Final Drainage Report

Meadowbrook Park El Paso County, Colorado

PCD File No.: PUDSP208 SF-21-025

Prepared for:

Danny Mientka Meadowbrook Development, LLC. 90 South Cascade Avenue Suite 1500 Colorado Springs, Colorado 80903

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Ave Suite 300 Colorado Springs, CO 80903 (719) 284-7272 Contact: John Heiberger, P.E.

Project #: 096956009

Prepared: March 18th, 2021 Revision 1: June 2, 2021 Revision 2: July 14, 2021 Revision 3: September 30, 2021 Revision 4: February 3, 2022

Table of Contents

CERTIFICATION	3
ENGINEERS STATEMENT	
EL PASO COUNTY STATEMENT	
GENERAL LOCATION AND DESCRIPTION	
PURPOSE AND SCOPE OF STUDY	
LOCATION	
DESCRIPTION OF PROPERTY	
PROJECT CHARACTERISTICS	
DRAINAGE BASINS AND SUB-BASINS	5
Major Basin Descriptions	5
SUB-BASIN DESCRIPTION	6
Historic Drainage Patterns	
Off-Site Drainage Flow Patterns	
DRAINAGE DESIGN CRITERIA	7
DEVELOPMENT CRITERIA REFERENCE	
HYDROLOGIC CRITERIA	7
DRAINAGE FACILITY DESIGN	8
GENERAL CONCEPT	
COMPLIANCE WITH OFF-SITE RUNOFF	
PROPOSED DRAINAGE PATTERNS	
Sub-Basin B	
Sub-Basin C	
Sub-Basin D	
Sub-Basin E Sub-Basin F	
Sub-Basin G	
Sub-Basin H	
Sub-Basin I	
Sub-Basin J Sub-Basin OS-A	
Sub-Basin OS-B	
Sub-Basin OS-C	
EMERGENCY OVERFLOW ROUTING	
DETENTION AND WATER QUALITY	
Four-Step Process Detention and Water Quality Design	12
Outlet Requirements	13
Channel Design and Soil Erodibility	
Emergency Spillway Path	
COST OF PROPOSED DRAINAGE FACILITIES1	13

DRAINAGE AND BRIDGE FEES	13
GRADING AND EROSION CONTROL	14
MAINTENANCE AND OPERATIONS	14
OTHER GOVERNMENT AGENCY REQUIREMENTS	14
SUMMARY	
	14
SUMMARY	14 14

CERTIFICATION

ENGINEERS STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

SIGNATURE (Affix Seal):

Colorado P.E. No. 50096

Date

DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name

By:

Title:

Address:

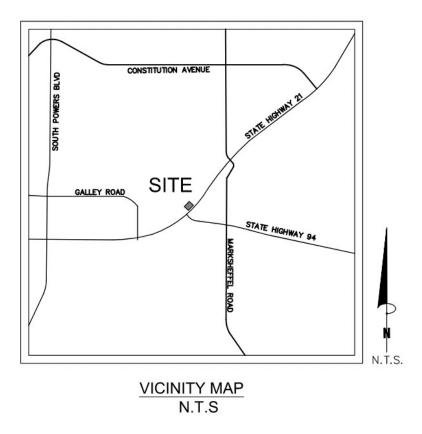
EL PASO COUNTY STATEMENT

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code, as amended.

Jennifer Irving, P.E. County Engineer/ECM Administrator Date

Conditions:

GENERAL LOCATION AND DESCRIPTION


PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Meadowbrook Park development ("the Project") for Meadowbrook Development LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria outlined by the County.

LOCATION

The Project is located northwest of the Meadowbrook Parkway and US Highway 24 intersection in El Paso County, Colorado. More specifically, the Project is made up of Tract A 94/24 Business Park Filing No. 1, Tract I Meadowbrook Crossing Filing No. 1, and a Tract within the Claremont Business park Filing No. 2 (parcel number 5408000053) plat within the southeast quarter of Section 8, Township 14 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The site is bounded by Meadowbrook Parkway and the Meadowbrook Crossing Filings No. 1 and No. 2 to the west, Lot 46A Claremont Business Park Filing No. 2A, a commercial storage development to the north, US Highway 24 (CDOT Right of Way) to the east, and Lot 1 24/94 Business Park Filing No. 1, a commercial gas station to the south. A vicinity map has been provided in the Appendix of this report.

VICINITY MAP

Kimley»Horn

DESCRIPTION OF PROPERTY

The Project is located on approximately 8.0 acres of undeveloped land with limited vegetation and grass cover. The site currently does not provide stormwater quality or detention and there are no known major drainage ways or irrigation facilities on the site. The site generally drains from the east to west with slopes ranging from 2% to 25% with the steeper slopes along the east side of the site adjacent to US Highway 24 and Lot 46A Claremont Business Park Filing No. 2A, the commercial storage facility to the north. There is an existing 30" CMP CDOT culvert that outfalls onto the site, conveying flow from the median of Hwy 24. This runoff flows across the Site to an existing storm area inlet located in the southwest corner of the Site. The Project is not adjacent to any major drainageways and does not outfall directly to any major drainageways.

NRCS soil data is available for the Site (See Appendix) and the onsite soils are USCS Hydrologic Soil Group A. Group A soils have higher infiltration rates compared to other soil groups and are generally made up of well drained, cohesive sands or gravelly sands. A Soils and Geology Study has also been prepared for the site by Rocky Mountain Group dated August 26, 2020 and is attached in the Appendix of this report for reference.

PROJECT CHARACTERISTICS

The Project is a proposed single family development that will include 67 lots. The project will include the construction of private streets, sidewalks, driveways, hardscape/landscape, and associated utility infrastructure required to serve each lot. Water quaility and detention is required for the site improvements and will be accomplished with the construction of a Full Spectrum Extended Detention Basin located in the southeast corner of the site and a water quailtiy Rain Garden located in the southwest corner of the Site. As part of the utility infrastructure improvements, a proposed storm sewer system will be constructed to collect runoff. Stormwater will be conveyed via overland flow across the lots, within the curb and gutter of the proposed streets before being captured in proposed storm inlets. Additionally, the corridors between homes shall not be graded flat. Swales proposed within the six foot corridor in-between each set of single-family homes will convey stormwater from the roof drains and from landscape areas inbetween the homes. The swales will be centered in the 6-foot corridor between the homes on the two adjacent lots and will convey stormwater to the proposed storm inlets in the proposed streets. The storm sewer system will then convey runoff into the Full Spectrum Extended Detention Basin before being discharged offsite. A small portion of the Site drains to curb chase that outfalls into the Rain Garden for water quality treatment, only. The Full Spectrum Extended Detention Basin will overdetain to inlcude the area flowing to the Rain Garden to provide detention volume.

DRAINAGE BASINS AND SUB-BASINS

MAJOR BASIN DESCRIPTIONS

The site is located within the Sand Creek Drainage Basin Study (DBPS). It is not directly adjacent to East Fork Sand Creek, but East Fork Sand Creek is the ultimate receiving water for the discharge from this Site. The Sand Creek DBPS calls for bank stabilization improvements and two drop structures which were constructed with the Meadowbrook Crossing Filings No. 1

and No. 2 developments. No additional creek improvements are included with the development of this Project.

The Site is also located outside the 100-year floodplain and within Zone X (an area of minimal flood hazard) as noted on the FEMA FIRM Map No. 08041C0752G revised on December 7, 2018 (See Appendix).

There are no identified nearby irrigation facilities or other obstructions which could influence the local drainage, other than the CDOT off-site flow from the 30" CMP culvert previously mentioned.

SUB-BASIN DESCRIPTION

Historic Drainage Patterns

The existing runoff onsite generally drains from east to west and is collected by an existing storm area inlet located in the southwest corner of the site. The runoff is then conveyed via storm sewer through the neighboring site to the southwest before discharging into the County storm sewer system within Meadowbrook Parkway. Runoff from offsite enters to the east of the site from US Highway 24 and drains to the same inlet as the onsite runoff in the southeast corner.

The existing drainage is divided into three sub-basins, Basin EX-A, EX-B, and EX-C. Sub-Basin EX-A is approximately 8.18 acres on consists of most of the on-site area within the property line. Runoff generated from this Sub-Basin drains overland from east to west towards the existing storm area inlet. The weighted imperviousness for Sub-Basin EX-A with existing conditions is 2% and the runoff for the 5-year and 100-year storm events are 2.49 cfs and 16.70 cfs respectively.

Off-Site Drainage Flow Patterns

Sub-Basin EX-B is approximately 1.34 acres and consists of the area within the CDOT Right of Way, downstream of the existing 30" CMP culvert and area inlet within the median. It comprises of the west portion of US Highway 24 (US-24) travel lanes, shoulder and existing 4:1 slope down to Site. The flows generated from the east portion of US-24 and within the median flow south to another area inlet and culvert away from the project area. The weighted imperviousness for Sub-Basin EX-A with existing conditions is 51.1% and the runoff for the 5-year and 100-year storm events are 3.01 cfs and 6.73 cfs respectively.

Sub-Basin EX-C is approximately 3.87 acres and consists of the area within the CDOT Right of Way upstream of the existing 30" CMP culvert and area inlet within the median. It comprises of runoff generated from all four travel lanes on US-24 and runoff generated within the existing median. Runoff is either conveyed overland onto the Site or through an existing area inlet within the median and then into a 30" CMP culvert. The culvert outfalls onto the Site and flows overland to the southwest corner to the existing storm area inlet. The weighted imperviousness for Sub-Basin EX-C with existing conditions is 54.0%% and the runoff for the 5-year and 100-year storm events are 7.71 cfs and 16.89 cfs respectively.

Kimley **»Horn**

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities follow the El Paso County Drainage Criteria Manual (the "CRITERIA"), El Paso Engineering Criteria Manual (the "ECM"), and the Mile High Flood District Urban Storm Drainage Criteria Manual (the "MANUAL"). Site drainage is not significantly impacted by such constraints as utilities or existing development. Further detail regarding onsite drainage patterns is provided in the Proposed Drainage Conditions Section.

There are previous drainage studies that include portions of the Project Site limits:

24/94 Business Park Final Drainage Report- This report completed by Core Engineering Group, LLC dated, July 14, 2016 details the existing 2- Type D inlets in the southwest corner of the Site. It also shows the storm alignment from the existing Type D inlet, across Meadowbrook Parkway and to the outfall in East Fork Sand Creek. This alignment will be the ultimate outfall for the discharge from this project. Proposed flows from the Site are less than the historic flows through the existing infrastructure shown in this drainage report.

Claremont Business Park Filing No. 2 Final Drainage Report- This report completed by Matrix Design Group, Inc. dated, November 2006. This report shows that the runoff from Lot 46A Claremont Business Park Filing No. 2A is maintained on the lot as does not generate runoff onto the Site that would be classified as off-site drainage for this Project.

Meadowbrook Crossing Filings No. 1 and No. 2 Preliminary and Final Drainage Report- This report completed by Kiowa Engineering Corporation dated, July 25, 2017 does not specifically include area on Site on the Drainage Map, but provides details about the improvements made to East Fork Sand Creek for stabilization and documents the extension of Meadowbrook Parkway.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage system per chapter 6 of the CRITERIA. Table 6-2 of the CRITERIA is the source for rainfall data for the 5-year and 100-year design storm events. Design runoff was calculated using the Rational Method for developed conditions as established in the CRITERIA and MANUAL. Runoff coefficients for the proposed development were determined using Table 6-6 of the CRITERIA by calculating weighted impervious values for each specific site basin. The detention storage requirement was calculated using Full Spectrum Detention methods as specified in the CRITERIA and MANUAL. The Full Spectrum Extended Detention Basin's outlet structure was designed to release the Water Quality Capture Volume (WQCV) in 40 hours. The Rain Garden was designed to release the WQCV in 12 hours. Based upon this approach, we feel that the drainage design provided for the Site is conservative and in keeping with the historic drainage patterns for the Site.

The proposed drainage facilities are designed in accordance with the CRITERIA and MANUAL. Floodplain identification was determined using FIRM panels by FEMA and information provided in the CRITERIA. Hydraulic calculations were computed using StormCAD for the proposed storm sewer system. Results of the hydraulic calculations are summarized in the Appendix.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

COMPLIANCE WITH OFF-SITE RUNOFF

The runoff generated from US-24 currently outfalls onto the Site through an existing 30" CMP culvert. The off-site drainage basins were analyzed and found to include parts of the travel lanes, median and Right of Way. Currently, there is not a CDOT stormwater quality and detention facility that captures and treats this area. For that reason, each off-site Sub-Basin is collected in a swale parallel to US-24 roadway and within the CDOT Right of Way and conveyed to the southeast property corner of the Site. Off-site flows will be captured from the proposed swale by a proposed private CDOT Type D inlet (depressed and in series) and by-pass the property in a proposed 30" RCP storm pipe. This storm pipe runs along the southern property line within a proposed 15' private drainage easement and will connect to the existing 36" RCP storm pipe with a proposed manhole. Hydrologic and hydraulic analysis was completed to verify the capacity of the downstream facilities to handle the by-passed flows. All generated from the off-site Sub-Basins will be by-passed through the Site.

PROPOSED DRAINAGE PATTERNS

The developed runoff from the Project will generally be collected by means of a private storm sewer system with inlets located in the private streets (Nova View, Tenebris Point, Spatium View, Solum Grove and Lux Point) within each delineated sub-basin area. Side lot swales will be located within the 5' side yard setback and corresponding 1' side yard setback on the adjacent lot for a combined 6' setback corridor in-between homes. The low point of elevation/flood line will be centered in the 6-foot corridor. Side lot swales will convey stormwater to the proposed storm sewer system. The runoff collected form each Sub-Basin A, C-J will be captured by storm inlets and conveyed through storm pipes to a Full Spectrum Extended Detention Basin located in the southeast corner of the site. The controlled stormwater will be treated, detained, and released from an outlet structure which will convey stormwater through a proposed storm pipe that runs along the southern property line with a 15' private drainage easement. Eventually the outfall pipe connects to the existing private storm sewer in the southwest corner. A portion of the site Sub-Basin B, surface drains to the southwest corner, entering a proposed rain garden through a concrete chase. The WQCV in the rain garden will be treated and released through an outlet structure and conveyed through a storm pipe to a connection in the existing private 36" RCP pipe.

The existing 36" extends long the northern property line of Lot 1 24/94 Business Park Filing No. 1, a commercial gas station to the north east corner of the lot and stubbed into an existing public 10' Type R Inlet. The inlet is used as a junction structure and runoff is conveyed through an existing public 42" RCP storm pipe across Meadowbrook Parkway and long Newt Drive until it ultimately outfalls into the East Fork Sand Creek. This is depicted in the proposed drainage map as part of the Meadowbrook Crossing Filings No. 1 and No. 2 Preliminary and Final Drainage Report

SPECIFIC DETAILS

The property has been divided into fourteen sub-basins, A through J and OS-A- OS-C. Subbasins A through J make up the Project on-site area and Sub-Basins OS-A -OS-C are the offsite basins consisting of runoff from US Highway 24.

The weighted imperviousness of the Site area (Sub-basins A through J) with proposed conditions is 43.3%. Cumulative runoff for the 5-year and 100-year storm events are 15.15 cfs and 34.11 cfs, respectively. The weighted imperviousness of the offsite area (Sub-basin OS-A-OS-C) with Sub-Bains A through J on site is 46.8%. Cumulative runoff for the 5-year and 100year storm events are 25.84 cfs and 59.19 cfs, respectively.

Sub-Basin A

Sub-basin A consists of approximately 2.47 acres and is the area along the eastern property line, east of Nova View and north of the Extended Detention Basin. Swales between the lots capture the roof drainage and the landscape areas between homes and direct it to the east (backside) of the lots. The runoff is then collected in swales along the backside of the lots and is conveyed directly into a grass lined swale that conveys runoff to the Extended Detention Basin down a riprap rundown/ rock chute into a forebay (Design Point 1). Additionally, this area comprises of the areas uphill of the proposed big block retaining walls. Runoff not captured from the off-stie Sub-Basins is captured in a swale on top of the retaining walls and is conveyed towards the Extended Detention Basin dow Review 2 comment: The areas indicated for these Developed runoff during the 5-year and 100-y basins do not match the runoff calculations. Please

Sub-Basin B

Sub-basin B consists of approximately 1.85 ac Grove runoff and the lots adjacent to Solum G are also included within this sub-basin. This S Rain Garden. Swales between the lots capture between homes and is conveyed in the curb a southwest corner of the Site, directly entering provided on the drainage calculations.

each other. Review 3: Unresolved. Please revise the narrative and plan and/or calculations so that they are consistent with each other. The calculations indicate 0.20 acres (C)and 0.87 acres(basin D). A comment was also

revise accordingly so that they are consistent with

from the lots drain into the Solum Grove and is also conveyed in the curb and gutter to a curb chase in the southwest corner of the Site, directly entering the proposed Rain Garden. Developed runoff during the 5-year and 100-year events are 4.04 cfs and 8.86 cfs respectively. Portions of the 100-year flow outfalls via the overland path following Solum Grove as it curves to the northwest. During the 100-year storm, ponding will occur at the curb chase and will spill over the emergency access at the end of Solum Grove and onto Meadowbrook Parkway. These flows will not flow onto the public sidewalk.

Sub-Basin C

Sub-basin C consists of approximately 0.71 acres and consists of driveway and lawn runoff from nine lots and the west portion of Nova View between Spatium View and Tenebris Point. The runoff from the lots drains into Nova View and Tenebris Point, respectively, and is conveyed in the curb and gutter before being collected a private 5 foot curb Type R inlet (Design Point 3) and conveyed through 18" RCP Storm pipe. Developed runoff during the 5-year and 100-year events are 2.42 cfs and 4.76 cfs respectively.

Sub-Basin D

Sub-basin D consists of approximately 0.37 acres and consists of runoff from the tract north of the Tenebris Point lots. To prevent the runoff from the Tract from draining out towards Meadowbrook Parkway, a swale will collect runoff along the west property line and convey to an area inlet (Design Point 4). This area inlet will connect to 10" PVC Storm pipe and travel down Tenebris Point before joining the runoff from Sub-Basin C. Developed runoff during the 5-year and 100-year events are 0.21 cfs and 1.20 cfs respectively.

It appears that the narrative was changed to (2) four foot inlets yet the calculation and the drainage plan indicates a single 5ft type R inlet. Please revise accordingly Meadowbrook Park – El Paso County, CO

Sub-Basin E

Sub-basin E consists of approximately 0.42 acres and consists of the eastern half of the Nova View from Tenebris Point to Lux Point and the adjacent driveway sections. The runoff flows along Nova View and is conveyed in the curb and gutter before being collected by two (2) 4-foot Type D-10-R inlets (Design Point 5). Developed runoff during the 5-year and 100-year events are 1.38 cfs and 2.70 cfs respectively.

Sub-Basin F

Sub-basin F consists of approximately 0.10 acres and consists of the southern half of Spatium View. The runoff from Spatium View and is conveyed in the curb and gutter before being collected by a 5-foot curb Type P inlet (Design Point 6). Developed runoff during the 5 year and 100-year events are 0.44 cfs at Review 2 comment: Per the inlet calculation the total 100 yr flow will

Sub-Basin G

not be captured. Please address and revise the design accordingly.
 Review 3:Unresolved. the 100yr flow is not being captured. Please address/analyze the flow that is not being captured

Sub-basin G consists of approximately 0.02 acres and consists of the northern half of Spatium View, the adjacent tract, and the western half of Nova View from Spatium View to Lux Point. Swales between the lots capture the roof drainage and the landscape areas between homes and is conveyed in the curb and gutter before being collected by a 5-foot curb Type R inlet (Design Point 7). The remaining runoff from the lots and driveways drain into Spatium View and Nova View and is conveyed in the curb and gutter before being collected by the 5-foot curb Type R inlet. To prevent the runoff from the Tract to drain out towards Meadowbrook Parkway, a swale will collect runoff along the west property line and convey to a small area inlet. This area inlet will connect to the 5' Type R inlet withing Spatium View (Design Point 7). Developed runoff during the 5-year and 100-year events are 1.72 cfs and 4.02 cfs respectively.

Sub-Basin H

Sub-basin H consists of approximately 0.83 acres and consists of Lux Point and the adjacent driveways to the west and entire lots to the east. The runoff from the lots drains into Lux Point and is conveyed in the curb and gutter before being collected by a 5-foot curb Type R inlet (Design Point 8). Developed runoff during the 5-year and 100-year events are 1.66 cfs and 3.85 cfs respectively.

Sub-Basin I

Sub-basin I consists of approximately 0.28 acres and consists of the western half of Nova view north of Lux Point. It also included the driveways directly adjacent to the west. The runoff from the driveways drains into Nova View and is conveyed in the curb and gutter and collected by a 5-foot curb Type R inlet (Design Point 9). Developed runoff during the 5-year and 100-year events are 0.82 cfs and 1.73 cfs respectively. In the 100-year storm, 0.2 cfs of flow will overtop the basin and flow down Nova View west to Solum Grove north and northwest.

Sub-Basin J

revise as necessary.

Sub-basin J consists of approximately 0.23 acres and consists of the eastern half of Nova View north of Lux Point. It also included the driveways directly adjacent to the east. The runoff from the driveways drains into Nova View and is conveyed in the curb and gutter and is collected by

Review 2 comment: There is flow from basins E,I,J and H that are not being captured by the pond. These flows must be captured and treated. Revise the design accordingly. Review 3: comment: Unresolved. It appears that the inlets for basin E where changed in the narrative but the calcs and plans did not change. Please address the flows that are not being captured and events are 0.77 cfs and 1.54 cfs respectively. In the 100-year storm, 0.1 cfs of flow will overtop the sub-basin and flow down Nova View west to Solum Grove north and northwest.

Sub-Basin OS-A

Sub-basin OS-A consists of approximately 1.77 acres and consists of the eastern half of US 24 (both travel lanes, shoulder and Right of Way) upstream and north of the existing CDOT 30" CMP culvert. Runoff from this Sub-Basin is conveyed in an already existing roadside ditch that converges with the outfall of the CMP culvert at Design Point 11. From Design Point 11 the flows will be routed through a proposed swale on CDOT Right of Way parallel to the property line and will eventually be captured into a Type D inlet and by-passed through the Site in a 30" RCP storm pipe. Developed runoff during the 5-year and 100-year events are 3.76 cfs and 8.14 cfs respectively.

Sub-Basin OS-B

Sub-basin OS-B consists of approximately 1.34 acres and consists of the eastern half of US 24 (both travel lanes, shoulder and Right of Way) downstream and south of the existing CDOT 30" CMP culvert. Runoff from this Sub-Basin be captured and routed through a proposed swale on CDOT Right of Way parallel to the property line and will eventually be captured into a Type D inlet and by-passed through the Site in a 30" RCP storm pipe. Developed runoff during the 5-year and 100-year events are 3.01 cfs and 6.73 cfs respectively.

Sub-Basin OS-C

Sub-basin OS-C consists of approximately 2.10 acres and consists of the western half of US 24 (both travel lanes and vegetated median) upstream and north of the existing CDOT 30" CMP culvert. Runoff from this Sub-Basin is collected in the already existing swale within the roadway median and is conveyed through the 30" CMP culvert to Design Point 11. From Design Point 11 the flows will be routed through a proposed swale on CDOT Right of Way parallel to the property line and will eventually be captured into a Type D inlet and by-passed through the Site in a 30" RCP storm pipe. Developed runoff during the 5-year and 100-year events are 3.92 cfs and 8.67 cfs respectively.

EMERGENCY OVERFLOW ROUTING

Emergency overflow routing consists of flows following the proposed drainage pattern of northeast to southwest along the proposed roadways. Once the flows reach the southwest portion of the site, they will flow through the access driveway to Meadowbrook Parkway for Lot 1 24/94 Business Park Filing No. 1.

DETENTION AND WATER QUALITY

The WQCV and 100-year detention is required for this Project. This is accomplished through the proposed private Full Spectrum Extended Detention Basin on the southeast corner of the Site and a private Rain Garden on the southwest corner of the Site. The Extended Detention Basin was sized to provide detention for the entire Site (Sub-Basins A-J) per UDFCD criteria. WQCV will be provided in the Extended Detention Basin for Sub-Basins A, C-J only. WQCV for Sub-Basin B will be provided by the Rain Garden. The water quality and detention calculations are provided in the Appendix of this report. The proposed Extended Detention Basin and Rain Garden will be maintained by the Meadowbrook Park HOA.

Four-Step Process

The four-step process per the MANUAL provides guidance and requirements for the selection of siting of structural Construction Control Measures (CCMs) for new development and significant redevelopment.

Step 1: Employ Runoff Reduction Practices

Currently the site is vacant undeveloped land with surrounding development. Development of the site will increase current runoff conditions due to increased imperviousness values. However, implementation the of landscaping throughout the site, the proposed storm sewer infrastructure, and the proposed Extended Detention Basin will help slow runoff and encourage infiltration.

