

MASTER DEVELOPMENT DRAINAGE PLAN

FOR

THE RETREAT AT TIMBERRIDGE

FOR COMMENT

Prepared for: **ARROYA INVESTMENTS LLC** 1283 KELLY JOHNSON BLVD. COLORADO SPRINGS CO 80920 (719) 447-8773

Prepared by: **CLASSIC CONSULTING ENGINEERS & SURVEYORS** 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

Job No. 2520.00

PUD-17-00 3

MASTER DEVELOPMENT DRAINGE PLAN FOR THE RETREAT AT TIMBERRIDGE

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the Drainage Criteria Manual for the City of Colorado Springs and El Paso County. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Marc A. Whorton Colorado P.E. #37155

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	ARROYA INVESTMENTS LLC
By:	
Title:	
Address:	1283 Kelly Johnson Blvd.
	Colorado Springs CO 80920

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer drvine, County Engineer

Date

Conditions:

MASTER DEVELOPMENT DRAINGE PLAN FOR THE RETREAT AT TIMBERRIDGE

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	1
PROPOSED DRAINAGE CONDITIONS	Page	4
DETENTION/SWQ FACILITIES	Page	6
SAND CREEK CHANNEL IMPROVEMENTS	Page	6
DRAINAGE CRITERIA	Page	7
FLOODPLAIN STATEMENT	Page	8
DRAINAGE AND BRIDGE FEES	Page	8
SUMMARY	Page	10
REFERENCES	Page	12

APPENDICES

VICINITY MAP SOILS MAP (WEB SOIL SURVEY) F.E.M.A. MAP / LOMR (08-08-0541P) RECOMMENDATIONS PER SAND CREEK DBPS PRELIMINARY WETLANDS MAPPING HYDROLOGIC CALCULATIONS STORMWATER QUALITY CALCULATIONS DETENTION POND CALCULATIONS DRAINAGE MAPS

PURPOSE

The intent of the owner/developer is to develop the Retreat at TimberRidge site. The purpose of this Master Development Drainage Plan, as part of the Retreat at TimberRidge PUD Plan, is to identify major drainage features and facilities and to estimate peak rates of stormwater runoff, from on-site and off-site sources. Also the purpose is to outline the necessary improvements to safely route developed storm water runoff to adequate outfall facilities. The drainage improvements proposed in this report are preliminary in nature and final drainage reports are required upon any development within the site that detail the 'to be constructed' drainage systems and detention/SWQ ponds.

GENERAL DESCRIPTION

The Retreat at TimberRidge is a 293-acre site located in portions sections 21, 22, 27 and 28, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north by various unplatted parcels (zoned for 5 ac. residential), to the south and east by Sterling Ranch property (zoned for future urban development) and to the west by Vollmer Road and unplatted parcels (zoned for 5 ac. residential). The site is in the upper portion of the Sand Creek Drainage Basin. Both large lot rural single family residential and urban single family +residential is proposed in the PUD plan for this site.

The average soil condition reflects Hydrologic Group "B" (Pring coarse sandy loam and Kettle gravelly loamy sand) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. The overall property was recently acquired in numerous parcels. The parcel west of Vollmer Road is on the fringe of Black Forest and contains some sparsely scattered pine trees with the majority of the parcel being native grasses. The most northerly parcel just east of Vollmer Road and north of Arroya Lane contains an existing stock retention pond and the upper reach of the studied Sand Creek channel. The northeast parcel, north of Arroya Lane again is on the fringe of Black Forest and contains some sparsely scattered pine trees with the majority of the parcel at the southeast corner of Vollmer Road and Arroya Lane also contains some sparsely scattered pine trees with native grasses and natural ravines tributary to the Sand Creek channel. The remaining larger parcels south of Arroya Lane and east of Vollmer Road are mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects this part of the property from north-south with various natural ravine tributary

fingers. A wetlands delineation has been prepared for the property (See Appendix) and reflects some wetlands throughout the Sand Creek channel. Upon determination of exact channel improvements as a part of development of the site, the appropriate permitting will be prepared for and reviewed/approved by US Fish and Wildlife. Arroya Lane exists along the northern portion of the site. The westerly portion of this road is public ROW with the remainder of the road heading further east being private. An existing 60" CMP culvert currently conveys the low flows from Sand Creek under Arroya Lane.

Portions of this site has been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. Approximately 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix) According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10} = 630$ cfs $Q_{100} = 2170$ cfs. The majority of these off-site flows enter the property at the north end of the site via various culverts under Vollmer Road conveying flows from the northwest (Black Forest area), the previously mentioned on-site stock retention pond, off-site smaller stock pond to the east (both tributary to hundreds of acres of property in Black Forest). See the Predevelopment Drainage Map in the Appendix.

The following descriptions represent the pre-development flows for the property:

EX DP-1 ($Q_2 = 5.8$ cfs $Q_5 = 37.1$ cfs, $Q_{100} = 280.2$ cfs) This does not include the major off-site channel flows but reflects only the on-site and off-site flows that travel across the property and have a direct effect on the development. This total represents the allowed developed release off-site at this location. This total pre-development flow includes the flowing basins: EX-1, EX-4, EX-5, EX-6, OS-1, OS-1, OS-3, OS-4 and OS-5. Basin EX-1 ($Q_2 = 2.6$ cfs $Q_5 = 17.7$ cfs, $Q_{100} = 140.3$ cfs) consists of the majority of the site proposed for development. This entire basin sheet flows directly into Sand Creek. Basin EX-4 ($Q_2 = 1.3$ cfs $Q_5 = 6.9$ cfs, $Q_{100} = 41.8$ cfs) consists of the northeasterly portion of the property north of Arroya Lane that drains in a southwesterly direction towards Sand Creek. Basin EX-5 ($Q_2 = 0.5$ cfs $Q_5 = 3.7$ cfs, $Q_{100} = 29.3$ cfs) consists of northerly portion of the property

north of Arroya Lane and contains the existing stock retention pond and the Sand Creek channel. Basin EX-6 ($Q_2 = 0.3$ cfs $Q_5 = 2.1$ cfs, $Q_{100} = 16.7$ cfs) consists of the northwesterly portion of the property west of Vollmer Road that drains under Vollmer through an existing 48" CMP culvert directly on-site. Basin OS-1 ($Q_2 = 0.9$ cfs $Q_5 = 7.0$ cfs, $Q_{100} = 53.9$ cfs) consists of an off-site basin to the east within the Sterling Ranch property that sheet flows directly on-site. Basin OS-3 ($Q_2 = 0.9$ cfs $Q_5 = 1.5$ cfs, $Q_{100} = 3.4$ cfs) consists of the public ROW portion of Arroya Lane that sheet flows directly on-site. Basin OS-4 ($Q_2 = 0.6$ cfs $Q_5 = 3.4$ cfs, $Q_{100} = 20.78$ cfs) consists of the off-site basin directly tributary to the site through Basin EX-4 containing several existing large lot home sites located on 35+ acre property. Basin OS-5 ($Q_2 = 0.2$ cfs $Q_5 = 1.4$ cfs, $Q_{100} = 10.8$ cfs) consists of the small off-site basin, currently undeveloped (5 acre zoning), directly tributary to the site through basin EX-6.

EX DP-2 (Q₂ = 0.2 cfs Q₅ = 2.0 cfs, Q₁₀₀ = 14.7 cfs) consists of combined flows from on-site Basin EX-2 (Q₂ = 0.2 cfs Q₅ = 1.7 cfs, Q₁₀₀ = 12.2 cfs) and Basin OS-2 (Q₂ = 0.04 cfs Q₅ = 0.3 cfs, Q₁₀₀ = 2.5 cfs). These combined pre-development flows travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

EX DP-3 ($Q_2 = 0.4$ cfs $Q_5 = 3.0$ cfs, $Q_{100} = 23.7$ cfs) consists of flows from on-site Basin EX-3 that travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

EX DP-4 (Q₂ = 0.02 cfs Q₅ = 0.2 cfs, Q₁₀₀ = 8.0 cfs) consists of on-site flows from Basin EX-7 that travel off-site through an unplatted parcel of property with 5 acre zoning. This flow represents the allowed developed release at this location.

EX DP-5 ($Q_2 = 0.1 \text{ cfs } Q_5 = 0.9 \text{ cfs}$, $Q_{100} = 7.1 \text{ cfs}$) consists of on-site flows from Basin EX-8 that travel in a southeasterly direction towards the existing roadside ditch along the north side of Vollmer Road. These flows will travel in a southerly direction within the roadside ditch to a release point at the corner of the property. This to flow represents the allowed developed release at this location.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge will consist of a variety of different residential lot sizes ranging from 2.5-5 acre large rural lots to 7,200 SF urban lots. The rural lots will have paved streets and roadside ditches while the urban lots paved streets with County standard curb, gutter and sidewalk. Development of rural lots proposed within the site will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Development of the urban lots proposed (majority of the site) will consist of overlot grading for the planned roadways and lots. At designed points where developed flows are greater than the existing condition, detention/SWQ facilities will be proposed providing a Water Quality Capture Volume (WQCV) and an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. Prior to development within the Retreat at TimberRidge property, final drainage reports and construction plans will be required detailing the requirements and specifics of proposed facilities. WQCV will be provided for all new roads and urban lots. The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

As mentioned previously, the majority of the off-site flows are already within the Sand Creek channel prior to entering the property. However the few off-site basins that must travel through the proposed site development areas prior to entering Sand Creek have been accounted for.

Basins OS-4 ($Q_2 = 0.6 \text{ cfs } Q_5 = 3.4 \text{ cfs}$, $Q_{100} = 20.7 \text{ cfs}$) and E ($Q_2 = 1.4 \text{ cfs } Q_5 = 7.7 \text{ cfs}$, $Q_{100} = 46.6 \text{ cfs}$) are both tributary to the proposed Pond A. Developed flows will be routed towards this

facility via side road ditches, storm sewer and sheet flow. This facility will provide detention/SWQ prior to flows being released into Sand Creek. Basins A ($Q_2 = 16.8 \text{ cfs } Q_5 = 33.3 \text{ cfs}, Q_{100} = 98.2$ cfs) and B ($Q_2 = 15.3$ cfs $Q_5 = 27.6$ cfs, $Q_{100} = 75.8$ cfs) are both tributary to the proposed Pond B. Developed flows will be routed towards this facility via curb and gutter, storm sewer and sheet flow. This facility will provide detention/SWQ prior to flows being released into Sand Creek. Basins OS-1 ($Q_2 = 0.6 \text{ cfs } Q_5 = 4.7 \text{ cfs}, Q_{100} = 35.7 \text{ cfs}$), OS-2 ($Q_2 = 0.3 \text{ cfs } Q_5 = 2.8 \text{ cfs}, Q_{100} = 21.2 \text{ cfs}$), C (Q₂ = 13.4 cfs Q₅ = 26.1 cfs, Q_{100} = 75.6 cfs) and D (Q₂ = 26.7 cfs Q₅ = 47.8 cfs, Q_{100} = 127.1 cfs) are all tributary to the proposed Pond C. Developed flows will be routed towards this facility via curb and gutter, storm sewer and sheet flow. This facility will provide detention/SWQ prior to flows being released into Sand Creek. Basins OS-5 ($Q_2 = 1.2 \text{ cfs } Q_5 = 1.4 \text{ cfs}$, $Q_{100} = 10.8 \text{ cfs}$) and I ($Q_2 = 0.3$ cfs $Q_5 = 2.1$ cfs, $Q_{100} = 16.7$ cfs) are both tributary to the existing 48" CMP culvert under Vollmer Road at the intersection with Arroya. This facility appears to be very silted in and may require cleaning or replacement. No immediate development within Basin I is proposed at this time. Upon development of that parcel further drainage analysis will be required. These predevelopment flows will continue to cross Vollmer and are then proposed to be routed via extension of the 48" storm sewer within Arroya Lane to the east towards Sand Creek. This design will

eliminate this historic flow into Basin A and the proposed lots. Basin QS-3 ($Q_2 = 1.3$ efs $Q_5 = 2.0$ after WQCV is provided (DESCRIBE WHERE) (Isn'pon formal development will continue to be directly tributary to Sand Creek. this a road? Ins F (Q₂ = 0.5 cfs Q₅ = 3.7 cfs, Q₁₀₀ = 29.3 cfs), G (Q₂ = 2.1 cfs Q₅ = 6.3 cfs, Q₁₀₀ = 27.4 cfs) and H ($Q_2 = 1.5$ cfs $Q_5 = 5.1$ cfs, $Q_{100} = 24.5$ cfs) are all directly tributary to Sand Creek. Basin F represents flows from the proposed open space tract north of Arroya Lane currently containing Sand Creek. No development is proposed within this tract other than trail construction. Both Basins G and H represent portions of the proposed rear yards of lots adjacent to Sand Creek and the Creek area itself. The minimal developed portion of these basins will be required to route all imperious areas across a landscape area prior to sheet flow release into Sand Creek. No immediate development within Basin K is proposed at this time. Upon development of that parcel further drainage analysis will be required. These pre-development flows will continue to sheet flow in a southerly direction off-site. Basin J is proposed for two large lots averaging 3.5 ac. each. The minimal developed flow from these lots will be required to route all imperious areas across a meeting ECM/DCM landscape area prior to sheet flows entering the side road ditch along Vollmer Road. design requirements

Note: The landscape area BMPs will be required to be maintained by the HOA or district under a private BMP maintenance agreement and easement.

A deviation request from ECM Section I.7.1.B will be required with the PDR addressing all areas within the small lot subdivisions not provided with WQCV.

DETENTION FACILITIES / STORMWATER QUALITY

Final design of these recommended facilities that include planning for water quality management of storm water runoff features will be designed during final design and construction of the proposed improvements. Storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to the multiple Full Spectrum Extended Detention Basins. Site Planning and design techniques for the large lot, rural areas should limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Facilities that require detention will provide an Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. These measures will be taken into consideration upon final design of the individual detention facilities as well as the development of the individual land uses within the site.

MAINTENANCE

The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the Sterling Ranch Metropolitan District or Homeowners Association. The Sand Creek channel will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way.

After completion of construction and upon Board of County Commissioners' acceptance,

SAND CREEK CHANNEL IMPROVEMENT

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ with three of these facilities planned for the property and less urbanization anticipated in this reach, the existing drainageway is expected to remain stable. However, localized improvements may be necessary to limit erosion caused by flow concentrations at culverts and storm sewers outfalls. Specifically located grade control and/or drop structures are planned in this reach in order to slow the cannel velocity to the recommended 7 feet per second and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. These facilities will help protect the native wetland vegetation from detrimental effects of stream invert head cutting. A maximum drop height of three feet is

Steeply incised channels are described in the CORE report. Please elaborate.

recommended with final design following the Urban Drainage Criteria Manual Vol. 2. Concept locations for these facilities are shown on the developed drainage map as recommended in the DBPS. Revegetation would occur wherever the native vegetation is disturbed by channel construction. Selectively located rip-rap bank protection such as outside bends and culvert outlets are also Address USACE permitting/ approvals required for channel design.

Two proposed roadway crossings of Sand Creek are proposed for this site. (Arroya Lane and the proposed east-west collector road) The current crossing of Arroya Lane is with a 60" CMP culvert. Upon development, the proposed crossing will consist of a triple cell 6'x12' CBC to facilitate the conveyance of the 100 yr. flow. This same structure is proposed at the crossing with the collector roadway as well. These facilities, along with all proposed channel improvements would be designed to continue to contain the 100 yr. flows within the current floodplain as defined by the LOMR 08-080541P.

Address no-rise certification or CLOMR/LOMR options.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Detention storage and storm sewer conveyance to Sand Creek Drainage Basin was established with the Sand Creek DBPS, previously referenced. The NRCS Unit Hydrograph (Curve Number) was used to estimate stormwater runoff anticipated from design storms for the 2 year, 5 year and 100 year recurrence interval with a 24 hour NRCS Type II distribution.

Rainfall Depths for Colorado Springs

Return Period	24-Hour Depth
2 Year	2.10
5 Year	2.70
10 Year	3.20
25 Year	3.60
50 Year	4.20
100 Year	4.60

FLOODPLAIN STATEMENT

A portions of this site is located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535F and the previously mentioned LOMR 08-08-0541P both with effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

Any applicable fees shall be provided prior to final plat recordation of any development within this site. The following represents the anticipated overall fees for this site:

Sand Creek Drainage Basin

This site lies entirely within the Sand Creek Drainage Basin boundaries.

The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge site has a total area of 293 acres with the following different land uses proposed:

39.7 Ac.	5.0 Ac. lots
31.6 A.	2.5 Ac. lots
221.7 Ac.	470 lots (7,200 SF to 1.0 Ac.) = 0.47 Ac./lot

The percent imperviousness for this subdivision is calculated as follows:

Fees for 5.0 Ac. lots

39.7 Ac. of 5.0 Ac. lots
(Per El Paso County Percent Impervious Chart: 7%)
39.7 Ac. x 7% = 2.78 Impervious Ac.

25% Fee Reduction for this portion of the site planned for low density (5.0 ac. lots)

Bridge Fees

 $4,929.00 \times 2.78$ Impervious Ac. x 75% = 10,276.97

Drainage Fees

 $16,270.00 \times 2.78$ Impervious Ac. x 75% = 33,922.95

Fees for 2.5 Ac. lots

31.6 Ac. of 2.5 Ac. lots
(Per El Paso County Percent Impervious Chart: 11%)
31.6 Ac. x 11% = 3.48 Impervious Ac.

25% Fee Reduction for this portion of the site planned for low density (2.5 ac. lots)

Bridge Fees

 $4,929.00 \times 3.48$ Impervious Ac. x 75% = 12,864.69

Drainage Fees

 $16,270.00 \times 3.48$ Impervious Ac. x 75% = $\frac{42,464.70}{2}$

Fees for 0.47 Ac. lots

221.7 Ac. of 0.47 Ac. lots
(Per El Paso County Percent Impervious Chart: 25%)
221.7 Ac. x 25% = 55.43 Impervious Ac.

Bridge Fees

 $4,929.00 \times 55.43$ Impervious Ac. = 273,214.47

Drainage Fees

$16,270.00 \times 55.43$ Impervious Ac. = $901,846.1$	<u>6.10</u>
---	-------------

The following calculations are the estimated total 2017 drainage/bridge fees for this site:

Total Estimated Bridge Fees	=	\$296,356.13
Total Estimated Drainage Fees	=	<u>\$ 978,233.75</u>

Drainage Credits / Reimbursements

Per the Drainage Basin Fee Addendum – Chapter 3 for El Paso County, drainage credits/reimbursements may be applicable to this development in two forms: full reimbursement for construction costs associated with regional facilities (Sand Creek channel structures) as presented in the DBPS and partial reimbursement for construction of on-site detention facilities that meet County criteria. These specific credits/reimbursements will be better defined in the final drainage reports and site construction drawings.

Final Fee estimates for individual future filings will be handled under separate Final Drainage reports upon submission of individual filing plats.

SUMMARY

The proposed Retreat at TimberRidge site is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that may be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not hinder any downstream facility or property to an extent greater than that which currently exists in the 'historic' conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements. Upon development of the individual parcels within the site, separate Final Drainage Reports will be required to be submitted and approved by El Paso County that details all storm systems, pond design and fee calculation.

PREPARED BY:

Classic Consulting Engineers & Surveyors, LLC

Marc A. Whorton, P.E. Project Manager

maw/252000/MDDP.doc

REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3" Urban Drainage and Flood Control District, dated January 2016.
- 3. "Final Drainage Report for Forest Gate Subdivision" Law & Mariotti Consultants, Inc. dated October 2004.
- 4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.

APPENDIX

.

VICINITY MAP

El Paso County Assessor's Office

Vicinity Map

SOILS MAP (S.C.S SURVEY)

Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

2/28/2017 Page 1 of 3 Soil Map-El Paso County Area, Colorado

	Spoil Area The soil surveys th) A Stony Spot	Merry Short Short	ns un very owny open	Wet Spot Source of Map: Na	△ Other Web Soil Survey UF Coordinate System:	Special Line Features Maps from the Web	Water Features projection, which pre-	Transcontation Canals discussion distance and area. A Albers equal-area co	accurate calculation	This product is gene	US Routes Soil Survey Area: F	Major Roads Survey Area Data:	Local Roads Soil map units are la	Background D. C.	Aerial Photography 22, 2011	The orthophoto or other of the orthophoto or other other or other or other or other other or other other or other other or other	compiled and digitize	mingery displayed of shifting of map unit b				-		
rest (AOI) Area of Interest (AOI)	Area of Interest (AOI)			Soil Map Unit Polygons	Soil Map Unit Lines	Soil Map Unit Points	oint Features	Blowout	Borrow Pit	Clay Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	
Interes	Are]	oils	S	Soi	Soi	Special Point	و Blo	8 B	XX Cla	 Oc 	5 ×8	÷. Gr	() Lai	A La	🕹 Ma	魚 Mir	() Mis	Pe	Ro	+ Sal	se Sa	Ś	Sin	Slice Slice

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

NSDA

2/28/2017 Page 2 of 3

	El Paso County Area, C	Colorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	36.5	4.6%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	19.0	2.4%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	24.8	3.1%
71	Pring coarse sandy loam, 3 to 8 percent slopes	719.1	90.0%
Totals for Area of Interest		799.4	100.0%

Map Unit Legend

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

<u>USDA</u>

Other soils Percent of map unit: Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

.

El Paso County Area, Colorado

40—Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

ISDA

Pleasant Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

SD∕

Pleasant Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016 F.E.M.A. MAP / LOMR (08-08-0541P)

.

Page 1 of 4	Issue Date: March 6, 2009	Effective Date:	July 23, 2009	Case No.: 0	8-08-0541P	LOMR-APP
	Fede	ral Emerge _{Washir}	ency Manag ngton, D.C. 20472	gement .	Agency	
	LI DE	ETTER OF MA	AP REVISION N DOCUMENT			
	COMMUNITY AND REVISION INFORMA	TION	PROJECT DESCRIP	TION	BASIS OF RE	QUEST
COMMUNITY	El Paso County Colorado (Unincorporated Ar	eas)	NO PROJECT	HY NE	DRAULIC ANAL W TOPOGRAPH	YSIS IIC DATA
	COMMUNITY NO.: 080059					
IDENTIFIER	Sand Creek Letter of Map Revision, Mustang Place to Arroya Lane	A	APPROXIMATE LATITUDE OURCE: USGS QUADRA	& LONGITUDE: NGLE DATUM	38.971, -104.668 NAD 27	
	ANNOTATED MAPPING ENCLOSURE	S	ANNO	TATED STUDY E	INCLOSURES	
	NO.: 06041C0555 F DATE: 1	viarcn 17, 1997	PROFILE(S): 204P(a), 20 FLOODWAY DATA TABL	04P(b), 204P(c) A E: 5	ND 204P(d)	, 1999
Enclosures reflect * FIRM - Flood In	ct changes to flooding sources affected by the surance Rate Map; ** FBFM - Flood Bound	nis revision. ary and Floodway Map; **	* FHBM - Flood Hazard Bo	undary Map		
Sand Creek - fro	Fi m approximately 360 feet downstream of Mi	LOODING SOURCE(S) &	REVISED REACH(ES)	-		
		SUMMARY OF I	REVISIONS			
Flooding Source Sand Creek	8	Effective Floodir Zone A No BFEs* No Floodway	ng Revised Flooding Zone AE BFEs Floodway	Increases YES YES YES	Decreases YES NONE NONE	
* BFEs - Base Fl	ood Elevations					
		DETERMI	NATION			
This document regarding a rec a revision to th warranted. Th panels revised This determinate any questions at LOMR Depot, 36	provides the determination from the D quest for a Letter of Map Revision (LOI e flood hazards depicted in the Flood I is document revises the effective NFIP by this LOMR for floodplain managem on is based on the flood data presently avail yout this document, please contact the FEM 01 Eisenhower Avenue, Alexandria, VA 223	Pepartment of Homelan MR) for the area descrinsurance Study (FIS) r map, as indicated in the ent purposes and for a able. The enclosed docuu A Map Assistance Center 304. Additional Informatio	d Security's Federal Emp bed above. Using the in report and/or National Flo he attached documentati ill flood insurance policie ments provide additional inf toll free at 1-877-336-2627 n about the NFIP is availab	ergency Manag formation subm ood Insurance F ion. Please use s and renewals formation regardin (1-877-FEMA MA le on our website	ement Agency (F itted, we have de Program (NFIP) m the enclosed an in your communi in your communi g this determination P) or by letter addr at http://www.fema.	EMA) termined that iap is notated map ty.
		David N. Bascom, Progra Engineering Managemen Mitigation Directorate	am Specialist nt Branch	112553 1	0.3.1.08080541	102-I-A-(

Page 2 of 4 Issue Date: March 6, 2009

Effective Date: July 23, 2009

LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

niel 1. Bascom

David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate

112553 10.3.1.08080541

102-I-A-C

Page 3 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APP
	Fede	eral Emergency Man Washington, D.C. 204	agement Agency 172	
	L DETERMI	ETTER OF MAP REVISION NATION DOCUMENT (CON	N NTINUED)	
We have des your commu	signated a Consultation Coordination unity and FEMA. For information re	Officer (CCO) to assist your community garding your CCO, please contact:	7. The CCO will be the primary li	aison between
	Federa	Ms. Jeanine D. Petterson Director, Mitigation Division l Emergency Management Agency, Regio Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830	on VIII	
STATUS O	F THE COMMUNITY NFIP MAI	PS		
We will not LOMR at the the future, w	physically revise and republish the F is time. When changes to the previo <i>'e</i> will incorporate the modifications	TRM and FIS report for your community usly cited FIRM panel(s) and FIS report made by this LOMR at that time.	to reflect the modifications made warrant physical revision and repu	by this blication in
This determina any questions LOMR Depot, 3	ation is based on the flood data presently ava about this document, please contact the FEN 3601 Eisenhower Avenue, Alexandria, VA 22	uilable. The enclosed documents provide addition //A Map Assistance Center toll free at 1-877-336-/ 2304. Additional Information about the NFIP is av	al information regarding this determinatio 2627 (1-877-FEMA MAP) or by letter add ailable on our website at http://www.fema	n. If you have ressed to the gov/nfip.
This determina any questions LOMR Depot, 3	ation is based on the flood data presently ava about this document, please contact the FEN 3601 Eisenhower Avenue, Alexandria, VA 22	illable. The enclosed documents provide addition MA Map Assistance Center toll free at 1-877-336-2 2304. Additional Information about the NFIP is av <i>Jurice A. Baucom</i>	al information regarding this determinatio 2627 (1-877-FEMA MAP) or by letter add ailable on our website at http://www.fema	n. If you have ressed to the .gov/nfip.

