Final Drainage Report Terra Ridge North

Colorado Springs, Colorado 80908

Prepared for:
El Paso County, CO

On Behalf of:
Phillip S. and Jennifer Miles
PO Box 88461
Colorado Springs, CO 80908
719-352-8886

Prepared by:
Lodestar Engineering, LLC
PO Box 88461
Colorado Springs, CO 80908
Phillip Shay Miles, PE
719-352-8886

April 20, 2023
PCD File\# SF2239

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Signature: \qquad Date: \qquad
Phillip Shay Miles, PE
Registered Professional Engineer State of Colorado No. 40462

DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Name of Owner/Developer
Authorized Signature: \qquad

\qquad Date: 5/21/23

Title: Owner
Address: 15630 Fox Creek Lane, Colorado Springs, CO 80908

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

County Engineer / ECM Administrator
Date

Conditions:
Table of Contents

1. Purpose 1
2. General Description 1
3. Soils Conditions 2
4. Drainage Criteria 2
5. Existing and Proposed Drainage Conditions 2
5.1 Drainage Patterns and Hydraulic Routing 2
5.2 Site Improvements 4
5.3 Hydraulic Calculations 4
5.4 On-site Detention Requirements 5
5.5 Compliance with Other Studies 5
5.6 Four Step Process 5
6. Water Quality 6
7. Floodplain Statement. 6
8. Drainage and Bridge Fees 6
9. Construction Cost Opinion 7
10. Summary 7
11. References 7

Appendix A - Maps

- NRCS Soils Map and Hydrologic Group Data
- FEMA Flood Insurance Rate Map

Appendix B - Calculations
Hydrologic

- Composite Runoff Coefficients
- Percentage of Imperviousness
- Basin Runoff Summary (Rational Methodology)
- Surface Routing Summary

Hydraulic

- Ditches/Channel
- Culverts
- Outlet Erosion Protection

Detention Pond A

- Forebay
- Stage-Storage
- Outlet Structure Design
- Spillway Riprap

Appendix C - Plan (located in plan pocket)

- Existing Drainage Plan
- Proposed Drainage Plan

1. Purpose

The purpose of this Final Drainage Report for Terra Ridge North is to quantify and evaluate the impacts of stormwater runoff generated by this Project and to provide adequate water quality/detention treatment.

2. General Description

The Terra Ridge North property (Project) is a 52.34-acre single-family development consisting of 13 lots and a public street (Fox Creek Lane) located within Black Forest, Colorado in El Paso County. The project will consist of a public street, detention pond A, and new home construction and associated site elements typical of single-family residential development (e.g. - driveways, patios, landscaping, etc.). The property is bounded by Ridgeview Acres to the north, Whispering Hills Estates to the west Wildwood Village to the east, and Terra Ridge Estates to the south. All lots surrounding the subject property are all zoned RR-5. The entire 52.34 -acre parcel lies within unincorporated El Paso County and is currently zoned RR-2.5 (11 northern lots) and RR-5 (2 southern lots).

This project is located in the Town of Black Forest, El Paso County, Colorado. Access to the site is from Fox Creek Lane. It is located in Section 29, Township 11 south, Range 65 west of the $6^{\text {th }}$ principal meridian. A vicinity map is provided below in Figure 1.

Figure 1 - Vicinity Map

The existing site is covered with native grasses with a few randomly located ponderosa pines. The topography of the site is rolling hills with two drainage ways extending from south to north through the property. A 100-foot-wide electric easement extends north to south along the eastern portion of the site.

3. Soils Conditions

The proposed development is 52.34 acres. Ground cover primarily consists of existing vegetation primarily consisting of native grass and shrubs.

The general topography of the land slopes to the south at slopes in the range of 2% to 30%. According to the Natural Resources Conservation Service (NRCS), the soils in this area consist of Peyton-Pring Complex and Tomah-Crowfoot loamy sands, and can be classified as a Hydrologic Soil Group (HSG) Types B. A soil map and map unit (soils type) descriptions describing the HSG and other soils properties are provided in Appendix A. For the purposes of this report an HSG type B soil has been used to define rational method runoff coefficients.

Generally speaking, stormwater runoff from this project flows to the north and will initially enter an unnamed drainageway which ultimately discharges into East Cherry Creek.

4. Drainage Criteria

The hydrologic and hydraulic analysis performed in this report utilizes The City of Colorado Springs and El Paso County Drainage Criteria Manual (Vol 1, 1991) (Vol 2, 2002), The City of Colorado Springs (Chpt. 6, 2014, and the MHFD USDCM (Urban Storm Drainage Criteria Manual) Volumes $1 \& 2$. Stormwater runoff was determined using the Rational Method and was calculated for existing and proposed conditions for the 5-yr (minor) and 100-yr (major) recurrences. 1-hour rainfall depths were derived from NOAA Atlas 14, Volume 8, Version 2 specific to the Project location.

The following MHFD hydrologic and hydraulic software were used in this report:

- UD-Culvert v3.05-Culvert and Erosion Protection Calculations
- MHFD-Detention v4.06 - Water Quality and Detention Calculations

Additional software was needed for the triple 54 " pipes to accurately model a parabolic overflow weir (driveway sag curve). USDOT Federal Highway Administration (FHWA) Culvert Analysis Program HY-8, version 7.6. The culverts have been designed so there will not be any overtopping during the 100 yr storm event.

5. Existing and Proposed Drainage Conditions

5.1 Drainage Patterns and Hydraulic Routing

Existing

Stormwater runoff from this Project generally flows to the north and will initially enter an unnamed tributary ultimately discharging to East Cherry Creek. The imperviousness value of undeveloped land is $\sim 2 \%$ in accordance with DCM Table 6-6.

Design Point EX flows are generated from a naturally vegetated field in combination with the developed flows from the existing Terra Ridge subdivision filings to the south. The Q_{100} flow is 456.1 cfs .

Proposed

Proposed roadway construction and associated grading will create five (5) on-site basins and two (2) off-site basins. Refer to the drainage plan in Appendix C. A portion of basins A and B extend into Terra Ridge Filing No. 1. These basin boundaries include the new portion of roadway (Fox Creek Lane) being extended to the north along with roadside ditches. Ditches are provided to capture and convey as much area as possible from the roadway to Pond A for water quality and detention treatment. Refer to summary table in Section 10 for additional information. It is noteworthy to mention that portions of basin A and B areas have already been accounted for in the Terra Ridge Filing No. 1 basins, therefore runoff values have been slightly conservative for these areas.

Design Point 1 flows are generated from basin B. Basin B consists of public roadway improvements to include pavement, and roadside ditches. Unconcentrated sheet flow across the pavement is collected in the adjacent ditch and is routed north to the proposed $18 "$ storm culvert. At this location, runoff will be conveyed under the proposed roadway to the ditch on the east side. Runoff is then conveyed under the proposed maintenance access road via a 24 " storm culvert with flow ultimately discharging into the proposed water quality/detention pond A facility.

Design Point 2 flows are generated from basins A and B. Basin A consists of public roadway improvements to include pavement, and roadside ditches. Unconcentrated sheet flow across the pavement is collected in the adjacent ditch and combines with basin B runoff and is routed north to design point 2. At this location, runoff will be conveyed in a proposed ditch to the forebay of the proposed water quality/detention pond A facility. Riprap will be provided on three sides of the structure with a d50 of 6 " and a thickness of 12 " to prevent erosion when overtopping during frequent storm events. The proposed forebay will be $\sim 44 \mathrm{cf}$ in volume and will have a notch width of 3.7 inches. Flows into a 1.5 ' wide concrete trickle channel will be conveyed to the outlet structure micropool. Refer to the forebay and detention pond A calculations located in Appendix B. The emergency overflow route is over a 4^{\prime} wide (i.e. -4^{\prime} long crest length) proposed spillway which has been designed to pass the peak flow from the 100 yr flow event. For non-excluded soil disturbance areas and areas that are excluded from pond treatment for basins A and B, refer to Section 10 summary table for each associated value.

