

MEMORANDUM

То:	El Paso County - Storwmater		
From:	Scott Maier, PE (Ayres Associates)		
Date:	July 20, 2023	EPC Project No.:	PPR2315
Re:	Super Star Carwash – Claremont Busines	ss Park 2 – Draina	ge Compliance Letter

Background

Super Star Carwash is planning to construct a carwash located within the Claremont Business Park 2 located at the southwest corner of Marksheffel Road and Meadowbrook Parkway. The site is currently vacant and is 1.5+/- acres.

The proposed development will consist of a 5,000+/- square foot carwash building with access drives, parking areas with vacuum bays, patio areas, and landscaping. This lot was initially contemplated for development as part of the overall development of the Claremont Business Park 2, Filing No. 2 VR 233. The overall development will construct the storm sewer system and detention pond for the overall development. The purpose of this letter is to demonstrate that the proposed development of the Super Star Carwash is in compliance with the assumptions of Claremont Business Park 2 Filing No. 2. Water quantity and that proposed development will meet water quality standards as required by El Paso County. The proposed development will discharge to an 18" RCP storm sewer system along El Jefe Heights that will be constructed as part of the overall development.

Explain where the site flow will go to a suitable outfall.

Runoff Comparison

The proposed development for the Super Star Carwash is part of Basin B within the Claremont Business Park 2 Filing No. 2 prepared by MS Civil Consultants, dated 6/11/23 as shown in the supporting documents. Below is a summary of the anticipated runoff from the overall drainage report.

Please update report in accordance with ECM 4.5 The FDR for VR233 has not been approved yet. Please include drainage map showing basins for the lot

Page 1 of 14

970.223.5556 | 3665 JFK Parkway, Bldg. 2, Suite 100 | Fort Collins, CO 80525-3152 www.AyresAssociates.com

Comparison Studies	Basin Area (acres)	Time of Concentration (min.)	Design Runoff Coefficient 5-yr	Design Runoff Coefficient 100-yr	Runoff (5 year) (CFS)	Runoff (100 year) (CFS)
Claremont Business Park 2 Filing No. 2 – Lot 1 Basin B	1.50	5.0	0.81	0.88	6.0	10.9
Super Star Carwash	1.78	5.0	C=0.49	C=0.68	3.34	10.77

The proposed development for the Super Star Carwash will have less designed runoff than those contemplated in the Claremont Business Park 2 Filing No. 2 drainage studies even after adding in the offsite areas along Marksheffel Rd and Meadowbrook Parkway.

Water Quality

Water Quality was not included as part of the improvements for the Claremont Business Park 2 Filing No. 2 overall development and is required to be constructed upon development. The Super Star Carwash proposes to construct a rain garden to serve the water quality requirements for it's development.

	WQCV Required	WQCV Provided	Method
Super Star Carwash	0.027 Ac-Ft	0.027	Rain Garden
Parking Lot and			
Building			

The rain garden is designed to have an underdrain system and an outfall to the west. As part of the proposed improvements, the site will drain a rain garden in the southern portion of the site. After treatment the rain garden will enter the overall development storm sewer system to the west and ultimately discharge into the water quantity pond southwest of the site.

Super Star Carwash will follow the "Four-Step Process" as defined below:

Step 1: Employ Runoff Reduction Practices

The proposed development utilizes reduced pavement areas with the implementation of landscaped islands in the parking lot and around the building.

Step 2: Stabilize Drainage Ways

Proposed drainage ways have been stabilized through the implementation of a concrete drainage pan for water entering the rain garden. A grass drainage swale is located along the east side of the property to capture offsite runoff that enters the property.

Step 3: Provide Water Quality Capture Volume (WQCV)

WQCV is achieved through a rain garden that treats onsite runoff. The rain garden is located at the southern portion of the property and treats building and parking lot runoff as well as offsite runoff that enters the site from the east.

Step 4: Consider Need for Industrial and Commercial BMP's

The proposed site will implement silt fence, construction entrance, concrete washout area and inlet protection to limit erosion and sediment runoff across the site.

Low Impact Development

This development will propose to construct a rain garden as part of the development. The rain garden will provide water quality benefits by providing filtration and some infiltration. The engineered media within the rain garden will provide filtration of the runoff from the site. In addition to the filtration for smaller rain events infiltration will also be a benefit of the rain garden.

Conclusion

The proposed Super Star Carwash development complies with the Claremont Business Park 2 overall drainage study. The regional drainage facility for the Claremont Business Park 2 Filing No. 2 provides the water quantity for the Super Star Carwash. The Super Star Carwash development will install the proposed rain garden to meet the water quality requirements of the onsite development.

In summary, the Super Star Carwash is in general compliance with the original development assumptions and no additional improvements to the storm sewer system beyond those noted is necessary.

If you should have any questions, please feel free to contact me at 262-522-4901.

Sincerely,

Scott Maier

There is no regional drainage facility.