Step 2: Provide Water Quality Capture Volume (WQCV)

The water quality capture volume will be detained using Full Spectrum Extended Detention Basin on the southeast corner of the Site and a Rain Garden on the southwest corner of the Site. The outfall pipes from the water quality outlet structures will control the release of stormwater to less than historic rates.

Step 3: Stabilize Drainageways

There are no current drainageways conveyed through this property. No improvements to stabilize drainageways are a part of this Project.

Step 4: Consider need for Industrial and Commercial BMPs

Erosion control features for the final stages of the Project will be designed to reduce contamination. Source control BMPs will include the use of, inlet protection, silt fences, concrete washout areas, stockpile management, and stabilized staging areas. The Grading and Erosion Control Plans will be submitted as a separate construction document set.

Detention and Water Quality Design

The proposed private Full Spectrum Extended Detention Basin is designed with an outlet structure that is fitted with an orifice plat and restrictor plate to release the WQCV in a 40-hour time period per the MANUAL. The proposed private Rain Garden is designed with an outlet structure that is fitted with a restrictor plate to release the WQCV in a 12-hour time period per the MANUAL.

Calculations included in the Appendix provide details regarding the private water quality and detention basins design. The calculations include determination of the storage volumes required for full spectrum detention for the WQCV and 100 year detention and allowable release rates.

Overall, 0.101 acre-feet of WQCV is required for Sub-Basins A, C-J, and 0.648 acre-feet of detention volume is required for the proposed Extended Detention Basin (Sub-Basins A-J). The total area contributing to the Extended Detention Basin consists of 8.17 acres (43.3% imperviousness). The outlet structure and orifice releases approximately 0.1 cfs in the 5-year event and 5.5 cfs in the 100-year event. This is less than the historic flows of 2.49 cfs in the 5-year event and 16.70 cfs in the 100-year event.

The WQCV requirement for Sub-Basin B (1.85 acres and 54.5% imperiousness), is 1,176 cubic feet and is provided by a Rain Garden with this a 1,215 Square Foot bottom and 12" WQCV depth. See the Appendix for calculations.

revise to 6-1

Outlet Requirements

The water quality standards established by the CRITERIA are met by the proposed Full Spectrum Extended Detention Basin and Rain Garden. The water quality outlet structures were designed per the specifications in the CRITERIA. The outlet structure for the Extended Detention Basin meets the micro-pool requirement that it be integrated into the design of the structure with an additional initial surcharge volume. The orifice plates of the structures were designed based on the CRITERIA. The orifice plates will allow the WQCV to be drained from the structure in 40 hours for the Extended Detention Basin and 12 hours for the Rain Garden. The calculations for the design of the outlet structures are presented in the Appendix.

Channel Design and Soil Erodibility

A proposed concrete lined trickle channel within the basin was designed per the MANUAL. A forebay structure is located at both upstream entrances to the Extended Detention Base. The forebay structures were designed per the MANUAL. The surrounding protection is designed as Type L riprap. Calculations detailing the design and dimensions of the trickle channel and forebay structure are included in the Appendix. Additionally, a riprap rundown or rock chute is provided to stabilize the flows coming from swales and entering the Extended Detention Basin. Calculations for the rock chute are included in the Appendix.

Emergency Spillway Path

The emergency overflow from the Extended Detention Basin and Rain Garden are both designed to spill over the sidewalk and curb and gutter into Solum Grove and run west towards the access to Lot 1 24/94 Business Park Filing No. 1. Flows in the 100-yr storm will overtop the curb in certain areas, with depth of flow remaining less than 12", consistent with Table 6-11 "Allowable Use of Roads and Streets" for a Type A Local Road. Further calculations are provided in the Appendix.

COST OF PROPOSED DRAINAGE FACILITIES

An Opinion of Probable Construction Cost (OPCC) is provided in the Appendix of the report. There are no public drainage facilities. All improvements with this Project will be private.

DRAINAGE AND BRIDGE FEES

The Site is located in the Sand Creek Drainage Basin. The total acreage of three parcels (5408403001, 5408000053 and 5408008002) is 8.01 acres. The site imperviousness is 46.8%. The total drainage and bridge fees due for the Site is \$107,722.50

	2021 Fees (\$ / Impervious acre)	Impervious Area (Acre)	Amount Due (\$)
Drainage Fee	\$20,387	3.75	\$76,451.25
Bridge Fee	\$8,339	3.75	\$31,271.25
		Tatal and a wet down	\$407 700 FO

Total amount due:

\$107,722.50

GRADING AND EROSION CONTROL

The GEC plans have been submitted to El Paso County Planning and Community Development Department for review and approval prior to construction. The GEC plans are consistent with this drainage report.

MAINTENANCE AND OPERATIONS

Twice per year inspections (spring and fall) of the stormwater detention and water quality structures are recommended. The owner/operator will be responsible for maintenance. A copy of this report will be provided to the owner/operator. This satisfies the EDB Operation and Maintenance (O&M) Manual.

OTHER GOVERNMENT AGENCY REQUIREMENTS

Approval from other agencies such as the FEMA, the Army Corps of Engineers, Colorado State Engineer, Colorado Water Conservation Board, and others are not needed with this Project.

SUMMARY

Ultimate outflow from the site occurs at the western corner of the site at Manhole J3. Existing conditions releases 13.21 CFS during the 5-year storm and 40.32 CFS in the 100-year storm. Under proposed conditions, these flows would be lowered to 10.82 CFS for the 5-year storm and 28.67 CFS in the 100-year storm. Because flows being released from the site are less than historic pre-development conditions, the existing 36" RCP and associated stormwater infrastructure will be sufficient under proposed conditions.

COMPLIANCE WITH STANDARDS

The drainage design presented within this report for Meadowbrook Park, conforms to the El Paso County Drainage Criteria Manual and the Mile High Flood District Urban Storm Drainage Criteria Manual. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments. The proposed developed flows entering the Extended Detention Basin and are greater than the existing ultimate outfall of the site due to the greater imperviousness of the site, however the implementation of the drainage basins will disperse the flow of an extended period of time therefore releasing at equal to or less than the historic rate.

Kimley **»Horn**

REFERENCES

- 1. City of Colorado Springs Drainage Criteria Manual, May 2014.
- 2. El Paso County Drainage Criteria Manual, Vol. 1 and 2, October 1994.
- 3. Mile High Flood District Drainage Criteria Manual (MHFDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 4. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0459G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).

APPENDIX

Kimley **»Horn**

SOILS MAP AND FEMA FIRM PANEL

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted fo possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Silliwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs are intended for flood insurance rating purposes only and should not used as the solver of flood elevation information. Accordingly, flood delevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal food elevations are also provided in the Summary of Stillweter Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this juriscition.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NADB3, GRS60 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

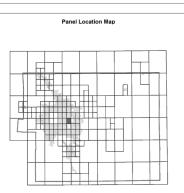
Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FRM for this jurisdiction. The floodplain additional floodways that were transferred from the previous FRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

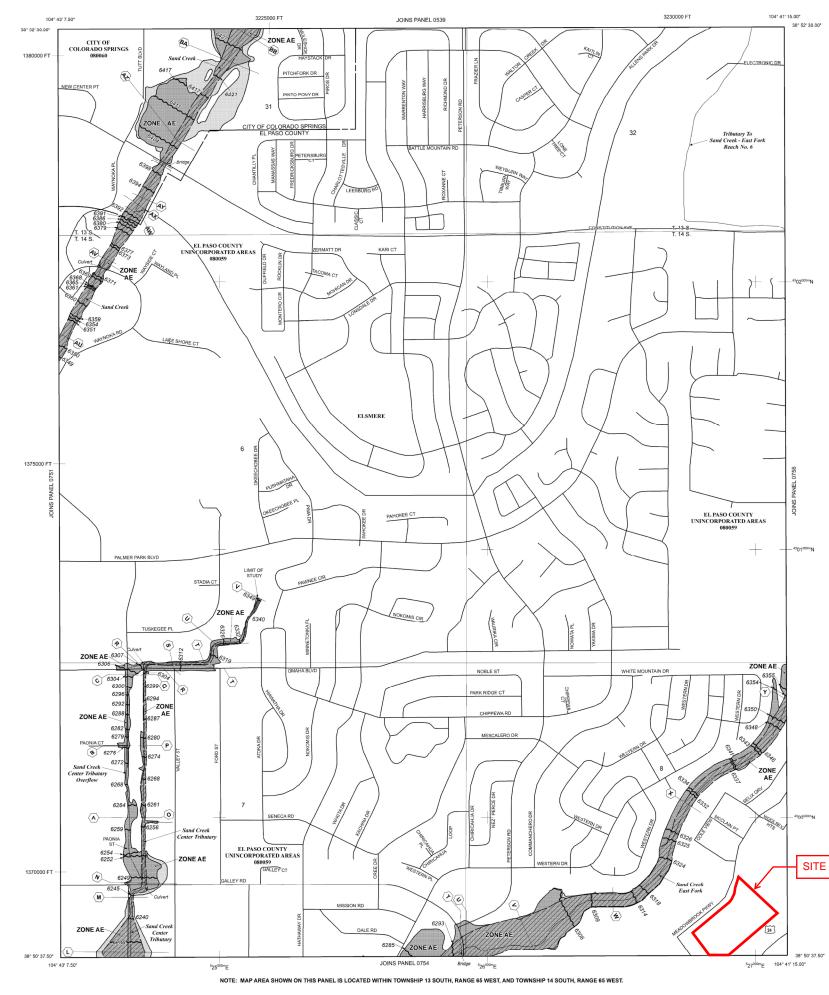
Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-356-9620 and its website at http://www.msc.fema.gov/.


If you have **questions about this map** or questions concerning the National Flooc Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/inflp.

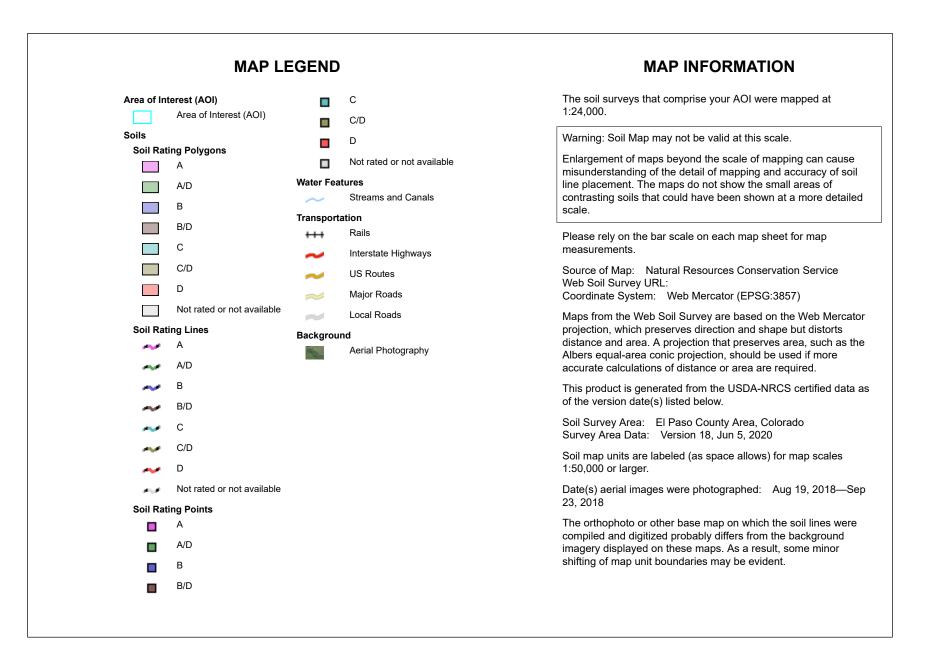
El Paso County Vertical Datum Offset Table Vertical Datum ding Source Offset (ft)

 Vertical Datum


 Flooding Source
 Offset (ft)

 REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).


Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

				LEGEND
		SPECIAL FL	LOOD	HAZARD AREAS (SFHAS) SUBJECT TO THE 1% ANNUAL CHANCE FLOOD
	The 1% annual	I chance flood	(100-ye	ar flood), also known as the base flood, is the flood ed or exceeded in any given year. The Special Flood
	Hazard Area is Special Flood H	the area subjection and include a	ject to Zones A	flooding by the 1% annual chance flood. Areas of A.E. AH, AO, AR, A99, V, and VE. The Base Flood
	Elevation is the	water-surface No Base Flood	elevatio	n of the 1% annual chance flood.
	ZONE AE	Base Flood Elev	vations	
		Elevations dete	ermined.	feet (usually sheet flow on sloping terrain); average
		depths determ determined.	nined.	For areas of alluvial fan flooding, velocities also
		flood by a floo	od contr	area Formerly protected from the 1% annual chance of system that was subsequently decertified. Zone former flood control system is being restored to
	ZONE A99	provide protect Area to be pro	tion from rotected	n the 1% annual chance or greater flood. from 1% annual chance flood by a Federal flood
		protection sys determined.	stem u	inder construction; no Base Flood Elevations
		Elevations dete	ermined.	ith velocity hazard (wave action); no Base Flood with velocity hazard (wave action); Base Flood
		Elevations dete	ermined.	
				S IN ZONE AE
	kept free of er substantial incr	ncroachment so	o that t	am plus any adjacent floodplain areas that must be ne 1% annual chance flood can be carried without
		OTHER FLO	IOD AR	EAS
	ZONE X	Areas of 0.2% average depth	annual	chance flood; areas of 1% annual chance flood with s than 1 foot or with drainage areas less than 1
				s than 1 foot or with drainage areas less than 1 protected by levees from 1% annual chance flood.
		OTHER ARE		
				e outside the 0.2% annual chance floodplain. izards are undetermined, but possible.
				R RESOURCES SYSTEM (CBRS) AREAS
				ECTED AREAS (OPAs)
	<u> </u>			cated within or adjacent to Special Flood Hazard Areas.
				boundary
			one D B	
	•••••			OPA boundary
		BC Fli	loundary lood Elev	dividing Special Flood Hazard Areas of different Base rations, flood depths or flood velocities.
	513 - (EL 987)	Ba	ase Floo	d Elevation line and value; elevation in feet* d Elevation value where uniform within zone;
		el	levation	
	_	\frown	ross sec	
	23	_	ransect	ine
	97° 07' 30.0 32° 22' 30.0	10" Ge	ieograph	ic coordinates referenced to the North American
	32° 22' 30.0 4275 ⁰⁰⁰ "N	10	000-met	1983 (NAD 83) er Universal Transverse Mercator grid ticks,
		20	one 13	
	6000000 F	i 50 sy La	ouu-foot ystem, c ambert (grid ticks: Colorado State Plane coordinate entral zone (FIPSZONE 0502), Conformal Conic Projection
	DX5510	Be		rk (see explanation in Notes to Users section of
	M1.5	- u	iver Mile	
	•	N		IAP REPOSITORIES
			fer to Ma	p Repositories list on Map Index
		E	FLOO	VE DATE OF COUNTYWIDE DINSURANCE RATE MAP MARCH 17, 1997
	DECEMBE	EFFECTIV ER 7, 2018 - to	VE DATE	(S) OF REVISION(S) TO THIS PANEL corporate limits, to change Base Flood Elevations and date map format, to add roads and road names, and to
	Special Flor	od Hazard Area incorpora	as, to up ate previ	date map format, to add roads and road names, and to ously issued Letters of Map Revision.
	For community Map History Tal	map revision h ble located in ti	history p the Floor	rior to countywide mapping, refer to the Community Insurance Study report for this jurisdiction.
	To determine i	if flood insuran	nce is a	vailable in this community, contact your insurance
	agent or call th	e maulonal Floo	JU INSUR	Ince Program at 1-800-638-6620.
			~	400
		250 0	MA	P SCALE 1" = 500' 500 1000
		HHH		
	F	— F	_	FEET
	E 150	— F	0	
	E 150	— F		METERS
	E			METERS
				PANEL 0752G
	E			PANEL 0752G
				PANEL 0752G FIRM FLOOD INSURANCE RATE MAP
				PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY,
	E E E E E E E E E E E E E E E E E E E			PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO
		THE WAANDAR		PANEL 0752G PANEL 0752G FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS
	E 150	KGZ PROCERANN 54		PANEL 0752G PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300
		NIGE PROCERAM FI		PANEL 0752G PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)
		ANNES PROCEANN		PANEL 0752G PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300
		URANIGE PROCERAM		PANEL 0752G PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS:
7		SULFANGE PROCERAM		Image:
1		TINSULATINGE PROCESSIN		Image:
]		NISULARANCE PROCESN		Image:
]		OODFINISULAANIGE FIXOOGRAMM		Image:
]		FEOZODEINKULARNICE PROCERANN		AND EXAMPLES 200 PANEL 0752G PANEL 0752G FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNTY NUMBER PANEL SUFFX COMMONSMENTON WIRKS
]		- ELOODINISUKANNES PROJEKANN		Image:
]		ALE FLOXODEINSUURANNEE PROVERAMM		Image:
]		- ELOODINISUKANNES PROJEKANN		BANEL 0752G PANEL 0752G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 752 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTANS: COMMUNITY NUMBER PANE SUFFIX CONSURVATION 0000 072 0 EMBODING OF 702 0 COMMUNITY 0000 072 0 COMMUNITY 0000 072 0 COMMUNITY 0000 072 0 COMMUNITY 0000 072 0 EMBODING OF 702 0 COMMUNITY 0000 072 0 COMMUNITY 0 COMMUNITY 0000 072 0 COMMUNITY
]		ELONAAL FELOXOD HINSULAANIGE FIXOOGAAM		190 300 PANEL 0752G PANEL 752 OF 1300 (SEE MAN DEX FOR FIRM PANEL LAYOUT) COMMUNITY OMMUNITY AUMEER 2010 COMMUNITY MARKER STARE BARK SUMMUNITY ONE of 000 ONE of 000 </th
]		NONAME FELOCOPENNICATING ELEVOLOGICAM		Image:

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	7.4	100.0%
Totals for Area of Intere	st		7.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

EXISTING HYDROLOGIC CALCULATIONS

Meadowbrook Drainage Report El Paso County, CO

IDF Equations:

I ₁₀₀ = -2.52In(D) + 12.735
I₅₀ = -2.25In(D) + 11.375
I ₂₅ -2.00In(D) + 10.111
I₁₀ -1.75In(D) + 8.847
l₅ -1.50ln(D) + 7.583
l₂ -1.19In(D) + 6.035

Where:

I = Rainfall Intensity (in/hr)

D= Duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P1 =	1.19	1.5	1.75	2.52

Time Intensity Frequency Tabulation

			7 1	,		
Time	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
5	4.12	5.17	6.03	6.89	7.75	8.68
10	3.29	4.13	4.82	5.51	6.19	6.93
15	2.81	3.52	4.11	4.69	5.28	5.91
30	1.99	2.48	2.89	3.31	3.72	4.16
60	1.16	1.44	1.68	1.92	2.16	2.42
120	0.34	0.40	0.47	0.54	0.60	0.67

*The Design Point Rainfall Values and Time Intensity Frequency Tabulation are found in Table 6-2 and Figure 6-5 respectively, of the Colorado Springs Drainage Criteria Manual, Volume 1

Meadowbrook Park Drainage Report El Paso County, CO

Weighted Imperviousness Calculations (Existing Conditions)

SU	B-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	MENT		WEIGHTED		WEIGHTED	OCOEFFICIEN	ITS
BAS	IN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
EX	Α	356,327	8.18	0	90%	0.71	0.73	0.75	0.81	356,327	2%	0.03	0.09	0.17	0.36	0	100%	0.89	0.90	0.92	0.96	2.0%	0.03	0.09	0.17	0.36
EX	·B	58,532	1.34	0	90%	0.71	0.73	0.75	0.81	29,227	2%	0.03	0.09	0.17	0.36	29,305	100%	0.89	0.90	0.92	0.96	51.1%	0.46	0.50	0.55	0.66
EX	-C	168,766	3.87	0	9 0%	0.71	0.73	0.75	0.81	79,173	2%	0.03	0.09	0.17	0.36	89,593	100%	0.89	0.90	0.92	0.96	54.0%	0.49	0.52	0.57	0.68
TOT	AL	583,625	13.40	0	90%	0.71	0.73	0.75	0.81	385,554	2%	0.03	0.09	0.17	0.36	29,305	100%	0.89	0.90	0.92	0.96	6.3%	0.06	0.10	0.16	0.29

Meadow	brook Park	- Drainage	Report		Watercourse Coefficient												
Existing F	Runoff Calcu	ilations			Forest	& Meadow	2.50	Short Grass Pasture & Lawns			7.00		Grassed Waterway				
Time of C	Concentratio	n			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paved Area & Shallow Gutter				
	SUB-BASIN					IAL / OVERL	AND	TRAVEL TIME				T(c) CHECK				FINAL	
	DATA					TIME		T(t)				(URE	BANIZED BA	SINS)	T(c)		
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10		
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.	
1	EX-A	356,327	8.18	0.09	300	11.5%	14.2	867	2.0%	15.00	2.1	6.8	21.0	1167	16.5	16.5	
2	EX-B	58,532	1.34	0.50	65	4.5%	5.4	405	3.8%	15.00	2.9	2.3	7.7	470	12.6	7.7	
3	EX-C	168,766	3.87	0.52	65	4.5%	5.2	1000	2.5%	15.00	2.4	7.0	12.2	1065	15.9	12.2	

Existing Ru	ook Park - Dra noff Calculatio hod Procedure)											
DESIGN	ASIN INFORMATIC DRAIN	AREA	RUNOFF	T(c)	DIRECT C x A	RUNOFF	Q	T(c)	UMULATI C x A	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min	0.74	in/hr	cfs	min		in/hr	cfs	
1	EX-A	8.18	0.09	16.5	0.74	3.38	2.49					Existing On-Site Property (Vacant Undeveloped Land
2	EX-B	1.34	0.50	7.7	0.67	4.52	3.01					Flows from CDOT ROW, sheet flowing onto property
3	EX-C	3.87	0.52	12.2	2.01	3.83	7.71					Flows from CDOT ROW at the culvert outlet design point

Existing	vbrook Park - Dra Runoff Calculatic Method Procedure)		Report		Des	ign Storm	100 Year					
	BASIN INFORMATION	4		DIF	RECT RUN	OFF			CUMULATI	VE RUNOF	F	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	EX-A	8.18	0.36	16.5	2.94	5.67	16.70					Existing On-Site Property (Vacant Undeveloped Land
2	EX-B	1.34	0.66	7.7	0.89	7.59	6.73					Flows from CDOT ROW, sheet flowing onto property
3	EX-C	3.87	0.68	12.2	2.63	6.43	16.89					Flows from CDOT ROW at the culvert outlet design point

	SUMMARY - EXISTING RUNOFF TABLE												
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)							
1	EX-A	8.18	2.49	16.70									
2	EX-B	1.34	3.01	6.73									
3	EX-C	3.87	7.71	16.89									
TOTAL		13.40	13.21	40.32									

PROPOSED HYDROLOGIC CALCULATIONS

Meadowbrook Drainage Report El Paso County, CO

IDF Equations:

I ₁₀₀ = -2.52In(D) + 12.735
I₅₀ = -2.25In(D) + 11.375
I ₂₅ -2.00In(D) + 10.111
I₁₀ -1.75In(D) + 8.847
l₅ -1.50ln(D) + 7.583
l ₂ -1.19ln(D) + 6.035

Where:

I = Rainfall Intensity (in/hr)

D= Duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P1 =	1.19	1.5	1.75	2.52

Time Intensity Frequency Tabulation

			7 1	,		
Time	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
5	4.12	5.17	6.03	6.89	7.75	8.68
10	3.29	4.13	4.82	5.51	6.19	6.93
15	2.81	3.52	4.11	4.69	5.28	5.91
30	1.99	2.48	2.89	3.31	3.72	4.16
60	1.16	1.44	1.68	1.92	2.16	2.42
120	0.34	0.40	0.47	0.54	0.60	0.67

*The Design Point Rainfall Values and Time Intensity Frequency Tabulation are found in Table 6-2 and Figure 6-5 respectively, of the Colorado Springs Drainage Criteria Manual, Volume 1

Meadowbrook Drainage Report El Paso County, CO

Weighted Imperviousness Calculations

	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	ITS
SUB-BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
А	107,496	2.47	21,654	90%	0.71	0.73	0.75	0.81	85,842	0%	0.03	0.09	0.17	0.36	0	100%	0.89	0.90	0.92	0.96	18.1%	0.17	0.22	0.29	0.45
B	80,559	1,85	22,073	90%	0.71	0.73	0.75	0.81	34,457	0%	0.03	0.09	0.17	0.36	24,029	100%	0.89	0.90	0.92	0.96	54.5%	0.47	0.51	0.55	0.66
Ċ	8,878	0.20	ላ 0	90%	0.71	0.73	0.75	0.81	1,377	0%	0.03	0.09	0.17	0.36	7,501	100%	0.89	0.90	0.92	0.96	84.5%	0.76	0.77	0.80	0.87
D	38,113	0.87	0,260	90%	0.71	0.73	0.75	0.81	20,629	0%	0.03	0.09	0.17	0.36	7,224	100%	0.89	0.90	0.92	0.96	43.2%	0.38	0.42	0.47	0.59
LEL	×18,846	<u> 10.42</u>	\mathcal{A}_0	90%	0.71	0.73	0.75	0.81	4,546	0%	0.03	0.09	0.17	0.36	13,700	100%	0.89	0.90	0.92	0.96	75.1%	0.68	0.70	0.73	0.81
F	4,229	0.10	\ 0	90%	0.71	0.73	0.75	0.81	79	0%	0.03	0.09	0.17	0.36	4,150	100%	0.89	0.90	0.92	0.96	98.1%	0.87	0.88	0.91	0.95
G	40,228	0.92	8,808	90%	0.71	0.73	0.75	0.81	20,973	0%	0.03	0.09	0.17	0.36	10,447	100%	0.89	0.90	0.92	0.96	45.7%	0.40	0.44	0.49	0.61
Н	35,948	0.83	6,28	90%	0.71	0.73	0.75	0.81	18,616	0%	0.03	0.09	0.17	0.36	11,043	100%	0.89	0.90	0.92	0.96	46.5%	0.41	0.45	0.50	0.62
I.	12,368	0.28	0 \	90%	0.71	0.73	0.75	0.81	5,168	0%	0.03	0.09	0.17	0.36	7,200	100%	0.89	0.90	0.92	0.96	58.2%	0.53	0.56	0.61	0.71
J	9,994	0.23	0 \	90%	0.71	0.73	0.75	0.81	3,127	0%	0.03	0.09	0.17	0.36	6,867	100%	0.89	0.90	0.92	0.96	68.7%	0.62	0.65	0.69	0.77
OS-A	77,099	1.77	0	90%	0.71	0.73	0.75	0.81	34,833	2%	0.03	0.09	0.17	0.36	42,266	100%	0.89	0.90	0.92	0.96	55.7%	0.50	0.53	0.58	0.69
OS-B	58,532	1.34	0	90%	0.71	0.73	0.75	0.81	29,227	2%	0.03	0.09	0.17	0.36	29,305	100%	0.89	0.90	0.92	0.96	51.1%	0.46	0.50	0.55	0.66
OS-C	91,667	2.10	0	90%	0.71	0.73	0.75	0.81	44,340	2%	0.03	0.09	0.17	0.36	47,327	100%	0.89	0.90	0.92	0.96	52.6%	0.47	0.51	0.56	0.67
TOTAL (A-J)	356,059	8.17	69,084	90%	0.71	0.73	0.75	0.81	194,814	0%	0.03	0.09	0.17	0.36	92,161	100%	0.89	0.90	0.92	0.96	43.3%	0.38	0.42	0.48	0.60
TOTAL	583,357	13.39	69084	90%	0.71	0.73	0.75	0.81	303,214	0%	0.03	0.09	0.17	0.36	211,059	100%	0.89	0.90	0.92	0.96	46.8%	0.42	0.46	0.51	0.63

review 2 comment:

The area for these basins does not match the narrative and drainage plan. Please revise the design accordingly.

