 6.90Wetted Perim (ft) = 13.50Crit Depth, Yc (ft) = 1.14 Top Width (ft) = 13.28EGL (ft) = 1.65

Reach (ft)

VMax® TRMs


A Permanent Turf Reinforcement Mat Solution for Every Design

The VMax system of permanent TRMs are ideal for high-flow channels, streambanks, shorelines, and other areas needing permanent vegetation reinforcement and protection from water and wind. Our VMax TRMs combine a three-dimensional matting and a fiber matrix material for allout erosion protection, vegetation establishment and reinforcement. The VMax TRMs are available with various performance capabilities and support reinforced vegetative lining development from germination to maturity.

VMax® Unique Three-Dimensional Design

North American Green VMax TRMs are each designed to maximize performance through all development phases of a reinforced vegetative lining. The corrugated matting structure lends a true reinforcement zone for vegetation entanglement, especially compared to flat net mats. The unique design of the corrugated matting also helps to create a shear plane that deflects flowing water away from the soil surface. And the incorporation of a fiber matrix supplements the 3-D structure by creating a ground cover that blocks soil movement and aids in vegetation establishment.

Four VMax Turf Reinforcement Mats Designed for Every Level of Performance

Selected product that will work for all swales above 5 ft/s. Has maximum of 15 ft/s.

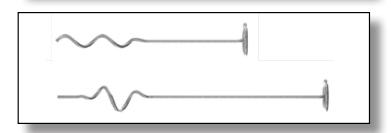
Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

VMax® TRMs cont.

Selecting the Right VMax TRM

Choosing the right VMax TRM can be made easy by utilizing our Erosion Control Materials Design Software (www.ecmds.com), which allows users to input project specific parameters for channels, slopes, spillways, and more and ensures proper evaluation, design, and product selection in return. Our four VMax TRMs offer varying performance values, fiber matrix longevities, and price points, to help you meet your project specific goals.


Utilizing the VMax TRMs in conjunction with Twist Pin fastener technology can result in an installed system that pushes TRM performance with increased factors of safety. The combined system has been shown to have superior pullout strength performance up to 200 lbs when compared to installation with traditional wire staples and pins. This is up to 10x the pullout resistance of wire staples and pins. Additionally, the use of the twist pins provides intimate contact between the TRM and the soil, and have been shown to be effective in a wide range of soil types. With a quick and easy installation using an electric drill and custom chuck, the TRM+Twist Pin system can eliminate time and labor costs from day 1 through project release.

VMax turf reinforcement mat being installed on a channel application (top right), twist pins installed with TRMs can have increased system performance and pullout resistance (middle right), twist pins are available in 8" and 12" lengths and two coil configurations designed for hard or soft soil types (lower right).

Comparison of common TRM fasteners based on pullout performance and typical application (below).

Fastener	Pullout Resistance (lb)	Comment
6" Round Top Pin	14	Best for hardened soils where other fasteners are damaged during installation.
6" Regular U-staple	42	Standard fastener that develops additional pullout as legs may deflect and add friction during installation.
12" Pin with Washer	35	Standard fastener good for soils where staples can be bent frequently and are too difficult to install.
18" Pin with Washer	27	Standard fastener good for soils where staples are frequently bent and 12" straight pins fail to provide sufficient pullout because surface soil is wet or loose.
Twist Pin	170	Upgraded fastener that provides high pullout and ideal for loose or soft soils.

Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

HY-8 Culvert Analysis Report

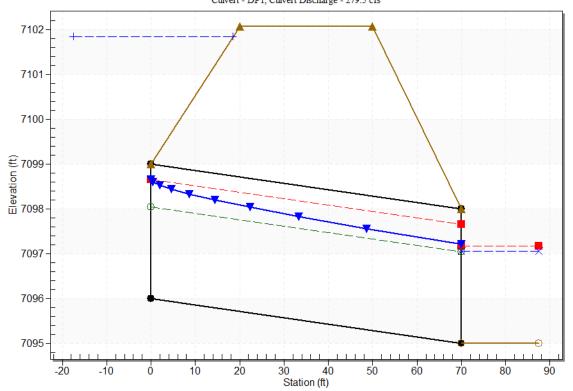
Table 1 - Culvert Summary Table: DP1

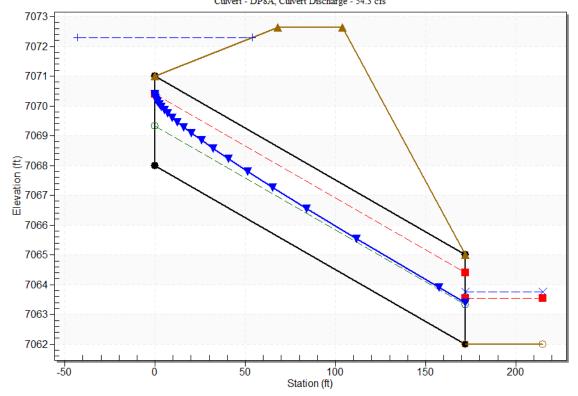
Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7096.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
27.95	27.95	7097.13	1.13	0.0*	0.38	1-S2n	0.58	0.83	0.59	0.60	7.14	3.77
55.90	55.90	7097.66	1.66	0.307	0.55	1-S2n	0.81	1.19	0.85	0.88	8.49	4.69
83.85	83.85	7098.14	2.14	0.734	0.71	1-S2n	1.01	1.47	1.07	1.10	9.31	5.30
111.80	111.80	7098.56	2.56	1.178	0.85	1-S2n	1.17	1.71	1.26	1.28	9.95	5.77
139.75	139.75	7098.97	2.97	1.652	0.99	1-S2n	1.33	1.92	1.43	1.44	10.47	6.15
167.70	167.70	7099.41	3.41	2.163	1.14	5-S2n	1.47	2.11	1.60	1.58	10.93	6.48
195.65	195.65	7099.90	3.90	3.073	1.30	5-S2n	1.61	2.28	1.76	1.71	11.35	6.77
223.60	223.60	7100.46	4.46	3.586	1.49	5-S2n	1.75	2.42	1.91	1.83	11.76	7.03
251.55	251.55	7101.11	5.11	4.146	1.70	5-S2n	1.90	2.55	2.06	1.95	12.15	7.26
279.50	279.50	7101.84	5.84	4.755	1.95	5-S2n	2.04	2.66	2.21	2.05	12.54	7.47
355.73	307.10	7102.65	6.65	5.403	2.22	5-S2n	2.20	2.74	2.35	2.31	12.91	7.98

^{*} Full Flow Headwater elevation is below inlet invert.

Water Surface Profile Plot for Culvert: DP1

Crossing - DP1 Conestoga, Design Discharge - 279.5 cfs Culvert - DP1, Culvert Discharge - 279.5 cfs



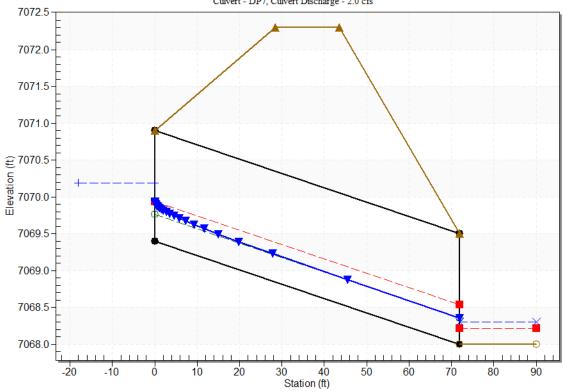

Table 2 - Culvert Summary Table: DP8A

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7068.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
5.43	5.43	7068.97	0.97	0.0*	0.32	1-S2n	0.41	0.73	0.41	0.38	9.37	2.86
10.86	10.86	7069.40	1.40	0.0*	0.47	1-S2n	0.57	1.04	0.57	0.59	11.49	3.67
16.29	16.29	7069.80	1.80	0.0*	0.60	1-S2n	0.70	1.29	0.72	0.77	12.41	4.22
21.72	21.72	7070.16	2.16	0.0*	0.72	1-S2n	0.81	1.50	0.84	0.94	13.43	4.65
27.15	27.15	7070.48	2.48	0.0*	0.83	1-S2n	0.91	1.68	0.91	1.09	14.96	4.99
32.58	32.58	7070.80	2.80	0.0*	0.93	1-S2n	1.00	1.85	1.04	1.23	15.04	5.28
38.01	38.01	7071.12	3.12	0.0*	1.04	5-S2n	1.09	2.01	1.13	1.37	15.68	5.54
43.44	43.44	7071.48	3.48	0.0*	1.16	5-S2n	1.17	2.15	1.21	1.51	16.18	5.76
48.87	48.87	7071.86	3.86	0.0*	1.29	5-S2n	1.25	2.28	1.30	1.64	16.59	5.96
54.30	54.30	7072.29	4.29	0.0*	1.43	5-S2n	1.32	2.39	1.39	1.77	17.01	6.15
69.11	60.22	7072.82	4.82	0.0*	1.61	5-S2n	1.40	2.51	1.48	2.11	17.39	6.56

^{*} Full Flow Headwater elevation is below inlet invert.

Water Surface Profile Plot for Culvert: DP8A

Crossing - DP8A Conestoga, Design Discharge - 54.3 cfs Culvert - DP8A, Culvert Discharge - 54.3 cfs


Table 3 - Culvert Summary Table: DP7

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7069.40	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
0.20	0.20	7069.64	0.24	0.0*	0.16	1-S2n	0.12	0.16	0.12	0.08	3.11	0.74
0.40	0.40	7069.74	0.34	0.0*	0.22	1-S2n	0.16	0.23	0.16	0.12	3.84	0.95
0.60	0.60	7069.81	0.41	0.0*	0.28	1-S2n	0.20	0.29	0.20	0.15	4.32	1.09
0.80	0.80	7069.88	0.48	0.0*	0.32	1-S2n	0.23	0.33	0.23	0.18	4.70	1.20
1.00	1.00	7069.94	0.54	0.0*	0.36	1-S2n	0.25	0.37	0.25	0.20	5.03	1.28
1.20	1.20	7070.00	0.60	0.0*	0.40	1-S2n	0.28	0.41	0.28	0.23	5.30	1.36
1.40	1.40	7070.05	0.65	0.0*	0.43	1-S2n	0.30	0.44	0.30	0.25	5.55	1.43
1.60	1.60	7070.09	0.69	0.0*	0.46	1-S2n	0.32	0.47	0.32	0.26	5.77	1.49
1.80	1.80	7070.14	0.74	0.0*	0.49	1-S2n	0.34	0.50	0.34	0.28	5.97	1.54
2.00	2.00	7070.18	0.78	0.0*	0.52	1-S2n	0.36	0.53	0.36	0.30	6.16	1.59
11.27	11.04	7072.32	2.92	1.692	1.94	5-S2n	0.92	1.27	0.95	0.73	9.39	2.60

^{*} Full Flow Headwater elevation is below inlet invert.

Water Surface Profile Plot for Culvert: DP7

Crossing - DP7 Conestoga, Design Discharge - 2.0 cfs
Culvert - DP7, Culvert Discharge - 2.0 cfs

Table 4 - Culvert Summary Table: DP13A

Total Discharge	Culvert Discharge	Headwater Elevation	Inlet Control	Outlet Control	HW / D	Flow Type	Normal Depth	Critical Depth	Outlet Depth	Tailwater Depth	Outlet Velocity	Tailwater Velocity
(cfs)	(cfs)	(ft)	Depth (ft)	Depth (ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft/s)
0.00	0.00	7075.20	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
3.69	3.69	7076.05	0.85	0.058	0.28	1-S2n	0.49	0.60	0.49	0.35	4.87	2.44
7.38	7.38	7076.43	1.23	0.341	0.41	1-S2n	0.69	0.86	0.70	0.50	5.89	2.98
11.07	11.07	7076.73	1.53	0.586	0.51	1-S2n	0.85	1.05	0.86	0.61	6.56	3.33
14.76	14.76	7076.99	1.79	0.820	0.60	1-S2n	0.99	1.22	1.01	0.70	7.08	3.60
18.45	18.45	7077.23	2.03	1.053	0.68	1-S2n	1.11	1.38	1.14	0.79	7.50	3.83
22.14	22.14	7077.46	2.26	1.290	0.75	1-S2n	1.23	1.51	1.26	0.86	7.85	4.02
25.83	25.83	7077.68	2.48	1.536	0.83	1-S2n	1.34	1.64	1.38	0.92	8.17	4.18
29.52	29.52	7077.90	2.70	1.791	0.90	1-S2n	1.45	1.76	1.49	0.98	8.45	4.33
33.21	33.21	7078.15	2.95	2.057	0.98	1-S2n	1.55	1.87	1.59	1.04	8.70	4.47
36.90	36.90	7078.41	3.21	2.334	1.07	5-S2n	1.65	1.98	1.70	1.09	8.93	4.59
60.38	57.09	7080.35	5.15	4.349	1.72	5-S2n	2.24	2.45	2.27	1.37	9.95	5.22

Water Surface Profile Plot for Culvert: DP13A

Crossing - DP13A Irish Hunter, Design Discharge - 36.9 cfs
Culvert - DP13A, Culvert Discharge - 36.9 cfs

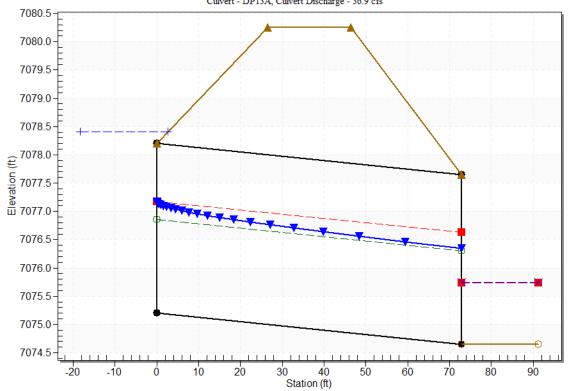


Table 5 - Culvert Summary Table: DP24A

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7071.75	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
4.34	4.34	7072.68	0.93	0.114	0.31	1-S2n	0.54	0.65	0.54	0.38	5.07	2.56
8.68	8.68	7073.09	1.34	0.430	0.45	1-S2n	0.76	0.93	0.76	0.54	6.12	3.12
13.02	13.02	7073.42	1.67	0.711	0.56	1-S2n	0.93	1.15	0.95	0.66	6.82	3.48
17.36	17.36	7073.71	1.96	0.984	0.65	1-S2n	1.08	1.33	1.10	0.76	7.35	3.76
21.70	21.70	7073.98	2.23	1.263	0.74	1-S2n	1.22	1.50	1.25	0.85	7.78	4.00
26.04	26.04	7074.24	2.49	1.552	0.83	1-S2n	1.35	1.65	1.39	0.93	8.15	4.19
30.38	30.38	7074.51	2.76	1.854	0.92	1-S2n	1.48	1.79	1.52	1.00	8.47	4.37
34.72	34.72	7074.80	3.05	2.172	1.02	5-S2n	1.60	1.91	1.64	1.06	8.76	4.52
39.06	39.06	7075.13	3.38	2.506	1.13	5-S2n	1.72	2.03	1.77	1.12	9.03	4.66
43.40	43.40	7075.49	3.74	2.857	1.25	5-S2n	1.84	2.15	1.89	1.18	9.27	4.79
67.07	61.26	7077.40	5.65	4.725	1.88	5-S2n	2.41	2.52	2.42	1.43	10.01	5.36

Water Surface Profile Plot for Culvert: DP24A

Crossing - DP24A Irish Hunter, Design Discharge - 43.4 cfs
Culvert - DP24A, Culvert Discharge - 43.4 cfs

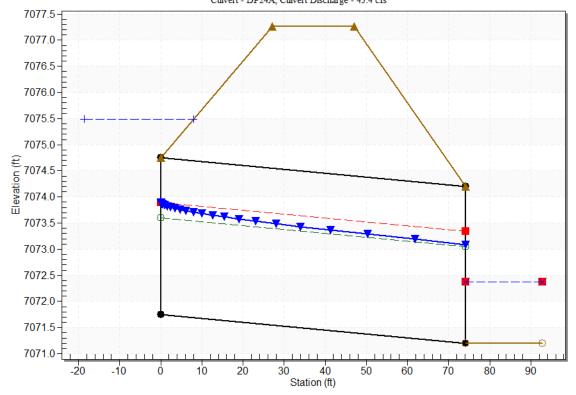


Table 6 - Culvert Summary Table: 18 INCH DRIVEWAY

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	100.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
1.20	1.20	100.59	0.59	0.134	0.39	1-S2n	0.33	0.41	0.33	0.42	4.14	1.71
2.40	2.40	100.86	0.86	0.348	0.57	1-S2n	0.47	0.59	0.48	0.54	4.99	2.04
3.60	3.60	101.08	1.08	0.564	0.72	1-S2n	0.58	0.72	0.59	0.63	5.53	2.25
4.80	4.80	101.28	1.28	0.790	0.85	1-S2n	0.68	0.84	0.70	0.70	5.94	2.42
6.00	6.00	101.50	1.50	1.033	1.00	5-S2n	0.77	0.95	0.80	0.77	6.28	2.56
7.20	7.20	101.76	1.76	1.297	1.17	5-S2n	0.86	1.04	0.89	0.82	6.58	2.68
8.40	8.40	102.06	2.06	1.581	1.38	5-S2n	0.96	1.12	0.98	0.87	6.84	2.78
9.60	9.60	102.42	2.42	2.039	1.61	5-S2n	1.05	1.20	1.08	0.91	7.07	2.88
10.80	10.80	102.82	2.82	2.335	1.88	5-S2n	1.16	1.26	1.18	0.95	7.26	2.96
12.00	11.41	103.26	3.26	2.724	2.17	7- M2c	1.32	1.31	1.31	0.99	7.31	3.04
13.09	11.52	103.08	3.08	2.524	2.05	5-S2n	1.24	1.29	1.25	1.03	7.33	3.11

Water Surface Profile Plot for Culvert: 18 INCH DRIVEWAY

Crossing - 18 Inch Driveway, Design Discharge - 12.0 cfs Culvert - 18 INCH DRIVEWAY, Culvert Discharge - 11.4 cfs

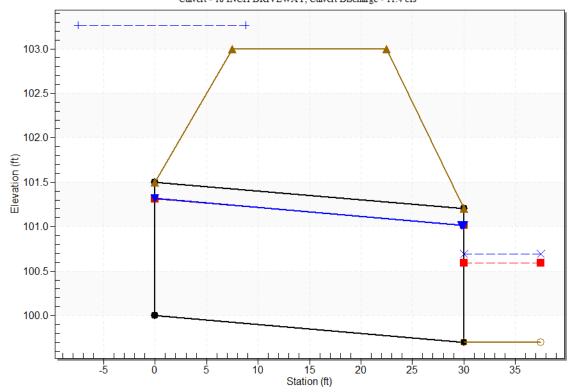


Table 7 - Culvert Summary Table: 24 INCH DRIVEWAY

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	100.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
2.20	2.20	100.74	0.74	0.241	0.37	1-S2n	0.40	0.52	0.41	0.53	4.72	1.99
4.40	4.40	101.07	1.07	0.498	0.54	1-S2n	0.57	0.74	0.59	0.68	5.64	2.37
6.60	6.60	101.35	1.35	0.748	0.67	1-S2n	0.71	0.91	0.74	0.79	6.24	2.62
8.80	8.80	101.59	1.59	1.004	0.80	1-S2n	0.83	1.06	0.87	0.88	6.70	2.82
11.00	11.00	101.84	1.84	1.273	0.92	1-S2n	0.94	1.19	0.99	0.96	7.08	2.98
13.20	13.20	102.12	2.12	1.560	1.06	5-S2n	1.04	1.31	1.10	1.03	7.42	3.12
15.40	15.40	102.44	2.44	1.867	1.22	5-S2n	1.15	1.41	1.21	1.09	7.73	3.24
17.60	17.60	102.82	2.82	2.438	1.41	5-S2n	1.25	1.51	1.32	1.15	8.02	3.35
19.80	19.80	103.24	3.24	2.743	1.62	5-S2n	1.36	1.60	1.42	1.20	8.29	3.45
22.00	21.23	103.72	3.72	3.072	1.86	5-S2n	1.48	1.67	1.53	1.25	8.55	3.54
24.00	21.50	103.61	3.61	2.995	1.80	5-S2n	1.45	1.66	1.50	1.29	8.49	3.62

Water Surface Profile Plot for Culvert: 24 INCH DRIVEWAY

Crossing - 24 Inch Driveway, Design Discharge - 22.0 cfs Culvert - 24 INCH DRIVEWAY, Culvert Discharge - 21.2 cfs

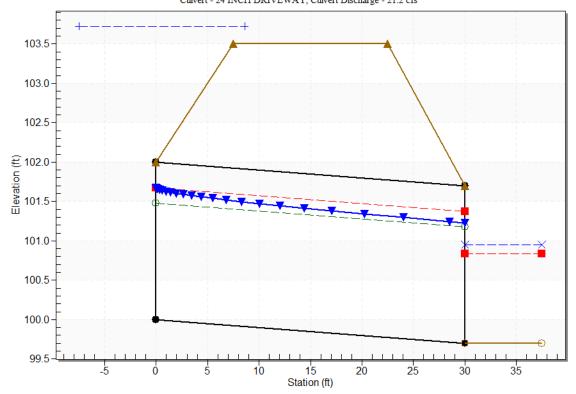


Table 8 - Culvert Summary Table: 30 INCH DRIVEWAY

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	100.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
3.50	3.50	100.88	0.88	0.341	0.35	1-S2n	0.47	0.61	0.49	0.63	5.19	2.24
7.00	7.00	101.27	1.27	0.639	0.51	1-S2n	0.67	0.88	0.70	0.81	6.17	2.66
10.50	10.50	101.60	1.60	0.921	0.64	1-S2n	0.83	1.08	0.88	0.94	6.80	2.94
14.00	14.00	101.88	1.88	1.204	0.75	1-S2n	0.96	1.26	1.04	1.05	7.29	3.16
17.50	17.50	102.16	2.16	1.497	0.86	1-S2n	1.09	1.42	1.18	1.14	7.71	3.34
21.00	21.00	102.45	2.45	1.807	0.98	1-S2n	1.21	1.56	1.31	1.22	8.08	3.50
24.50	24.50	102.79	2.79	2.134	1.12	5-S2n	1.32	1.69	1.43	1.30	8.42	3.64
28.00	28.00	103.18	3.18	2.481	1.27	5-S2n	1.44	1.80	1.55	1.36	8.74	3.76
31.50	31.50	103.62	3.62	3.143	1.45	5-S2n	1.55	1.91	1.67	1.43	9.05	3.87
35.00	34.48	104.11	4.11	3.482	1.65	5-S2n	1.67	2.01	1.78	1.48	9.35	3.98
41.36	35.50	104.19	4.19	3.532	1.68	5-S2n	1.69	2.02	1.80	1.58	9.39	4.15

Water Surface Profile Plot for Culvert: 30 INCH DRIVEWAY

Crossing - 30 Inch Driveway, Design Discharge - 35.0 cfs Culvert - 30 INCH DRIVEWAY, Culvert Discharge - 34.5 cfs