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

[Scott Maier, P.E. #_____]

Date

Owner/Developer Statement:

I, the Owner/Developer had read and will comply with all of the requirements specific in the is drainage report and Plan

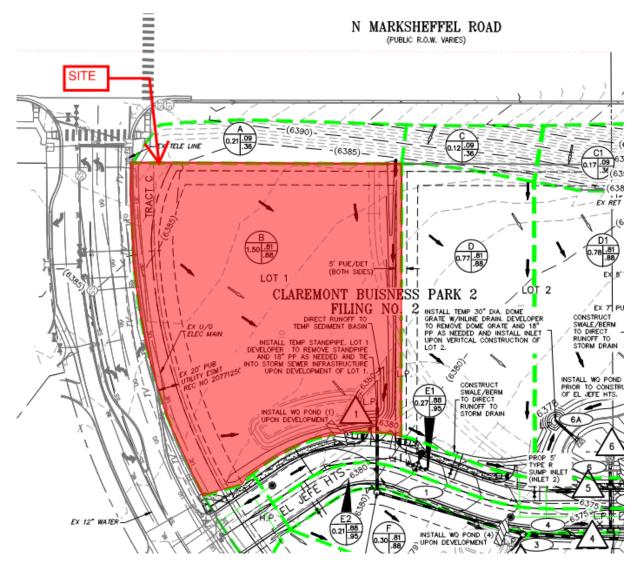
[Name, Title]

Date

Business Name

Address

El Paso County:


Filed in accordance with the requirements of the Drainage Criteria Manual, Volume 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as ammended

County Engineer/ECM Administrator

Date

Conditions:

Bromley Park Filing 5 – Supporting Documents

(EXHIBIT ABOVE IS PORTION OF Claremont Business Park 2 Filing No. 2 DRAINAGE PLAN)

		C ₁₆₀	0.36	0.88	0.36	0.36	000
	WEIGHTED	c,	6.09	0.81	0.09	0.09	100
	-	\mathbf{c}_{2}	8.83	67.79	0.03	0.03	01 B
	PARKS 0.12-0.39 GREENBELTS/AGRI. 0.09-0.36	C ₁₀₀	0.36	95.0	0.36	0.36	11.20
	NBEL TS/AGH	c,	60'0	0.12	0.09	60'0	C1 17
	-0.39 GREE	\mathbf{c}_{i}	000	0.05	0.03	60.0	20.0
tary)	PARKS 0.12	AREA (Acres)	0.21	0:00	0.12	21.0	0.00
ıt Sumn		\mathbf{c}_{100}	0.41	0.50	0.41	0,41	11 C U
(Area Runoff Coefficient Summary)	LANDSCAPED AREAS & 16-0.41 GRAVEL STORAGE VARD & 36-0.50 LIGHT INDUST AREAS 0.59-0.70	c,	0.16	0.30	0.16	0.16	n tu
noff Co	APED AREA E YARD 0.30 AREAS (c,	0.07	570	0.07	0.07	111
4rea Ru		AREA (Acres)	00'0	000	0.00	00'0	0.00
0	RODES 0.73-0.81 COMMERCIAL AREAS 0.81-0.88 ASPHALT DRIVES 0.90-0.96	C ₁₀₀	96'0	0.88	0.96	96'0	0.00
	COMMERCIAL AREA LT DRIVES 0.90-0.96	c,	06'0	18.0	0.90	06'0	10.0
	0FS 0.73-0.81 O	c,	68.0	60.0	0.89	68'0	0 T D
	ROOFS 0. 0.81-0.1	AREA (Acres)	00.0	1.50	0.00	0.00	111
		TOTAL AREA (Acres)	12.0	1.50	0.12	21/0	64 V
		TOTAL AREA (SF)	9300.8	65284.4	5372.3	2.457.3	0.00000
		BASIN	V	B	c	<i>C1</i>	2

FINAL DRAINAGE REPORT FOR CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(EXHIBIT ABOVE IS PORTION OF Claremont Business Park 2 Filing No. 2 Proposed Drainage Calculations-Area Runoff Coefficient Summary)

C						N I	55			CINTER PARTING AND CALCULATION OF THE TRACE	CALC	UTO	TATAT	_							
lare								(Area	(Area Drainage Summary)	age S	umma	(Ar									
em	Prow Area	Роне Ани Ваноў Сафіскаг Завенну	true Successivy		Γ		OVERLAND	đN		STR	STREET / CHANNEL FLOW	INNET FLO	A	Time of Travel (T.)	$(^{\prime}L)$ point	NI	* ALISNELIA *		Л	TOTAL FLOWS	S
on	BASIN	AREA TOTAL	c,	Ċ	C ₁₆₆	63	Length	Height	T_{c}	Length	Slope	Velocity	т,	TV10Ls	CHECK	ľ	1s	T _{son}	ő	6	$Q_{\rm ios}$
nt		(Acres)		Rose DCW 78/M 5-1			(9)	(0)	(min)	(N)	(%)	((0x)	(min)	(10.01)	(mim)	(in/hr)	(in Ne)	(in Ner)	(0,00)	(c.f.v.)	(c.f.s.)
B	V	0.21	0.03	0'0	96.0	60'0	04	5.0	5,0	0	93010	0.0	0'0	5.0	10.2	4,1	5.2	8.7	0.0	0.1	0.7
	B	1.50	0.79	0.81	0.88	0.81	80	1.0	4,4	240	1.7%	2.6	1.5	5.9	11.8	3.9	4.9	8.3	4.6	6.0	10.9
si	c	0.12	0.03	0.09	0.36	60'0	40	16.0	3.4	0	0.0%	0.0	0.0	5.0	10.2	4.1	5.2	8.7	0.0	0.1	0.4
n	CI	0.17	0.03	0.09	0.36	60'0	09	22.0	4.3	0	95070	0.0	0.0	5.0	10.3	4.1	5.2	8.7	0.0	0.7	0.5
	D	0.77	0.79	0.81	0.88	0.81	09	1.2	3.2	250	1.6%	2.5	1.6	5.0	11.7	4.1	5.2	8.7	2.5	5.2	5,9
	Iđ	0.78	62'0	0.81	0.88	0.81	09	21	3.2	250	1.6%	2.5	1.6	5.0	11.7	4.1	5.2	8.7	2.5	11	6.0
:	EI	0.27	0.87	0.88	0.95	88'0	0€	970	1.7	280	2.0%	2.8	1.7	5.0	11.7	4.1	5.2	8.7	B.I.	1.2	2.2
L D;	E_2	0.21	28.0	0.88	0.95	0.88	0£	9.6	£1	280	2,0%	2.8	1.7	5.0	211	1.6	5.2	8.7	0.7	1.0	1.7
a r	P	0.30	0.79	0.81	0.88	0.81	09	2.1	3.2	051	%E1	2.3	1.1	5.0	11.2	4.1	52	8.7	1.8	1.2	2.3
k	61	0.27	0.25	0.30	0.52	0.30	0£	0.1	53	0	59010	0.0	0.0	5.3	10.2	4.1	5.1	8.5	0.3	0.4	1.2
2	62	1.15	0.79	0.81	0.68	0.81	09	970	4.1	400	1.0%	2.0	3.3	7.4	12.6	3.7	4.6	7.7	3.3	4.3	7.8
F	IH	0.16	0.03	0.09	0.36	0.09	94	20.0	5.4	0	55010	0.0	0.0	5.4	10.4	4.0	5.1	8.5	0.8	0.1	0.5
-il	H2	0.40	0.03	0.09	0.36	0.09	061	0721	7.2	0	55070	0.0	0.0	7.2	9.01	3.7	4.6	8.7	0.0	0.2	1.1
in	H3	0.04	0.03	0.09	0.36	0.09	100	0'21	7.2	0	2.0%	1.4	0.0	7.2	10.6	3.7	4.6	7.8	0.0	0.0	0.1
	H4	0.10	0.03	0.09	0.36	0.09	100	0/21	7.2	0	0.0%	0.0	0.0	7.2	10.6	3.7	4.6	7.8	0.0	0.0	0.3
	П	0.55	0.82	0.83	06:0	68.0	100	3.0	3.4	216	2.5%	3.2	1.1	5.0	11.8	4.1	52	8.7	1.8	2.3	4.3
1	2	0.40	171	0.70	0.87	n 70	40	2.0	26	761	1.0%5	20	5.2	50	117	41	53	8.7	14	3.0	2.6