Design Point 3: The JR report shows flows entering the project site with a Q100yr value of 369cfs (JR DP5). To route this flow to Fox Creek Design Point 3, this flow value (369cfs) and the time of concentration (Tc) for Design Point 5 from the JR report $(0.765 \mathrm{hrs}=45.9$ minutes $)$ was held and a corresponding CA equivalent (rational method input) was calculated for routing to Design Point 4. The Tc for the JR flow (45.9 cfs) was added to the additional Tc (9.2 minutes) to route thru the site to Design Point 4, yielding a higher Tc (55.1) for Design Point 4 and was used to determine the Q100yr peak flow value of 432 cfs . As a rough check, using the JR Design Point 5 report data and the 371 tributary acres with a resultant flow of 369 cfs yields $\sim 1.01 \mathrm{cfs} /$ acre . Our addition of off-site basin OS1 and onsite basin D (total 45acres) yielded a peak flow at Design Point 4 of 431.8 cfs . Therefore, our project site had flows of $\sim 1.04 \mathrm{cfs} /$ acre which is close to the $1.01 \mathrm{cfs} /$ acre value determined by JR.

Design Point 4 flows are generated from off-site basins OS1 and OS2, Design Point 3 as well as on-site basin D. Basin OS1 and OS2 consist of large lot single family subdivision development improvements with homes, driveways, sheds, and various outbuildings. Runoff flows down the side slope and directly into the adjacent drainageway. Basin D consists of a naturally vegetated field which will have some minor impervious area additions from the proposed home sites. Portions of basins D can be excluded from water quality treatment per ECM appendix I.7.1.B.5. Refer to section 10 summary table for those areas. Runoff from basin D is routed directly into the drainageway and then to the north to design point 4 . To enable the flows at this
location to pass under the proposed driveway, three (3) 54 " culverts are proposed. Riprap energy dissipation will be provided at the outfall to minimize the potential for erosion/local scour. Refer to appendix B calculations for additional information.

Basin E flows are generated from a naturally vegetated field and a short segment of driveway pavement. This basin runoff is not being treated in the proposed water quality/detention pond A because of the topographical constraints on site. Portions of basins E can be excluded from water quality treatment per ECM appendix I.7.1.B.5. Refer to section 10 summary table for those areas. Basin E flows are routed in the existing drainageway to the northeast combining with the main channel of East Cherry Creek at the northeastern lot corner.

Basin F flows are generated from a naturally vegetated field which will have home site construction. Basin F flows are routed in an existing drainageway (East Cherry Creek) on the east side of the property which combines with the aforementioned onsite drainageway within basin E near the northeastern lot corner. Portions of basins F can be excluded from water quality treatment per ECM appendix I.7.1.B.5. Refer to section 10 summary table for those areas.

Basic C is not used.

As stated above, portions of basins D, E \& F are excluded from permanent water quality per ECM Appendix I Section I.7.1.B. 5 since these contain large lot single family sites (greater than 2.5 ac) and will have soil and vegetation conditions which are suitable for infiltration/filtration. Refer to section 10 summary table for those areas.

Design Point 5 is the ultimate outflow outfall located at the northeast corner of the subdivision and is a combination of flows from DP4, basin E, F, JR basin 17, and pond A outfall. The Q ${ }_{100}$ flow is 472.7 cfs .

The developed 100-year flow at design point 5 is 16.6 cfs higher than the historic 100-year flow at the same location (Design Point EX). This yields a 3.5% increase in flows from the proposed subdivision which is negligible and will not negatively impact downstream properties.

5.2 Site Improvements

Utilities that exist within the project area are overhead electric lines running north to south across the east half of the project. There are no other known public utilities in the area. The existing electric lines are contained within an easement.

No improvements will be made to the existing Fox Creek Lane south of the proposed development.

5.3 Hydraulic Calculations

Culverts

The calculations for the 18 " culvert and 24 " culvert which routes ditch flows from basin B to basin A under the proposed driveway and under the proposed maintenance access road were performed using 2022 Civil3D design software and are contained in Appendix B. The triple 54" storm culverts routing the drainageway under the proposed driveway were modeled using FHWA HY-8 software. Refer to Appendix B.

Riprap energy dissipation pads have been included at the outfall of the proposed pipe culverts. The riprap thickness shall be 2 times the D50 and Mirafi 140-N shall be installed beneath the riprap.

Ditch Design

The hydraulic analysis for the Fox Creek Lane roadway ditches was performed using 2022 Civil3D design software and are contained in Appendix B. A grassed lined channel Manning's roughness coefficient value of 0.040 was used for the ditches per table 10-2 of the drainage criteria manual which is the "normal" value as indicated at the top of the table. For all roadside ditches proposed for this project, a Shotgun seed mix will be used which results in long native grasses. Using a mix like this will provide adequate surface roughness and the stability needed to accommodate the 100 yr storm event flow velocities. Long native grass is capable of withstanding velocities up to $6 \mathrm{ft} / \mathrm{sec}$. Our proposed design velocity values range from $3.2 \mathrm{ft} / \mathrm{sec}$ to $5.5 \mathrm{ft} / \mathrm{sec}$. Furthermore, the existing on-site soils do not have a significant amount of sand content and are somewhat cohesive in nature. Therefore, we believe the onsite soils coupled with long native vegetative cover can be considered erosion resistant.

Channel Analysis

The hydraulic analysis for the drainageway (unnamed tributary to East Cherry Creek) routed through the development was performed using 2022 Civil3D design software and is contained in Appendix B. A natural stream Manning's roughness coefficient value of 0.040 was used for the channel per table 10-2, of the drainage criteria manual which as stated above is the "normal" value used for computations. Five locations were chosen for normal depth flow analysis. Velocities ranged from $3.6 \mathrm{ft} / \mathrm{sec}$ to $5.0 \mathrm{ft} / \mathrm{sec}$ which as we have stated above would be considered non erosive being below the $6 \mathrm{ft} / \mathrm{sec}$ threshold. Furthermore, the channel appears to be stable with no signs of thalweg incision, head cutting or unstable banks.

5.4 On-site Detention Requirements

A full spectrum water quality/detention pond A is proposed for this site to provide water quality for developed flows as a result of this development. In addition to water quality, detention is provided in the pond A design. Refer to section 7 in this report for additional information regarding water quality capture volume (WQCV) and detention (peak flow attenuation) flow requirements for this project.

The Terra Ridge North HOA will own and maintain the water quality/detention pond A.

5.5 Compliance with Other Studies

The only studies related to this project are the Terra Ridge Filing No 1 and 2 reports (see references). The basins that are common to this project (Terra Ridge - basin 12 and 17) have only been modified slightly to account for the proposed roadway construction. Flows as determined in the Terra Ridge reports for the natural drainageway have been used and supplemented with the additional flows from the Terra Ridge North watershed to determine the on-site flow at the proposed driveway crossing.

5.6 Four Step Process

Step 1 - Runoff Reduction Practices
This development address Low Impact Development strategies primarily through the utilization of roadway ditches. Runoff from the pavement sheet flows across the grass lined ditch side slopes which provides some level of water quality treatment.