Page 4 of 4	Issue Date:	March 6, 2009	Effective Date: July 23,	2009 0	ase No.: 08-08-0541P	LOMR-APP
	ST HOULD AND	Fede	e ral Emergency Washington,	7 Manager D.C. 20472	ment Agenc	у
		L DETERMI	ETTER OF MAP RINATION DOCUME	EVISION NT (CONTINI	UED)	
	_	PUE	BLIC NOTIFICATION O	F REVISION		
		1	PUBLIC NOTIFICAT	ION		
FLOODI	NG SOURCE	LOCATION OF	REFERENCED ELEVATION	BFE (FE	ET NGVD 29)	MAP PANEL
2.712.11				EFFECTIVE	REVISED	Nomber(0)
Sand Creek		Just upstream of Mu	stang Place	None	6,984	08041C0535 F
				None	1,200	00041000001
LOCAL NE	WSPAPER	Name: <i>El Paso (</i> Dates: 03/18/09	County News 9 03/25/09			
This determinat any questions a LOMR Depot, 3	tion is based on the about this documer 601 Eisenhower A	e flood data presently ava nt, please contact the FEI venue, Alexandria, VA 2	ailable. The enclosed documents pr MA Map Assistance Center toll free 2304. Additional Information about t <i>Javid</i> 1. Bascom	ovide additional informa at 1-877-336-2627 (1-8 the NFIP is available or	ation regarding this determin 77-FEMA MAP) or by letter n our website at http://www.fo	ation. If you have addressed to the ema.gov/nfip.
			David N. Bascom, Program Spec	ialist		
			Engineering Management Branch	1		

	FLOODING S	SOURCE		FLOODWAY		Μ.	BASE ATER SURFAC	FLOOD TE ELEVATION	7
I	CROSS SECTION	DISTANCE ¹	WIDTH (Feet)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY FEET	WITH FLOODWAY (NGVD)	INCREASE
	Sand Creek								
	(cont'd)	6E 202	151	201	Ţ				C
	5	767'00	T07	177	1.0	0,/48./	0, 148.1	0,149.4	1.0
-	B	66,092	41	223	11.7	6,761.2	6,761.2	6,762.2	1.0
-	CC	66,247	90	270	9.6	6,773.6	6,773.6	6,773.7	0.1
	8	67,647	50	218	11.9	6,782.6	6,782.6	6,783.3	0.7
	CE	68,297	65	284	8.8	6,793.9	6,793.9	6,794.4	0.5
	CF	69,147	50	213	11.7	6,804.5	6,804.5	6,804.5	0.0
-	CG	70,157	50	213	11.7	6,815.1	6,815.1	6,815.3	0.2
7	CH	70,577	205	347	7.2	6,823.9	6,823.9	6,824.5	0.6
-	CI	70,627	180	267	9.4	6,826.7	6,826.7	6,827.7	1.0
	CJ	70,727	210	340	7.3	6,831.1	6,831.1	6,831.1	0.0
-	CK	70,807	195	334	7.5	6,832.5	6,832.5	6,832.5	0.0
	G	71,162	06	255	9.8	6,838.0	6,838.0	6,839.0	1.0
-	CM	71,977	226	503	5.2	6,847.4	6,847.4	6,848.3	0.9
	CN	73,052	174	328	7.9	6,861.1	6,861.1	6,861.2	0.1
1	CO	73,644	237	364	7.1	6,870.2	6,870.2	6,870.2	0.0
-	CP	75,142	172	324	8.0	6,888.5	6,888.5	6,888.7	0.2
-	co	76,161	109	283	9.2	6,903.5	6,903.5	6,903.7	0.2
-	R	77,846	100	272	9.6	6,926.1	6,926.1	6,926.7	0.6
	CS	79,187	117	287	9.1	6,944.1	6,944.1	6,944.1	0.0
1	CT	80,808	142	310	8.4	6,969.2	6,969.2	6,969.2	0.0
-	CU	81,501	120	342	7.6	6,986.1	6,986.1	6,986.5	0.4
	CV	82,281	124	295	8.8	6,997.4	6,997.4	6,997.4	0.0
-	CW	82,897	64	237	11.0	7,005.3	7,005.3	7,006.1	0.8
	X	83,517	06	266	9.8	7,013.9	7,013.9	7,013.9	0.0
-	CY	84,087	70	244	10.7	7,024.3	7,024.3	7,024.3	0.0
-	CZ	84,473	160	322	8.1	7,040.2	7,040.2	7,040.2	0.0
					REVISE	D T O			
					REFLE(T LOMR			
<u>н</u>	reet Above Confl	luence With	Fountain	Creek	EFFECI	TIVE: July 23, 20	60		
	FEDERAL EM	ERGENCY MANAG		ЧСҮ		F	OODWAY I	DATA	
		NOOD OCH						3	
	AND	NCORPORATE	D AREAS				SAND CREE	X	

LOODING SOURCE	SECTION DISTANCE ¹	1 Creek	ont'd)	DA 85,073	DB 85,483	DC 86,103	DD 86,673	DE 87,073	DF 87,573	DG 88,003	DH 88,738	DI 89,303	DJ 89,663	DK 90,058	DL 90,348	DM 90,698	DN 91,388	DO 91,868	DP 92,748	DQ 93,468	DR 94,448	DS 95,343	DT 95,723	DU 96,333		I Jove Confluence With	FEDERAL EMERGENCY MANA	AND INCORPORATI	
	WIDTH (FEET)			139	170	100	197	83	98	135	89	74	143	140	102	300	120	105	65	117	81	100	77	90		Fountain	GEMENT AGEN	ED AREAS	
FLOODWAY	SECTION AREA (SQUARE FEET)			456	328	274	434	270	325	304	263	249	309	426	276	398	292	313	239	288	260	274	252	266		Creek	ICY		
BASE FLOOD WATER SURFACE ELEVATION	MEAN VELOCITY (FEET PER SECOND)			5.7	7.9	9.5	6.0	9.6	8.0	8.6	9.9	10.4	8.4	6.1	9.4	6.5	8.9	8.3	10.9	9.0	10.0	9.5	10.3	9.8	REVISED TO	EFFECTIVE: July			
	REGULATORY		an ann a	7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7,077.7	7,085.1	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	7,155.2	7,173.8	7,184.6	7,204.5	7,216.8	7,224.2	7,232.5		/ 23, 2009	щ		
	WITHOUT FLOODWAY FEET			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7,077.7	7,085.1 7,085.1	7,096.9	7,104.1	7,123.2 7,123.2	7,125.1 7,125.2	7,127.6	7,141.0	7,148.5	7,155.2	7,173.8	7,184.6	7,204.5 7,204.6	7,216.8 7,217.2	7,224.2 7,224.3	7,232.5			OODWAY I	SAND CREE	
	WITH FLOODWAY (NGVD)			7,043.1	7,053.5	7,054.4	7,062.0	7,068.3	7,077.9		7,096.9	7,104.3			7,127.8	7,141.0	7,148.6	7,155.9	7,173.8	7,184.6				7,233.0			DATA	X	
Z	INCREASE			0.1	0.1	0.0	0.3	0.1	0.2	0.0	0.0	0.2	0.0	0.1	0.2	0.0	0.1	0.7	0.0	0.0	0.1	0.4	0.1	0.5					

Т

Т

RECOMMENDATIONS PER SAND CREEK DBPS

.

.

VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN The concepts which are available for handling stormwater runoff within the Sand Creek basin have been presented and discussed in detail in the Sand Creek Drainage Basin Planning Study Development of Alternatives Report and the draft East Fork Sand Creek Drainage Basin Planning Study. The process of combining the various channel treatment options, detention schemes and roadway crossing structures into a contiguous plan for all of the reaches is presented in this chapter of the report. As a result of the evaluation of the flood control, environmental, open space, operations and maintenance, and implementation concerns within the Sand Creek basin, the following concepts were identified as having sufficient feasibility to warrant furture evaluation and review:

Floodplain Preservation Channelization, 10- or 100-year Selective Improvements	Regional detention systems
Channel Concepts:	Detention:

Channel Concepts: The channel concepts listed above have been evaluated with respect to the parameters listed in the previous chapter. A concept's feasibility depends upon its impact, positive or negative, upon the evaluation parameters. *The floodplain preservation* concept has been considered to be the same as the "*do-nothing*" alternative. The floodplain preservation concept would involve the regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain so that future encroachments are minimized and the floodprooffing of structures which are currently within the 100-year floodplain would presumably be the methods used to address the flood hazard concerns along Sand Creek. In the upper reaches of Sand Creek, the ownership or easements associated with the 100-year floodplain (or greater limits to allow for an erosion buffer zone) would be a primary issue in regards to implementation of such a concept. Detention in the upper reaches of the basin Sand Creek basin and in the East Fork Sand Creek basin will maintain the 100-year floodplain at existing limits within the lower reaches of Sand Creek. The "do-nothing" concept is feasible wherever

the existing drainageway improvements are of adequate capacity to convey flood flows. *Chamnelization* would involve the lining of the Creek into a more confined flow area and could be done for either the *100-year or 10-year* flood discharges. Several typical channel concepts have been presented. The primary bank lining material would probably be riprap. Grade control and/or drop structures would be required in a channelization to heavy riprap. Soli cement offers an alternative to riprap and concrete for the construction of drops or grade control structures. Revegetation would occur wherever the native vegetation was disturbed by the channel construction. Willows at the toe of the riprap banks would be a minimum replacement. *Selective linings*, storm sever outlet control structures sleetives in things, storm sever outlet control structures selectively sited to resist stream erosion or to reduce potential flooding damages. Areas of future concern such as at the outside bends of the creek, or at the constructures selective will cross the drainage would be subject to selective improvements.

Detention Concepts: The two general detention concepts evaluated were onsite versus regional detention. During the evaluation process, it was determined that the onsite detention concept has a low feasibility relative to a regional concept. This is because, (1) onsite detention has a unpredictable impact upon lowering peak discharges from urbanized areas to historic conditions (reference, Urbonas and Glidden, "Effect of Detention on Flows in Major Drainageways" ASCE Water Forum '81, 1981), (2) an onsite concept has little impact upon maintaining or enhancing water quality, (3) the number of onsite detention basins, their locations and (4) onsite detention would present a substantial maintenance responsibility to the jurisdictions involved. For these reasons the onsite detention concept was eliminated and regional detention basin facilities were assumed to be in place.

Channel Alternatives

Presented on Table VI-1 is a matrix of channel alternatives which were evaluated. All reaches of Sand Creek and the East Fork of Sand Creek had at least three alternatives analyzed. Presented on Tables VI-2 through VI-6 are comparative evaluations of the floodplain preservation (do-nothing), channelization and selective lining concepts, for the mainstem Sand Creek basin, by reach. The purpose of the evaluation process was to identify the relative advantages and disadvantages of each concept within each reach.

100-year peak discharge to levels. This will allow for the channel improvements to be constructed within the existing right-of way.

Reaches SC-5 and SC-6: A selective channel improvement concept has been recommended for these reaches. Detention in Reach SC-8 of the basin will maintain flows to historic peak discharge levels, however the low flows will increase in frequency and volume. For this reason it has been recommended to provide riprap channel limings at selective locations to at least the 10-year water surface and install grade controls. This will prevent the long-term degradation of the invert. A residual 100-year floodplain will remain and will offer opportunities for habitat replacement and open space preservation. Land adjacent to the drainageway is currently undeveloped or unplatted at this time which makes the feasibility of implementing this concept greater in comparison to the urbanized reaches of the creek.

Reaches SC-7 and SC-8: A selective improvement concept involving the localized lining of channel banks and grade control construction has been recommended for these reaches. The feasibility of this concept stems from the fact that flows will be drainageway, however no habitable structures lie within the 100-year floodplain. Because of this, the economic feasibility of channelization concepts is low. Non-structural measures can be used to limit encroachments into floodprone areas. Additionally, the City of Colorado Springs Comprehensive plan recommended the floodplain be maintained as open space. Potential habitat disturbances can be avoided with a selective plan, or simply replaced as part of the particular construction activity which caused the disturbance.

Reach SC-9: A floodplain preservation concept has been recommended for this reach. Little increase in urbanization is anticipated in this reach, and for this reason the existing drainageway is expected to remain stable. Localized improvements may be necessary to limit erosion caused by flow concentrations at culverts or storm sewers. Private ownership of the drainageway is anticipated to continue which lower the feasibility of channel concepts which require permanent right-of-ways or easements for construction and maintenance.

Reaches WF-1 through WF-3: A 100-year channel concept has been recommended for these reaches primarily because of the potential for flooding damages. Several roadway crossings are in need of replacement because of the flood hazard the constrictions create. Some open space enhancement potential exists for this concept since these reaches have been degraded visually by debris accumulation, bank sloughing and sedimentation. Little opportunity exists for widening the drainageway because the

Development of the Recommended Plan

Presented on Table VI-7 is a matrix representing the recommended plan for each major drainageway reach. The selection of a recommended channel treatment scheme has been based upon the qualitative and quantitative information presented in the Sand Creek Drainage Basin Planning Study Development of Alternatives report and the draft East Fork Sand Creek Drainage Basin Planning Study. Contained within the Technical Addendum to the Sand Creek Drainage Basin Planning Study. Contained vithin the rechnical Addendum to the Sand Creek Drainage Basin Planning Study Development of Alternatives report, is the alternative hydrologic, hydraulic and conceptual cost data used in the evaluation and comparison of each of the alternatives within the mainstern Sand Creek basin.

Discussion of Recommended Plan

The recommendation of a particular channel treatment or detention scheme has been based upon the qualitative and quantitative data presented. For each reach the flood hazard, environmental, cost, operations and maintenance and open space aspects of the drainageway were weighed for each alternative concept.

Reach SC-1: For this reach a 10-year channel section was recommended for further evaluation. With the implementation of regional detention in the upper basin, the 100-year floodplain will generally be confined within the existing banks, excepting at roadway crossings lacking 100-year capacity. It is recommended that a 10-year low flow channel be constructed within the invert of the existing channel through the construction of benches and sand bars. As urbanization continues towards the full development scenario, the base flow and annual flows will increase in volume and frequency. For this reason, the low flow area must be stabilized to protect the existing channel banks from undermining and subsequent bank sloughing. The benched areas offer an opportunity for habitat replacement and enhancement. At some locations within this reach, a residual 100-year floodplain will remain which will have to be regulated. The residual 100-year floodplain offers some potential for open space preservation and enhancement. This is particularly true in the portion of the reach downstream of Hancock Expressway.

Reaches SC-2 through SC-4: A 100-year channel concept has been recommended primarily because of the potential for flooding damages which exists in these reaches. Habitat disturbed by the construction of channel linings and grade control structures could be replaced along the channel toes and on the overbanks. The replacement of the Waynoka Road crossing will reduce the potential for flood damages in areas adjacent to these roadways. The detention within the upper reaches will limit the

7
15
H
5
H
П
×
R
1
Z
Ξ
\geq
-
H
2
2
-
P
>

The results of the preliminary design analysis are summarized in this section. The alternative improvements have been quantitatively and qualitatively evaluated, and presented to the City of Colorado Springs and other interested agencies and individuals. Field review of specific areas of concern have been conducted in order to refine the channel treatments suggested for use along Sand Creek, East Fork Sand Creek and their major tributaries. The preliminary plan for the recommended alternative is shown on the drawings contained at the rear of this report.

Criteria

The City of Colorado Springs, El Paso County Drainage Criteria Manual was used in the development of the typical sections and plans for the major drainageways within the Basin. The City/County manual was supplemented by various criteria manuals with more specific application. These were:

- "Design Guidelines and Criteria for Channels and Hydraulic Structures on Sandy Soils," prepared by Simons, Li & Associates, Inc., 1981.
- Urban Storm Drainage Criteria Manual, Volumes I, II, and III, prepared by the Urban Drainage and Flood Control District.

Various design plans for roadway and channel improvement projects, either proposed or already constructed were reviewed in order to prepare the preliminary design plans. Specifically, the project design plans for the Las Vegas Street and Galley Road bridge replacement projects were reviewed and the improvements incorporated in the preliminary design. The **proposed** Sand Creek Stabilization Project, AT&SF Railroad to Hancock Expressway and the **proposed** Sand Creek Stabilization Project at Fountain Boulevard design plans have been reviewed and incorporated into the preliminary design plan and profiles.

Hydrology

Presented on Table VII-1 is selected hydrologic data to be used for the sizing of major drainageway improvements within the Basin. Peak flow rates for the 10- and 100-year frequency incorporating and the selected detention alternatives for the Sand Creek and East Fork Sand Creek Basin are summarized for key points along the major drainageways.

Contained within the The technical addenda of this report contains a complete listing of peak discharges for all the sub-basins, stream segments and design points shown on Exhibit 1.

The sizing the drainageway improvements for the tributaries will need to be verified during the final design and layout of the proposed drainageway facilities. Land development activities may alter the location of design points along the tributaries, and therefore slight alteration in a sub-basin's length, slope and area may occur. The methods outlined in the City/County Drainage Criteria Manual should be applied during final design analysis. The rational method should be used to check the peak flow rates for all tributary drainageways and storm sewers draining areas less than 100 acres in size.

Channels

The recommended channel sections for each reach of drainageway has been outlined in Section VI of this report. In general, the banks of Sand Creek channel, from the confluence with Fountain Creek to the proposed Sand Creek Detention Basin No. 2 are to be lined, or in some cases relined, with riprap to either a 10-year or 100-year flow depth, as shown on the preliminary design plans. Above the Sand Creek Detention Basin No. 2, selectively located riprap bank protection such as at outside bends, at bridge or culvert outlets, and at confluences with side tubutaries have been recommended. In conjunction with the selective improvement measures, and the 10-year low flow concept, the 100-year floodplain should be preserved and regulated. Wherever existing bank linings were judged to be adequate, no improvements have been recommended at this time.

For the West Fork Sand Creek, 100-year riprap bank linings have been recommended in order to address the 100-year flooding hazard which exists at numerous locations along the West Fork. The final design improvements shown in the Palmer Park Bridge Replacement project drawings have been incorporated into the preliminary design plans. In the uppermost reaches of the West Fork, a short segment of rectangular concrete channel has been recommended because of right-of-way constraints. For the Center Tributary of Sand Creek, 100-year riprap lined channels have been recommended from the confluence with East Fork to Platte Avenue. Above Platte Avenue, the existing concrete channels have adequate capacity except where the drainageway channel has yet to be improved. The final design plans for the US 24 Bypass Project, Phase II have been incorporated into the plans. As part of the bypass construction, it is proposed to line the Center Tributary using riprap. The location of the proposed roadway, new crossings, drops and channel as shown on the Phase II Bypass plans have been reflected on the preliminary design drawings.

For the East Fork Sand Creek drainageway, riprap lined channel banks have been recommended for the majority of the reaches. This is mainly because of the high level of development predicted for the basin in the area known as the Banning-Lewis Ranch development. Open space to accommodate the 100-year floodplains should be allowed for as the East Fork Sand Creek drainageways develop. This is consistent with the Banning-Lewis Ranch master development plan which was approved at the time of annexation of this property. Above Woodmen Road, selective channel lining improvements and grade control structures have been recommended.

For the most part the side tributaries have been recommended to be lined with riprap, however there are some locations in the upper basin which have been proposed to be grasslined. The location of the side drainageways should be considered approximate and may very likely be modified in the future because of land development. The primary criteria used when sizing the proposed channel sections has been velocity. For all riprap lined channels, the average design velocity should be no greater than 9 feet per second. This criteria allows for the use of Type H riprap within the main flow area of the drainageway. For the case of a 10-year channel with an overall floodplain section, limiting the main channel velocity to 9 feet per second will result in overbank velocities in the five feet per second range. At this level of overbank velocity, native vegetation will be able to withstand the erosive forces which might result in a 100-year flow event. Velocities approaching 10 feet per second could occur at constrictions such as at roadway crossings and at culvert outlets.

Drop Structures and Check Structures

Drop and check structures have been sited along Sand Creek in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcuting. Several types of structures could be considered for the Sand Creek Basin. For channel bottom widths in excess of fifty feet, soil cement or sheet piling drops/checks are feasible. For channels narrower than this, reinforced concrete structures are probably the best alternative. A maximum drop height of three feet is recommended. The methodology recommended for use when designing vertical structures is contained with Volume II of the Urban Storm Drainage Criteria Manual.

Detention

The recommended plan calls for the construction of six regional detention basins within the Sand Creek basin, and six regional basins within the East Fork Sand Creek basin. The

purpose of the Sand Creek detention basins is to limit peak discharges at Powers Boulevard to existing development condition levels. The detention basins in the upper portions of the Sand Creek basin will keep the majority of the existing channel sections and bridges below Powers Boulevard with adequate flow capacity in the future development condition. The detention basins within the East Fork Sand Creek basin have been sized to maintain the flow outfalling from the Banning-Lewis Ranch property at existing levels. This in turn will help to reduce flow to the mainstem of Sand Creek Basin Nos. 1, 2, and 3 will be classified as jurisdictional structures, and their design and operation would be subject to State Engineer's office criteria. Sand Creek basins number 1 and 3 should be designed so as to take advantage of the adjacent roadway embankments, and therefore classifying as incidental storage and not subject State Engineer's tregulations.

At Stetson Hills Boulevard, the roadway embankment has created a 2 acre open water wetland which was identified during the environmental review of the basin. It is recommended that this wetland be preserved. Accordingly, an outlet control structure will have to be constructed to pass the 100-year discharge to the downstream channel without overtopping the roadway. No floodwater storage or routing has been accounted for in the hydrology modelling at this roadway for the selected detention plan.

For the East Fork Sand Creek detention basin numbers 2, and 3, the existing embankment and outlet structure act to maintain a permanent pool at this time. It is recommended that the design of these detention basins be directed at maintaining the permanent pool when the flood control storage is to be added. The existence of a permanent pool may enhance the water quality aspects of these basins, and offer the opportunity of open space development conducive with open water.

Water Quality

Improvement of urban stormwater quality has become and important issue in drainage basin planning. Marry pollutants are naturally associated with sediments that enter sensitive receiving waters. The pollutants are naturally occurring compounds that are carried to the drainageways in storm runoff. Other pollutants are the result of urbanization such as lawn chemicals, oil and grease, pet feces, lawn clippings and other items. Many pollutants can be limited by programs such as erosion control at construction sites, educational programs to inform the public as to the proper use of lawn chemicals, oil recycling programs and street sweeping programs. Even with these programs in place, erosion along the drainageways can generate large quantities of sediment that can settle out along the downstream channel bottoms.

1-2: SAND CREEK DRAINAGE BASIN PLANNING STUD	DRAINAGEWAY CONVEYANCE COST ESTIMATE	
TABLE VII		

	TOTAL	COST
	TOTAL	REIMBURSABL
	GRADE CONTROL	LENGTH
	NUMBER	OF GRADE
	TINU	COST
ATIVES	IMP.	LENGTH
DETENTION ALTERN	IMPROVEMENT	TYPE
WITH SELECTEI	SECMENT	LENGTH
	REACH	NUMBER
	SEGMENT	NUMBER

	\$384,650	\$164,000	\$688,400	\$142,800	\$546,200	\$83,300	\$28,800	\$57,600	009'0E\$	000'12\$
COSTS	S384,650	\$164,000	\$688,400	\$142,800	\$546,200	\$83,300	\$28,800	\$57,600	\$30,600	\$27,000
£	620	250	720	0	1200	0	091	320	170	150
CONTROLS	S	m	9	0	15	0	ю	4	5	3
(S/LF)	127	238	127	238	127	238	0	0	0	0
E	2150	200	4400	009	2600	350	0	0	0	0
		10-YEAR RIPRAP	SEL. LININGS (1 SIDE)	10-YR RIPRAP	SEL. LININGS (1 SIDE)	10-YR RIPRAP	SEL. LININGS (1 SIDE)		•	
E	2600	1700	2100		6300		1200	3200	5000	3650
		SC-8	•	•	•			SC-9	•	
	148-2	151	160		163		187	170	1/1	172

\$15,560,220 \$18,279,420

TOTAL SAND CREEK DRAINAGEWAY

64

		SAND CREEK, CENTER TRIBUT	ARY AND WEST F	ORK SAND CREI	X			
SEGMENT NUMBER	REACH NUMBER	IMPROVEMENT TYPE	IMP. LENGTH (FT)	UNIT COST (\$ALF)	NUMBER OF GRADE CONTROLS	LENGTH OF GRADE CONTROL (FT)	TOTAL REIMBURSABLE COSTS	TOTAL COST
147-2	•		1150	200	,	30	\$235,400	\$235,40
153-1	•		009	150	0	0	000'06\$	890,000
153-2	•		450	150	0	0	\$67,500	867,50
152-1	SC-7	100-YEAR GRASSLINED	1650	150	0	0	\$247,500	\$247,50
152-2	•		800	150	2	100	\$138,000	\$138,000
150-1	•	100-YEAR STORM SEWER	800	58	0	0	\$46,400	\$46,400
		36" RCP						
150-2	•	100-YEAR RIPRAP	2400	200	0	0	\$480,000	\$480,000
161-1	•	100-YEAR GRASSLINED	550	150	0	0	\$82,500	\$82,500
154	SC-8		2100	200	10	009	\$528,000	\$528,000
151	•		2400	200	13	520	\$573,600	\$573,600
1-551	•	100-YEAR GRASSLINED	550	175	4	140	\$121,450	\$121,450
159	•	100-YEAR RIPRAP	3450	200	14	840	\$841,200	\$841,200
164	•		1350	200	s	200	\$306,000	\$306,000
186	•	•	2250	200	s	200	\$486,000	\$486,000
691	•	•	650	175	1	4	\$120,950	\$120,950
173	SC-9	÷	950	175	30	320	5223,850	\$223,850
VEST FORK SA	ND CREEK							
154-1	WF-1	100-YEAR RIPRAP	1550	223	8	100	8	\$363,650
161	•	•	600	223	8	80	8	\$148,200
164-2	•	100-YEAR GRASSLINED	500	150	0	0	8	275,000
1644	•	100-YEAR RIPRAP	2500	175	6	280	95	\$487,900
165-1	•		1350	175	0	0	8	\$236250

73

ŝ

TABLE VIII-4:	SAND CREEK I ROADWAY CUI SAND CREEK B	RAINAGE BASIN PLA LVERT CROSSING CO ASINS	NNING STUDY ST ESTIMATE					
ROADWAY	REACH NUMBER	DRAINAGEWAY SEGMENT	CROSSING TYPE	HLSNET	UNIT	UNIT COST	TOTAL COST	TOTAL REIMBURSABL COST
BANNING-LEWIS PRKW	SC-8	186	6'Hx10'W CBC	120	5	0655	546,800	546,80
ARROYO LANE	SC-9	171	6'Hx12'W CBC	80	5	\$510	540,800	3
VOLLMER ROAD	SC-8	169	60-INCH CMP	80	5	\$120	29,600	3
	SC-9	173		80	5	\$120	29,600	3
BURGESS ROAD	SC-9	176	42-INCH CMP	80	3	\$75	\$6,000	3
	SC-9	178	2-42-INCH CMP	80	ц	\$150	\$12,000	3
		CENTER TRIBUTAR	X					
TERMINAL AVENUE	CT-2	144	4-5'Hx8'W CBC	98	E	\$1,200	\$72,000	3
OMAHA BOULEVARD	CT:2	146-2	3-4'Hx9'W CBC	8	3	20065	\$72,000	3
		WEST FORK SAND CR	EEK					
WOOTEN ROAD	WF-I	153	2.4'Hx6'W CBC	100	3	\$480	\$48,000	3
EDISON AVENUE	WF-1	153	2-4'Hx6'W CBC	8	5	\$240	\$14,400	3
PALMER PARK BLVD.	WF-1	154-2	2-4'Hx10'W CBC	8	5	\$540	\$43,200	S
CHICAGO RI RR	WF-1	165-1	4'Hx8'W CBC	220	5	\$270	\$59,400	ø
HALF MOON DRIVE	WF-1	165-2	4'Hx6'W CBC	8	3	\$240	\$14,400	3

.