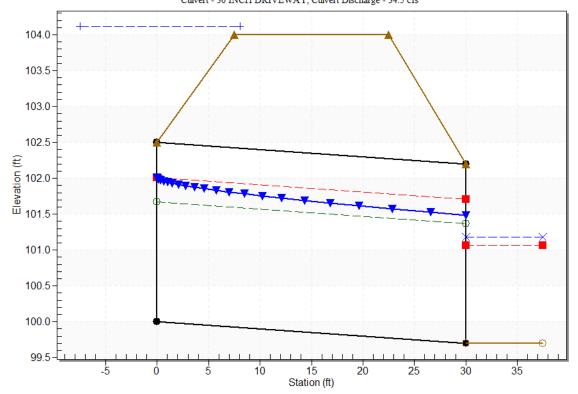
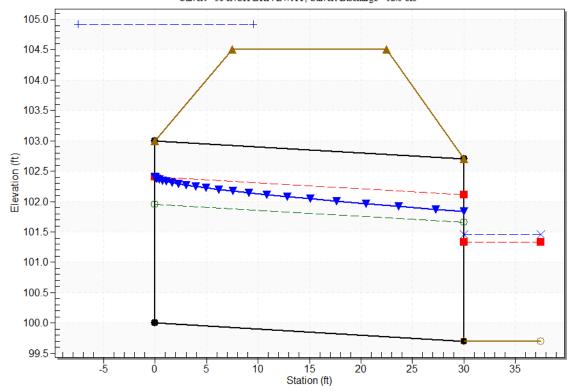
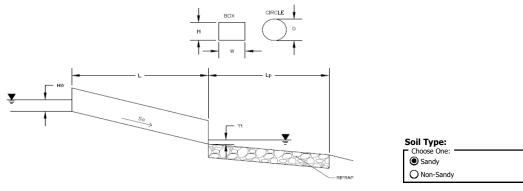
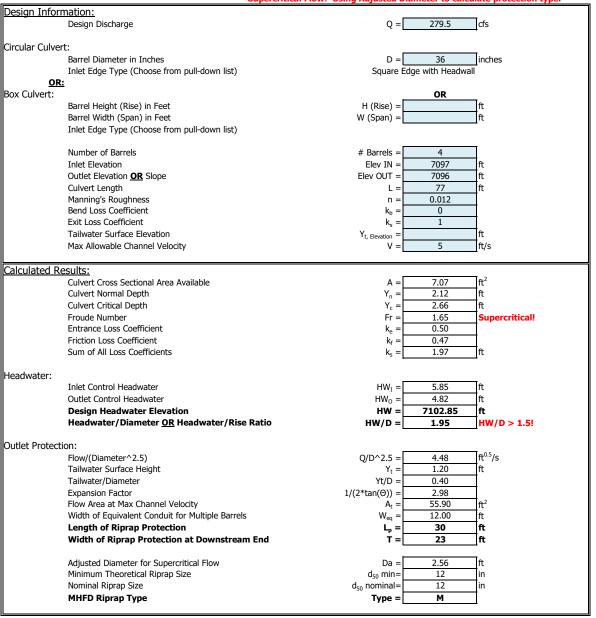



Table 9 - Culvert Summary Table: 36 INCH DRIVEWAY

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	HW / D (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	100.00	0.00	0.000	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
5.50	5.50	101.05	1.05	0.459	0.35	1-S2n	0.56	0.74	0.58	0.74	5.69	2.50
11.00	11.00	101.53	1.53	0.822	0.51	1-S2n	0.79	1.05	0.85	0.96	6.72	2.98
16.50	16.50	101.92	1.92	1.157	0.64	1-S2n	0.97	1.30	1.06	1.12	7.40	3.30
22.00	22.00	102.25	2.25	1.492	0.75	1-S2n	1.13	1.51	1.25	1.25	7.93	3.54
27.50	27.50	102.58	2.58	1.838	0.86	1-S2n	1.28	1.70	1.42	1.36	8.39	3.74
33.00	33.00	102.94	2.94	2.202	0.98	1-S2n	1.42	1.86	1.57	1.45	8.79	3.92
38.50	38.50	103.34	3.34	2.587	1.11	5-S2n	1.56	2.02	1.72	1.54	9.17	4.07
44.00	44.00	103.80	3.80	2.994	1.27	5-S2n	1.69	2.16	1.86	1.62	9.53	4.21
49.50	49.50	104.32	4.32	3.779	1.44	5-S2n	1.82	2.29	2.00	1.69	9.88	4.34
55.00	52.28	104.91	4.91	4.174	1.64	5-S2n	1.96	2.41	2.13	1.76	10.23	4.45
60.00	53.16	104.71	4.71	4.039	1.57	5-S2n	1.91	2.37	2.09	1.82	10.12	4.55

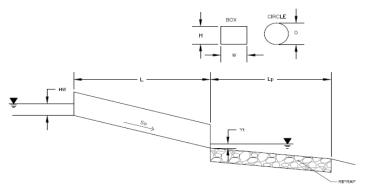

Water Surface Profile Plot for Culvert: 36 INCH DRIVEWAY

Crossing - 36 Inch Driveway, Design Discharge - 55.0 cfs Culvert - 36 INCH DRIVEWAY, Culvert Discharge - 52.3 cfs



MHFD-Culvert, Version 4.00 (May 2020)

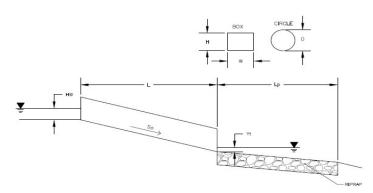
Project: Latigo Filing 10
DP1

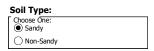


Supercritical Flow! Using Adjusted Diameter to calculate protection type.

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
ID: DP7

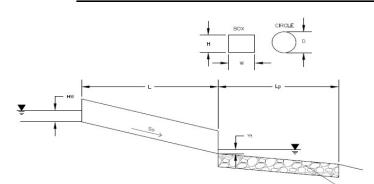



eter to calculate protection type

	Sup	ercritical Flow! Using Adjusted Diameter to calcul	ate protection type.
Design Infor	mation:		
_	Design Discharge	Q = 2	cfs
	5	-	
Circular Culve	rt:		
	Barrel Diameter in Inches	D = 18	inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall	inches
OR	• ,, ,	Square Eage with ricadwaii	
Box Culvert:	<u>u</u>	OR	
DOX Cuivert.	Parrol Hoight (Pico) in Foot	h	ft
	Barrel Height (Rise) in Feet	` '	
	Barrel Width (Span) in Feet	W (Span) =	ft
	Inlet Edge Type (Choose from pull-down list)		
	Number of Barrels	# Barrels = 1	
	Inlet Elevation	Elev IN = 7069	ft
	Outlet Elevation OR Slope	Elev OUT = 7068	ft
	Culvert Length	L = 72	ft
	Manning's Roughness	n = 0.012	
1	Bend Loss Coefficient	$k_b = 0$	
	Exit Loss Coefficient	k _v = 1	
	Tailwater Surface Elevation	*	ft
	Max Allowable Channel Velocity	V = 5	ft/s
	Max Allowable Charmer velocity	V =	145
Calculated D	agultar		
Calculated R		A 1.77	ft²
	Culvert Cross Sectional Area Available		
	Culvert Normal Depth	"	ft
	Culvert Critical Depth	v	ft
	Froude Number	Fr = 1.82	Supercritical!
	Entrance Loss Coefficient	$k_e = 0.50$	
	Friction Loss Coefficient	k _f = 1.11	
	Sum of All Loss Coefficients	$k_s = 2.61$	ft
Headwater:			
	Inlet Control Headwater	$HW_{I} = 0.73$	ft
	Outlet Control Headwater	HW _O = N/A	ft
	Design Headwater Elevation		ft
	Headwater/Diameter OR Headwater/Rise Rat		
	· — ·	n Method Inaccurate for Low Flow - Backwater Ca	Iculations Required
Outlet Protect			
	Flow/(Diameter^2.5)	Q/D^2.5 = 0.73	ft ^{0.5} /s
1	Tailwater Surface Height		ft
1	Tailwater/Diameter	Yt/D = 0.40	
		·	
	Expansion Factor	$1/(2*tan(\Theta)) = 6.70$	• ?
	Flow Area at Max Channel Velocity	· · · · · · · · · · · · · · · · · · ·	ft²
	Width of Equivalent Conduit for Multiple Barrels		ft -
1	Length of Riprap Protection	F	ft
	Width of Riprap Protection at Downstream En	T = 3	ft
1	Adjusted Diameter for Curametrical Flam	De 0.05	A
	Adjusted Diameter for Supercritical Flow		ft ·-
1	Minimum Theoretical Riprap Size	- 50	in
1	Nominal Riprap Size	30	in
1	MHFD Riprap Type	Type = VL	

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
DP8A

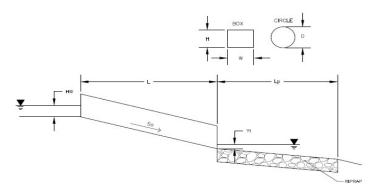


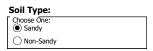
Supercritical Flow! Using Adjusted Diameter to calculate protection type.

Il Docian Inform		percritical Flow! Using Adjusted I		
Design Infon	nation:			
	Design Discharge	Q =	54.3	cfs
		•		
Circular Culver	t:			
Cuiui Cuivei	Barrel Diameter in Inches	D =	36	inches
	Inlet Edge Type (Choose from pull-down list)		ved Edge Projectir	
	- / /	Groov	veu Euge Projectif	' ⁹
OR:	<u>i</u>			
Box Culvert:			OR	_
	Barrel Height (Rise) in Feet	H (Rise) =		ft
	Barrel Width (Span) in Feet	W (Span) =		ft
	Inlet Edge Type (Choose from pull-down list)			
	Number of Barrels	# Barrels =	1	
	Inlet Elevation	Elev IN =	7068	T _{ft}
	Outlet Elevation OR Slope	Elev OUT =	7062	- It
	<u> </u>	Liev 001 =	172	- ft
	Culvert Length			- 'C
	Manning's Roughness	n =		_
	Bend Loss Coefficient	$k_b =$	0	
	Exit Loss Coefficient	$k_x =$	1	
	Tailwater Surface Elevation	$Y_{t, Elevation} =$		ft
	Max Allowable Channel Velocity	V =	5	ft/s
Calculated Re	esults:			
	Culvert Cross Sectional Area Available	A =	7.07	∏ft²
	Culvert Normal Depth	$Y_n =$		
	Culvert Critical Depth	Y _c =		⊢lt l
	Froude Number	r _c – Fr =	1.36	
				Supercritical!
	Entrance Loss Coefficient	k _e =		-
	Friction Loss Coefficient	$k_f =$	1.05	⊣ _
	Sum of All Loss Coefficients	k _s =	2.25	ft
Headwater:				
	Inlet Control Headwater	$HW_{I} =$	3.26	ft
	Outlet Control Headwater	HW _O =	2.99	T _{ft}
	Design Headwater Elevation	HW =		ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ra		-	-
	<u> </u>	, 5 -		┛
Outlet Protecti	on:			
	Flow/(Diameter^2.5)	Q/D^2.5 =	3.48	ft ^{0.5} /s
	Tailwater Surface Height	$Y_t =$	1.20	⊢ _{ft} / l
	Tailwater/Diameter	Yt/D =	0.40	1
	Expansion Factor	$1/(2*\tan(\Theta)) =$	3.96	-
				— ₆₂
	Flow Area at Max Channel Velocity	$A_t =$	10.86	ft²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$		ft ~
	Length of Riprap Protection	$L_p =$		ft
	Width of Riprap Protection at Downstream E	nd T =	9	ft
	Adjusted Diameter for Supercritical Flow	Da =	2.42	∏ft
	Minimum Theoretical Riprap Size	d ₅₀ min=	9	⊣in l
	Nominal Riprap Size	d ₅₀ nominal=	12	⊢"'
	ויסוווווטו הוףומף אבכ	u ₅₀ Homiliai—	12	⊣ "''
	MHFD Riprap Type	Type =	M	

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
ID: DP13A

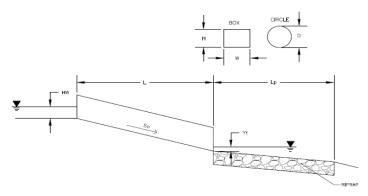




Supercritical Flow! Using Adjusted Diameter to calculate protection type. Design Information: Design Discharge 36.9 cfs Circular Culvert: Barrel Diameter in Inches 36 inches Inlet Edge Type (Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: Barrel Height (Rise) in Feet H (Rise) = Barrel Width (Span) in Feet W (Span) = Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels = Inlet Elevation Elev IN = 7075.2 Outlet Elevation OR Slope Elev OUT = 7074.65 ft Culvert Length 1 = ft 73 Manning's Roughness n = 0.012 Bend Loss Coefficient $k_b =$ 0 Exit Loss Coefficient k_x = 1 Tailwater Surface Elevation ft Max Allowable Channel Velocity 5 V = ft/s Calculated Results: ft² Culvert Cross Sectional Area Available 7.07 Culvert Normal Depth $Y_n =$ 1.65 ft Culvert Critical Depth $Y_c =$ 1.98 Supercritical! Froude Number Fr = 1.41 **Entrance Loss Coefficient** 0.20 k_e = Friction Loss Coefficient $k_f =$ 0.45 Sum of All Loss Coefficients 1.65 Headwater: Inlet Control Headwater $HW_{\rm I} =$ 2.92 Outlet Control Headwater $HW_0 =$ 2.63 ft **Design Headwater Elevation** HW = 7078.12 ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 0.97 Outlet Protection: ft^{0.5}/s Flow/(Diameter^2.5) $Q/D^2.5 =$ 2.37 Tailwater Surface Height Y_t = 1.20 ft Tailwater/Diameter Yt/D = 0.40 5.24 7.38 Expansion Factor $1/(2*tan(\Theta)) =$ Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ ft Length of Riprap Protection 17 ft L_p = Width of Riprap Protection at Downstream End T = 7 ft Adjusted Diameter for Supercritical Flow 2.33 Da = Minimum Theoretical Riprap Size d₅₀ min= in 6 Nominal Riprap Size 9 d₅₀ nominal= lin **MHFD Riprap Type** Type = L

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
ID: DP24A

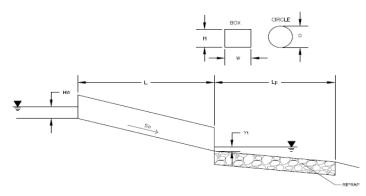




			culate protection type.
mation:			
Design Discharge	O =	43.4	cfs
rt:			
	D = [36	inches
	Grooved	a Luge Projectii	ing .
<u>i</u>		0.0	
		UK	
			ft
,	W (Span) = [_		ft
Inlet Edge Type (Choose from pull-down list)			
	_		_
Number of Barrels	# Barrels =		
Inlet Elevation	Elev IN =	7071.75	ft
Outlet Elevation OR Slope	Elev OUT =	7071.2	ft
Culvert Length	L =	74.2	ft
Manning's Roughness	n =	0.012	
Bend Loss Coefficient	k _b =	0	
Exit Loss Coefficient	-	1	
			T _{ft}
		5	ft/s
Plax Allowable Charmer Velocity	V	<u>J</u>	
eculte:			
	۸ - 🗆	7.07	Tft ²
			t
•			Ht.
·			—
			Supercritical!
	· -		_
	· —		
Sum of All Loss Coefficients	k _s =	1.65	ft
Inlet Control Headwater	нм. – Г	3 26	□ft
			-it
			'ft
_			⊣ "
neadwater/Diameter <u>OK</u> neadwater/Rise Ratio	nw/b = _	1.09	
ion:			
	0/D^2.5 =	2.78	ft ^{0.5} /s
,			⊣ft /3
			⊣ ՝`
· · · · · · · · · · · · · · · · · · ·	,		\dashv
•			ft ²
•	· —		
			ft
· · ·	-		ft
Width of Riprap Protection at Downstream End	Τ = _	8	ft
Adjusted Diameter for Supercritical Flow	D2 - L	2 42	□ft
			in
• •			 ''''
Nominal Kiprap Size			in
MHFD Riprap Type	Type =	L	
	Design Discharge rt: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient	Design Discharge rt: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Exit Loss Coefficient Ax Allowable Channel Velocity Sesults: Culvert Cross Sectional Area Available Culvert Critical Depth Froude Number Entrance Loss Coefficient Entrance Loss Coefficient Sum of All Loss Coefficient Friction Loss Coefficient Fried Entrance Loss Coefficient Sum of All Loss Coefficient Sum of All Loss Coefficient Friction Loss Coefficient Re = Entrance Loss Coefficient Sum of All Loss Coefficient Sum of All Loss Coefficient Sum of All Loss Coefficient Inlet Control Headwater Outlet Control Headwater Outlet Control Headwater Outlet Control Headwater Outlet Control Headwater Friction Loss Coefficient Sum of All Lo	Design Discharge Q

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
ID: 3-36" Driveway

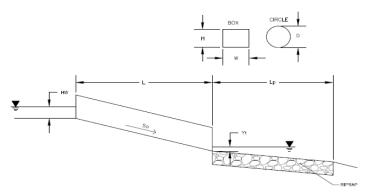




	Su	percritical Flow! Using Adjusted Dia	meter to calculate protection type.
Design Infor	mation:		_
	Design Discharge	Q =	127.3 cfs
			-
Circular Culve	ert:		
	Barrel Diameter in Inches	D =	36 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edg	ge with Headwall
<u>OF</u>	<u>t:</u>		
Box Culvert:			OR
	Barrel Height (Rise) in Feet	H (Rise) =	ft
	Barrel Width (Span) in Feet	W (Span) =	ft
	Inlet Edge Type (Choose from pull-down list)		<u>-</u>
	- " , , , , , , , , , , , , , , , , , ,		
	Number of Barrels	# Barrels =	3
	Inlet Elevation	Elev IN =	7050 ft
	Outlet Elevation OR Slope	Elev OUT =	7049.7 ft
	Culvert Length	L =	30 ft
	Manning's Roughness	n =	0.012
	Bend Loss Coefficient	k _b =	0
	Exit Loss Coefficient	k _v =	1
	Tailwater Surface Elevation	Y _{t, Elevation} =	ft
	Max Allowable Channel Velocity	V =	5 ft/s
	,		. 4-2
Calculated R	esults:		
	Culvert Cross Sectional Area Available	A =	7.07 ft ²
	Culvert Normal Depth	Y _n =	1.65 ft
	Culvert Critical Depth	Y _c =	2.12 ft
	Froude Number	Fr =	1.63 Supercritical!
	Entrance Loss Coefficient	k _e =	0.50
	Friction Loss Coefficient	k _f =	0.18
	Sum of All Loss Coefficients	k _s =	1.68 ft
	54 5. 7 2555 G56GGG	· —	
Headwater:			
	Inlet Control Headwater	$HW_{I} =$	3.45 ft
	Outlet Control Headwater	HW _O =	3.20 ft
	Design Headwater Elevation	HW =	7053.45 ft
	Headwater/Diameter OR Headwater/Rise Ra	<u> </u>	1.15
	<u></u> ,	,2	
Outlet Protec	tion:		
	Flow/(Diameter^2.5)	Q/D^2.5 =	2.72 ft ^{0.5} /s
	Tailwater Surface Height	Y _t =	1.20 ft
	Tailwater/Diameter	Yt/D =	0.40
	Expansion Factor	1/(2*tan(Θ)) =	4.76
	Flow Area at Max Channel Velocity	A _t =	25.46 ft ²
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =	9.00 ft
	Length of Riprap Protection	L _p =	30 ft
	Width of Riprap Protection at Downstream E		16 ft
	Adjusted Diameter for Supercritical Flow	Da =	2.33 ft
i	Minimum Theoretical Riprap Size	d ₅₀ min=	7 in
	Nominal Riprap Size	d ₅₀ nominal=	9 in
	MHFD Riprap Type	Type =	L
	· · · · · · · · · · · · · · · · · · ·	.,pc =	

MHFD-Culvert, Version 4.00 (May 2020)

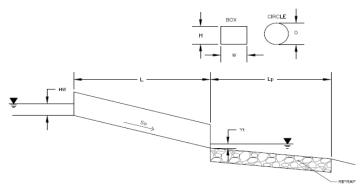
Project: Latigo Filing 10
ID: 4-36" Driveway



	Supe	rcritical Flow! Using Adjusted Di	ameter to cal	Iculate protection type.
Design Info	rmation:			
	Design Discharge	Q =	279.5	cfs
Circular Culve		-		
	Barrel Diameter in Inches	D =	36	inches
	Inlet Edge Type (Choose from pull-down list)	Square Ed	dge with Heady	wall
<u>O</u>	<u>R:</u>			
Box Culvert:		_	OR	
	Barrel Height (Rise) in Feet	H (Rise) =		ft
	Barrel Width (Span) in Feet	W (Span) =		ft
	Inlet Edge Type (Choose from pull-down list)			
	Number of Barrels	# Barrels =	4	
	Inlet Elevation	Elev IN =	7050	ft
	Outlet Elevation OR Slope	Elev OUT =	7049.7	ft
	Culvert Length	Liev 001 = _	30	ft
	Manning's Roughness	L = L n =	0.012	 '`
	Bend Loss Coefficient	n = k _b =	0.012	
	Exit Loss Coefficient	κ _ν =	1	
	Tailwater Surface Elevation	^ <u></u>	1	ft
		$Y_{t, Elevation} = V = V$	5	
	Max Allowable Channel Velocity	v = <u>L</u>	5	ft/s
Calculated F	Results:			
	Culvert Cross Sectional Area Available	A =	7.07	ft²
	Culvert Normal Depth	Y _n =	2.37	ft
	Culvert Critical Depth	Y _c =	2.66	ft
	Froude Number	Fr =	1.32	Supercritical!
	Entrance Loss Coefficient	k _e =	0.50	
	Friction Loss Coefficient	$k_f =$	0.18	
	Sum of All Loss Coefficients	k _s =	1.68	ft
Headwater:				
.caarracc	Inlet Control Headwater	$HW_{I} =$	5.85	ft
	Outlet Control Headwater	HW _O =	5.08	mt.
	Design Headwater Elevation	HW =	7055.85	——it
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio		1.95	HW/D > 1.5!
		_		
Outlet Protec		0/5:35	4.40	Q 0.5 (_
	Flow/(Diameter^2.5)	Q/D^2.5 =	4.48	ft ^{0.5} /s
	Tailwater Surface Height	Y _t =	1.20	ft
	Tailwater/Diameter	Yt/D =	0.40	
	Expansion Factor	$1/(2*tan(\Theta)) =$	2.98	
	Flow Area at Max Channel Velocity	$A_t =$	55.90	ft²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$	12.00	ft
	Length of Riprap Protection	$L_p =$	30	ft
	Width of Riprap Protection at Downstream End	T =	23	ft
	Adjusted Diameter for Supercritical Flow	Da =	2.68	ft
	Minimum Theoretical Riprap Size	d ₅₀ min=	12	in
	Nominal Riprap Size	d_{50} nominal=	12	in
	MHFD Riprap Type	Type =	M	
	· · · · · · · · · · · · · · · · · · ·	.,pc		

MHFD-Culvert, Version 4.00 (May 2020)