Step 2 - Stabilize Drainageways

Portions of the existing conditions runoff currently enter the on-site natural drainageway via overland flow across the vacant lots and via the proposed full-spectrum detention pond A. Due to the minor anticipated extent of land disturbance and improvements on these large lots coupled with on-site detention; the amount of runoff entering the drainageways remains basically the same. Predevelopment levels of release of the Excess Urban

Runoff Volume (EURV) help the drainageway maintain its current morphology by mimicking the natural historic runoff rates over a longer period by peak flow attenuation.

Step 3 -Implement BMPs that Provide a Water Quality Capture Volume with Slow Release
On-site flow is directed to the on-site private proposed full-spectrum detention/water quality facility. The extended detention basin provides Water Quality Capture Volume (WQCV) required for this site and attenuates the peak flows releasing them at approximate historic runoff rates over a longer period by releasing Excess Urban Runoff Volume (EURV).

Step 4 - Consider Need for Industrial and Commercial BMPs
No industrial and commercial development exist onsite.

6. Water Quality

Stormwater that is generated from this Project is either discharged offsite in the form of unconcentrated sheet flow or is collected in roadside ditches and routed thru the proposed water quality/detention facility outfalling via an 18 " storm sewer pipe.

The proposed on-site imperviousness of the area contributing to pond A is 25.9%. Basin C is not used in this report.

The proposed full spectrum extended detention basin (EDB) has been analyzed in this study based on the proposed site conditions as shown on the Drainage Plan. The facility provides 0.060 acre-ft of water quality capture volume, 0.138 acre- ft of excess urban runoff volume and 0.236 acre-ft of detention storage. The proposed EDB will release a peak flow 5.4 cfs during the 100 -year storm event. Outflows from the proposed EDB are released via a proposed 18 " storm sewer pipe with a restrictor plate located within the outlet structure box. The outlet structure will have an orifice plate designed to drain the EURV over a period of 72 hours. The orifice plate will have 3 rows of holes. The lowest will be $15 / 16$ " in diameter, and the second and third rows will be $7 / 16$ " in diameter. The EDB will have a rip rap emergency overflow spillway that will drain the 100 yr peak flows (8.0cfs) in the event the outlet structure becomes entirely clogged or the pond is already full. The spillway will be constructed of rip rap with a d50 $=9{ }^{\prime \prime}, 18^{\prime \prime}$ thick, a crest length of 4.0 ' with $3: 1$ side slopes. Flow depth over the crest of the spillway during the 100 yr event storm will be 0.61^{\prime} with 1.12^{\prime} of freeboard. The outfall pipe will outfall onto the riprap of the emergency overflow spillway (see appendix B calculations) to dissipate any energy. A 10 ft maintenance road has been provided extending from the private driveway to the bottom of the pond. Pond A will be maintained using a skid loader. Refer to the design calculations in Appendix B for additional information.

7. Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) number 08041C0315G dated December 7, 2018 this project is not located within a FEMA designated 100yr floodplain. Therefore, no map revisions will be necessary as a result of this project. A copy of the FIRM maps is provided in Appendix A.

8. Drainage and Bridge Fees

The drainage basin is located within the East Cherry Creek Drainage Basin.
The project is not located within a fee (drainage) basin and bridge fees are not required. Therefore, no drainage or bridge fees are required for this development.

9. Construction Cost Opinion

Item	Unit	Quantity	Unit Price	Extended Cost
18" Storm Pipe	LF	24	$\$ 70$	$\$ 1,680$
$24 "$ Storm Pipe	LF	20	$\$ 75$	$\$ 1,992$
54" Storm Pipe	LF	150	$\$ 195$	$\$ 29,250$
Outlet Structure	EA	1	$\$ 12,450$	$\$ 12,450$
Forebay	EA	1	$\$ 3,250$	$\$ 3,250$
Trickle Channel	LS	1	$\$ 1,548$	$\$ 1,548$
			Sub-total	$\$ 50,170$
			Contingency 10%	$\$ 5,017$
			TOTAL	$\$ 55,187$

All storm system elements for this project are private and therefore there will be no reimbursement from El Paso County.

10. Summary

The Final Drainage Report for Terra Ridge North was prepared using the El Paso County Engineering Criteria Manual, City of Colorado Springs Drainage Criteria Manuals, and Mile High Flood Control District Manuals. Stormwater quality and detention is provided by a proposed facility located on-site. No adverse downstream impacts are anticipated as a result of the proposed site improvements.

Basin	Total Area ID	Total Proposed Disturbed Area (ac)	Area Trib to Pond A (ac)	Area Excluded from WQ per ECM App I.7.1.c.1 (ac)	Area Excluded from WQ per ECM App I.7.1.B.\# (ac)	Applicable WQ Exclusions (App I.7.1.B.\#)
A	4.2	3.24	4.2	0		
B	0.94	0.94	1.02	0		
D	14.59	0.17		0	0	
E	6.36	0.17		0	0.17	ECM App I.1.7.B.7
F	14.15	0		0	0	ECM App I.1.7.B.7
Total	40.24	4.52		0.34		

11. References

1. Engineering Criteria Manual, El Paso County, December 2016
2. Drainage Criteria Manual, Volumes I and II, El Paso County and City of Colorado Springs, Vol 1, 1991 and Vol 2, 2002
3. Drainage Criteria Manual, Chapter 6, Volume 1 Update, October 2018
4. Urban Storm Drainage Criteria Manual (USDCM), Volumes I-III, Mile High Flood Control District (MHFD).
5. Preliminary drainage report for Terra Ridge Filing No. 1, JR Engineering, April 1997.
6. Preliminary drainage report for Terra Ridge Filing No. 1, JR Engineering, April 1997.
7. Preliminary drainage report for Terra Ridge Filing No. 2, JR Engineering, June 1999.
8. FEMA Flood Insurance Rate Map Numbers 08041C0305G and 08041C0305G, El Paso County, Colorado, December 7, 2018
9. Natural Resources Conservation Service, Web Soil Survey, http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
10. United States Geological Survey (USGS) Topographic Quadrangle Map

Appendix A
Maps

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
El Paso County Area, Colorado

fox creek subdivision

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
Soil Map 5
Soil Map. 6
Legend 7
Map Unit Legend 8
Map Unit Descriptions. 8
El Paso County Area, Colorado 10
14—Brussett loam, 1 to 3 percent slopes 10
68-Peyton-Pring complex, 3 to 8 percent slopes 11
92-Tomah-Crowfoot loamy sands, 3 to 8 percent slopes 12

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

Soil Map

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Bravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 17, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
14	Brussett loam, 1 to 3 percent slopes	Percent of AOI 68Peyton-Pring complex, 3 to 8 percent slopes	1.2

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

14-Brussett loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367j
Elevation: 7,200 to 7,500 feet
Frost-free period: 115 to 125 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brussett

Setting
Landform: Flats
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits
Typical profile
A - 0 to 8 inches: loam
BA - 8 to 12 inches: loam
Bt - 12 to 26 inches: clay loam
Bk - 26 to 60 inches: silt loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: B
Ecological site: Loamy Park (R048AY222CO)
Hydric soil rating: No

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

68-Peyton-Pring complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369f
Elevation: 6,800 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent
Pring and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam
$B t-12$ to 25 inches: sandy clay loam
BC -25 to 35 inches: sandy loam
C-35 to 60 inches: sandy loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

```
Description of Pring
    Setting
        Landform: Hills
        Landform position (three-dimensional): Side slope
        Down-slope shape: Linear
        Across-slope shape: Linear
        Parent material: Arkosic alluvium derived from sedimentary rock
    Typical profile
        A -0 to 14 inches: coarse sandy loam
        C-14 to 60 inches: gravelly sandy loam
    Properties and qualities
        Slope: 3 to 8 percent
        Depth to restrictive feature: More than }80\mathrm{ inches
        Natural drainage class: Well drained
        Runoff class: Low
        Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00
            in/hr)
        Depth to water table: More than }80\mathrm{ inches
        Frequency of flooding: None
        Frequency of ponding: None
        Available water storage in profile: Low (about 6.0 inches)
    Interpretive groups
        Land capability classification (irrigated): None specified
        Land capability classification (nonirrigated): 3e
        Hydrologic Soil Group: B
        Ecological site: Loamy Park (R048AY222CO)
        Hydric soil rating: No
Minor Components
    Other soils
    Percent of map unit:
    Hydric soil rating: No
Pleasant
    Percent of map unit:
    Landform: Depressions
    Hydric soil rating: Yes
```