77

.

40 m 44 4

.

PRELIMINARY WETLANDS MAPPING

HYDROLOGIC CALCULATIONS

÷

UNDEVELOPED LAND ASSUMED TO BE ONE OF THE FOLLOWING: PASTURE, GRASSLAND, RANGE - POOR HERBACEOUS MIXTURE OF GRASS WEEDS AND LOW GROWING BRUSH WITH BRUSH MINOR ELELMENT - POOR WOODS - GRASS COMBINATION - POOR

WEIGHTED	ů		61	61	61	63	61	61	53	61	61	61	82	63	61	
. TYPE B	l	AKEA (Ac.)	156.9	9.2	24.9	35.2	30.5	16.4	12.9	6.7	49.1	2.1	1.0	16.1	11.2	
lios	Ģ	S	61	61	61	63	61	61	53	61	61	61	82	63	61	
BASIN	AREA	(AC)	156.9	9.2	24.9	35.2	30.5	16.4	12.9	6.7	49.1	2.1	1.0	16.1	11.2	
BASIN	(label)		EX-1	EX-2	EX-3	EX-4	EX-5	EX-6	EX-7	EX-8	0S-1	0S-2	0S-3	0S-4	0S-5	

CN VALUES - EXISTING CONDITIONS

	Tc	LAG	(hr)	0.44	0.21	0.40	0.34	0.39	0.36	0.25	0.33		0.31	0.26	0.20	0.30	0.39	
	Tc	LAG	(min)	26.2	12.9	23.8	20.2	23.2	21.4	15.0	19.5		18.6	15.3	12.0	17.8	23.7	
	Tc	TOTAL	(<i>min</i>)	43.6	21.4	39.7	33.7	38.6	35.7	24.9	32.5		31.0	25.6	19.9	29.6	39.5	
SNC	٨	Tc	(min)	20.5		16.7	17.6	15.6	15.6	4.8	13.3		14.4	5.4	2.3	13.1	18.1	
CONDITIC	ANNEL FLOV	Velocity	(tps)	1.3		1.5	1.8	1.5	1.5	1.4	1.0		1.5	1.7	2.2	1.4	1.2	
XISTING (STREET / CH	Slope	(%)	1.8%		4.0%	6.0%	3.0%	4.0%	6.0%	1.0%	2	4.0%	5.0%	6.0%	4.0%	3.0%	
ATION - E		Length	(ff)	1600		1500	1900	1400	1400	400	800		1300	550	300	1100	1300	
NCENTR/		ц	(min)	23.1	21.4	23.1	16.1	23.1	20.2	20.2	19.2		16.5	20.2	17.7	16.5	21.4	3
E OF COI	OVERLAND	Height	(ff)	8	10	ø	24	8	12	12	14		22	12	18	22	10	
TIM		Length	(ff)	300	300	300	300	300	300	300	300		300	300	300	300	300	
		C(5)		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08		0.08	0.08	0.08	0.08	0.08	
		ວົ		61.0	61.0	61.0	63.0	61.0	61.0	53.0	61.0		61.0	61.0	82.0	63.0	61.0	
		BASIN		EX-1	EX-2	EX-3	EX-4	EX-5	EX-6	EX-7	EX-8		0S-1	0S-2	05-3	0S-4	0S-5	

~		
ž		
2	I	
E		
Ż		
2		
20		
ž		
Ē		
<u>S</u>		ŀ
Δ		
•		
Z		
Ξ		
3		
Ĕ		
Z		
5		
Ž	ĺ	
8		
Ľ.		
\sim		ľ

BASIN	TOTAL	WEIGHTED	TOTAL	σ	a	a
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	156.9	61	0.44	2.6	17.7	140.3
EX-2	9.2	61	0.21	0.2	1.7	12.2
EX-3	24.9	61	0.40	0.4	3.0	23.7
EX-4	35.2	63	0.34	1.3	6.9	41.8
EX-5	30.5	61	0.39	0.5	3.7	29.3
EX-6	16.4	61	0.36	0.3	2.1	16.7
EX-7	12.9	53	0.25	0.02	0.2	8.0
EX-8	6.7	61	0.33	0.1	0.9	7.1
0S-1	49.1	61	0.31	6.0	7.0	53.9
0S-2	2.1	61	0.26	0.04	0.3	2.5
OS-3	1.0	82	0.20	0.9	1.5	3.4
OS-4	16.1	63	0.30	0.6	3.4	20.7
OS-5	11.2	61	0.39	0.2	1.4	10.8

BASIN SUMMARY - EXISTING CONDITIONS

Design Point	Contributing Basins	a	σ	a
		2 Yr.	5 Yr.	100 Yr.
		Q (cfs)	Q (cfs)	Q (cfs)
(label)			~	
EX DP-1	BASINS OS-1, OS-3, OS-4, OS-5, EX-1, EX-4, EX-5, EX-6	5.8	37.1	280.2
EX DP-2	BASINS OS-2, EX-2	0.2	2.0	14.7
EX DP-3	BASIN EX-3	0.4	3.0	23.7
EX DP-4	BASIN EX-7	0.02	0.2	8.0
EX DP-5	BASIN EX-8	0.1	6.0	7.1

DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

DEVELOPED LAND RANGES FROM 5 AC. TO 1/8 AC. RESIDENTIAL LOTS GOOD CONDITION OPEN SPACE (LAWNS, PARKS GOLF COURSES, CEMTETARIES ECT.)

~
¥
<u> </u>
Q
5
Ω
z
0
ŏ
Ξ.
Щ
ር በ
0
Ľ.
Ш
⋝
ш
$\overline{\mathbf{n}}$
—
82
쁥
<u> </u>
_
<
>
z
Ō

BASIN	BASIN	OPEN SPACE/UN	DEVELOPED (B)	URBAN RES. DE	VELOPMENT (B)	WEIGHTED
(label)	AREA					ื้อ
	(Ac)	CN	AREA	S	AREA	
			(Ac.)		(Ac.)	
A	44.1	61	0.0	75	44.1	75
в	28.8	61	2.5	79	26.3	77
C	32.5	61	0.0	75	32.5	75
٥	50.3	61	4.0	56	46.3	78
Е	35.2	61	1.2	65	34.0	65
F	30.5	61	30.5	65	0.0	61
IJ	17.0	61	10.2	75	6.8	67
Н	18.6	61	13.0	52	5.6	66
_	16.4	61	16.4	65	0.0	61
J	6.7	61	0.0	63	6.7	ខ
K	12.9	53	12.9	65	0.0	53
0S-1	32.5	61	32.5	65	0.0	61
0S-2	18.8	61	18.8	65	0.0	61
0\$-3	1.0	82	0.5	06	0.5	86
0S-4	16.1	63	16.1	65	0.0	63
0S-5	11.2	61	11.2	65	0.0	61

. -

-

	Tc	LAG	(hr)	0.32	0.26	0.29	0.31	0.28	0.39	0.30	0.39	0.36	0.33	0.25	0.31	0.30	0.11	0.30	0.39	
	Tc	LAG	(min)	19.4	15.5	17.6	18.5	16.7	23.2	17.9	23.6	21.4	19.5	15.0	18.6	18.2	6.4	17.8	23.7	
	Tc	TOTAL	(min)	32.4	25.8	29.4	30.8	27.8	38.6	29.8	39.3	35.7	32.5	24.9	31.0	30.3	10.7	29.6	39.5	
IONS	N	ЪС	(min)	9.3	9.4	14.1	14.1	11.8	15.6	16.1	24.0	15.6	13.3	4.8	14.4	11.1	4.2	13.1	18.1	
CONDITI	ANNEL FLOV	Velocity	(fps)	2.6	2.1	2.4	2.1	2.1	1.5	1.6	1.6	1.5	1.0	1.4	1.5	1.5	2.6	1.4	1.2	
VELOPED	TREET / CH	Slope	(%)	3.0%	2.0%	2.5%	2.0%	2.0%	3.0%	1.0%	1.0%	4.0%	1.0%	4.0%	4.0%	3.5%	3.0%	4.0%	3.0%	
ION - DEV	S	Length	(ff)	1450	1200	2000	1800	1500	1400	1550	2300	1400	800	400	1300	1000	650	1100	1300	
CENTRAI		Tc	(min)	23.1	16.4	15.3	16.7	16.1	23.1	13.7	15.3	20.2	19.2	20.2	16.5	19.2	6.6	16.5	21.4	
OF CON	OVERLAND	Height	(#)	8	2.5	10	2.6	24	8	14	10	12	14	12	22	14	0.4	22	10	
TIME		Length	(#)	300	125	200	130	300	300	200	200	300	300	300	300	300	20	300	300	
		C(5)		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
		ວົ		75	77	75	78	65	61	67	66	61	63	53	61	61	86	63	61	
		BASIN		A	B	C	D	Е	Ŀ	G	Н		ſ	К	OS-1	OS-2	OS-3	OS-4	OS-5	

BASIN	TOTAL	WEIGHTED	TOTAL	a	a	a
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
A	44.1	75	0.32	16.8	33.3	98.2
в	28.8	22	0.26	15.3	27.6	75.8
o	32.5	75	0.29	13.4	26.1	75.6
Q	50.3	78	0.31	26.7	47.8	127.1
Ш	35.2	65	0.28	1.4	7.7	46.6
LL.	30.5	61	0.39	0.5	3.7	29.3
G	17.0	67	0.30	2.1	6.3	27.4
H	18.6	99	0.39	1.5	5.1	24.5
	16.4	61	0.36	0.3	2.1	16.7
ſ	6.7	63	0.33	0.3	1.3	8.2
Х	12.9	53	0.25	0.02	0.2	8.0
0S-1	32.5	61	0.31	0.6	4.7	35.7
0S-2	18.8	61	0.30	0.3	2.8	21.2
OS-3	1.0	86	0.11	1.3	2.0	4.2
0S-4	16.1	63	0.30	0.6	3.4	20.7
0S-5	11.2	61	0.39	0.2	1.4	10.8

BASIN SUMMARY - DEVELOPED CONDITIONS

Design Point	Contributing Basins	α 2 Υr.	Ω 5 Υr.	Q 100 Yr.
(label)		Q (cfs)	Q (cfs)	Q (cfs)
DP-1	BASINS G, H, F, I, OS-3, OS-5, RELEASE FROM PONDS A, B AND C (NO CHANNEL FLOWS INCLUDED)	4 0,	13.9	253.7
DP-4	BASIN K	0.02	0.2	8.0
DP-5	BASIN J	0.25	1.3	8.2

DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 7233.50

Tuesday, Mar 14 2017

Box Culvert (Arroya Lane & prop. collector Rd.)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c,Y,k

= 115.00 = 1.00 = 7234.65 = 72.0 = Box = 144.0 = 3 = 0.013 = Flared Wingwalls = 30D to 75D wingwall flares = 0.026, 1, 0.0347, 0.81, 0.4

Embankment

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7248.00
=	70.00
=	70.00

Calculations Qmin (cfs) = 630.00 = 2170.00Qmax (cfs) Tailwater Elev (ft) = (dc+D)/2Highlighted = 2170.00Qtotal (cfs) Qpipe (cfs) = 2170.00 Qovertop (cfs) = 0.00= 11.13Veloc Dn (ft/s) Veloc Up (ft/s) = 12.49HGL Dn (ft) = 7238.91 HGL Up (ft) = 7239.48= 7242.98Hw Elev (ft) Hw/D (ft) = 1.39

Flow Regime

= Inlet Control

STORMWATER QUALITY CALCULATIONS

	Design Procedure Fo	rm: Extended Detention Basin (EDB)	
	UD-E	BMP (Version 3.06, November 2016)	Sheet 1 of
Designer:	Marc A. Whorton, P.E.		
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond A		
Location:	El Paso County		
1. Basin Storag	ge Volume		
A) Effective	Imperviousness of Tributary Area, I _a	l _a = <u>12.0</u> %	
B) Tributary	Area's Imperviousness Ratio (i = I _a / 100)	i =0.120	
C) Contribut	ting Watershed Area	Area =51.300 ac	
D) For Wate Runoff P	ersheds Outside of the Denver Region, Depth of Average roducing Storm	d ₆ = <u>0.42</u> in	
F) P 2		Choose One	
E) Design C (Select Fill)	oncept URV when also designing for flood control)	OWater Quality Capture Volume (WQCV)	
(00,001,2		Excess Urban Runoff Volume (EURV)	
F) Design V (V _{DESIGN}	olume (WQCV) Based on 40-hour Drain Time = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.334 ac-ft	
G) For Wate Water Qu (Vwqcv o	arsheds Outside of the Denver Region, uality Capture Volume (WQCV) Design Volume _{THER} = (de*(V _{DESIGN} /0.43))	V _{DESIGN OTHER} = 0.326 ac-ft	
H) User Inpu (Only if a	ut of Water Quality Capture Volume (WQCV) Design Volume different WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predomina	ant Watershed NRCS Soil Group	Choose One OA ©B OC / D	
J) Excess U	rban Runoff Volume (EURV) Design Volume		
For HSG	$A : EURV_A = 1.68 * i^{1.28}$	EURV = 0.589 ac-f t	
For HSG	B B: EURV ₈ = 1.36 * i ^{1.08}	Construction of the second	
For HSG	$S C/D: EURV_{C/D} = 1.20 * i^{1.08}$		
2. Basin Shape (A basin leng	: Length to Width Ratio th to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1	
3. Basin Side S	lopes		
A) Basin Ma (Horizont	ximum Side Slopes al distance per unit vertical, 4:1 or flatter preferred)	Z =ft / ft	
4. Inlet		Rip-Rap Forebays	
A) Describe	means of providing energy dissipation at concentrated		

	Design Procedure Fe	orm: Extended Detention Basin (EDB)						
Sec. Sec.			Sheet 2 o					
Designer:	Marc A. Whorton, P.E.							
Company:	CCES							
Date:	April 13, 2017							
Project:	Retreat at TimberRidge - Pond A							
Location:	El Paso County							
5. Forebay								
A) Adiatanung	Freehow Mahara	V = 0000 =						
A) Minimum (V _F	$\frac{1}{3\%} = \frac{3\%}{100} \text{ of the WQCV}$	$v_{FMIN} = 0.010$ ac-n						
B) Actual Fo	orebay Volume	V _F =0.010ac-ft						
C) Forebay D	Depth							
((D _F = <u>18</u> inch maximum)	D _F = <u>8.0</u> in						
D) Forebay (Discharge							
c, i orobuy L								
	I) Undetained 100-year Peak Discharge	$Q_{100} = 67.00$ cfs						
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 1.34$ cfs						
E) Ecobor F								
E) Forebay L	Discharge Design	Choose One (flow too small for berm w/	nine)					
		OBerm With Pipe	hihe)					
		Wall with Rect. Notch						
		OWall with V-Notch Weir						
G) Rectangu	ular Notch Width	Calculated W _N = <u>10.5</u> in						
6 Trickle Chan	inel	Choose One						
o. monto ondra		Concrete						
A) Type of T	Trickle Channel	OSoft Bottom						
F) Slope of	Trickle Channel	S = 0.0100 ft/ft						
17 0.000 0.								
7. Micropool an	nd Outlet Structure							
A) Depth of	Micropool (2.5-feet minimum)	D _M = ft						
B) Surface A	Area of Micropool (10 ft ² minimum)	$A_{M} = 10$ sq ft						
C) Outlet Ty	ире							
		Choose One						
		Other (Describe):						
D) Smallest	Dimension of Orifice Opening Based on Hydrograph Routing							
(Use UD-I	Detention)	D _{orifice} = <u>1.19</u> inches						
E) Total Outle	let Area	A _{ct} = 3.30 square inches						
	Extended Detention Basin (EDB)	Design Procedure Form:						
---------	---	--	---	--	--	--	--	--
Sheet 3	gner: Marc A. Whorton, P.E. Dany: CCES April 13, 2017 ct: Retreat at TimberRidge - Pond A ion: El Paso County							
		rge Volume	8. Initial Surchar					
	D _{is} = in	Initial Surcharge Volume recommended depth is 4 inches)	A) Depth of I (Minimum					
	V _{IS} = cu ft	Initial Surcharge Volume volume of 0.3% of the WQCV)	B) Minimum Ir (Minimum V					
	V _s = <u>5.0</u> cu ft	charge Provided Above Micropool	C) Initial Surc					
			9. Trash Rack					
	A _t = <u>113</u> square inches	ality Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.065D})	A) Water Qua					
	S.S. Well Screen with 60% Open Area	creen (If specifying an alternative to the materials recommended M, indicate "other" and enter the ratio of the total open are to the are for the material specified.)	B) Type of Sc in the USDCM total screen a					
		Other (Y/N): N						
	A _{total} =89sq. in.	er Quality Screen Area (based on screen type)	D) Total Wate					
	H= <u>3.56</u> feet	Design Volume (EURV or WQCV) n design concept chosen under 1E)	E) Depth of D (Based on					
	H _{TR} = 70.72 inches	Nater Quality Screen (H _{TR})	F) Height of W					
	W _{opening} = <u>12.0</u> inches	Vater Quality Screen Opening (W _{opening}) of 12 inches is recommended)	G) Width of W (Minimum)					

Designer: Company:	Marc A. Whorton, P.E.	Sheet 4 o
Company:	0050	
Dato:	CCES	
Jale.	April 13, 2017	
Project:	Retreat at TimberRidge - Pond A	
ocation:	El Paso County	
0. Overflow Embanki	ment	
 A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment (Horizontal distance per unit vertical, 4:1 or flatter preferred) 11. Vegetation 		Erosion Control Blanket
		4.00
		Choose One Otrigated ©Not Irrigated
2. Access		
A) Describe Sedir	ment Removal Procedures	Per IM Plan
Notes:		

	Design Procedure Fo	rm: Extended Detention Basin (EDB)	
Designer:	UD-E Marc A. Whorton, P.E.	MP (Version 3.06, November 2016)	Sheet 1 o
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond B		
Location:	El Paso County		
1. Basin Storag	ge Volume		
A) Effective	Imperviousness of Tributary Area, I _a	I _a =%	
B) Tributary	Area's Imperviousness Ratio (i = I _a / 100)	i =0.450	
C) Contribut	ting Watershed Area	Area = <u>72.900</u> ac	
D) For Wate Runoff P	ersheds Outside of the Denver Region, Depth of Average Producing Storm	d ₆ = in	
		Choose One	
(Select E	URV when also designing for flood control)	OWater Quality Capture Volume (WQCV)	
	,	Excess Urban Runoff Volume (EURV)	
F) Design V (V _{DESIGN}	folume (WQCV) Based on 40-hour Drain Time = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>1.172</u> ac-ft	
G) For Water Water Qi (Vwocv o	ersheds Outside of the Denver Region, uality Capture Volume (WQCV) Design Volume $_{THER} = (d_e^*(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = <u>1.145</u> ac-ft	
H) User Inpu (Only if a	ut of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predomina	ant Watershed NRCS Soil Group	Choose One OA ©B OC / D	
J) Excess U For HSC	lrban Runoff Volume (EURV) Design Volume 3 A: EURV _A = 1.68 * i ^{1 28}	EURV = 3.488 ac-f t	
For HSC For HSC	G B: EURV _B = 1,36 * i ^{1.08} G C/D: EURV _{C/D} = 1.20 * i ^{1.08}		
2. Basin Shape (A basin leng	: Length to Width Ratio th to width ratio of at least 2:1 will improve TSS reduction.)	L : W = : 1	
3. Basin Side S	liopes		
A) Basin Ma (Horizont	iximum Side Slopes tal distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft	
4. Inlet		Rip-Rap Forebays	
A) Describe	means of providing energy dissipation at concentrated		

	Design Procedure Fo	orm: Extended Detention Basin (EDB)	
Designer: N	larc A. Whorton, P.E.		Sheet 2 c
Company: C	CES		
Date: A	pril 13, 2017		
Project: F	etreat at TimberRidge - Pond B		
Location: E	I Paso County		
5. Forebay			
A) Minimum Foreb (V _{FMIN} = _	ay Volume <u>3%</u> of the WQCV)	V _{FMIN} =0.034 ac-ft	
B) Actual Forebay	Volume	V _F = ac-ft	
C) Forebay Depth (D _F =	30 inch maximum)	D _F = 18.0 in	
D) Forebay Dischar	ge		
i)	Undetained 100-year Peak Discharge	Q ₁₀₀ = 168.00 cfs	
ii)	Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 3.36$ cfs	
E) Forebay Dischar	ge Design	Choose One OBerm With Pipe ©Wall with Rect. Notch OWall with V-Notch Weir	
G) Rectangular Not	ch Width	Calculated W _N = <u>10.2</u> in	
6. Trickle Channel		Choose One	
A) Type of Trickle (Channel	OSoft Bottom	
F) Slope of Trickle	Channel	S =ft / ft	÷
7. Micropool and Outle	at Structure		
A) Depth of Microp	ool (2.5-feet minimum)	D _M = ft	
B) Surface Area of	Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft	
C) Outlet Type			
		Choose One ©Onfice Plate OOther (Describe):	
D) Smallest Dimen: (Use UD-Detenti	sion of Orifice Opening Based on Hydrograph Routing on)	D _{onfice} =2.23 inches	
E) Total Outlet Area		$A_{+} = 11.70$ square inches	
L, Total Gallot Albe			

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer:	Marc A. Whorton, P.E.		Sheet 3 of
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond B		
ocation:	El Paso County		
8. Initial Surcha	arge Volume		
A) Depth of (Minimun	Initial Surcharge Volume n recommended depth is 4 inches)	D _{IS} = in	
B) Minimum (Minimum	Initial Surcharge Volume volume of 0.3% of the WQCV)	V _{IS} = <u>149.6</u> cu ft	
C) Initial Sur	charge Provided Above Micropool	V _s = <u>5.0</u> cu ft	
9. Trash Rack			
A) Water Q	uality Screen Open Area: A _t = A _{ot} * 38.5*(e ^{0.095D})	A _t = <u>364</u> square inches	
B) Type of S in the USDC total screen	creen (If specifying an alternative to the materials recommended M, indicate "other" and enter the ratio of the total open are to the are for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.	
	Other (Y/N): N		
D) Total Wa	ter Quality Screen Area (based on screen type)	A _{total} = 513 sq. in.	
E) Depth of (Based o	Design Volume (EURV or WQCV) n design concept chosen under 1E)	H= <u>5.36</u> feet	
F) Height of	Water Quality Screen (H _{TR})	H _{TR} = 92.32 inches	
G) Width of (Minimum	Water Quality Screen Opening (W _{opening})	W _{opening} = <u>12.0</u> inches	

Designer:	Marc A. Whorton P.F.		Sheet 4 o
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond B		
Location:	El Paso County		
10. Overflow En	nbankment		
	ombankmant protection for 100 year and greater systemized	Fracian Control Plankat	
A) Describe	embankment protection for 100-year and greater overtopping.		
B) Slope of	Overflow Embankment	4.00	
(Horizon	tal distance per unit vertical, 4:1 or flatter preferred)		
		Choose One	
11. Vegetation		Olmigated	
		Not Irrigated	
12. Access			
A) Describe	Sediment Removal Procedures	Per IM Plan	
.,			
Notes:			

	Design Procedure For	rm: Extended Detention Basin (EDB)	
	UD-E	BMP (Version 3.06, November 2016)	Sheet 1 of
Designer:	Marc A. Whorton, P.E.		
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond C		
Location:	El Paso County		
1. Basin Stora	ge Volume		
A) Effective	Imperviousness of Tributary Area, I _a	I _a = <u>30.0</u> %	
B) Tributary	Area's Imperviousness Ratio (i = $I_a / 100$)	i =0.300	
C) Contribu	ting Watershed Area	Area = <u>134.100</u> ac	
D) For Wate Runoff F	ersheds Outside of the Denver Region, Depth of Average Producing Storm	d ₆ = in	
		Choose One	
E) Design C (Select F	Concept CURV when also designing for flood control)	OWater Quality Capture Volume (WQCV)	
(coloci L		Excess Urban Runoff Volume (EURV)	
F) Design V (V _{DESIGN}	/olume (WQCV) Based on 40-hour Drain Time = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>1.693</u> ac-ft	
G) For Wate Water Q (Vwqcv c	ersheds Outside of the Denver Region, teality Capture Volume (WQCV) Design Volume $_{\text{DTHER}} = (d_6^*(V_{\text{DESIGN}}/0.43))$	V _{DESIGN OTHER} = <u>1.653</u> ac-ft	
H) User Inp (Only if a	ut of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predomin	ant Watershed NRCS Soil Group	Choose One OA @B OC / D	
I) Excess I	Ithan Burnoff Volume /ELIDV/ Design Volume		
For HS	G A: EURV _A = $1.68 \times 1^{1.28}$	EURV = 4.141 ac-f t	
For HS	G B: EURV _B = 1.36 * i ^{1.08}		
For HS0	G C/D: EURV _{C/D} = 1.20 * i ^{1.08}		
2. Basin Shape (A basin leng	e: Length to Width Ratio gth to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1	
3. Basin Side S	Slopes		
A) Basin Ma (Horizon	aximum Side Slopes tal distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft	
4. Inlet		Rip-Rap Forebays	
A) Describe	means of providing energy dissipation at concentrated		
inflow loc	cations:		

	Design Procedure Fo	orm: Extended Detention Basin (EDB)	
Designer:	Marc A. Whorton, P.E.		Sheet 2 o
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond C		
Location:	El Paso County		
5. Forebay			
A) Minimum Fore (V _{FMIN} =	bay Volume 3% of the WQCV)	V _{FMIN} = ac-ft	
B) Actual Foreba	y Volume	V _F = ac-ft	
C) Forebay Depth (D _F =	30 inch maximum)	D _F = 18.0 in	
D) Forebay Discha	arge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>260.00</u> cfs	
	ii) Forebay Discharge Design Flow ($Q_F = 0.02 * Q_{100}$)	Q _F = <u>5.20</u> cfs	
E) Forebay Discha	arge Design	Choose One OBerm With Pipe ©Wall with Rect. Notch OWall with V-Notch Weir	
G) Rectangular No	otch Width	Calculated W _N = <u>13.8</u> in	
6. Trickle Channel		Choose One ©Concrete	
A) Type of Trickle	Channel	OSoft Bottom	
F) Slope of Trickle	e Channel	S =ft / ft	
7. Micropool and Out	let Structure		
A) Depth of Micro	pool (2.5-feet minimum)	$D_{M} = 2.5$ ft	
B) Surface Area o	of Micropool (10 ft ² minimum)	A _M = sq ft	
C) Outlet Ture			
C) Outlet Type		Choose One Orifice Plate Other (Describe):	
D) Smallest Dime (Use UD-Deter	nsion of Orifice Opening Based on Hydrograph Routing tion)	D _{otifice} = <u>2.58</u> inches	
E) Total Outlet Are	a	A _{rt} = 15.66 square inches	
_/			