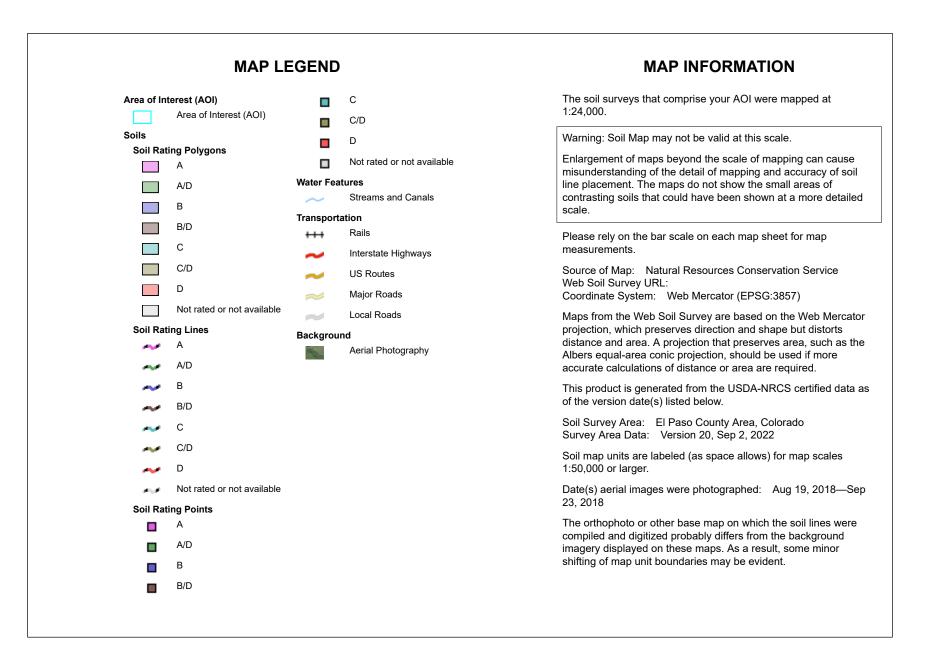
FINAL DRAINAGE REPORT FOR CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(EXHIBIT ABOVE IS PORTION OF Claremont Business Park 2 Filing No. 2 Proposed Drainage Calculations-Area Drainage Summary)

Super Star Carwash Onsite Drainage Calculations

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-y	ear	5-y	ear	10-1	year	25-	year	50-1	year	100	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial	-												
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
		0.20	0.51	0.52	0.57	0.50	0.44	0.44	0.51	0.40	0.55	0.51	0.55
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)


Super Star Carwash Soil Information

Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.0	0.5%
10	Blendon sandy loam, 0 to 3 percent slopes	В	1.4	58.1%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	1.0	41.3%
Totals for Area of Inter	est	1	2.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