92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent
Crowfoot and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Hills, alluvial fans
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile
A - 0 to 10 inches: loamy sand
E - 10 to 22 inches: coarse sand
C - 48 to 60 inches: coarse sand
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand
$E-12$ to 23 inches: sand
Bt - 23 to 36 inches: sandy clay loam
C - 36 to 60 inches: coarse sand
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

	Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR	
SPECIAL FLOOD HAZARD AREAS\square	\square	

	0.2\% Annual Chance Flood Hazard, Areas of 1\% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X
	Future Conditions 1\% Annual Chance Flood Hazard Zone X
	Area with Reduced Flood Risk due to Levee. See Notes. Zone X
Area with Flood Risk due to Levee Zone D	

No SCREEN Area of Minimal Flood Hazard Zone X OTHER AREAS \square Effective LOMRs
OTHER AREAS
GENERAL \qquad Area of Undetermined Flood Hazard Zone D

- - - - Channel, Culvert, or Storm Sewer

B $-\frac{20.2}{-17.5}$ Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
(8)- - - Coastal Transect
nmismin Base Flood Elevation Line (BFE)
$\xlongequal{=}$ Limit of Study
Lurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

MAP PANELS

\square	Digital Data Available
\square	No Digital Data Available
\square	

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/28/2019 at 7:40:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B
Calculations

FINAL DRAINAGE REPORT
 Terra Ridge North
 (Composite Runoff Coefficient - 5 Year)

ON-SITE							
Basin	Area (acres)						C5
	Paved/Drive/Walk	Res 2.5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
A	0.43	2.69	0.12	0.96	0.00	4.20	0.18
B	0.40	0.00	0.06	0.49	0.00	0.94	0.46
C	Not Used						
D	0.19	14.38	0.02	0.00	0.00	14.59	0.09
E	0.17	6.18	0.02	0.00	0.00	6.36	0.10
F	0.00	14.15	0.00	0.00	0.00	14.15	0.08

OFF-SITE							
Basin	Area (acres)						C5
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
OS1	0.00	30.00	0.00	0.00	0.00	30.00	0.05
OS2	0.13	6.23	0.00	0.00	0.00	6.36	0.07

EXISTING							
Basin	Area (acres)						C5
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
EX1	0.00	0.00	0.00	0.00	24.84	24.84	0.09
EX2	0.00	0.00	0.00	0.00	14.10	14.10	0.09

Per DCM Table 6-6 Vol 1 Update

Surface
Paved/Drive/Walk
Runoff Coefficent

Res 2.5ac
0.90
0.08

Res 5ac
0.05
0.59

Gravel
Lawn/Meadow
0.08
0.09

Note: Res 2.5ac and Res 5ac C5 based on $11 \% \operatorname{Imp}$ and 5\% Imp (Table 3-1) and Interpolation of MHFD table 6-5

FINAL DRAINAGE REPORT
 Terra Ridge North
 (Composite Runoff Coefficient-100 Year)

ON-SITE							
Basin	Area (acres)						C100
	Paved/Drive/Walk	Res 2.5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
A	0.43	2.69	0.12	0.96	0.00	4.20	0.51
B	0.40	0.00	0.06	0.49	0.00	0.94	0.63
C	Not Used						
D	0.19	14.38	0.02	0.00	0.00	14.59	0.49
E	0.17	6.18	0.02	0.00	0.00	6.36	0.49
F	0.00	14.15	0.00	0.00	0.00	14.15	0.48

OFF-SITE							
Basin	Area (acres)					C100	
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist		
OS1	0.00	30.00	0.00	0.00	0.00	30.00	0.46
OS2	0.13	6.23	0.00	0.00	0.00	6.36	0.47

EXISTING							
Basin	Area (acres)						C100
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
EX1	0.00	0.00	0.00	0.00	24.84	24.84	0.36
EX2	0.00	0.00	0.00	0.00	14.10	14.10	0.36

Per DCM Table 6-6 Vol 1 Update

Surface
Paved/Drive/Walk
Runoff Coefficent

Res 2.5ac
0.96
0.48

Res 5ac
0.46
0.70

Gravel
0.35

Lawn/Meadow
0.36

Note: Res 2.5 ac and Res 5 ac C 5 based on $11 \% \operatorname{Imp}$ and $5 \% \operatorname{Imp}$ (Table 3-1) and Interpolation of MHFD table 6-5

FINAL DRAINAGE REPORT
Terra Ridge North
(Percentage of Imperviousness)

ON-SITE: PROPOSED							
Basin	Area (acres)						\% Imp
	Paved/Drive/Walk	Res 2.5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
A	0.43	2.69	0.12	0.96	0.00	4.20	19.68
B	0.48	0.00	0.06	0.49	0.00	1.02	51.42
C	NOT USED						
D	0.00	14.38	0.02	0.00	0.00	14.40	11.10
E	0.17	6.18	0.02	0.00	0.00	6.36	13.49
F	0.00	14.15	0.00	0.00	0.00	14.15	11.00
Totals	1.08	37.39	0.22	1.44	0.00	40.12	13.37

OFF-SITE: PROPOSED							
Basin	Area (acres)						\% Imp
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
OS1	0.00	30.00	0.00	0.00	0.00	30.00	7.00
OS2	0.13	6.23	0.00	0.00	0.00	6.36	8.93
Totals	0.13	36.23	0.00	0.00	0.00	36.36	7.34

TO POND: PROPOSED							
A, B	0.91	2.69	0.18	1.44	0.00	$\mathbf{5 . 2 2}$	$\mathbf{2 5 . 9 0}$

EXISTING							
Basin	Area (acres)						\% Imp
	Paved/Drive/Walks	Res 5ac	Gravel	Lawn/Meadow	Undev - Hist	TOTAL	
EX1	0.00	0.00	0.00	0.00	24.84	24.84	2.00
EX2	0.00	0.00	0.00	0.00	14.10	14.10	2.00
Totals	0.00	0.00	0.00	0.00	38.94	38.94	2.00

Per DCM Table 6-6	
Surface	Impervious
Paved/Drive/Walk	100
Res 2.5ac	11
Res 5ac	7
Gravel	80
Lawn/Meadow	0
Undeveloped - Historic	2

Note: Res 2.5+ac \% Imp. Per ECM Appendix L, Table 3-1

Final Drainage Report

Terra Ridge North

(Basin Summary)