	Design Procedure Form:	Extended Detention Basin (EDB)						
Designer: Company: Date: Project: Location:	r: Marc A. Whorton, P.E. y: CCES April 13, 2017 Retreat at TimberRidge - Pond C El Paso County							
 8. Initial Surch: A) Depth of 	arge Volume	D _{ie} = 6 in						
(Minimun	n recommended depth is 4 inches)	-13						
B) Minimum (Minimum	Initial Surcharge Volume volume of 0.3% of the WQCV)	V _{is} =216.1 cu ft						
C) Initial Sur	charge Provided Above Micropool	V _s =5.0cu ft						
9. Trash Rack								
A) Water Q	uality Screen Open Area: At = A _{ot} * 38.5*(e ^{-0.095D})	A _t = <u>472</u> square inches						
B) Type of S in the USDC total screen	Screen (If specifying an alternative to the materials recommended M, indicate "other" and enter the ratio of the total open are to the are for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2* O.C.						
	Other (Y/N): N							
D) Total Wa	ter Quality Screen Area (based on screen type)	A _{total} = <u>665</u> sq. in.						
E) Depth of (Based o	Design Volume (EURV or WQCV) n design concept chosen under 1E)	H= <u>5.14</u> feet						
F) Height of	Water Quality Screen (H _{TR})	H _{TR} = 89.68 inches						
G) Width of (Minimum	Water Quality Screen Opening (W _{opening}) n of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches						

	Design Procedure For	m: Extended Detention Basin (EDB)	
Designer:	Marc A. Whorton, P.E.		Sheet 4 of
Company:	CCES		
Date:	April 13, 2017		
Project:	Retreat at TimberRidge - Pond C		
Location:	El Paso County		
10. Overflow Em	abankment		
A) Describe embankment protection for 100-year and greater overtopping:		Erosion Control Blanket	
B) Slope of (Horizoni	Overflow Embankment tal distance per unit vertical, 4:1 or flatter preferred)	4.00	
11. Vegetation		Choose One Otrrigated ©Not Irrigated	
2. Access			
A) Describe	Sediment Removal Procedures	Per IM Plan	
Notes:			

DETENTION POND CALCULATIONS

1. State 1.			C.C.S.V.	100.0	letention Version 2	07 /Ech-	any 2047)		-		-	-	-	
Project	RETREAT A	T TIMBER R	DGE - MDDP	00-0	etention, Version 3	.07 (Febru	ary 2017)							
Basin ID:	POND A													
	ONE 1	-	~											
OLUNE EURY WOCY		T		-										
		100-11			Depth Increment =	05	1.							
PERMINENT ORF	Configurat	on (Retent	ion Pond)		Stage - Storage	Stane	Optional	Length	Width	Area	Optional Override	Area	Volume	Volur
Example cone	ounguru	ion frieten	ion i ondj		Description	(ft)	Stage (ft)	(ft)	(ft)	(11*2)	Area (ft*2)	(acre)	(8*3)	(ac-l
equired Volume Calculation	500	1			Top of Micropool	0.00		9.3	9.3	87		0.002	12	0.00
Selected BMP Type =	EDB 51.30	-			isv	1.00		9.3	9.3	87		0.002	43	0.00
Watershed Length =	3,800	n			-	1.50		60.3	33.8	2,040		0.047	506	0.01
Watershed Slope =	0.020	nn			1	2.00		112.3	58.8	6,607		0.152	2,560	0.05
Watershed Imperviousness =	12.00%	percent			11.	2.50	10	165.3	84.3	13,944		0.320	7,686	0.17
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent			Floor Zone 1 (WOC10	2.63		178.9	90.8	16,247	2	0.373	9,646	0.22
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			201101 (112017	3.00	1	182.0	93.9	17,087		0.392	15,818	0.36
Desired WQCV Drain Time =	40.0	hours				3.50	<u>(j)</u>	186.0	97.9	18,207		0.418	24,641	0.56
Location for 1-hr Rainfall Depths =	User Input				Zone 2 (EURV)	3.56		186.5	98.4	18,343		0.421	25,737	0.59
Water Quality Capture Volume (WQCV) =	0.334	acre-feet	Optional Us 1-hr Precipi	er Override tation		4.00	1	190.0	101.9	19,358	-	0.444	34,031	0.78
2-yr Runoff Volume (P1 = 1.19 in.) =	0.367	acre-feet	1.19	linches		5.00		194.0	109.9	21,758		0.472	54,578	1.25
5-yr Runoff Volume (P1 = 1.5 in.) =	0.630	acre-feet	1.50	inches	1	5.50	1	202.0	113.9	23,005		0.528	65,767	1.51
10-yr Runoff Volume (P1 = 1.75 in.) =	1.321	acre-feet	1.75	inches	C	6.00		206.0	117.9	24,285		0.558	77,589	1.78
25-yr Runoff Volume (P1 = 2 in.) =	3.238	acre-feet	2.00	inches	Zone 3 (100-year)	6.50		210.0	121.9	25,596		0.588	90,058	2.06
100-yr Runoff Volume (P1 = 2.25 in.) =	6.014	acre-feet	2.25	inches		7.00	-	214.0	125.9	28,315		0.618	117 003	2.36
500-yr Runoff Volume (P1 = 3.85 in.) =	11.123	acre-feet	3.85	inches		8.00		222.0	133.9	29,723		0.682	131,511	3.01
Approximate 2-yr Detention Volume =	0.382	acre-feet				8.50	1	226.0	137.9	31,163	1	0.715	146,731	3.36
Approximate 5-yr Detention Volume =	0.590	acre-feet				9.00		230.0	141.9	32,634		0.749	162,679	3.73
Approximate 10-yr Detention Volume =	1.135	acre-feet			-	9.50	-	234.0	145.9	34,138		0.784	179,371	4.11
Approximate 50-yr Detention Volume =	1.616	acre-feet			-	10.00	1	238.0	153.9	37,241		0.855	215.049	4.93
Approximate 100-yr Detention Volume =	2.065	acro-feet				11.00		246.0	157.9	38,840		0.892	234,068	5.37
					1	11.50	(250.0	161.9	40,472		0.929	253,895	5.82
tage-Storage Calculation						12.00		254.0	165.9	42,136		0.967	274,545	6.30
Zone 1 Volume (WQCV) =	0.334	acre-feet			-	12.50		258.0	169.9	43,831		1.006	296,036	6.79
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 & 2) =	0.253	acre-feet				13.00		262.0	173.9	45,559	1	1.046	318,382	7.30
Total Detention Basin Volume =	2.065	acre-feet				14.00		270.0	181.9	49,110		1.127	365,705	8.39
Initial Surcharge Volume (ISV) =	44	R*3			1.	14.50	0	274.0	185.9	50,933		1.169	390,715	8.97
Initial Surcharge Depth (ISD) =	0.50	n				15.00		278.0	189.9	52,789	and a	1.212	416,644	9.56
Total Available Detention Depth (H ₁₀₁₄) =	6.50	n					- au - i							
Depth of Trickle Channel (H _{TC}) =	0.50	n							-				-	-
Slopes of Main Basin Sides (S) =	4	nn Hev							-		1	-	-	-
Basin Length-to-Width Ratio (Ruw) =	2					1000								
		-				1			-		10			
Initial Surcharge Area (Asv) =	87	ft*2				1.0		-	-				-	-
Surcharge Volume Width (W _{su}) =	9.3	n.				-	1.1.1		-		10000	-		
Depth of Basin Floor (H _{FLOOR}) =	1.63	n									12			
Length of Basin Floor (L _{FCOOK}) =	179.1	n					1.52						-	
Width of Basin Floor (W _{FLOOR}) =	90.9	n			-								-	-
Area of Basin Floor (A _{FLOOX}) =	9.554	R*2								-			-	
Depth of Main Basin (Huus) =	3.87	R			-	-	115				1000	-		
Length of Main Basin (LMAN) =	210.0	ft			1		1.2.3	-				-		
Width of Main Basin (W _{MAX}) =	121.9	n									(mar 2)			1
Area of Main Basin (A _{MAN}) =	25,596	R*2							-				-	-
Calculated Total Basin Volume (V) =	2,065	A*3									-			
	5.000	Jacro-réet									1			1
								-				-		
								-					-	
								-	-	-				-
										-	1			
						_	1						-	
						_				-		-		
						_								

		Dete	ention Basin (Dutlet Struct	ure Design				
Project:	RETREAT AT TIME	BER RIDGE - MDDP	UD-Detention, Ve	rsion 3.07 (Februar	ry 2017)				
Basin ID:	POND A								
ZONE 3 ZONE 2 ZONE 2 ZONE 1		_							
			7	Stage (ft)	Zone Volume (ac-ft)	Outlet Type	1		
T T			Zone 1 (WQCV)	2.93	0.334	Orifice Plate			
ZONE 1 AND 2	ORIFICE	un E	Zone Z (EURV)	3.56	0.253	Orifice Plate			
POOL Example Zone	Configuration (Re	etention Pond)	:one 3 (100-year)	6.50	1.4/8	Weir&Pipe (Restrict)	1		
lser Input: Orifice at Underdrain Outlet (typically)	used to drain WOCV	in a Filtration BMP)			2.065	Calculat	ed Parameters for U	oderdrain	
Underdrain Orifice Invert Depth =	N/A	Ift (distance below t	he filtration media su	rface)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
Iser Input: Orifice Plate with one or more orifices	or Elliptical Slot Wei	ir (typically used to d	rain WQCV and/or El	JRV in a sedimentati	ion BMP)	Calcu	lated Parameters fo	Plate	
Depth at top of Zone using Orifice Plate =	3.56	ft (relative to basin	bottom at Stage = 0 ft	•)	WQU	lintical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	14.24	inches	bottom at Stage = 0 h	.1	Ellip	otical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	1.10	sq. inches (diameter	r = 1-3/16 inches)			Elliptical Slot Area =	N/A	ft ²	
and the second	2	and the second							
ser Input: Stage and Total Area of Each Orifice	Row (numbered fro	Row 2 (ontinent	Bow 2 (aptional)	Pour & festioner	Pow 5 (anti	Row & looting	Pow 7 (optional)	Row & fortieses	1
Stace of Orifice Centroid (8)	0.00	1.20	2.40	Row 4 (optional)	Row 5 (optional)	Now o (optional)	Now / (optional)	now o (optional)	
Orifice Area (sq. inches)	1.10	1.10	1.10				1		
									2.0
and the second second second second	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)	-								
Ornice Area (sq. inches)									
User Input: Vertical Orifice (Cire	ular or Rectangular)	A				Calculated	Parameters for Ver	tical Orifice	
	Not Selected	Not Selected]				Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	t) Vertie	al Orifice Centroid =	N/A	N/A	feet
vertical Orifice Diameter =	N/A	N/A	Jinches						
User Input: Overflow Weir (Dropbox) and G	Tone 3 Wolf	Not Selected	1			Calculated	Tors 2 Mini-	Not Salastad	i i
Overflow Weir Front Edge Height, Ho =	3.56	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H. =	4.56	N/A	feet
Overflow Weir Front Edge Length =	7.00	N/A	feet		Over Flow	Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /	100-yr Orifice Area =	7.59	N/A	should be ≥ 4
Horiz. Length of Weir Sides =	4.00	N/A	feet		Overflow Grate Ope	en Area w/o Debris =	21.65	N/A	ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area/t	total area	Overflow Grate O	pen Area w/ Debris =	10.82	N/A	_ft ²
Debris Clogging % =	50%	N/A	%						
Jser Input: Outlet Pipe w/ Flow Restriction Plate (0	Circular Orifice, Restr	rictor Plate, or Recta	ngular Orifice)		c	alculated Paramete	rs for Outlet Pipe w/	Flow Restriction Pla	ate
	Zone 3 Restrictor	Not Selected]				Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below bas	in bottom at Stage = 0	ft)	Outlet Orifice Area =	2.85	N/A	ft ²
Outlet Pipe Diameter =	27.00	N/A	inches		Out	et Orifice Centroid =	0.85	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.20		inches	Half-0	Central Angle of Rest	rictor Plate on Pipe =	1.93	N/A	radians
User Input: Emergency Spillway (Rectan	gular or Trapezoidal)					Calcula	ated Parameters for	Spillway	
Spillway Invert Stage=	6.70	ft (relative to basin	bottom at Stage = 0 ft	t)	Spillway	Design Flow Depth=	0.86	feet	
Spillway Crest Length =	25.00	feet			Stage a	t Top of Freeboard =	8.56	feet	
Spillway End Slopes =	4.00	H:V			Basin Area a	t Top of Freeboard =	0.72	acres	
Freeboard above Max Water Surface =	1.00	feet							
Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.85
Calculated Runoff Volume (acre-ft) =	0.334	0.587	0.411	0.630	1.321	3.238	4.442	6.014	11.123
inflow Hydrograph Volume (acre-ft) =	0.333	0.587	0.411	0.630	1.321	3.237	4.441	6.011	11.120
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.01	0.12	0.44	0.61	0.84	1.53
Predevelopment Peak Q (cfs) =	0.0	0.0	0.4	0.7	6.3	22.6	31.4	43.0	78.5
Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	0.1	0.8	4.8	0.2	6.8	26.9	36.0	39.1	122.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	1.1	1.2	1.1	0.9	1.4
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway
max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fos) =	N/A N/A	N/A N/A	N/A N/A	0.0 N/A	0.3 N/A	1.2 N/A	1.7 N/A	1.8 N/A	1.9 N/A
Time to Drain 97% of Inflow Volume (hours) =	39	57	45	60	59	51	47	41	27
Time to Drain 99% of Inflow Volume (hours) =	40	60	46	63	63	61	59	57	50
Maurice Dending Denth (8) -	2.85	3.46	3.04	3.56	4.12	4.81	5.23	6.45	7.58
Area at Maximum Ponding Depth (n) =	0.20	0.42	0.20	0.42	0.45	0.40	0.51	0.59	0.00
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =	0.38	0.42	0.39 0.379	0.42	0.45	0.49 1.154	0.51	0.58 2.038	0.65

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	lydrographs	UD-Det	ention, Versio	n 3.07 (Februa	ry 2017)				
	The user can o	verride the calc	ulated inflow hy	drographs from	this workbook w	with inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
7.18 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:07:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:14:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:21:32	0.17	0.30	0.21	0.32	0.66	1.55	2.06	2.69	4.39
0.696	0:28:43	0.47	0.81	0.57	0.87	1.79	4.27	5.75	7.60	13.10
	0:35:54	1.20	2.09	1.47	2.23	4.60	10.96	14.77	19.52	33.65
	0:43:05	3.30	5.73	4.05	6.14	12.63	30.06	40.49	53.46	91.92
	0:50:16	3.88	6.79	4.78	7.28	15.15	36.68	50.04	67.27	122.26
	1:04:37	3.70	5.90	4.33	6.33	12.19	33.20	48.19	59.54	110.95
	1:11:48	2.99	5.27	3.69	5.65	11.82	28.83	39.57	53.67	100.15
	1:18:59	2.57	4.54	3.18	4.88	10.25	25.17	34.63	47.08	88.27
	1:26:10	2.25	3.96	2.77	4.25	8.91	21.94	30.24	41.16	77.32
	1:33:20	2.03	3.59	2.51	3.85	8.08	19.84	27.28	37.05	69.20
	1:40:31	1.67	2.96	2.06	3.18	6.71	16.59	22.88	31.19	58.85
	1:47:42	1.35	2.41	1.68	2.59	5.52	13.73	18.97	25.90	48.98
	1:54:53	1.03	1.86	1.28	2.00	4.30	10.84	15.05	20.64	39.41
	2:02:04	0.76	1.38	0.95	1.49	3.25	8.34	11.63	16.02	30.81
	2:16:25	0.55	0.78	0.69	1.08	2.37	6.20	6.52	8.98	17.25
	2:23:36	0.43	0.78	0.44	0.69	1.01	3.77	5.73	7.18	13.65
	2:30:47	0.30	0.54	0.38	0.58	1.25	3.17	4.40	6.03	11.43
	2:37:58	0.27	0.48	0.33	0.51	1.10	2.77	3.83	5.23	9.87
	2:45:08	0.24	0.43	0.30	0.46	0.99	2.48	3.42	4.67	8.79
3	2:52:19	0.22	0.40	0.28	0.43	0.91	2.27	3.14	4.27	8.01
	2:59:30	0.16	0.29	0.20	0.31	0.67	1.68	2.34	3.22	6.19
5	3:06:41	0.12	0.21	0.15	0.23	0.49	1.22	1.69	2.32	4.46
	3:13:52	0.09	0.16	0.11	0.17	0.36	0.90	1.25	1.72	3.31
	3:21:02	0.06	0.11	0.08	0.12	0.26	0.67	0.93	1.28	2.46
	3:28:13	0.05	0.08	0.06	0.09	0.19	0.49	0.68	0.94	1.82
	3:42:35	0.03	0.06	0.04	0.06	0.14	0.35	0.49	0.68	1.32
	3:49:46	0.02	0.04	0.03	0.04	0.10	0.25	0.36	0.49	0.95
	3:56:56	0.01	0.03	0.02	0.03	0.04	0.10	0.16	0.23	0.45
	4:04:07	0.00	0.01	0.01	0.01	0.02	0.06	0.09	0.13	0.27
1.1	4:11:18	0.00	0.00	0.00	0.00	0.01	0.03	0.04	0.06	0.13
	4:18:29	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.04
	4:25:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 40	4:32:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- C.	4:40:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	4:47:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:01:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	5:08:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:23:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.4	5:30:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:37:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:44:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:51:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:59:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:13:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:20:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:27:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:34:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:42:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:56:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:03:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:10:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:17:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:25:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:39:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:46:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	7:53:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	8:01:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	8:08:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:22:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:29:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	8:36:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition p

Stage - Storage Description	stage [ft]	Area [ft^2]	(acres)	[ft^3]	(ac-ft)	Outflow [cfs]	
STALL STALLY	line de						For best results, include the
	A Second Second						stages of all grade slope
	5 M. S. S. S. C. S.				-		from the S-A-V table on
	10000						Sheet 'Basin'.
the second second							
the second second second	- Andrews						Also include the inverts of all
							overflow grate, and spillway,
	The second second						where applicable).
					_		-
	and the second second		-				
	1 1 1 1 1 1 1 1 1						-
EDI V. MILLER	1 NO 30 1						
No object statement							
- 2月1日日午日1日日							
							-
							4
	Contraction of the			-			-
							-
							1
and the second second	E Marchander						1
Note-Tendered	Sec. and			1]
No. Construction of the second	1 Contraction						
Walter We March	A State of the second						
and the second second	-						-
							-
							- 1
CALIFORNIA CONTRACTOR							
Total and the second	a second and				2		
the second second				-			-
the state of the state of the							
C. Succession of the							1
New York Parks	Contraction of						
S Routes S. S. Toma]
The Physics of the	1997						
	-						
	A STATE OF A						4
							4
							1
A CARE A CARE A CARE A	1.0						1
							1
Part In the full offering			-				
							-
Contraction of the second	1 1						
	Text of the						1
							-
							-
a stand the state of							1
	1.1021.213]
							4
							1
							1
	San San Ju]
							-
				-			•
							1
and the second sec	and the second]
							4

			DETE	NTION E	ASIN STAGE-S	TORAG	ETABLE	BUILDER	1				-	
	10.000	- Senter Color	Sec. and	UD-D	etention, Version 3	.07 (Febru	ary 2017)							
Project Basin ID:	RETREAT A	AT TIMBER R	NDGE - MDDF	,			-							-
(20HE 3		1.1.1	6.5											
ANNE EUNY WOOT		T	-	-										
T T T		B 100-11	LAR		D		1.							
PEALMARNENT DRIPE	I AND 2	ORIFIE	CE Deced		Depth increment =	05	Optional	1	100.00	1	Optional			
Example Zone	Configurat	ion (Retent	ion Pond)		Stage - Storage Description	Stage (ft)	Stage (ft)	Length (ft)	(ft)	Area (ft*2)	Area (ft*2)	(acre)	(ft*3)	(ac-
quired Volume Calculation					Top of Micropool	0.00	100	17.5	17.5	306		0.007	1	(AC)SI
Selected BMP Type =	EDB	-			ISV	0.50		17.5	17.5	306		0.007	150	0.00
Watershed Length =	2.800	acres				1.00		68.5	42.0	2876		0.066	984	0.00
Watershed Slope =	0.020	nn				2.00		120.5	67.0	8,071		0.185	3,612	0.08
Watershed Imperviousness =	45.00%	percent				2.50	1	173.5	92.5	16,050	6	0.368	9,648	0.22
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent				3.00	1	225.5	117.5	26,497		0.608	20,177	0.46
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			Zone 1 (WQCV)	3.83		311.8	159.0	49,581		1.138	51,254	1.13
Desired WQCV Drain Time =	40.0	hours				4.00		329.5	167.5	55,193		1.267	60,155	1.38
Location for 1-hr Rainfall Depths =	User Input	7			Floor	4.34	-	363.8	184.0	66,945		1.537	80,277	1.84
Excess Urban Runoff Volume (EURV) =	3.478	acre-feet	Optional U: 1-hr Precip	ser Override itation	-	4.50		366.0	185.7	67,977		1.561	91,767	2.10
2-yr Runoff Volume (P1 = 1.19 in.) =	2.775	acre-feet	1.19	inches	Zone 2 (EURV)	5.36	10	372.9	192.6	71,820	A	1.649	151,873	3.4
5-yr Runoff Volume (P1 = 1.5 in.) =	3.822	acre-feet	1.50	inches		5.50	ф	374.0	193.7	72,455		1.663	161,972	3.7
10-yr Runoff Volume (P1 = 1.75 in.) =	5.288	acre-feet	1.75	inches		6.00	-	378.0	197.7	74,741		1.716	198,770	4.5
20-yr Runoff Volume (P1 = 2.25 in) = 50-yr Runoff Volume (P1 = 2.25 in) =	9.235	acre-feet	2.00	inches	Zone 3 (100-year)	7.00		386.0	201.7	79,411	1	1.823	236,719	5.4
100-yr Runoff Volume (P1 = 2.52 in.) =	11.335	acre-feet	2.52	inches		7.50		390.0	209.7	81,794		1.878	316,136	7.2
500-yr Runoff Volume (P1 = 3.85 in.) =	19.141	acre-feet	3.85	inches		8.00		394.0	213.7	84,209		1.933	357,635	82
Approximate 2-yr Detention Volume =	2.595	acre-feet				8.50		398.0	217.7	86,656		1.989	400,350	9.1
Approximate 5-yr Detention Volume =	3.589	acre-feet				9.00		402.0	221.7	89,135		2.046	444,297	10.
Approximate 25-yr Detention Volume =	5.344	acre-feet				10.00		410.0	229.7	94,189		2.104	535 948	12 :
Approximate 50-yr Detention Volume =	5.596	acre-feet				10.50		414.0	233.7	96,764		2.221	583,685	13.
Approximate 100-yr Detention Volume =	6.325	acre-feet				11.00		418.0	237.7	99,371	1 - 1	2.281	632,717	14.
					-	11.50		422.0	241.7	102,010	1 3	2.342	683,061	15.
ge-Storage Calculation	1.170	1				12.00		426.0	245.7	104,681		2.403	734,732	16.
Zone 1 Volume (VVQCV) = Zone 2 Volume (FURV - Zone 1) =	2 305	acre-feet				12.50		430.0	249.7	107,384	-	2.465	842 121	10
Zone 3 Volume (100-year - Zones 1 & 2) =	2.847	acre-teet			-	13.50		438.0	257.7	112,885		2.591	897,871	20
Total Detention Basin Volume =	6.325	acre-feet				14.00		442.0	261.7	115,684	1	2.656	955,012	21.
Initial Surcharge Volume (ISV) =	153	R*3				14.50		446.0	265.7	118,515	1	2.721	1,013,561	23
Initial Surcharge Depth (ISD) =	0.50	ft				15.00	1	450.0	269.7	121,378		2.786	1.073,533	24
Total Available Detention Depth (H _{iota}) =	7.00	n												
Sione of Trickle Channel (S.,) =	0.50	R								-				-
Slopes of Main Basin Sides (S) =	4	HW									1	-		-
Basin Length-to-Width Ratio (R _{UW}) =	2												R	
	_	-												
Initial Surcharge Area (A _{SV}) =	306	ft^2					-	-			1		-	-
Surcharge Volume Width (W) =	17.5	n							-		1		-	-
Depth of Basin Floor (H _{FLOOK}) =	3.34	1				-		-						-
Length of Basin Floor (L _{RLOOK}) =	364.7	n											1	
Width of Basin Floor (W _{RUOR}) =	184.4	n											1	
Area of Basin Floor (A _{FLOOR}) =	67,266	ft^2				-					الم ا			-
Volume of Basin Floor (V _{FLOOK}) =	2 66	n^3				-								-
Length of Main Basin (L) =	386.0	1.			-	-	1		-			-		
Width of Main Basin (WMAN) =	205.7	n					0.00				1			
Area of Main Basin (AMUN) =	79,411	f*2					9-202							
Volume of Main Basin (V _{MNN}) =	194,960	ft*3			-									
Calculated Total Basin Volume (V _{icta}) =	6.325	acre-feet				-		-					-	-
					-		1	-						
						-			-					
							1	-						
						-						-		
						-	-			-		-		-
						_	200.0	2			10000		-	
						-			-			-		
						_						_	-	-
							1					_		
						_			_			-		
						-								-
							1				10000			
									4					-
							6 C	2	-		0.000			
						-			-					-
						1								
							1 0 1					-		
							1000		-	-	1			
							1							
					-							_		