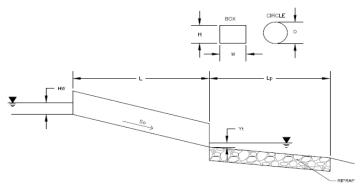
Project: Latigo Filing 10
18" Driveway



	Sup	ercritical Flow! Using Adjusted D	iameter to calc	ulate protection type.
Design Infor	mation:			
	Design Discharge	Q =	11.4	cfs
Cinacilan Color				
Circular Culve		ъ Г	- 10	⊐
	Barrel Diameter in Inches	D =	18	inches
	Inlet Edge Type (Choose from pull-down list)	Square E	dge with Headwa	all
<u>OF</u>	<u>t:</u>			
Box Culvert:		_	OR	
	Barrel Height (Rise) in Feet	H (Rise) =		ft
	Barrel Width (Span) in Feet	W (Span) =		ft
	Inlet Edge Type (Choose from pull-down list)			
		" Г		_
	Number of Barrels	# Barrels =	1	_
	Inlet Elevation	Elev IN =	7050	ft
	Outlet Elevation OR Slope	Elev OUT =	7049.7	ft
	Culvert Length	L =	30	ft
	Manning's Roughness	n =	0.012	
	Bend Loss Coefficient	k _b =	0	
	Exit Loss Coefficient	k _v =	1	1
	Tailwater Surface Elevation	Y _{t, Elevation} =		ft
	Max Allowable Channel Velocity	V =	5	ft/s
	Max Allowable Charmer Velocity	v -L	<u> </u>	143
Calculated R	Results:			
	Culvert Cross Sectional Area Available	A =	1.77	Tft²
	Culvert Normal Depth	Y _n =	1.23	ft.
	Culvert Critical Depth	Y _c =	1.29	
	Froude Number	Fr =	1.12	Supercritical!
	Entrance Loss Coefficient	κ _e =	0.50	Supercriticals
		· · · · · · · · · · · · · · · · · · ·		-∤
	Friction Loss Coefficient	k _f =	0.46	- _
	Sum of All Loss Coefficients	$k_s = $	1.96	ft
Headwater:				
	Inlet Control Headwater	$HW_{I} =$	2.64	∏ft
	Outlet Control Headwater	HW _O =	2.36	ft
	Design Headwater Elevation	HW =	7052.64	ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Rat		1.76	HW/D > 1.5!
	<u> </u>	,= [-	
Outlet Protec		F		Te05/
	Flow/(Diameter^2.5)	Q/D^2.5 =	4.14	ft ^{0.5} /s
	Tailwater Surface Height	$Y_t =$	0.60	ft
	Tailwater/Diameter	Yt/D =	0.40	<u> </u>
	Expansion Factor	1/(2*tan(Θ)) =	3.35	<u> </u>
	Flow Area at Max Channel Velocity	$A_t =$	2.28	ft²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$	-	ft
	Length of Riprap Protection	L _p =	8	ft
	Width of Riprap Protection at Downstream En	· -	4	ft
		- -		٦.
	Adjusted Diameter for Supercritical Flow	Da =	1.36	ft
	Minimum Theoretical Riprap Size	d ₅₀ min=	5	in
	Nominal Riprap Size	d ₅₀ nominal=	6	in
	MHFD Riprap Type	Type =	VL	

MHFD-Culvert, Version 4.00 (May 2020)

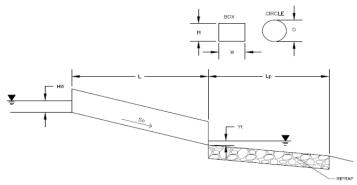
Project: Latigo Filing 10
24" Driveway



	Supercriu	ical Flow! Using Adjusted Dia	imeter to cal	culate protection type.
Design Infor	mation:			
	Design Discharge	Q =	21.2	cfs
Circular Culve				
	Barrel Diameter in Inches	D =	24	inches
	Inlet Edge Type (Choose from pull-down list)	Square Ed	ge with Headw	all
OR	<u>:</u>			
Box Culvert:		-	OR	
	Barrel Height (Rise) in Feet	H (Rise) =		ft
	Barrel Width (Span) in Feet	W (Span) =		ft
	Inlet Edge Type (Choose from pull-down list)			
	Number of Barrels	# Barrels =	1	
	Inlet Elevation	Elev IN =	7050	ft
	Outlet Elevation OR Slope	Elev OUT =	7049.7	ft
	Culvert Length	L =	30	ft
	Manning's Roughness	n =	0.012	
	Bend Loss Coefficient	k _b =	0	
	Exit Loss Coefficient	k _x =	1	
	Tailwater Surface Elevation	Y _{t, Elevation} =		ft
	Max Allowable Channel Velocity	V =	5	ft/s
	<u> </u>			 ·
Calculated R		_		
	Culvert Cross Sectional Area Available	A =	3.14	ft²
	Culvert Normal Depth	$Y_n =$	1.43	ft
	Culvert Critical Depth	Y _c =	1.65	ft
	Froude Number	Fr =	1.34	Supercritical!
	Entrance Loss Coefficient	k _e =	0.50	
	Friction Loss Coefficient	$k_f = $	0.32	
	Sum of All Loss Coefficients	$k_s =$	1.82	ft
Headwater:				
	Inlet Control Headwater	HW _I =	3.13	ft
	Outlet Control Headwater	HW _o =	2.81	ft
	Design Headwater Elevation	HW =	7053.13	ft
	Headwater/Diameter OR Headwater/Rise Ratio	HW/D =	1.56	HW/D > 1.5!
Outlet Protect	ion:			
	Flow/(Diameter^2.5)	Q/D^2.5 =	3.75	ft ^{0.5} /s
	Tailwater Surface Height	Y _t =	0.80	ft /3
	Tailwater/Diameter	Yt/D =	0.40	
	Expansion Factor	$1/(2*\tan(\Theta)) =$	3.73	
	Flow Area at Max Channel Velocity	$A_t =$	4.24	ft²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$	-	ft
	Length of Riprap Protection	L _p =	13	⊢¦t
	Width of Riprap Protection at Downstream End	T =	6	ft
	Adjusted Diameter for Cunevarities Flour	Da =	1.72	
	Adjusted Diameter for Supercritical Flow		7	in
	Minimum Theoretical Riprap Size	d ₅₀ min=	9	
	Nominal Riprap Size MHFD Riprap Type	d ₅₀ nominal= Type =	9 L	in

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
10: 30" Driveway



	Si	percritical Flow! Using Adjusted Diameter to calculate protection type.
Design Info		· · · · · · · · · · · · · · · · · · ·
2 00.9 2	Design Discharge	Q = 34.5 cfs
Circular Culv	vert:	
	Barrel Diameter in Inches	D = 30 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
	OR:	·
Box Culvert:		OR
	Barrel Height (Rise) in Feet	H (Rise) =
	Barrel Width (Span) in Feet	W (Span) = ft
	Inlet Edge Type (Choose from pull-down list)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7050 ft
	Outlet Elevation OR Slope	Elev OUT = 7049.7 ft
	Culvert Length	L = 30 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_b = 0$
	Exit Loss Coefficient	k _x = 1
	Tailwater Surface Elevation	Y _{t, Elevation} = ft
	Max Allowable Channel Velocity	V = 5 ft/s
	, , , , , , , , , , , , , , , , , , , ,	**
Calculated	Results:	
	Culvert Cross Sectional Area Available	A = 4.91 ft ²
	Culvert Normal Depth	Y _n = 1.65 ft
	Culvert Critical Depth	Y _c = 2.00 ft
	Froude Number	Fr = 1.46 Supercritical!
	Entrance Loss Coefficient	k _e = 0.50
	Friction Loss Coefficient	k _f = 0.23
	Sum of All Loss Coefficients	k _s = 1.73 ft
		· · · · · · · · · · · · · · · · · · ·
Headwater:		
	Inlet Control Headwater	$HW_I = 3.62$ ft
	Outlet Control Headwater	$HW_0 = \frac{3.28}{}$ ft
	Design Headwater Elevation	HW = 7053.62 ft
	Headwater/Diameter OR Headwater/Rise R	tio HW/D = 1.45
Outlet Prote		
	Flow/(Diameter^2.5)	$Q/D^2.5 = 3.49 ft^{0.5}/s$
	Tailwater Surface Height	$Y_t = 1.00$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2*tan(\Theta)) = 3.95$
	Flow Area at Max Channel Velocity	$A_{t} = 6.90 ft^{2}$
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =ft
	Length of Riprap Protection	L _p = 18 ft
	Width of Riprap Protection at Downstream	nd T = 8 ft
	A11 . 151	p
	Adjusted Diameter for Supercritical Flow	Da = 2.08 ft
	Minimum Theoretical Riprap Size	$d_{50} \min = 8 \qquad \text{in}$
	Nominal Riprap Size	d _{so} nominal= 9 in
ļļ	MHFD Riprap Type	Type = L

MHFD-Culvert, Version 4.00 (May 2020)

Project: Latigo Filing 10
ID: 36" Driveway

	5	supercritical Flow! Using Adjusted	Diameter to calculate protection type.
Design Infor	rmation:		
	Design Discharge	Q =	= 52.3 cfs
Circular Culve	ert:		
	Barrel Diameter in Inches	D =	= 36 inches
	Inlet Edge Type (Choose from pull-down list)	Square	Edge with Headwall
OF		54.5.5	
Box Culvert:	_		OR
DOX GUIVOITI	Barrel Height (Rise) in Feet	H (Rise) =	
	Barrel Width (Span) in Feet	W (Span) =	
	Inlet Edge Type (Choose from pull-down list)	(۵۶۵)	
	Thick Edge Type (choose from pair down list)		
	Number of Barrels	# Barrels =	= 1
	Inlet Elevation	Elev IN =	-
	Outlet Elevation OR Slope	Elev OUT =	
	 ·		
	Culvert Length	L =	
	Manning's Roughness Bend Loss Coefficient	n =	
		k _b =	
	Exit Loss Coefficient	k _x =	
	Tailwater Surface Elevation	Y _{t, Elevation} =	= ft
	Max Allowable Channel Velocity	V =	=5ft/s
0 1 1 1 1 5			
Calculated R			
	Culvert Cross Sectional Area Available	A =	
	Culvert Normal Depth	$Y_n =$	
	Culvert Critical Depth	$Y_c =$	= 2.35 ft
	Froude Number	Fr =	·
	Entrance Loss Coefficient	k _e =	= 0.50
	Friction Loss Coefficient	$k_f =$	= 0.18
	Sum of All Loss Coefficients	k _s =	= 1.68 ft
Headwater:			
	Inlet Control Headwater	$HW_{I} =$	
	Outlet Control Headwater	HW _O =	= 3.81 ft
	Design Headwater Elevation	HW =	= 7054.17 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise I	Ratio HW/D =	= 1.39
Outlet Protec			
	Flow/(Diameter^2.5)	Q/D^2.5 =	· '
	Tailwater Surface Height	Y _t =	•
	Tailwater/Diameter	Yt/D =	•
	Expansion Factor	1/(2*tan(Θ)) =	
	Flow Area at Max Channel Velocity	$A_t =$	= 10.46 ft ²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} =$	= <u>-</u> ft
	Length of Riprap Protection	L _p =	
	Width of Riprap Protection at Downstream		
	Adjusted Diameter for Supercritical Flow	Da =	= 2.44 ft
	Minimum Theoretical Riprap Size	d ₅₀ min=	
	Nominal Riprap Size	d ₅₀ nominal=	
	MHFD Riprap Type	Type =	
	=p.up 1,7pc	iypc -	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Basin ID: South Pond

| Control | Co

Project: Latigo Trails

Watershed updated to values established by this report. See later in the appendix for original calculations for comparison

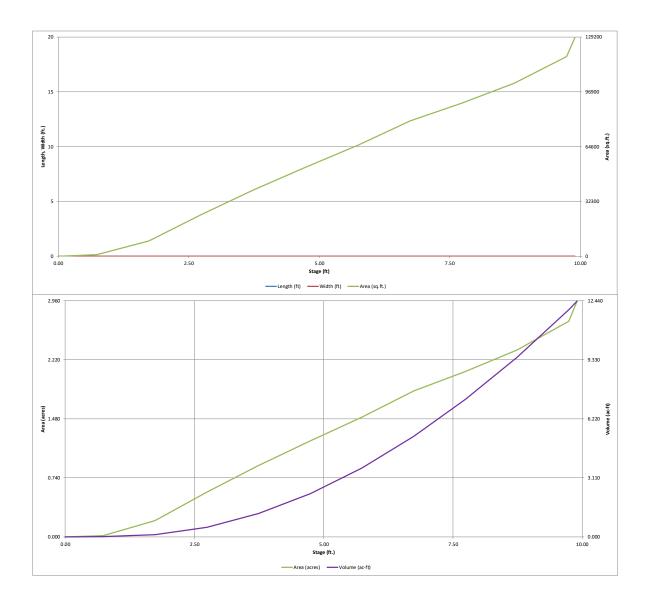
Watershed Information

tersned information		
Selected BMP Type =	EDB	
Watershed Area =	237.10	acres
Watershed Length =	4,610	ft
Watershed Length to Centroid =	1,845	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	13.30%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Denths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.		
Water Quality Capture Volume (WQCV) =	1.676	acre-feet
Excess Urban Runoff Volume (EURV) =	3.032	acre-feet
2-yr Runoff Volume (P1 = 0.93 in.) =	1.627	acre-feet
5-yr Runoff Volume (P1 = 1.21 in.) =	3.639	acre-feet
10-yr Runoff Volume (P1 = 1.46 in.) =	6.817	acre-feet
25-yr Runoff Volume (P1 = 1.83 in.) =	15.350	acre-feet
50-yr Runoff Volume (P1 = 2.14 in.) =	21.061	acre-feet
100-yr Runoff Volume (P1 = 2.47 in.) =	28.847	acre-feet
500-yr Runoff Volume (P1 = 3.33 in.) =	45.905	acre-feet
Approximate 2-yr Detention Volume =	1.558	acre-feet
Approximate 5-yr Detention Volume =	2.464	acre-feet
Approximate 10-yr Detention Volume =	4.712	acre-feet
Approximate 25-yr Detention Volume =	6.876	acre-feet
Approximate 50-yr Detention Volume =	7.525	acre-feet
Approximate 100-yr Detention Volume =	9.842	acre-feet

Optional Use	r Overrides
	acre-feet
	acre-feet
0.93	inches
1.21	inches
1.46	inches
1.83	inches
2.14	inches
2.47	inches
3.33	inches
	0.93 1.21 1.46 1.83 2.14 2.47

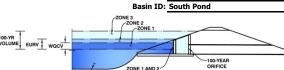

Define Zones and Basin Geometry

<u>ietry</u>	Jerine Zones and Basin Geometry
e (WQCV) = 1.676 acre-f	Zone 1 Volume (WQCV) =
' - Zone 1) = 1.356 acre-	Zone 2 Volume (EURV - Zone 1) =
nes 1 & 2) = 6.810 acre-	Zone 3 Volume (100-year - Zones 1 & 2) =
sin Volume = 9.842 acre-	Total Detention Basin Volume =
ume (ISV) = user ft 3	Initial Surcharge Volume (ISV) =
epth (ISD) = user ft	Initial Surcharge Depth (ISD) =
oth (H _{total}) = user ft	Total Available Detention Depth (H _{total}) =
nnel (H _{TC}) = user ft	Depth of Trickle Channel (H _{TC}) =
nnel (S _{TC}) = user ft/ft	Slope of Trickle Channel $(S_{TC}) =$
les (S _{main}) = user H:V	Slopes of Main Basin Sides (Smain) =
atio (R _{L/W}) = user	Basin Length-to-Width Ratio (R _{L/W}) =

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft 3
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft 3
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

						calculations for compari			
Depth Increment =		ft		ı		Optional		ı	ı
Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00	-		1	0	0.000		
7088		0.74	-		-	757	0.017	280	0.006
7089		1.74				8,862	0.203	5,089	0.117
7090		2.74	-		-	24,382	0.560	21,711	0.498
7091 7092		3.74 4.74			_	39,017	0.896 1.202	53,411	1.226 2.275
7092	-	5.74			-	52,356 65,385	1.501	99,097 157,968	3.626
7094		6.74				79,696	1.830	230,508	5.292
7095		7.74			-	90,272	2.072	315,492	7.243
7096		8.74			-	102,009	2.342	411,633	9.450
7097		9.74	-		-	117,693	2.702	521,484	11.972
7097.16	1	9.90			1	128,850	2.958	541,207	12.424
	1		-		-				
			-		-				
	-		-		-				
					-				
			-		-				
					_				
					_				
	-		-		-				
			-		-				
	-		-		1				
	-		-		-				
			-		-				
			-		-				
			-		-				
			-		-				
					_				
			_		-				
			-		_				
					-				
	1				1				
	-		-		-				
			-		-				
			-		-				
			-		-				
			_		-				
			_		_				
					-				
			-		-				
	-		-		-				
			-						
			-						
			-		-				
			_		-				
	-		-		-				
	-		-		-				
			-						
			-		-				
			-		-				
			-		-				
			-		-				
	-		-		-				
			-		-				
	1 1		-		1 1			-	-
					-				
			-		-				
	-		-		-				
			-						
			-		-				
	1 1		-		1				
			-		1 1 1				
					-				
			-		-				
	1		-		1				
	1 1		-		1				
			-		-				
	1 1		-		1				
			-		-				
	3 -		-		1 1				
			-		-				
	3 -		-				•		
					-				
			-		1 1				
			-	-					
	1 1		-		1 1				
			-						
	1	1			1	1			

South Pond check MHFD-Detention_v4 06.xsm, Basin 9/12/2024, 1:55 PM



South Pond check MHFD-Detention_v4 06.xism, Basin 9/12/2024, 1:55 PM

DETENTION BASIN OUTLET STRUCTURE DES

MHFD-Detention, Version 4.06 (July 2022)

Watershed updated to values established by this report. See later in the appendix for original calculations for comparison. No changes made to pond structures.

Underdrain Orifice Invert Depth =

Underdrain Orifice Diameter =

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	4.21	1.676	Orifice Plate
Zone 2 (EURV)	5.33	1.356	Rectangular Orifice
one 3 (100-year)	8.91	6.810	Weir&Pipe (Rect.)
' <u>-</u>	Total (all zones)	9.842	

Zone 1 (WQCV)
Zone 2 (EURV)
ORIFICE

Example Zone Configuration (Retention Pond)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

N/A

N/A

100.00

inches

Project: Latigo Trails

Underdrain Orifice Area = N/A ft²
Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Pa							
Centroid of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	N/A	ft ²		
Depth at top of Zone using Orifice Plate =	4.26	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet		
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet		
Orifice Plate: Orifice Area per Row =	N/A	sq. inches	Elliptical Slot Area =	N/A	ft²		

ft (distance below the filtration media surface)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Vertical Orifice Width =

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.00	0.00	0.50	0.50	0.50	1.00	1.00
Orifice Area (sq. inches)	1.11	1.11	1.11	1.00	1.00	1.00	1.00	1.00

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	1.00							
Orifice Area (sq. inches)	1.00							

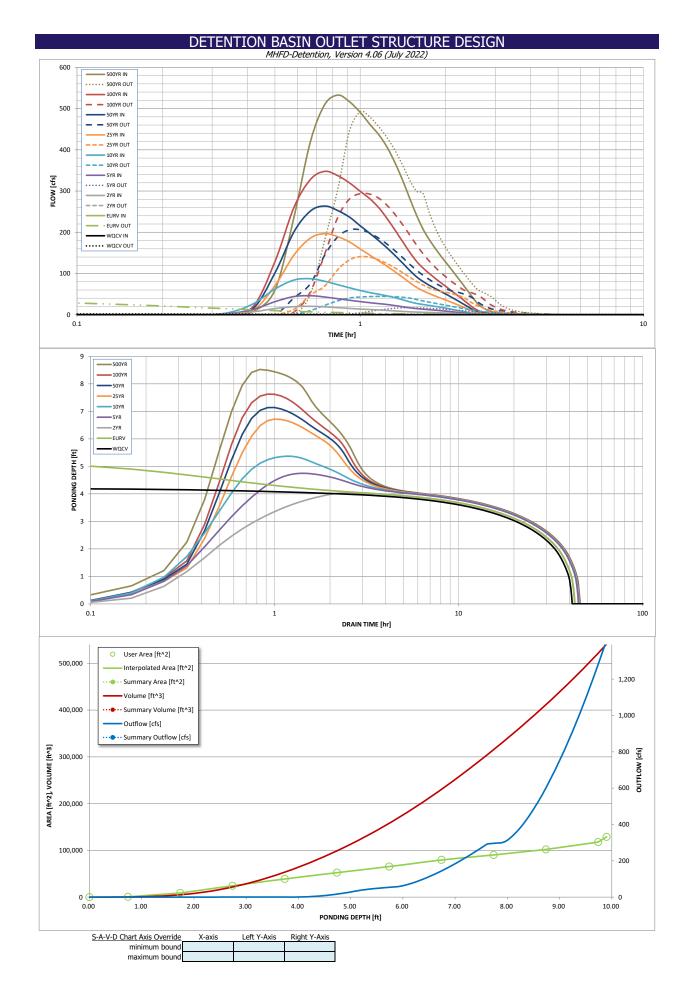
User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Not Selected Zone 2 Rectangula Zone 2 Rectangular Not Selected Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 3.98 N/A 10.42 N/A Depth at top of Zone using Vertical Orifice N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid 0.63 N/A Vertical Orifice Height = inches 15.00 N/A

inches

User Input: Overflow Weir (Dropbox with Flat or	User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)								
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected				
Overflow Weir Front Edge Height, Ho =	5.90	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.90	N/A				
Overflow Weir Front Edge Length =	8.33	N/A	feet Overflow Weir Slope Length =	5.84	N/A				
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	1.41	N/A				
Horiz. Length of Weir Sides =	5.84	N/A	feet Overflow Grate Open Area w/o Debris =	33.86	N/A				
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	33.86	N/A				
Debris Clogging % =	0%	N/A	%	•					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate


Cong 3 Portangular

Not Selected

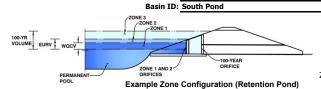
	Zone 3 Rectangular	Not Selected			Zone 3 Rectangular	Not Selected
Depth to Invert of Outlet Pipe =	0.33	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	24.00	N/A
Rectangular Orifice Width =	96.00	N/A	inches	Outlet Orifice Centroid =	1.50	N/A
Rectangular Orifice Height =	36.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	N/A	N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 7.90 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.96 feet Stage at Top of Freeboard = Spillway Crest Length = 120.00 feet 9.86 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 2.89 acres Freeboard above Max Water Surface = 1.00 Basin Volume at Top of Freeboard = 12.31 feet acre-ft

Routed Hydrograph Results	The user can overr	ide the default CUH	P hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colu	mns W through AF
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.83	2.14	2.47
CUHP Runoff Volume (acre-ft) =	1.676	3.032	1.627	3.639	6.817	15.350	21.061	28.847
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.627	3.639	6.817	15.350	21.061	28.847
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.9	22.0	62.0	170.2	236.2	317.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.09	0.26	0.72	1.00	1.34
Peak Inflow Q (cfs) =	N/A	N/A	20.4	46.1	87.3	196.7	263.6	347.7
Peak Outflow Q (cfs) =	2.3	40.1	0.7	17.0	44.5	140.9	206.1	293.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.7	0.8	0.9	0.9
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	2.0	3.7	6.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	38	39	39	36	29	25	20
Time to Drain 99% of Inflow Volume (hours) =	40	41	41	42	41	38	37	34
Maximum Ponding Depth (ft) =	4.21	5.33	4.03	4.75	5.37	6.72	7.14	7.63
Area at Maximum Ponding Depth (acres) =		1.38	0.98	1.20	1.39	1.82	1.92	2.04
Maximum Volume Stored (acre-ft) =	1.681	3.036	1.499	2.275	3.078	5.237	6.024	6.996