Review 3: Unresolved. The narrative and drainage plan indicate areas of 0.71(basin C) and 0.37 acres (basin D). Please revise the design accordingly.

Meadow	brook Park	- Drainage	Report							Watercou	irse Coeffic	ient				
Proposed	Runoff Cal	culations			Forest	& Meadow	2.50	Short G	Short Grass Pasture & Lawns 7.0				Grassed Waterway			15.00
Time of C	Concentratio	n			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paveo	d Area & Sha	allow Gutter	20.00
	SUB-BASIN DATA					IAL / OVERL TIME		ſ	RAVEL TIM T(t)	IE			(URI	T(c) CHECK BANIZED BA		FINAL T(c)
DESIGN POINT	DRAIN BASIN	AREA sq. ft.	AREA ac.	C(5)	Length ft.	Slope %	T(i) min	Length ft.	Slope %	Coeff.	Velocity fps	T(t) min.	COMP. T(c)	TOTAL LENGTH	L/180+10	min.
1	Α	107,496	2.47	0.22	100	15.0%	6.5	745	2.3%	15.00	2.3	5.5	12.0	845	14.7	12.0
2	В	80,559	1.85	0.51	90	2.9%	7.2	200	1.0%	20.00	2.0	1.7	8.9	290	11.6	8.9
3	С	8,878	0.20	0.77	30	1.3%	3.0	225	3.0%	20.00	3.5	1.1	5.0	255	11.4	5.0
4	D	38,113	0.87	0.42	100	3.0%	8.7	235	0.5%	20.00	1.4	2.8	11.5	335	11.9	11.5
5	E	18,246	0.42	0.70	70	2.8%	4.4	420	2.3%	20.00	3.0	2.3	6.7	490	12.7	6.7
6	F	4,229	0.10	0.88	6	2.0%	0.8	150	2.0%	20.00	2.8	0.9	5.0	156	10.9	5.0
7	G	40,228	0.92	0.44	100	3.0%	8.4	170	2.0%	20.00	2.8	1.0	9.4	270	11.5	9.4
8	Н	35,948	0.83	0.45	100	8.5%	5.8	190	0.5%	20.00	1.4	2.2	8.0	290	11.6	8.0
9	1	12,368	0.28	0.56	100	10.0%	4.6	109	2.7%	20.00	3.3	0.6	5.2	209	11.2	5.2
10	J	9,994	0.23	0.65	70	5.5%	3.9	160	2.8%	20.00	3.3	0.8	5.0	230	11.3	5.0
11	OS-A	77,099	1.77	0.53	100	4.3%	6.4	665	2.5%	15.00	2.4	4.7	11.1	765	14.3	11.1
12	OS-B	58,532	1.34	0.50	65	4.5%	5.4	405	3.8%	15.00	2.9	2.3	7.7	470	12.6	7.7
13	OS-C	91,667	2.10	0.51	65	4.5%	5.3	1035	1.9%	15.00	2.1	8.3	13.6	1100	16.1	13.6

Moadowbro	ook Park - Dra	inado De	nort									
	unoff Calculat		epon		Desi							
	hod Procedure)	10110			2001	gnotonn	0.100					
	ASIN INFORMATIO				-	RUNOFF				VE RUNO		
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	A	2.47	0.22	12.0	0.54	3.85	2.08					
2	В	1.85	0.51	8.9	0.94	4.31	4.04					
3	С	0.20	0.77	5.0	0.16	5.17	0.82					
4	D	0.87	0.42	11.5	0.36	3.92	1.43					
5	E	0.42	0.70	6.7	0.29	4.73	1.38					
6	F	0.10	0.88	5.0	0.09	5.17	0.44					
7	G	0.92	0.44	9.4	0.41	4.22	1.72					
8	Н	0.83	0.45	8.0	0.37	4.46	1.66					
9	I	0.28	0.56	5.2	0.16	5.12	0.82					
10	J	0.23	0.65	5.0	0.15	5.17	0.77					
11	OS-A	1.77	0.53	11.1	0.95	3.98	3.76					
12	OS-B	1.34	0.50	7.7	0.67	4.52	3.01					
13	OS-C	2.10	0.51	13.6	1.07	3.66	3.92					

Г

Proposed	brook Park - Dr. Runoff Calcula lethod Procedure)		Report		Des	ign Storm	100 Year					
BA	ASIN INFORMATIO	N		DIF	RECT RUN	OFF			CUMULATI	VE RUNOF	F	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	СхА	l in/hr	Q cfs	T(c) min	СхА	l in/hr	Q cfs	NOTES
1	А	2.47	0.45	12.0	1.11	6.47	7.19					
2	В	1.85	0.66	8.9	1.22	7.24	8.86					
3	С	0.20	0.87	5.0	0.18	8.68	1.53					
4	D	0.87	0.59	11.5	0.52	6.59	3.43					
5	E	0.42	0.81	6.7	0.34	7.94	2.70					
6	F	0.10	0.95	5.0	0.09	8.68	0.80					
7	G	0.92	0.61	9.4	0.57	7.09	4.02					
8	Н	0.83	0.62	8.0	0.51	7.48	3.85					
9	I	0.28	0.71	5.2	0.20	8.60	1.73					
10	J	0.23	0.77	5.0	0.18	8.68	1.54					
11	OS-A	1.77	0.69	11.1	1.22	6.68	8.14					
12	OS-B	1.34	0.66	7.7	0.89	7.59	6.73					
13	OS-C	2.10	0.67	13.6	1.41	6.15	8.67					

Meadowbrook Park

Drainage Report Review 2 comment: These areas do not match what figaso County, CO indicated in the narrative nor the drainage plan. Revise the design accordingly. Review 3: Unresolved. Basin C area is indicated as 0.71 acres and Basin D is indicated as 0.37 acres in the narrative and drainage plan. Please revise the design accordingly so that they are consistent with each other.

				SUMMAR	RY - PROPOSI	ED RUNOFF TA	BLE	
	DESIGN POINT	BASIN DESIGNA I	ON	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
	1	А		2.47	2.08	7.19		
\sim	\sim	B	\sim	1.85	4.04	8,86		
\langle	3	С		0.20	0.82	1.53	5	
6	4	D		0.87	1.43	3.43	$\boldsymbol{\gamma}$	
\cup	$\sqrt{5}$		\mathcal{L}	10421	1,38	L 2120L	7	
	6	F		0.10	0.44	0.80		
	7	G		0.92	1.72	4.02		
	8	Н		0.83	1.66	3.85		
	9	l		0.28	0.82	1.73		
	10	J		0.23	0.77	1.54		
	11	OS-A		1.77	3.76	8.14		
	12	OS-B		1.34	3.01	6.73		
	13	OS-C		2.10	3.92	8.67		
	14	POND OUTF	ALL		0.10	5.50		
	TOTAL			13.39	25.84	59.19		

HYDRAULIC CALCULATIONS

Friction Method	Manning Formula	
Solve For	Normal Depth	
nput Data		
Roughness Coefficient	0.030	
Channel Slope	0.040 ft/ft	
Normal Depth	11.8 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	23.54 cfs	

Cross Section for CDOT By Pass Ditch

V: 1 H: 1

11.8 in

Ditch Sizes.fm8 9/30/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.040 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	23.54 cfs	
Results		
Normal Depth	11.8 in	
Flow Area	3.9 ft ²	
Wetted Perimeter	8.1 ft	
Hydraulic Radius	5.7 in	
Top Width	7.89 ft	
Critical Depth	14.0 in	
Critical Slope	0.016 ft/ft	
Velocity	6.06 ft/s	
Velocity Head	0.57 ft	
Specific Energy	1.56 ft	
Froude Number	1.521	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.8 in	
Critical Depth	14.0 in	
Channel Slope	0.040 ft/ft	
Critical Slope	0.016 ft/ft	

Worksheet for CDOT By Pass Ditch

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	0.011 ft/ft			
Normal Depth	6.9 in			
Discharge	26.79 cfs			
		T	c o	
	0.20			
	0.00			
	-0.20	I		
	5 -0.40			
	0.40	4	V	
	± -0.80	~		
	-1.00		~	
	-1.20			Y
	-1.40			
	0+00	0+10	0+20 Station	0+30

Cross Section for Emergency Overflow Spillway

Worksheet for Emergency Overflow Spillway

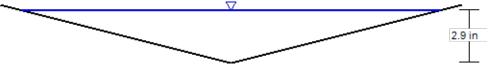
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.011 ft/ft	
Discharge	26.79 cfs	

Section Definitions

Station (ft)	Elevation (ft)
0+00	0.00
0+05	-0.09
0+06	-0.60
0+08	-0.70
0+18	-0.90
0+28	-1.10
0+29	-1.20
0+30	-0.70
0+35	-0.60

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00, 0.00)	(0+05, -0.09)	0.013
(0+05, -0.09)	(0+06, -0.60)	0.013
(0+06, -0.60)	(0+08, -0.70)	0.013
(0+08, -0.70)	(0+18, -0.90)	0.016
(0+18, -0.90)	(0+28, -1.10)	0.016
(0+28, -1.10)	(0+29, -1.20)	0.013
(0+29, -1.20)	(0+30, -0.70)	0.013
(0+30, -0.70)	(0+35, -0.60)	0.013


Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	6.9 in	
Roughness Coefficient	0.015	
Elevation	-0.63 ft	
Elevation Range	-1.2 to 0.0 ft	
Flow Area	6.7 ft ²	
Wetted Perimeter	27.2 ft	
Ditch Sizes.fm8 9/30/2021	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	FlowMas [10.03.00. Page 1 c

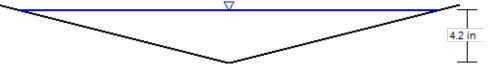
Results		
Hydraulic Radius	3.0 in	
Top Width	27.08 ft	
Normal Depth	6.9 in	
Critical Depth	7.7 in	
Critical Slope	0.005 ft/ft	
Velocity	4.01 ft/s	
Velocity Head	0.25 ft	
Specific Energy	0.82 ft	
Froude Number	1.422	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.9 in	
Critical Depth	7.7 in	
Channel Slope	0.011 ft/ft	
Critical Slope	0.005 ft/ft	

Worksheet for Emergency Overflow Spillway

Friction Method	Manning Formula	
Solve For	Normal Depth	
iput Data		
Roughness Coefficient	0.030	
Channel Slope	0.010 ft/ft	
Normal Depth	2.9 in	
_eft Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.27 cfs	

Cross Section for Meadowbrook Ditch North

V: 1 L H: 1


Ditch Sizes.fm8 9/30/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

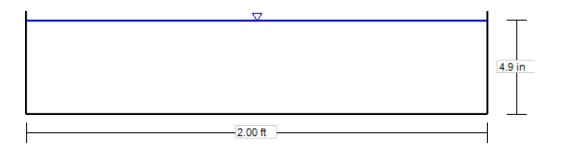
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.010 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.27 cfs	
Results		
Normal Depth	2.9 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	2.0 ft	
Hydraulic Radius	1.4 in	
Top Width	1.91 ft	
Critical Depth	2.3 in	
Critical Slope	0.030 ft/ft	
Velocity	1.18 ft/s	
Velocity Head	0.02 ft	
Specific Energy	0.26 ft	
Froude Number	0.601	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	2.9 in	
Critical Depth	2.3 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.030 ft/ft	

Worksheet for Meadowbrook Ditch North

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.010 ft/ft	
Normal Depth	4.2 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.73 cfs	

Cross Section for Meadowbrook Ditch-South

V: 1 L H: 1

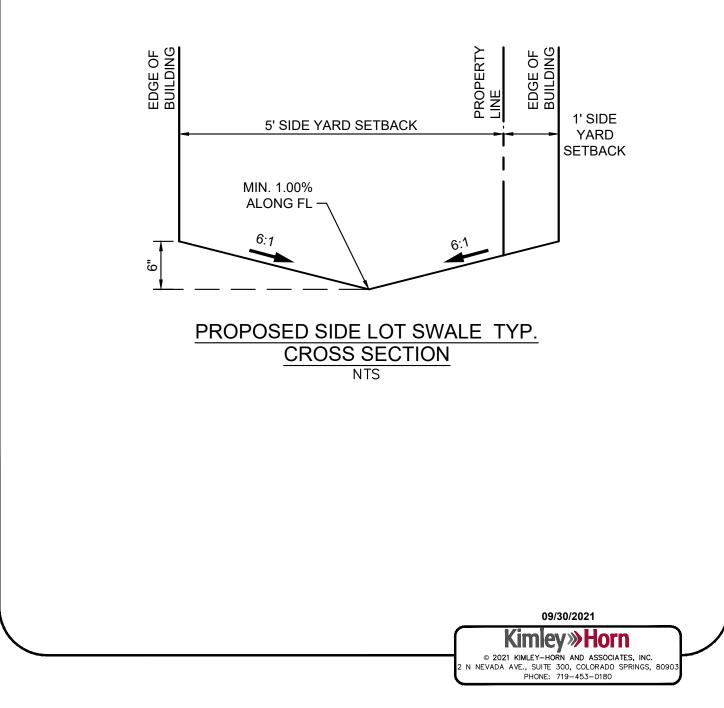

Ditch Sizes.fm8 9/30/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.010 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.73 cfs	
Results		
Normal Depth	4.2 in	
Flow Area	0.5 ft ²	
Wetted Perimeter	2.9 ft	
Hydraulic Radius	2.0 in	
Top Width	2.78 ft	
Critical Depth	3.5 in	
Critical Slope	0.026 ft/ft	
Velocity	1.51 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.38 ft	
Froude Number	0.638	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	4.2 in	
Critical Depth	3.5 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.026 ft/ft	

Worksheet for Meadowbrook Ditch-South

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Normal Depth	4.9 in	
Bottom Width	2.00 ft	
Discharge	4.04 cfs	

Cross Section for Rain Garden- Curb Chase

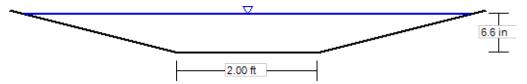


V: 1 L H: 1

Ditch Sizes.fm8 9/30/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Bottom Width	2.00 ft	
Discharge	4.04 cfs	
Results		
Normal Depth	4.9 in	
Flow Area	0.8 ft ²	
Wetted Perimeter	2.8 ft	
Hydraulic Radius	3.5 in	
Top Width	2.00 ft	
Critical Depth	6.0 in	
Critical Slope	0.005 ft/ft	
Velocity	4.99 ft/s	
Velocity Head	0.39 ft	
Specific Energy	0.79 ft	
Froude Number	1.382	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.9 in	
Critical Depth	6.0 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.005 ft/ft	

Worksheet for Rain Garden- Curb Chase



Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.010 ft/ft	
Left Side Slope	6.000 H:V	
Right Side Slope	6.000 H:V	
Discharge	2.92 cfs	
Results		
Normal Depth	6.0 in	
Flow Area	1.5 ft ²	
Wetted Perimeter	6.1 ft	
Hydraulic Radius	3.0 in	
Top Width	6.00 ft	
Critical Depth	5.2 in	
Critical Slope	0.022 ft/ft	
Velocity	1.95 ft/s	
Velocity Head	0.06 ft	
Specific Energy	0.56 ft	
Froude Number	0.686	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	6.0 in	
Critical Depth	5.2 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.022 ft/ft	

Worksheet for Side Lot Swale - Worst Case

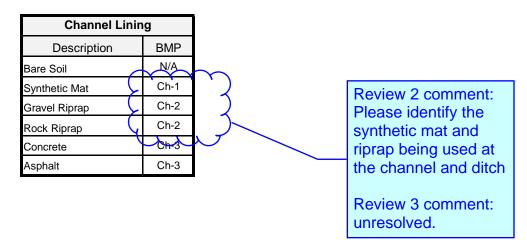
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.016 ft/ft	
Normal Depth	6.6 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	2.00 ft	
Discharge	7.19 cfs	

Cross Section for Trapezoidal Channel -Sub-Basin A

V: 1 H: 1

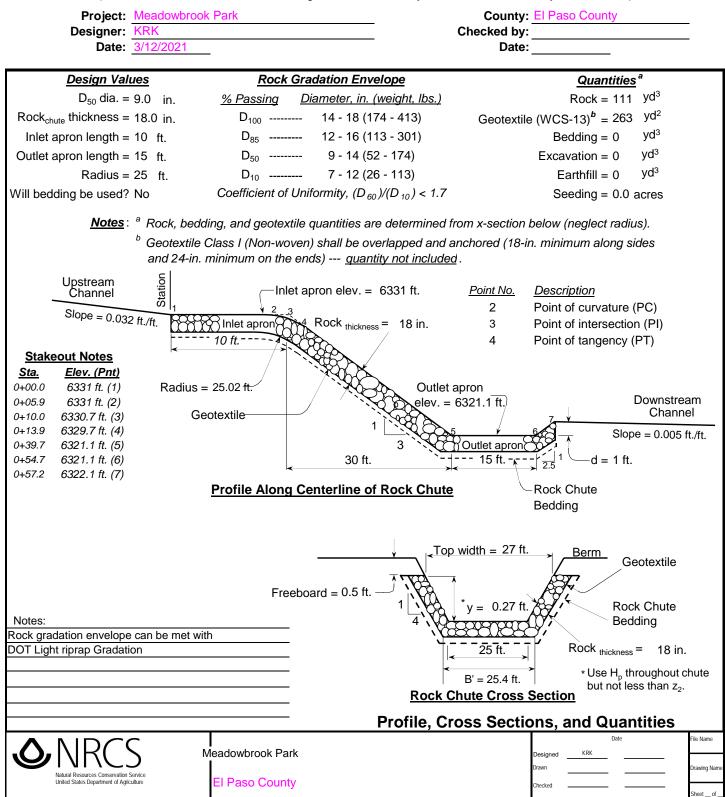
Ditch Sizes.fm8 9/30/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.016 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	2.00 ft	
Discharge	7.19 cfs	
Results		
Normal Depth	6.6 in	
Flow Area	2.3 ft ²	
Wetted Perimeter	6.5 ft	
Hydraulic Radius	4.2 in	
Top Width	6.39 ft	
Critical Depth	6.3 in	
Critical Slope	0.019 ft/ft	
Velocity	3.13 ft/s	
Velocity Head	0.15 ft	
Specific Energy	0.70 ft	
Froude Number	0.919	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	6.6 in	
Critical Depth	6.3 in	
Channel Slope	0.016 ft/ft	
Critical Slope	0.019 ft/ft	


Worksheet for Trapezoidal Channel -Sub-Basin A

							Di	tches										
Description	Drainage Area (DA)	Drainage Area (DA)	Runoff Coefficient (C)	Intensity (100-Year)	Flow (Q)	Velocity (V)	Liner	Ditch Shape	Bottom Width	Side Slope (H:V)	Total Depth	Running Slope	Depth of Flow	Manning's Number (n)	Freeboard	Channel Top Width	Ridge Width	Ridge Height
ID	sf	ac		in/hr	cfs	ft/s			ft	x:1	ft	%	ft		ft	ft	ft	ft
1) CDOT By Pass Ditch	226,948	5.21	0.69	8.67	23.54	6.09	Ch-2	Triangular	0	4:1	2.00	4.00	0.98	0.030	1.02	9.0	4	2.00
2) Meadowbrook Ditch North	4,792	0.11	0.35	6.79	0.26	1.20	N/A	Triangular	0	4:1	1.40	1.00	0.23	0.030	1.17	13.2	4	1.40
3) Meabowbrook Ditch South	13,939	0.32	0.35	6.65	0.74	2.75	N/A	Triangular	0	4:1	1.40	1.00	0.26	0.030	1.14	1.9	4	1.40
4) Trapezoidal Channel Sub-basin A	107,593	2.47	0.45	6.47	7.19	3.11	Ch-1	Trapizoidal	2	4:1	2.00	1.60	0.55	0.030	1.45	6.4	4	2.00

SITE DATA	
Location:	Colorado Springs
Frequency:	100-Year
Cover Desc.:	Graded Soil (Sandy 5-10%)
Channel Material:	Bare Soil


Blue = User Entered (Verify they reflect the current design)

Green = Calculated

Rock Chute Design - Cut/Paste Plan

(Version WI-Nov. 2017, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

ALLOWABLE VELOCITY AND MAXIMUM SHEAR STRESS Streambank and Shoreland Protection Code 580

Type of Treatment	Allowable Shear Ib/sq ft	Velocity ft/sec
Brush Mattresses ¹		
Staked only w/ rock riprap toe (initial)	0.8 - 4.1	5
Staked only w/ rock riprap toe (grown)	4.0 - 8.0	12
Coir Geotextile Roll ²		
Roll with coir rope mesh staked only without rock riprap toe	0.2 - 0.8	< 5
Roll with Polypropylene rope mesh staked only without rock riprap toe	0.8 - 3.0	< 8
Roll with Polypropylene rope mesh staked and with rock riprap toe	3.0 - 4.0	< 12
Live Fascine ³		
LF Bundle w/ rock riprap toe	2.0 - 3.1	8
Soils ⁴		÷
Fine colloidal sand	0.02-0.03	1.5
Sandy loam (noncolloidal)	0.03-0.04	1.75
Alluvial silt (noncolloidal)	0.045-0.05	2
Silty loam (noncolloidal)	0.045-0.05	1.75-2.25
Firm loam	0.075	2.5
Fine gravels	0.075	2.5
Stiff clay	0.26	3-4.5
Alluvial silt (colloidal)	0.26	3.75
Graded loam to cobbles	0.38	3.75
Graded silts to cobbles	0.43	4
Shales and hardpan	0.67	6
Gravel/Cobble ⁴		
1-inch	0.33	2.5-5
2-inch	0.67	3-6
6-inch	2	4-7.5
12-inch	4	5.5-12
Vegetation ⁴		-
Class A turf (ret class)	3.7	6-8
Class B turf (ret class)	2.1	4-7
Class C turf (ret class)	1	3.5
Retardance Class D	0.6	Design of roadside
Retardance Class E	0.35	channels HEC-15
Long native grasses	1.2-1.7	4-6
Short native and bunch grass	0.7-0.95	3-4

Tractive Forces (psf)= 62.4 lb/cf x normal depth (ft) x S (ft/ft)- 62.4 x (11.8/12) x 0.04 = 2.5 psf

Type of Treatment	Allowable Shear Ib/sq ft	Velocity ft/sec
Soil Bioengineering ⁴		
Wattles	0.2-1.0	3
Reed fascine	0.6-1.25	5
Coir roll	3-5	8
Vegetated coir mat	4-8	9.5
Live brush mattress (initial)	0.4-4.1	4
Live brush mattress (grown)	3.90-8.2	12
Brush layering (initial/grown)	0.4-6.25	12
Live fascine	1.25-3.10	6-8
Live willow stakes	2.10-3.10	3-10
Hard Surfacing ^₄		
Gabions	10	14-19
Concrete	12.5	>18
Boulder Clusters ⁵		
Boulder		
Very large (>80-inch diameter)	37.4	25
Large (>40-in diameter)	18.7	19
Medium (>20-inch diameter)	9.3	14
Small (>10-inch diameter)	4.7	10
Cobble		
Large (>5-inch diameter)	2.3	7
Small (>2.5-inch diameter)	1.1	5
Gravel		
Very Course (>1.25-inch diameter)	0.54	3
Course (>.63-inch diameter)	0.25	2.5

¹ Brush mattresses (ERDC TN EMRRP-SR-23): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr23.pdf</u>. ² Coir Geotextile roll (ERDC TN EMRRP-SR-04): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr04.pdf</u>. ³ Live Fascine (ERDC TN EMRRP-SR-31): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr31.pdf</u>.