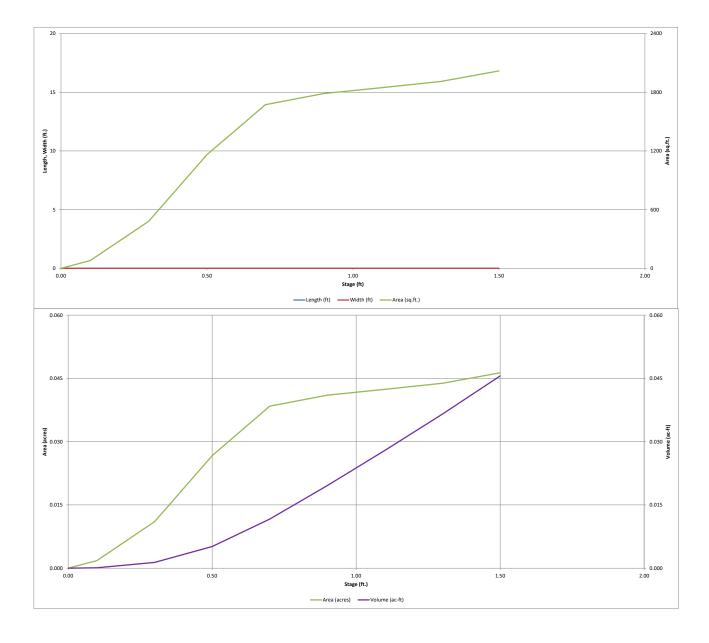
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


Super Star Carwash Onsite Water Quality Basin Calculations

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

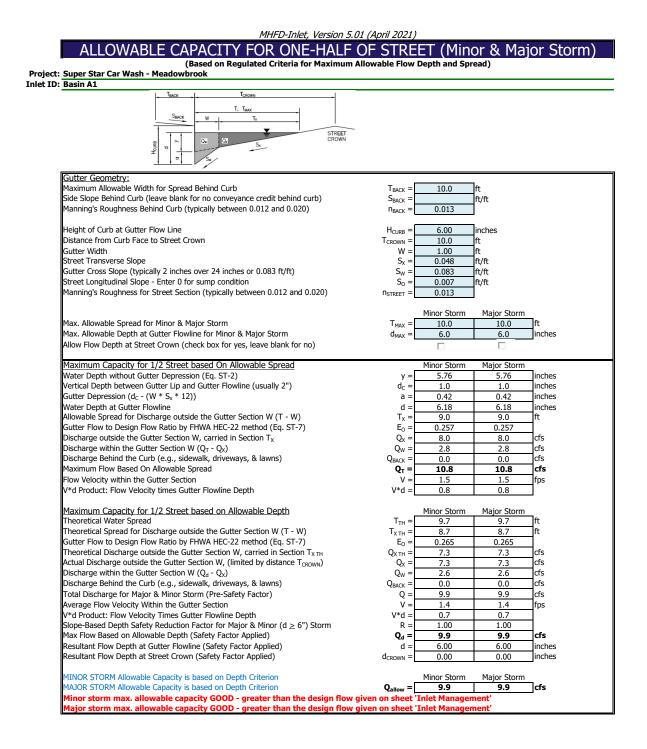
Projects	MHFD	D-Detention, Version	4.05 (Janu	ıary 2022)							
Project: Basin ID:											
ZONE 3											
ZONE 1											
				-							
PERMANENT ORIFICES	00-YEAR	Depth Increment =	0.20	ft	r						
PERMANENT ORIFICES POOL Example Zone Configurat	ion (Retention Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information Selected BMP Type = RG		Media Surface 6377.6		0.00				0 79	0.000		0.000
Selected BMP Type = RG Watershed Area = 1.37	acres	6377.8		0.10				480	0.002	4 60	0.000
Watershed Length = 330	ft	6378		0.50				1,162	0.027	224	0.005
Watershed Length to Centroid = 165	ft	6378.2		0.70				1,673	0.038	507	0.012
Watershed Slope = 0.013	ft/ft	6378.4		0.90				1,787	0.041	853	0.020
Watershed Imperviousness = 59.60%	percent	6378.6		1.10				1,847	0.042	1,217	0.028
Percentage Hydrologic Soil Group A = 100.0% Percentage Hydrologic Soil Group B = 0.0%	percent	6378.8 6379		1.30 1.50				1,910 2,018	0.044	1,593 1,985	0.037 0.046
Percentage Hydrologic Soil Groups C/D =0%	percent							_,		-,	
Target WQCV Drain Time = 12:0	hours										
Location for 1 r Rainfall Depths = Parker - Tow	n Hall										
After providing required inputs above including i-hour depths, click 'Run CUNP' to generate runoih hydrograp	nainfall			مارينام		_					
the embedded Colorado Urban Hydrograph Proced	ure. Optional User Overrides		_ IN	clude	all						
Water Quality Capture Volume (WQCV) = 0.027	acre-feet 0.027 acre-feet		st	neets							
Excess Urban Runoff Volume (EURV) = 0.099	acre-feet acre-feet										
2-yr Runoff Volume (P1 = 0.82 in.) = 5-yr Runoff Volume (P1 = 1.1 in.) =	acre-feet inches										
10-yr Runoff Volume (P1 = 1.1 in.) =	acre-feet inches acre-feet inches		Co	rrect	for C	Color	obe				
25-yr Runoff Volume (P1 = 1.69 in.) =	acre-feet inches										
50-yr Runoff Volume (P1 = 1.98 in.) =	acre-feet inches		Sp	rings							
100-yr Runoff Volume (P1 = 2.29 in.) =	acre-feet inches										
500-yr Runoff Volume (P1 = 3.08 in.) = Approximate 2-yr Detention Volume =	acre-feet inches										
Approximate 2-yr Detention Volume =	acre-feet										
Approximate 10-yr Detention Volume =	acre-feet										
Approximate 25-yr Detention Volume =	acre-feet										
Approximate 50-yr Detention Volume =	acre-feet										
Approximate 100-yr Detention Volume =	acre-feet										
Define Zones and Basin Geometry											
Select Zone 1 Storage Volume (Required) =	acre-feet										
Select Zone 2 Storage Volume (Optional) =	acre-feet										
Select Zone 3 Storage Volume (Optional) = Total Detention Basin Volume =	acre-feet acre-feet										
Initial Surcharge Volume (ISV) = N/A	ft ³										
Initial Surcharge Depth (ISD) = N/A	ft										
Total Available Detention Depth (H _{total}) = user	ft		-								
Depth of Trickle Channel (H _{TC}) = N/A	ft										
Slope of Trickle Channel (S _{TC}) = N/A Slopes of Main Basin Sides (S _{main}) = user	ft/ft H:V										
Basin Length-to-Width Ratio $(R_{L/W}) =$ user	11. V		-								
	-										
Initial Surcharge Area (A _{ISV}) = user	ft ²										
Surcharge Volume Length (L _{ISV}) = user	ft										
Surcharge Volume Width (W _{ISV}) = user Depth of Basin Floor (H _{FLOOR}) = user	π ft										
Length of Basin Floor $(L_{FLOOR}) =$ user	ft										
Width of Basin Floor (W _{FLOOR}) = user	ft										
Area of Basin Floor (A _{FLOOR}) = user	ft ²										
Volume of Basin Floor (V _{FLOOR}) = user Depth of Main Basin (H _{MAIN}) = user	ft ³										
Length of Main Basin (L _{MAIN}) = user	ft		-								
Width of Main Basin (W _{MAIN}) = user	ft										
Area of Main Basin (A _{MAIN}) = user	ft ²										
Volume of Main Basin (V _{MAIN}) = user Calculated Total Basin Volume (V _{total}) = user	ft ³ acre-feet										
											⊢]