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs


The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								l in a separate pro		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.20
	0:15:00	0.00	0.00	0.20	0.44	0.61	0.47	0.67	0.68	1.29
	0:20:00	0.00	0.00	1.22	1.88	3.47	1.73	2.21	2.82	7.76
	0:25:00 0:30:00	0.00	0.00	6.95 14.97	12.43 31.60	25.59 62.30	9.69 70.75	13.71 101.25	18.26 128.80	59.83 235.82
	0:35:00	0.00	0.00	19.47	44.02	84.10	144.56	200.56	259.90	419.11
	0:40:00	0.00	0.00	20.44	46.12	87.25	185.71	251.37	327.71	510.00
	0:45:00	0.00	0.00	19.08	42.96	81.13	196.65	263.59	347.67	532.59
	0:50:00	0.00	0.00	17.11	38.77	72.75	189.23	252.65	337.16	516.55
	0:55:00	0.00	0.00	15.36	35.21	65.46	176.42	236.65	319.74	490.71
	1:00:00	0.00	0.00	13.79	31.83	58.82	159.58	215.76	299.33	461.28
	1:05:00	0.00	0.00	12.63	29.09	53.62	144.15	196.79	280.76	435.36
	1:10:00	0.00	0.00	11.53	26.90	49.45	130.00	178.75	258.52	403.98
	1:15:00	0.00	0.00	10.37	24.59	45.43	116.59	160.65	231.37	365.63
	1:20:00 1:25:00	0.00	0.00	9.21	21.95	41.02	103.27	142.36	203.29	323.51
	1:30:00	0.00	0.00	8.07 7.08	19.18 16.68	35.96 31.10	90.08 77.32	124.15 106.66	175.75 150.40	280.23 240.63
	1:35:00	0.00	0.00	6.39	14.86	27.48	66.17	91.67	129.02	207.81
	1:40:00	0.00	0.00	5.90	13.50	24.86	57.97	80.74	113.27	183.12
	1:45:00	0.00	0.00	5.47	12.23	22.57	51.42	71.87	100.47	162.71
	1:50:00	0.00	0.00	5.07	11.03	20.44	45.78	64.13	89.15	144.59
	1:55:00	0.00	0.00	4.62	9.88	18.32	40.67	57.10	78.88	128.13
	2:00:00	0.00	0.00	4.13	8.76	16.14	35.92	50.56	69.33	112.78
	2:05:00	0.00	0.00	3.59	7.58	13.86	31.17	43.94	60.03	97.62
	2:10:00	0.00	0.00	3.02	6.35	11.54	26.44	37.29	51.06	82.81
	2:15:00 2:20:00	0.00	0.00	2.46	5.15 4.00	9.28 7.12	21.80 17.24	30.79 24.42	42.41	68.56 54.64
	2:25:00	0.00	0.00	1.92 1.42	2.91	5.10	12.77	18.20	33.86 25.47	41.15
	2:30:00	0.00	0.00	1.01	2.00	3.49	8.49	12.26	17.43	28.85
	2:35:00	0.00	0.00	0.75	1.44	2.54	5.35	8.05	11.60	20.13
	2:40:00	0.00	0.00	0.60	1.14	2.01	3.50	5.53	7.97	14.42
	2:45:00	0.00	0.00	0.48	0.91	1.61	2.37	3.89	5.48	10.30
	2:50:00	0.00	0.00	0.40	0.73	1.29	1.61	2.74	3.68	7.23
	2:55:00	0.00	0.00	0.33	0.57	1.02	1.12	1.95	2.40	4.95
	3:00:00	0.00	0.00	0.27	0.45	0.80	0.79	1.39	1.49	3.27
	3:05:00 3:10:00	0.00	0.00	0.22	0.35	0.61	0.55	0.99	0.91	2.13
	3:15:00	0.00	0.00	0.18 0.14	0.27 0.20	0.46 0.34	0.40 0.30	0.74 0.57	0.64 0.50	1.52 1.14
	3:20:00	0.00	0.00	0.17	0.16	0.26	0.22	0.43	0.40	0.89
	3:25:00	0.00	0.00	0.09	0.12	0.19	0.16	0.33	0.31	0.70
	3:30:00	0.00	0.00	0.07	0.09	0.14	0.12	0.25	0.24	0.53
	3:35:00	0.00	0.00	0.05	0.06	0.10	0.09	0.18	0.17	0.39
	3:40:00	0.00	0.00	0.03	0.04	0.07	0.06	0.13	0.12	0.27
	3:45:00	0.00	0.00	0.02	0.03	0.04	0.04	0.08	0.08	0.17
	3:50:00	0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.04	0.09
	3:55:00 4:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.04
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							1
							_
							-
							1
							_
							1
							1
							_
							-
							1
							_
]
							_
]
							-
]
							_
							1
							_
							<u> </u>
							-
							1
							-
							1
				 	 		1
]
				•			i .

Project: Latigo Trails

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	4.21	1.676	Orifice Plate
Zone 2 (EURV)	5.33	1.356	Rectangular Orifice
Zone 3 (100-year)	8.91	6.810	Weir&Pipe (Rect.)
-	Total (all zones)	9.842	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 4.26 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width =

Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A sq. inches

ft² N/A N/A feet Elliptical Slot Centroid feet N/A ft² Elliptical Slot Area = N/A

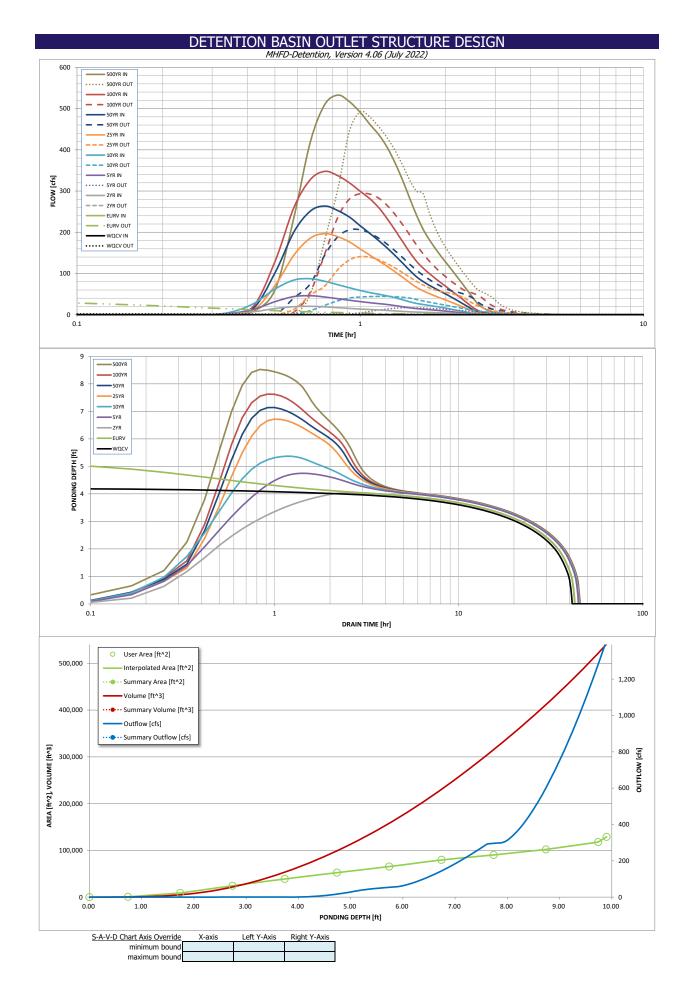
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.00	0.00	0.50	0.50	0.50	1.00	1.00
Orifice Area (sq. inches)	1.11	1.11	1.11	1.00	1.00	1.00	1.00	1.00

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	1.00	` '	, , , ,	` '	, , ,	, , , ,	``	, , , ,
Orifice Area (sq. inches)	1.00							

Jser Input: Vertical Orifice (Circular or Rectangi	ular)		_		Calculated Paramete	ers for Vertical Orifi
	Zone 2 Rectangular	Not Selected			Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	3.98	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	10.42	N/A
Depth at top of Zone using Vertical Orifice =	5.42	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.63	N/A
Vertical Orifice Height =	15.00	N/A	inches		·	•
Vertical Orifice Width =	100.00		inches			

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = Overflow Weir Front Edge Height, Ho 5.90 N/A 5.90 N/A Overflow Weir Front Edge Length = Overflow Weir Slope Length 8.33 N/A feet 5.84 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area : 1.41 N/A Horiz. Length of Weir Sides = 5.84 N/A feet Overflow Grate Open Area w/o Debris = 33.86 N/A Overflow Grate Type = Type C Grate N/A Overflow Grate Open Area w/ Debris = 33.86 N/A Debris Clogging % = N/A


User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

det ripe w/ riow kestriction riate	<u>(Circulai Orilice, Re</u>	Strictor Plate, or Re	ctangular Office)	Calculated Parameter	S for Outlet Pipe w/	FIOW RESUICION FIE
	Zone 3 Rectangular	Not Selected			Zone 3 Rectangular	Not Selected
Depth to Invert of Outlet Pipe =	0.33	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	24.00	N/A
Rectangular Orifice Width =	96.00	N/A	inches	Outlet Orifice Centroid =	1.50	N/A
Rectangular Orifice Height =	36.00		inches Half-Central Angle of	Restrictor Plate on Pipe =	N/A	N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

out: Emergency Spillway (Rectangular or	Calculated Parameters for Spillway				
Spillway Invert Stage=	7.90	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.96	feet
Spillway Crest Length =	120.00	feet	Stage at Top of Freeboard =	9.86	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	2.89	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	12.31	acre-ft

Routed Hydrograph Results	The user can overr	ide the default CUH	P hydrographs and	runoff volumes by	entering new values	in the Inflow Hydro	ographs table (Colu	mns W through AF
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.83	2.14	2.47
CUHP Runoff Volume (acre-ft) =	1.676	3.032	1.627	3.639	6.817	15.350	21.061	28.847
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.627	3.639	6.817	15.350	21.061	28.847
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.9	22.0	62.0	170.2	236.2	317.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.09	0.26	0.72	1.00	1.34
Peak Inflow Q (cfs) =	N/A	N/A	20.4	46.1	87.3	196.7	263.6	347.7
Peak Outflow Q (cfs) =	2.3	40.1	0.7	17.0	44.5	140.9	206.1	293.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.7	0.8	0.9	0.9
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	2.0	3.7	6.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	38	39	39	36	29	25	20
Time to Drain 99% of Inflow Volume (hours) =	40	41	41	42	41	38	37	34
Maximum Ponding Depth (ft) =	4.21	5.33	4.03	4.75	5.37	6.72	7.14	7.63
Area at Maximum Ponding Depth (acres) =		1.38	0.98	1.20	1.39	1.82	1.92	2.04
Maximum Volume Stored (acre-ft) =	1.681	3.036	1.499	2.275	3.078	5.237	6.024	6.996

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								l in a separate pro		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.20
	0:15:00	0.00	0.00	0.20	0.44	0.61	0.47	0.67	0.68	1.29
	0:20:00	0.00	0.00	1.22	1.88	3.47	1.73	2.21	2.82	7.76
	0:25:00 0:30:00	0.00	0.00	6.95 14.97	12.43 31.60	25.59 62.30	9.69 70.75	13.71 101.25	18.26 128.80	59.83 235.82
	0:35:00	0.00	0.00	19.47	44.02	84.10	144.56	200.56	259.90	419.11
	0:40:00	0.00	0.00	20.44	46.12	87.25	185.71	251.37	327.71	510.00
	0:45:00	0.00	0.00	19.08	42.96	81.13	196.65	263.59	347.67	532.59
	0:50:00	0.00	0.00	17.11	38.77	72.75	189.23	252.65	337.16	516.55
	0:55:00	0.00	0.00	15.36	35.21	65.46	176.42	236.65	319.74	490.71
	1:00:00	0.00	0.00	13.79	31.83	58.82	159.58	215.76	299.33	461.28
	1:05:00	0.00	0.00	12.63	29.09	53.62	144.15	196.79	280.76	435.36
	1:10:00	0.00	0.00	11.53	26.90	49.45	130.00	178.75	258.52	403.98
	1:15:00	0.00	0.00	10.37	24.59	45.43	116.59	160.65	231.37	365.63
	1:20:00 1:25:00	0.00	0.00	9.21	21.95	41.02	103.27	142.36	203.29	323.51
	1:30:00	0.00	0.00	8.07 7.08	19.18 16.68	35.96 31.10	90.08 77.32	124.15 106.66	175.75 150.40	280.23 240.63
	1:35:00	0.00	0.00	6.39	14.86	27.48	66.17	91.67	129.02	207.81
	1:40:00	0.00	0.00	5.90	13.50	24.86	57.97	80.74	113.27	183.12
	1:45:00	0.00	0.00	5.47	12.23	22.57	51.42	71.87	100.47	162.71
	1:50:00	0.00	0.00	5.07	11.03	20.44	45.78	64.13	89.15	144.59
	1:55:00	0.00	0.00	4.62	9.88	18.32	40.67	57.10	78.88	128.13
	2:00:00	0.00	0.00	4.13	8.76	16.14	35.92	50.56	69.33	112.78
	2:05:00	0.00	0.00	3.59	7.58	13.86	31.17	43.94	60.03	97.62
	2:10:00	0.00	0.00	3.02	6.35	11.54	26.44	37.29	51.06	82.81
	2:15:00 2:20:00	0.00	0.00	2.46	5.15 4.00	9.28 7.12	21.80 17.24	30.79 24.42	42.41	68.56 54.64
	2:25:00	0.00	0.00	1.92 1.42	2.91	5.10	12.77	18.20	33.86 25.47	41.15
	2:30:00	0.00	0.00	1.01	2.00	3.49	8.49	12.26	17.43	28.85
	2:35:00	0.00	0.00	0.75	1.44	2.54	5.35	8.05	11.60	20.13
	2:40:00	0.00	0.00	0.60	1.14	2.01	3.50	5.53	7.97	14.42
	2:45:00	0.00	0.00	0.48	0.91	1.61	2.37	3.89	5.48	10.30
	2:50:00	0.00	0.00	0.40	0.73	1.29	1.61	2.74	3.68	7.23
	2:55:00	0.00	0.00	0.33	0.57	1.02	1.12	1.95	2.40	4.95
	3:00:00	0.00	0.00	0.27	0.45	0.80	0.79	1.39	1.49	3.27
	3:05:00 3:10:00	0.00	0.00	0.22	0.35	0.61	0.55	0.99	0.91	2.13
	3:15:00	0.00	0.00	0.18 0.14	0.27 0.20	0.46 0.34	0.40 0.30	0.74 0.57	0.64 0.50	1.52 1.14
	3:20:00	0.00	0.00	0.17	0.16	0.26	0.22	0.43	0.40	0.89
	3:25:00	0.00	0.00	0.09	0.12	0.19	0.16	0.33	0.31	0.70
	3:30:00	0.00	0.00	0.07	0.09	0.14	0.12	0.25	0.24	0.53
	3:35:00	0.00	0.00	0.05	0.06	0.10	0.09	0.18	0.17	0.39
	3:40:00	0.00	0.00	0.03	0.04	0.07	0.06	0.13	0.12	0.27
	3:45:00	0.00	0.00	0.02	0.03	0.04	0.04	0.08	0.08	0.17
	3:50:00	0.00	0.00	0.01	0.01	0.02	0.02	0.04	0.04	0.09
	3:55:00 4:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.04
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							1
							_
							-
							1
							_
							1
							1
							_
							_
							1
							_
							<u> </u>
							_
]
							-
]
							_
							1
							_
							<u> </u>
							-
							1
							-
							1
				 	 		1
]
				•			i .

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

acre-feet 0.93 inches 1.21 inches 1.46 inches 1.83 inches

2.14 inches 2.47 inches 3.33 inches

Project: Latigo Trails

Watershed Information

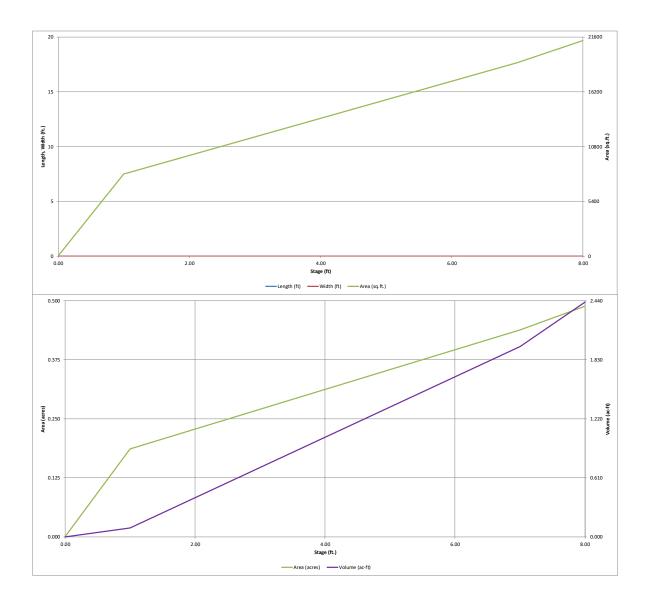
Selected BMP Type =	EDB	
Watershed Area =	35.73	acres
Watershed Length =	1,625	ft
Watershed Length to Centroid =	500	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	14.87%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Lichap Hydrograph Procedure

the embedded Colorado Urban Hydro	graph Procedu	re.
Water Quality Capture Volume (WQCV) =	0.276	acre-feet
Excess Urban Runoff Volume (EURV) =	0.515	acre-feet
2-yr Runoff Volume (P1 = 0.93 in.) =	0.282	acre-feet
5-yr Runoff Volume (P1 = 1.21 in.) =	0.598	acre-feet
10-yr Runoff Volume (P1 = 1.46 in.) =	1.083	acre-feet
25-yr Runoff Volume (P1 = 1.83 in.) =	2.362	acre-feet
50-yr Runoff Volume (P1 = 2.14 in.) =	3.222	acre-feet
100-yr Runoff Volume (P1 = 2.47 in.) =	4.388	acre-feet
500-yr Runoff Volume (P1 = 3.33 in.) =	6.951	acre-feet
Approximate 2-yr Detention Volume =	0.268	acre-feet
Approximate 5-yr Detention Volume =	0.420	acre-feet
Approximate 10-yr Detention Volume =	0.771	acre-feet
Approximate 25-yr Detention Volume =	1.103	acre-feet
Approximate 50-yr Detention Volume =	1.209	acre-feet
Approximate 100-yr Detention Volume =	1.569	acre-feet

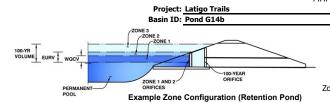
Define Zones and Basin Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.276	acre-fi
Zone 2 Volume (EURV - Zone 1) =	0.240	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	1.054	acre-f
Total Detention Basin Volume =	1.569	acre-f
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1


Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Depth Increment =		ft					
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)
Top of Micropool		0.00	-		-	40	0.001
7061		1.00	-			8,099	0.186
7067		7.00	-		-	19,086	0.438
7068		8.00	1	1	-	21,269	0.488
					-		
			-		-		
			-		-		
					-		
			-		-		
					-		
					-		
					-		
			-		-		
					-		
			-		-		
			ı	ŀ	1		
			-				
					-		
					-		
			-		-		
			-				
			-		-		
			-	-	-		
			-				

Volume (ac-ft)


4,069 0.093

	/061		1.00	-	-	-	8,099	0.186	4,069	0.093
	7067		7.00			-	19,086	0.438	85,624	1.966
ı	7068		8.00	-		-	21,269	0.488	105,802	2.429
ŀ	7000		0.00				21,203	0.100	103,002	E. IES
L				-		-				
ı				-						
t				-		-				
ŀ										
L										
ı				-						
Ī						-				
ŀ						-				
ŀ										
L				-	-	-				
l						-				
r				-		-				
Ļ										
L				1	-	-				
l				-						
İ				-	-					
ŀ				-		_				
ŀ										
l						-				
Ī				-						
ŀ										
ŀ										
l				-		-				
Ī				-						
ŀ					-					
ŀ										
L				-	-	-				
l						-				
ľ				-	-	-				
ŀ										
L				-		-				
ı				-	-	-				
i				-						
۱				_		-				
Ļ										
l						-				
ĺ						-				
İ				-		-				
ŀ										
L										
						-				
				-		-				
ŀ				-		-				
ŀ										
L				-	-	-				
l						-				
İ				-						
ŀ										
Ļ				-	-	-				
l						-				
Γ				-		-				
ŀ				-		-				
ŀ										
Ļ				-						
İ				-	-					
ŀ				-						
ŀ										
L										
l						-				
Ī				-		-				
İ				-						
ŀ										
				-						
İ				-	-	-				
ŀ				-		-				
ŀ										
L										
L				-		-				
ļ				-		-				
ŀ				-	-	-				
				-		-				
۱				-		-				
						-				
f					-	-		l	l	l
				-		-				
						-				
٠					-					
						-				
				-						
				-		-				
						-				
				-					i .	ı
				-						
					-	-				
		-		1 1	1 1	-				
		 		1 1 1	111					
		 		1111	1111	- - - -				
				-	 					
				-	 					
		 		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

G14b MHFD-Detention_v4-06.xkm, Basin 9/16/2024, 2:28 PM

MHFD-Detention, Version 4.06 (July 2022)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.90	0.276	Orifice Plate
Zone 2 (EURV)	2.88	0.240	Orifice Plate
one 3 (100-year)	6.06	1.054	Weir&Pipe (Circular)
' <u>-</u>	Total (all zones)	1.569	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.88 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = 2.44 sq. inches (diameter = 1-3/4 inches)

50%

Calculated Parameters for Plate WQ Orifice Area per Row 1.694E-02 ft² Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet ft² Elliptical Slot Area = N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lo</u>west to highest)

una rotarrica di Lacii dinica	TOW (Harribered III	on lowest to manes	<u>1C)</u>					
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	2.90						
Orifice Area (sq. inches)	2.44	2.44						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)		((((4)	(((
Orifice Area (sq. inches)								

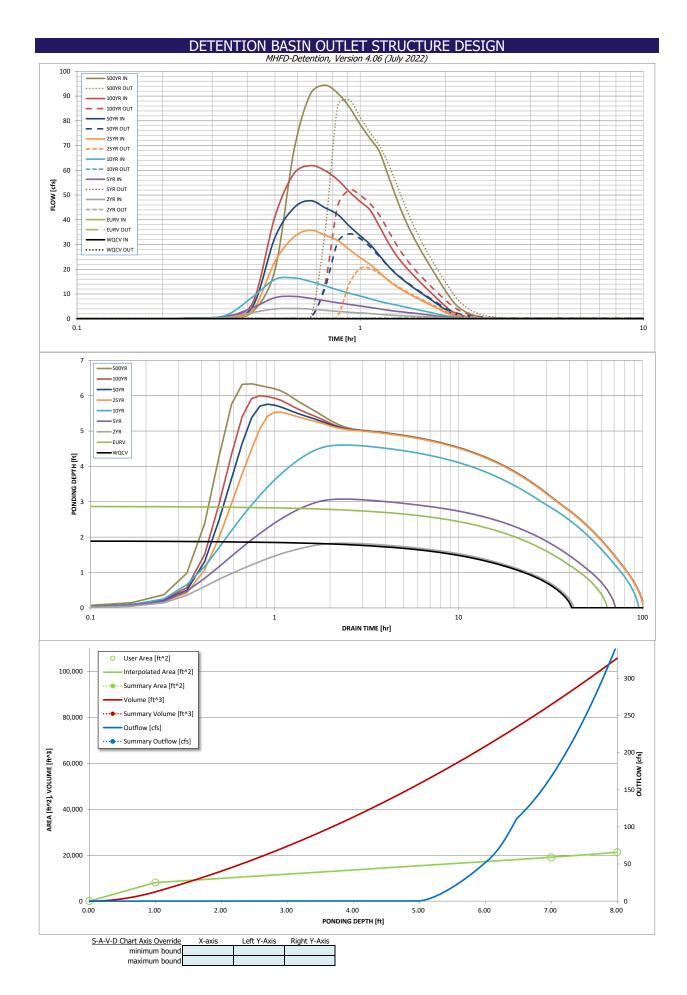
Jser Input: Vertical Orlfice (Circular of Rectangu	<u>iar)</u>				Calculated Paramet	ters for vertical Orifi
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A
Vertical Orifice Diameter -	N/A	N/A	inches		•	•

User Input: Overflow Weir (Dropbox with Flat or	Calculated Paramet	ers for Overflow We			
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	5.00	N/A	ft (relative to basin bottom at Stage = 0 ft) $$ Height of Grate Upper Edge, H_t =	5.00	N/A
Overflow Weir Front Edge Length =	8.00	N/A	feet Overflow Weir Slope Length =	8.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	6.30	N/A
Horiz. Length of Weir Sides =	8.00	N/A	feet Overflow Grate Open Area w/o Debris =	44.54	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	22.27	N/A

Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

N/A

	Zone 3 Circular	Not Selected			Zone 3 Circular	Not Selected	J
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	7.07	N/A	Ī
Circular Orifice Diameter =	36.00	N/A	inches	Outlet Orifice Centroid =	1.50	N/A]
	•		Half-Central Angle	of Restrictor Plate on Pipe =	N/A	N/A	1


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Debris Clogging % =

		Calculated Paramet	ters for Spillway
ft (relative to basin bottom at Stage =	0 ft) Spillway Design Flow Depth=	0.85	feet
feet	Stage at Top of Freeboard =	7.95	feet
H:V	Basin Area at Top of Freeboard =	0.49	acres
feet	Basin Volume at Top of Freeboard =	2.40	acre-ft
	feet H:V	ft (relative to basin bottom at Stage = 0 ft) feet H:V Spillway Design Flow Depth= Stage at Top of Freeboard = Basin Area at Top of Freeboard =	ft (relative to basin bottom at Stage = 0 ft) feet H:V Spillway Design Flow Depth= Stage at Top of Freeboard = 7.95 Basin Area at Top of Freeboard = 0.49

Routed Hydrograph Results	The user can overr	ide the default CUH	P hydrographs and	runoff volumes by a	entering new values	s in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.83	2.14	2.47
CUHP Runoff Volume (acre-ft) =	0.276	0.515	0.282	0.598	1.083	2.362	3.222	4.388
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.282	0.598	1.083	2.362	3.222	4.388
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.5	4.2	11.4	30.6	42.3	56.2
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.12	0.32	0.86	1.18	1.57
Peak Inflow Q (cfs) =	N/A	N/A	4.1	9.0	16.5	35.8	47.7	61.9
Peak Outflow Q (cfs) =	0.1	0.1	0.1	0.2	0.3	20.3	34.3	52.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.0	0.0	0.7	0.8	0.9
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.4	0.8	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	59	39	66	87	86	82	77
Time to Drain 99% of Inflow Volume (hours) =	40	62	41	69	92	95	93	91
Maximum Ponding Depth (ft) =	1.90	2.88	1.83	3.08	4.60	5.53	5.76	6.00
Area at Maximum Ponding Depth (acres) =		0.26	0.22	0.27	0.34	0.38	0.39	0.40
Maximum Volume Stored (acre-ft) =	0.278	0.517	0.260	0.568	1.035	1.367	1.451	1.549

9/16/2024, 2:45 PM G14b MHFD-Detention_v4-06.xlsm, Outlet Structure

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

Ī	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]		50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.19	0.00	0.00 0.21	0.01	0.00	0.50
	0:20:00	0.00	0.00	0.48	0.19	1.32	0.60	0.29	1.06	2.79
	0:25:00	0.00	0.00	2.52	4.47	8.78	3.46	4.87	6.35	19.67
	0:30:00	0.00	0.00	3.98	8.52	15.88	23.12	32.79	41.26	67.89
	0:35:00	0.00	0.00	4.13	9.04	16.49	33.05	44.80	58.60	90.77
	0:40:00	0.00	0.00	3.90	8.25	15.09	35.82	47.71	61.89	94.40
	0:45:00	0.00	0.00	3.41	7.29	13.34	33.78	44.89	59.92	91.11
	0:50:00	0.00	0.00	2.98	6.49	11.65	31.66	42.08	56.11	85.43
	0:55:00	0.00	0.00	2.64	5.77	10.30	27.90	37.40	51.25	78.52
	1:00:00	0.00	0.00	2.36	5.16	9.18	24.72	33.51	47.37	72.86
	1:05:00	0.00	0.00	2.09 1.78	4.59 4.03	8.11 7.07	21.94 18.76	30.04 25.73	43.93 37.52	67.74 58.53
	1:15:00	0.00	0.00	1.52	3.48	6.26	15.72	21.58	31.21	49.75
	1:20:00	0.00	0.00	1.34	3.06	5.59	13.26	18.27	26.09	41.94
	1:25:00	0.00	0.00	1.20	2.72	4.93	11.41	15.76	22.20	35.76
	1:30:00	0.00	0.00	1.08	2.42	4.31	9.80	13.57	18.98	30.59
	1:35:00	0.00	0.00	0.96	2.14	3.74	8.38	11.63	16.20	26.10
	1:40:00	0.00	0.00	0.85	1.82	3.20	7.10	9.87	13.65	22.01
	1:45:00	0.00	0.00	0.74	1.52	2.68	5.90	8.22	11.28	18.21
	1:50:00	0.00	0.00	0.63	1.22	2.18	4.74	6.64	9.05	14.64
	1:55:00	0.00	0.00	0.50	0.95	1.65	3.62	5.13	6.99	11.34
	2:00:00	0.00	0.00	0.38	0.71	1.20	2.56	3.69	5.03	8.36
	2:05:00	0.00	0.00	0.29	0.52	0.89	1.65	2.47	3.39	5.89
	2:15:00	0.00	0.00	0.23 0.18	0.41	0.70 0.55	1.11 0.76	1.72 1.22	2.36 1.64	4.24 3.06
	2:20:00	0.00	0.00	0.15	0.32	0.44	0.54	0.88	1.13	2.18
	2:25:00	0.00	0.00	0.12	0.20	0.35	0.38	0.63	0.76	1.52
	2:30:00	0.00	0.00	0.09	0.16	0.27	0.28	0.46	0.49	1.03
	2:35:00	0.00	0.00	0.07	0.12	0.20	0.20	0.33	0.31	0.68
	2:40:00	0.00	0.00	0.06	0.09	0.15	0.14	0.24	0.21	0.47
	2:45:00	0.00	0.00	0.05	0.07	0.11	0.10	0.18	0.16	0.34
	2:50:00	0.00	0.00	0.04	0.05	0.08	0.08	0.14	0.13	0.26
	2:55:00	0.00	0.00	0.03	0.04	0.06	0.06	0.10	0.10	0.21
	3:00:00 3:05:00	0.00	0.00	0.02	0.03	0.05	0.04	0.08	0.08	0.16 0.12
	3:10:00	0.00	0.00	0.02	0.02	0.03	0.03	0.06	0.06	0.12
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.05
	3:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.03
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary 5-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
							1
]
]
							1
]
		I	I		l	<u> </u>	J

G14b FOREBAY VOLUME

Req'd V=3% x WQCV

 WQCV=
 0.286 ac-ft

 V=
 0.0086 ac-ft

 Actual V
 0.0087 ac-ft

FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{3/2}

 Q_{100} = 61.9 cfs 2% of Q= 1.24 cfs C= 2.6 H (height of forebay wall)= 1 ft

L= 0.48 ft 5.7 in

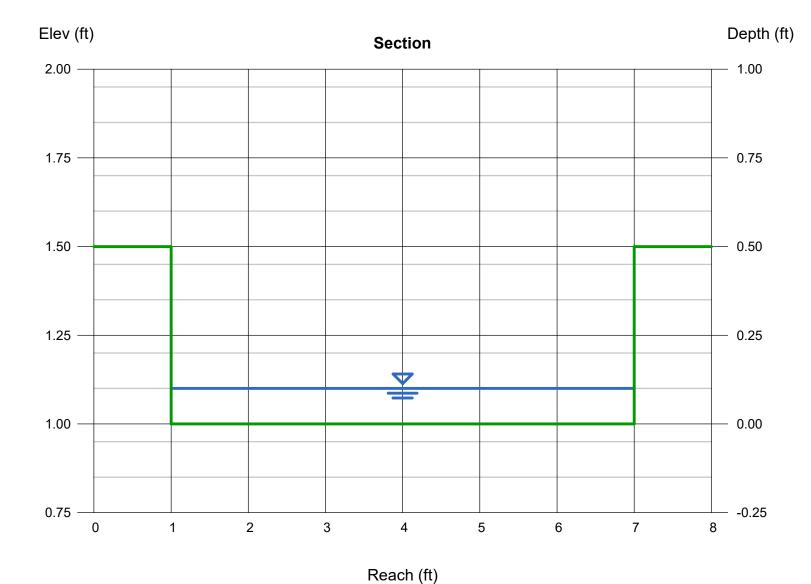
3 in min.

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Known Q

= 1.10

Thursday, Aug 29 2024


<Name>

Compute by:

Known Q (cfs)

Rectangular		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.10
Total Depth (ft)	= 0.50	Q (cfs)	= 1.100
,		Area (sqft)	= 0.60
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 1.83
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.20
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.11
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.15

55.2 cfs x 2%

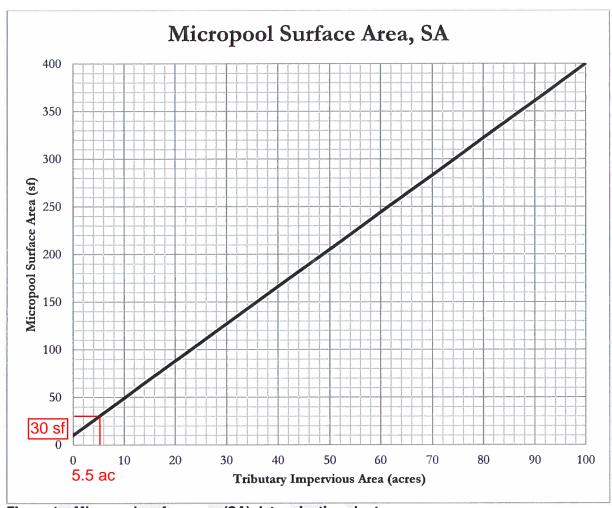


Figure 1 – Micropool surface area (SA) determination chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$TIA = I \times A = (14.8/100) \times 37.22 \text{ ac} = 5.5 \text{ ac}$$
 $TIA = Tributary impervious area (acres)$
 $I = Imperviousness (fraction)$
 $I = Tributary catchment area upstream (acres)$

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4 inches$$

 $ISV = SA \times 4 inches$
 $SA = Surface area (from Figure 1, sf)$

Chapter 13 Storage

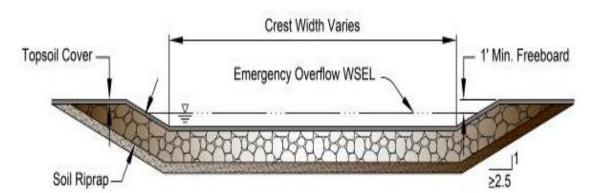
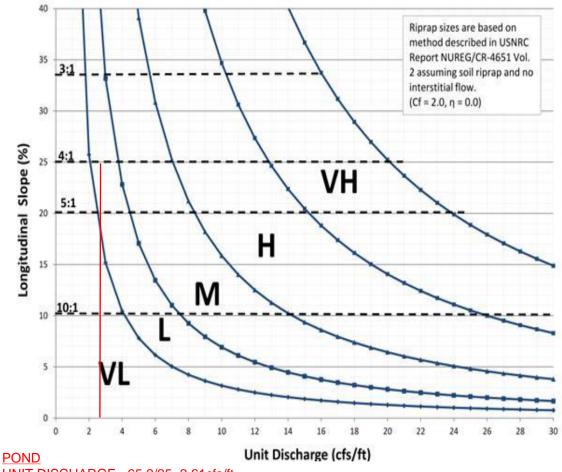



Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

UNIT DISCHARGE= 65.2/25=2.61cfs/ft

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

acre-feet
0.93 inches
1.21 inches
1.46 inches
1.83 inches

2.14 inches 2.47 inches 3.33 inches

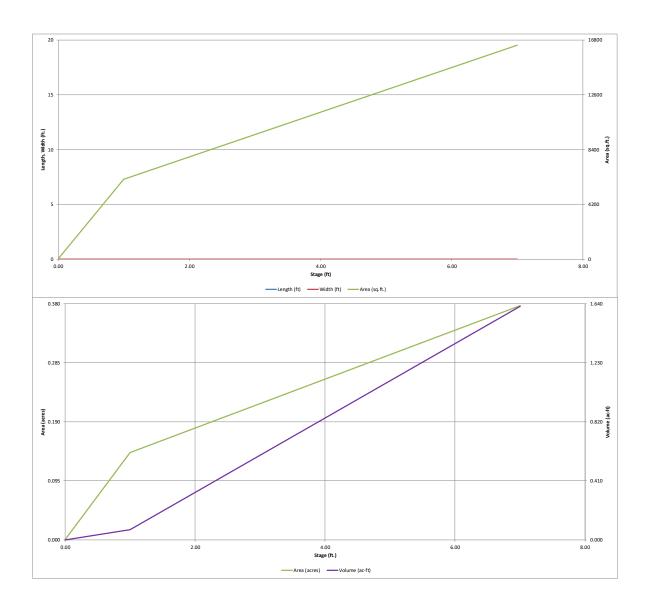
Project: Latigo Trails

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	23.45	acres
Watershed Length =	1,747	ft
Watershed Length to Centroid =	670	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	13.47%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

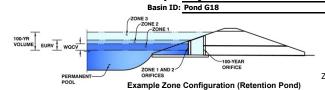
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure

the embedded Colorado Urban Hydrograph Procedure.									
Water Quality Capture Volume (WQCV) =	0.167	acre-feet							
Excess Urban Runoff Volume (EURV) =	0.304	acre-feet							
2-yr Runoff Volume (P1 = 0.93 in.) =	0.163	acre-feet							
5-yr Runoff Volume (P1 = 1.21 in.) =	0.363	acre-feet							
10-yr Runoff Volume (P1 = 1.46 in.) =	0.677	acre-feet							
25-yr Runoff Volume (P1 = 1.83 in.) =	1.519	acre-feet							
50-yr Runoff Volume (P1 = 2.14 in.) =	2.082	acre-feet							
100-yr Runoff Volume (P1 = 2.47 in.) =	2.850	acre-feet							
500-yr Runoff Volume (P1 = 3.33 in.) =	4.534	acre-feet							
Approximate 2-yr Detention Volume =	0.156	acre-feet							
Approximate 5-yr Detention Volume =	0.247	acre-feet							
Approximate 10-yr Detention Volume =	0.470	acre-feet							
Approximate 25-yr Detention Volume =	0.685	acre-feet							
Approximate 50-yr Detention Volume =	0.750	acre-feet							
Approximate 100-yr Detention Volume =	0.980	acre-feet							


Define Zones and Basin Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.167	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.137	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.676	acre-feet
Total Detention Basin Volume =	0.980	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet


Depth Increment =		ft							
	_	Optional				Optional	_		
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Top of Micropool		0.00				40	0.001	(10)	(ac it)
			-		_			2.005	0.071
7051		1.00				6,130	0.141	3,085	0.071
7057		7.00	-		-	16,416	0.377	70,723	1.624
	-		-		-				
			-						
			-		-				
			-		-				
			-						
					-				
					-				
			-		-				
			-		-				
	-		-		-				
			-		-				
			-						
					-				
	-				-				
			-						
			-						
			-						
			-						
			-						
			-		-				
			-		-				
			-		-				
			-		-				
	-		-		-				
			-						
	-				-				
	-		-		-				
	-		-		-				
	-		-		-				
			-		-				
			-		-				
			-		-				
	-		-						
			-		-				
	-		-		-				
			-		-				
	-		-		-				
			-						
	-		-						
	-		-						
	-		-						
			-		-				
			-		-				
			-						1
			-						
			-		-				
			-		-				
			-		-				
			-						
			-		-				-
	1				-				
			-						
			-						
					-				
					-				
			-		-				
			-		-		1	1	
			-		-				
			-						
	1 1 1								
			-		-				
			-		-				
			-		-				
			-		-				
					-				
							i	1	1

Copy of G18 MHFD-Deterntion_v4-06.xtsm, Basin 9/16/2024, 2.42 PM

Copy of G18 MHFD-Deterntion_v4-06.xtsm, Basin 9/16/2024, 2.42 PM

MHFD-Detention, Version 4.06 (July 2022)

Project: Latigo Trails

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.64	0.167	Orifice Plate
Zone 2 (EURV)	2.39	0.137	Orifice Plate
Zone 3 (100-year)	5.11	0.676	Weir&Pipe (Circular)
•	Total (all zones)	0.980	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) 0.00

Depth at top of Zone using Orifice Plate = 2.39 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = 1.57 sq. inches (diameter = 1-3/8 inches)

Calculated Parameters for Plate WQ Orifice Area per Row 1.090E-02 ft² Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet ft² Elliptical Slot Area = N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lo</u>west to highest)

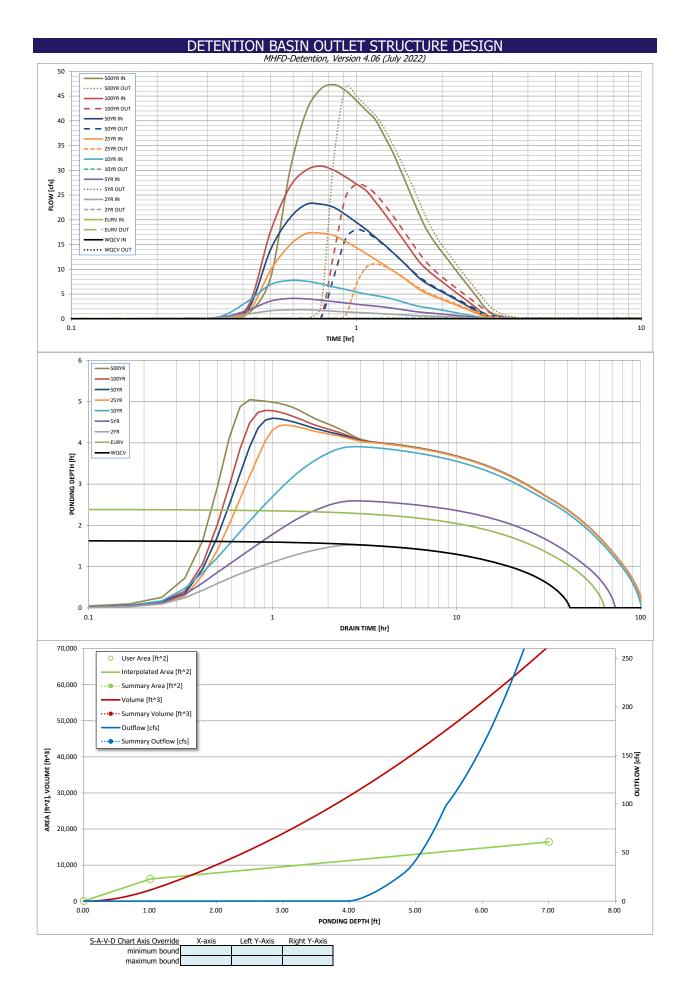
and rotal fired of Eden Office	d Total Area of Each Office Now (Hambered from lowest to highest)										
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft)	0.00	2.65									
Orifice Area (sq. inches)	1.57	1.57									

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

Jser Input: Vertical Orlfice (Circular of Rectangu	<u>iar)</u>				Calculated Paramet	ters for vertical Orifi
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A
Vertical Orifice Diameter -	N/A	N/A	inches		•	•

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow We				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	4.00	N/A	ft (relative to basin bottom at Stage = 0 ft) $$ Height of Grate Upper Edge, H_t =	4.00	N/A
Overflow Weir Front Edge Length =	6.00	N/A	feet Overflow Weir Slope Length =	6.00	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	3.54	N/A
Horiz. Length of Weir Sides =	6.00	N/A	feet Overflow Grate Open Area w/o Debris =	25.06	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	12.53	N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)


tlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				Calculated Parameters	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plant			
	Zone 3 Circular	Not Selected			Zone 3 Circular	Not Selected	ı	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	7.07	N/A	ı	
Circular Orifice Diameter =	36.00	N/A	inches	Outlet Orifice Centroid =	1.50	N/A	ı	
		-	Half-Central Angle o	f Restrictor Plate on Pipe =	N/A	N/A	ı	

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>

Debris Clogging % =

put: Emergency Spillway (Rectangular or 7	Calculated Parameters for Spillway				
Spillway Invert Stage=	4.85	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.74	feet
Spillway Crest Length =	20.00	feet	Stage at Top of Freeboard =	6.59	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.36	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	1.47	acre-ft

Routed Hydrograph Results	The user can overr	ide the default CUH	P hydrographs and	runoff volumes by e	entering new values	s in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.83	2.14	2.47
CUHP Runoff Volume (acre-ft) =	0.167	0.304	0.163	0.363	0.677	1.519	2.082	2.850
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.163	0.363	0.677	1.519	2.082	2.850
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	1.9	5.4	15.0	20.8	28.2
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.08	0.23	0.64	0.89	1.20
Peak Inflow Q (cfs) =	N/A	N/A	1.8	4.1	7.7	17.3	23.2	30.8
Peak Outflow Q (cfs) =	0.1	0.1	0.1	0.1	0.2	11.1	18.0	27.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.0	0.0	0.7	0.9	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.4	0.7	1.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	59	38	67	92	87	83	78
Time to Drain 99% of Inflow Volume (hours) =	40	62	40	70	97	96	94	92
Maximum Ponding Depth (ft) =	1.63	2.39	1.52	2.59	3.91	4.43	4.60	4.79
Area at Maximum Ponding Depth (acres) =	0.17	0.20	0.16	0.20	0.25	0.28	0.28	0.29
Maximum Volume Stored (acre-ft) =	0.167	0.304	0.149	0.344	0.644	0.782	0.830	0.884

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

1	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME			2 Year [cfs]				50 Year [cfs]	100 Year [cfs]	
		WQCV [cfs]	EURV [cfs]		5 Year [cfs]	10 Year [cfs]				
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	0:15:00	0.00	0.00	0.03	0.07	0.10	0.07	0.10	0.10	0.18
	0:25:00	0.00	0.00	0.17 0.96	0.24 1.75	0.47 3.59	0.22 1.34	0.27 1.91	0.37 2.53	1.06 8.29
	0:30:00	0.00	0.00	1.62	3.59	6.91	9.81	13.99	17.69	29.63
	0:35:00	0.00	0.00	1.80	4.10	7.72	14.86	20.29	26.57	41.83
	0:40:00	0.00	0.00	1.82	4.03	7.60	17.20	23.10	30.03	46.42
	0:45:00	0.00	0.00	1.67	3.75	7.07	17.30	23.16	30.83	47.30
	0:50:00	0.00	0.00	1.53	3.47	6.45	16.85	22.51	30.01	46.10
	0:55:00	0.00	0.00	1.40	3.20	5.92	15.62	21.03	28.63	44.11
	1:00:00	0.00	0.00	1.29	2.94	5.42	14.37	19.50	27.24	42.08
	1:05:00	0.00	0.00	1.19	2.72	5.00	13.17	18.01	25.86	40.18
	1:10:00	0.00	0.00	1.10	2.56	4.69	11.97	16.44	23.60	37.05
	1:15:00	0.00	0.00	1.01	2.37	4.39	10.91	15.01	21.40	33.99
	1:20:00	0.00	0.00	0.92	2.15	4.03	9.86	13.56	19.18	30.53
	1:25:00	0.00	0.00	0.83	1.93	3.61	8.83	12.15	17.06	27.17
	1:35:00	0.00	0.00	0.74 0.66	1.72 1.52	3.18 2.78	7.81 6.80	10.76 9.39	15.06 13.14	23.99
	1:40:00	0.00	0.00	0.60	1.35	2.49	5.89	8.16	11.42	18.38
	1:45:00	0.00	0.00	0.56	1.24	2.29	5.23	7.29	10.18	16.45
	1:50:00	0.00	0.00	0.53	1.14	2.11	4.71	6.59	9.17	14.84
	1:55:00	0.00	0.00	0.49	1.05	1.94	4.27	5.99	8.28	13.43
	2:00:00	0.00	0.00	0.45	0.96	1.76	3.87	5.43	7.47	12.14
	2:05:00	0.00	0.00	0.40	0.85	1.57	3.48	4.88	6.67	10.83
	2:10:00	0.00	0.00	0.35	0.75	1.38	3.09	4.33	5.92	9.58
	2:15:00	0.00	0.00	0.31	0.66	1.20	2.72	3.81	5.21	8.41
	2:20:00	0.00	0.00	0.27	0.56	1.02	2.36	3.31	4.54	7.31
	2:25:00	0.00	0.00	0.22	0.47	0.86	2.01	2.81	3.88	6.23
	2:30:00	0.00	0.00	0.18	0.39	0.69	1.66	2.33	3.23	5.18
	2:40:00	0.00	0.00	0.14 0.11	0.30 0.22	0.54 0.38	1.32 0.98	1.85	2.58 1.94	4.14
	2:45:00	0.00	0.00	0.11	0.15	0.26	0.65	0.93	1.33	3.11 2.18
	2:50:00	0.00	0.00	0.06	0.11	0.19	0.41	0.61	0.88	1.52
	2:55:00	0.00	0.00	0.04	0.09	0.15	0.27	0.42	0.60	1.08
	3:00:00	0.00	0.00	0.04	0.07	0.12	0.18	0.29	0.42	0.77
	3:05:00	0.00	0.00	0.03	0.06	0.10	0.12	0.21	0.28	0.54
	3:10:00	0.00	0.00	0.03	0.04	0.08	0.09	0.15	0.18	0.38
	3:15:00	0.00	0.00	0.02	0.04	0.06	0.06	0.11	0.12	0.25
	3:20:00	0.00	0.00	0.02	0.03	0.05	0.04	0.08	0.07	0.17
	3:25:00	0.00	0.00	0.01	0.02	0.04	0.03	0.06	0.05	0.12
	3:30:00	0.00	0.00	0.01	0.02	0.03	0.02	0.04	0.04	0.09
	3:35:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.07
	3:40:00 3:45:00	0.00	0.00	0.01	0.01	0.02	0.01	0.03	0.02	0.05 0.04
	3:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.04
	3:55:00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.03
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary 5-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
							Sheet basin.
							Also include the inverts of al
							outlets (e.g. vertical orifice, overflow grate, and spillway
							overflow grate, and spillway
							where applicable).
							4
							4
				ļ	ļ		-
							_
							_
				 	 		4
					-		-
					-		-
							4
				 	 		†
							-
							-
							╡
							╡
							╡
							╡
							1
							1
							1
							1
							1
							1
							4
							_
							_
							-
							=
							1
				ļ	1		4
				1	†		-
							1
							4
				 	 		4
				 	 		+
							1
							4
							4
							1
					†		†