			Constant States of States						
Project			UD-Detention, Ver	rsion 3.07 (Februar	ry 2017)				
Basin ID:	POND B	JER RIDGE - MDDP							
(ZONE 3	10100								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WOCV)	3.83	1 172	Orifice Plate	Ê.		
	ALL IND.VEA		2 (FURV)	5.05	2,205	Office Plate			
ZONE 1 AND 2	ORIFICE	я (Zone Z (EUKV)	5.30	2.305	Orifice Place			
PERMANENT ORIFICES	Configuration (Re	etention Pond)	'one 3 (100-year)	7.00	2.847	Weir&Pipe (Restrict)	1		
Example Solie	Comguration (ite	tention Fondy			6.325	Total	States (12)	na na	
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV i	in a Filtration BMP)		and the second		Calculate	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below t)	he filtration media sur	rface)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	Jinches			Undergra	in Orifice Centrola =	N/A	feet	
Here house Orifice Plate with one or more orifices	as Silintical Slot Wei	- (hunically used to d	wory and/or FL	UDV in a codimentati	ion BMD)	Calcu	lated Parameters fo	r Diate	
User Input: Ornice Plate with one or more ornices		Te (relative to basin	hattom at Stage = 0 ft	JKV in a securitence.	ION BIVIP	ifice Area per Row =	2 708F-02	7 Plate	
Depth at top of Zone using Orifice Plate =	5.36	It (relative to basin	bottom at Stage = 0 ft	•)	F	listical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	21.40	inches	Dottom at stage - s	.)	Ellir	nipercal slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	3.90	inches (use recta	angular openings)			Elliptical Slot Area =	N/A	42	
office fiber office fied per ter	5.50	Ted menes lese ices	Ingerer oberment			Empered electricity		Tit	
Least Input: Stage and Total Area of Each Orifice	Pow (numbered fro	m lowest to highest	41						
User input, orage and rotal free of Each states	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	1.79	3.57	Non 4 (optional)	Tion o (optional)	Tion o (opinion,	Tion / Comment	Then o (opinion)	1
Orifice Area (sg. inches)	3.90	3,90	3,90					2	
	0.00	0.00	1						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)		1	1						i i
Orifice Area (sq. inches)									
									ð <u>- </u>
User Input: Vertical Orifice (Circ	ular or Rectangular)					Calculated	Parameters for Ver	tical Orifice	
	Not Selected	Not Selected	1				Not Selected	Not Selected]
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	ít) V	ertical Orifice Area =	N/A	N/A]ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	it) Vertic	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)		1 m			Calculated	Parameters for Ove	erflow Weir	
	Zone 3 Weir	Not Selected	1				Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	5.36	N/A	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H _t =	6.36	N/A	feet
Overflow Weir Front Edge Length =	13.00	N/A	feet		Over Flow	Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for fl	lat grate)	Grate Open Area /	100-yr Orifice Area =	7.27	N/A	should be ≥ 4
Horiz. Length of Weir Sides =	4.00	N/A	feet	1000	Overflow Grate Ope	en Area w/o Debris =	40.20	N/A	ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area/t	total area	Overflow Grate Op	pen Area w/ Debris =	20.10	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restr	rictor Plate, or Rectar	ngular Orifice)		c	Calculated Paramete	rs for Outlet Pipe w/	Flow Restriction Pla	ite
	Zone 3 Restrictor	Not Selected]				Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basi	in bottom at Stage = 0	(ft)	Outlet Orifice Area =	5.53	N/A	ft ²
Outlet Pipe Diameter =	36.00	N/A	inches		Out	let Orifice Centroid =	1.22	N/A	feet
Restrictor Plate Height Above Pipe Invert =	26.30		inches	Half-0	Central Angle of Restr	rictor Plate on Pipe =	2.05	N/A	radians
User Input: Emergency Spillway (Rectang	gular or Trapezoidal)	<u>(</u>				Calcula	ated Parameters for	Spillway	
Spillway Invert Stage=	7.20	ft (relative to basin	bottom at Stage = 0 ft	t)	Spillway	Design Flow Depth=	0.92	feet	
Spillway Crest Length =	60.00	feet			Stage a	t Top of Freeboard =	9.12	feet	
Spillway End Slopes =	4.00	H:V			Basin Area a	t Top of Freeboard =	2.06	acres	
Freeboard above Max Water Surface =	1.00	feet							
Routed Hydrograph Results	6				-			1	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Kaintall Depth (in) =	0.53	1.07	1.19	1.50	5.288	7.633	9.225	11 335	3.85
OPTIONAL Override Runoff Volume (acre-ft) =	1.172	3.476	2.115	3.022	3.200	7.035	5.635	11.355	13.171
Inflow Hydroaraph Volume (acre-ft) =	1.172	3.479	2.776	3.823	5.284	7.634	9.239	11.336	19.146
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.18	0.61	0.85	1.15	2.08
Predevelopment Peak Q (cfs) =	0.0	0.0	0.8	1.4	13.3	44.8	62.0	83.7	151.8
Peak Inflow Q (cfs) =	18.1	52.9	42.4	58.1	79.8	114.2	137.4	167.5	276.9
Peak Outflow Q (cfs) =	0.5	0.7	0.7	1.5	12.4	36.9	54.6	77.4	193.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	0.9	0.8	0.9	0.9	1.3
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A N/A	N/A N/A	0.0	0.3 N/A	0.9 N/A	1.3 N/A	1.9 N/A	2.0 N/A
Time to Drain 97% of Inflow Volume (hours) =	38	79	68	83	83	80	78	76	69
Time to Drain 99% of Inflow Volume (hours) =	40	83	71	87	88	87	86	85	82
Maximum Ponding Depth (ft) =	3.75	5.28	4.85	5.46	5.94	6.51	6.81	7.16	7.91
Area at Maximum Ponding Depth (acres) =	1.08	1.64	1.60	1.66	1.71	1.77	1.80	1.84	1.92
Maximum Volume Stored (acre-ft) =	1.088	3.339	2.643	3.652	4.443	5.434	5.988	6.625	8.037

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	lydrographs verride the calc	UD-Det ulated inflow hy	ention, Versio drographs from	n 3.07 (Februa this workbook v	ry 2017) vith inflow hydro	graphs develop	ed in a separate	program.	
-	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WOCV [cfs]	FURV (cfs)	2 Year [cfs]	5 Year [cfs]	10 Year (cfs)	25 Year (cfs)	50 Year Icfs]	100 Year (cfs)	500 Year (cfs)
C.O.L. ania	0:00:00	Inder [cis]	EDITY [CIS]	E rear [ers]	5 Tear [eis]	It rear [cis]	25 rear [cis]	50 (cdi [ci5]	100 rear [cis]	Soo rear (ers)
5.34 min	0:05:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:10:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.027	0:10:01	0.79	2.23	1.80	2.43	3.23	4.40	5.13	6.00	8.54
0.937	0.21.22	5.50	0.15	4.95	0.72	9.09	22.67	14.99	17.90	70.27
	0:32:02	15.12	43.29	34.86	47.34	63.92	89.05	105.31	125.65	191.51
	0:37:23	18.10	52.95	42.38	58.10	79.75	114.16	137.39	167.48	272.87
	0:42:43	17.30	50.84	40.64	55.84	77.05	111.28	134.70	165.39	276.92
- 16	0:48:04	15.75	46.27	36.98	50.83	70.31	101.89	123.60	152.13	257.74
	0:53:24	14.11	41.66	33.26	45.78	63.36	91.90	111.52	137.33	233.34
	0:58:44	12.23	36.39	29.00	40.02	55.53	80.75	98.14	121.05	207.24
	1:04:05	10.64	31.74	25.26	34.93	48.53	70.67	85.93	106.04	182.33
	1:09:25	9.64	28.68	22.86	31.55	43.73	63.48	77.05	94.88	161.99
	1:14:46	8.00	24.00	19.10	26.42	36.75	53.63	65.30	80.71	139.48
	1:20:06	6.57	19.87	15.78	21.88	30.49	44.57	54.32	67.19	116.94
	1:25:26	5.11	15.70	12.43	17.32	24.25	35.65	43.58	54.08	95.61
	1:30:47	3.85	12.09	9.54	13.36	18.79	27.76	34.00	42.29	75.87
	1:41:28	2.80	9.00	7.07	9.95	14.10	20.95	25.73	32.09	58.89
	1:46:48	1.76	5.46	3.33	6.02	8.44	12.33	15.12	18.73	34.07
	1:52:08	1.70	4.60	3.64	5.07	7.09	10.39	12.67	15.67	28.04
	1:57:29	1.30	4.00	3.17	4.41	6.16	9.00	10.96	13.54	24.00
	2:02:49	1.17	3.58	2.84	3.95	5.50	8.03	9.77	12.05	21.20
	2:08:10	1.08	3.28	2.61	3.62	5.03	7.33	8.91	10.99	19.20
- P. 1	2:13:30	0.79	2.44	1.93	2.69	3.78	5.57	6.83	8.49	15.29
	2:18:50	0.58	1.77	1.40	1.95	2.73	4.02	4.92	6.12	11.08
	2:24:11	0.43	1.31	1.03	1.44	2.02	2.98	3.65	4.54	8.17
	2:29:31	0.31	0.97	0.77	1.07	1.50	2.22	2.71	3.37	6.08
2.0	2:34:52	0.23	0.71	0.56	0.78	1.10	1.63	2.00	2.50	4.52
	2:40:12	0.16	0.51	0.40	0.56	0.79	1.18	1.45	1.81	3.31
	2:45:32	0.12	0.37	0.29	0.41	0.58	0.85	1.05	1.31	2.41
	2:50:53	0.08	0.26	0.20	0.28	0.40	0.60	0.75	0.93	1.76
	2:56:13	0.05	0.16	0.13	0.18	0.26	0.40	0.49	0.62	1.22
	3:01:34	0.02	0.09	0.07	0.10	0.15	0.23	0.29	0.37	0.77
	3.00.34	0.01	0.04	0.03	0.05	0.07	0.11	0.14	0.19	0.43
	3:17:35	0.00	0.01	0.01	0.00	0.02	0.04	0.03	0.00	0.19
	3:22:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0	3:33:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0	3:38:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- P.2	3:44:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:49:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:54:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	4:10:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:43:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:48:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:04:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:09:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:41:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:47:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	5:52:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:57:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:13:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:19:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6.24.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

				State of the state of the			an noy nanonon ponno.	
Stage - Storage	Stage	Area	Area	Volume	Volume	Total		
Description	[ft]	[ft^2]	[arres]	(643)	(ac.ft)	lefel		
Performance and			Inc.est	14 21	(ac-it)	[LIS]		_
							For best results, include the	
	IT COLOR						stages of all grade slope	
	-		-		-		changes (e.g. ISV and Eloor)	
the second s	1.	1	1			_	from the S. A. V table on	
							Chart (Desia)	
							Sheet Basin'.	
a state and	a la		-	-	-	-	- Set Automa Astronomica Autom	
	The second second					-	Also include the inverts of all	
and the second second	al la alta						outlets (e.g. vertical orifice,	
	1						overflow grate, and spillway,	
							where applicable).	
						-		-
THE REAL PROPERTY OF							_	
				and the second sec	2			
	NIL SU							
	A STAND						-	
	STATES OF STATES		-				-	
	-					-		
All and a set of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1.	1	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						1	
and the second	A LOT & LO MAN						-	
						-	-	
- Charles and the second	Contraction of	-		-	-		4	
					-			
Lugar Standing								
	A STATE						1	
A STATE OF A					-	-	-	
Non-topological states	-		-	-	-		4	
	a la seconda de						1	
Section projection	1 international						1	
	a second						1	
			1	-			4	
		-						
	AC IN					1	1	
	Rotting		1				1	
Wester water a strength of the	Contraction of the loss						4	
							4	
and the second second second	A Children Co							
Last Backles Mary	NG LAPP					1	1	
	a starting the						-	
A CONTRACTOR OF	Contraction of the second	-			-		-	
and the second se								
and the second second	1. S. C. J					1		
	Lauren 1						1	
The second second	B all fine						1	
and the second of the	the second second					-	-	
	and the second			1				
and the state of the state	a sale-sale	1						
						1.	1	
and the second second second second							4	
The second s							4	
and the second second second	1410 281							
and the designed and							1 · · · ·	
	Line Land	1		1				
er frank and a star	19.20						4	
The second second							4	
	and the second						1	
A Sale and the	1.967							
							1	
	C. C. C.		1				4	
						1	4	
and the second second								
Contraction of Second An							1	
	Constanting of				-		1	
The second second	0.1 1 5						4	
Station Manual				1			1	
	nor here to							
	R. A. S.		-		1	1	1.00	
						1	1	
							1	
Station and the state of the					-		1	
and the second second second	State State				1		1	
	A CONTRACTOR							
and the second second	1						L	
	5 A.							
	Participants of							
application and show								
A Street Street	1.000							
	1							
					-			
	1 Carlos							
	Section des							
	is the second						() () () () () () () () () ()	
in the passes of				1				
							fan - P	

DETENTIO	N BASIN STAGE-S	TORAG	E TABLE	BUILDE	ł						
U Project <u>RETREAT AT TIMBER RIDGE - MDDP</u>	D-Detention, Version 3	1.07 (Febr	uary 2017)								
Basin ID: POND C										~	
NO WAL ENTY I WOY			1							Sho	ould this be
PERMANENT ONFICES	Depth Increment =	0.5	ft Optional			1	Optional			nlo	cor to
Example Zone Configuration (Retention Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	(ft)	(ft)	Area (ft*2)	Area (ft*2)	Area (acre)	(ft*3)	(ac-n)	
lequired Volume Calculation Selected BMP Type = EDB	ISV	0.00		21.0	21.0	442		0.010	217	5000	62 Offeita
Watershed Area = 134.10 acres		1.00		21.0	21.0	442		0.010	438	0000	
Watershed Length = 4,000 ft Watershed Slope = 0,020 ft ft		1.50		77.4 135.0	48.3 76.0	3,737		0.086	1,341 4,708	0.031	lovalanad
Watershed Imperviousness = 30.00% percent		2.50		193.7	104.4	20,216	1	0.464	12,339	028	leveloped
Percentage Hydrologic Soil Group A 0.05 percent Percentage Hydrologic Soil Group B = 100.05 percent		3.00		251.3 308.8	132.1	49,386	100000	0.762	25.560 46.074	0.587	امانیو وارو می
Percentage Hydrologic Soil Groups C/D = 0.0% percent	Zone 1 (WQCV)	3.98	1	364.1	186.6	67,930		1.559	74,112	70	vs snouid
Desired WQCV Drain Time = 40.0 hours Location for 1-hr Rainfall Depths = User Input	-	4.00		366.4 423.9	187.7	68,767 91,346	-	1.579 2.097	115,374	2.649	10 A.
Water Quality Capture Volume (WQCV) = 1.693 acre-feet Optional User Overri	de Floor	4.76		453.9	229.9	104,350		2.396	140,795	De	provided
2-yr Runoff Volume (P1 = 1.19 in.) = 3.165 acre-feet 1.19 inches	Zone 2 (EURV)	5.00	1000	455.8	231.8	105,672		2.425	180,846	4.152	
5-yr Runoff Volume (P1 = 1.5 in.) = 4.505 acre-feet 1.50 inches		5.50		459.8	235.8	108,438		2.489	219,525	A79K	h a bypass
25-yr Runoff Volume (P1 = 2 in.) = 11.506 acre-feet 2.00 inches		6.50		467.8	243.8	114,067		2.619	330,766	7.593	. ~ ~,paoo
50-yr Runoff Volume (P1 = 2.25 in.) = 14.543 acre-feet 2.25 inches 100-yr Runoff Volume (P1 = 2.52 in.) = 18.519 acre-feet 2.52 inches	Zone 3 (100-year)	7.00		471.8	247.8 251.8	116,930 119 824		2.684	388,514	8919	vevance
500-yr Runoff Volume (P1 = 3.85 in.) = 32.423 acre-feet 3.85 inches		8.00		479.8	255.8	122,751		2.818	508,344	11.670	
Approximate 2-yr Detention Volume = 2.954 acre-feet Approximate 5-yr Detention Volume = 4.226 acre-feet		8.50 9.00		483.8 487.8	259.8 263.8	125,709 128,700		2.886	570,457 634,058	13.096 14.556	
Approximate 10-yr Detention Volume = 6.164 acre-feet		9.50		491.8	267.8	131,722		3.024	699,163	16.051	
Approximate 25-yr Detention Volume = 7.150 acre-feet Approximate 50-yr Detention Volume = 7.533 acre-feet		10.00		495.8 499.8	271.8	134,777		3.094	765,786 833,945	17.580	
Approximate 100-yr Detention Volume = 8.907 acre-feet		11.00		503.8	279.8	140,982		3.236	903,655	20.745	
stage-Storage Calculation		11.50	1.4.4.5	507.8 511.8	283.8 287.8	144,132		3.309	974,932	22.381 24.054	
Zone 1 Volume (WQCV) = 1.693 acro-feet		12.50		515.8	291.8	150,529	1	3.456	1,122,252	25.763	
Zone 2 Volume (EURV - Zone 1) = 2.436 acro-feet Zone 3 Volume (100-year - Zones 1 & 2) = 4.779 acro-feet		13.00		519.8 523.8	295.8 299.8	153,776		3.530	1,198,327	27.510 29.294	
Total Detention Basin Volume = 8.907 acre-feet		14.00		527.8	303.8	160,365		3.681	1,355,386	31,115	
Initial Surcharge Volume (ISV) = 221 #*3 Initial Surcharge Depth (ISD) = 0.50 #		14.50		531.8	307.8	163,707		3.836	1,436,403	32.975	
Total Available Detention Depth (H ₁₀₀) = 7.00 ft											
Slope of Trickle Channel $(T_{T_c}) = 0.009$ ft	-			-							
Slopes of Main Basin Sides $(S_{\pi_0}) = 4$ HV					-					1	
Basin Lengureo-Would Rado (Row) = 2		-			1		1				
Initial Surcharge Area (A _{SV}) = 442 #*2 Surcharge Volume Length (L _{SV}) = 21.0 e	-	-					141		-		
Surcharge Volume Width (W _{gv}) = 21.0 ft	-		1 1						-		
Depth of Basin Floor (H _{RCO x}) = 3.76 ft Length of Basin Floor (L _{RCO x}) = 453.9 ft		-	1 2 1		-						
Width of Basin Floor (W _{FLOOR}) = 229.9	-					_				1	
Area of Basin Floor (A _{FLOO x}) = 104,355 m ⁺ 2 Volume of Basin Floor (V _{FLOO x}) = 139,866 m ⁺ 3		-			1	-	1			-	
Depth of Main Basin $(H_{MAIN}) = 2.24$ ft									-	1	
Width of Main Basin (W _{MAIN}) = 247.8 ft			1	-	-		1	-			
Area of Main Basin (A _{MAN}) = 116,930 ft*2	-							-	-		
Calculated Total Basin Volume (V _{ictu}) = 8.907 acre-feet			100							1.00	
		-						-			
		-							-		
	-				-		-				
	-			-							
		-	-								
				-							
							1				
				-	-						
	-	-	L.					-	-		
					-						
		-									
		_									
		-	1		-			-			
									-	-	
									1		