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022) Project: Basin ID: Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type EURV W Filtration Media Zone [•] #N/A 100-YEAF Zone 2 ZONE 1 AND Zone 3 Example Zone Configuration (Retention Pond) Total (all zones) User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth : 1.52 0.0 Underdrain Orifice Diameter : Underdrain Orifice Centroid = 0.76 inches 0.03 feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = N/A ft² Elliptical Half-Width Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) N/A feet Orifice Plate: Orifice Vertical Spacing = inches Elliptical Slot Centroid = N/A feet sq. inches Orifice Plate: Orifice Area per Row = Elliptical Slot Area = N/A ft² User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (optional) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice Vertical Orifice Area ft (relative to basin bottom at Stage = 0 ft) ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = feet Vertical Orifice Diameter = inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Not Selected Not Selected Not Selected Not Selected Overflow Weir Front Edge Height, Ho ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht = feet Overflow Weir Front Edge Length = Overflow Weir Slope Length = feet feet Overflow Weir Grate Slope = H:V Grate Open Area / 100-yr Orifice Area = Horiz. Length of Weir Sides = Overflow Grate Open Area w/o Debris = feet ft² Overflow Grate Type = Overflow Grate Open Area w/ Debris = f1² Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area ft² Circular Orifice Diameter = Outlet Orifice Centroid inches feet Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depthfeet Stage at Top of Freeboard = Spillway Crest Length = feet feet Spillway End Slopes Basin Area at Top of Freeboard = H:V acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = feet acre-ft Routed Hydrograph Results ohs table (Columns W through AF ser can ov ff volume ina new valu s in the Inflow Hv WOCV EURV 10 Year Design Storm Return Period 25 Year 50 Year 100 Year 2 Year 5 Year 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.34 0.82 1.10 1.69 1.98 3.08 2.29 CUHP Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak Q (cfs) OPTIONAL Override Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow O (cfs) Peak Outflow Q (cfs) Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps)

Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) =

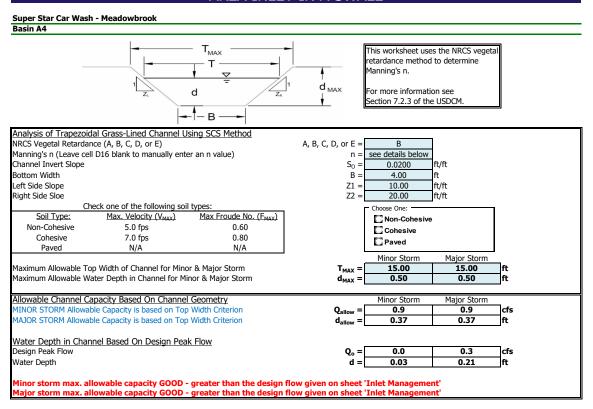

Max Velocity through Grate 2 (fps) Time to Drain 97% of Inflow Volume (hours)