Hydraulic Structures Chapter 9

POND G18 LOW-TAILWATER BASIN

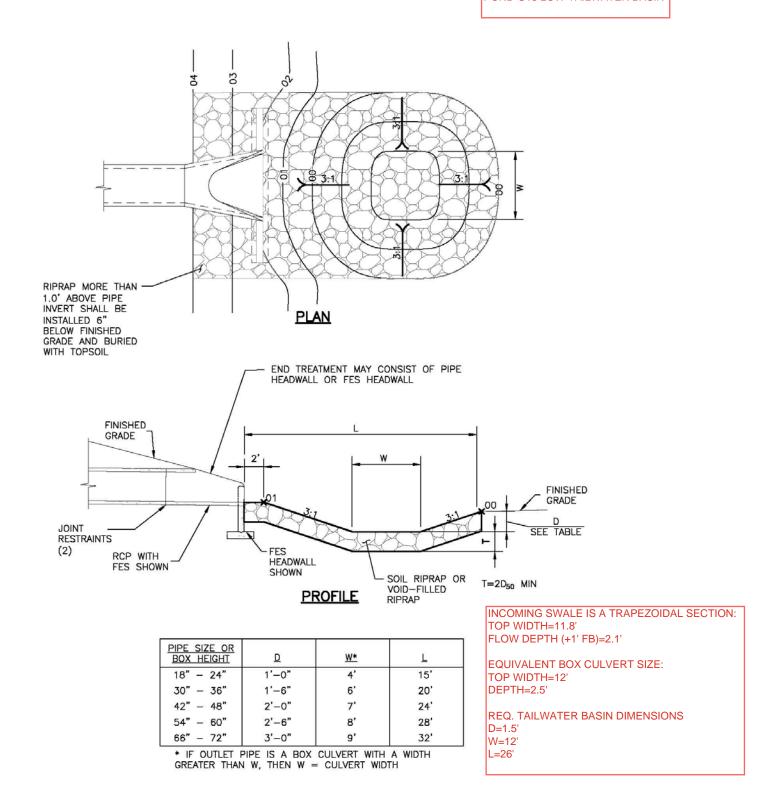
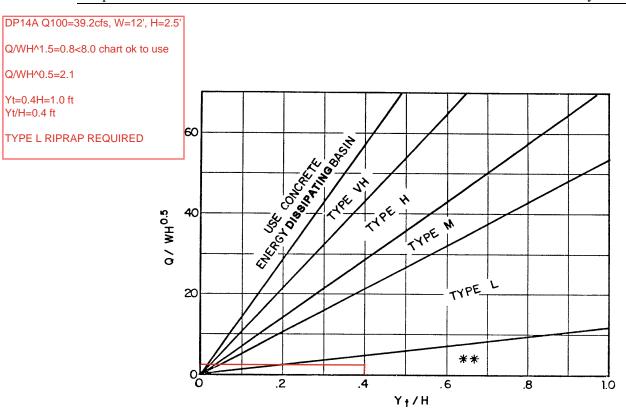



Figure 9-37. Low tailwater riprap basin

Chapter 9 Hydraulic Structures

Use H_a instead of H whenever culvert has supercritical flow in the barrel. **Use Type L for a distance of 3H downstream.

Figure 9-39. Riprap erosion protection at rectangular conduit outlet (valid for Q/WH1.5 \leq 8.0)

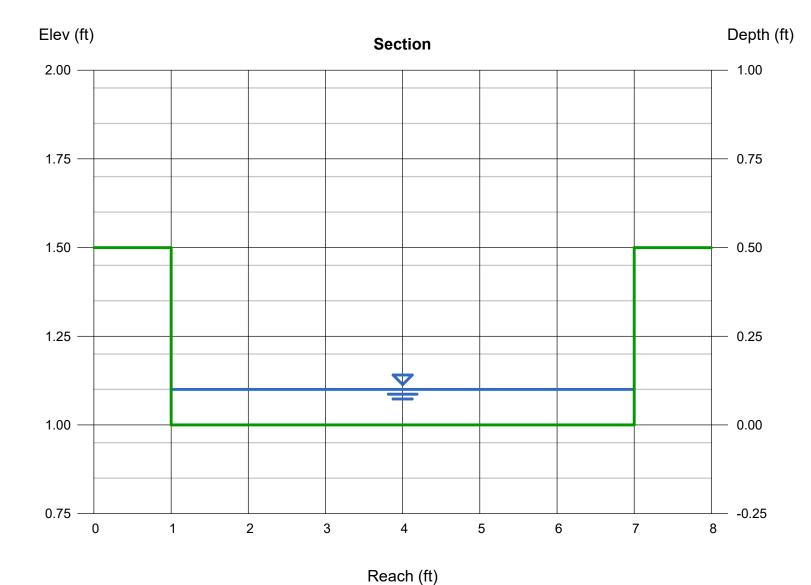
3.2.4 Outfalls and Rundowns

A grouted boulder outfall or "rundown" dissipates energy and provides erosion control protection. Grouted boulder outfalls are most commonly used in large rivers like the South Platte. Figure 9-40 provides a plan view and cross section for a standard grouted boulder rundown. See the grouted boulder drop profiles (A1, A2, and A3) in Figure 9-12 for site specific profile options, (i.e., depressed or free-draining basin for use with a stable downstream channel or with no basin for use in channels subject to degradation). Figure 9-41 provides a plan view of the same structure for use when the structure is in-line with the channel. Evaluate the following when designing a grouted boulder outfall or rundown:

- Minimize disturbance to channel bank
- Determine water surface elevation in receiving channel for base flow and design storm(s)
- Determine flow rate, velocity, depth, etc. of flow exiting the outfall pipe for the design storm(s)
- Evaluate permitting procedures and requirements for construction adjacent to large river system.

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 1.10


Thursday, Aug 29 2024

<Name>

Known Q (cfs)

Rectangular		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.10
Total Depth (ft)	= 0.50	Q (cfs)	= 1.100
		Area (sqft)	= 0.60
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 1.83
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.20
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.11
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.15
Compute by:	Known Q	·	

55.4 cfs x 2%

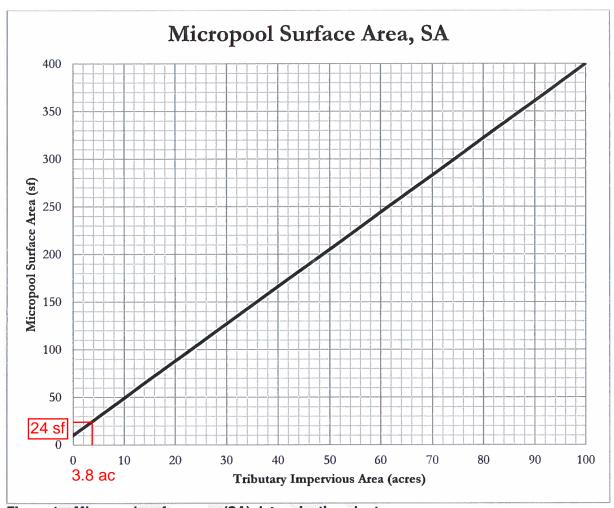


Figure 1 - Micropool surface area (SA) determination chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$TIA = I \times A = (12.6/100) \times 30.29 \text{ ac} = 3.8 \text{ ac}$$
 $TIA = Tributary impervious area (acres)$
 $I = Imperviousness (fraction)$
 $I = Tributary catchment area upstream (acres)$

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4 inches$$

 $ISV = SA \times 4 inches$
 $SA = Surface area (from Figure 1, sf)$

Storage Chapter 13

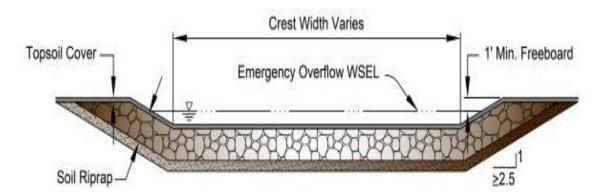
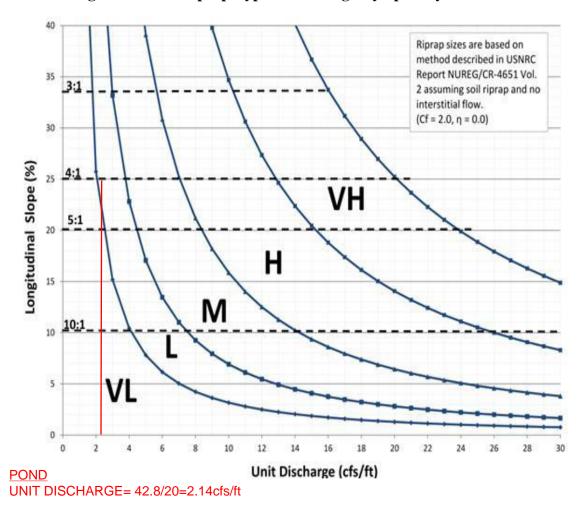



Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

13-34

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: Latigo Trails

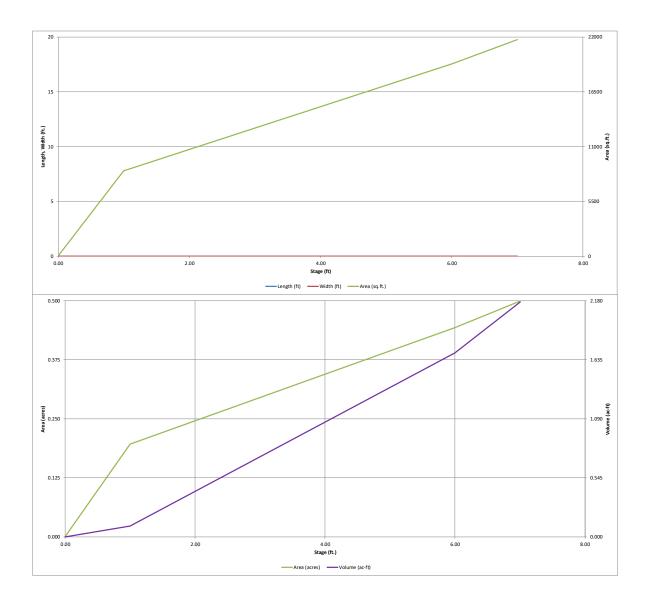
Watershed Information

croned information		
Selected BMP Type =	EDB	
Watershed Area =	26.64	acres
Watershed Length =	1,625	ft
Watershed Length to Centroid =	500	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	12.75%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

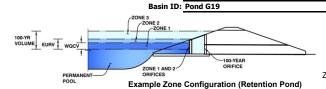
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.							
Water Quality Capture Volume (WQCV) =	0.182	acre-feet					
Excess Urban Runoff Volume (EURV) =	0.326	acre-feet					
2-yr Runoff Volume (P1 = 0.93 in.) =	0.172	acre-feet					
5-yr Runoff Volume (P1 = 1.21 in.) =	0.394	acre-feet					
10-yr Runoff Volume (P1 = 1.46 in.) =	0.748	acre-feet					
25-yr Runoff Volume (P1 = 1.83 in.) =	1.703	acre-feet					
50-yr Runoff Volume (P1 = 2.14 in.) =	2.341	acre-feet					
100-yr Runoff Volume (P1 = 2.47 in.) =	3.213	acre-feet					
500-yr Runoff Volume (P1 = 3.33 in.) =	5.120	acre-feet					
Approximate 2-yr Detention Volume =	0.167	acre-feet					
Approximate 5-yr Detention Volume =	0.264	acre-feet					
Approximate 10-yr Detention Volume =	0.514	acre-feet					
Approximate 25-yr Detention Volume =	0.755	acre-feet					
Approximate 50-yr Detention Volume =	0.826	acre-feet					
Approximate 100-yr Detention Volume =	1.083	acre-feet					

0.93	inches
1.21	inches
1.46	inches
1.83	inches
2.14	inches
2.47	inches
3.33	inches


Define Zones and Basin Geometry

Define Zones and Dasin Ocometry		
Zone 1 Volume (WQCV) =	0.182	acre-fi
Zone 2 Volume (EURV - Zone 1) =	0.143	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	0.757	acre-f
Total Detention Basin Volume =	1.083	acre-f
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

1		1							
Depth Increment =		ft Optional	ı	ı	ı	Optional		1	ı
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft²)	Area (ft ²) 40	(acre) 0.001	(ft ³)	(ac-ft)
7057	-	1.00	_			8,561	0.197	4,300	0.099
7062		6.00	_		_	19,304	0.443	73,963	1.698
7063		7.00	-			21,754	0.499	94,492	2.169
			-		-				
	-		-		-				
	-		-		-				
			-		-				
					-				
	1				-				
			-		-				
			-		-				
			-		-				
			-						
	_				_				
	1		-		-				
			-						
			-						
			-						
			-						
	-		-		-				
			_						
	-		-		-				
	-		-						
			-						
	-		-		-				
	-				_				
			-		-				
	-		-		-				
	-		-		-				
			-		-				
			-						
	-		_		-				
	-		-		-				
			-		-				
			-		-				
			-						
			-						
			-						
	-		-		-				
			-		-				
	-		-		-				
			-						
			-						
			-		-				
	-		-		-				
	-		-		_				
			-						
	-		-		-				
	1 1		-		-				
	1		-		-				
	-				-				
			-						
	-		-		-				
	-		-						
	1 1						_		
			-						
					-				
	-		-		-				
			-						
			-		-				
			-		-				
			-						
			-		-				
	-		-		-				
			-		-				
					-				
	1 1		-		-				

G19 MHFD-Detention_v4-06.xtsm, Basin 9/16/2024, 2:36 PM

G19 MHFD-Detention_v4-06.xtsm, Basin 9/16/2024, 2:36 PM

Project: Latigo Trails

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.41	0.182	Orifice Plate
Zone 2 (EURV)	2.03	0.143	Orifice Plate
Zone 3 (100-year)	4.49	0.757	Weir&Pipe (Circular)
-	Total (all zones)	1.083	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

Elliptical Slot Area

 ft^2

feet

feet ft²

Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) WQ Orifice Area per Row Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 1.271E-02 Depth at top of Zone using Orifice Plate = 2.03 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A Orifice Plate: Orifice Vertical Spacing N/A inches Elliptical Slot Centroid N/A

Orifice Plate: Orifice Area per Row : 1.83 sq. inches (diameter = 1-1/2 inches)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	2.35						
Orifice Area (sq. inches)	1.83	1.83						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative
Vertical Orifice Diameter -	N/A	N/A	inches

e to basin bottom at Stage = 0 ft) e to basin bottom at Stage = 0 ft)

Calculated Parameters for Vertical Orifi Not Selected Not Selected Vertical Orifice Area N/A N/A Vertical Orifice Centroid = N/A N/A

N/A

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 3.75 N/A Height of Grate Upper Edge, Ht N/A ft (relative to basin bottom at Stage = 0 ft) 3.75 Overflow Weir Front Edge Length 7.00 N/A feet Overflow Weir Slope Length 7.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 4.82 N/A Horiz. Length of Weir Sides = N/A feet Overflow Grate Open Area w/o Debris : 34.10 N/A 7.00 Overflow Grate Type = Type C Grate N/A Overflow Grate Open Area w/ Debris = 17.05 N/A N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

50%

36.00

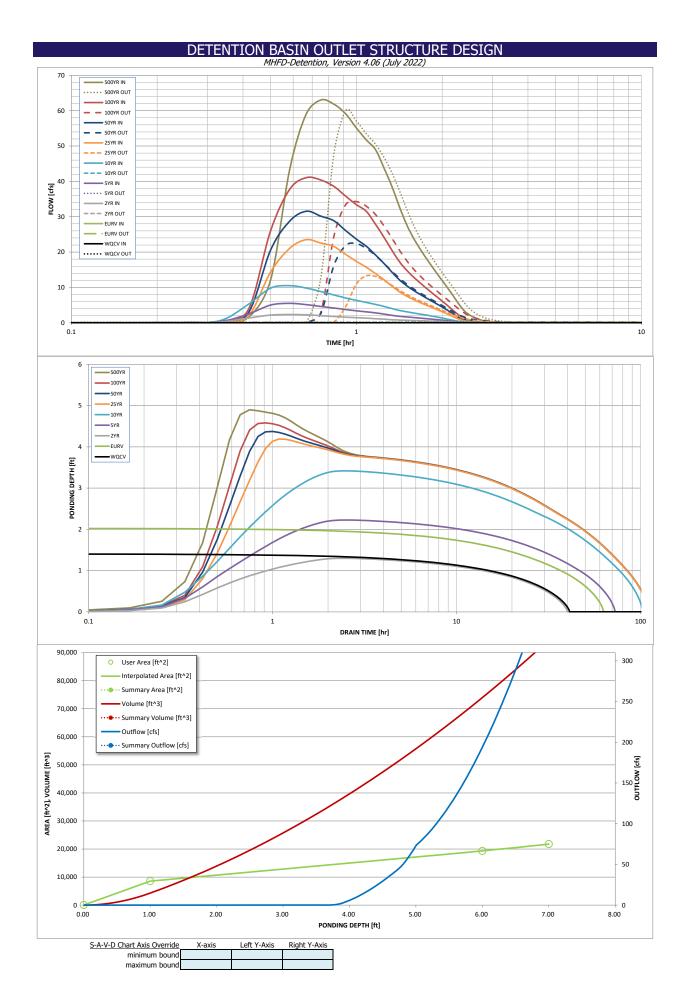
Zone 3 Circular Not Selected Depth to Invert of Outlet Pipe 0.00 N/A ft (distance below basin bottom at Stage = 0 ft) inches

Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Circular Not Selected Outlet Orifice Area N/A 7.07 Outlet Orifice Centroid : 1.50 N/A N/A

Half-Central Angle of Restrictor Plate on Pipe = N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 4.75 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.84

N/A

Spillway Crest Length = 25.00 feet Spillway End Slopes H:V 4.00 Freeboard above Max Water Surface = 1.00 feet


Debris Clogging % =

Circular Orifice Diameter =

feet Stage at Top of Freeboard = 6.59 feet Basin Area at Top of Freeboard 0.48 acres Basin Volume at Top of Freeboard = 1.97 acre-ft

Routed Hydrograph Results hs table (Columns W through AF ng new values in the Inflow Hvo Design Storm Return Period WOCV **EURV** 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) 0.93 N/A N/A 1.21 1.46 1.83 2.14 2.47 CUHP Runoff Volume (acre-ft) 0.182 0.326 0.172 0.394 0.748 1.703 2.341 3.213 Inflow Hydrograph Volume (acre-ft) 0.394 0.748 CUHP Predevelopment Peak Q (cfs) N/A N/A 0.3 7.6 20.5 28.3 37.7 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.10 Predevelopment Unit Peak Flow, g (cfs/acre) 0.01 0.28 1.41 N/A 1.06 N/A 41.0 Peak Inflow Q (cfs) N/A N/A 5.5 10.5 23.5 31.5 2.3 0.1 0.1 0.1 0.1 0.2 Peak Outflow Q (cfs) 22.4 34.3 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.0 0.0 0.6 0.8 0.9 Structure Controlling Flow Plate Plate Plate Plate Plate Overflow Weir erflow Wei Overflow Weir 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A N/A 0.4 0.6 1.0 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 67 90 85 Time to Drain 99% of Inflow Volume (hours) 40 61 39 70 99 99 Maximum Ponding Depth (ft) 1.41 2.03 1.30 2.23 3.42 4.19 4.58 Area at Maximum Ponding Depth (acres) 0.37 Maximum Volume Stored (acre-ft)

G19 MHFD-Detention v4-06.xlsm, Outlet Structure 9/16/2024 2:36 PM

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

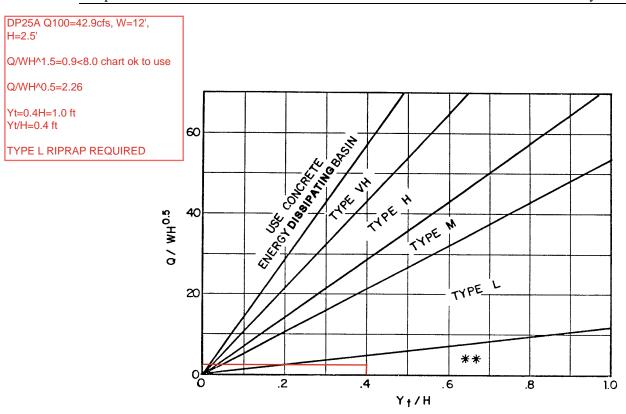
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								l in a separate pro		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0:15:00	0.00	0.00	0.04	0.09	0.13	0.10	0.14	0.14	0.23
	0:20:00	0.00	0.00	0.23	0.32	0.62	0.28	0.35	0.46	1.46
	0:25:00 0:30:00	0.00	0.00	1.32 2.18	2.44 5.02	5.15 9.80	1.85 14.37	2.67 20.57	3.57 26.03	12.11 43.29
	0:35:00	0.00	0.00	2.34	5.50	10.49	21.04	28.73	37.73	59.03
	0:40:00	0.00	0.00	2.26	5.14	9.82	23.51	31.54	41.05	63.02
	0:45:00	0.00	0.00	2.01	4.61	8.83	22.55	30.16	40.38	61.86
	0:50:00	0.00	0.00	1.78	4.18	7.87	21.58	28.88	38.59	59.11
	0:55:00	0.00	0.00	1.59	3.74	7.01	19.35	26.09	35.81	55.13
	1:00:00	0.00	0.00	1.44	3.39	6.34	17.37	23.66	33.41	51.73
	1:05:00 1:10:00	0.00	0.00	1.31 1.15	3.09 2.80	5.76 5.19	15.72 13.90	21.64 19.19	31.53 27.88	49.00 43.79
	1:15:00	0.00	0.00	1.00	2.46	4.63	12.14	16.78	24.19	38.52
	1:20:00	0.00	0.00	0.86	2.11	4.02	10.36	14.32	20.49	32.76
	1:25:00	0.00	0.00	0.76	1.83	3.49	8.76	12.13	17.25	27.82
	1:30:00	0.00	0.00	0.69	1.65	3.11	7.55	10.51	14.88	24.08
	1:35:00	0.00	0.00	0.63	1.49	2.78	6.59	9.22	13.01	21.10
	1:40:00	0.00	0.00	0.58	1.33	2.48	5.79	8.12	11.39	18.49
	1:45:00 1:50:00	0.00	0.00	0.53 0.47	1.17 1.02	2.20 1.92	5.06 4.40	7.11 6.20	9.93 8.59	16.14 13.97
	1:55:00	0.00	0.00	0.41	0.88	1.64	3.76	5.31	7.32	11.94
	2:00:00	0.00	0.00	0.35	0.73	1.35	3.14	4.47	6.14	10.03
	2:05:00	0.00	0.00	0.27	0.58	1.04	2.51	3.58	4.95	8.07
	2:10:00	0.00	0.00	0.20	0.42	0.75	1.88	2.70	3.77	6.14
	2:15:00	0.00	0.00	0.14	0.29	0.51	1.28	1.86	2.63	4.37
	2:20:00	0.00	0.00	0.11	0.20	0.36	0.79	1.20	1.74	3.03
	2:25:00 2:30:00	0.00	0.00	0.08	0.16 0.13	0.28 0.23	0.51 0.34	0.82 0.57	1.18 0.82	2.15 1.54
	2:35:00	0.00	0.00	0.06	0.10	0.18	0.23	0.40	0.55	1.09
	2:40:00	0.00	0.00	0.04	0.08	0.14	0.16	0.28	0.36	0.75
	2:45:00	0.00	0.00	0.04	0.06	0.11	0.11	0.20	0.22	0.49
	2:50:00	0.00	0.00	0.03	0.05	0.08	0.08	0.14	0.13	0.32
	2:55:00	0.00	0.00	0.02	0.04	0.06	0.05	0.10	0.09	0.21
	3:00:00 3:05:00	0.00	0.00	0.02	0.03	0.05	0.04	0.08	0.07 0.05	0.16 0.12
	3:10:00	0.00	0.00	0.02	0.02	0.03	0.03	0.04	0.03	0.12
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.07
	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.06
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.04
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floo
							from the S-A-V table on
	_		-				Sheet 'Basin'.
							Also include the inverts of
							outlets (e.g. vertical orifice
							overflow grate, and spillwa
							where applicable).
							†
							†
							1
							7
							1
							1
							1
							4
				-			_
	_		-				4
	_		-				4
							+
							+
							+
							-
							-
							-
							4
							4
		-					+
							†
]
							4
							4
		-					+
							╡
							<u> </u>
							_
							4
							4
							1
			<u>L_</u>				
			1				


Hydraulic Structures Chapter 9

POND G19 LOW-TAILWATER BASIN

Figure 9-37. Low tailwater riprap basin

Chapter 9 Hydraulic Structures

Use H_a instead of H whenever culvert has supercritical flow in the barrel. **Use Type L for a distance of 3H downstream.