			UD-Detention, Ve	rsion 3.07 (Februar	ry 2017)				
Project: P	RETREAT AT TIME	BER RIDGE - MDDP	and constitution of the						
Basin ID: F	OND B								
				Stage (fe)	Zone Volume /ac. 61	Outlet Ture			
			7000 1 (14/0014	3 00	1 602	Orifice Plate	for the second se		
	IN VEAL		Zone 1 (WQCV)	5.36	2.426	Orlice Plate			
ZONE 1 AND 2	ORIFICE		Zone 2 (EORV)	3.14	4 370	Wais? Diag (Bostrist)			
POOL Example Zone C	Configuration (Re	tention Pond)	:one 3 (100-year)	7.00	4.779	weirwripe (Restrict)			
r Input: Orifice at Underdrain Outlet (braically us	ed to drain WOCV i	n a Eiltration BMD)			8.907	Total	ad Parameters for Lir	derdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	ne filtration media su	rface)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
r Input: Orifice Plate with one or more orifices or	r Elliptical Slot Wei	r (typically used to di	rain WQCV and/or El	URV in a sedimentati	ion BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	bottom at Stage = 0 f	t)	WQOr	ifice Area per Row =	3.625E-02	ft ²	
Depth at top of Zone using Orifice Plate =	5.14	ft (relative to basin t	bottom at Stage = 0 f	t)	E	liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	20.60	inches (use recta	ngular openings)		Emp	Elliptical Slot Area =	N/A N/A	4 ²	
Onice Place. Office Area per Now -	3.22	sq. inches (use recta	ingular openings/			Emplical Slot Alea -	170	Jir	
r Input: Stage and Total Area of Each Orifice R	ow (numbered fro	m lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.71	3.43						
Orifice Area (sq. inches)	5.22	5.22	5.22						
		-		-					1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Onlice Centroid (ft)			-					-	-
Office Area (sq. linches)		-							1
User Input: Vertical Orifice (Circu	lar or Rectangular)					Calculated	Parameters for Vert	tical Orifice	U.C.
	Not Selected	Not Selected					Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	bottom at Stage = 0 fr	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Dooth at top of Zone using Vertical Orifice -	N/A	N/A	ft (relative to basin b	bottom at Stage = 0 fr	t) Vertic	al Orifice Centroid =	N/A	N/A	feet
Depth at top of zone using vertical onlice -			in share						
Vertical Orifice Diameter =	N/A	N/A	Inches						
Vertical Orifice Diameter =	N/A	N/A	Jinches						
Vertical Orifice Diameter =	N/A	N/A	Incres			a hulu d		-0	
User Input: Overflow Weir (Dropbox) and Gr	N/A ate (Flat or Sloped)	N/A]			Calculated	Parameters for Ove	rflow Weir	1
User Input: Overflow Weir (Dropbox) and Gr	N/A ate (Flat or Sloped) Zone 3 Weir 5 14	N/A Not Selected	ft (relative to basis be	Homat Stans - 0 (t)	Height of Gr	Calculated	Parameters for Ove Zone 3 Weir 6 14	rflow Weir Not Selected	feat
User Input: Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00	N/A Not Selected N/A	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr Over Flow	Calculated ate Upper Edge, H _t = Weir Slope Leneth =	Parameters for Ove Zone 3 Weir 6.14 4.12	rflow Weir Not Selected N/A N/A	feet
User Input: Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00	N/A Not Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl	ottom at Stage = 0 ft) lat grate)	Height of Gr. Over Flow Grate Open Area /	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37	rflow Weir Not Selected N/A N/A N/A	feet feet should be > 4
User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00	N/A Not Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet	ottom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94	rflow Weir Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ²
User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75%	N/A Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47	rflow Weir Not Selected N/A N/A N/A N/A	feet feet should be $\geq t$ ft ² ft ²
User Input: Overflow Weir (Dropbox) and Gro Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50%	N/A Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ²
User Input: Overflow Weir (Dropbox) and Gro Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50%	N/A Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t %	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ²
User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t %	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = sen Area w/ Debris = Salculated Parameter	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla	feet feet should be ≥ s ft ² ft ²
User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % =	N/A Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet feet should be ≥ r ft ² ft ²
Vertical Orifice Diameter = Vertical Orifice Diameter = User Input: Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe =	N/A Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 2.50	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	Interies ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas	uttom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Coverflow Grate Op th	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 4.7	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet should be $\ge t^2$ ft ² ft ²
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	N/A 2one 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restri Zone 3 Restrictor 2.50 48.00 26.00	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	Interies ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bass inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft)	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet feet should be $\ge i$ ft ² ft ² ft ²
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	N/A 2one 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restri Zone 3 Restrictor 2.50 48.00 36.30	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % fugular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (t) (t) Outl Central Angle of Restr	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet feet should be $\geq i$ ft ² ft ² ft ft feet radians
User Input: Overflow Weir (Dropbox) and Gr User Input: Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Snillway (Bertaneous)	N/A Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (t) ft) Outl Central Angle of Restr	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = calculated	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway	feet feet should be $\geq i$ ft ² ft ² ft ² ft ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Soillway Invert Stage	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A R/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillwav	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Gutlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Deoth=	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 0.95	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet	feet feet should be $\geq t$ ft ² ft ² ft ² ft ft ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin t feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillway Stage a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = on Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w// Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet	feet feet should be $\geq i$ ft ² ft ² ft ² ft ft ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stope = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway End Slopes =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar N/A N/A ictor Plate, or Rectar N/A N/A ft (relative to basin to feet H:V	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C t)	Height of Gr Over Flow Grate Open Area / Dverflow Grate Op Overflow Grate Op (t) ft) Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Centroid = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 5 9.45 <u>3.02</u>	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet feet	feet feet should be ≥ 4 ft ² ft ² ft ² ft ft ft ft radians
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar N/A N/A ictor Plate, or Rectar N/A N/A h/A N/A N/A H(relative to basin to feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fi	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-C	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet feet acres	feet feet should be ≥ f ft ² ft ² ft ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 7.5% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00	N/A Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ictor Plate, or Rectar N/A N/A h/A N/A H(relative to basin to feet H:V feet	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ngular Orifice) ft ft (distance below bas inches inches bottom at Stage = 0 ff	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet feet feet	feet feet should be ≥ f ft ² ft ² ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A N/A et (relative to basin to feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff	ottom at Stage = 0 ft) lat grate) total area iin bottom at Stage = 0 Half-C t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (t) G tt) Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be $\geq r$ ft ² ft ² ft ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = User Input: Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Flow Results Design Storm Return Period = One-How Painfell Doath for	N/A Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ictor Plate, or Rectar N/A N/A N/A Et (relative to basin to feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl 2 Year 1 10	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2 00	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02 S0 Year 2.25	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be $\geq t$ ft ² ft ² ft feet radians
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) =	N/A 2one 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 Ilar or Trapezoidal) 7.50 90.00 4.00 1.00 .53 1.693	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 4.129	Interes ft (relative to basin bo feet H-V (enter zero for ff feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) <u>5 Year</u> 1.50 4.505	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 0.95 9.45 3.02 S0 Year 2.25 14.543	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be \geq ft ² ft ² ft ² fte feet radians 500 Ye 3.85 32.42
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acreft) = OPTIONAL Overnide Runoff Volume (acreft) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A it (relative to basin th feet H:V feet EURV 1.07 4.129	ft (relative to basin bo feet H-V (enter zero for ff feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) <u>5 Year 1.50</u> 4.505	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 5 9.45 3.02 50 Year 2.25 14.543	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet acres 100 Year 2.52 18.519	feet feet should be \geq ft ² ft ² ft ² ft ² ftet radians 500 Ye 3.85 32.42
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acreft) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 4.129 4.127	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) 5 Year 1.50 4.505 4.504	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (Control Grate Open (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 9.45 3.02 50 Year 2.25 14.543 14.535	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A Spillway feet feet feet acres	feet feet should be \geq ft ² ft ² ft ² fte feet radians 500 Ye 3.85 32.42
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Cone-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.693 1.692 0.00 2.0	N/A Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 4.129 4.127 0.00 PC	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/1 % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165 3.163 0.01	sttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) <u>5 Year</u> 1.50 4.505 4.504 0.02 2.5	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C ft) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 23 4	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ O Debris = ben Area w/ Debris = calculated Parameter Cultet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Calcula Design Flow Depth= t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 70 0	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 100 7	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres	feet feet should be \geq ft ² ft ² fte feet radians 500 Ye 3.85 32.42 32.41 2.00
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage = Spillway Invert Stage = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Inflow Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Predevelopment Peak Q (cfs) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.692 0.00 1.00 25.2	N/A Not Selected N/A Ictor Plate, or Rectar N/A N/A Ictor Plate, or Rectar Ictor Plate, or Rectar N/A Ictor Plate, or Rectar Ictor Plate, or Rectar	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % agular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl 2 Year 1.19 3.165 3.163 0.01 1.4 46 7	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) <u>5 Year</u> 1.50 4.505 4.504 0.02 2.5 66 1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 2.3.4 9.9.9	Calculated ate Upper Edge, H, = Weir Slope Length = OnO-yr Orifice Area = en Area w/ Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 109.7 206.1	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 18.519 18.514 1.11 148.3 260.3	feet feet should be ≥ i ft ² ft ² ft feet radians 32.42 32.41 2.01 269.4 4410
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Crest Length = Spillway Crest Length = Spillway Crest Stages Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.692 0.00 0.0 0.0 25.2 0.7	N/A Not Selected N/A Ictor Plate, or Rectar N/A N/A ft (relative to basin the feet H:V feet LO7 4.127 0.00 0.0 60.7 0.9	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % agular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fl 2 Year 1.19 3.165 3.163 0.01 1.4 46.7 0.9	ettom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) <u>5 Year</u> 1.50 4.504 0.02 2.5 66.1 1.5	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 2.3.4 99.9 1.9.2	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 rs for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ret Parameters for 9 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 109.7 206.1 97.5	rflow Weir N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 1 ft ² ft ² ft feet radians 32.42 32.41 2.01 269.4 441.0 318.5
Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gra Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Cutlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.692 0.00 0.0 25.2 0.7 N/A	N/A Not Selected N/A It (relative to basin to feet H:V feet H:V feet 0.07 4.127 0.00 0.0 60.7 0.9 N/A	Incress If (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 3.165 2.163 0.01 1.4 46.7 0.9 N/A	sttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) S Year 1.50 4.505 4.504 0.02 2.5 66.1 1.5 0.6	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 23.4 99.9 19.2 0.8	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02 50 Year 2.25 14.543 0.82 109.7 2.06.1 97.5 0.9	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 18.519 18.514 1.11 148.3 260.3 138.9 0.9	feet feet should be \geq ft ² ft ² ft ² feet radians 500 Ye 3.85 32.42 32.41 2.01 2.69.4 441(0 318.5 31.2
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Cutlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Cone-Hour Rainfail Depth (in) = Calculated Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Vuflow to Predevelopment Q = Structure Controlling Flow =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 7.5% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.693 1.693 1.692 0.00 0.0 25.2 0.7 N/A Plate	N/A	Incress If (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 3.165 2.163 3.163 0.01 1.4 46.7 0.9 N/A Plate	sttom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-C Half-C 1.50 4.504 0.02 2.5 66.1 1.5 0.6 Overflow Grate 1	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Grate (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8 Overflow Grate 1	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 9 9.45 3.02 SO Year 2.25 14.543 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 18.519 18.519 18.519 18.519 18.519 18.519 0.9 0.9 0.9	feet feet should be \geq ft ² ft ² ft feet radians 500 Ye 3.85 32.42 32.41 2.01 2.69.4 441.0 318.5 1.2 Spillwa
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cfr Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Preeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cf	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 1.00 1.00 WQCV 0.53 1.693 1.693 1.692 0.00 0.0 0.0 25.2 0.7 N/A Plate N/A	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ittor Plate, or Rectar EURV EURV EURV 1.07 4.127 0.00 0.0 60.7 0.9 N/A Plate N/A N/A N/A	Interes If (relative to basin bo feet It' (enter zero for fi feet %, grate open area/t % sqular Orifice) ft (distance below bas inches inches bottom at Stage = 0 fi 2 Year 1.19 3.165 3.163 0.01 1.4 46,7 0.9 N/A Plate N/A Plate N/A N/A	bittom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-C Half-C t) 5 Year 1.50 4.505 2.5 66.1 1.5 0.6 Overflow Grate 1 0.0 N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 23.4 99.9 19.2 0.8 Overflow Grate 1 0.3 N/A	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8 Overflow Grate 1 1.0	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 0.95 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1 1.5 N/A	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 18.519 18.514 1.11 148.3 260.3 138.9 0.9 Outlet Plate 1 2.1 N/A	feet feet should be \geq ft ² ft ² feet fadians 500 Ye 3.85 3.242 3.241 2.01 2.69.4 441.0 2.69.4 441.2 Spillwy 2.3 12
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir (Dropbox) and Gr Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debrio Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Freeboard above Max Water Surface = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity Inflow Volume florare 3	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00 UVQCV 0.53 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin th feet H:V feet EURV 1.07 4.129 4.127 0.00 0.0 60.7 0.9 N/A Plate N/A Plate N/A N/A 70	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % fr (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165 3.163 0.01 1.4 46.7 0.9 N/A Plate N/A S8	ettom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) 5 Year 1.50 4.505 4.504 0.02 2.5 66.1 1.5 0.6 Overflow Grate 1 0.0 N/A N/A 73	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 6.876 6.871 0.17 2.3.4 99.9 119.2 0.8 Overflow Grate 1 0.3 N/A N/A 73	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8 Overflow Grate 1 1.0 N/A 70	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for 5 0.95 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1 1.5 N/A 68	rflow Weir N/A N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 18.519 18.519 18.519 18.519 18.519 0.9 0.0tict Plate 1 2.1 N/A 65	feet feet should be \geq ft ² ft ² feet feet radians 500 Ye 3.85 3.242 3.241 2.01 2.694 441.(318.8 3.241 2.01 2.694 441.(318.8 3.241 2.01 2.694 441.(318.8 3.241 2.01 2.694 441.(318.8 3.85 5.55 1.25 1.
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Overide Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Oredevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 93% of Inflow Volume (hours) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 llar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.693 1.693 1.693 1.692 0.00 2.5.2 0.7 N/A Plate N/A N/A N/A N/A 38 40	N/A Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 4.129 4.127 0.00 0.0 60.7 0.9 N/A Plate N/A N/A N/A 70 73	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165 3.163 0.01 1.4 46.7 0.9 N/A Plate N/A N/A S8 61	ottom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) 5 Year 1.50 4.504 0.02 2.5 66.1 1.5 0.6 Overflow Grate 1 0.0 N/A 73 77	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.17 2.3.4 99.9 19.2 0.8 Overflow Grate 1 0.3 N/A 73 78	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8 Overflow Grate 1 1.0 N/A 70 77	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 14.543 14.535 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1 1.5 N/A 68 76	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2.52 18.519 18.514 1.11 148.3 260.3 138.9 0.9 Outlet Plate 1 2.1 N/A 65 75	feet feet should be \geq ft ² ft ² ftet freet radians 500 Ye 3.85 32.42 32.41 2.01 269.4 441.0 318.5 1.2 Spillwa 2.3 N/A 55 71
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage = Spillway Invert Stage = Spillway Invert Stage = Spillway Invert Stage = Spillway Invert Stage = Preeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Spillway Invert Stage = Predevelopment Petad = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow q (cfs) = Peak Inflow q (cfs) = Peak Inflow q (cfs) = Max Velocity through Grate 1 (ps) = Max Velocity through Grate 2 (ps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.693 1.693 1.693 1.693 1.692 0.00 0.0 25.2 0.7 N/A Plate N/A N/A 38 40 3.89	N/A Not Selected N/A Ictor Plate, or Rectar N/A N/A N/A N/A N/A It (relative to basin to feet H:V feet H:V feet H:V feet H:V feet H:V feet N/A D.00 60.7 0.9 N/A Plate N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % gular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165 3.163 0.01 1.4 4.6.7 0.9 N/A Plate N/A N/A 58 61 4.66	ettom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) 5 Year 1.50 4.505 4.504 0.02 2.5 66.1 1.5 0.6 Overflow Grate 1 0.6 Overflow Grate 1 0.6 N/A 73 5.20	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 6.876 6.871 0.17 2.3.4 9.9.9 19.2 0.8 Overflow Grate 1 0.3 N/A 78 5.72	Calculated ate Upper Edge, H, = Weir Slope Length = on Area w/o Debris = an Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = calcula Design Flow Depth= t Top of Freeboard	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 s for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ted Parameters for S 9.45 3.02 50 Year 2.25 14.543 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1 1.5 N/A 68 76 6.79	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet feet feet feet feet fee	feet feet fould be ≥ ft ² ft ² fteet radians 500 Ye 3.85 32.42 32.41 2.01 2.69.4 318.5 32.42 55 32.42 711 8.22
Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (Cir Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangu Spillway Invert Stage Spillway Crest Length = Spillway Invert Stage Spillway Crest Length = One-Hour Rainfall Depth (n) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Max Velocity through Grate 1 (ps) = Max Velocity through Grate 1 (ps) = Max Velocity through Grate 1 (ps) = Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (ft) =	N/A ate (Flat or Sloped) Zone 3 Weir 5.14 21.00 4.00 75% 50% cular Orifice, Restr Zone 3 Restrictor 2.50 48.00 36.30 lar or Trapezoidal) 7.50 90.00 4.00 1.00 WQCV 0.53 1.693 1.693 1.692 0.00 0.0 1.00 1.692 0.00 0.0 1.692 0.7 N/A Plate N/A N/A 38 40 3.89 1.47	N/A Not Selected N/A N/A <	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % ft (distance below bas inches inches bottom at Stage = 0 ff 2 Year 1.19 3.165 3.163 0.01 1.4 4.65 0.9 N/A Plate N/A N/A S8 61 4.66 2.28	sttom at Stage = 0 ft) lat grate) total area in bottom at Stage = 0 Half-C t) S Year 1.50 4.505 4.504 0.02 2.5 66.1 1.5 0.6 Overflow Grate 1 0.0 N/A 73 77 5.20 2.45	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate of Basin Area a Basin Area a Basin Area a 0 Vear 1.75 6.876 6.871 0.17 2.3.4 99.9 19.2 0.8 Overflow Grate 1 0.3 N/A 78 5.72 2.52	Calculated ate Upper Edge, H, = Weir Slope Length = on Area w/o Debris = an Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 11.506 11.497 0.59 79.2 164.5 65.6 0.8 Overflow Grate 1 1.0 N/A 70 77 6.42 2.61	Parameters for Ove Zone 3 Weir 6.14 4.12 6.37 64.94 32.47 rs for Outlet Pipe w/ Zone 3 Restrictor 10.20 1.67 2.11 ret Parameters for 9 9.45 3.02 50 Year 2.25 14.543 14.535 0.82 109.7 206.1 97.5 0.9 Overflow Grate 1 1.5 N/A 68 76 6.79 2.66	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 18.519 18.514 1.11 148.3 260.3 138.9 0.9 Outlet Plate 1 2.5 75 7.20 2.71	feet feet should be ≥ ft ² ft ² ft ² feet radians 500 Ye 3.85 32.42 32.41 2.01 269.4 441.0 318.5 1.2 5pillwa 2.3 N/A 55 71 8.22 2.85

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	lydrographs override the calc	UD-Det	ention, Versio drographs from	n 3.07 (Februa this workbook v	ry 2017) vith inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year (cfs)	25 Year [cfs]	50 Year (cfs)	100 Year [cfs]	500 Year [cfs]
5.51 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:11:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:16:32	1.09	2.52	1.97	2.72	3.91	5.87	6.97	8.13	10.55
0.907	0:22:02	2.97	7.00	5.44	7.60	11.18	17.56	21.41	25.85	36.64
	0:33:04	20.93	49.29	38.32	53.46	78.56	45.15	150.17	181.36	261.42
	0:38:34	25.21	60.69	46.73	66.11	99.85	164.53	206.13	257.18	404.58
	0:44:05	24.13	58.39	44.84	63.69	97.05	162.57	205.66	260.27	441.01
	0:49:35	21.96	53.18	40.80	58.04	88.77	149.57	189.82	241.83	415.66
	0:55:06	19.71	47.90	36.72	52.29	80.05	135.01	171.43	218.80	377.56
	1:00:37	17.11	41.90	32.05	45.77	70.29	119.02	151.41	194.08	340.85
	1:11:38	14.87	30.58	27.94	39.98	55.28	93.28	132.70	170.57	273 71
	1:17:08	11.23	27.68	21.12	30.25	46.63	79.38	101.22	130.43	237.18
[1:22:39	9.25	22.93	17.48	25.08	38.74	66.08	84.34	109.17	202.24
	1:28:10	7.23	18.17	13.79	19.90	30.94	53.20	68.17	89.04	169.54
	1:33:40	5.49	14.03	10.60	15.39	24.06	41.60	53.45	70.45	139.96
	1:39:11	4.03	10.48	7.88	11.51	18.12	31.58	40.75	54.46	114.11
	1:44:41	3.07	7.86	5.93	8.62	13.48	23.28	30.15	40.79	91.11
	1:55:43	2.11	5.32	4.04	5.82	9.03	15.41	19.75	26.02	54.65
	2:01:13	1.85	4.63	3.52	5.06	7.83	13.32	17.02	22.30	45.17
	2:06:44	1.66	4.14	3.15	4.53	6.98	11.85	15.12	19.73	39.03
	2:12:14	1.52	3.79	2.89	4.14	6.38	10.80	13.76	17.88	34.71
	2:17:45	1.12	2.83	2.14	3.10	4.83	8.36	10.77	14.21	28.54
-	2:23:16	0.82	2.05	1.55	2.24	3.49	6.02	7.76	10.28	21.42
	2:34:17	0.60	1.51	1.15	1.66	2.58	4.47	5.76	7.59	15.57
ł	2:39:47	0.32	0.82	0.62	0.90	1.41	2.46	3.17	4.19	8.73
	2:45:18	0.23	0.59	0.45	0.65	1.02	1.78	2.30	3.07	6.55
[2:50:49	0.17	0.43	0.32	0.47	0.74	1.29	1.66	2.22	4.90
	2:56:19	0.11	0.30	0.22	0.33	0.52	0.92	1.19	1.62	3.66
-	3:01:50	0.07	0.19	0.14	0.21	0.34	0.61	0.80	1.11	2.73
	3:12:51	0.04	0.11	0.08	0.12	0.20	0.37	0.49	0.70	1.93
	3:18:22	0.02	0.03	0.04	0.08	0.10	0.16	0.23	0.38	0.75
	3:23:52	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.36
	3:29:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11
	3:34:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	3:40:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	3:45:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:07:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:13:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:18:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:24:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:52:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:03:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:14:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:19:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
t	5:30:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:41:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:52:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:58:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	6:09:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:20:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ľ	6:25:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ļ	6:31:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:30:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
		-					For best results, include the
	L Maria 1983						stages of all grade slope
and second second	S TANK S						changes (e.g. ISV and Floor)
				-			from the S-A-V table on Sheet 'Basin'
	a lite mail						Sheet basin.
Carl Harden	and the second						Also include the inverts of all
and the second second	a becase and					11	outlets (e.g. vertical orifice,
							overflow grate, and spillway,
			-				where applicable).
							-
and the second second				-			-
							-
THE REAL PROPERTY OF	n ferrer t						
	1000						1
in the Alexandra S	a su altra						
							1
General Stephysics	The second	1		11			
					1		
Charles and the							
							-
							-
							-
							-
and the second second							-
THE PART OF A							-
and the state of the second second							1
	No.				1		
	A REPORT AND						1
and specific tensories	I CELLES]
	A BOUCE						
a provide the second second							
and the second							
				-			-
the second s							-
The second second second							
Carl I Development	State of the						
and the second second	1.1.1.1.1.1.1.1						
							1
	1/4/07/06/					· · · · · · · · · · · · · · · · · · ·	
NUMPERSON STORAGE	The second]
	A BARRIER]
	1000 100-00						1
	- Contraction					1	
	1						
	A STATE						
and the second second	120602-022						
	12.26						
and the second second							
	Constant of						
TANK AND AND A STORE	COLUMN TO A				1		
and the second second							
	0.19						
the stand of the							
P. Store and S. S.		4					
a national states							in the second
							()
				-			

Bentley PondPack V8i [08.11.01.56] Page 1 of 2

EX 100yr SCS.ppc 4/11/2017

Scenario: Pre-Development 100 YEAR

Date	4/10/2017
Company	CCES 4/10/2017
Engineer	MAW
Title	Retreat at TimberRidge - MDDP

_

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 2 years	3
EX DP-1		
	Addition Summary, 2 years	4
EX DP-2		
	Addition Summary, 2 years	5
EX DP-3		
	Addition Summary, 2 years	6
EX DP-4		
	Addition Summary, 2 years	7
EX DP-5		
	Addition Summary, 2 years	8
EX. 60" CMP		
	Addition Summary, 2 years	9

-

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 2 YEAR	2	1.203	12.650	2.61
EX-2	Pre-Development 2 YEAR	2	0.071	12.300	0.17
EX-3	Pre-Development 2 YEAR	2	0.191	12.600	0.42
EX-4	Pre-Development 2 YEAR	2	0.366	12.250	1.29
EX-5	Pre-Development 2 YEAR	2	0.234	12.550	0.51
EX-6	Pre-Development 2 YEAR	2	0.126	12.500	0.28
EX-7	Pre-Development 2 YEAR	2	0.012	23.750	0.02
EX-8	Pre-Development 2 YEAR	2	0.052	12.450	0.12
OS-1	Pre-Development 2 YEAR	2	0.379	12.400	0.86
05-2	Pre-Development 2 YEAR	2	0.016	12.350	0.04
05-3	Pre-Development 2 YEAR	2	0.059	12.050	0.90
OS-4	Pre-Development 2 YEAR	2	0.167	12.200	0.62
OS-5	Pre-Development 2 YEAR	2	0.086	12.550	0.19

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 2 YEAR	2	2.593	12.650	5.82
EX DP-2	Pre-Development 2 YEAR	2	0.087	12.350	0.21
EX DP-3	Pre-Development 2 YEAR	2	0.191	12.600	0.42
EX DP-4	Pre-Development 2 YEAR	2	0.012	23.750	0.02
EX DP-5	Pre-Development 2 YEAR	2	0.052	12.450	0.12
ЕХ. 60" СМР	Pre-Development 2 YEAR	2	0.827	12.250	2.59

EX 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 10 -

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR			
Label	TYPE II 24 HOUR		
Start Time	0.000 hours		
Increment	0.250 hours		
End Time	24.000 hours		
Return Event	2 years		

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
1.250	0.0	0.0	0.0	0.0	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.750	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.2	0.2	0.2
6.250	0.2	0.2	0.2	0.2	0.2
7.500	0.2	0.2	0.3	0.3	0.3
8.750	0.3	0.3	0.3	0.3	0.4
10.000	0.4	0.4	0.4	0.5	0.5
11.250	0.5	0.6	0.8	1.4	1.5
12.500	1.5	1.6	1.6	1.7	1.7
13.750	1.7	1.7	1.8	1.8	1.8
15.000	1.8	1.8	1.8	1.9	1.9
16.250	1.9	1.9	1.9	1.9	1.9
17.500	1.9	1.9	1.9	1.9	2.0
18.750	2.0	2.0	2.0	2.0	2.0
20.000	2.0	2.0	2.0	2.0	2.0
21.250	2.0	2.0	2.0	2.1	2.1
22.500	2.1	2.1	2.1	2.1	2.1
23.750	2.1	2.1	(N/A)	(N/A)	(N/A)

Subsection: Addition Summary Label: EX DP-1

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node	
REACH SC-9	EX. 60" CMP	
<catchment node="" outflow="" to=""></catchment>	EX-1	
<catchment node="" outflow="" to=""></catchment>	OS-1	
<catchment node="" outflow="" to=""></catchment>	EX-6	
<catchment node="" outflow="" to=""></catchment>	OS-5	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	REACH SC-9	0.799	12.700	1.93
Flow (From)	EX-1	1.203	12.650	2.61
Flow (From)	OS-1	0.379	12.400	0.86
Flow (From)	EX-6	0.126	12.500	0.28
Flow (From)	OS-5	0.086	12.550	0.19
Flow (In)	EX DP-1	2.593	12.650	5.82

EX 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 10

Subsection: Addition Summary Label: EX DP-2

.

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	OS-2	
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	OS-2	0.016	12.350	0.04
Flow (From)	EX-2	0.071	12.300	0.17
Flow (In)	EX DP-2	0.087	12.350	0.21
Subsection: Addition Summary Label: EX DP-3

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link	Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	EX-3	0.191	12.600	0.42
Flow (In)	EX DP-3	0.191	12.600	0.42

EX 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 10

Subsection: Addition Summary Label: EX DP-4

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-7	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-7	0.012	23.750	0.02
Flow (In)	EX DP-4	0.012	23.750	0.02

Subsection: Addition Summary Label: EX DP-5

.

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-5'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-8	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	EX-8	0.052	12.450	0.12
Flow (In)	EX DP-5	0.052	12.450	0.12

EX 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 10 _

Subsection: Addition Summary Label: EX. 60" CMP

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX. 60" CMP'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-5	
<catchment node="" outflow="" to=""></catchment>	OS-3	
<catchment node="" outflow="" to=""></catchment>	OS-4	
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	EX-5	0.234	12.550	0.51
Flow (From)	OS-3	0.059	12.050	0.90
Flow (From)	OS-4	0.167	12.200	0.62
Flow (From)	EX-4	0.366	12.250	1.29
Flow (In)	EX. 60" CMP	0.827	12.250	2.59

Bentley PondPack V8i [08.11.01.56] Page 9 of 10 -

Index

¢

Colo Springs 2015 (Time-Depth Curve, 2 years)...3

Ę

EX DP-1 (Addition Summary, 2 years)...4

EX DP-2 (Addition Summary, 2 years)...5

EX DP-3 (Addition Summary, 2 years)...6

EX DP-4 (Addition Summary, 2 years)...7

EX DP-5 (Addition Summary, 2 years)...8

EX. 60" CMP (Addition Summary, 2 years)...9

М

Master Network Summary...2

EX 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 10 of 10

Project Summary		
Title	Retreat at TimberRidge - MDDP	_
Engineer	MAW	
Company	CCES	
Date	4/10/2017	
Notes	Pre-Dev 5 year SC	S Model

Bentley PondPack V8i [08.11.01.56] Page 1 of 10 _

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 5 years	3
EX DP-1		
	Addition Summary, 5 years	4
EX DP-2		
	Addition Summary, 5 years	5
EX DP-3		
	Addition Summary, 5 years	6
EX DP-4		
	Addition Summary, 5 years	7
EX DP-5		
	Addition Summary, 5 years	8
EX. 60" CMP		
	Addition Summary, 5 years	9

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
EX-1	Pre-Development 5 YEAR	5	3.342	12.250	17.71
EX-2	Pre-Development 5 YEAR	5	0.197	12.100	1.70
EX-3	Pre-Development 5 YEAR	5	0.531	12.250	2.97
EX-4	Pre-Development 5 YEAR	5	0.916	12.150	6.87
EX-5	Pre-Development 5 YEAR	5	0.650	12.200	3.70
EX-6	Pre-Development 5 YEAR	5	0.350	12.200	2.13
EX-7	Pre-Development 5 YEAR	5	0.093	13.050	0.18
EX-8	Pre-Development 5 YEAR	5	0.143	12. 150	0.91
OS-1	Pre-Development 5 YEAR	5	1.050	12.150	7.03
OS-2	Pre-Development 5 YEAR	5	0.045	1 2 .1 00	0.33
OS-3	Pre-Development 5 YEAR	5	0.095	12.050	1.46
OS-4	Pre-Development 5 YEAR	5	0.419	12.150	3.41
OS-5	Pre-Development 5 YEAR	5	0.239	12.200	1.36

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 5 YEAR	5	7.020	12.250	37.12
EX DP-2	Pre-Development 5 YEAR	5	0.242	12.100	2.04
EX DP-3	Pre-Development 5 YEAR	5	0.531	12.250	2.97
EX DP-4	Pre-Development 5 YEAR	5	0.093	13.050	0.18
EX DP-5	Pre-Development 5 YEAR	5	0.143	12.1 50	0.91
ЕХ. 60" СМР	Pre-Development 5 YEAR	5	2.081	12.1 50	14.56

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 10

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR			
Label	TYPE II 24 HOUR		
Start Time	0.000 hours		
Increment	0.250 hours		
End Time	24.000 hours		
Return Event	5 years		

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	, Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
1.250	0.0	0.0	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.750	0.1	0.1	0.1	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
6.250	0.2	0.2	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.4
8.750	0.4	0.4	0.4	0.4	0.5
10.000	0.5	0.5	0.5	0.6	0.6
11.250	0.7	0.8	1.0	1.8	1.9
12.500	2.0	2.0	2.1	2.1	2.2
13.750	2.2	2.2	2.3	2.3	2.3
15.000	2.3	2.3	2.3	2.4	2.4
16.250	2.4	2.4	2.4	2.4	2.5
17.500	2.5	2.5	2.5	2.5	2.5
18.750	2.5	2.5	2.5	2.6	2.6
20.000	2.6	2.6	2.6	2.6	2.6
21.250	2.6	2.6	2.6	2.6	2.6
22.500	2.7	2.7	2.7	2.7	2.7
23.750	2.7	2.7	(N/A)	(N/A)	(N/A)

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 08795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 10

Subsection: Addition Summary Label: EX DP-1

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node	
REACH SC-9	EX. 60" CMP	
<catchment node="" outflow="" to=""></catchment>	EX-1	
<catchment node="" outflow="" to=""></catchment>	OS-1	
<catchment node="" outflow="" to=""></catchment>	EX-6	
<catchment node="" outflow="" to=""></catchment>	OS-5	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	REACH SC-9	2.039	12.300	10.64
Flow (From)	EX-1	3.342	12.250	17.71
Flow (From)	OS-1	1.050	12.150	7.03
Flow (From)	EX-6	0.350	12.200	2.13
Flow (From)	OS-5	0.239	12.200	1.36
Flow (In)	EX DP-1	7.020	12.250	37.12

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 10

Subsection: Addition Summary Label: EX DP-2

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	OS-2	
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	OS-2	0.045	12.100	0.33
Flow (From)	EX-2	0.197	12.100	1.70
Flow (In)	EX DP-2	0.242	12.100	2.04

Subsection: Addition Summary Label: EX DP-3

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	0.531	12.250	2.97
Flow (In)	EX DP-3	0.531	12.250	2.97

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 10

Subsection: Addition Summary Label: EX DP-4

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-7	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-7	0.093	13.050	0.18
Flow (In)	EX DP-4	0.093	13.050	0.18

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 10

Subsection: Addition Summary Label: EX DP-5

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-5'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-8	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-8	0.143	12.150	0.91
Flow (In)	EX DP-5	0.143	12.150	0.91

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 10

Subsection: Addition Summary Label: EX. 60" CMP

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX. 60" CMP'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-5	
<catchment node="" outflow="" to=""></catchment>	OS-3	
<catchment node="" outflow="" to=""></catchment>	OS-4	
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-5	0.650	12.200	3.70
Flow (From)	OS-3	0.095	12.050	1.46
Flow (From)	OS-4	0.419	12.150	3.41
Flow (From)	EX-4	0.916	12.150	6.87
Flow (In)	EX. 60" CMP	2.081	12.150	14.56

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 10

Index

С

Colo Springs 2015 (Time-Depth Curve, 5 years)...3

Е

EX DP-1 (Addition Summary, 5 years)...4

EX DP-2 (Addition Summary, 5 years)...5

EX DP-3 (Addition Summary, 5 years)...6

EX DP-4 (Addition Summary, 5 years)...7

EX DP-5 (Addition Summary, 5 years)...8

EX. 60" CMP (Addition Summary, 5 years)...9

М

Master Network Summary...2

EX 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 10 of 10

Project Summary		
Title	Retreat at TimberRidge - MDDP	
Engineer	MAW	
Сотрапу	CCES	
Date	4/10/2017	
Notes	Pre-Dev 100 year SCS Model	

EX 100yr SCS.ppc 4/11/2017

.