⁴ Stream Restoration Materials (ERDC TN EMRRP-SR-29): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr29.pdf</u>.
 ⁵ Boulder Clusters (ERDC TN EMRRP-SR-11): <u>http://el.erdc.usace.army.mil/emrrp/pdf/sr11.pdf</u>.

Additional Sources:

Wisconsin Department of Transportation, Erosion Control - Product Acceptability List (PAL): http://www.dot.wisconsin.gov/library/research/docs/finalreports/tau-finalreports/erosion.pdf

Texas Department of Transportation, Approved Products List: http://www.dot.state.tx.us/mnt/erosion/contents.htm

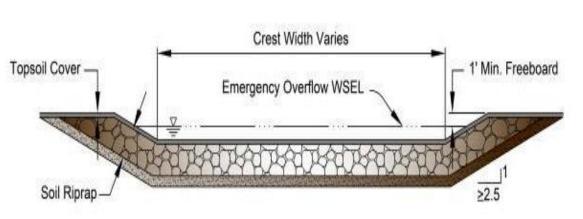
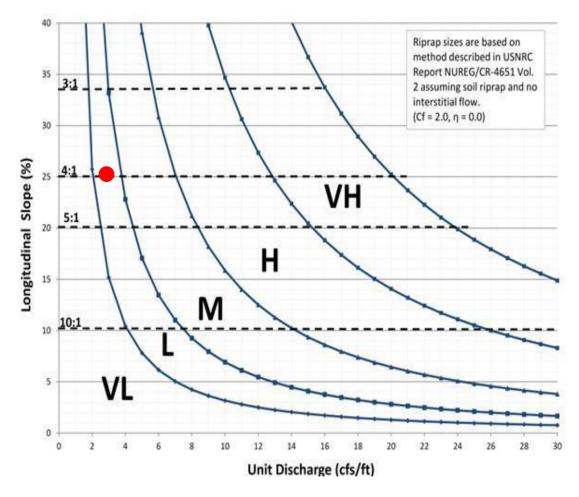



Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Meadowb	prook Park	
Basin ID:		
ZONE 3 ZONE 2 ZONE 1 ZONE 1 AND 2	100-YEAR ORIFICE	2
	ration (Retention Pond)	
ORIFICES	ORIFICE	2

Watershed Information

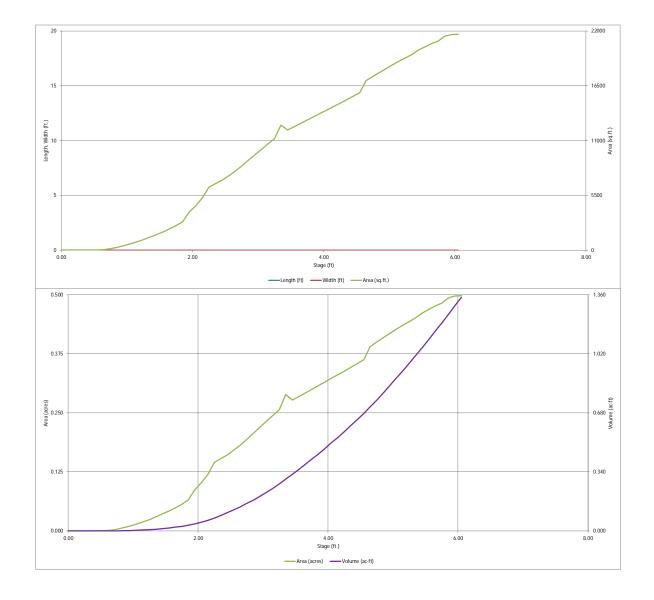
ator shou mitor mation		
Selected BMP Type =	EDB	
Watershed Area =	8.17	acres
Watershed Length =	1,090	ft
Watershed Length to Centroid =	350	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	43.30%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyard	graphinoceuu	10.
Water Quality Capture Volume (WQCV) =	0.101	acre-feet
Excess Urban Runoff Volume (EURV) =	0.392	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.288	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.386	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.463	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.600	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.734	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.908	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.282	acre-feet
Approximate 2-yr Detention Volume =	0.250	acre-feet
Approximate 5-yr Detention Volume =	0.331	acre-feet
Approximate 10-yr Detention Volume =	0.406	acre-feet
Approximate 25-yr Detention Volume =	0.502	acre-feet
Approximate 50-yr Detention Volume =	0.565	acre-feet
Approximate 100-yr Detention Volume =	0.648	acre-feet

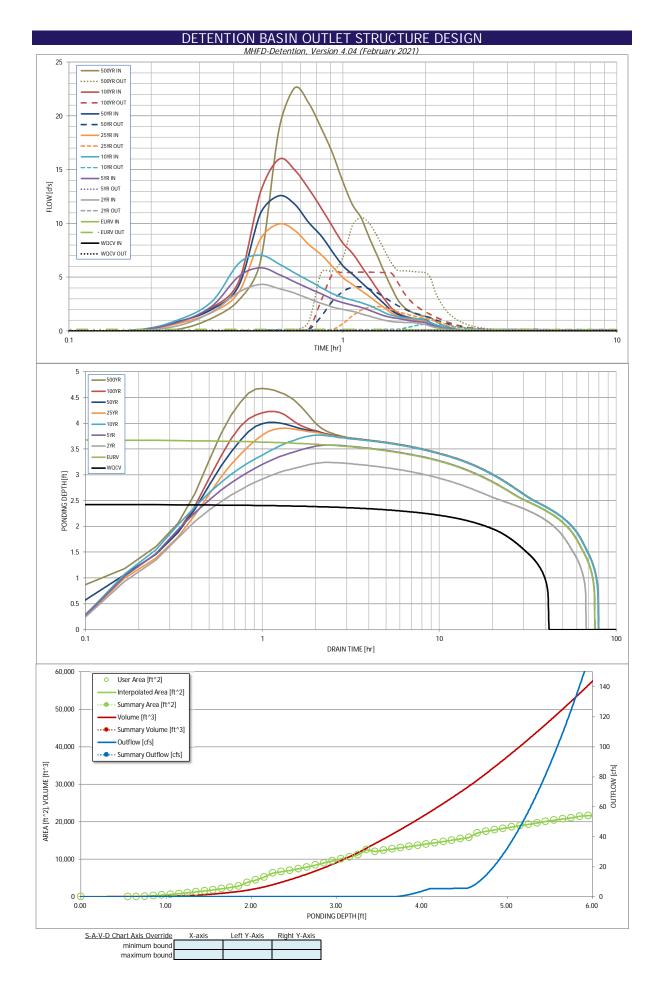
Define	Zones	and	Basin	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.101	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.291	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.256	acre-feet
Total Detention Basin Volume =	0.648	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (V_{total}) = user acre-feet

	_		_							
EAR	Depth Increment =		ft							
			Optional				Optional			
ntion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override Area (ft ²)	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)		(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				16	0.000		
	Top of ISV		0.55				22	0.001	10	0.000
			0.65				57	0.001	14	0.000
			0.75				147	0.003	25	0.001
			0.85				278	0.006	46	0.001
			0.95				434	0.010	81	0.002
			1.05				615	0.014	134	0.003
			1.15				814	0.019	205	0.005
			1.25				1,026	0.024	297	0.007
			1.35				1,287	0.030	413	0.009
			1.45				1,556	0.036	555	0.013
			1.55				1,823	0.042	724	0.017
			1.65				2,124	0.049	921	0.021
			1.75				2,458	0.056	1,151	0.026
Optional User Overrides			1.85				2,846	0.065	1,416	0.033
0.101 acre-feet			1.95				3,816	0.088	1,749	0.040
acre-feet			2.05				4,437	0.102	2,161	0.050
1.19 inches			2.15				5,224	0.120	2,644	0.061
1.50 inches			2.25				6,307	0.145	3,221	0.074
1.75 inches			2.35				6,666	0.153	3,870	0.089
2.00 inches			2.45				7,002	0.161	4,553	0.105
			2.55							
2.25 inches 2.52 inches			2.55				7,449 7,916	0.171 0.182	5,276 6,044	0.121 0.139
inches			2.75				8,441	0.194	6,862	0.158
			2.85				9,005	0.207	7,734	0.178
			2.95				9,556	0.219	8,662	0.199
			3.05				10,096	0.232	9,645	0.221
			3.15				10,634	0.244	10,681	0.245
			3.25	-	-		11,191	0.257	11,772	0.270
			3.35				12,559	0.288	12,960	0.298
			3.45				12,056	0.277	14,191	0.326
			3.55				12,386	0.284	15,413	0.354
			3.65				12,718	0.292	16,668	0.383
			3.75				13,050	0.300	17,956	0.412
			3.85				13,384	0.307	19,278	0.443
			3.85							
							13,720	0.315	20,633	0.474
			4.05				14,057	0.323	22,022	0.506
			4.15				14,395	0.330	23,445	0.538
			4.25				14,734	0.338	24,901	0.572
			4.35				15,080	0.346	26,392	0.606
			4.45				15,434	0.354	27,918	0.641
			4.55				15,793	0.363	29,479	0.677
			4.65				17,002	0.390	31,119	0.714
			4.75				17,444	0.400	32,841	0.754
			4.85				17,833	0.409	34,605	0.794
			4.95				18,199	0.418	36,406	0.836
			5.05							
							18,586	0.427	38,246	0.878
			5.15				18,965	0.435	40,123	0.921
			5.25				19,308	0.443	42,037	0.965
			5.35				19,656	0.451	43,985	1.010
			5.45				20,089	0.461	45,972	1.055
			5.55				20,410	0.469	47,997	1.102
			5.65				20,747	0.476	50,055	1.149
			5.75				21,001	0.482	52,143	1.197
			5.85				21,480	0.493	54,267	1.246
			5.95				21,646	0.497	56,423	1.295
			6.05				21,700	0.498	58,590	1.345
				-						
			-							
			-	-						
			-							
			1				1			1


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Meadowbrook Par		D-Detention, Ver.											
Basin I D:														
ZONE 3 ZONE 2 ZONE 1		211		Estimated	Estimated	Outlet Type								
VOLUME EURY WOCV		\geq	Zone 1 (WQCV)	Stage (ft) 2.43	Volume (ac-ft) 0.101	Outlet Type Orifice Plate]							
	100-YEAR		Zone 2 (EURV)	3.69	0.291	Circular Orifice								
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.48	0.256	Weir&Pipe (Restrict)								
POOL Example Zone	Configuration (Re	tention Pond)		Total (all zones)	0.648		1							
User Input: Orifice at Underdrain Outlet (typical						-		ters for Underdrain						
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)		drain Orifice Area =		ft ²						
Underdrain Orifice Diameter =	N/A	inches			Underdrain	n Orifice Centroid =	N/A	feet						
User Input: Orifice Plate with one or more orific	es or Elliptical Slot '	Neir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	ters for Plate						
Invert of Lowest Orifice =		ft (relative to basin	5	,		ice Area per Row =		ft ²						
Depth at top of Zone using Orifice Plate =		ft (relative to basin	<pre>bottom at Stage =</pre>	= 0 ft)		liptical Half-Width =	N/A	feet						
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	N/A 0.47	inches sq. inches (diamete	r = 3/4 inch)			tical Slot Centroid = Elliptical Slot Area =	N/A N/A	feet ft ²						
	0.17	sq. monos (alamore	5, 0, 1 mony											
User Input: Stage and Total Area of Each Orific				5 (())	5 5 4 11 11		5 7 4 4 8							
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00	Row 2 (optional) 1.50	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)						
Orifice Area (sq. inches)		0.47												
				·	·									
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)						
Stage of Orifice Centroid (ft)														
Orifice Area (sq. inches)														
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	ters for Vertical Orif	ice					
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected						
Invert of Vertical Orifice =	2.43	N/A		h bottom at Stage =		rtical Orifice Area =	0.02	N/A	ft ²					
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	3.69	N/A N/A	ft (relative to basir inches	n bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	0.08	N/A	feet					
ventical Onlice Diameter =	1.88	N/A	inches											
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir (and No Ou	tlet Pipe)		Calculated Parame	ters for Overflow W	eir					
	Zone 3 Weir	Not Selected	rovi	ow 1 oom	mont: Dic		Zone 3 Weir	Not Selected	and					
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	3.69 4 3.67	N/A N/A				ease adju			seu					
Overflow Weir From Edge Length =	0.00	N/A N/A	H:V flow	is equal t	to or less	than pre-	developm	nent _{N/A}						
Horiz. Length of Weir Sides =	2.79	N/A	feet Rev	iew 2: Un	resolved.	Area w/o Debris =								
Overflow Grate Type =	Type C Grate	N/A					ddroee oc							
Debris Clogging % =	50%	N/A	70					mmont a						
Lloss Janut, Outlat Dire/ Eleve Destriction Dist			l It an	Debris Clogging % = <u>50%</u> N/A % Review 3: unresolved. Please address comment above. It appears that if you slightly increase the overflow weir										
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifica D	anteinten Diete en D			at if you s	lightly inc	rease the	overflow						
					at if you s	lightly inc	rease the	overflow						
Depth to Invert of Outlet Pipe =	Circular Orifice, R Zone 3 Restrictor 0.50	estrictor Plate, or R Not Selected N/A	fron	t edge he	at if you s ight it wo		rease the	overflow Flow Restriction Pla SUE.Selected						
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor	Not Selected	fron		at if you s ight it wo	lightly inc	rease the ate this iss	overflow						
	Zone 3 Restrictor 0.50 30.00	Not Selected N/A N/A	ft (distance below b	t edge he	at if you s ight it wo	lightly inc uld allevia	tease the this iss	Overflow Flow Restriction Pla Sue-Selected N/A	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Restrictor 0.50 30.00 5.00	Not Selected N/A N/A	ft (distance below b	t edge he	at if you s ight it wo	lightly inc uld allevia uner onnice Area = t Orifice Centoid =	use use 0.54 0.25 0.84 0.84	N/A N/A	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal)	Not Selected N/A N/A	ft (distance below b inches inches	t edge he asin bottom at stage Half-Cent	at if you s ight it wo = 010 0 Outle ral Angle of Restric	lightly inc uld allevia unet onfice Area = t Orifice Centroid = tor Plate on Pipe =	US4 0.25 0.84 Calculated Parame	N/A N/A N/A N/A	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52	Not Selected N/A N/A	ft (distance below b inches inches	t edge he asin bottom at stage Half-Cent	at if you s ight it wo = ony O Outle ral Angle of Restric Spillway E	lightly inc uld allevia unet onnice Area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth=	uncertain 0.54 0.25 0.84	N/A N/A	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage=	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00	Not Selected N/A N/A ft (relative to basin	ft (distance below b inches inches	t edge he asin bottom at stage Half-Cent	at if you s ight it wo outle ral Angle of Restric Spillway E Stage at	lightly inc uld allevia unet onfice Area = t Orifice Centroid = tor Plate on Pipe =	US4 0.25 0.84 Calculated Parame 0.35	N/A N/A N/A N/A ters for Spillway feet	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length =	Zone 3 Restrictor 0.50 30.00 5.00 <u>Trapezoidal)</u> 4.52 25.00 4.00	Not Selected N/A N/A ft (relative to basin feet	ft (distance below b inches inches	t edge he asin bottom at stage Half-Cent	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at	lightly inc uld allevia uner ornice Area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Fop of Freebcard =	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49	N/A N/A N/A N/A ters for Spillway feet feet	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes =	Zone 3 Restrictor 0.50 30.00 5.00 <u>Trapezoidal)</u> 4.52 25.00 4.00	Not Selected N/A N/A ft (relative to basin feet H:V	ft (distance below b inches inches	t edge he asin bottom at stage Half-Cent	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at	lightly inc uter ornice prea = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Fop of Freebcard =	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49	N/A N/A N/A N/A ters for Spillway feet feet acres	weir					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	ectangul fron ft (distance berow b inches inches bottom at Stage =	asin bottom at stage Half-Cent	at if you s ight it wo Outle ral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at	lightly inc uter ornice prea = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Fop of Freebcard =	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	overflow N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	weir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WQCV	Not Selected N/A N/A ft (relative to basin feet H:V feet cide the default CUP EURV	ectangul fron ft (distance below b inches inches a bottom at Stage = <u>4P hydrographs and</u> 2 Year	t edge he asin bottom at stage Half-Cent = 0 ft) d <i>runoff volumes by</i> 5 Year	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at rentering new value 10 Year	lightly inc uld allevia unet onnice prea = t Orifice Cent oid = tor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = top of Freebcard = top of Freebcard =	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	Overflow SUE N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	weir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Restrictor 0.50 30.00 5.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A	ectangul from ff (distance below b inches inches a bottom at Stage = <u>AP hydrographs and 2 Year</u> 1.19	t edge he asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.50	at if you s ight it wo outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	lightly inc uld allevia unet onnice Area = t Orifice Cent oid = tor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = top of Freebcard = <u>es in the Inflow Hyc</u> <u>25 Yea</u> 2.00	Calculated Parame 0.35 5.87 0.49 1.25	overflow Flow Restriction Plo Suce - Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft uums W through Au 100 Year 2.52	weir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A 0.101 N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet cide the default CUP EURV N/A 0.392 N/A	ectangul from ft (distance below b inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 0.288 0.288	t edge he asin bottom at stage Half-Cent = 0 ft) 5 Year 1.50 0.386 0.386	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at Centering new valu 10 Year 1.75 0.463 0.463	lightly inc unet ornice area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = Cop of Cop	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	Overflow N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908	Weir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over. WQCV N/A 0.101 N/A N/A	Not Selected N/A N/A ft (relative to basin feet H:V feet ide the default CUH EURV N/A 0.392 N/A N/A	ectangul from ft (distance below b inches inches a bottom at Stage = <u>IP hydrographs and</u> <u>2 Year</u> 1.19 0.288	A runoff volumes by 5 Year 1.50 0.386	at if you s ight it wo outle ral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at entering new value 1.75 0.463	lightly inc. uld allevia uner ornice area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = to freebcard = to freebcard = 20 of Freebcard = 25 Yea 2.00 0.600	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	Overflow Inva N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 0.908	Weir ret feet radians 500 Year 3.14 1.282					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A 0.101 N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet cide the default CUP EURV N/A 0.392 N/A	ectangul from ft (distance below b inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 0.288 0.288	t edge he asin bottom at stage Half-Cent = 0 ft) 5 Year 1.50 0.386 0.386	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at Centering new valu 10 Year 1.75 0.463 0.463	lightly inc unet ornice area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = Cop of Cop	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	Overflow N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908	Weir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow D (cfs) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A 0.101 N/A N/A N/A N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.392 N/A N/A N/A N/A N/A	ectangul from ff (distance below b inches inches inches inches n bottom at Stage = dP hydrographs and 2 Year 1.19 0.288 0.288 0.1 0.01 4.3	t edge he asin bottom at stage Half-Cent = 0 ft) 5 Year 1.50 0.386 0.386 0.1 	at if you s ight it wo outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new valu 10 Year 1.75 0.463 0.463 0.2 0.2	lightly inc uide allevia uite ornice area = t Orifice Cent oid = tor Plate on Pipe = besign Flow Depth= Top of Freebcard = Top of Freebcard = rop of Freebcard = 25 Yea 2.00 0.600 1.7 0.21	cease the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 0.734 3.4 0.42	Overflow Fine Restriction Pla N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908 5.6 0.68 16.0	 Weir feet radians 500 Year 3.14 1.282 9.9 1.22 22.6 					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Redevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over. WQCV N/A 0.101 N/A N/A N/A 0.0	Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.392 N/A N/A N/A N/A N/A N/A N/A 0.2	ectangul from ft (distance below o inches inches bottom at Stage = <i>AP hydrographs and</i> 2 Year 1.19 0.288 0.288 0.1 0.1	t edge he asin bottom at stage Half-Cent = 0 ft) 5 Year 1.50 0.386 0.386 0.1 	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new valu 10 Year 1.75 0.463 0.2 0.2 0.2 7.1 0.7	lightly inc uter onnice Area = t Orifice Cent oid = tor Plate on Pipe = tor Plate on Pipe = Cop of Freebcard = Top of Freebcard = Top of Freebcard = Cop of Content of Content Content of Content of Content of Content Content of Content of Conten	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25	Overflow Flow Restriction Plo SUC -Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.52 0.908 0.908 5.6 5.6 16.0 5.5	Solution Solution					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet CURV N/A N/A N/A N/A N/A N/A N/A N/A O.2 N/A Overflow Weir 1	ectangul from ft (distance berow b inches inches bottom at Stage =	t edge he asin bottom at stage Half-Cent = 0 ft) 1.50 0.386 0.386 0.1 0.02 5.9 0.1 1.1 Vertical Orifice 1	at if you s ight it wo outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.463 0.463 0.2 0.2 0.2 7.1 0.7 3.5 Overflow Weir 1	lightly inc uner ornice area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = Top of Freebcard = 2.00 0.600 0.600 1.7 0.21 0.00 0.600 1.7 0.21 0.00 0.00 0.600 1.7 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 0.734 3.4 0.42 V2.6 4.1 1.2 Overflow Weir 1	Overflow N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908 5.6 0.68 16.0 5.5 1.0 Outlet Plate 1	Veir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow A (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A 0.101 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.392 N/A N/A N/A N/A N/A N/A N/A O.2 N/A N/A Overflow Weir 1 N/A	ectangul from ft (distance below o inches inches bottom at Stage =	t edge he asin bottom at Stage Half-Cent = 0 ft) = 0 f	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new valu 10 Year 1.75 0.463 0.463 0.2 7.7 0.7 3.5 Overflow Weir 1 0,0	Lightly inc uild allevia uilet ornice preaded t Orifice Cent oid = tor Plate on Pipe = besign Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = 200 0.600 1.7 0.21 Top 2.3 1.3 Overflow Weir 1 0.3	cease the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 3.4 0.42 2.6 4.1 1.2 Overflow Weir 1 0.6	Overflow Flow Restriction Pla N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908 5.6 0.668 16.0 5.5 1.0 0.004 Et Plate 1 7,07	 Weir feet radians 500 Year 3.14 1.282 1.282 1.282 9.9 1.22 22.6 10.6 1.1 Spillway 0.8 					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet CURV N/A N/A N/A N/A N/A N/A N/A N/A O.2 N/A Overflow Weir 1	ectangul from ft (distance berow b inches inches bottom at Stage =	t edge he asin bottom at stage Half-Cent = 0 ft) 1.50 0.386 0.386 0.1 0.02 5.9 0.1 1.1 Vertical Orifice 1	at if you s ight it wo outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.463 0.463 0.2 0.2 0.2 7.1 0.7 3.5 Overflow Weir 1	lightly inc uner ornice area = t Orifice Cent oid = ctor Plate on Pipe = Design Flow Depth= Top of Freebcard = Top of Freebcard = Top of Freebcard = Top of Freebcard = 2.00 0.600 0.600 1.7 0.21 0.00 0.600 1.7 0.21 0.00 0.00 0.600 1.7 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00	case the 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 0.734 3.4 0.42 V2.6 4.1 1.2 Overflow Weir 1	Overflow N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 0.908 5.6 0.68 16.0 5.5 1.0 Outlet Plate 1	Veir feet radians					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Unit Peak N (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A O.392 N/A N/A N/A N/A N/A N/A N/A N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A	ectangul from ft (distance berow b inches inches bottom at Stage =	t edge he asin bottom at stage Half-Cent = 0 ft) = 0 f	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.463 0.463 0.2 0.7 0.7 3.5 Overflow Weir 1 0,1 40 69 76	lightly inc uter ornice area = t Orifice Cent oid = tor Plate on Pipe = Cerror Plate on Plat	case the ate this iss 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 0.734 0.734 0.42 V2.6 4.1 1.2 Overflow Weir 1 0.6 MYA 65 74	Overflow N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A. 100 Year 2.52 0.908 0.908 5.6 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 10.0 0.908 0.73	 Weir feet radians 500 Year 3.14 1.282 9.9 1.22 22.6 10.6 1.1 Spillway 0.8 N/A 59 70 					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow A (cfs) = Predevelopment Unit Peak RIOW, q (cfs/acre) = Peak Inflow A (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow O (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A 0.101 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.392 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ectangul from ft (distance below o inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 0.288 0.288 0.1 0.288 0.1 0.1 N/A Vertical Orifice 1 N/A N/A 65 3.24	t edge he asin bottom at stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 0 ft) = 0 ft) = 0 ft = 0 f	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 0.463 0.463 0.2 7.7 0.7 3.5 Overflow Weir 1 0.7 3.5 Overflow Weir 1 0.7 69 76 3.77	lightly inc uter onnice prea = t Orifice Cent oid = tor Plate on Pipe = Cop of Freebcard = Fop of Freebcard = Fop of Freebcard = Fop of Freebcard = Cop of Freebcard	cease the ate this iss 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 3.4 0.42 2.6 4.1 1.2 Overflow Weir 1 0.6 74 4.02	Overflow Fine Restriction Pla SUC - Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A 100 Year 2.52 0.908 5.6 0.68 16.0 5.5 1.0 0.048 16.0 5.5 1.0 0.048 1.0 0.7 N/A 63 73 4.23	Weir feet radians 500 Year 3.14 1.282 9.9 1.22 22.6 10.6 1.1 Spillway 0.8 N/A 59 70 4.68					
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Unit Peak N (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Restrictor 0.50 30.00 5.00 Trapezoidal) 4.52 25.00 4.00 1.00 The user can over WOCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A O.392 N/A N/A N/A N/A N/A N/A N/A N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A O.2 N/A	ectangul from ft (distance berow b inches inches bottom at Stage =	t edge he asin bottom at stage Half-Cent = 0 ft) = 0 f	at if you s ight it wo outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 0.463 0.463 0.2 0.7 0.7 3.5 Overflow Weir 1 0,1 40 69 76	lightly inc uter ornice area = t Orifice Cent oid = tor Plate on Pipe = Cerror Plate on Plat	case the ate this iss 0.54 0.25 0.84 Calculated Parame 0.35 5.87 0.49 1.25 drographs table (Co 50 Year 2.25 0.734 0.734 0.734 0.42 V2.6 4.1 1.2 Overflow Weir 1 0.6 MYA 65 74	Overflow N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Umns W through A. 100 Year 2.52 0.908 0.908 5.6 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 16.0 5.5 0.68 10.0 0.908 0.73	 Weir feet radians 500 Year 3.14 1.282 9.9 1.22 22.6 10.6 1.1 Spillway 0.8 N/A 59 70 					