Figure 9-39. Riprap erosion protection at rectangular conduit outlet (valid for Q/WH1.5 \leq 8.0)

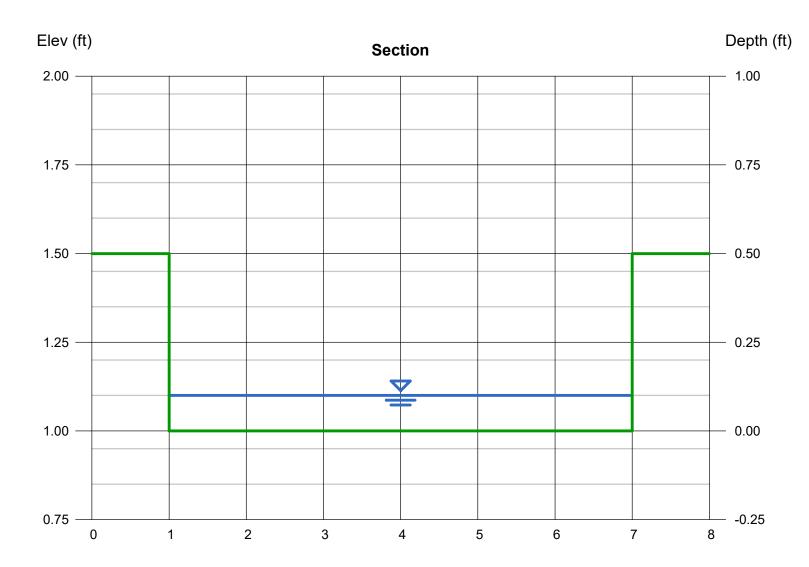
3.2.4 Outfalls and Rundowns

A grouted boulder outfall or "rundown" dissipates energy and provides erosion control protection. Grouted boulder outfalls are most commonly used in large rivers like the South Platte. Figure 9-40 provides a plan view and cross section for a standard grouted boulder rundown. See the grouted boulder drop profiles (A1, A2, and A3) in Figure 9-12 for site specific profile options, (i.e., depressed or free-draining basin for use with a stable downstream channel or with no basin for use in channels subject to degradation). Figure 9-41 provides a plan view of the same structure for use when the structure is in-line with the channel. Evaluate the following when designing a grouted boulder outfall or rundown:

- Minimize disturbance to channel bank
- Determine water surface elevation in receiving channel for base flow and design storm(s)
- Determine flow rate, velocity, depth, etc. of flow exiting the outfall pipe for the design storm(s)
- Evaluate permitting procedures and requirements for construction adjacent to large river system.

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 1.10


Thursday, Aug 29 2024

<Name>

Known Q (cfs)

Rectangular		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.10
Total Depth (ft)	= 0.50	Q (cfs)	= 1.100
		Area (sqft)	= 0.60
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 1.83
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.20
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.11
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.15
Compute by:	Known Q	·	

55.3 cfs x 2%

Reach (ft)

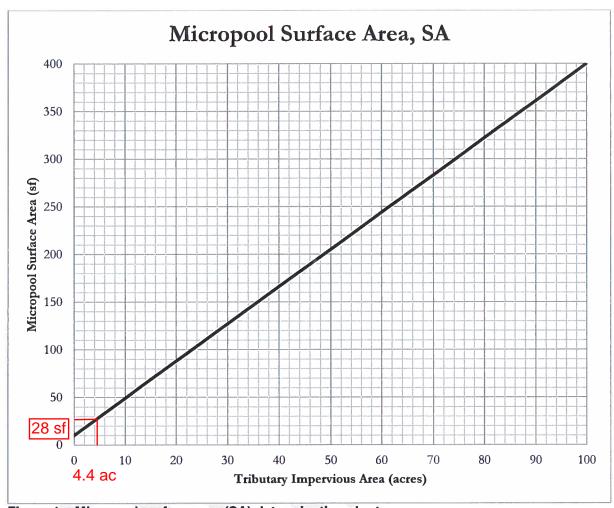


Figure 1 - Micropool surface area (SA) determination chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$TIA = I \times A = (11.6/100) \times 37.67 \text{ ac} = 4.4 \text{ ac}$$
 $TIA = Tributary impervious area (acres)$
 $I = Imperviousness (fraction)$
 $I = Tributary catchment area upstream (acres)$

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4 inches$$

 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$
 $ISV = SA \times 4 inches$

Storage Chapter 13

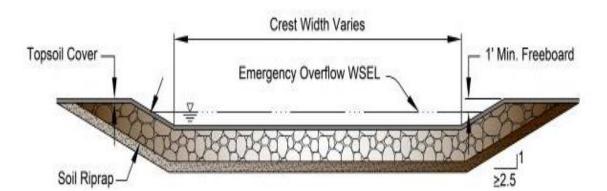
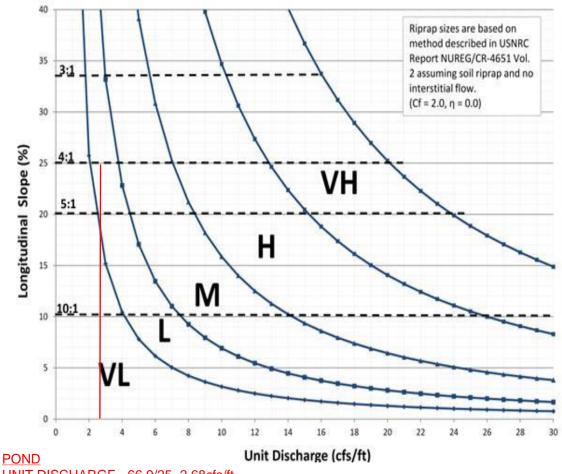



Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

UNIT DISCHARGE= 66.9/25=2.68cfs/ft

MASTER DEVELOPMENT / PRELIMINARY DRAINAGE PLAN LATIGO TRAILS EL PASO COUNTY, COLORADO

October 4, 2001

Prepared for:

RMBG, LLC #2 5170 Mark Dabling Blvd. COLORADO SPRINGS, CO 80918

PREPARED BY:

URS

9960 Federal Drive, Suite 300 Colorado Springs, CO 80921

URS PROJECT NO. 67-00042443

MDDP EXCERPT

Four sub-basins, varying from 3 to 53 acres, lie north of Latigo Blvd, draining mainly to the east, with excess runoff ponding at Eastonville Road and eventually overtopping it. One of these basins (9.71) drains directly to Upper Black Squirrel Creek. There is a Zone-A, unstudied FEMA floodplain to the north of the proposed development, in the open space / Upper Black Squirrel Creek area.

Gieck Ranch Basin

The Gieck Ranch Basin covers the southern half of the subject area. Runoff is generally southeasterly, draining to Meridian Ranch to the south, and crossing Eastonville Road at three points to the east. As with the Upper Black Squirrel Creek Basin, many of the existing drainageways (mainly to the south) are not clearly defined.

The major drainage course begins at the west-central portion of the site, traversing the Gieck Ranch Basin to design point G11 to the southeast. Six sub-basins, varying from 19 to 39 acres, contribute to this drainage course, which collects approximately 65% of the runoff generated within the Gieck Basin in Latigo Trails. To the west of this, eight sub-basins drain to five design points along the Meridian Ranch boundary, two of which (G5 and G6) combine shortly after entering Meridian Ranch, at G6b.

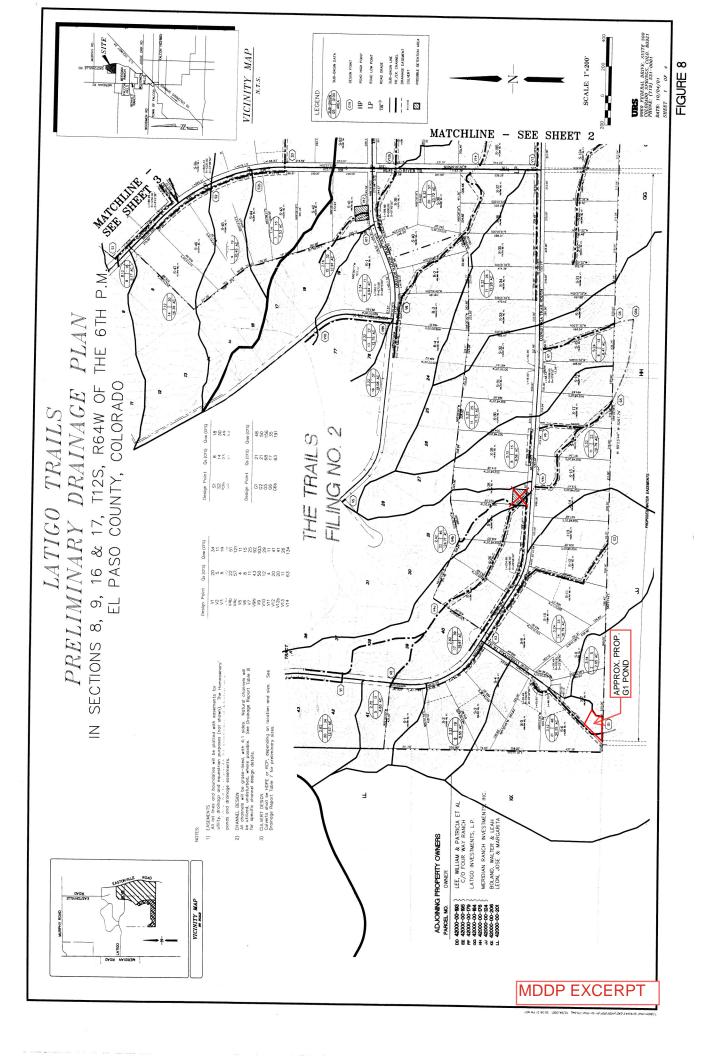
There are eight small sub-basins east of the major drainage course, varying from 2 to 41 acres. All but one drain at their own design point, either crossing Eastonville Road or onto Meridian Ranch. The three culverts crossing Eastonville Road include an 18" CMP, a 30" CMP, and a 42"x28" Arch CMP. The 30" CMP has the capacity for 31 cfs, which is inadequate for existing flows. The other two pipes are adequate for existing and developed flows. The drainageways entering Meridian Ranch are not very well defined.

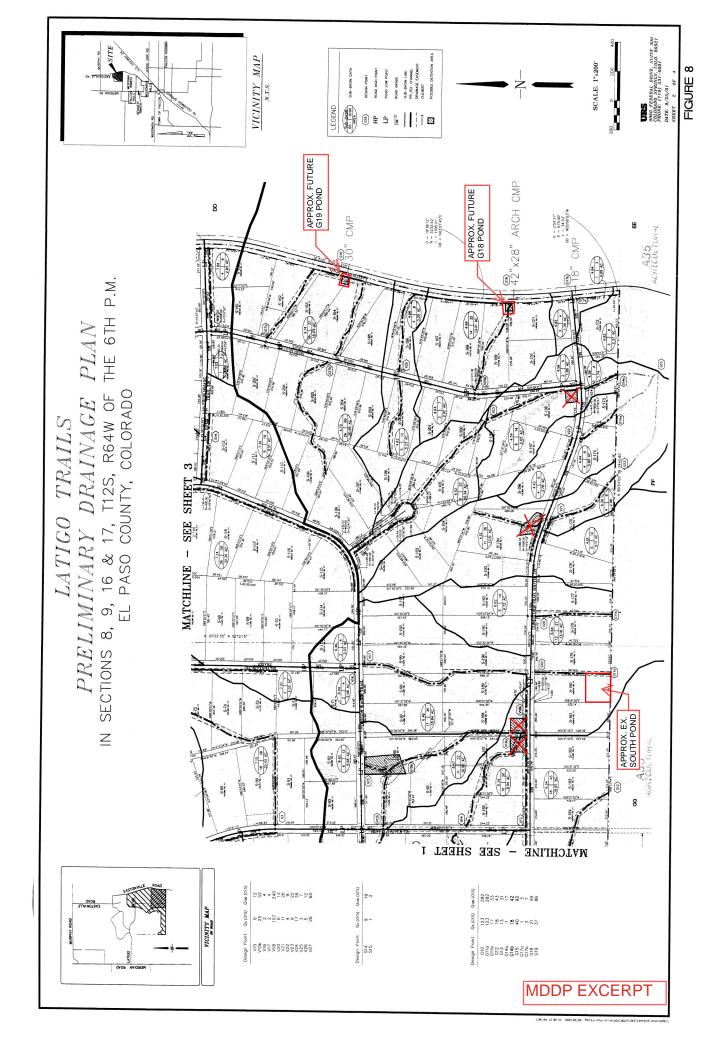
Four stock ponds exist on the site, but are assumed to be full at the beginning of a storm as part of this analysis. If the ponds were empty, flows at G2 may be reduced by about 30 cfs, flows at G10 and G11 may be reduced by about 34 cfs, flows at G13 may be reduced by about 23 cfs, and flows at B1, B2 and B3 may be reduced by about 45 cfs (for flows up to 100-year storm estimates).

See Tables 3 and 4 for flow calculations at specific design points and further comments.

Table 4 - Design Points

THE TRAILS MDDP


HYDROLOGY OUTPUT: DESIGN POINTS


URS Job No. 6742443

	DESIG	N-FLOW	/S (cfs)						-		
DESIGN F	TNIO		1	EXIST	ING	DE	VELOPED-BA	SE		DEVELOPED-DETN	
DP		Basin		5-YR	100-YR	Method	5-YR**	100-YR	Area*	5-YR	100-YR
GIECKIRAN	CH BAS	IN ASS	T	RMEGxxx.OL	T. C.	et ette TF	RMDGxxx.0	UT.	an in the		
G1	В	3.12		15	38	rat	21	48	20.3	110 300 40000000000000000000000000000000	XXXX V XXX V XXX XX XX XX XX XX XX XX XX
G2	В	+		22	55		21	50	25.3		
V1	D	2.62				scs	20	34	12.6		
	D	2.72				SCS	5	11	4.8	· · · · · · · · · · · · · · · · · · ·	
V3	D	3.22			100	rat	8	19	8.6		
" G3 J	2) E			100	34	(4) (b) (49 (4))	3141444 31431				
G4/V4	В	+		24	95		57	121	61.8	48	108
V5	D	2.52		agadakan.		SCS	4	11	4.3		
V6	D	5.12		CHARGO:		scs	8	15	8.6		
G5	В	+		24	107		68	156	81.1	58	137
V7	D	5.22		113446		rat	11	25	11.8		
G6	В	+		4	20		17	35			<u>Peranan</u>
G6b	В	+		28	122	Y	83	191		111111111111111111111111111111111111111	A 145
V10	D	2.12		***		scs	12	29	13.3		
V9N	Q	+					43	92	44.1		
V9	D	+		4.5			50	103	48.4		
. G7	iii Eiji	2.21	States A	10.40	44	t princip	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Edicolor	10.50		
V11	D	2.34					4	11	4.9		
V12	В	+		7	34		20	41	17.9	20	35
G8/V14	В	+		17	75		63_	134	72.1		
V15	D	6.42		a la describió		SCS	6	12	5.7		
V15b							25	52	23.5	10	45
V16	D	6.44				scs	2	4	2.1		
V17	۵	6.46				SCS	2	4	2.0		<u> </u>
DA5				Hairin Assess			84	182	107.9	80	170
DA6				HEAR STORE	100		107	240	117.9	90	165
G10/V19	В	+		38	184		123	282	140.9	107	207
G11a	В	+		43	208		123	282	147.4	107	207
V20	D	6.62		Control of the	3,045.0		6	13	6.7		
G11b					+11244-1		17	33	13.3		
V13	D	6.22			1050	rat	11	26	12.3		
G12	В	6.24		18	44	rat	18	43	19.9		
V21	D	4.32		40	24	rat	11	26	12.5	5	15
G13	В	+ 440		10	24		13	31	15.5 3.7	7	20
V22	D	4.42					4	9			
V23		4.52				rat	9 17	22 39	10.3 18.8	15	25
V24	<u>D</u>			6	15		7	17	7.5		
G14a G14b	В	+		13	31		18	42	20.5		
G14b G15	В	+		29	70		40	92	48.5	38	78
G16	В	4.82		29	5	rat	3	6	2.4		70
G17a	D	4.02		2		iai	1	3	0.9	<u> </u>	
G17b	В	+.94		3	6		3	7	2.3		
V25		4.64					3	7	2.9		
V25 V26		4.62				rat	5	12	5.2		
	D	4.0Z +		18	42	ıaı	21	49	24.6	18	40
G18	В			10	42		26	60	21.0		+0
V27	D	4.72 +		28	67	3.00	37	86	37.2	28	65
G19	В	+		20	ŲΙ		. 31	90	31.2		00

^{*}Area in acres

^{**}If SCS, multiplied by 1.67 (Average correlation SCS/Rational calculation) (5-year flows only)

FINAL DRAINAGE REPORT FOR LATIGO TRAILS FILING NO. 9 AND ADDENDUM TO MASTER DEVELOPMENT/ PRELIMINARY DRAINAGE PLAN FOR LATIGO TRAILS, EL PASO COUNTY, COLORADO

September 2022

Prepared For:

BRJM, LLC

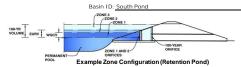
101 N. Cascade, Suite 200 Colorado Springs CO 80903 (719) 475-7474

Prepared By:

JR ENGINEERING

5475 Tech Center Drive Colorado Springs, CO 80919 (719) 593-2593

Job No. 25175.02


PCD File No.: SF2136

APPENDIX D WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

2.25 inches 2.52 inches 3.00 inches

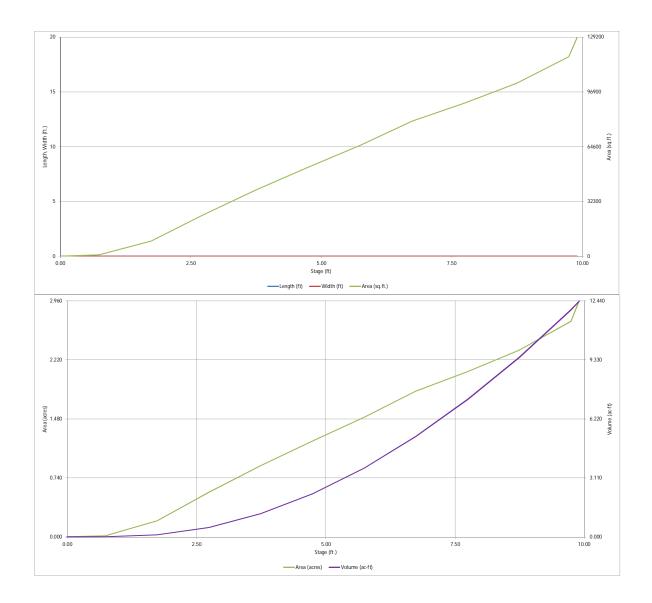
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	237.10	acres
Watershed Length =	4,610	ft
Watershed Length to Centroid =	1,845	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	13.80%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Painfall Denths =	User Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	1.726	acre-feet
Excess Urban Runoff Volume (EURV) =	3.156	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.918	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	7.929	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	11.853	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	18.594	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	23.283	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	29.934	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	39.350	acre-feet
Approximate 2-yr Detention Volume =	2.083	acre-feet
Approximate 5-yr Detention Volume =	3.181	acre-feet
Approximate 10-yr Detention Volume =	5.803	acre-feet
Approximate 25-yr Detention Volume =	7.671	acre-feet
Approximate 50-yr Detention Volume =	8.080	acre-feet
Approximate 100-yr Detention Volume =	10.228	acre-feet

Define Zones and Basin Geometry


Jefine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.726	acre-f
Zone 2 Volume (EURV - Zone 1) =	1.429	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	7.073	acre-f
Total Detention Basin Volume =	10.228	acre-f
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =		ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Depth Increment = Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volum (ac-ft
Top of Micropool		0.00				0	0.000		
7088		0.74				757	0.017	280	0.006
7089		1.74				8,862	0.203	5,089	0.117
7090		2.74				24,382	0.560	21,711	0.498
7091		3.74				39,017	0.896	53,411	1.226
7092		4.74				52,356	1.202	99,097	2.275
7093		5.74				65,385	1.501	157,968	3.626
7094		6.74				79,696	1.830	230,508	5.292
7095		7.74				90,272	2.072	315,492	7.243
7096		8.74	-			102,009	2.342	411,633	9.450
7097		9.74				117,693	2.702	521,484	11.97
7097.16		9.90				128,850	2.702	541,207	12.42
7097.10		7.70				120,000	2.930	341,207	12.42
			-						
			-						
			-		-				
			-						L
							1		
			-						
									
									-
			-						
			-						
			-						
			-						
			-						
									-
			-						
			-						
			-						
			-						
								1	<u> </u>
			-						L
			-						
									-
			-						
			-						
			-						