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 10 _

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 100 years	3
EX DP-1		
	Addition Summary, 100 years	4
EX DP-2		
	Addition Summary, 100 years	5
EX DP-3		
	Addition Summary, 100 years	6
EX DP-4		
	Addition Summary, 100 years	7
EX DP-5		
	Addition Summary, 100 years	8
EX. 60" CMP		
	Addition Summary, 100 years	9

-

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 100 YEAR	100	14.733	12,200	140.28
EX-2	Pre-Development 100 YEAR	100	0.868	12.050	12.19
EX-3	Pre-Development 100 YEAR	100	2.340	12.150	23.71
EX-4	Pre-Development 100 YEAR	100	3.684	12.100	41.75
EX-5	Pre-Development 100 YEAR	100	2.865	12.150	29.31
EX-6	Pre-Development 100 YEAR	100	1.543	12.150	16.70
EX-7	Pre-Development 100 YEAR	100	0.731	12.100	8.00
EX-8	Pre-Development 100 YEAR	100	0.631	12.100	7.12
05-1	Pre-Development 100 YEAR	100	4.622	12.100	53.88
OS-2	Pre-Development 100 YEAR	100	0.198	12.100	2.53
OS-3	Pre-Development 100 YEAR	100	0.227	12.050	3.40
OS-4	Pre-Development 100 YEAR	100	1.685	12.100	20.68
OS-5	Pre-Development 100 YEAR	100	1.052	12.150	10.76

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 100 YEAR	100	30.715	12.150	280.22
EX DP-2	Pre-Development 100 YEAR	100	1.065	12.050	14.65
EX DP-3	Pre-Development 100 YEAR	100	2.340	12.150	23.71
EX DP-4	Pre-Development 100 YEAR	100	0.731	12.100	8.00
EX DP-5	Pre-Development 100 YEAR	100	0.631	12.100	7.12
EX. 60" CMP	Pre-Development 100 YEAR	100	8.461	12.100	92.86

EX 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 10

Subsection: Time-Depth Curve Label: Colo Springs 2015 Return Event: 100 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYI	PE II 24 HOUR
Label	TYPE II 24 HOUR
Start Time	0.000 hours
Increment	0.250 hours
End Time	24.000 hours
Return Event	100 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.1
1.250	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.2	0.2	0.2
3.750	0.2	0.2	0.2	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.4
6.250	0.4	0.4	0.4	0.5	0.5
7.500	0.5	0.5	0.6	0.6	0.6
8.750	0.6	0.7	0.7	0.7	0.8
10.000	0.8	0.9	0.9	1.0	1.1
11.250	1.2	1.3	1.8	3.0	3.3
12.500	3.4	3.5	3.6	3.6	3.7
13.750	3.7	3.8	3.8	3.9	3.9
15.000	3.9	4.0	4.0	4.0	4.1
16.250	4.1	4.1	4.1	4.2	4.2
17.500	4.2	4.2	4.2	4.3	4.3
18.750	4.3	4.3	4.3	4,4	4.4
20.000	4.4	4.4	4.4	4,4	4.4
21.250	4.5	4.5	4.5	4.5	4.5
22.500	4.5	4.5	4.5	4.6	4.6
23.750	4.6	4.6	(N/A)	(N/A)	(N/A)

EX 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1668 Bentley PondPack V8i [08.11.01.56] Page 3 of 10

Subsection: Addition Summary Label: EX DP-1

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
REACH SC-9	EX. 60" CMP
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	OS-1
<catchment node="" outflow="" to=""></catchment>	EX-6
<catchment node="" outflow="" to=""></catchment>	OS-5

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	REACH SC-9	8.766	12.100	63.62
Flow (From)	EX-1	14.733	12.200	140.28
Flow (From)	OS-1	4.622	12.100	53.88
Flow (From)	EX-6	1.543	12.150	16.70
Flow (From)	OS-5	1.052	12.150	10.76
Flow (In)	EX DP-1	30.715	12.150	280.22

EX 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 4 of 10

Subsection: Addition Summary Label: EX DP-2

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	OS-2	
<catchment node="" outflow="" to=""></catchment>	EX-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	OS-2	0.198	12.100	2.53
Flow (From)	EX-2	0.868	12.050	12.19
Flow (In)	EX DP-2	1.065	12.050	14.65

EX 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 10

Subsection: Addition Summary Label: EX DP-3

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link	Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	2.340	12.150	23.71
Flow (In)	EX DP-3	2.340	12.150	23.71

Subsection: Addition Summary Label: EX DP-4

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link	Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-7	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-7	0.731	12.100	8.00
Flow (In)	EX DP-4	0.731	12.100	8.00

Subsection: Addition Summary Label: EX DP-5

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-5'

Upstream Link	Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-8	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Volume Time to Peak (ac-ft) (hours)	
Flow (From)	EX-8	0.631	12.100	7.12
Flow (In)	EX DP-5	0.631	12.100	7.12

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1866 Bentley PondPack V8i [08.11.01.56] Page 8 of 10

Subsection: Addition Summary Label: EX. 60" CMP

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX. 60" CMP'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-5	
<catchment node="" outflow="" to=""></catchment>	OS-3	
<catchment node="" outflow="" to=""></catchment>	OS-4	
<catchment node="" outflow="" to=""></catchment>	EX-4	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-5	2.865	12.150	29.31
Flow (From)	OS-3	0.227	12.050	3.40
Flow (From)	OS-4	1.685	12.100	20.68
Flow (From)	EX-4	3.684	12.100	41.75
Flow (In)	EX. 60" CMP	8.461	12.100	92.86

EX 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 10

Index

С

Colo Springs 2015 (Time-Depth Curve, 100 years)...3

Е

EX DP-1 (Addition Summary, 100 years)...4

EX DP-2 (Addition Summary, 100 years)...5

EX DP-3 (Addition Summary, 100 years)...6

EX DP-4 (Addition Summary, 100 years)...7

EX DP-5 (Addition Summary, 100 years)...8

EX. 60" CMP (Addition Summary, 100 years)...9

М

Master Network Summary...2

EX 100yr SCS.ppc 4/11/2017

_

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 10 of 10 Scenario: Post-Development 100 YEAR

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755 -1666

Bentley PondPa [08.11. Page

> DEV 100yr SCS.ppc 4/11/2017

Project Summary	
Title	Retreat at TimberRidge - MDDP
Engineer	MAW
Company	CCES
Date	4/10/2017
Notes	Dev 2 year SCS Mo

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 1 of 11 _

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 2 years	4
POND A		
	Elevation-Area Volume Curve, 2 years	5
POND B		
	Elevation-Area Volume Curve, 2 years	6
POND C		
	Elevation-Area Volume Curve, 2 years	7
POND A		
	Elevation-Volume-Flow Table (Pond), 2 years	8
POND B		
	Elevation-Volume-Flow Table (Pond), 2 years	9
POND C		
	Elevation-Volume-Flow Table (Pond), 2 years	10

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
BASIN A	Post-Development 2 YEAR	2	1.574	12.100	16.7 6
BASIN B	Post-Development 2 YEAR	2	1.202	12.100	15.29
BASIN C	Post-Development 2 YEAR	2	1.162	12.100	13.36
BASIN D	Post-Development 2 YEAR	2	2.259	12.100	26.65
BASIN E	Post-Development 2 YEAR	2	0.367	12.200	1.41
BASIN F	Post-Development 2 YEAR	2	0.234	12.550	0.51
BASIN G	Post-Development 2 YEAR	2	0.289	12.150	2.05
BASIN H	Post-Development 2 YEAR	2	0.282	12.250	1.50
BASIN I	Post-Development 2 YEAR	2	0.126	12.500	0.28
BASIN J	Post-Development 2 YEAR	2	0.070	12.250	0.25
BASIN K	Post-Development 2 YEAR	2	0.012	23.750	0.02
OS-1	Post-Development 2 YEAR	2	0.251	12.400	0.57
OS-2	Post-Development 2 YEAR	2	0.145	12.400	0.33
OS-3	Post-Development 2 YEAR	2	0.077	12.000	1.33
OS-4	Post-Development 2 YEAR	2	0.167	12.200	0.62
OS-5	Post-Development 2 YEAR	2	0.086	12.550	0.19

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
DP-1	Post-Development 2 YEAR	2	2.9 21	12.200	4.93
DP-4	Post-Development 2 YEAR	2	0.012	23.750	0.02
DP-5	Post-Development 2 YEAR	2	0.070	12.250	0.25
TRIPLE CELL 6'X12' BOX CULVERT	Post-Development 2 YEAR	2	0.682	12.000	1.38

DEV 2yr SCS.ppc 4/11/2017

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 11

_

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
POND A (IN)	Post- Development 2 YEAR	2	0.534	12.200	2.04	(N/A)	(N/A)
POND A (OUT)	Post- Development 2 YEAR	2	0.158	24.000	0.18	103.13	0.375
POND B (IN)	Post- Development 2 YEAR	2	2.777	12.100	32.05	(N/A)	(N/A)
POND B (OUT)	Post- Development 2 YEAR	2	0.725	24.000	0.76	104.50	2.051
POND C (IN)	Post- Development 2 YEAR	2	3.816	12.100	40.37	(N/A)	(N/A)
POND C (OUT)	Post- Development 2 YEAR	2	1.009	24.000	1.06	104.59	2.791

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 3 of 11 _

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR					
Label	TYPE II 24 HOUR				
Start Time	0.000 hours				
Increment	0.250 hours				
End Time	24.000 hours				
Return Event	2 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
1.250	0.0	0.0	0.0	0.0	0.1
2,500	0.1	0.1	0.1	0.1	0.1
3.750	0.1	0.1	0.1	0.1	0.1
S.000	0.1	0.1	0.2	0.2	0.2
6.250	0.2	0.2	0.2	0.2	0.2
7.500	0.2	0.2	0.3	0.3	0.3
8.750	0.3	0.3	0.3	0.3	0.4
10.000	0.4	0.4	0.4	0.5	0.5
11.250	0.5	0.6	0.8	1,4	1.5
12.500	1.5	1.6	1.6	1.7	1.7
13.750	1.7	1.7	1.8	1.8	1.8
15.000	1,8	1.8	1.8	1.9	1.9
16.250	1.9	1.9	1.9	1.9	1.9
17.500	1.9	1.9	1.9	1.9	2.0
18.750	2.0	2.0	2.0	2.0	2.0
20.000	2.0	2.0	2.0	2.0	2.0
21.250	2.0	2.0	2.0	2.1	2.1
22.500	2.1	2.1	2.1	2.1	2.1
23.750	2.1	2.1	(N/A)	(N/A)	(N/A)

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 4 of 11

Subsection: Elevation-Area Volume Curve Label: POND A Return Event: 2 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.00	0.00	0.000	0.000
101.00	0.0000	0.00	0.01	0.002	0.002
102.00	0.0000	0.15	0.17	0.057	0.059
103.00	0.0000	0.39	0.79	0.263	0.322
104.00	0.0000	0.44	1.25	0.418	0.740
105.00	0.0000	0.50	1.41	0.471	1.211
106.00	0.0000	0.56	1.58	0.528	1.739
107.00	0.0000	0.62	1.76	0.588	2.327

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 11

Subsection: Elevation-Area Volume Curve Label: POND B

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.01	0.00	0.000	0.000
101.00	0.0000	0.01	0.02	0.007	0.007
102.00	0.0000	0.19	0.23	0.076	0.083
103.00	0.0000	0.61	1.13	0.376	0.459
104.00	0.0000	1.27	2.75	0.918	1.377
105.00	0.0000	1.61	4.31	1.436	2.813
106.00	0.0000	1.72	4.99	1.664	4.476
107.00	0.0000	1.82	5.31	1.769	6.246
108.00	0.0000	1.93	5.63	1.878	8.123

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 11 -

Subsection: Elevation-Area Volume Curve Label: POND C Return Event: 2 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
10 0 .0 0	0.0000	0.01	0.00	0.0 00	0.000
101.00	0.0000	0.01	0.03	0.010	0.010
102.00	0.0000	0,24	0.29	0.098	0.108
103.00	0.0000	0.76	1.42	0.474	0.582
104.00	0.0000	1.58	3.44	1.146	1.728
105.00	0.0000	2.43	5.96	1.987	3.716
106.00	0.0000	2.55	7.47	2.490	6.205
1 07.0 0	0.0000	2.68	7.86	2.619	8.824
108.00	0.0000	2.82	8.25	2.751	11.575

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 11 _
Subsection: Elevation-Volume-Flow Table (Pond) Label: POND A

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.00	0.00	0.00	0.00
100.50	0.03	0.001	0.00	0.00	0.03	0.51
101.00	0.06	0.002	0.00	0.00	0.06	1.02
101.50	0.08	0.012	0.05	0.00	0.08	5.81
102.00	0.11	0.059	0.15	0.00	0.11	28.74
102.50	0.14	0.160	0.26	0.00	0.14	77.82
103.00	0.17	0.322	0.39	0.00	0.17	155.94
103.42	0.19	0.491	0.41	0.00	0.19	237.82
103.50	0.67	0.524	0.42	0.00	0.67	254.39
104.00	9.49	0.740	0.44	0.00	9.49	367.44
104.50	23.79	0.968	0.47	0.00	23.79	492.45
105.00	41.88	1.211	0.50	0.00	41.88	627.91
105.50	63.10	1.468	0.53	0.00	63.10	773.39
106.00	71.65	1.739	0.56	0.00	71.65	913.34
106.50	74.11	2.025	0.59	0.00	74.11	1,054.41
107.00	76.53	2.327	0.62	0.00	76.53	1,202.69

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND B Return Event: 2 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.0 0 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft ³ /s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.09	0.003	0.01	0.00	0.09	1.78
101.00	0.17	0.007	0.01	0.00	0.17	3.56
101.50	0.25	0.023	0.07	0.00	0.25	11.26
102.00	0.34	0.083	0.19	0.00	0.34	40.51
102.50	0.42	0.218	0.37	0.00	0.42	106.02
103.00	0.51	0.459	0.61	0.00	0.51	222.72
103.50	0.59	0.836	0.91	0.00	0.59	404.99
104.00	0.68	1.377	1.27	0.00	0.68	666.99
104.50	0.76	2.052	1.43	0.00	0.76	993.73
105.00	0.84	2.813	1.61	0.00	0.84	1,362.20
105.36	0.91	3.400	1.65	0.00	0.91	1,646.36
105.50	2.96	3.632	1.66	0.00	2.96	1,760.65
106.00	20.92	4.476	1.72	0.00	2 0.92	2,187.53
106.50	48.34	5.348	1.77	0.00	48.34	2,636.63
107.00	82.56	6.246	1.82	0.00	82.56	3,105.48
107.50	111.90	7.171	1,88	0.00	111.90	3,582.57
108.00	115.37	8.123	1.93	0.00	115.37	4,047.11

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND C Return Event: 2 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft ³ /s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.11	0.005	0.01	0.00	0.11	2.53
101.00	0.23	0.010	0.01	0.00	0.23	5.07
101.50	0.35	0.031	0.09	0.00	0.35	15.28
102.00	0.46	0.108	0.24	0.00	0.46	52.83
102.50	0.58	0.279	0.46	0.00	0.58	135.83
103.00	0.69	0.582	0.76	0.00	0.69	282.48
103.50	0.81	1.053	1.13	0.00	0.81	510.50
104.00	0.92	1.728	1.58	0.00	0.92	837.36
104.50	1.04	2.616	1.98	0.00	1.04	1,267.19
105.00	1.16	3.716	2.43	0.00	1.16	1,799.50
105.14	1.19	4.056	2.44	0.00	1. 19	1 ,964.5 2
105.50	14.84	4.944	2.49	0.00	14.84	2,407.95
106.00	51.44	6.205	2.55	0.00	51.44	3,054.81
106.50	100.98	7.498	2.62	0.00	100.98	3,730.22
107.00	160.47	8.824	2.68	0.00	160.47	4,431.31
107.50	190.16	10.183	2.75	0.00	190.16	5,118.57
108.00	196.60	11.575	2.82	0.00	196.60	5,798.79

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 10 of 11

Index

С

Colo Springs 2015 (Time-Depth Curve, 2 years)...4

М

Master Network Summary...2, 3

Ρ

POND A (Elevation-Area Volume Curve, 2 years)...5

POND A (Elevation-Volume-Flow Table (Pond), 2 years)...8

POND B (Elevation-Area Volume Curve, 2 years)...6

POND B (Elevation-Volume-Flow Table (Pond), 2 years)...9

POND C (Elevation-Area Volume Curve, 2 years)...7

POND C (Elevation-Volume-Flow Table (Pond), 2 years)...10

DEV 2yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 11 of 11

Project Summary	
Title	Retreat at TimberRidge - MDDP
Engineer	MAW
Company	CCES
Date	4/10/2017
Notes	Dev 5 year SCS Mod

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 11 _

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, S years	4
POND A		
	Elevation-Area Volume Curve, 5 years	5
POND B		
	Elevation-Area Volume Curve, 5 years	6
POND C		
	Elevation-Area Volume Curve, 5 years	7
POND A		
	Elevation-Volume-Flow Table (Pond), 5 years	8
POND B		
	Elevation-Volume-Flow Table (Pond), 5 years	9
POND C		
	Elevation-Volume-Flow Table (Pond), 5 years	10

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
BASIN A	Post-Development 5 YEAR	5	2.816	12.100	33.30
BASIN B	Post-Development 5 YEAR	5	2.078	12.100	27.57
BASIN C	Post-Development 5 YEAR	5	2.078	12.100	26.07
BASIN D	Post-Development 5 YEAR	5	3.842	12.100	47.81
BASIN E	Post-Development 5 YEAR	5	0.917	12.100	7.65
BASIN F	Post-Development 5 YEAR	5	0.650	12.200	3.70
BASIN G	Post-Development 5 YEAR	5	0.624	12.100	6.29
BASIN H	Post-Development 5 YEAR	5	0.628	12.200	5.11
BA5IN I	Post-Development 5 YEAR	5	0.350	12.200	2.13
BASIN J	Post-Development 5 YEAR	5	0.174	12.150	1.33
BASIN K	Post-Development 5 YEAR	5	0.093	13.050	0.18
05-1	Post-Development 5 YEAR	5	0.695	12.150	4.65
OS-2	Post-Development 5 YEAR	5	0.402	12.150	2.76
OS-3	Post-Development 5 YEAR	5	0.117	12.000	1.99
OS-4	Post-Development 5 YEAR	5	0.419	12.150	3.41
05-5	Post-Development 5 YEAR	5	0.239	12.200	1.36

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
DP-1	Post-Development 5 YEAR	5	7.625	12.150	13.88
DP-4	Post-Development 5 YEAR	5	0.093	13.050	0.18
DP-5	Post-Development 5 YEAR	5	0.174	12.150	1.33
TRIPLE CELL 6'X12' BOX CULVERT	Post-Development 5 YEAR	5	2.174	12.200	7.71

DEV 5yr SCS.ppc 4/11/2017

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 11

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
POND A (IN)	Post- Development 5 YEAR	5	1.336	12.150	11.05	(N/A)	(N/A)
POND A (OUT)	Post- Development 5 YEAR	5	0.817	13.900	1.68	103.56	0.548
POND B (IN)	Post- Development 5 YEAR	5	4.894	12.100	60.88	(N/A)	(N/A)
POND B (OUT)	Post- Development 5 YEAR	5	1.428	18.000	2.04	105.44	3.528
POND C (IN)	Post- Development 5 YEAR	5	7.016	12.100	80.51	(N/A)	(N/A)
POND C (OUT)	Post- Development 5 YEAR	5	2.891	15.400	4.57	105.23	4.275

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 3 of 11

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR				
Label	TYPE II 24 HOUR			
Start Time	0.000 hours			
Increment	0.250 hours			
End Time	24.000 hours			
Return Event	5 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	D e pth (in)
0.000	0.0	0.0	0.0	0.0	0.0
1.250	0.0	0.0	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.750	0.1	0.1	0.1	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
6.250	0.2	0.2	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.4
8.750	0.4	0.4	0.4	0.4	0.5
10.000	0.5	0.5	0.5	0.6	0.6
11.250	0.7	0.8	1.0	1.8	1.9
12.500	2.0	2.0	2.1	2.1	2.2
13.750	2.2	2.2	2.3	2.3	2.3
15.000	2.3	2.3	2.3	2.4	2.4
16.250	2.4	2.4	2.4	2.4	2.5
17.500	2.5	2.5	2.5	2.5	2.5
18.750	2.5	2.5	2.5	2.6	2.6
20.000	2.6	2.6	2.6	2.6	2.6
21.250	2.6	2.6	2.6	2.6	2.6
22.500	2.7	2.7	2.7	2.7	2.7
23.750	2.7	2.7	(N/A)	(N/A)	(N/A)

Subsection: Elevation-Area Volume Curve Label: POND A Return Event: 5 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.00	0.00	0.000	0.000
101.00	0.0000	0.00	0.01	0.002	0.002
102.00	0.0000	0.15	0.17	0.057	0.059
103.00	0.0000	0.39	0.79	0.263	0.322
104.00	0.0000	0.44	1.25	0.418	0.740
105.00	0.0000	0.50	1.41	0.471	1.211
106.00	0.0000	0.56	1.58	0.528	1.739
107.00	0.0000	0.62	1.76	0.588	2.327

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 5 of 11

Subsection: Elevation-Area Volume Curve Label: POND B Return Event: 5 years Storm Event: TYPE II 24 HOUR

	Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
	100.00	0.0000	0.01	0.00	0.000	0.000
1	101.00	0.0000	0.01	0.02	0.007	0.007
1	102.00	0.0000	0.19	0.23	0.076	0.083
1	103.00	0.0000	0.61	1.13	0.376	0.459
	104.00	0.0000	1.27	2.75	0.918	1.377
	105.00	0.0000	1.61	4.31	1.436	2.813
	106.00	0.0000	1.72	4.99	1.664	4.476
	107.00	0.0000	1.82	5.31	1.769	6.246
	108.00	0.0000	1.93	5.63	1.878	8.123

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 11

.

_

Subsection: Elevation-Area Volume Curve Label: POND C

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.01	0.00	0.000	0.000
101.00	0.0000	0.01	0.03	0.010	0.010
102.00	0.0000	0.24	0.29	0.098	0.108
103.00	0.0000	0.76	1.42	0.474	0.582
104.00	0.0000	1.58	3,44	1.146	1.728
105.00	0.0000	2.43	5.96	1.987	3.716
106.00	0.0000	2.55	7.47	2.490	6.205
107.00	0.0000	2.68	7.86	2.619	8.824
108.00	0.0000	2.82	8.25	2.751	11.575

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 08795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND A Return Event: 5 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	·
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.00	0.00	0.00	0.00
100.50	0.03	0.001	0.00	0.00	0.03	0.51
101.00	0.06	0.002	0.00	0.00	0.06	1.02
101.50	0.08	0.012	0.05	0.00	0.08	5.81
102.00	0.11	0.059	0.15	0.00	0.11	28.74
102.50	0.14	0.160	0.26	0.00	0.14	77.82
103.00	0.17	0.322	0.39	0.00	0.17	155.94
103.42	0.19	0.491	0.41	0.00	0.19	237.82
103.50	0.67	0.524	0.42	0.00	0.67	254.39
104.00	9.49	0.740	0.44	0.00	9.49	367.44
104.50	23.79	0.968	0.47	0.00	23.79	492.45
105.00	41.88	1.211	0.50	0.00	41.88	627.91
105.50	63.10	1.468	0.53	0.00	63.10	773.39
106.00	71.65	1.739	0.56	0.00	71.65	913.34
106.50	74.11	2.025	0.59	0.00	74.11	1,054.41
107.00	76.53	2,327	0.62	0.00	76.53	1,202.69

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 8 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND B

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	<u> </u>
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft ³ /s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.09	0.003	0.01	0.00	0.09	1.78
101.00	0.17	0.007	0.01	0.00	0.17	3.56
101.50	0.25	0.023	0.07	0.00	0.25	11 .26
102.00	0.34	0.083	0.19	0.00	0.34	40.51
102.50	0.42	0.218	0.37	0.00	0.42	106.02
103.00	0.51	0.459	0.61	0.00	0.51	222.72
103.50	0.59	0.836	0.91	0.00	0.59	404.99
104.00	0.68	1.377	1.27	0.00	0.68	666.99
104.50	0.76	2.052	1.43	0.00	0.76	993.73
105.00	0.84	2.813	1.61	0.00	0.84	1,362.20
105.36	0.91	3.400	1.65	0.00	0.91	1,646.36
105.50	2.96	3.632	1.66	0.00	2.96	1,760.65
106.00	20.92	4.476	1.72	0.00	20.92	2,187.53
106.50	48.34	5.348	1.77	0.00	48.34	2,636.63
107.00	82.56	6.246	1.82	0.00	82.56	3,105.48
107.50	111.90	7.171	1.88	0.00	111.90	3,582.57
108.00	115.37	8.123	1.93	0.00	115.37	4,047.11

_

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND C

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft ³ /s)	Storage (ac-ft)	Area (acres)	Infiltration (ft ³ /s)	Flow (Total) (ft ³ /s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.11	0.005	0.01	0.00	0.11	2.53
101.00	0.23	0.010	0.01	0.00	0.23	S.07
101.50	0.35	0.031	0.09	0.00	0.35	15.28
102.00	0.46	0.108	0.24	0.00	0.46	S2.83
102.50	0.58	0.279	0.46	0.00	0.58	135.83
103.00	0.69	0.582	0.76	0.00	0.69	282.48
103.50	0.81	1.053	1.13	0.00	0.81	510.50
104.00	0.92	1.728	1.58	0.00	0.92	837.36
104.50	1.04	2.616	1.98	0.00	1.04	1,267.19
105.00	1.16	3.716	2.43	0.00	1.16	1,799.50
105.14	1.19	4.056	2.44	0.00	1.19	1,964.52
105.50	14.84	4.944	2.49	0. 00	14.84	2,407.95
106.00	51.44	6.205	2.55	0.00	51.44	3,054.81
106.50	100.98	7.498	2.62	0.00	100.98	3,730.22
107.00	160.47	8.824	2.68	0.00	160.47	4,431.31
107.50	190.16	10.183	2.75	0.00	190.16	5,118.57
108.00	196.60	11.575	2.82	0.00	196.60	5,798.79

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 10 of 11

Index

С

Colo Springs 2015 (Time-Depth Curve, 5 years)...4

М

Master Network Summary...2, 3

Ρ

POND A (Elevation-Area Volume Curve, 5 years)...5

POND A (Elevation-Volume-Flow Table (Pond), 5 years)...8

POND B (Elevation-Area Volume Curve, S years)...6

POND B (Elevation-Volume-Flow Table (Pond), 5 years)...9

POND C (Elevation-Area Volume Curve, 5 years)...7

POND C (Elevation-Volume-Flow Table (Pond), 5 years)...10

DEV 5yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 11 of 11

Title	Retreat at TimberRidge -
	MDDP
Engineer	MAW
Company	CCES
Date	4/10/2017
Notes	Dev 100 year SCS