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

the calculated inflow hydrographs from this workbook with inflow hydrographs de ed in a separate program The user can

	The user can o	verride the calcu	ulated inflow hyd	drographs from	this workbook w	ith inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.19
	0:15:00	0.00	0.00	0.51	0.83	1.04	0.70	0.88	0.86	1.23
	0:20:00	0.00	0.00	1.81	2.36	2.78	1.76	2.05	2.21	2.88
	0:25:00	0.00	0.00	3.63	5.09	6.31	3.63	4.24	4.65	6.44
	0:30:00	0.00	0.00	4.33	5.88	7.06	8.53	10.91	12.87	18.68
	0:35:00	0.00	0.00	3.97	5.27	6.26	9.98	12.58	15.98	22.60
	0:40:00	0.00	0.00	3.53	4.58	5.41	9.37	11.81	15.00	21.21
	0:50:00	0.00	0.00	3.02 2.59	3.98 3.47	4.71 4.04	8.06 7.11	10.11 8.85	13.23 11.45	18.88 16.50
	0:55:00	0.00	0.00	2.24	2.98	3.47	5.97	7.35	9.69	13.89
	1:00:00	0.00	0.00	2.01	2.65	3.13	4.98	6.08	8.19	11.76
	1:05:00	0.00	0.00	1.84	2.42	2.88	4.34	5.28	7.24	10.49
	1:10:00	0.00	0.00	1.61	2.21	2.63	3.75	4.52	6.03	8.64
	1:15:00	0.00	0.00	1.39	1.94	2.39	3.23	3.86	4.98	7.04
	1:20:00	0.00	0.00	1.18	1.66	2.06	2.66	3.15	3.91	5.47
	1:25:00	0.00	0.00	1.01	1.42	1.71	2.17	2.53	2.98	4.10
	1:30:00 1:35:00	0.00	0.00	0.90	1.27	1.48	1.69	1.94	2.19	2.94
	1:35:00	0.00	0.00	0.84	1.19	1.36 1.27	1.38 1.21	1.57	1.69 1.43	2.26
	1:45:00	0.00	0.00	0.80	0.98	1.27	1.21	1.37	1.43	1.64
	1:50:00	0.00	0.00	0.79	0.98	1.17	1.03	1.25	1.16	1.04
	1:55:00	0.00	0.00	0.69	0.86	1.12	0.99	1.11	1.08	1.36
	2:00:00	0.00	0.00	0.61	0.80	1.02	0.95	1.07	1.02	1.28
	2:05:00	0.00	0.00	0.47	0.61	0.77	0.73	0.81	0.76	0.95
	2:10:00	0.00	0.00	0.35	0.45	0.57	0.54	0.60	0.56	0.70
	2:15:00	0.00	0.00	0.26	0.34	0.42	0.40	0.44	0.42	0.52
	2:20:00 2:25:00	0.00	0.00	0.19	0.25	0.31	0.29	0.33	0.31	0.38
	2:23:00	0.00	0.00	0.14	0.18	0.23	0.21	0.23	0.22	0.27
	2:35:00	0.00	0.00	0.10	0.13	0.18	0.15	0.17	0.18	0.19
	2:40:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.08	0.09
	2:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.06
	2:50:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.02	0.03
	2:55:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of al
							outlets (e.g. vertical orifice.
							overflow grate, and spillway where applicable).
							where applicable).
							_
							-
							-
						-	
							-
							1
							-
							-
							-
							-
							-
							_
							-
						-	
							-
							-
							1
							4
					L		1
							1
							-

Kimley »Horn

Forebay Sizing Calculations- Detention Basin Forebay Contributing Sub-Basins: C-J

Checked By Forebay A Flow: $Q_{100} = (cfs)$ Required Release Rate Release 2% of the undetained Forebay Release 100-year peak discharge by way and Configuration 19.60 0.39 of a wall/notch or berm/pipe configuration Required (CF) Provided (CF) Minimum Forebay 40hr drain time a = 1 Volume Required I = 0.641 2% of the WQCV 70.07 84.00 A = 3.85 AC Maximum Forebay Required Provided Depth 18" Max 18" Concrete Forebay Structure Forebay Notch Calculations $Q = C_o A_o (2gH_o)$ 0.39 cfs Qa 2% of Peak 100 YR Discharge for contributing Sub-Basins 0.6 0.5 ft H, 32.2 ft/s² 0.12 ft² 0.08 ft 0.92 in 3" Minimum per Criteria

 $WQCV = a(0.91l^3 - 1.19l^2 + 0.78l)$

Equation 3-1

2/22/2021

KRK

JRH

Date

Prepared By

Where:

WQCV = Water Quality Capture Volume (watershed inches)

а = Coefficient corresponding to WQCV drain time (Table 3-2)

= Imperviousness (%/100) (see Figures 3-3 through 3-5 [single family land use] and /or the *Runoff* chapter of Volume 1[other typical land uses]) I

Table 3-2. Drain Time Coefficients for WQCV Calculations

Drain Time (hrs)	Coefficient, a
12 hours	0.8
24 hours	0.9
40 hours	1.0

Kimley **»Horn**

Forebay Sizing Calculations- Detention Basin Forebay Contributing Sub-Basins: A

3					
		Foreb	ay B		
	Required	Flow: Q ₁₀₀ = (cfs)	Release Rate		
Forebay Release and Configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe configuration	7.19	0.14		
Minimum Forebay		40hr drain time a = 1	Required (CF)	Provided (CF)	
Volume Required	2% of the WQCV	I = 0.197 A = 2.47 AC	20.52	154.00	
Maximum Foreboy			1		
Maximum Forebay Depth	<u>Required</u> 12" Max	Provided 12"	Concrete Berm		
Forebay Notch Calc	ulations]		
$Q = C_o A_o (2gH_o)^{0.5}$	5				
Q _a	0.14	cfs	2% of Peak 100 YR D	ischarge for contrib	uting Sub-Ba
C _o	0.6				
H _o	0.5				
g		ft/s ²			
		61 ²			
A _a	0.04	π	4		
La	0.03	ft	1		
3	0.34		3" Minimum per Cri	toria	

 $WQCV = a(0.91I^3 - 1.19I^2 + 0.78I)$

Equation 3-1

2/22/2021

KRK

JRH

Date

Prepared By

Checked By

Where:

WQCV = Water Quality Capture Volume (watershed inches)

a = Coefficient corresponding to WQCV drain time (Table 3-2)

I = Imperviousness (%/100) (see Figures 3-3 through 3-5 [single family land use] and /or the Runoff chapter of Volume 1[other typical land uses])

Table 3-2. Drain Time Coefficients for WQCV Calculations

Drain Time (hrs)	Coefficient, a
12 hours	0.8
24 hours	0.9
40 hours	1.0

Version 4.06 Released August 2018

INLET MANAGEMENT

Worksheet Protected

NLET NAME	Design Point 3	Design Point 4	Design Point 5	Design Point 6	Design Point 7
ite Type (Urban or Rural)					
let Application (Street or Area)	STREET	STREET	STREET	STREET	STREET
vdraulic Condition	In Sump	In Sump	On Grade	In Sump	In Sump
let Type	CDOT Type R Curb Opening	CDOT Type C Grate	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
R-DEFINED INPUT					
ser-Defined Design Flows					
nor Q _{Known} (cfs)	2.4	0.2	1.4	0.4	1.7
ajor Q _{Known} (cfs)	4.8	1.2	2.7	0.8	4.0
ypass (Carry-Over) Flow from Upstream					
eceive Bypass Flow from:	No Bypass Flow Received	User-Defined	User-Defined	No Bypass Flow Received	No Bypass Flow Received
inor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
ajor Bypass Flow Received, Q _b (cfs)	0.0	0.1	0.1	0.0	0.0
atershed Characteristics					
ubcatchment Area (acres)					
ercent Impervious					
RCS Soil Type					
Vatershed Profile					
verland Slope (ft/ft)					
verland Length (ft)					
hannel Slope (ft/ft)					
Channel Length (ft)					
· · · ·					
Ainor Storm Rainfall Input			-		
Design Storm Return Period, T _r (years)					
Dne-Hour Precipitation, P ₁ (inches)					
Aajor Storm Rainfall Input					
esign Storm Return Period, T _r (years)					
Dne-Hour Precipitation, P ₁ (inches)					
CULATED OUTPUT					
CULATED OUTPUT					
linor Total Design Peak Flow, Q (cfs)	2.4	0.2	1.4	0.4	1.7
lajor Total Design Peak Flow, Q (cfs)	4.8	1.3	2.8	0.4	4.0
linor Flow Bypassed Downstream, Q _b (cfs)	4.8 N/A	N/A	0.0	N/A	4.0 N/A
lajor Flow Bypassed Downstream, $Q_{\rm b}$ (cfs)	N/A N/A	N/A N/A	0.0	N/A N/A	N/A
ajor now bypassed bownstream, Q _b (cis)	IN/A	IN/A	0.7	IN/A	IN/A
linor Storm (Calculated) Analysis of Flow Ti	me				
	N/A	N/A	N/A	N/A	N/A

C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A

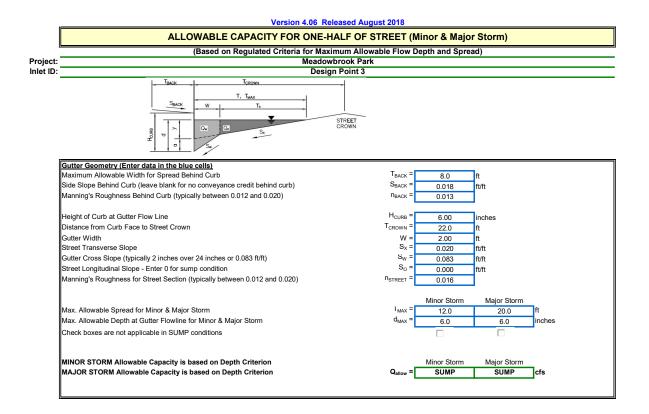
Major Storm (Calculated) Analysis of Flow Time

C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A

Version 4.06 Released August 2018

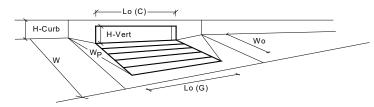
INLET MANAGEMENT

Worksheet Protected

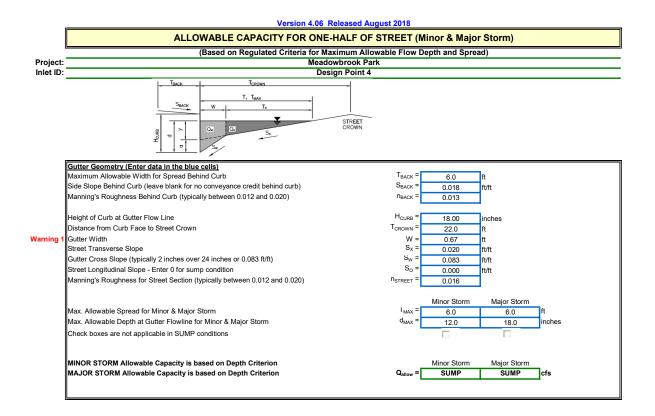

INLET NAME	Design Point 8	Design Point 9	Deisgn Point 10	Design Point 12
Site Type (Urban or Rural)				RURAL
Inlet Application (Street or Area)	STREET	STREET	STREET	AREA
Hydraulic Condition	In Sump	On Grade	On Grade	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type D (In Series & Depressed)

USER-DEFINED INPUT

Minor Q _{Known} (cfs)	1.7	0.8	0.8	10.7
Major Q _{Known} (cfs)	3.9	1.7	1.5	23.5
Bypass (Carry-Over) Flow from Upstream				
Receive Bypass Flow from:	User-Defined	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.2	0.0	0.0	0.0
· · · · · ·		•		
Watershed Characteristics				
Subcatchment Area (acres)				
Percent Impervious				
NRCS Soil Type				
Watershed Profile				
Overland Slope (ft/ft)				
Overland Length (ft)				
Channel Slope (ft/ft)				
Channel Length (ft)				
		- · · · · ·		
Minor Storm Rainfall Input				
Design Storm Return Period, Tr (years)				
One-Hour Precipitation, P1 (inches)				
Major Storm Rainfall Input				
Design Storm Return Period, Tr (years)				
One-Hour Precipitation, P1 (inches)				

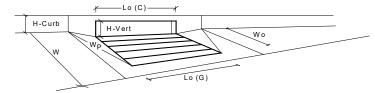

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	1.7	0.8	0.8	10.7
Major Total Design Peak Flow, Q (cfs)	4.1	1.7	1.5	23.5
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	0.2	0.1	0.0
· · · · ·		•		
Minor Storm (Calculated) Analysis of Flow Ti				
	N/A	N/A	N/A	N/A
D ₅	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A
C selected by User	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A
Major Storm (Calculated) Analysis of Flow Ti				
3	N/A	N/A	N/A	N/A
25	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A
C selected by User	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q	N/A	N/A	N/A	N/A

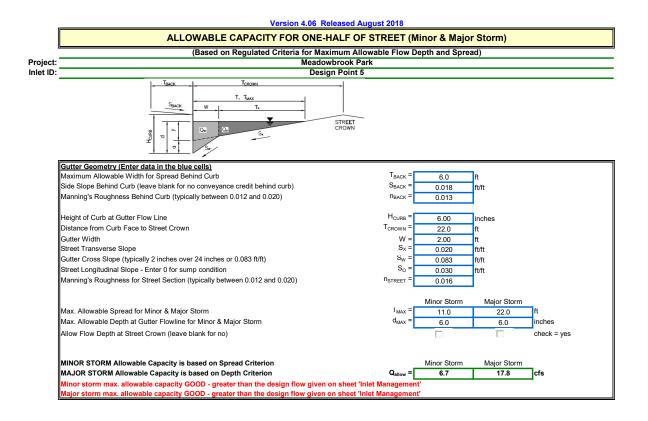


INLET IN A SUMP OR SAG LOCATION

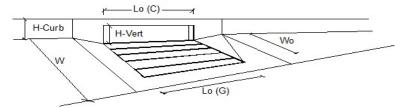
Version 4.06 Released August 2018

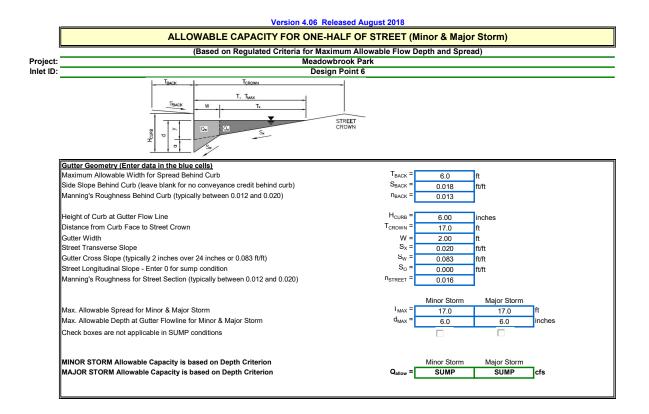


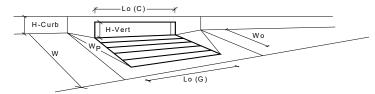
Design Information (Input)			MINOR	MAJOR	
Type of Inlet CDOT	Type R Curb Opening	- Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gu	tter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depr	ession)	Ponding Depth =	4.4	6.0	inches
Grate Information			MINOR	MAJOR	Override Denths
_ength of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values	0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical val	ue 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.6	60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0	0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information			MINOR	MAJOR	-
Length of a Unit Curb Opening		L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches		H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)		Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the g	utter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (ty	pical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value	2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value	e 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calcula	ited)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation		d _{Curb} =	0.20	0.33	ft
Combination Inlet Performance Reduction Fac	ctor for Long Inlets	RF _{Combination} =	0.56	0.77	
Curb Opening Performance Reduction Factor	for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for	r Long Inlets	RF _{Grate} =	N/A	N/A	
			MINOR	MAJOR	_
Total Inlet Interception Capacity (a	ssumes clogged conditio	n) Q _a =	2.5	5.4	cfs
Inlet Capacity IS GOOD for Minor and Majo	r Storms(>Q PEAK)	Q PEAK REQUIRED =	2.4	4.8	cfs



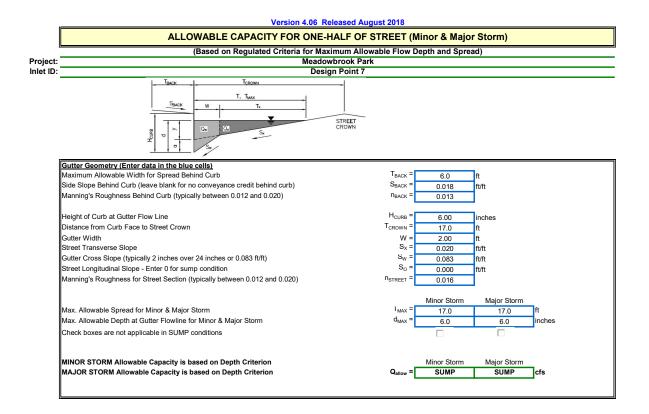
INLET IN A SUMP OR SAG LOCATION


Version 4.06 Released August 2018


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type C Grate	Type =	CDOT Ty	oe C Grate	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	18.00	18.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.0	15.0	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	0.67	0.67	ioor
Width of a Unit Grate	W _o =	0.67	0.67	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	2.41	2.41	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.67	0.67	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.968	1.972	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.62	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	0.8	1.2	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	0.2	1.3	cfs

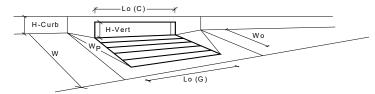


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.3	2.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	76	%

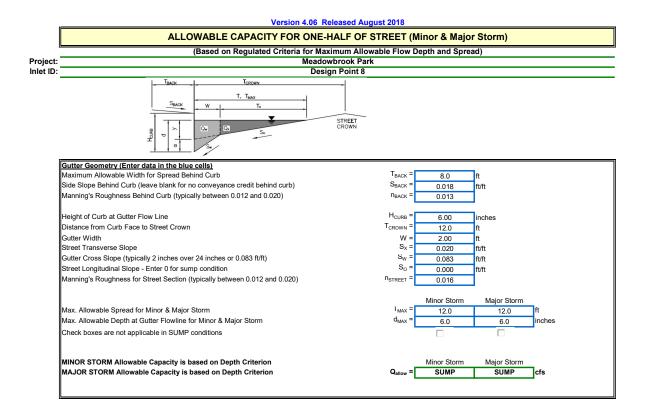


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

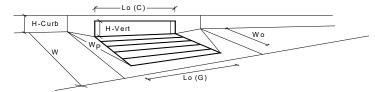


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.72	0.72	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.4	0.8	cfs

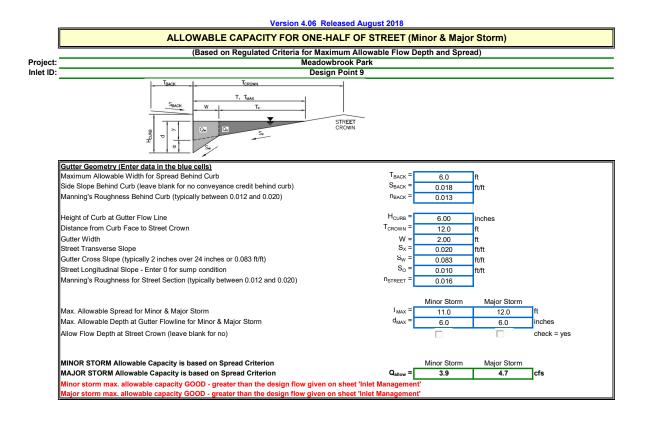


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

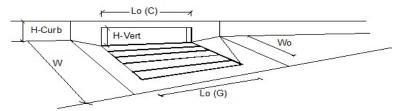


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.72	0.72	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.7	4.0	cfs

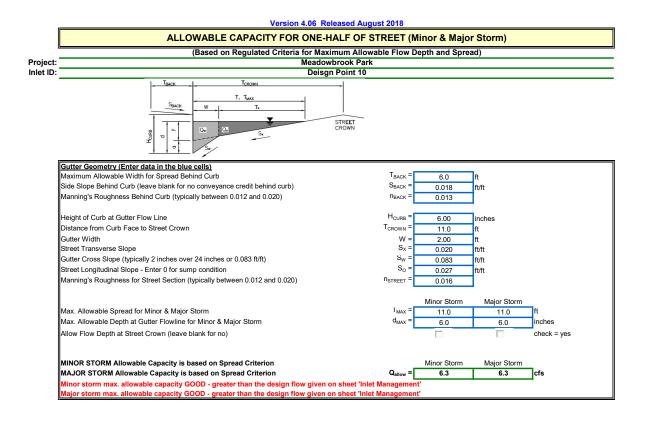


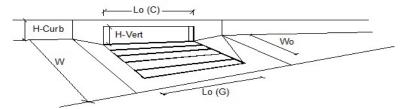
INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