From Area Runoff Coefficient Summary				OVERLAND FLOW TIME				TRAVEL TIME					TOTAL (min)	INTENSITY *		TOTAL FLOWS	
BASIN	AREA TOTAL (Acres)	C_{5}	C_{100}	C_{5}	Length (ft)	Height (ft)	$\begin{gathered} \mathbf{T}_{\mathrm{C}} \\ (\text { min }) \end{gathered}$	Conveyance Coeff.	Slope (\%)	Length (ft)	Velocity (fps)	$\begin{gathered} \mathbf{T}_{\mathbf{t}} \\ (\text { min }) \end{gathered}$		$\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathbf{I}_{100} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ (\text { (c.f.s. }) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{100} \\ (\text { c.f.f.s. }) \end{gathered}$
A	4.20	0.18	0.51	0.18	150	10	11.3	15	4.0\%	320	3.0	1.8	13.0	3.7	6.3	2.8	13.4
B	1.02	0.46	0.63	0.46	10	3.3	1.2	15	5.6\%	1285	3.5	6.0	7.2	4.6	7.8	2.2	5.0
C	Basin C no longer used. Combined into Basin E																
D	14.40	0.09	0.49	0.09	300	24	16.5	10	5.0\%	240	2.2	1.8	18.3	3.2	5.4	4.2	38.2
E	6.36	0.10	0.49	0.10	300	20	17.3	15	4.9\%	70	3.3	0.4	17.7	3.3	5.5	2.1	17.1
F	14.15	0.08	0.48	0.08	300	28	15.8	15	3.2\%	1180	2.7	7.3	23.1	2.9	4.8	3.2	32.7
OS1	30.00	0.05	0.46	0.05	300	12	21.5	15	3.0\%	815	2.6	5.2	26.8	2.7	4.5	4.0	61.4
OS2	6.36	0.07	0.47	0.07	300	10	22.4	15	3.0\%	580	2.6	3.7	26.1	2.7	4.5	1.2	13.5
EX1	24.84	0.09	0.36	0.09	300	24	16.5	15	5.0\%	990	3.4	4.9	21.4	3.0	5.0	6.7	44.9
EX2	14.10	0.09	0.36	0.09	300	28	15.7	15	3.2\%	1180	2.7	7.3	23.0	2.9	4.8	3.7	24.5
* Intensity equations assume a minimum travel time of 5 minutes. Calculated by: PSM																	
															Date: 2/5/2023		Checked by: PSM

FINAL DRAINAGE REPORT
 Terra Ridge North
 (Surface Routing Summary)

					Intensity		Flow		Comments
Design Point(s)	Contributing Basins/Design Points	$\begin{gathered} \text { Equivalent } \\ C^{\prime} A_{5} \end{gathered}$	$\begin{gathered} \text { Equivalent } \\ C A_{100} \end{gathered}$	$\begin{gathered} \text { Maximum } \\ T_{C} \end{gathered}$	I_{5}	I_{100}	Q_{5}	Q_{100}	
1	B	0.43	0.59	7.5	4.6	7.6	2.0	4.5	To proposed 18" culvert
2	DP1, A	1.19	2.73	11.6	3.9	6.6	4.6	18.0	To proposed pond (inflow)
3	JR ENG DP-005	47.97	118.08	45.9	1.8	3.1	86.3	366.0	Creek flow at entrance to property
4	DP3, (OS1, OS2, D Routed)	3.26	23.94	55.1	1.6	2.6	92.1	432.0	To proposed Triple 54" culverts
5	DP4, E, F, JR17, POND OUT	DP4, Basin E and F Routed. Pond Out and JR 17 Direct Addition					100.1	472.7	Proposed Site Outfall - Compare to DP EX
EX	JR ENG DP-005, JR17, OS1, OS2, EX1, EX2	JR ENG DP-005, OS1, OS2, EX1, EX2 routed, JR17 Direct Addition					98.9	456.1	Existing Site Outfall - Compare to DP 5

Channel Report

Basin A ditch 100yr Sta 6+50

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=2.00$
	$=100.00$
Invert Elev (ft)	$=3.50$
Slope (\%)	$=0.040$
N-Value	
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=4.70$

Highlighted
Depth (ft)
$=0.65$
Q (cfs)
$=4.700$
Area (sqft)
Velocity (ft/s)
= 1.48
Wetted Perim (ft)
= 3.18
Crit Depth, Yc (ft)
$=4.74$
Top Width (ft)
$=0.65$
EGL (ft)
$=4.55$
Known Q $=4.70$

Depth (ft)

Reach (ft)

Channel Report

Basin A ditch 100yr Sta 10+00

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=2.00$
	$=100.00$
Invert Elev (ft)	$=6.50$
Slope (\%)	$=0.040$
N-Value	
Calculations	Known Q
Compute by:	$=5.50$
Known Q (cfs)	

Highlighted
Depth (ft)
$=0.62$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=5.500$
$=1.35$

Crit Depth, Yc (ft)
4.09

Top Width (ft)
$=0.69$

EGL (ft)

Known Q
$=5.50$

Depth (ft)
Elev (ft)

Section

3.00

Reach (ft)

Channel Report

Basin A ditch 100yr Sta 12+00

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=2.00$
	$=100.00$
Invert Elev (ft)	$=8.30$
Slope (\%)	$=0.040$
N-Value	
Calculations	Known Q
Compute by:	$=9.80$

Highlighted
Depth (ft)
$=0.73$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.87$
Top Width (ft)
EGL (ft)
$=5.11$
$=9.800$
$=1.87$
$=5.25$
$=5.32$
$=1.16$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

Basin A + B ditch 100ft South of Pond

Triangular
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=3.00,3.00$
$=2.00$
$=100.00$
$=5.60$
$=0.040$

Known Q
$=17.80$

Highlighted

Depth (ft)	$=1.04$
Q (cfs)	$=17.80$
Area (sqft)	$=3.24$
Velocity (ft/s)	$=5.49$
Wetted Perim (ft)	$=6.58$
Crit Depth, Yc (ft)	$=1.17$
Top Width (ft)	$=6.24$
EGL (ft)	$=1.51$

Elev (ft)
Section
Depth (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Main 75ft DS of Driveway

User-defined	Highlighted Invert Elev (ft)		
Slope (\%)	$=44.00$	Depth (ft)	$=1.84$
N-Value	$=1.12$	Q (cfs)	$=432.00$
		Area (sqft)	$=91.60$
Calculations		Velocity (ft/s)	$=4.72$
Compute by:	Known Q	Wetted Perim (ft)	$=69.74$
Known Q (cfs)	$=432.00$	Crit Depth, Yc (ft)	$=1.54$
		Top Width (ft)	$=69.56$
	EGL (ft)	$=2.19$	

(Sta, EI, n)-(Sta, EI, n)...
($0.00,52.00)-(7.00,48.00,0.040)-(28.00,48.00,0.040)-(82.00,44.00,0.040)-(112.00,44.00,0.040)-(120.00,45.00,0.040)-(128.00,46.00,0.040)$ -(140.00, 50.00, 0.040)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Main 190ft DS of Driveway

User-defined	Highlighted Invert Elev (ft)		
Slope (\%)	$=42.00$	Depth (ft)	$=2.38$
N-Value	$=1.70$	Q (cfs)	$=432.00$
	$=0.040$	Area (sqft)	$=86.60$
Calculations		Velocity (ft/s)	$=4.99$
Compute by:	Known Q	Wetted Perim (ft)	$=82.63$
Known Q (cfs)	$=432.00$	Crit Depth, Yc (ft)	$=2.28$
		Top Width (ft)	$=82.35$
	EGL (ft)	$=2.77$	

(Sta, EI, n)-(Sta, EI, n)...
($0.00,48.00)-(11.00,44.00,0.040)-(26.00,44.00,0.040)-(60.00,43.00,0.040)-(73.00,42.00,0.040)-(88.00,43.50,0.040)-(110.00,48.00,0.040)$

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Main 370ft DS of Driveway

User-defined	Highlighted		
Invert Elev (ft)	$=36.50$	Depth (ft)	$=2.34$
Slope (\%)	$=1.25$	Q (cfs)	$=473.00$
N-Value	$=0.040$	Area (sqft)	$=99.30$
		Velocity (ft/s)	$=4.76$
Calculations	Known Q	Wetted Perim (ft)	$=80.27$
Compute by:	$=473.00$	Crit Depth, Yc (ft)	$=2.08$
Known Q (cfs)		Top Width (ft)	$=79.96$
	EGL (ft)	$=2.69$	

(Sta, EI, n)-(Sta, EI, n)...
($0.00,42.50)-(20.00,41.00,0.040)-(34.00,37.00,0.040)-(43.00,36.50,0.040)-(56.00,37.00,0.040)-(112.00,39.00,0.040)-(170.00,39.00,0.040)$ -(190.00, 40.00, 0.040)-(240.00, 47.00, 0.040)

Sta (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Main 560ft DS of Driveway

User-defined	Highlighted Invert Elev (ft)		
Slope (\%)	$=42.00$	Depth (ft)	$=2.60$
N-Value	$=1.12$	Q (cfs)	$=473.00$
	$=0.040$	Area (sqft)	$=104.74$
Calculations		Velocity (ft/s)	$=4.52$
Compute by:	Known Q	Wetted Perim (ft)	$=83.87$
Known Q (cfs)	$=473.00$	Crit Depth, Yc (ft)	$=2.34$
		Top Width (ft)	$=83.48$
	EGL (ft)	$=2.92$	

(Sta, EI, n)-(Sta, EI, n)...
($0.00,50.00)-(11.00,44.00,0.040)-(26.00,44.00,0.040)-(60.00,43.00,0.040)-(73.00,42.00,0.040)-(88.00,43.50,0.040)-(110.00,48.00,0.040)$

Sta (ft)

Channel Report
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Main 700ft DS of Driveway

User-defined	Highlighted		
Invert Elev (ft)	$=35.00$	Depth (ft)	$=2.21$
Slope (\%)	$=0.62$	Q (cfs)	$=473.00$
N-Value	$=0.040$	Area (sqft)	$=131.22$
		Velocity (ft/s)	$=3.60$
Calculations	Known Q	Wetted Perim (ft)	$=96.11$
Compute by:	$=473.00$	Crit Depth, Yc (ft)	$=1.64$
Known Q (cfs)		Top Width (ft)	$=95.95$
	EGL (ft)	$=2.41$	

(Sta, EI, n)-(Sta, EI, n)...
$(0.00,39.00)-(20.00,36.00,0.040)-(36.00,35.00,0.040)-(51.00,35.00,0.040)-(80.00,36.00,0.040)-(102.00,37.00,0.040)-(130.00,38.00,0.040)$ -(170.00, 44.00, 0.040)

Sta (ft)

Culvert Report

18inch Culvert

Invert Elev Dn (ft)	$=100.00$
Pipe Length (ft)	$=50.00$
Slope (\%)	$=1.00$
Invert Elev Up (ft)	$=100.50$
Rise (in)	$=18.0$
Shape	$=$ Circular
Span (in)	$=18.0$
No. Barrels	$=1$
n-Value	$=0.013$
Culvert Type	$=$ Circular Concrete
Culvert Entrance	$=$ Square edge w/headwall (C)
Coeff. K,M,c,Y,k	$=0.0098,2,0.0398,0.67,0.5$
Embankment	
Top Elevation (ft)	$=105.00$
Top Width (ft)	$=24.00$
Crest Width (ft)	$=150.00$

Calculations

Qmin (cfs) $\quad=5.00$
Qmax (cfs) $=5.00$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=5.00$
Qpipe (cfs)
Qovertop (cfs)
$=5.00$
Veloc Dn (ft/s)
Veloc Up (ft/s)
$=0.00$

HGL Dn (ft)
$=3.35$
$=4.77$
HGL Up (ft)
Hw Elev (ft)
Hw/D (ft)
Flow Regime
$=101.18$
$=101.36$
= 101.78
$=0.86$
$=$ Inlet Control

Culvert Report

24inch Culvert

Invert Elev Dn (ft)	$=100.00$
Pipe Length (ft)	$=25.00$
Slope (\%)	$=1.00$
Invert Elev Up (ft)	$=100.25$
Rise (in)	$=24.0$
Shape	$=$ Circular
Span (in)	$=24.0$
No. Barrels	$=1$
n-Value	$=0.013$
Culvert Type	$=$ Circular Concrete
Culvert Entrance	$=$ Square edge w/headwall (C)
Coeff. K,M,c,Y,k	$=0.0098,2,0.0398,0.67,0.5$
Embankment	
Top Elevation (ft)	$=105.00$
Top Width (ft)	$=20.00$
Crest Width (ft)	$=150.00$

Calculations

Qmin (cfs) $\quad=17.80$
Qmax (cfs) $\quad=17.80$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $=17.80$
Qpipe (cfs) $\quad=17.80$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $\quad=6.08$
Veloc Up (ft/s) $\quad=6.93$
HGL Dn (ft) $=101.76$
HGL Up (ft) $=101.77$
Hw Elev (ft) $=102.86$
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft}) \quad=1.30$
Flow Regime = Inlet Control

HY-8 Culvert Analysis Report

Crossing Discharge Data
Discharge Selection Method: User Defined
Table 1 - Summary of Culvert Flows at Crossing: Driveway Crossing

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	3 54s Discharge (cfs)	Roadway Discharge (cfs)	Iterations
$\mathbf{4 8 . 3 9}$	$25 y r$	198.00	198.00	0.00	1
$\mathbf{4 9 . 3 7}$	50 yr	304.00	304.00	0.00	1
$\mathbf{5 0 . 6 9}$	100 yr	431.80	431.80	0.00	1
$\mathbf{5 0 . 7 5}$	Overtopping	436.84	436.84	0.00	Overtopping

Rating Curve Plot for Crossing: Driveway Crossing
Total Rating Curve

Culvert Data: 354s

Table 1 - Culvert Summary Table: 354 s												
Discharg	Total	Culvert	Headwate	Inlet	Outlet	Flo	Norma	Critica	Outle	Tailwate	Outlet	Tailwate
e Names	Discharg	Discharg	r	Contro	Contro	w	1	1	1	t	r Depth	Velocit

	e (cfs)	e (cfs)	Elevation (ft)	1 Depth (ft)	1 Depth (ft)	$\begin{aligned} & \text { Typ } \\ & \text { e } \end{aligned}$	Depth (ft)	Depth (ft)	Dept h (ft)	(ft)	y (ft/s)	Velocity (ft/s)
25yr	$\begin{aligned} & 198.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 198.00 \\ & \text { cfs } \end{aligned}$	48.39	3.39	2.492	$\begin{aligned} & 1- \\ & S 2 n \end{aligned}$	2.18	2.37	2.21	1.12	8.50	3.80
50 yr	$\begin{aligned} & 304.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 304.00 \\ & \text { cfs } \end{aligned}$	49.37	4.37	3.596	$\begin{aligned} & 1- \\ & \text { S2n } \end{aligned}$	2.85	2.96	2.86	1.43	9.51	4.39
100 yr	$\begin{aligned} & 431.80 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 431.80 \\ & \text { cfs } \end{aligned}$	50.69	5.69	5.674	$\begin{aligned} & 7- \\ & \text { M2c } \end{aligned}$	3.84	3.52	3.52	1.74	10.77	4.92

Culvert Barrel Data
Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 45.00 ft ,
Outlet Elevation (invert): 44.75 ft
Culvert Length: 50.00 ft ,
Culvert Slope: 0.0050

Culvert Performance Curve Plot: 3 54s

Performance Curve

Water Surface Profile Plot for Culvert: 3 54s
Crossing - Driveway Crossing, Design Discharge - 431.8 cfs

Site Data-354s
Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 45.00 ft

Outlet Station: 50.00 ft
Outlet Elevation: 44.75 ft
Number of Barrels: 3
Culvert Data Summary - 3 54s
Barrel Shape: Circular
Barrel Diameter: 4.50 ft
Barrel Material: Concrete

Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting ($\mathrm{Ke}=0.2$)
Inlet Depression: None
Tailwater Data for Crossing: Driveway Crossing
Table 2 - Downstream Channel Rating Curve (Crossing: Driveway Crossing)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{1 9 8 . 0 0}$	46.12	1.12	3.80	0.58	0.68
$\mathbf{3 0 4 . 0 0}$	46.43	1.43	4.39	0.74	0.70
$\mathbf{4 3 1 . 8 0}$	46.74	1.74	4.92	0.90	0.72

Tailwater Channel Data - Driveway Crossing
Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 40.00 ft
Side Slope (H:V): 6.00 (_:1)
Channel Slope: 0.0083
Channel Manning's n: 0.0350
Channel Invert Elevation: 45.00 ft
Roadway Data for Crossing: Driveway Crossing
Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section		
Coord No.	Station (ft)	Elevation (ft)
$\mathbf{0}$	-110.00	53.12
$\mathbf{1}$	-95.00	52.91
$\mathbf{2}$	-20.00	51.02
$\mathbf{3}$	0.00	50.75
$\mathbf{4}$	20.00	51.01
$\mathbf{5}$	40.00	51.81
$\mathbf{6}$	60.00	53.03
Roadway Surface: Paved		

Roadway Surface: Paved
Roadway Top Width: 22.00 ft

Determination of Culvert Headwater and Outlet Protection

Project: Terra Ridge North
Basin ID: 18" Culvert Outfall Pad

Soil Type:

Supercritical Flow! Using Da to calculate protection type.

Design Information (Input):		
Design Discharge	$\mathrm{Q}=$	4.5 cfs
Circular Culvert:		
Barrel Diameter in Inches	$\mathrm{D}=$	18 inches
Inlet Edge Type (Choose from pull-down list)	Grooved End Projection	-
Box Culvert:		OR
Barrel Height (Rise) in Feet	Height (Rise) $=$	ft
Barrel Width (Span) in Feet	Width (Span) $=$	ft
Inlet Edge Type (Choose from pull-down list)		\checkmark
Number of Barrels	No =	1
Inlet Elevation	Elev $\mathrm{IN}=$	100.45 ft
Outlet Elevation OR Slope	Elev OUT =	100
Culvert Length	L =	45
Manning's Roughness	$\mathrm{n}=$	0.012
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1
Tailwater Surface Elevation	Elev $\mathrm{Y}_{\mathrm{t}}=$	ft
Max Allowable Channel Velocity	$V=$	$7 \mathrm{ft} / \mathrm{s}$
Required Protection (Output):		
Tailwater Surface Height	$\mathrm{Y}_{\mathrm{t}}=$	0.60 ft
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	0.64 ft ${ }^{2}$
Culvert Cross Sectional Area Available	$\mathrm{A}=$	1.77 ft ${ }^{2}$
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.20
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	0.69
Sum of All Losses Coefficients	$\mathrm{k}_{\mathrm{s}}=$	1.89
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	0.65
Culvert Critical Depth	$Y_{c}=$	0.81
Tailwater Depth for Design	d =	1.16 ft
Adjusted Diameter OR Adjusted Rise	$\mathrm{D}_{\mathrm{a}}=$	1.08
Expansion Factor	$1 /\left(2^{*} \tan (\Theta)\right)=$	6.70
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)	Q/D^2.5 =	1.63 ft ${ }^{0.5} / \mathrm{s}$
Froude Number	$\mathrm{Fr}=$	1.52 Supercritical!
Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise	$\mathrm{Yt} / \mathrm{D}=$	0.56
Inlet Control Headwater	$\mathrm{HW}_{1}=$	1.17 ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	0.90
Design Headwater Elevation	HW =	101.62 ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/D $=$	0.78
Minimum Theoretical Riprap Size	$\mathrm{d}_{50}=$	2 in
Nominal Riprap Size	$\mathrm{d}_{50}=$	6 in
UDFCD Riprap Type	Type $=$	VL
Length of Protection	$\mathrm{L}_{\mathrm{p}}=$	5 ft
Width of Protection	$\mathrm{T}=$	3 ft

Determination of Culvert Headwater and Outlet Protection

Project: Terra Ridge North
Basin ID: 24" Culvert Outfall Pad

Soil Type:

Supercritical Flow! Using Da to calculate protection type.

Design Information (Input):		
Design Discharge	$\mathrm{Q}=$	17.8 cfs
Circular Culvert:		
Barrel Diameter in Inches	$\mathrm{D}=$	24 inches
Inlet Edge Type (Choose from pull-down list)	Grooved End Projection	-
Box Culvert:		OR
Barrel Height (Rise) in Feet	Height (Rise) $=$	ft
Barrel Width (Span) in Feet	Width (Span) $=$	ft
Inlet Edge Type (Choose from pull-down list)		\checkmark
Number of Barrels	No =	1
Inlet Elevation	Elev $\mathrm{IN}=$	100.25 ft
Outlet Elevation OR Slope	Elev OUT =	100
Culvert Length	L =	25
Manning's Roughness	$\mathrm{n}=$	0.012
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1
Tailwater Surface Elevation	Elev $\mathrm{Y}_{\mathrm{t}}=$	ft
Max Allowable Channel Velocity	$V=$	$7 \mathrm{ft} / \mathrm{s}$
Required Protection (Output):		
Tailwater Surface Height	$\mathrm{Y}_{\mathrm{t}}=$	0.80 ft
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	2.54 ft ${ }^{2}$
Culvert Cross Sectional Area Available	$\mathrm{A}=$	3.14 ft ${ }^{\text {2 }}$
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.20
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	0.26
Sum of All Losses Coefficients	$\mathrm{k}_{\mathrm{s}}=$	1.46
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	1.26
Culvert Critical Depth	$Y_{c}=$	1.52
Tailwater Depth for Design	d =	1.76 ft
Adjusted Diameter OR Adjusted Rise	$\mathrm{D}_{\mathrm{a}}=$	1.63
Expansion Factor	$1 /\left(2^{*} \tan (\Theta)\right)=$	5.59
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)	Q/D^2.5 =	$3.15 \quad \mathrm{ft}{ }^{0.5} / \mathrm{s}$
Froude Number	$\mathrm{Fr}=$	1.44 Supercritical!
Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise	$\mathrm{Yt} / \mathrm{D}=$	0.49
Inlet Control Headwater	$\mathrm{HW}_{1}=$	2.39 ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	2.24
Design Headwater Elevation	HW =	102.64 ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/D $=$	1.20
Minimum Theoretical Riprap Size	$\mathrm{d}_{50}=$	6 in
Nominal Riprap Size	$\mathrm{d}_{50}=$	6 in
UDFCD Riprap Type	Type $=$	VL
Length of Protection	$\mathrm{L}_{\mathrm{p}}=$	7 ft
Width of Protection	$\mathrm{T}=$	4 ft

Determination of Culvert Headwater and Outlet Protection

Project: Terra Ridge North
Basin ID: Triple 54" Culvert Outfall Riprap

Soil Type:
$\left[\begin{array}{l}\text { Choose One: } \\ \text { o Sandy } \\ \text { - Non-Sandy } \\ \hline\end{array}\right.$