Super Star Carwash Onsite Runoff Calculations

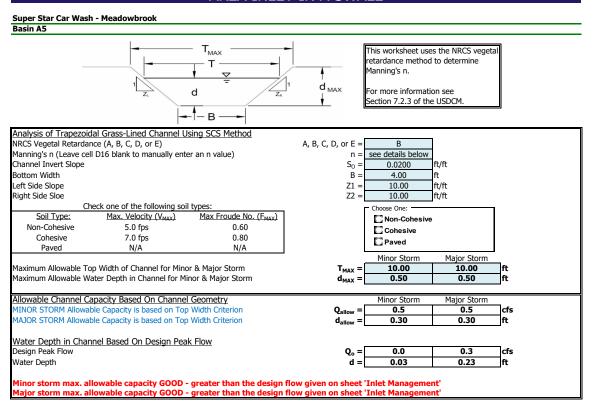
																		Calcul	ation of P	eak Runo	ff using Ra	ational N	lethod																
Compa Di Proje	ate: 6/23 ect: SU	es Asso 3/2023 PER ST/	ciates AR CAR WAS			Cells of th Cells of th	00 release	e for requir	red user- nal overri	ide values			t _i =	S ₁ ^{0.33} L _t L _t		Computed Regional t	$t_c = t_i + t_t$ $c = (26 - 17i)$	+L			LO (non-urban)	min(Compu	ted t _c , Regional	+))		-hour rainfall o	UDFCD location	2-yr 0.83 a	5-yr 1 1.11	10-yr 2		r 100-yr 7 2.58			otained from			_	
Locati		ADOWB	ROOK, Mesa			Cells of th		off Coeffic		uits dased	on override	s		$\frac{1}{60K\sqrt{S_t}} = \frac{1}{60V}$	t (Initial) Flov	_	(20 1.1.)	60(14i + 9)	$\sqrt{S_t}$		lized (Travel) F		teu t _c , Regional	(2)5		e of Concentra	Coefficients =	28.50			ensity, I (in/h			1			rfs) = CIA Flow, Q (cfs		
Subcatchme Name			NRCS Hydrologic Soil Group	Percent Imperviousness	2-yr	5-yr	10-yr	25-yr	50-y	rr 100-	yr 500-y	r Flow		I/S Elevation I (ft) (Optional)	D/S Elevation (ft) (Optional)	Overland Flow Slope S _i (ft/ft)	Overland Flow Time t _i (min)	Channelized Flow Length L _t (ft)	U/S Elevation (ft) (Optional)	D/S Elevation (ft) (Optional)		NRCS Conveyance Factor K	Channelized Flow Velocity V _t (ft/sec)		Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	2-yr	5-yr 1	10-yr 2	25-yr 50-y	/r 100-yr	500-yr	2-yr	5-yr	10-yr	25-yr 8	50-yr 10	00-yr 50
Basin A1	(0.03	В	100.0	0.84	0.86	0.86	0.88	0.89	0.89		1	10.00			0.250	0.48	50.00			0.010	20	2.00	0.42	0.90	9.36	5.00	2.80	3.76	4.68 5	5.73 7.3	6 8.75	10.65	0.07	0.10	0.12	0.15		0.23 0
Basin A2	(0.97	В	74.0	0.59	0.62	0.65	0.71	0.74	4 0.7		- 10	00.00			0.250	3.01	200.00			0.010	20	2.00	1.67	4.68	15.14	5.00	2.80	3.76	4.68 5	5.73 7.3	6 8.75	10.65	1.59	2.26	2.97	3.97		6.54 8 6.79
Basin A3	(0.29	В	0.0	0.00	0.00	0.06	0.25	0.33	3 0.43 0.35		1	10.00			0.020	5.00 4.91	100.00			0.010	15	1.50	1.11	6.11 6.02	27.85	10.00 5.00	2.23 2.80	3.00 3.76	3.73 4 4.68 5	4.57 5.8 5.73 7.3	7 6.98 6 8.75	8.50 10.65	0.00	0.00	0.06			0.86 1 0.89 1
Basin A4	(D.11	В	0.0	0.00	0.00	0.06	0.25	0.33	3 0.43 0.35		1	10.00			0.020	5.00 4.91	20.00			0.020	20	2.83	0.12	5.11 5.02	26.26	10.00	2.23	3.00	3.73 4	4.57 5.8	7 6.98	8.50	0.00	0.00	0.02	0.13	-	0.33 0
Basin A5	(0.12	В	0.0	0.00	0.00	0.06	0.25	0.33	3 0.43 0.35		2	20.00			0.250	3.07 3.01	50.00			0.030	20	3.46	0.24	3.31 3.26	26.53	10.00	2.23	3.00	3.73 4	4.57 5.8	7 6.98	8.50	0.00	0.00	0.03	0.14		0.36 0
Basin B1	(D.11	В	100.0	0.84	0.86 0.89	0.86	0.88	0.89	0.89		1:	20.00			0.043	2.97 2.57	120.00			0.043	20	4.15	0.48	3.45 3.05	9.42	5.00 5.00	2.80 2.80	3.76 4 3.76 4	4.68 5 4.68 5	5.73 7.3 5.73 7.3	6 8.75 6 8.75	10.65 10.65	0.26			0.55).86 1).92 1
Basin Off	(0.18	В	65.0	0.50	0.54 0.59	0.58			0.73																	5.00	2.80	3.76	4.68 5	5.73 7.3	6 8.75	10.65	0.25	0.40	0.49	0.68	0.92	1.18 1.
Rain Garde	en 1	1.63	В	47.0	0.35	0.38	0.44			0.60	0																5.00	2.80	3.76	4.68 5	5.73 7.3	6 8.75	10.65	1.58	2.64	3.33	5.08	7.08	3.56 12
Total Site	1	1.81	В	54.0	0.41	0.44 0.49	0.49	0.59	0.63	3 0.68 0.68																	5.00	2.80	3.76	4.68 5	5.73 7.3	6 8.75	10.65	2.06	3.34	4.17	6.10	8.38 1	0.77 14

Provide the drainage and basin map the goes with this in the report.