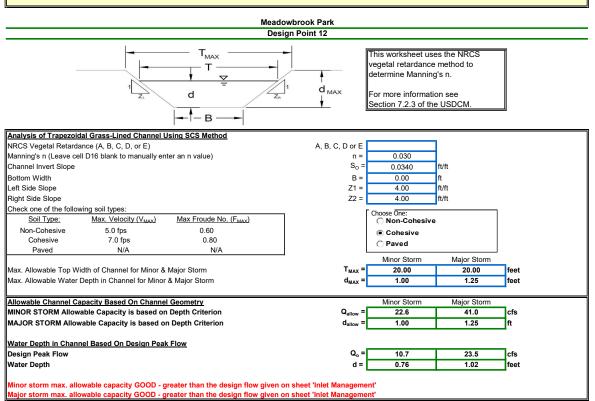


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	4.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	inour
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.20	0.20	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.56	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.5	2.5	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	1.7	4.1	cfs

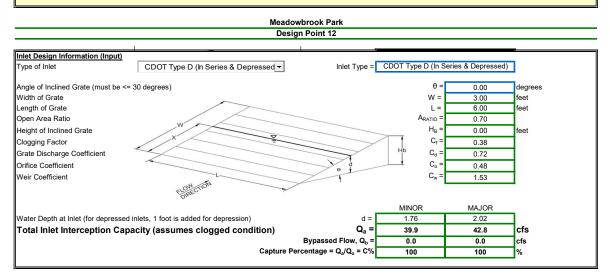




Design Information (Input)				MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	•	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to cont	inuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (G	rate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gre	W _o =	N/A	N/A	ft		
Clogging Factor for a Single Unit G	rate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Cu	rb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	able Street Capacity'			MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	0.8	1.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)				0.0	0.2	cfs
Capture Percentage = Q_{a}/Q_{o} = C% =					91	%



Design Information (Input)				MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	-	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continue	ous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate	e or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or C	urb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_o =$					N/A	ft
Clogging Factor for a Single Unit Grate	(typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb (Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	e Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	0.7	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Qb =				0.0	0.1	cfs
Capture Percentage = Q_a/Q_o = C% =					95	%


Version 4.06 Released August 2018

AREA INLET IN A SWALE

Version 4.06 Released August 2018

AREA INLET IN A SWALE

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

	Design Procedure	e Form: Rain Garden (RG)							
	UD-BMP	(Version 3.07, March 2018)	Sheet 1 of 2						
Designer:	KRK								
Company:	Kimley-Horn and Associates								
Date:	March 12, 2021								
Project:	Meadowbrook Park								
Location:	RG SWC of Site								
1. Basin Sto	rage Volume								
	$^{\rm ve}$ Imperviousness of Tributary Area, ${\rm I_a}$ if all paved and roofed areas upstream of rain garden)	l _a = 54.5 %							
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.545							
	Quality Capture Volume (WQCV) for a 12-hour Drain Time CV= 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)	WQCV = 0.18 watershe	ed inches						
D) Contri	buting Watershed Area (including rain garden area)	Area = <u>80,559</u> sq ft							
	Quality Capture Volume (WQCV) Design Volume (WQCV / 12) * Area	V _{WQCV} =cu ft							
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.43 in							
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 1,176 cu ft							
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft							
2. Basin Geo	ometry								
A) WQCV	Depth (12-inch maximum)	D _{WQCV} = <u>12</u> in							
	arden Side Slopes (Z = 4 min., horiz. dist per unit vertical) 0" if rain garden has vertical walls)	Z = 0.00 ft / ft							
C) Mimim	um Flat Surface Area	A _{Min} = 878 sq ft							
D) Actual	Flat Surface Area	A _{Actual} = <u>1215</u> sq ft							
E) Area a	t Design Depth (Top Surface Area)	A _{Top} = <u>1215</u> sq ft							
	arden Total Volume A _{Top} + A _{Actual}) / 2) * Depth)	V _T = <u>1,215</u> cu ft							
3. Growing N	<i>l</i> ledia	Choose One ① 18" Rain Garden Gro 〇 Other (Explain):	wing Media						
4 11 1 1									
4. Underdrai	n System	Choose One							
A) Are un	derdrains provided?	YES							
B) Underg	drain system orifice diameter for 12 hour drain time	◯ NO							
,	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y= <u>0.3</u> ft							
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 1,176 cu ft							
	iii) Orifice Diameter, 3/8" Minimum	$D_0 = 1 3/16$ in							

	Design Proced	ure Form: Rain Garden (RG)
Designer:	KRK	Sheet 2 of
Company:	Kimley-Horn and Associates	
Date:	March 12, 2021	
Project:	Meadowbrook Park	
Location:	RG SWC of Site	
A) Is an	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One VES NO PROVIDE A 30 MIL (MIN) PVC LINER WITH CDOT CLASS B GEOTEXTILE ABOVE IT. USE THE SAME GEOTEXTILE BELOW THE LINER IF THE SUBGRADE IS ANGULAR
6. Inlet / Ou A) Inlet (Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided
7. Vegetatic	n	Choose One Seed (Plan for frequent weed control) Plantings Sand Grown or Other High Infiltration Sod
8. Irrigation A) Will th	ne rain garden be irrigated?	Choose One
Notes:		

Active Scenario: 5 YR

FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Flow (Total Out) (cfs)	Headloss Coefficient (Standard)
INLET A8	6,334.79	6,330.42	6,331.19	6,331.18	1.66	0.050
INLET B2	6,324.87	6,320.57	6,321.46	6,321.46	1.38	0.050
INLET C1	6,323.00	6,321.90	6,321.55	6,321.55	1.43	0.050
INLET D1	6,324.49	6,320.58	6,321.50	6,321.50	0.82	0.050
INLET F1	6,329.50	6,325.45	6,326.53	6,326.53	0.44	0.050
INLET F2	6,329.50	6,325.37	6,326.52	6,326.52	1.72	0.050
INLET G1	6,336.34	6,327.28	6,327.50	6,327.50	0.77	0.050
INLET H1	6,336.24	6,328.60	6,328.91	6,328.91	0.82	0.050
INLET I1	6,318.35	6,315.40	6,317.23	6,317.23	0.03	0.050
INLET J4	6,323.01	6,318.31	6,319.42	6,319.40	10.69	0.050
INLET K1	6,320.04	6,317.25	6,318.69	6,318.69	0.10	0.050

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 5 YR

FlexTable: Conduit Table

Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)
MH A7	MH A6	6,328.31	6,327.71	0.011	18.0	0.013	2.48	5.42
MH A6	MH A5	6,327.51	6,327.19	0.011	18.0	0.013	2.48	5.40
INLET G1	MH A5	6,327.28	6,327.19	0.020	18.0	0.013	0.77	3.33
INLET H1	MH A7	6,328.60	6,328.51	0.019	18.0	0.013	0.82	3.62
MH A5	MH A4	6,326.99	6,324.92	0.011	18.0	0.013	3.25	5.85
INLET A8	MH A7	6,330.42	6,328.51	0.011	18.0	0.013	1.66	4.84
MH E1	MH A4	6,325.66	6,324.22	0.007	18.0	0.013	2.16	4.69
MH A4	MH A3	6,324.22	6,322.46	0.012	24.0	0.013	5.41	6.31
INLET F1	MH E1	6,326.00	6,325.86	0.006	18.0	0.013	0.44	2.39
INLET F2	MH E1	6,325.99	6,325.94	0.006	18.0	0.013	1.72	3.55
MH A3	MH A2	6,320.99	6,319.85	0.011	24.0	0.013	5.41	6.31
MH A2	Outfall A1	6,319.99	6,319.85	0.003	36.0	0.013	9.04	4.31
MH C1	MH A2	6,320.47	6,320.19	0.005	18.0	0.013	2.25	2.61
MH B1	MH A2	6,320.34	6,320.19	0.005	18.0	0.013	1.38	3.18
INLET B2	MH B1	6,320.57	6,320.54	0.005	18.0	0.013	1.38	3.56
MH C1	INLET D1	6,320.50	6,320.55	-0.009	18.0	0.013	0.82	3.45
INLET C1	MH C1	6,321.88	6,321.14	0.005	10.0	0.010	1.43	2.35
MH J3	INLET K1	6,317.16	6,317.25	-0.005	30.0	0.013	0.10	1.37
MH J3	MH J2	6,317.16	6,315.21	0.007	30.0	0.013	10.79	6.26
MH J3	INLET J4	6,317.16	6,318.31	-0.027	30.0	0.013	10.69	9.99
MH J2	MH J1	6,315.01	6,314.62	0.009	30.0	0.013	10.79	6.79
0-2	MH J1	6,314.18	6,314.40	-0.004	36.0	0.013	10.82	5.04
INLET I1	MH J1	6,315.40	6,314.62	0.005	18.0	0.013	0.03	0.02
Capacity (Full Flow) (cfs)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Flow / Capacity (Design) (%)					
10.93	6,328.69	6,328.03	22.7					
10.87	6,327.74	6,327.50	22.8					
14.85	6,327.50	6,327.50	5.2					

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

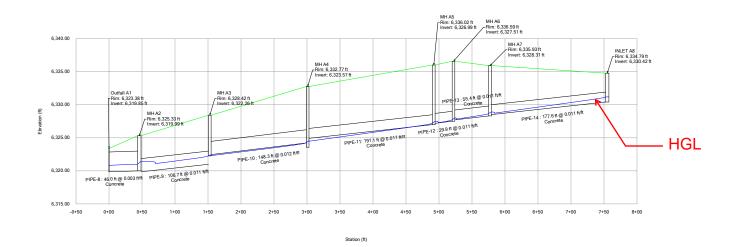
Active Scenario: 5 YR

FlexTable: Conduit Table

Capacity (Full Flow) (cfs)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Flow / Capacity (Design) (%)
14.59	6,328.91	6,328.91	5.6
10.93	6,327.23	6,324.48	29.7
10.55	6,331.18	6,328.91	15.2
	-	,	_
8.99	6,326.21	6,324.59	24.0
24.64	6,324.27	6,322.30	22.0
7.82	6,326.53	6,326.53	5.6
7.83	6,326.52	6,326.53	22.0
23.38	6,322.29	6,321.44	23.1
36.79	6,321.00	6,320.80	24.6
7.42	6,321.46	6,321.44	30.3
7.31	6,321.44	6,321.44	18.9
7.34	6,321.46	6,321.46	18.8
10.14	6,321.50	6,321.50	8.1
2.09	6,321.55	6,321.50	68.4
29.00	6,318.69	6,318.69	0.3
34.82	6,318.26	6,317.25	31.0
66.94	6,319.40	6,318.69	16.0
38.96	6,317.25	6,317.23	27.7
42.65	6,317.19	6,317.18	25.4
7.28	6,317.23	6,317.23	0.4

Meadowbrook StormCAD.stsw 9/29/2021

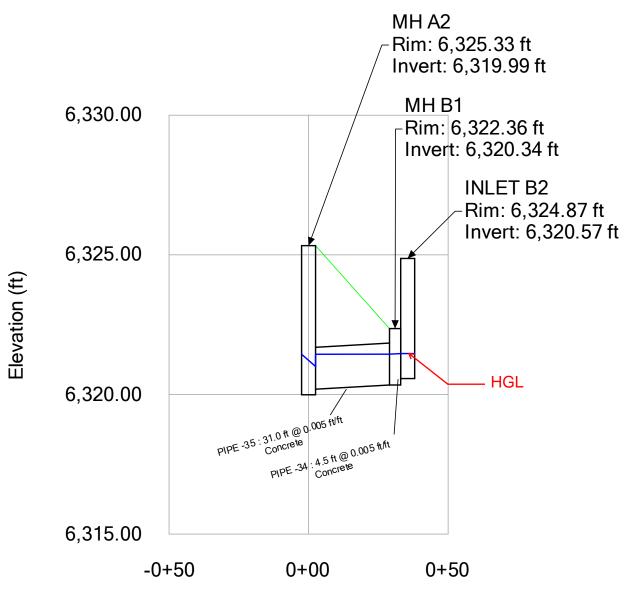
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Active Scenario: 5 YR

FlexTable: Manhole Table

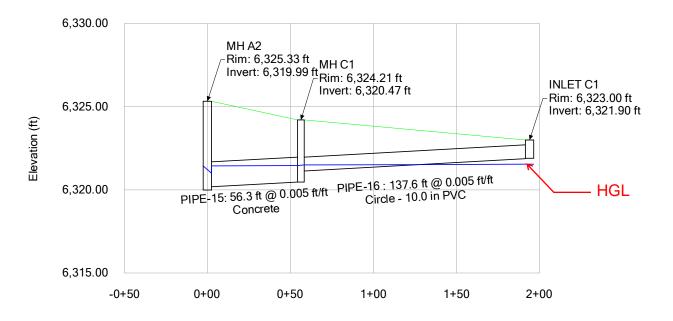
Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Elevation (Invert Out) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Headloss Method
6,336.59	6,336.59	6,327.51	6,327.51	2.48	6,327.74	6,328.03	Standard
6,336.02	6,336.02	6,326.99	6,326.99	3.25	6,327.23	6,327.50	Standard
6,335.93	6,335.93	6,328.31	6,328.31	2.48	6,328.69	6,328.91	Standard
6,332.77	6,332.77	6,323.57	6,324.22	5.41	6,324.27	6,324.59	Standard
6,329.29	6,331.48	6,324.90	6,325.66	2.16	6,326.21	6,326.53	Standard
6,328.42	6,328.42	6,322.26	6,320.99	5.41	6,322.29	6,322.41	Standard
6,325.33	6,325.33	6,319.99	6,319.99	9.04	6,321.00	6,321.44	Standard
6,322.36	6,322.36	6,320.34	6,320.34	1.38	6,321.44	6,321.46	Standard
6,324.21	6,324.21	6,320.47	6,320.47	2.25	6,321.46	6,321.50	Standard
6,323.40	6,323.40	6,317.16	6,317.16	10.79	6,318.26	6,318.69	Standard
6,321.76	6,321.76	6,315.01	6,315.01	10.79	6,317.25	6,317.25	Standard
6,320.86	6,320.86	6,314.40	6,314.40	10.82	6,317.19	6,317.23	Standard
Headloss Coefficient (Standard)							
1.320							
1.020							
1.020							
1.020							
1.520							
0.400							

1.520 1.320 1.020 1.020 0.040 1.020


Meadowbrook StormCAD.stsw Active Scenario: 5 YR Profile Report Engineering Profile - STRM LINE A (Meadowbrook StormCAD.stsw)

Meadowbrook StormCAD.stsw 9/29/2021

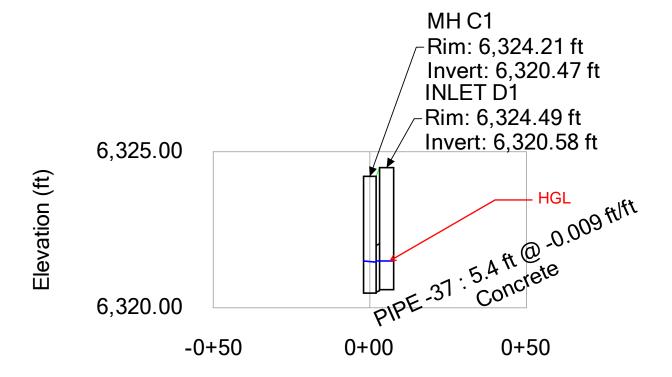
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

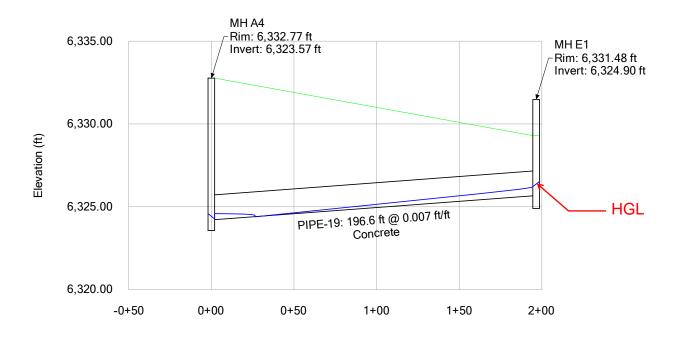
Meadowbrook StormCAD.stsw Active Scenario: 5 YR Profile Report Engineering Profile - STRM LINE C (Meadowbrook StormCAD.stsw)



Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

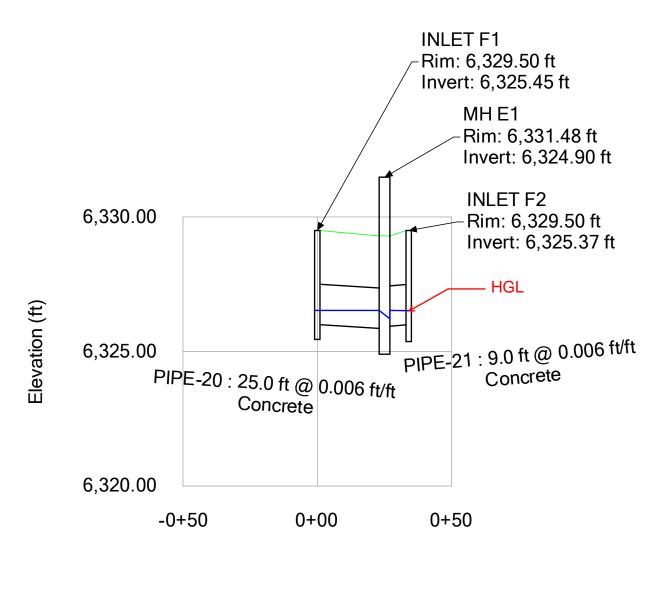
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



Meadowbrook StormCAD.stsw 9/29/2021

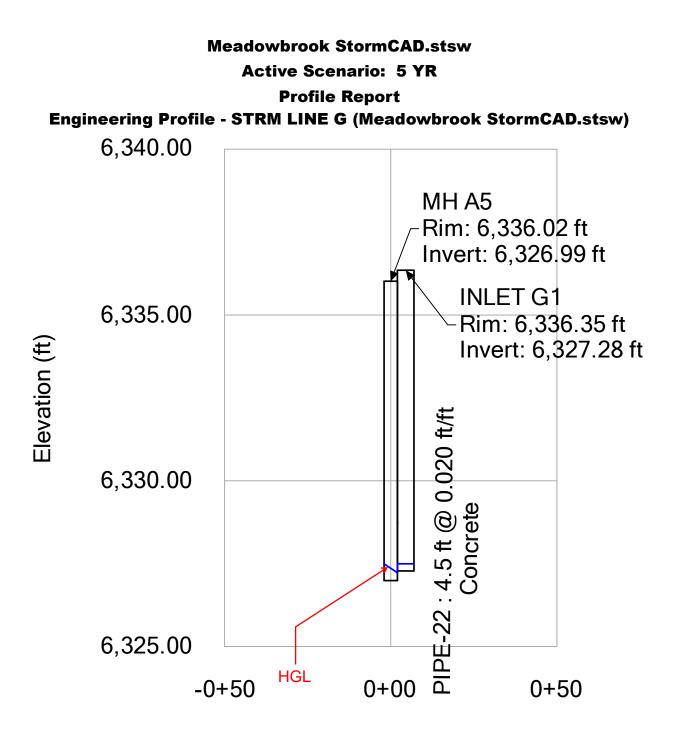
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

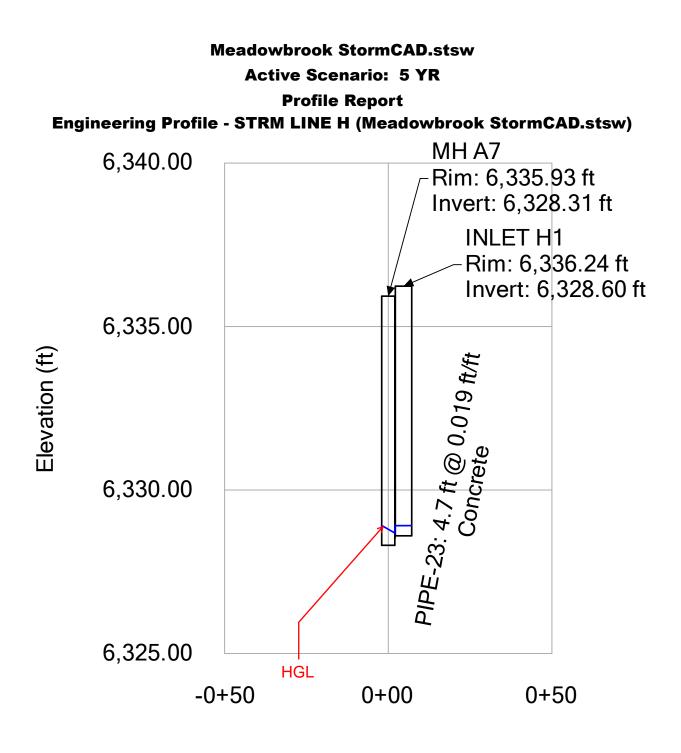
Meadowbrook StormCAD.stsw Active Scenario: 5 YR Profile Report Engineering Profile - STRM LINE E (Meadowbrook StormCAD.stsw)



Station (ft)

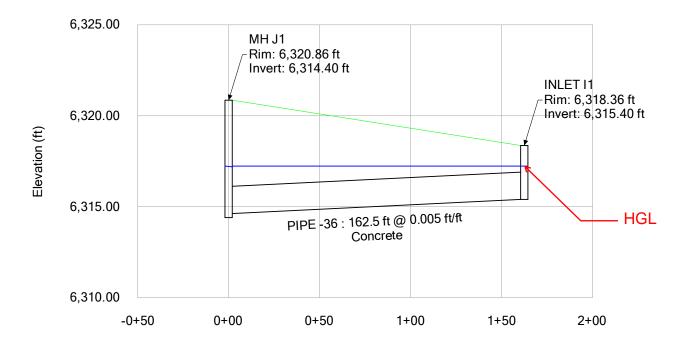
Meadowbrook StormCAD.stsw 9/29/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

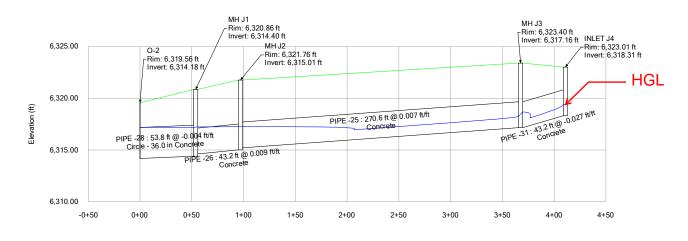
Meadowbrook StormCAD.stsw 9/29/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw Active Scenario: 5 YR Profile Report Engineering Profile - STRM LINE I (Meadowbrook StormCAD.stsw)

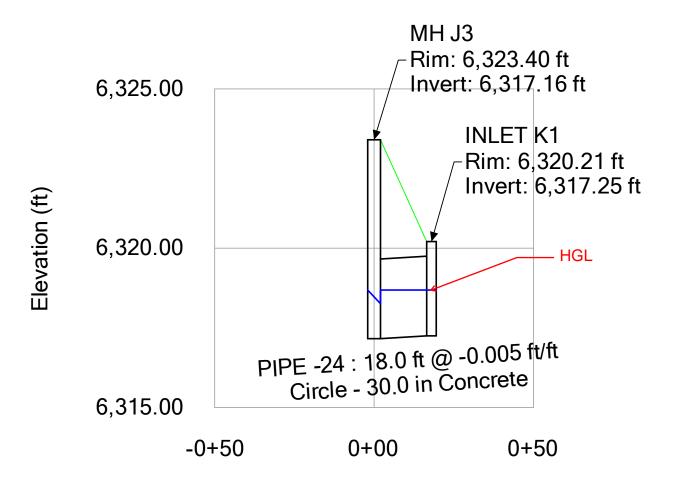


Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw Active Scenario: 5 YR Profile Report Engineering Profile - STRM LINE J (Meadowbrook StormCAD.stsw)



Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 100 YR

FlexTable: Catch Basin Table

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Flow (Total Out) (cfs)	Headloss Coefficient (Standard)
INLET A8	6,334.79	6,330.42	6,331.19	6,331.17	3.85	0.050
INLET B2	6,324.87	6,320.57	6,322.35	6,322.34	2.70	0.050
INLET C1	6,323.00	6,321.90	6,322.64	6,322.64	1.20	0.050
INLET D1	6,324.49	6,320.58	6,322.65	6,322.65	4.76	0.050
INLET F1	6,329.50	6,325.45	6,327.03	6,327.03	0.80	0.050
INLET F2	6,329.50	6,325.37	6,327.04	6,327.03	4.02	0.050
INLET G1	6,336.34	6,327.28	6,328.50	6,328.50	1.53	0.050
INLET H1	6,336.24	6,328.60	6,329.61	6,329.61	1.72	0.050
INLET I1	6,318.35	6,315.40	6,317.53	6,317.53	0.03	0.050
INLET J4	6,323.01	6,318.31	6,320.00	6,319.96	23.54	0.050
INLET K1	6,320.04	6,317.25	6,319.87	6,319.87	5.10	0.050

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 100 YR

FlexTable: Conduit Table

Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)
MH A7	MH A6	6,328.31	6,327.71	0.011	18.0	0.013	5.57	6.22
MH A6	MH A5	6,327.51	6,327.19	0.011	18.0	0.013	5.57	6.19
INLET G1	MH A5	6,327.28	6,327.19	0.020	18.0	0.013	1.53	5.42
INLET H1	MH A7	6,328.60	6,328.51	0.019	18.0	0.013	1.72	5.54
MH A5	MH A4	6,326.99	6,324.92	0.011	18.0	0.013	7.10	6.58
INLET A8	MH A7	6,330.42	6,328.51	0.011	18.0	0.013	3.85	5.63
MH E1	MH A4	6,325.66	6,324.22	0.007	18.0	0.013	4.82	5.18
MH A4	MH A3	6,324.22	6,322.46	0.012	24.0	0.013	11.92	7.78
INLET F1	MH E1	6,326.00	6,325.86	0.006	18.0	0.013	0.80	2.85
INLET F2	MH E1	6,325.99	6,325.94	0.006	18.0	0.013	4.02	4.46
MH A3	MH A2	6,320.99	6,319.85	0.011	24.0	0.013	11.92	7.48
MH A2	Outfall A1	6,319.99	6,319.85	0.003	36.0	0.013	20.58	5.35
MH C1	MH A2	6,320.47	6,320.19	0.005	18.0	0.013	5.96	3.37
MH B1	MH A2	6,320.34	6,320.19	0.005	18.0	0.013	2.70	1.53
INLET B2	MH B1	6,320.57	6,320.54	0.005	18.0	0.013	2.70	1.53
MH C1	INLET D1	6,320.50	6,320.55	-0.009	18.0	0.013	4.76	2.69
INLET C1	MH C1	6,321.88	6,321.14	0.005	10.0	0.010	1.20	3.17
MH J3	INLET K1	6,317.16	6,317.25	-0.005	30.0	0.013	5.10	1.04
MH J3	MH J2	6,317.16	6,315.21	0.007	30.0	0.013	28.64	7.92
МН ЈЗ	INLET J4	6,317.16	6,318.31	-0.027	30.0	0.013	23.54	12.45
MH J2	MH J1	6,315.01	6,314.62	0.009	30.0	0.013	28.64	5.83
0-2	MH J1	6,314.18	6,314.40	-0.004	36.0	0.013	28.67	6.47
INLET I1	MH J1	6,315.40	6,314.62	0.005	18.0	0.013	0.03	0.02
Capacity (Full	Hydraulic Grade	Hydraulic Grade	Flow / Capacity					
Flow)	Line (In)	Line (Out)	(Design)					
(cfs)	(ft)	(ft)	(%)					
10.93	6,329.22	6,328.93	51.0					
10.87	6,328.42	6,328.50	51.2					
14.85	6,328.50	6,328.50	10.3					

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

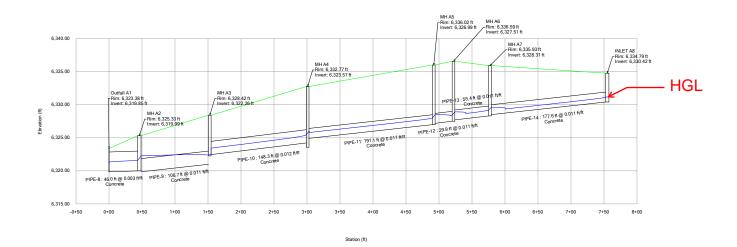
Active Scenario: 100 YR

FlexTable: Conduit Table

Capacity (Full Flow) (cfs)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Flow / Capacity (Design) (%)	
14.59	6,329.61	6,329.61	11.8	
10.93	6,328.02	6,326.00	64.9	
10.89	6,331.17	6,329.61	35.3	
8.99	6,326.50	6,326.00	53.6	
24.64	6,325.46	6,323.44	48.4	
7.82	6,327.03	6,327.03	10.2	
7.83	6,327.03	6,327.03	51.3	
23.38	6,322.40	6,322.27	51.0	
36.79	6,321.57	6,321.31	55.9	
7.42	6,322.45	6,322.27	80.3	
7.31	6,322.29	6,322.27	37.0	
7.34	6,322.34	6,322.34	36.8	
10.14	6,322.65	6,322.63	47.0	
2.09	6,322.64	6,322.63	57.4	
29.00	6,319.87	6,319.87	17.6	
34.82	6,318.98	6,317.77	82.3	
66.94	6,319.96	6,319.87	35.2	
38.96	6,317.74	6,317.53	73.5	
42.65	6,317.26	6,317.18	67.2	
7.28	6,317.53	6,317.53	0.4	

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Active Scenario: 100 YR

FlexTable: Manhole Table

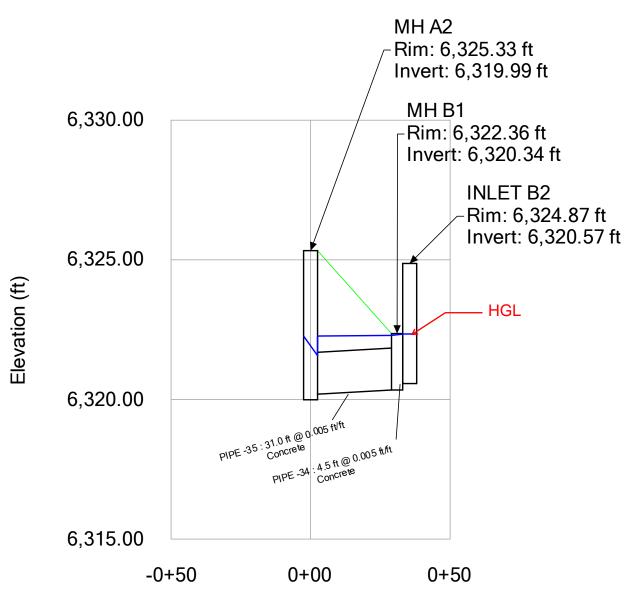
Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Elevation (Invert Out) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Headloss Method
6,336.59	6,336.59	6,327.51	6,327.51	5.57	6,328.42	6,328.93	Standard
6,336.02	6,336.02	6,326.99	6,326.99	7.10	6,328.02	6,328.50	Standard
6,335.93	6,335.93	6,328.31	6,328.31	5.57	6,329.22	6,329.61	Standard
6,332.77	6,332.77	6,323.57	6,324.22	11.92	6,325.46	6,326.00	Standard
6,329.29	6,331.48	6,324.90	6,325.66	4.82	6,326.50	6,327.03	Standard
6,328.42	6,328.42	6,322.26	6,320.99	11.92	6,322.40	6,322.56	Standard
6,325.33	6,325.33	6,319.99	6,319.99	20.58	6,321.57	6,322.27	Standard
6,322.36	6,322.36	6,320.34	6,320.34	2.70	6,322.29	6,322.34	Standard
6,324.21	6,324.21	6,320.47	6,320.47	5.96	6,322.45	6,322.63	Standard
6,323.40	6,323.40	6,317.16	6,317.16	28.64	6,318.98	6,319.87	Standard
6,321.76	6,321.76	6,315.01	6,315.01	28.64	6,317.74	6,317.77	Standard
6,320.86	6,320.86	6,314.40	6,314.40	28.67	6,317.26	6,317.53	Standard
Headloss Coefficient (Standard)							
1.320							
1.020							
1.020							

1.020 1.520 0.400 1.520 1.320 1.020 1.020 0.040 1.020

Meadowbrook StormCAD.stsw Active Scenario: 100 YR Profile Report Engineering Profile - STRM LINE A (Meadowbrook StormCAD.stsw)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

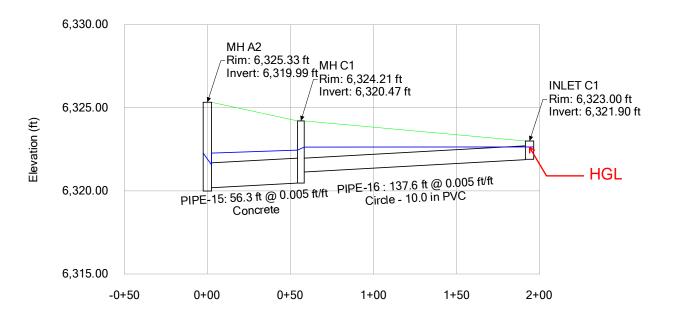

This storm line does not reflect what is shown on the CD's. Please update the CD's or drainage report so that they are consistent with each other.

Meadowbrook StormCAD.stsw

Active Scenario: 100 YR

Profile Report

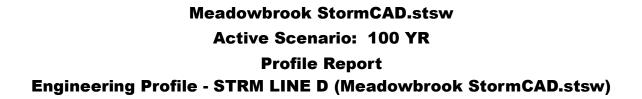
Engineering Profile - STRM LINE B (Meadowbrook StormCAD.stsw)

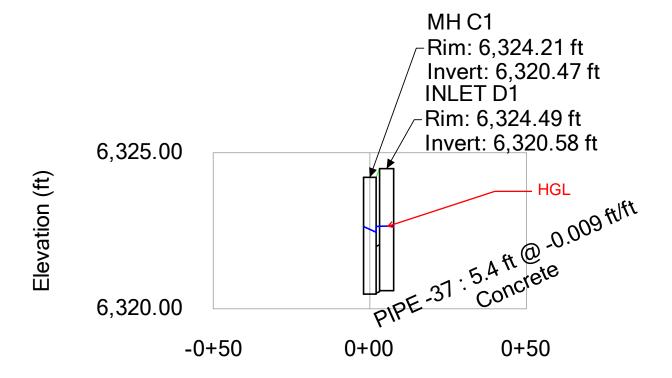


Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

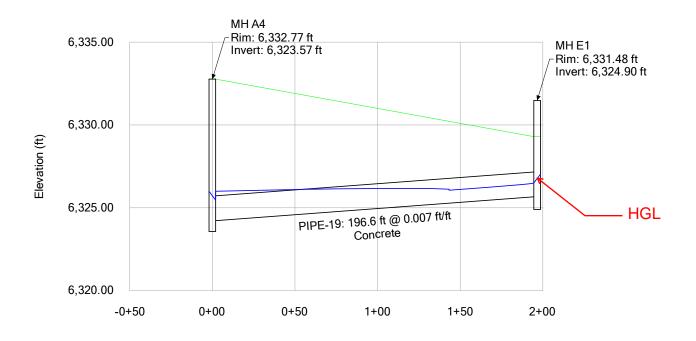

Meadowbrook StormCAD.stsw Active Scenario: 100 YR Profile Report Engineering Profile - STRM LINE C (Meadowbrook StormCAD.stsw)



Station (ft)

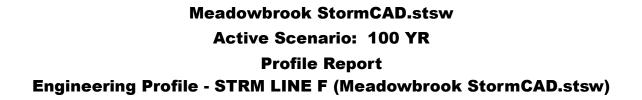
Meadowbrook StormCAD.stsw 9/29/2021

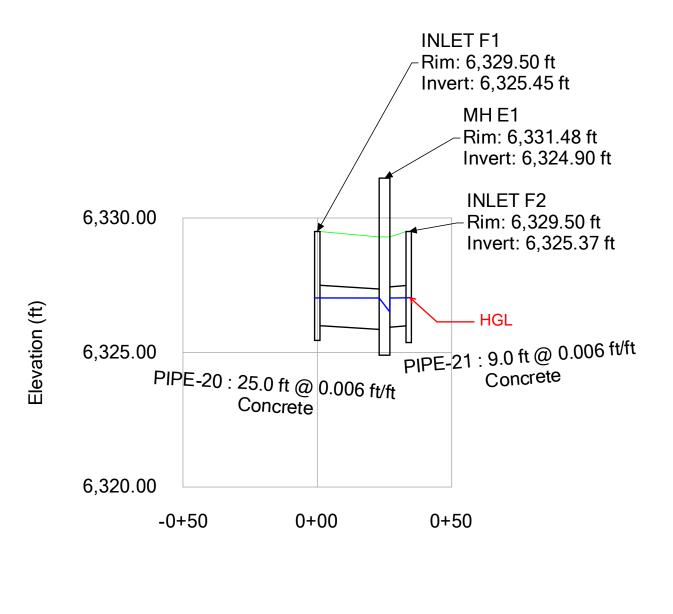
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



Meadowbrook StormCAD.stsw 9/29/2021

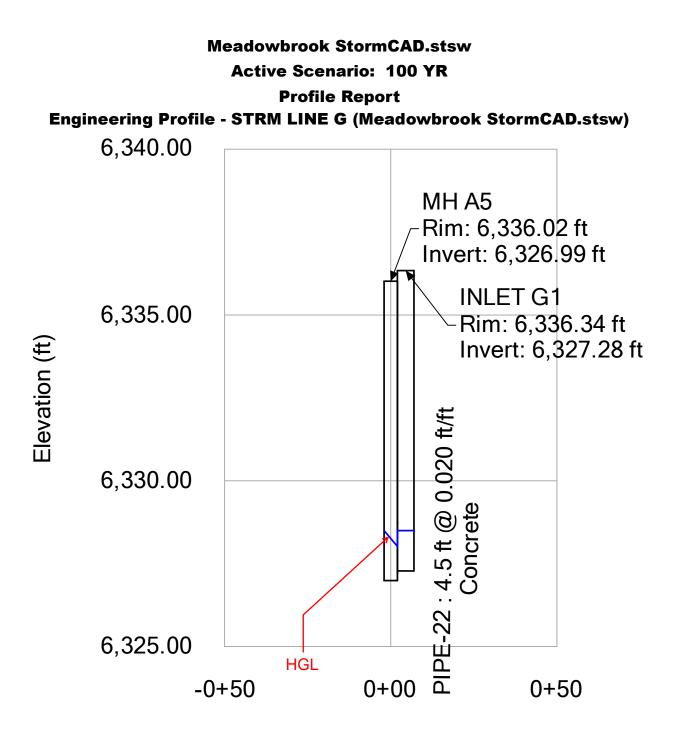
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

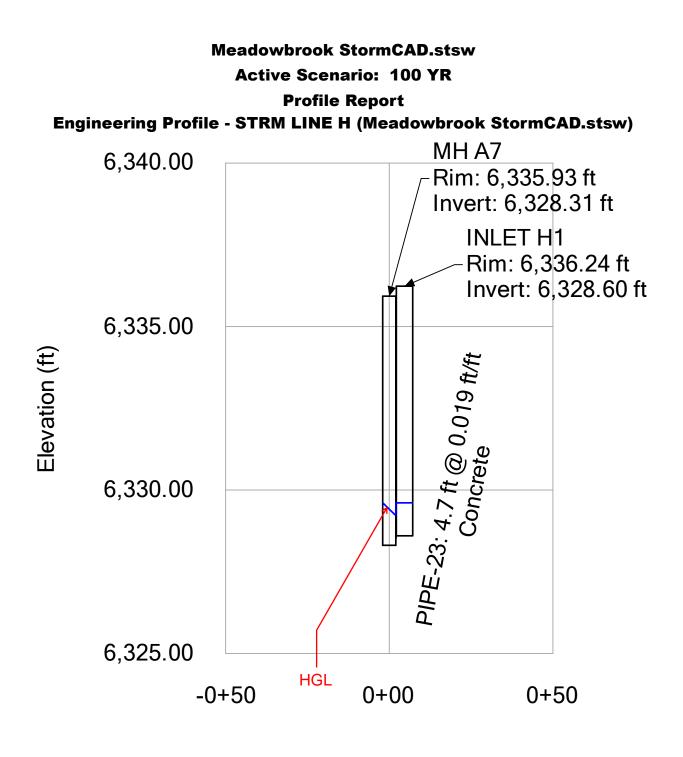

Meadowbrook StormCAD.stsw Active Scenario: 100 YR Profile Report Engineering Profile - STRM LINE E (Meadowbrook StormCAD.stsw)



Station (ft)

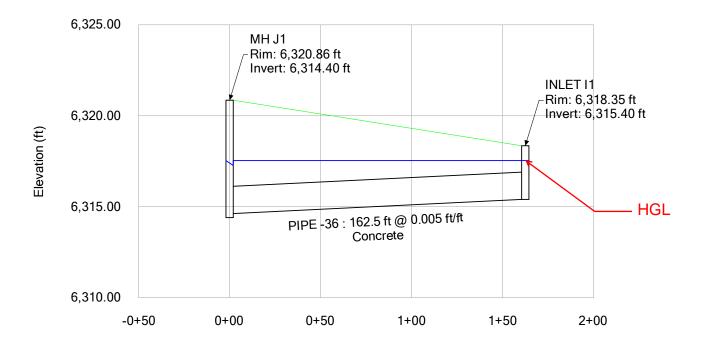
Meadowbrook StormCAD.stsw 9/29/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

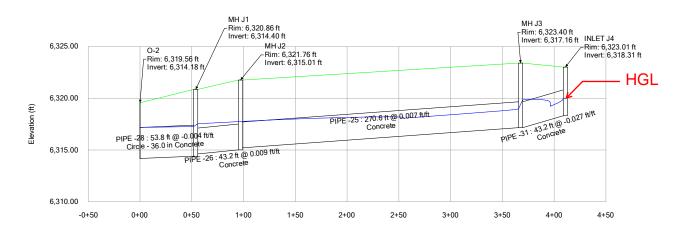
Meadowbrook StormCAD.stsw 9/29/2021


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw Active Scenario: 100 YR Profile Report Engineering Profile - STRM LINE I (Meadowbrook StormCAD.stsw)

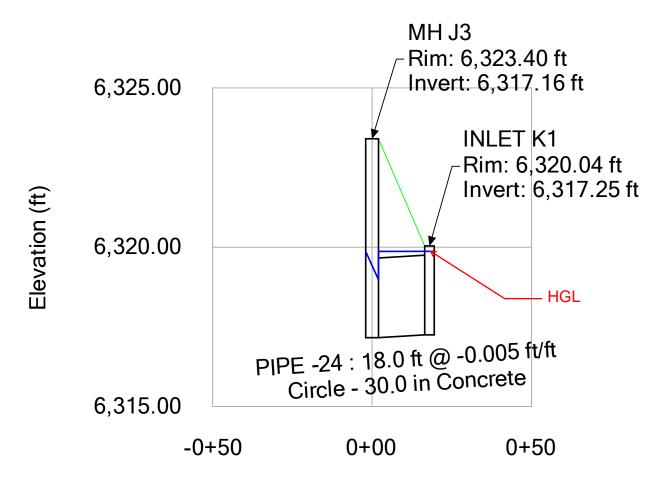


Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw Active Scenario: 100 YR Profile Report Engineering Profile - STRM LINE J (Meadowbrook StormCAD.stsw)



Station (ft)

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Meadowbrook StormCAD.stsw 9/29/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

OPINION OF PROBABLE CONSTRUCTION COST

Kimley »Horn

Kimley-Horn & Associates, Inc.

Opinion of Probable Construction Cost

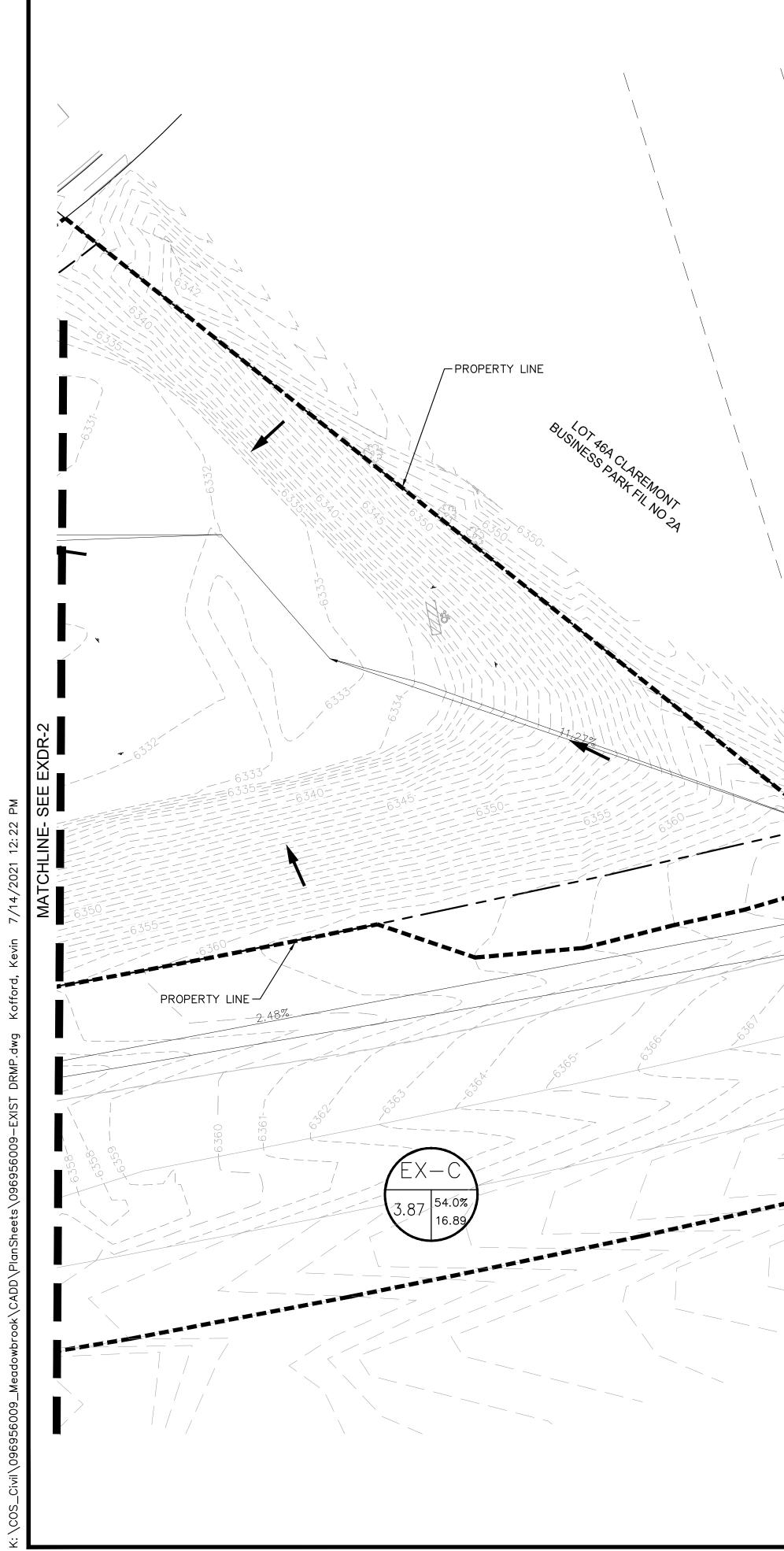
Sheet:

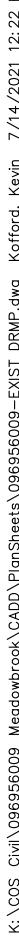
1 of 1

Client:	Meadowbrook Development, LLC	Date:	3/12/2021
Project:	Meadowbrook Park	Prepared By:	KRK
KHA No.	.: 096956009	Checked By:	EJG

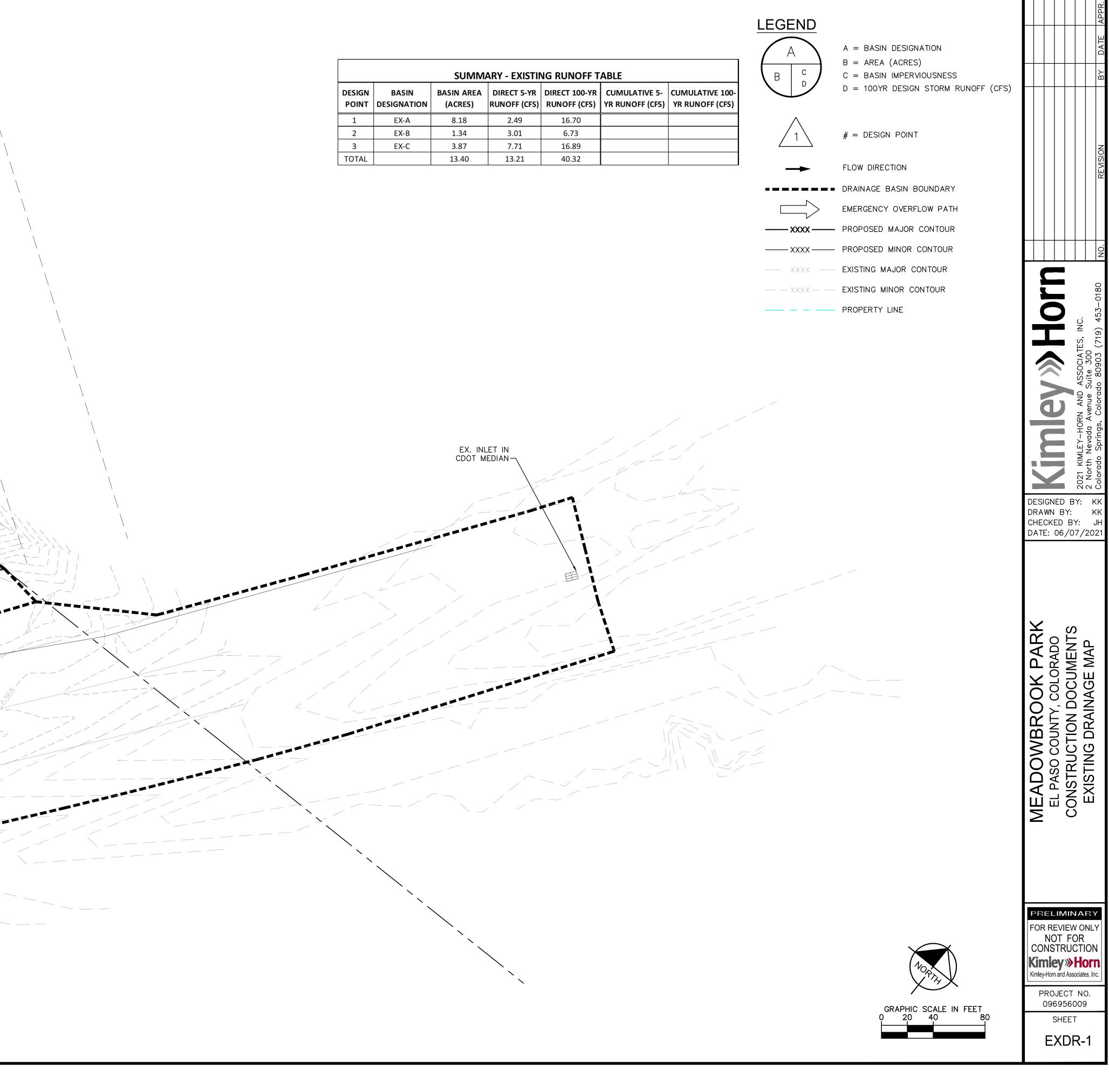
This OPC is not intended for basing financial decisions, or securing funding. Review all notes and assumptions. Since Kimley-Horn & Associates, Inc. has no control over the cost of labor, materials, equipment, or services furnished by others, or over methods of determining price, or over competitive bidding or market conditions, any and all opinions as to the cost herein, including but not limited to opinions as to the costs of construction materials, shall be made on the basis of experience and best available data. Kimley-Horn & Associates, Inc. cannot and does not guarantee that proposals, bids, or actual costs will not vary from the opinions on costs shown herein. The total costs and other numbers in this Opinion of Probable Cost have been rounded.