Design Information (Input):	
	Design Discharge
Circular Culvert:	
	Barrel Diameter in Inches
	Inlet Edge Type (Choose from pull-down list)
Box Culvert:	
	Barrel Height (Rise) in Feet
	Barrel Width (Span) in Feet
	Inlet Edge Type (Choose from pull-down list)
	Number of Barrels
	Inlet Elevation
	Outlet Elevation OR Slope
	Culvert Length
	Manning's Roughness
	Bend Loss Coefficient
	Exit Loss Coefficient
	Tailwater Surface Elevation
	Max Allowable Channel Velocity

Required Protection (Output):
Tailwater Surface Height
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth

$Y_{t}=$	4.00
$\mathrm{A}_{\mathrm{t}}=$	20.57
A =	15.90
$\mathrm{k}_{\mathrm{e}}=$	0.20
$\mathrm{k}_{\mathrm{f}}=$	0.21
$\mathrm{k}_{\mathrm{s}}=$	1.41
$Y_{n}=$	3.90
$Y_{c}=$	3.53

Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)
Froude Number
I allwater/Adjusted Diameter OR I allwater/Adjusted Rise

Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio

Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Width of Protection

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.06 (July 2022)

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)				Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth $=$	N/A	ft (distance below the filtration media surface)	Underdrain Orifice Area $=$	N/A	ft^{2}
Underdrain Orifice Diameter $=$	N/A	inches	Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically				lated Parameters f	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) WQ Orifice Area per Row $=$ ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Elliptical Half-Width $=$ inches Elliptical Slot Centroid $=$ sq. inches Elliptical Slot Area $=$		N/A	
Depth at top of Zone using Orifice Plate	2.17			N/A	feet
Orifice Plate: Orifice Vertical Spacing	N/A			N/A	t
Orifice Plate: Orifice Area per Row	N/A			N/A	

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	0.75	1.50					
	0.70	0.14	0.14					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	
Vertical Orifice Diameter =	N/A	N/A	nches				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate				
(om at Stage $=0 \mathrm{ft}$)	Outlet Orifice Area $=$ Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	ft^{2}
		0.66	N/A	
		0.35	N/A	feet
Half-Central Ang	Restrictor Plate on Pipe $=$	1.37	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	3.10	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	4.00	feet
Spillway End Slopes =	3.00	H:V
ve Max Water Surface =	1.00	feet

ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches inches

Half-Central Angle of Restrictor Plate on Pipe $=$

Calculated Parameters for Spillway

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.61$
Stage at Top of Freeboard	$=$
	feet
Basin Area at Top of Freeboard	$=0.20$
feet	
Basin Volume at Top of Freeboard	$=0.51$

Routed Hydrograph Results	er	de the default CU	ogra	unoff volumes b	ntering new valu	s in the Inflow H)	graphs table (mns W through	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.060	0.137	0.140	0.238	0.328	0.469	0.573	0.714	0.984
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.140	0.238	0.328	0.469	0.573	0.714	0.984
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.5	1.5	2.3	4.0	5.0	6.4	9.0
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.29	0.43	0.77	0.96	1.24	1.72
Peak Inflow Q (cfs) =	N/A	N/A	1.6	2.7	3.6	5.5	6.6	8.0	10.8
Peak Outflow Q (cfs) =	0.0	0.0	0.0	1.2	2.3	4.3	5.0	5.4	8.6
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.8	1.0	1.1	1.0	0.8	1.0
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.3	0.5	0.6	0.7	0.7
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	41	63	64	62	59	55	53	50	45
Time to Drain 99\% of Inflow Volume (hours) =	45	68	69	69	68	65	64	62	60
Maximum Ponding Depth (ft) =	1.22	2.17	2.11	2.31	2.39	2.51	2.62	3.03	3.44
Area at Maximum Ponding Depth (acres) =	0.07	0.10	0.09	0.10	0.11	0.11	0.11	0.13	0.14
Maximum Volume Stored (acre-ft) =	0.060	0.138	0.131	0.152	0.159	0.173	0.186	0.236	0.290

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:15:00	0.00	0.00	0.07	0.11	0.13	0.09	0.11	0.11	0.16
	0:20:00	0.00	0.00	0.24	0.43	0.57	0.24	0.28	0.35	0.57
	0:25:00	0.00	0.00	0.92	1.66	2.44	0.90	1.10	1.31	2.42
	0:30:00	0.00	0.00	1.51	2.62	3.47	3.78	4.69	5.45	7.66
	0:35:00	0.00	0.00	1.62	2.73	3.59	5.01	6.10	7.42	10.13
	0:40:00	0.00	0.00	1.57	2.60	3.41	5.46	6.60	7.98	10.79
	0:45:00	0.00	0.00	1.44	2.39	3.21	5.27	6.37	7.92	10.69
	0:50:00	0.00	0.00	1.32	2.22	2.96	5.13	6.19	7.67	10.36
	0:55:00	0.00	0.00	1.21	2.03	2.73	4.72	5.72	7.25	9.80
	1:00:00	0.00	0.00	1.12	1.88	2.55	4.34	5.27	6.83	9.27
	1:05:00	0.00	0.00	1.05	1.75	2.40	4.03	4.92	6.53	8.87
	1:10:00	0.00	0.00	0.96	1.62	2.26	3.67	4.49	5.90	8.07
	1:15:00	0.00	0.00	0.86	1.48	2.12	3.32	4.08	5.29	7.29
	1:20:00	0.00	0.00	0.77	1.33	1.91	2.95	3.63	4.65	6.41
	1:25:00	0.00	0.00	0.68	1.18	1.69	2.60	3.20	4.05	5.58
	1:30:00	0.00	0.00	0.61	1.07	1.52	2.26	2.77	3.50	4.83
	1:35:00	0.00	0.00	0.56	1.00	1.39	2.00	2.46	3.09	4.28
	1:40:00	0.00	0.00	0.53	0.91	1.29	1.80	2.22	2.77	3.84
	1:45:00	0.00	0.00	0.49	0.83	1.19	1.63	2.01	2.49	3.45
	1:50:00	0.00	0.00	0.46	0.76	1.10	1.47	1.82	2.23	3.11
	1:55:00	0.00	0.00	0.42	0.69	1.00	1.33	1.65	2.00	2.78
	2:00:00	0.00	0.00	0.37	0.61	0.89	1.20	1.48	1.78	2.48
	2:05:00	0.00	0.00	0.32	0.53	0.76	1.04	1.28	1.54	2.14
	2:10:00	0.00	0.00	0.27	0.44	0.64	0.88	1.09	1.31	1.81
	2:15:00	0.00	0.00	0.22	0.36	0.52	0.73	0.90	1.09	1.50
	2:20:00	0.00	0.00	0.18	0.28	0.41	0.58	0.72	0.87	1.20
	2:25:00	0.00	0.00	0.14	0.21	0.32	0.44	0.55	0.66	0.90
	2:30:00	0.00	0.00	0.10	0.16	0.24	0.32	0.39	0.46	0.64
	2:35:00	0.00	0.00	0.08	0.12	0.19	0.22	0.28	0.33	0.47
	2:40:00	0.00	0.00	0.06	0.10	0.16	0.17	0.21	0.24	0.35
	2:45:00	0.00	0.00	0.05	0.08	0.13	0.12	0.16	0.18	0.26
	2:50:00	0.00	0.00	0.04	0.07	0.11	0.09	0.12	0.13	0.19
	2:55:00	0.00	0.00	0.03	0.05	0.09	0.07	0.09	0.09	0.14
	3:00:00	0.00	0.00	0.03	0.04	0.07	0.06	0.07	0.07	0.10
	3:05:00	0.00	0.00	0.02	0.03	0.05	0.04	0.06	0.05	0.07
	3:10:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.06
	3:15:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:20:00	0.00	0.00	0.01	0.02	0.03	0.02	0.03	0.02	0.04
	3:25:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	3:30:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:35:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)
Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

USE TYPE L