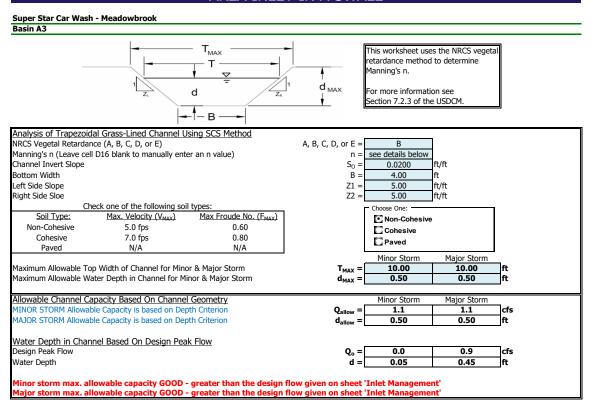
Super Star Carwash Onsite Inlet Calculations



		DADE		
INLET ON A CONTI MHFD-Inlet, Version 5	NUOUS G	RADE		
	.01 (April 2021)			
۲Lo (C)۶		_		
H-Curb		_		
H-Vert Wo				
Lo (G)				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		pe C Grate	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	0.0	0.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening) Width of a Unit Grate (cannot be greater than W, Gutter Width)	$L_0 =$	2.92	2.92	ft ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	W _o = C _f -G =	0.50	0.50	11
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}-C =$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q ₀ =	0.1	0.3	cfs
Water Spread Width	T =	1.6	2.2	ft
Water Depth at Flowline (outside of local depression) Water Depth at Street Crown (or at T_{MAX})	d =	<u>1.3</u> 0.0	1.7 0.0	inches inches
Ratio of Gutter Flow to Design Flow	d _{CROWN} = E _o =	0.968	0.849	inches
Discharge outside the Gutter Section W, carried in Section T_x	$\overline{Q}_{x} =$	0.0	0.0	cfs
Discharge within the Gutter Section W	Q _w =	0.1	0.2	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.07	0.10	sq ft
Velocity within the Gutter Section W Water Depth for Design Condition	V _W = d _{LOCAL} =	1.7 1.3	2.1	fps inches
Grate Analysis (Calculated)	GLOCAL -	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L =	2.92	2.92	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	-0.487	0.496	
Under No-Clogging Condition	г	MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins Interception Rate of Frontal Flow	V _o =	9.94 1.00	9.94 1.00	fps
Interception Rate of Flow	R _f = R _x =	0.61	0.55	_
Interception Capacity	$Q_i =$	0.1	0.2	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	1.00	1.00	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	0.50	0.50	<u>a</u>
Effective (unclogged) Length of Multiple-unit Grate Inlet Minimum Velocity Where Grate Splash-Over Begins	L _e = V _o =	1.46 6.91	1.46 6.91	ft fps
Interception Rate of Frontal Flow	$V_0 = R_f =$	1.00	1.00	
Interception Rate of Side Flow	$R_x =$	0.24	0.20	
Actual Interception Capacity	Q _a =	0.0	0.1	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$Q_b =$	0.1	0.1	cfs
<u>Curb or Slotted Inlet Opening Analysis (Calculated)</u> Equivalent Slope S _e (based on grate carry-over)	c _Γ	MINOR N/A	MAJOR N/A	ft/ft
Required Length L_T to Have 100% Interception	S _e = L _T =	N/A N/A	N/A N/A	ft
Under No-Clogging Condition	-, <u>L</u>	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	N/A	N/A	ft
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition Clogging Coefficient	CurbCoef =	MINOR	MAJOR	
	UTLDCOEL =	N/A	N/A N/A	-
		N/A		
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog = L _e =	N/A N/A	N/A N/A	ft
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity	CurbClog =			ft cfs
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = Q _{b(GRATE)} -Q _a	CurbClog = L _e =	N/A N/A N/A	N/A N/A N/A	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = Q _{MGRATEL} -Q _a <u>Summary</u>	CurbClog = L _e = Q _a = Q _b =	N/A N/A N/A MINOR	N/A N/A N/A MAJOR	cfs cfs
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = Q _{b(GRATE)} -Q _a	CurbClog = L _e = Q_a =	N/A N/A N/A	N/A N/A N/A	cfs


Rain Garden Outlet Structure		This workships		
		This worksheet use retardance method Manning's n.		tal
	f	Manning S n.		
$\frac{1}{z_{L}}$ d $\frac{1}{z_{R}}$	d MAX	For more information	on see	
	•	Section 7.2.3 of the	USDCM.	
→ [†] − В — →				<u> </u>
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D, or E =	В		
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
Channel Invert Slope	S ₀ =	0.0050	ft/ft	
Bottom Width	B =	10.00	ft	
Left Side Slope	Z1 =	0.50	ft/ft	
Right Side Sloe	Z2 =	0.50	ft/ft	
Check one of the following soil types:		Choose One:		T
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX})		🖸 Non-Cohesive		
Non-Cohesive 5.0 fps 0.60		Cohesive		
Cohesive 7.0 fps 0.80		C Paved		
Paved N/A N/A		Minor Storm	Major Storm	1
Maximum Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	12.20	Major Storm 13.00	ft
Maximum Allowable Vater Depth in Channel for Minor & Major Storm	$d_{MAX} =$	1.10	1.50	ft
· · · · · · · · · · · · · · · · · · ·	- HAA			
Maximum Channel Capacity Based On Allowable Top Width		Minor Storm	Major Storm	
Maximum Allowable Top Width	T _{MAX} =	12.20	13.00	ft
Water Depth	d =	2.20	3.00	ft
Flow Area	A =	24.42	34.50	sq ft
Wetted Perimeter	P =	14.92	16.71	ft
Hydraulic Radius	R =	1.64	2.06	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.080	0.057	
Flow Velocity	V =	1.82	3.02	fps
Velocity-Depth Product	VR =	2.99	6.24	ft^2/s
Hydraulic Depth Froude Number	D = Fr =	2.00 0.23	2.65 0.33	ft
Maximum Flow Based on Allowable Water Depth	$\mathbf{Q}_{\mathrm{T}} =$	44.5	104.3	cfs
·				
Maximum Channel Capacity Based On Allowable Water Depth Maximum Allowable Water Depth	d _{MAX} =	Minor Storm 1.10	Major Storm 1.50	ft
Top Width	ч _{мах} = Т =	11.10	11.50	ft
Flow Area	A =	11.61	16.13	sq ft
Wetted Perimeter	P =	12.46	13.35	ft
Hydraulic Radius	R =	0.93	1.21	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.315	0.170	
Flow Velocity	V =	0.32	0.70	fps
Velocity-Depth Product	VR =	0.30	0.85	ft^2/s
Hydraulic Depth	D =	1.05	1.40	ft
Froude Number	Fr =	0.05	0.10	
Maximum Flow Based On Allowable Water Depth	Q _d =	3.7	11.3	cfs
Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm	
MINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	3.7	11.3	cfs
MAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	1.10	1.50	ft
Water Depth in Channel Based On Design Peak Flow	_	• •		
Design Peak Flow	Q ₀ =	2.6	8.6	cfs
Water Depth	d =	0.91	1.45	ft
Top Width	T =	10.91	11.45	ft
Flow Area Watted Perimeter	A =	9.46	15.52	sq ft
Wetted Perimeter	P =	12.02 0.79	13.24 1.17	ft ft
Hydraulic Radius Manning's n based on NRCS Vegetal Retardance	R =	0.79	0.213	
Flow Velocity	n = V =	0.322	0.213	fps
Velocity-Depth Product	v = VR =	0.28	0.55	ft^2/s
Hydraulic Depth	D =	0.22	1.36	ft
Froude Number	Fr =	0.05	0.08	

Rain Garden Outlet Structure					
Inlet Design Information (Inp	ut)				
Type of Inlet	CDOT Type C (Depressed)	Inlet Type =	CDOT Type C (Depressed)	
Angle of Inclined Grate (must be	<= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			A _{RATIO} =	0.70	-
Height of Inclined Grate	W		H _B =	0.00	ft
Clogging Factor	X		C _f =	0.50	-
Grate Discharge Coefficient		Hb	C _d =	0.84	_
Orifice Coefficient	7	\rightarrow \square	C ₀ =	0.56	
Weir Coefficient		- d	C _w =	1.81	
	FLOW				
	Dive		MINOR	MAJOR	
Water Depth at Inlet (for depres	sed inlets, 1 foot is added for depression)	d =	1.91	2.45	
		-			
Grate Capacity as a Weir					
Submerged Side Weir Length		X =	3.00	3.00	ft
Inclined Side Weir Flow		Q _{ws} =	24.9	36.3	cfs
Base Weir Flow		Q _{wb} =	35.6	51.9	cfs
Interception Without Cloggging		Q _{wi} =	85.5	124.5	cfs
Interception With Clogging		Q _{wa} =	42.7	62.3	cfs
Grate Capacity as an Orifice					
Interception Without Clogging		Q _{oi} =	39.3	44.5	cfs
Interception With Clogging		Q _{oa} =	19.6	22.3	cfs
Total Inlet Interception Capacity	(assumes clogged condition)	Q _a =	19.6	22.3	cfs
Bypassed Flow		$Q_b =$	0.0	0.0	cfs
Capture Percentage = Qa/Qo		C% =	100	100	%


Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation.

Basin A4					
Inlet Design Information (Inp	ut)				
Type of Inlet	CDOT Type C (Depressed)	Inlet Type =	CDOT Type C (I	Depressed)	
Angle of Inclined Grate (must be	<= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate	W		H _B =	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4	H	, C _d =	0.84	
Orifice Coefficient			C _o =	0.56	
Weir Coefficient		0	C _w =	1.81	
	FLOW				
	Dipter		MINOR	MAJOR	
Water Depth at Inlet (for depress	d =	1.03	1.21		
Total Inlet Interception Capacity	Q _a =	14.5	15.6	cfs	
Bypassed Flow	Q _b =	0.0	0.0	cfs	
Capture Percentage = Qa/Qo		C% =	100	100	%

MHFD-Inlet, Version 5.01 (April 2021) AREA INLET IN A SWALE Super Star Car Wash - Meadowbrook Basin A5 Inlet Design Information (Input) CDOT Type C CDOT Type C -Inlet Type = Type of Inlet Angle of Inclined Grate (must be <= 30 degrees) θ= 0.00 degrees Width of Grate W = 3.00 ft Length of Grate L 3.00 ft Open Area Ratio Height of Inclined Grate A_{RATIO} 0.70 HB 0.00 ft Clogging Factor Grate Discharge Coefficient Orifice Coefficient Cf 0.50 C_d 0.96 C_{o} 0.64 Weir Coefficient C_w 2.05 FLOW MAJOR MINOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) Total Inlet Interception Capacity (assumes clogged condition) d : 0.03 **0.1** 0.23 **2.0** Q_a = cfs Bypassed Flow **Q**_b = 0.0 0.0 cfs Capture Percentage = Qa/Qo C% % 100 100

Basin A3					
Inlet Design Information (Inpu	+ +)	I			
Type of Inlet		- Inlet Type =	CDOT Type C (I	Depressed)	
Angle of Inclined Grate (must be	<= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate	W		H _B =	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4		b C _d =	0.84	
Orifice Coefficient			C _o =	0.56	
Weir Coefficient		0	C _w =	1.81	
	FLOW				
	Dise		MINOR	MAJOR	
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)			1.05	1.45	
Total Inlet Interception Capacity	Q _a =	14.6	17.1	cfs	
Bypassed Flow	$Q_b =$	0.0	0.0	cfs	
Capture Percentage = Qa/Qo			100	100	%