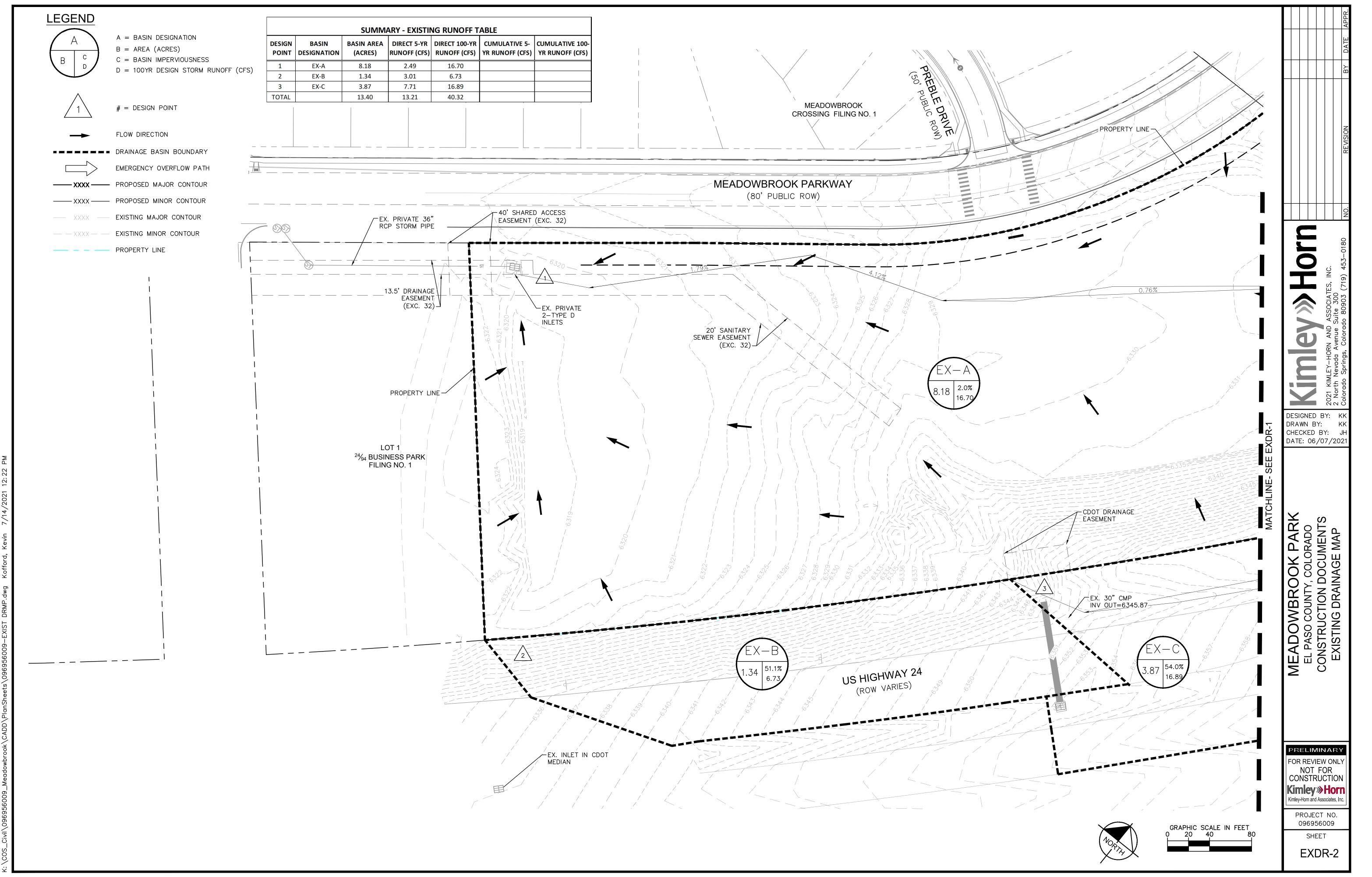
Item No.	Item Description	Quantity	Unit		Unit Price	Item Cost
	Private Storm Sewer - Non-Reimbur	sable				
1	10" PVC	155	LF		\$30.00	\$4,650
2	18" RCP	1,092	LF		\$65.00	\$70,980
3	24" RCP	254	LF		\$78.00	\$19,812
4	30" RCP	375	LF		\$97.00	\$36,375
5	36" RCP	46	LF		\$120.00	\$840
6	5' Type R Inlet	7	EA		\$5,736.00	\$40,152
7	CDOT Type D Inlet	2	EA		\$5,932.00	\$11,864
8	CDOT Type C Inlet	1	EA		\$4,802.00	\$4,802
9	Modifed Type C Inlet	1	ξA		\$10,000.00	\$10,000
10	8" Area Drain	2	EA		\$500.00	\$1,000
11	4' Type II Manhole	8	EA		\$6,619.00	\$52,952
12	5' Type II Manhole	4	EA		\$12,034.00	\$48,136
13	Concrete Forebay	2	EA		\$7,500.00	\$15,000
14	Concrete Trickle Channel	330	LF		\$10.00	\$3,300
15	Maintenance Road Material (CDOT	36	CY		\$85.00	\$3,060
15	Class 6 Base)	50	01	$ \rangle$	ψ00.00	ψ0,000
16	Emergency Overflow (Type L Riprap)	20	Ton	$ \rangle$	\$83.00	\$1,660
17	Rock Chute (Type L Riprap)	110	Ton		\$83.00	\$9,130
		Subtotal:				\$329,063
		Contingency (%,+/-)			10%	
		Project Total:				\$361,969

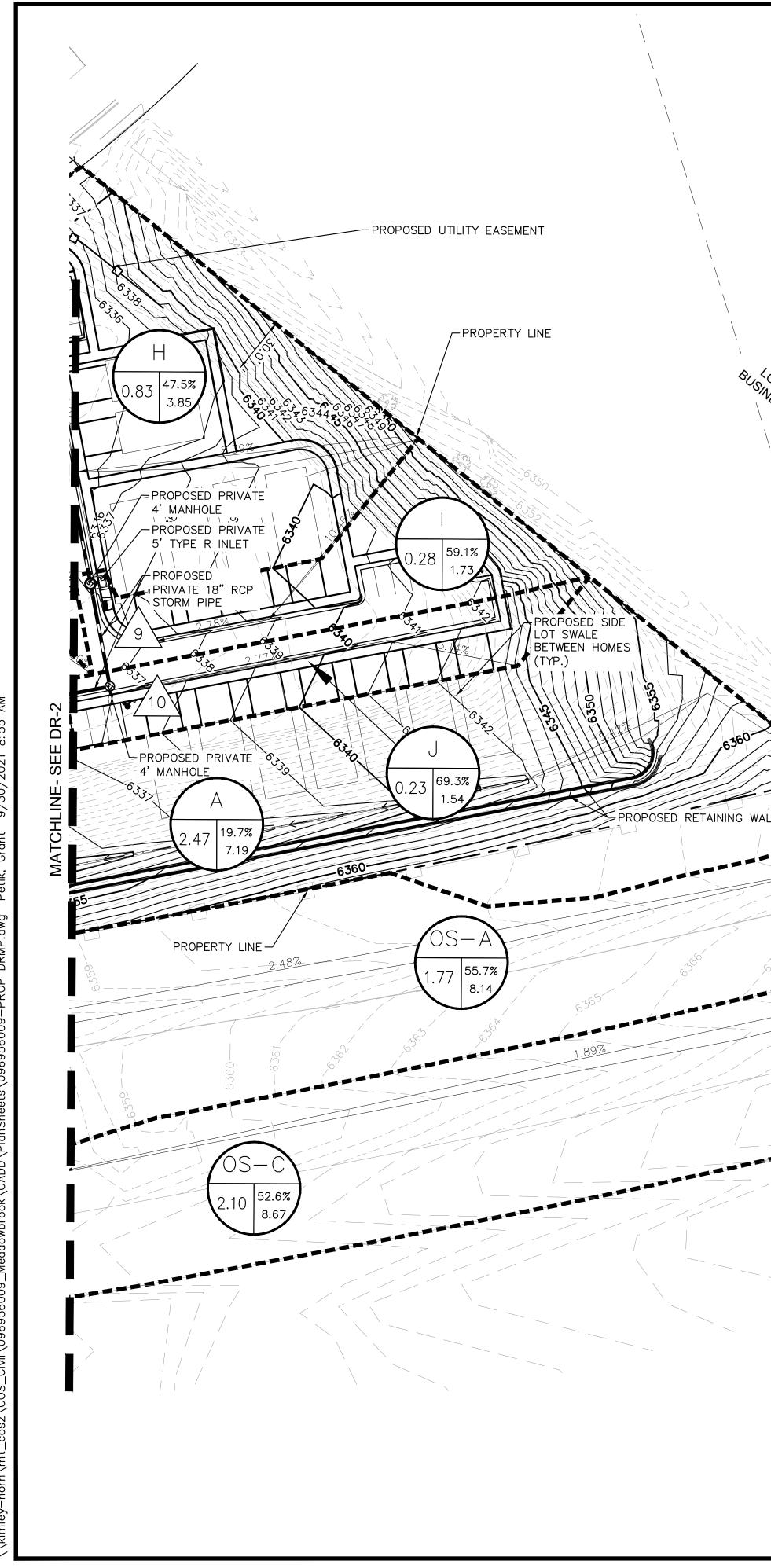

Basis for Cost Projection:

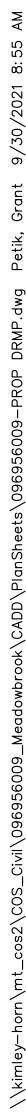

- No Design Completed
- Preliminary Design
- ✓ Final Design

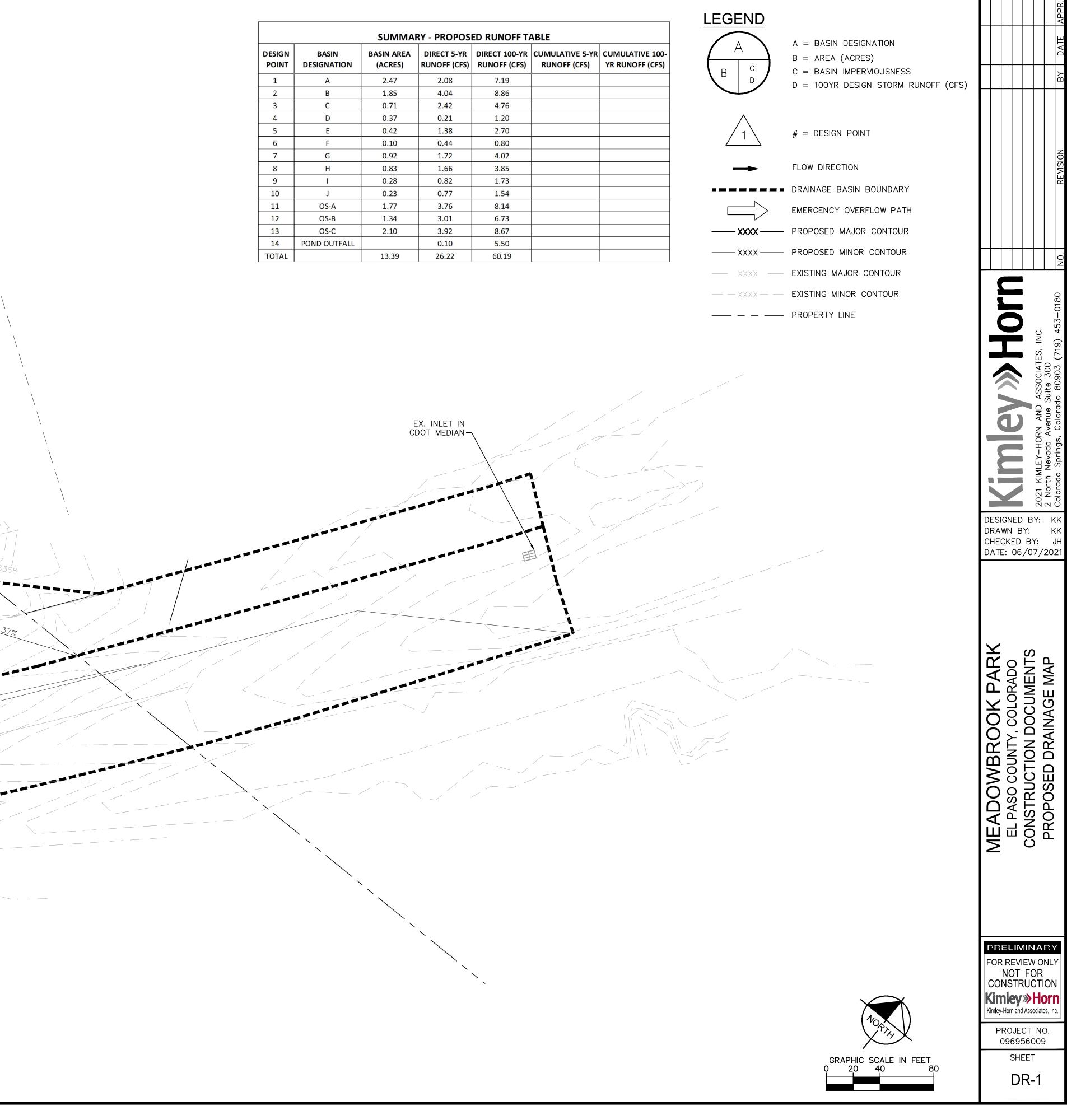
The length of 18" RCP does not match the FAE please revise so that they are consistent with each other

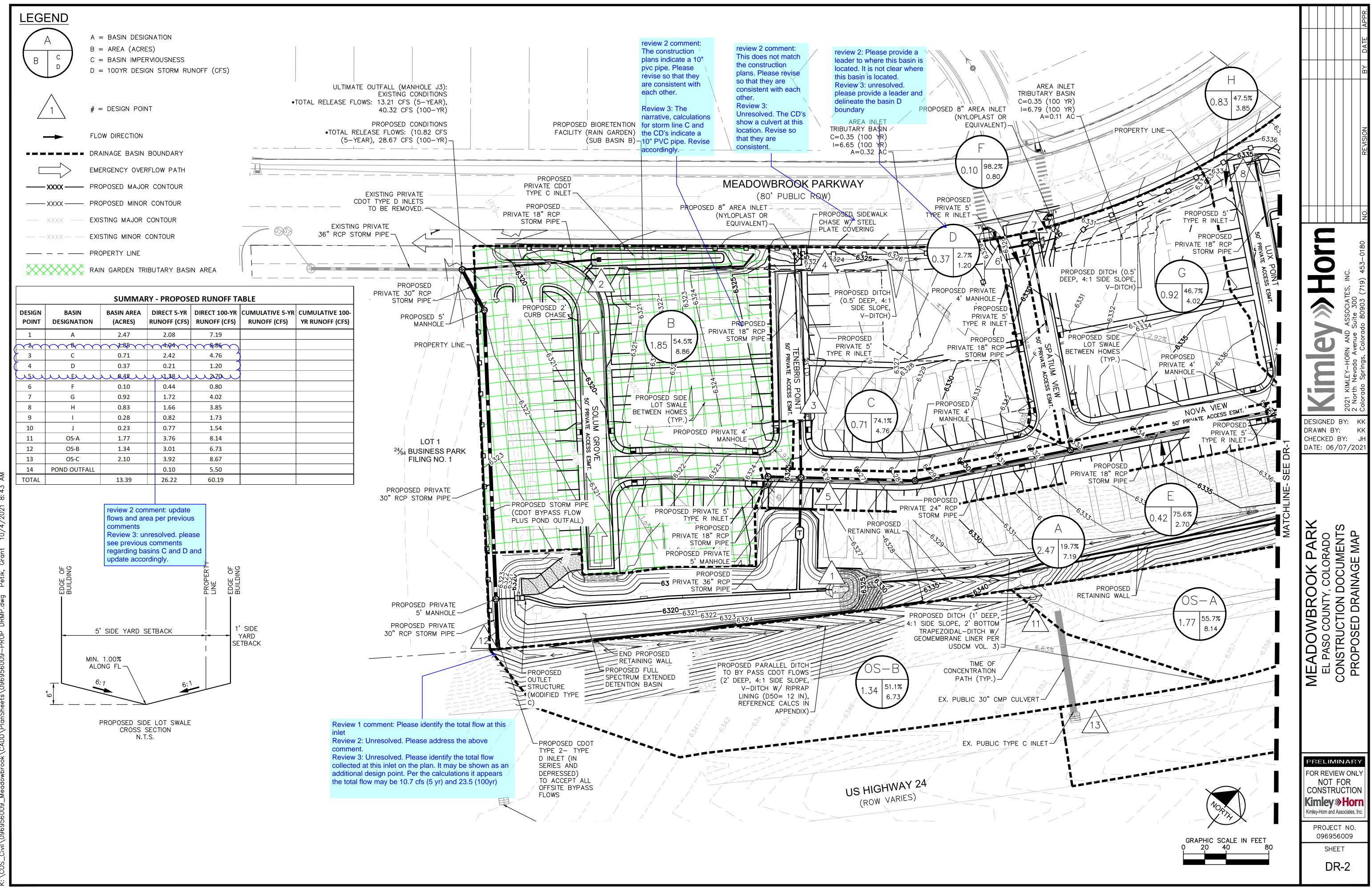

Design Engineer:

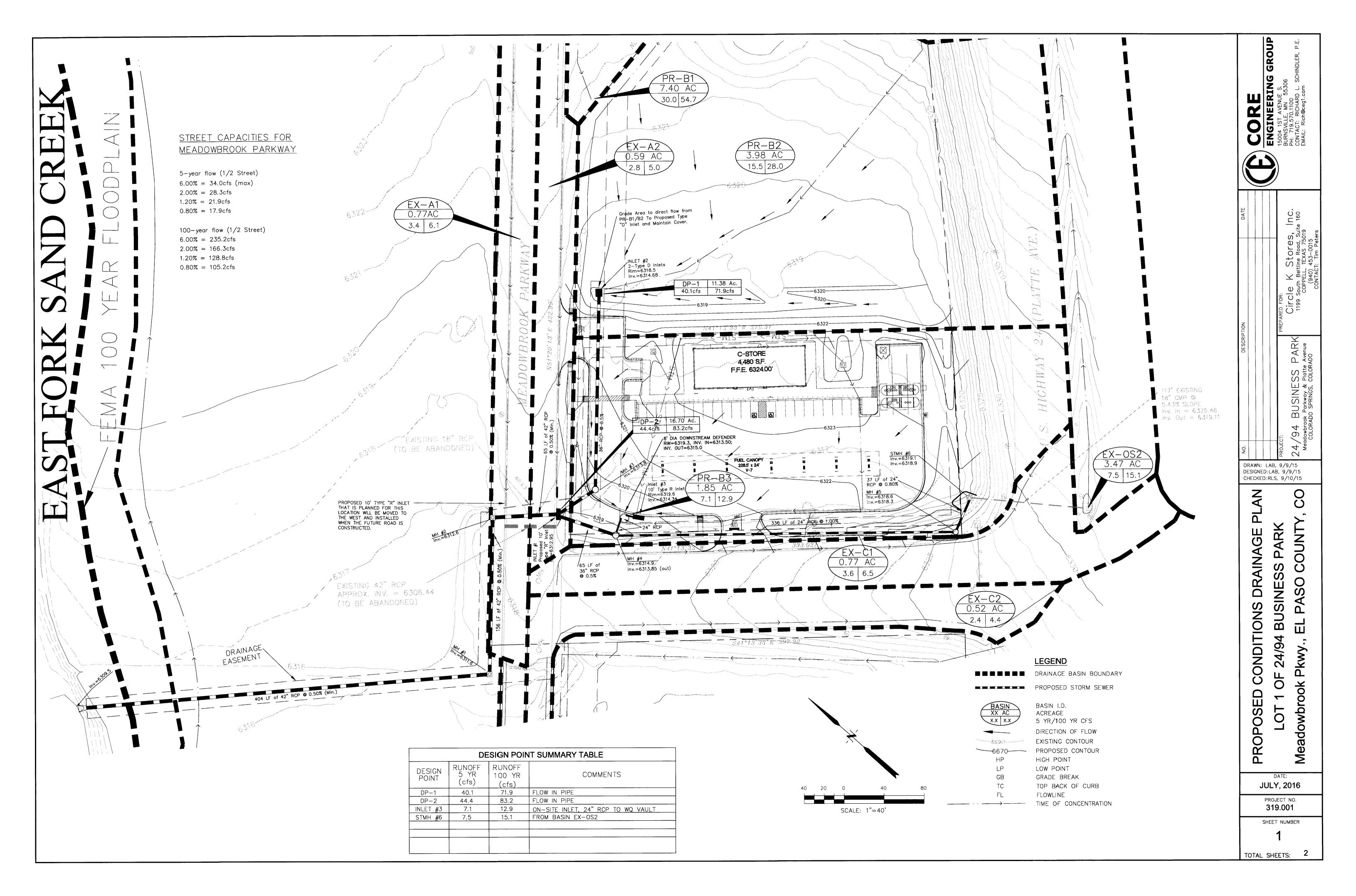

John Heiberger Registered Professional Engineer, State of Colorado No. 50096 EXISTING AND PROPOSED DRAINAGE MAP




	SUMMARY - EXISTING RUNOFF TABLE					
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMU YR RUI	
1	EX-A	8.18	2.49	16.70		
2	EX-B	1.34	3.01	6.73		
3	EX-C	3.87	7.71	16.89		
TOTAL		13.40	13.21	40.32		






"NO ZA

		SUMMARY - PROPOSED RUNOFF TABLE				
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATI RUNOFF	
1	А	2.47	2.08	7.19		
2	В	1.85	4.04	8.86		
3	С	0.71	2.42	4.76		
4	D	0.37	0.21	1.20		
5	E	0.42	1.38	2.70		
6	F	0.10	0.44	0.80		
7	G	0.92	1.72	4.02		
8	Н	0.83	1.66	3.85		
9	L	0.28	0.82	1.73		
10	J	0.23	0.77	1.54		
11	OS-A	1.77	3.76	8.14		
12	OS-B	1.34	3.01	6.73		
13	OS-C	2.10	3.92	8.67		
14	POND OUTFALL		0.10	5.50		
TOTAL		13.39	26.22	60.19		

x