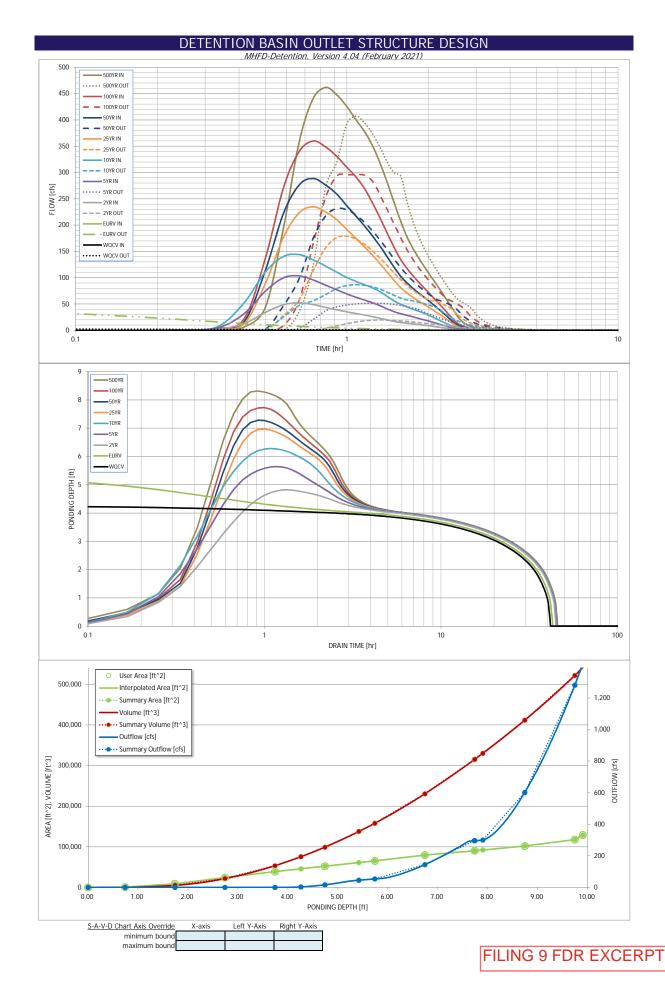
FILING 9 FDR EXCERPT

MHFD-Detention_v4 04_SouthPond.xism, Basin 6/13/2022, 11:10 AM

FILING 9 FDR EXCERPT

M#FD-Detention_w4 04_SouthPond.xism, Basin 6/13/2022, 11:10 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN


MHFD-Detention, Version 4.04 (February 2021) Project: Latigo Trails Filing 9 Basin ID: South Pond Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type Zone 1 (WQCV) 4.26 1.726 Orifice Plate Zone 2 (EURV) 5.42 1.429 Rectangular Orifice 100-YEAR Zone 3 (100-year) 9.07 7.073 Weir&Pipe (Rect.) Example Zone Configuration (Retention Pond) 10.228 Total (all zones User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area : Underdrain Orifice Invert Depth N/A N/A Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row N/A Depth at top of Zone using Orifice Plate 4.26 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width N/A Orifice Plate: Orifice Vertical Spacing Elliptical Slot Centroid N/A inches N/A feet Orifice Plate: Orifice Area per Row = N/A inches Flliptical Slot Area = N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.00 0.00 0.50 0.50 0.50 1.00 1.00 Orifice Area (sq. inches) 1 11 1 11 1 11 1.00 1 00 1.00 1 00 1.00 Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 9 (optional) Row 16 (optional) Stage of Orifice Centroid (ft 1.00 Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Rectangula one 2 Rectangul Not Selected Not Selected Invert of Vertical Orifice Vertical Orifice Area 3.98 N/A ft (relative to basin bottom at Stage = 0 ft) 10.42 N/A N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.42 Vertical Orifice Centroid 0.63 N/A feet Vertical Orifice Height 15.00 N/A inches Vertical Orifice Width 100.00 User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.90 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht 5.90 N/A eet Overflow Weir Front Edge Length 8.33 N/A feet Overflow Weir Slope Length 5.84 N/A feet Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 1.41 N/A Overflow Grate Open Area w/o Debris 33.86 Horiz, Length of Weir Sides 5.84 N/A feet N/A Overflow Grate Type Type C Grate N/A Overflow Grate Open Area w/ Debris 33.86 N/A Debris Clogging % : 0% N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Rectangular Zone 3 Rectangula Not Selected Not Selected Depth to Invert of Outlet Pipe 0.33 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area 24.00 N/A 1.50 Rectangular Orifice Width 96.00 N/A Outlet Orifice Centroid N/A inches feet Rectangular Orifice Height = 36.00 inches Half-Central Angle of Restrictor Plate on Pipe N/A N/A radians

User Input: Emergency Spillway (Rectangular or 1	Trapezoidal)			Calculated Parame	ters for Spillway
Spillway Invert Stage=	7.90	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.97	feet

Stage at Top of Freeboard = Spillway Crest Length 120.00 feet 9.87 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard 2.91 acres Freeboard above Max Water Surface 1.00 feet Basin Volume at Top of Freeboard = 12.34 acre-ft

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs an	d runoff volumes b	y entering new vall	ues in the Inflow H	ydrographs table (C	Columns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	1.726	3.156	3.918	7.929	11.853	18.594	23.283	29.934	39.350
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	3.918	7.929	11.853	18.594	23.283	29.934	39.350
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	26.9	76.5	116.4	206.4	259.5	328.3	428.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.11	0.32	0.49	0.87	1.09	1.38	1.81
Peak Inflow Q (cfs) =	N/A	N/A	52.3	103.7	144.0	234.8	288.8	360.0	461.8
Peak Outflow Q (cfs) =	3.0	42.8	20.0	51.8	86.9	179.1	231.7	295.9	407.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	0.7	0.9	0.9	0.9	1.0
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.6	3.0	4.4	6.1	6.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	38	39	35	32	27	24	19	13
Time to Drain 99% of Inflow Volume (hours) =	40	41	42	41	39	37	36	34	31
Maximum Ponding Depth (ft) =	4.26	5.42	4.82	5.64	6.28	6.97	7.28	7.73	8.32
Area at Maximum Ponding Depth (acres) =	1.05	1.41	1.23	1.47	1.68	1.89	1.96	2.07	2.23
Maximum Volume Stored (acre-ft) =	1.733	3.161	2.372	3.478	4.468	5.719	6.315	7.201	8.468

FILING 9 FDR EXCERPT

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.13
	0:15:00	0.00	0.00	0.46	0.75	0.93	0.62	0.83	0.77	1.14
-	0:20:00	0.00	0.00	2.04	4.76	7.12	2.16	2.58	3.43	6.28
-	0:25:00	0.00	0.00	12.94	31.39	51.97	12.57	15.84	21.48	43.77
-	0:35:00	0.00	0.00	34.10 48.79	74.62 100.07	111.11 140.66	89.16 177.27	113.91 222.56	136.95 271.44	195.01 358.61
•	0:40:00	0.00	0.00	52.32	103.67	144.00	223.52	276.51	340.26	440.40
	0:45:00	0.00	0.00	49.14	95.96	134.27	234.82	288.78	359.95	461.81
	0:50:00	0.00	0.00	43.74	86.04	122.30	225.33	276.46	348.93	447.84
-	0:55:00	0.00	0.00	39.20	77.44	110.81	210.59	259.12	330.82	425.17
-	1:00:00	0.00	0.00	35.15 31.99	69.27 62.76	100.58 92.83	191.38 173.99	236.63 216.41	309.72 290.73	399.16 376.18
•	1:10:00	0.00	0.00	29.04	57.37	86.44	157.54	197.20	267.71	348.19
	1:15:00	0.00	0.00	25.89	51.96	80.21	141.30	177.88	239.57	313.96
-	1:20:00	0.00	0.00	22.75	46.16	72.66	125.07	157.94	210.42	277.09
-	1:25:00	0.00	0.00	19.66	40.28	63.68	109.01	137.77	181.82	239.77
-	1:30:00	0.00	0.00	16.94 14.94	35.15 31.55	55.44 49.35	93.60 80.44	118.36 101.98	155.55 133.68	205.61 177.40
-	1:40:00	0.00	0.00	13.57	28.67	49.35	70.77	89.98	133.68	156.24
-	1:45:00	0.00	0.00	12.40	25.81	40.48	62.94	80.17	104.24	138.77
	1:50:00	0.00	0.00	11.30	23.07	36.66	56.13	71.57	92.51	123.27
-	1:55:00	0.00	0.00	10.14	20.44	32.91	49.94	63.76	81.85	109.18
	2:00:00	0.00	0.00	8.95 7.70	17.92	28.95 24.77	44.18	56.48 49.06	71.93	96.04 83.09
-	2:10:00	0.00	0.00	6.42	15.34 12.72	20.57	38.35 32.50	49.06	62.24 52.85	70.45
•	2:15:00	0.00	0.00	5.17	10.16	16.54	26.76	34.26	43.79	58.26
	2:20:00	0.00	0.00	3.95	7.69	12.72	21.13	27.12	34.84	46.33
	2:25:00	0.00	0.00	2.79	5.35	9.18	15.63	20.18	26.07	34.73
-	2:30:00	0.00	0.00	1.83	3.54	6.59	10.41	13.59	17.74	24.05
•	2:40:00	0.00	0.00	1.25 0.95	2.54 1.99	5.06 4.03	6.79 4.61	9.13 6.40	11.93 8.26	16.66 11.85
•	2:45:00	0.00	0.00	0.75	1.59	3.21	3.22	4.58	5.71	8.40
	2:50:00	0.00	0.00	0.60	1.27	2.56	2.25	3.27	3.86	5.84
-	2:55:00	0.00	0.00	0.48	1.01	2.01	1.60	2.36	2.54	3.96
-	3:00:00 3:05:00	0.00	0.00	0.37	0.79	1.56	1.15	1.70	1.59	2.59
•	3:10:00	0.00	0.00	0.30 0.24	0.61	1.18 0.88	0.82	1.22 0.91	0.99	1.68
•	3:15:00	0.00	0.00	0.20	0.35	0.65	0.47	0.69	0.57	0.93
	3:20:00	0.00	0.00	0.15	0.26	0.49	0.36	0.53	0.45	0.73
-	3:25:00	0.00	0.00	0.12	0.18	0.37	0.27	0.41	0.35	0.57
-	3:30:00 3:35:00	0.00	0.00	0.09	0.12	0.27	0.20	0.31	0.27	0.43
•	3:40:00	0.00	0.00	0.06	0.08	0.19	0.15 0.10	0.22 0.15	0.19 0.13	0.32
•	3:45:00	0.00	0.00	0.02	0.03	0.07	0.06	0.10	0.08	0.13
	3:50:00	0.00	0.00	0.01	0.02	0.03	0.03	0.05	0.04	0.07
-	3:55:00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.03
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
]	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

FILING 9 FDR EXCERPT

DETENTION BASIN OUTLET STRUCTURE DESIGN

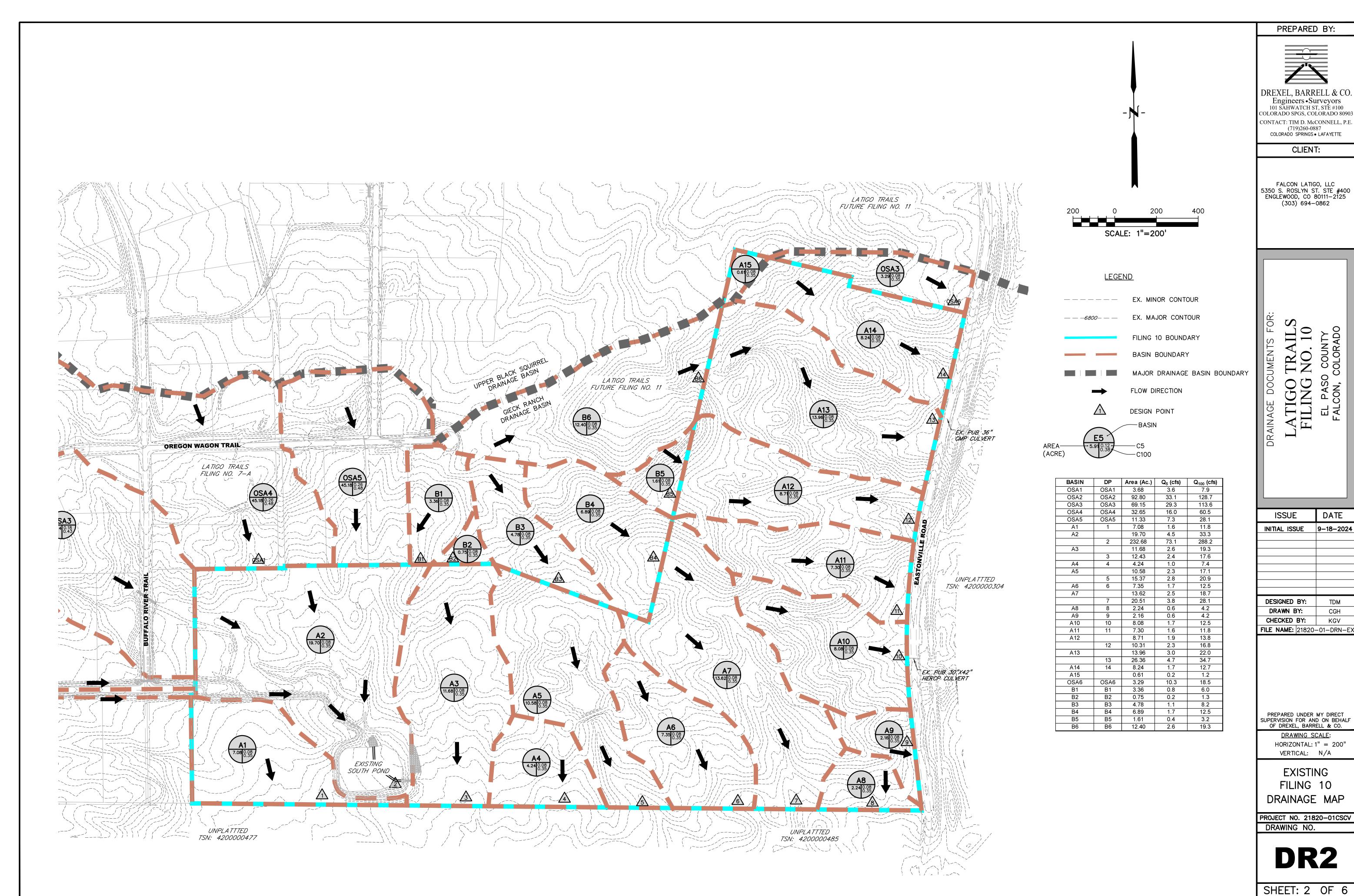
MHFD-Detention, Version 4.04 (February 2021)

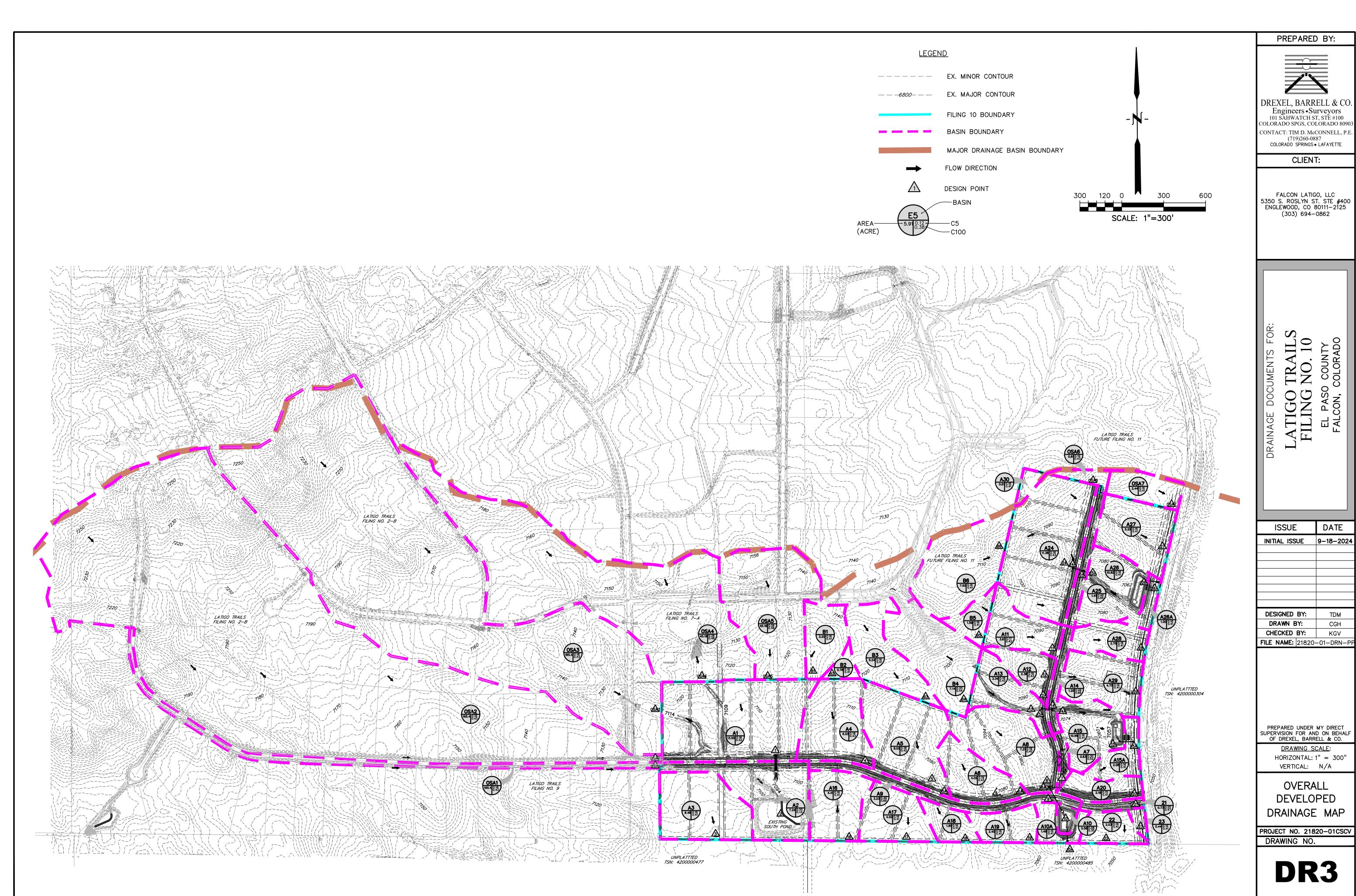
Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

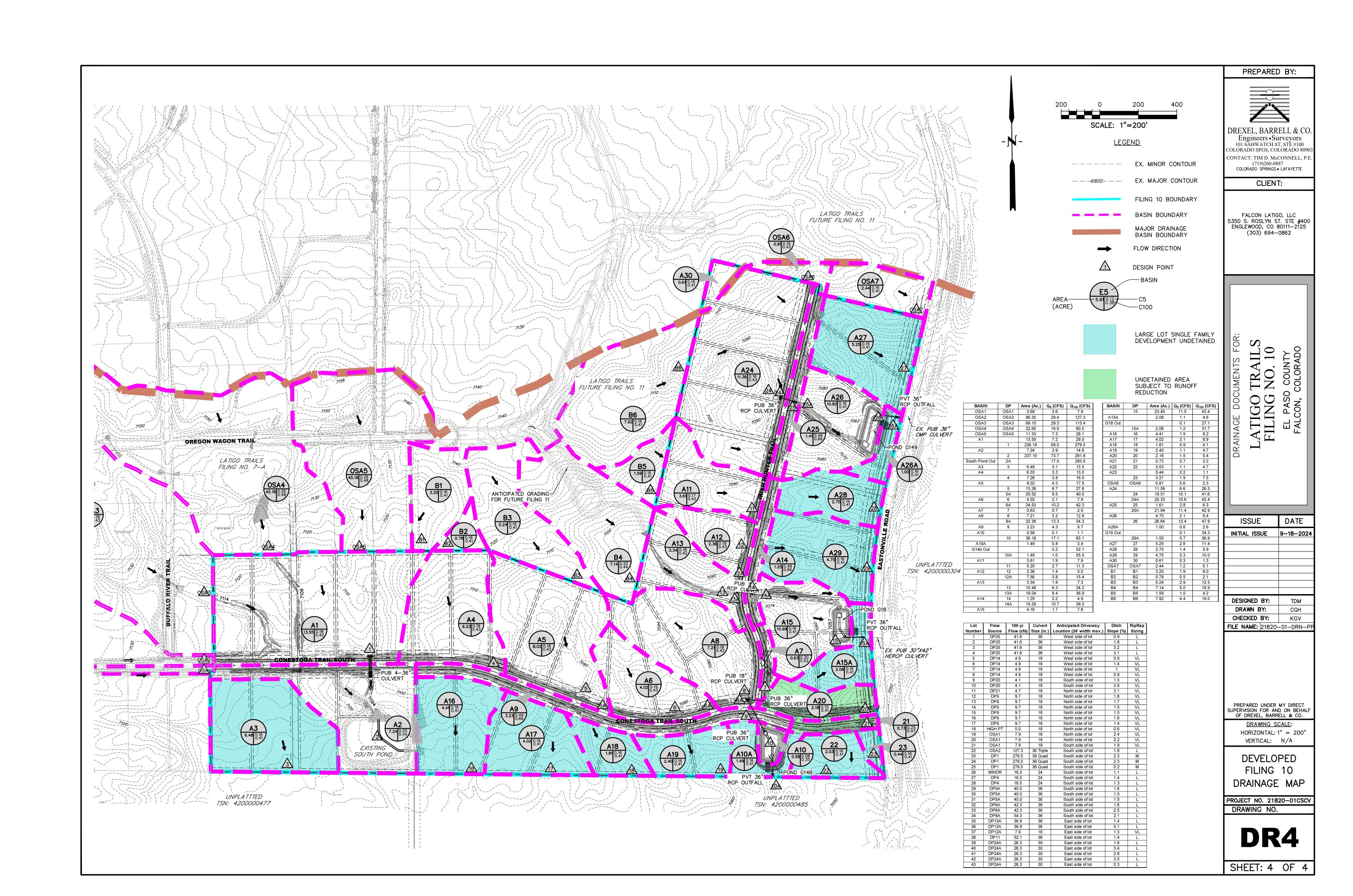
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume	Volume [ac-ft]	Outflow [cfs]
				[ft ³]		
p of Micropool-7087.26	0.00	0	0.000	0	0.000	0.00
7088.00	0.74	757	0.017	280	0.006	0.14
7089.00	1.74	8,862	0.203	5,089	0.117	0.34
7090.00	2.74	24,382	0.560	21,711	0.498	0.47
7091.00	3.74	39,017	0.896	53,411	1.226	0.56
WQCV WSEL-7091.52	4.26	45,953	1.055	75,503	1.733	3.25
7092.00	4.74	52,356	1.202	99,097	2.275	16.75
EURV WSEL-7092.68	5.42	61,216	1.405	137,712	3.161	45.97
7093.00	5.74	65,385	1.501	157,968	3.626	54.15
7094.00	6.74	79,696	1.830	230,508	5.292	144.36
100 Yr WSEL-7094.99	7.73	90,166	2.070	314,590	7.222	295.98
7095.00	7.74	90,272	2.072	315,492	7.243	296.20
Spillway Crest-7095.16	7.90	92,150	2.115	330,086	7.578	299.79
7096.00	8.74	102,009	2.342	411,633	9.450	601.31
7097.00	9.74	117,693	2.702	521,484	11.972	1,280.91
Top of Pond-7097.16	9.90	128,850	2.958	541,207	12.424	1,413.98
						-


For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.


Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

FILING 9 FDR EXCERPT



SHEET: 1 OF 6

SHEET: 3 OF 4