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 1 of 11

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 100 years	4
POND A		
	Elevation-Area Volume Curve, 100 years	5
POND B		
	Elevation-Area Volume Curve, 100 years	6
POND C		
	Elevation-Area Volume Curve, 100 years	7
POND A		
	Elevation-Volume-Flow Table (Pond), 100 years	8
POND B		
	Elevation-Volume-Flow Table (Pond), 100 years	9
POND C		
	Elevation-Volume-Flow Table (Pond), 100 years	10

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
BASIN A	Post-Development 100 YEAR	100	7.790	12.100	9 8.23
BASIN B	Post-Development 100 YEAR	100	5.485	1 2.0 50	75.75
BASIN C	Post-Development 100 YEAR	100	5.746	12.100	75.60
BASIN D	Post-Development 100 YEAR	100	9.922	12.100	127.05
BASIN E	Post-Development 100 YEAR	100	3.685	12.100	46.64
BASIN F	Post-Development 100 YEAR	100	2.865	12.150	29.31
BASIN G	Post-Development 100 YEAR	100	2.158	12.100	27.40
BASIN H	Post-Development 100 YEAR	100	2.250	12.150	24.52
BASIN I	Post-Development 100 YEAR	100	1.543	12.150	16.70
BASIN J	Post-Development 100 YEAR	100	0.701	12.100	8.16
BASIN K	Post-Development 100 YEAR	100	0.731	12.100	8.00
OS-1	Post-Development 100 YEAR	100	3.059	12.100	35.67
OS-2	Post-Development 100 YEAR	100	1.770	12.100	21.17
OS-3	Post-Development 100 YEAR	100	0.258	12.000	4.19
OS-4	Post-Development 100 YEAR	100	1.685	12.100	20.68
OS-5	Post-Development 100 YEAR	100	1. 052	12.150	10.76

Node Summary

Label Scenario		Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
DP-1	Post-Development 100 YEAR	100	40.540	12.350	253.72
DP-4	Post-Development 100 YEAR	100	0.731	12.100	8 .0 0
DP-5	Post-Development 100 YEAR	100	0.701	12.100	8.16
TRIPLE CELL 6'X12' BOX CULVERT	Post-Development 100 YEAR	100	10.541	12.200	95.47

DEV 100yr SCS.ppc 4/11/2017

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 2 of 11

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
POND A (IN)	Post- Development 100 YEAR	100	5.370	12.100	67.32	(N/A)	(N/A)
POND A (OUT)	Post- Development 100 YEAR	100	4.823	12.250	41.78	105.00	1.209
POND B (IN)	Post- Development 100 YEAR	100	13.275	12.100	172.06	(N/A)	(N/A)
POND B (OUT)	Post- Development 100 YEAR	100	9.636	12.400	55.96	106.61	5.545
POND C (IN)	Post- Development 100 YEAR	100	20.497	12.100	259.49	(N/A)	(N/A)
POND C (OUT)	Post- Development 100 YEAR	100	16.180	12.350	102.79	106.52	7.538

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 3 of 11

Subsection: Time-Depth Curve Label: Colo Springs 2015 Return Event: 100 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR					
Label	TYPE II 24 HOUR				
Start Time	0.000 hours				
Increment	0.250 hours				
End Time	24.000 hours				
Return Event	100 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.1
1.250	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.2	0.2	0.2
3.750	0.2	0.2	0.2	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.4
6.250	0.4	0.4	0.4	0.5	0.5
7.500	0.5	0.5	0.6	0.6	0.6
8.750	0.6	0.7	0.7	0.7	0.8
10.000	0.8	0.9	0.9	1.0	1. 1
11.250	1.2	1.3	1.8	3.0	3.3
12.500	3.4	3.5	3.6	3.6	3.7
13.750	3.7	3.8	3.8	3.9	3.9
15.000	3.9	4.0	4.0	4.0	4.1
16.250	4.1	4.1	4.1	4.2	4.2
17.500	4.2	4.2	4.2	4.3	4.3
18.750	4.3	4.3	4.3	4.4	4.4
20.000	4.4	4.4	4.4	4.4	4.4
21.250	4.5	4.5	4.5	4.5	4.5
22.500	4.5	4.5	4.5	4.6	4.6
23.750	4.6	4.6	(N/A)	(N/A)	(N/A)

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 11

Subsection: Elevation-Area Volume Curve Label: POND A

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.00	0.00	0.000	0.000
101.00	0.0000	0.00	0.01	0.002	0.002
102.00	0.0000	0.15	0.17	0.057	0.059
103.00	0.0000	0.39	0.79	0.263	0.322
104.00	0.0000	0.44	1.25	0.418	0.740
105.00	0.0000	0.50	1.41	0.471	1.211
106.00	0.0000	0.56	1.58	0.528	1.739
107.00	0.0000	0.62	1.76	0.588	2.327

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 11

Subsection: Elevation-Area Volume Curve Label: POND B Return Event: 100 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.01	0.00	0.000	0.000
101.00	0.0000	0.01	0.02	0.007	0.007
102.00	0.0000	0.19	0.23	0.076	0.083
103 .00	0.0000	0.61	1.13	0.376	0.459
104.00	0.0000	1 .2 7	2.75	0.918	1.377
105.00	0.0000	1.61	4.31	1.436	2.813
106.00	0.0000	1.72	4.99	1.664	4.476
107.00	0.0000	1.82	5.31	1.769	6.246
108.00	0.0000	1.93	5.63	1.878	8.123

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 6 of 11

Subsection: Elevation-Area Volume Curve Label: POND C Return Event: 100 years Storm Event: TYPE II 24 HOUR

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
100.00	0.0000	0.01	0.00	0.000	0.000
101.00	0.0000	0.01	0.03	0.010	0.010
102.00	0.0000	0.24	0.29	0.098	0.108
103.00	0.0000	0.76	1.42	0.474	0.582
104.00	0.0000	1.58	3.44	1.146	1.728
105.00	0.0000	2.43	5.96	1.987	3.716
106.00	0.0000	2.55	7.47	2.490	6.205
107.00	0.0000	2.68	7.86	2.619	8.824
108.00	0.0000	2.82	8.25	2.751	11.575

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 7 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND A

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft ³ /s)	Flow (Total) (ft ³ /s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.00	0.00	0.00	0.00
100.50	0.03	0.001	0.00	0.00	0.03	0.51
101.00	0.06	0.002	0.00	0.00	0.06	1.02
101.50	0.08	0.012	0.05	0.00	0.08	5.81
102.00	0.11	0.059	0.15	0.00	0.11	28.74
102.50	0.14	0.160	0.26	0.00	0.14	77.82
103.00	0.17	0.322	0.39	0.00	0.17	155.94
103.42	0.19	0.491	0.41	0.00	0.19	237.82
103.50	0.67	0.524	0.42	0.00	0.67	254.39
104.00	9,49	0.740	0.44	0.00	9.49	367.44
104.50	23.79	0.968	0.47	0.00	23,79	492.45
105.00	41.88	1.211	0.50	0.00	41.88	627.91
105.50	63.10	1.468	0.53	0.00	63.10	773.39
106.00	71.65	1.739	0.56	0.00	71.65	913.34
106.50	74.11	2.025	0.59	0.00	74.11	1,054.41
107.00	76.53	2.327	0.62	0.00	76.53	1,202.69

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND B Return Event: 100 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.0 0 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.09	0.003	0.01	0.00	0.09	1.78
101.00	0 .17	0.007	0.01	0.00	0. 17	3.56
101.50	0.25	0.023	0.07	0.00	0.25	11.26
102.00	0.34	0.083	0.19	0.00	0.34	40.51
102.50	0.42	0.218	0.37	0.00	0.42	106.02
103.00	0.S1	0.459	0.61	0.00	0.51	222.72
103.50	0.59	0.836	0.91	0.00	0.59	404.99
104.00	0.68	1.377	1.27	0.00	0.68	666.99
104.50	0.76	2.052	1.43	0.00	0.76	99 3.73
105.00	0.84	2.813	1.61	0.00	0.84	1,362.20
105.36	0.91	3.400	1.65	0.00	0.91	1,646.36
105.50	2.96	3.632	1.66	0.00	2.96	1,760.65
106.00	20.92	4.476	1.72	0.00	20.92	2,187.53
106.50	48.34	5.348	1.77	0.00	48.34	2,636.63
107.00	82.56	6.246	1.82	0.00	82.56	3,105.48
107.50	111.90	7.171	1.88	0.00	111.90	3,582.57
108.00	115.37	8.123	1.93	0.00	115.37	4,047.11

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 9 of 11

Subsection: Elevation-Volume-Flow Table (Pond) Label: POND C Return Event: 100 years Storm Event: TYPE II 24 HOUR

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	100.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft³/s
Flow (Initial Infiltration)	0.00 ft³/s
Flow (Initial, Total)	0.00 ft³/s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft ³ /s)	Flow (Total) (ft ³ /s)	2S/t + 0 (ft³/s)
100.00	0.00	0.000	0.01	0.00	0.00	0.00
100.50	0.11	0.005	0.01	0.00	0.11	2,53
101.00	0.23	0.010	0.01	0.00	0.23	5.07
101.50	0.35	0.031	0.09	0.00	0.35	15. 2 8
102.00	0.46	0.108	0.24	0 .00	0.46	52.83
102.50	0.58	0.279	0.46	0.00	0.58	135.83
103.00	0.69	0.582	0.76	0.00	0.69	282.48
103.50	0.81	1.053	1.13	0.00	0.81	510.50
104.00	0.92	1.728	1.58	0.00	0.92	837.36
104.50	1.04	2.616	1.98	0.00	1.04	1,267.19
105.00	1.16	3.716	2.43	0.00	1.16	1,799.50
105.14	1.19	4.056	2.44	0.00	1.19	1,964.52
105.50	14.84	4.944	2.49	0.00	14.84	2,407.95
106.00	51.44	6.205	2.55	0.00	51.44	3,054.81
106.50	100.98	7.498	2.62	0.00	100.98	3,730.22
107.00	160.47	8.824	2.68	0.00	160.47	4,431.31
107.50	190.16	10.183	2.75	0.00	190.16	5,118.57
108.00	196.60	11.575	2.82	0.00	196.60	5,798.79

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 10 of 11

Index

С

Colo Springs 2015 (Time-Depth Curve, 100 years)...4

М

Master Network Summary...2, 3

Ρ

POND A (Elevation-Area Volume Curve, 100 years)...5

POND A (Elevation-Volume-Flow Table (Pond), 100 years)...8

POND B (Elevation-Area Volume Curve, 100 years)...6

POND B (Elevation-Volume-Flow Table (Pond), 100 years)...9

POND C (Elevation-Area Volume Curve, 100 years)...7

POND C (Elevation-Volume-Flow Table (Pond), 100 years)...10

DEV 100yr SCS.ppc 4/11/2017 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.56] Page 11 of 11

DRAINAGE MAPS

.

CN VALUES - EXISTING CONDITIONS

BASIN	BASIN	SOI	L TYPE B	WEIGHTED
(label)	AREA			C:
	(Ac)	CN	AREA	
			(Ac.)	
EX-1	156.9	61	156.9	61
EX-2	9.2	61	9.2	61
EX-3	24.9	61	24.9	61
EX-4	35.2	63	35.2	63
EX-5	30.5	61	30.5	61
EX-6	16.4	61	16.4	61
EX-7	12.9	53	12.9	53
EX-8	6.7	61	6.7	61
OS-1	49.1	61	49.1	61
OS-2	2.1	61	2.1	61
OS-3	1.0	82	1.0	82
OS-4	16.1	63	16.1	63
OS-5	11.2	61	11.2	61

TIME OF CONCENTR/	ATION - EXISTING CONDITIONS
	STREET / CHANNEL FLOW

				OVERLAND		S	TREET / CH	HANNEL FLO	W	Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
EX-1	61.0	0.08	300	8	23.1	1600	1.8%	1.3	20.5	43.6	26.2	0.44
EX-2	61.0	0.08	300	10	21.4					21.4	12.9	0.21
EX-3	61.0	0.08	300	8	23.1	1500	4.0%	1.5	16.7	39.7	23.8	0.40
EX-4	63.0	0.08	300	24	16.1	1900	6.0%	1.8	17.6	33.7	20.2	0.34
EX-5	61.0	0.08	300	8	23.1	1400	3.0%	1.5	15.6	38.6	23.2	0.39
EX-6	61.0	0.08	300	12	20.2	1400	4.0%	1.5	15.6	35.7	21.4	0.36
EX-7	53.0	0.08	300	12	20.2	400	6.0%	1.4	4.8	24.9	15.0	0.25
EX-8	61.0	0.08	300	14	19.2	800	1.0%	1.0	13.3	32.5	19.5	0.33
OS-1	61.0	0.08	300	22	16.5	1300	4.0%	1.5	14.4	31.0	18.6	0.31
OS-2	61.0	0.08	300	12	20.2	550	5.0%	1.7	5.4	25.6	15.3	0.26
OS-3	82.0	0.08	300	18	17.7	300	6.0%	2.2	2.3	19.9	12.0	0.20
OS-4	63.0	0.08	300	22	16.5	1100	4.0%	1.4	13.1	29.6	17.8	0.30
OS-5	61.0	0.08	300	10	21.4	1300	3.0%	1.2	18.1	39.5	23.7	0.39

BASIN SUMMARY - EXISTING CONDITIONS

BASIN	TOTAL	WEIGHTED	TOTAL	Q	Q	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	156.9	61	0.44	2.6	17.7	140.3
EX-2	9.2	61	0.21	0.2	1.7	12.2
EX-3	24.9	61	0.40	0.4	3.0	23.7
EX-4	35.2	63	0.34	1.3	6.9	41.8
EX-5	30.5	61	0.39	0.5	3.7	29.3
EX-6	16.4	61	0.36	0.3	2.1	16.7
EX-7	12.9	53	0.25	0.02	0.2	8.0
EX-8	6.7	61	0.33	0.1	0.9	7.1
OS-1	49.1	61	0.31	0.9	7.0	53.9
0S-2	2.1	61	0.26	0.04	0.3	2.5
OS-3	1.0	82	0.20	0.9	1.5	3.4
OS-4	16.1	63	0.30	0.6	3.4	20.7
OS-5	11.2	61	0.39	0.2	1.4	10.8

DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

Design Point	Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
(label)				
EX DP-1	BASINS OS-1, OS-3, OS-4, OS-5, EX-1, EX-4, EX-5, EX-6	5.8	37.1	280.2
EX DP-2	BASINS OS-2, EX-2	0.2	2.0	14.7
EX DP-3	BASIN EX-3	0.4	3.0	23.7
EX DP-4	BASIN EX-7	0.02	0.2	8.0
EX DP-5	BASIN EX-8	0.1	0.9	7.1

DEVELOPED LAND RANGES FROM 5 AC. TO 1/8 AC. RESIDENTIAL LOTS GOOD CONDITION OPEN SPACE (LAWNS, PARKS GOLF COURSES, CEMTETARIES ECT.)

CN VALUES - DEVELOPED CONDITIONS

BASIN	BASIN	OPEN SPACE/UN	IDEVELOPED (B)	URBAN RES. DE	VELOPMENT (B)	WEIGHTED
(label)	AREA					C .
	(Ac)	CN	AREA	CN	AREA	
			(Ac.)		(Ac.)	
A	44.1	61	0.0	75	44.1	75
В	28.8	61	2.5	79	26.3	77
С	32.5	61	0.0	75	32.5	75
D	50.3	61	4.0	79	46.3	78
E	35.2	61	1.2	65	34.0	65
F	30.5	61	30.5	65	0.0	61
G	17.0	61	10.2	75	6.8	67
Н	18.6	61	13.0	79	5.6	66
	16.4	61	16.4	65	0.0	61
J	6.7	61	0.0	63	6.7	63
к	12.9	53	12.9	65	0.0	53
OS-1	32.5	61	32.5	65	0.0	61
OS-2	18.8	61	18.8	65	0.0	61
OS-3	1.0	82	0.5	90	0.5	86
OS-4	16.1	63	16.1	65	0.0	63
OS-5	11.2	61	11.2	65	0.0	61

TIME OF CONCENTRATION - DEVELOPED CONDITIONS STREET / CHANNEL FLOW VERLAND

				OVERLAND		S	STREET / CH	HANNEL FLO	W	Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
А	75	0.08	300	8	23.1	1450	3.0%	2.6	9.3	32.4	19.4	0.32
В	77	0.08	125	2.5	16.4	1200	2.0%	2.1	9.4	25.8	15.5	0.26
С	75	0.08	200	10	15.3	2000	2.5%	2.4	14.1	29.4	17.6	0.29
D	78	0.08	130	2.6	16.7	1800	2.0%	2.1	14.1	30.8	18.5	0.31
E	65	0.08	300	24	16.1	1500	2.0%	2.1	11.8	27.8	16.7	0.28
F	61	0.08	300	8	23.1	1400	3.0%	1.5	15.6	38.6	23.2	0.39
G	67	0.08	200	14	13.7	1550	1.0%	1.6	16.1	29.8	17.9	0.30
Н	66	0.08	200	10	15.3	2300	1.0%	1.6	24.0	39.3	23.6	0.39
	61	0.08	300	12	20.2	1400	4.0%	1.5	15.6	35.7	21.4	0.36
J	63	0.08	300	14	19.2	800	1.0%	1.0	13.3	32.5	19.5	0.33
К	53	0.08	300	12	20.2	400	4.0%	1.4	4.8	24.9	15.0	0.25
OS-1	61	0.08	300	22	16.5	1300	4.0%	1.5	14.4	31.0	18.6	0.31
OS-2	61	0.08	300	14	19.2	1000	3.5%	1.5	11.1	30.3	18.2	0.30
OS-3	86	0.08	20	0.4	6.6	650	3.0%	2.6	4.2	10.7	6.4	0.11
OS-4	63	0.08	300	22	16.5	1100	4.0%	1.4	13.1	29.6	17.8	0.30
OS-5	61	0.08	300	10	21.4	1300	3.0%	1.2	18.1	39.5	23.7	0.39

BASIN SUMMARY - DEVELOPED CONDITIONS

BASIN	TOTAL	WEIGHTED	TOTAL	Q	Q	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
A	44.1	75	0.32	16.8	33.3	98.2
В	28.8	77	0.26	15.3	27.6	75.8
C	32.5	75	0.29	13.4	26.1	75.6
D	50.3	78	0.31	26.7	47.8	127.1
8	35.2	65	0.28	1.4	7.7	46.6
F	30.5	61	0.39	0.5	3.7	29.3
G	17.0	67	0.30	2.1	6.3	27.4
Н	18.6	66	0.39	1.5	5.1	24.5
I	16.4	61	0.36	0.3	2.1	16.7
J	6.7	63	0.33	0.3	1.3	8.2
K	12.9	53	0.25	0.02	0.2	8.0
OS-1	32.5	61	0.31	0.6	4.7	35.7
OS-2	18.8	61	0.30	0.3	2.8	21.2
OS-3	1.0	86	0.11	1.3	2.0	4.2
OS-4	16.1	63	0.30	0.6	3.4	20.7
OS-5	11.2	61	0.39	0.2	1.4	10.8

conditions plan)

DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

Design Point (label)	Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
DP-1	BASINS G, H, F, I, OS-3, OS-5, RELEASE FROM PONDS A, B AND C (NO CHANNEL FLOWS INCLUDED)	4.9	13.9	253.7
DP-4	BASIN K	0.02	0.2	8.0
DP-5	BASIN J	0.25	1.3	8.2

Markup Summary

Unlocked (29)		
THE RETREAT AT TIMBERRIDGE	Subject: For Comment Page Label: 1 Lock: Unlocked Status: Checkmark: Unchecked Author: MWhorton Date: 4/17/2017 7:16:54 AM Color:	
-00 3	Subject: Text Box Page Label: 1 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 12:09:42 PM Color:	3
<section-header></section-header>	Subject: Not Approved Page Label: 2 Lock: Unlocked Status: Checkmark: Unchecked Author: MWhorton Date: 4/17/2017 7:15:06 AM Color:	
Feled in accordance with Engineering Criteria Man Jennifer Freine, County Engi Conditions	Subject: Text Box Page Label: 2 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 12:10:54 PM Color:	Jennifer Irvine,
dix).	Subject: Engineer Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/24/2017 10:42:25 AM Color:	OK
dian. The	Subject: Engineer Page Label: 4 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/24/2017 10:42:29 AM Color:	ОК

	Subject: Engineer	
17.7 cfs, $Q_{100} = 140$.	Page Label: 5	?
asin sheet flows dire	Lock: Unlocked	
isists of the northea	Status: Checkmark: Unchecked	
	Author: dsdrice	
	Date: 5/24/2017 10:43:03 AM	
	Color:	
,	Subject: Engineer	OK
111° C 🔒 A	Page Label: 5	ÖK
ldlife. Arr	Status:	
	Checkmark: Unchecked	
	Author: dsdrice	
	Date: 5/24/2017 10:42:37 AM	
location. This	Subject: Rectangle	typo?
OS-1 OS-1 O	Lock: Unlocked	
of the majority	Status:	
of the majority	Checkmark: Unchecked	
	Author: dsdrice	
= 280.2 cfs) This does not include the major off-site	Subject: Rectangle	
I off-site flows that travel across the property and have represents the allowed developed release off-site at this schules the flowing basins: EX-1, EX-4, EX-5, EX-6,	Page Label: 5	Expand on description - some or most of this is
-1 ($Q_2 = 2.6$ cfs $Q_4 = 17.7$ cfs, $Q_{100} = 140.3$ cfs) consists present. This entire basin sheet flows directly into Sand s, $Q_{100} = 41.8$ cfs) consists of the nonheasterly portion	Lock: Unlocked	concentrated flow
rains in a southwestedty direction towards Sand Creek. 29.3 cfs) consists of northerly portion of the property	Status:	
	Author: dsdrice	
	Date: 5/24/2017 10:41:52 AM	
	Color:	
As easily ranking, frames, WH [bottles with property production, then (plot) types that and (plot) or and a frame that that the plot (plot) is the transport of a field using to their plot is a solution to the origin of a shape of the post theory or the solution or production (plot is a plot theory). We complete plots are a shape of a shape of the solution of the plot of the plot of the plot of the post of the post of the post of the post of the plot of the plot of the	Subject: Engineer	WOCV will be provided for all new reads and
Calabite Vignamia, and Senamandan Marana, Senaman Andrea, S	Page Label: 7	urban lots.
INCOLV will be provided for all new tables and within Net. In the spectra of the tables and tables and tables the spectra of tables and tables are provided to the spectra of tables and tables and tables and tables are provided to tables and tables and tables are and tables and tables are provided to tables and tables are and tables are and tables and tables are provided to tables and tables are an and tables are and tables are an and tables are provided to tables are an and tables are an	LOCK: UNIOCKED Status:	
Name (State) (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro)	Checkmark: Unchecked	
	Author: dsdrice	
	Date: 5/23/2017 2:30:22 PM	
	Subject: Engineer	
Physical distributions in the block of the blocking but is source of a strain of allower mathematicanous analysis and the straining mathematicanous and the straining mathematicanous Karponentees and reaches devices the block of the straining mathematicanous and generate mathematicanous and mathematicanous and mathematicanous and the straining mathematicanous and mathematicanous and the straining and the straining mathematicanous and the straining and mathematicanous and the straining and the straining mathematicanous and and mathematicanous and the straining and the straining mathematicanous and and straining data and the straining and the straining mathematicanous and and straining data and the straining and the straining mathematicanous and the straining and the straining data and the straining and the straining mathematicanous and the straining mathematicanous and the straining and the straining mathematicanous and the straining and the straining and the straining and the straining mathematicanous and the straining and the straining and	Lock: Unlocked	
to a constraints. We compare at the schedule approach provide the oxie plantament schedule planta plantament and the schedule approach and the schedule and the schedule and the constraints and the schedule approach and the schedule approach and the theory approach and the schedule approach and the schedule approach and the schedule approach and the schedule approach and the schedule approach and the schedule approach and the schedule approach and the schedule and the schedule approaching and schedule approaching approaching and schedule and the schedule approaching and schedule approaching approaching and schedule and the schedule approaching approaching and schedule approaching and schedule and the schedule approaching approaching and schedule approaching and schedule and the schedule approaching approaching approaching and schedule approaching approaching approaching approaching approaching approaching approaching approaching	Status:	
(a) To Yuani. The Standard Me Superi Limit, and Me The Me Y processing, the Standards (b) It is the same of Net Net Conduction straphy (Standard Limits And Andreas) Standards and an anti-strand standard straphy (Standard Limits Andreas) Standard Standards and Standard Me Standards Andreas Andreas Andreas Andreas and Andreas Standards Me Standards Andreas Andreas Andreas Andreas Andreas Standards Andreas Andr	Checkmark: Unchecked	
	Author: dsdrice Date: 5/23/2017 2:24:33 PM	
	Color:	

	Subject: Engineer Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 2:45:43 PM Color:	meeting ECM/DCM design requirements for a buffer BMP
<text><text><text></text></text></text>	Subject: Engineer Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/24/2017 10:36:22 AM Color:	after WQCV is provided (DESCRIBE WHERE) (Isn't this a road?)
the Creek ard imperious ar development	Subject: Rectangle Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/24/2017 10:40:27 AM Color:	impervious
Margare state hash spragared areas, type analysis of an analysis of the state of	Subject: Text Box Page Label: 8 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/25/2017 1:54:10 PM Color:	Note: The landscape area BMPs will be required to be maintained by the HOA or district under a private BMP maintenance agreement and easement.
A shappen report by COV social 1.1 & a site to the social of the social	Subject: Text Box Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/25/2017 2:10:57 PM Color:	A deviation request from ECM Section I.7.1.B will be required with the PDR addressing all areas within the small lot subdivisions not provided with WQCV.
 In the second sec	Subject: Engineer Page Label: 9 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 4:38:36 PM Color:	Steeply incised channels are described in the CORE report. Please elaborate.

..... Subject: Engineer After completion of construction and upon Board of Page Label: 9 County Commissioners' acceptance, Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 4:36:28 PM Color: -----Subject: Engineer Describe downstream facilities, proposed Sterling Page Label: 10 Ranch improvements, and any anticipated Lock: Unlocked drainage propblems within the development or Status: downstream. (checklist items) Checkmark: Unchecked Author: dsdrice Date: 5/24/2017 10:48:00 AM Color: -----Subject: Engineer Address USACE permitting/ approvals required for Page Label: 10 channel design. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 4:41:43 PM Color: Subject: Engineer Address no-rise certification or CLOMR/LOMR Page Label: 10 options. Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/23/2017 4:41:33 PM Color: Subject: Cloud+ Should this be closer to 50%? Offsite Page Label: 96 undeveloped flows should be provided with a Lock: Unlocked bypass conveyance. Status: Checkmark: Unchecked Author: dsdrice Date: 5/25/2017 2:15:07 PM Color: 📃

Subject: Arrow Page Label: 176 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/25/2017 1:43:34 PM Color:

Subject: Text Box Page Label: 176 Lock: Unlocked Status: Checkmark: Unchecked Author: dsdrice Date: 5/25/2017 1:55:01 PM Color: