Final Drainage Report

Lot 4, Barbarick Subdivision El Paso County, Colorado

Prepared for: Vollmer Road Partners, LLLP. 6035 Erin Parkway Drive, Suite 101 Colorado Springs, CO 80918 Contact: Richard Graham

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Eric Gunderson, P.E.

Project #: 196489000 Prepared: April 15, 2024 PCD File Number: COM2346

Kimley »Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

Frie Lunderos

04/15/2024

Colorado P.E. No. 49487

Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Vollmer Road Partners, LLLP Name of Developer				
1244				
Authorized Signature	Date			
Hichard A. Graham TR				
Printed Name				
General tartner				
Title		0		
6305 FrinPark Dr	#/0[Colo. Spgs.	(0)	80918
Address:	<i>.</i>	0		

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Josh Palmer, P.E. County Engineer/ ECM Administrator Date

Conditions:

TABLE OF CONTENTS

CERTIFICATION	2
DESIGN ENGINEER'S STATEMENT	2
OWNER/DEVELOPER'S STATEMENT	
EL PASO COUNTY	
TABLE OF CONTENTS	2
TABLE OF CONTENTS	
INTRODUCTION	5
GENERAL PROJECT DESCRIPTION	5
PURPOSE AND SCOPE OF STUDY	5
LOCATION	
DESCRIPTION OF PROPERTY	5
DRAINAGE BASINS	6
MAJOR BASIN DESCRIPTIONS	6
EXISTING SUB-BASIN DESCRIPTIONS	
Sub-Basin E1	
Sub-Basin E2	
Sub-Basin OE1	
Sub-Basin OE2	
Sub-Basin OE3	
Sub-Basin OE4	
Sub-Basin OE5	
PROPOSED SUB-BASIN DESCRIPTIONS	
Sub-Basin P1	
Sub-Basin P2	
Sub-Basin P3	
Sub-Basin P 4	
Sub-Basin P 5	
Sub-Basin P 5	
Sub-Basin Fo	
Sub-Basin R2	
Sub-Basin N2	-
Sub-Basin 01	
Sub-Basin 02	
Sub-Basin 03	
Sub-Basin 04	
Sub-Basin 06	
Sub-Basin 00	
Sub-Basin 07	
DRAINAGE DESIGN CRITERIA	
HYDRAULIC CRITERIA	12
THE FOUR STEP PROCESS	13
DRAINAGE FACILITY DESIGN	14

GENERAL CONCEPT SPECIFIC DETAILS GEOTECHNICAL RECOMMENDATIONS COMPLIANCE WITH PREVIOUS STUDIES SUMMARY	14 15 15
SUMMART	
REFERENCES	16
APPENDIX	17
APPENDIX A: VICINITY MAP	
APPENDIX B: NRCS SOIL STUDY	
APPENDIX C: FEMA FIRM MAP	20
APPENDIX D: HYDROLOGIC ANALYSIS	21
APPENDIX E: HYDRAULIC ANALYSIS	22
APPENDIX F: EX. FINAL DRAINAGE REPORT FOR BARBARICK SUBDIVISION	23
APPENDIX G: COST ESTIMATE / FINANCIAL ASSURANCES ESTIMATE	24
APPENDIX H: DRAINAGE MAPS	25

INTRODUCTION

GENERAL PROJECT DESCRIPTION

The Property is approximately $3.93\pm$ acres total and $2.31\pm$ acres are anticipated to be disturbed. The Project includes a proposed recycling and refuse transfer station building and attendant structure. Water quality and 100-year detention is required for the site and is achieved with the existing full spectrum detention pond to the south of the property. The existing detention pond is adequately sized for the proposed improvements. Minor modifications to the outlet structure are proposed to ensure that water quality detention requirements are met.

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Project. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The Project is located at Lot 4 (TSN: 5233002013) of the Barbarick Subdivision, just east of Vollmer Rd and northeast of the major intersection of Black Forest Rd and Woodmen Rd. Lot 4 is 5.29 acres. The Project is within a 3.93 acre leased boundary within Lot 4 (Site). More specifically the project location exists within a portion of the southwest Quarter of Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The Site is bounded by industrial lots zoned I-2 (BWH Properties LLC) & I-3 (HW Diesel Enterprises LLC) to the north and west, respectively. The Site is bounded by existing residential zoned lots to the east, and an undeveloped residential lot to the south. A vicinity map has been provided in the **Appendix A** of this report.

DESCRIPTION OF PROPERTY

The Site is mostly undeveloped and gravel in landcover. Lot 4 is an existing business, which is outside of the limits of the Project and will remain. The purpose of this Project is to construct a recycling and refuse transfer facility which includes a building enclosure, scale house with ground scales, detention pond outlet structure modification, and landscape buffering as required for County code compliance. Lot 4 of the Barbarick Subdivision is inclusive of an existing full spectrum extended detention basin ("EDB"). The Site currently provides water quality and 100-year detention for the Project Area. The existing EDB serving the site is functioning as intended today, though, is in need of maintenance.

The existing topography generally slopes from north to south at approximately 3.0%.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type A/B. The NRCS soil data can be found in **Appendix B**. There are no major drainage ways or irrigation facilities within the Site.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Site improvements are located in Zone X, as determined by the Flood Insurance Rate Map (FIRM) number 08041C0533G effective date, December 7, 2018 (see **Appendix C**).

The Project is located within El Paso County's Sand Creek Drainage Basin (FOFO4000).

EXISTING SUB-BASIN DESCRIPTIONS

Historic and existing drainage patterns are described in detail in the FDR for the Barbarick Subdivision, by Matrix Design Group, dated June 6, 2016. In the existing condition, runoff flows from north to south via sheet and concentrated flow over developed and undeveloped land to the existing EDB located to the south of the Site. Below is a description of the existing onsite and off-site sub-basins. For the existing condition, the total weighted basin imperviousness is 86.3% and the cumulative direct runoff for the 5-year and 100-year storm events are 40.22 cfs and 75.42 cfs, respectively.

Sub-Basin E1

Sub-Basin E1 consists of the entrance to the Site, beginning at the dead end of Cliff Allen Pt. E1 is 0.39 acres in size and yields an impervious value of 55.3%. This Sub-Basin accepts flows from the adjacent off-site basin, OE1, to the north. The central section of this Sub-Basin directs flows from the adjacent offsite Sub-Basins and runoff generated within, westwards via vegetated swale. Runoff during the 5-year and 100-year storm events are 0.70 and 1.62 cfs, respectively. Concentrated flows in this Sub-Basin outfall into an existing culvert at design point E1, which runs southwards to the existing EDB to the south of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin E2

Sub-Basin E2 consists of the rest of the Site, including the existing EDB to the south of the Site. E2 is approximately 2.59 acres in size and yields an impervious value of 62.1%. This Sub-Basin accepts flows from adjacent off-site basins OE2, OE3, and OE4, to the north and west. Flows accepted from off-site and generated on-site flow into the existing EDB at design point E2 via sheet flow with minimal concentrated flows. Runoff during the 5-year and 100-year storm events are 5.56 and 12.19 cfs, respectively. The required storage volume in the existing EDB is 1.76 ac-ft to the spillway (Elev: 7023.20). The provided storage volume of the existing EDB is 2.89 ac-ft. Flows are detained within the EDB and are released downstream at design point ED and outfall to the south, into Sand Creek. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin OE1

Sub-Basin OE1 is the offsite sub-basin just to the north of sub-basin E1. OE1 is approximately 2.34 acres in size and yields an impervious value of 96.8%. Existing land cover for this basin can be described as compacted gravel with asphalt millings. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 10.55 and 19.07 cfs respectively. Flows generated within OE1 flow into sub-basin E1 at design

point OE1 and ultimately outfall into the EDB to the south of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin OE2

Sub-Basin OE2 is the offsite sub-basin just to the north of sub-basin E2. OE2 is approximately 2.48 acres in size and yields an impervious value of 100%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 11.54 and 20.67 cfs respectively. Flows generated within the OE2 flow into sub-basin E2 and ultimately sheet flow into the EDB to the south of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin OE3

Sub-Basin OE2 is the offsite sub-basin just to the northwest of sub-basin E2. OE3 is approximately 1.14 acres in size and yields an impervious value of 100%. Existing land cover for this basin can be described as compacted gravel. Land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 5.32 and 9.54 cfs respectively. Flows generated within the OE3 flow into sub-basin E2 at design point OE3 and ultimately sheet flow into the EDB to the south of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin OE4

Sub-Basin OE4 is the offsite sub-basin just to the west of sub-basin E2. OE4 is approximately 0.82 acres in size and yields an impervious value of 100%. Existing land cover for this basin can be described as compacted gravel. Land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 3.80 and 6.81 cfs respectively. Flows generated within the OE4 flow into sub-basin E2 at design point OE4 and enter the EDB as concentrated flow to the southwest of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

Sub-Basin OE5

Sub-Basin OE5 is the offsite sub-basin just to the east of sub-basin E2 and south of E1. OE5 is approximately 0.97 acres in size and yields an impervious value of 75.3%. Existing land cover for this basin can be described as compacted gravel. Land-use for this sub-basin is an existing diesel mechanic shop. Runoff during the 5-year and 100-year storm events are 2.73 and 5.51 cfs respectively. Flows generated within the OE5 flow into sub-basin E2 at design point OE5 and enter the EDB as concentrated flow to the southeast of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

PROPOSED SUB-BASIN DESCRIPTIONS

In the proposed condition, runoff flows from north to south via sheet and concentrated flows over developed land and within proposed storm sewer infrastructure to the existing EDB. Below are descriptions for the proposed on-site and off-site sub-basins. For the proposed condition, the total weighted basin imperviousness is 88.0% and the cumulative direct runoff for the 5-year and 100-year storm events are 41.26 and 76.63 cfs, respectively.

Sub-Basin P1

Sub-Basin P1 consists of the entrance to the Site, beginning at the dead end of Cliff Allen Pt. P1 is 0.31 acres in size and yields an impervious value of 81.7%. This Sub-Basin accepts flows from the adjacent off-site basin, O1, to the north. The central section of this Sub-Basin is subject to a portion of the Site improvements including truck scales and a 250 sf attendant shelter for facility operation. This sub-basin directs flows from the adjacent offsite sub-basins and runoff generated within, centrally, towards the proposed CDOT Type C grated area inlet at design point P1. Runoff during the 5-year and 100-year storm events are 0.98 and 1.92 cfs, respectively. These flows are then conveyed through a proposed 18" PVC pipe, tying into the existing 30" HDPE pipe to the east. These flows are discharged into the pond along with the bypass flows from Woodmen View Storage, as shown in the existing drainage report by Matrix Design Group dated June 6, 2016. See **Appendix F** for the existing drainage report and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin P2

Sub-Basin P2 consists of the area just west of sub-basin P1. P2 is 0.15 acres in size and yields an impervious value of 76.4%. P2 accepts flows from the adjacent off-site sub-basin, O2, to the north. This sub-basin is subject to a portion of the Site improvements including the truck scales, attendant shelter, and vegetated swale. Runoff during the 5-year and 100-year storm events are 0.44 and 0.88 cfs, respectively. Flows in this sub-basin are routed towards and into the proposed vegetated swale which conveys flows into the existing storm inlet and 24" CPP at design point P2. These flows are discharged into the existing pond as they do in the existing condition, but at a lesser quantity due to the decrease in tributary area. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin P3

Sub-Basin P3 consists of the area just west of sub-basin P2 and a portion of the proposed drive isle, to the north of the proposed transfer station. P3 is 0.11 acres in size and yields an impervious value of 82.2%. P3 accepts flows from the adjacent off-site sub-basin, O4, to the north. Site improvements proposed within sub-basin P3 are the 4' concrete drainage pan and CDOT Double Type C grated area inlet. Runoff during the 5-year and 100-year storm events are 0.36 and 0.70 cfs, respectively. Flows in this sub-basin are routed towards and into the proposed inlet at design point P3. These flows are then routed westerly and southwardly within the proposed 24" PVC storm sewer pipe, into the existing detention pond to the south. See **Appendix E** for Inlet Capacity Calculations and for StormCAD Modeling, and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin P4

Sub-Basin P4 consists of the area just west of sub-basin P3 and a portion of the proposed drive isle, to the north of the proposed transfer station. P4 is 0.11 acres in size and yields an impervious value of 82.3%. P3 accepts flows from the adjacent off-site sub-basin, O5, to the north. Site improvements proposed within sub-basin P4 are the 4' concrete drainage pan and CDOT Double Type C grated area inlet. Runoff during the 5-year and 100-year storm events are 0.35 and 0.70 cfs, respectively. Flows in this sub-basin are routed towards and into the proposed inlet at design point P4. These flows are then routed westerly and southwardly within the proposed 24" PVC storm sewer pipe, into the existing detention pond to the south. See **Appendix E** for Inlet Capacity Calculations and for StormCAD Modeling, and **Appendix H** for

the Proposed Conditions Drainage Map.

Sub-Basin P5

Sub-Basin P5 consists of the area just west of sub-basin P4 and includes proposed drive isle, to the west of the proposed transfer station. P6 is 0.13 acres in size and yields an impervious value of 82.0%. P5 accepts flows from the adjacent off-site sub-basin, O6, to the north and west. Site improvements proposed within sub-basin P5 are the 4' concrete drainage pan and CDOT Type C grated area inlet. Runoff during the 5-year and 100-year storm events are 0.43 and 0.84 cfs, respectively. Flows in this sub-basin are routed towards and into the proposed inlet at design point P5. These flows are then routed southwardly within the proposed 24" PVC storm sewer pipe, into the existing detention pond to the south. Any flows bypassing the proposed inlet will surface flow into the existing detention pond to the south. See **Appendix E** for Inlet Capacity Calculations and for StormCAD Modeling, and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin P6

Sub-Basin P6 consists of the majority of the Site. Improvements within this sub-basin include the proposed transfer station building and paved access, numerous concrete drainage pans, and outlets of the proposed storm infrastructure. P6 also consists of the existing detention pond and outlets of the existing storm infrastructure. Sub-basin P6 is 2.04 acres in size and yields an impervious value of 58.9%. P6 accepts surface flows from the adjacent off-site sub-basin, O3, to the north as well as flows from sub-basins P1-P5 via existing and proposed stormwater infrastructure. All existing and proposed storm pipes daylight into the existing detention facility. Runoff during the 5-year and 100-year storm events are 4.14 and 8.96 cfs, respectively. These flows are then routed via surface flows southwardly into the existing detention pond. A portion of these flows will channelize within the proposed concrete drainage pan and discharge into the existing pond as well. The existing detention pond is sized adequately to meet the required water quality and detention requirements. See **Appendix E** for the Pond Capacity and Outlet Structure Design spreadsheet calculations, **Appendix E** for StormCAD Modeling, and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin R1

Sub-Basin R1 consists of the westerly half of the proposed transfer station building and associated roof drain system. R1 is 0.14 acres in size and yields an impervious value of 90%. Runoff during the 5-year and 100-year storm events are 0.43 and 0.80 cfs, respectively. These flows are captured within the gutter and routed into three evenly spaced downspouts. The downspouts are then tied into the proposed 24" PVC storm sewer pipe to the west, and eventually discharging into the existing detention facility. See **Appendix E** for Inlet Capacity Calculations and for StormCAD Modeling, and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin R2

Sub-Basin R2 consists of the easterly half of the proposed transfer station building and associated roof drain system. R2 is 0.14 acres in size and yields an impervious value of 90%. Runoff during the 5-year and 100-year storm events are 0.43 and 0.80 cfs, respectively. These flows are captured within the gutter and routed into three evenly spaced downspouts. The downspouts are then tied into the proposed 24" PVC storm sewer pipe to the north, and

eventually discharging into the existing detention facility. See **Appendix E** for Inlet Capacity Calculations and for StormCAD Modeling, and **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O1

Sub-Basin O1 is the offsite sub-basin just to the north of sub-basin P1. O1 is approximately 1.51 acres in size and yields an impervious value of 95.1%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 6.73 and 12.23 cfs respectively. Flows generated within O1 flow into sub-basin E1 at design point O1 and ultimately outfall into the EDB to the south of the Site, along with the flows generated within E1. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O2

Sub-Basin O2 is the offsite sub-basin just to the north of sub-basin P2. O2 is approximately 0.74 acres in size and yields an impervious value of 100.0%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 3.46 and 6.20 cfs respectively. Flows generated within O2 flow into sub-basin E2 at design point O2 and ultimately outfall into the EDB to the south of the Site, along with the flows generated within E2. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O3

Sub-Basin O3 is the offsite sub-basin just to the north of sub-basin P6. O3 is approximately 0.44 acres in size and yields an impervious value of 100.0%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 2.04 and 3.65 cfs respectively. Flows generated within O3 flow into sub-basin E3 at design point O3 and ultimately outfall into the EDB to the south of the Site, along with the flows generated within P6. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O4

Sub-Basin O4 is the offsite sub-basin just to the north of sub-basin P3. O4 is approximately 1.05 acres in size and yields an impervious value of 100.0%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 4.86 and 8.71 cfs respectively. Flows generated within O4 flow into sub-basin P3 at design point O4 and ultimately outfall into the EDB to the south of the Site, along with the flows generated within P3. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O5

Sub-Basin O5 is the offsite sub-basin just to the north of sub-basin P4. O5 is approximately 1.08 acres in size and yields an impervious value of 100.0%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 5.00 and 8.96 cfs respectively. Flows generated within O5 flow into sub-basin P4 at design point O5 and

ultimately outfall into the EDB to the south of the Site, along with the flows generated within P4. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O6

Sub-Basin O6 is the offsite sub-basin just to the north and west of sub-basins P4 and P5. O6 is approximately 1.14 acres in size and yields an impervious value of 100.0%. Existing land cover for this basin can be described as compacted gravel. The existing land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 5.32 and 8.96 cfs respectively. Flows generated within O6 flow into sub-basin P5 at design point O6 and ultimately outfall into the EDB to the south of the Site, along with the flows generated within P5. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O7

Sub-Basin O7 is the offsite sub-basin just to the west of sub-basins P5 and P6. O7 is approximately 0.82 acres in size and yields an impervious value of 100.00%. Existing land cover for this basin can be described as compacted gravel. Land-use for this sub-basin is vehicular and modular storage. Runoff during the 5-year and 100-year storm events are 3.80 and 6.81 cfs respectively. Flows generated within the O7 flow into sub-basin P6 at design point O7 and enter the EDB as concentrated flow to the southwest of the Site. See **Appendix H** for the Proposed Conditions Drainage Map.

Sub-Basin O8

Sub-Basin O8 is the offsite sub-basin just to the south of sub-basins P1 and P2 and east of P6. O8 is approximately 0.82 acres in size and yields an impervious value of 76.7%. Existing land cover for this basin can be described as compacted gravel. This sub-basin consists of the existing Diesel Mechanic Shop: Dirt Road Diesel. Runoff during the 5-year and 100-year storm events are 2.48 and 4.94 cfs respectively. Flows generated within the O8 flow into sub-basin P6 at design point O8 and enter the EDB as concentrated flow to the south of the Site. See **Appendix H** for the Existing Conditions Drainage Map.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

There are no known master plans or studies for the Site.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the existing and proposed condition drainage analysis per the MANUAL and DCM. The rainfall depths for the Site were determined from Table 6-2 from the DCM. Refer to **Table 1** below for the rainfall depths utilized for the Site and **Appendix D** for the hydrologic calculations for the

Site.

	Duration (HRS)
Storm Event	1 HR
5 Year	1.50 IN
100 Year	2.52 IN

Table 1: Rainfall Depths (IN)

Calculations for the runoff coefficients and percent imperviousness are included in the **Appendix D**. The rational method was used to determine the peak flows for the Project. These flows were used to determine the size of the proposed inlets, culvert, storm drain system and on-site swales.

The proposed impervious values in Table 6-6 of the DCM were utilized in this report for the final design.

The existing Site provides one full spectrum extended detention basin. The Site is maintaining the historic drainage patterns as much as possible.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Applicable design methods were utilized to confirm the size of the EDB, which includes the use of the UD-Detention spreadsheet and rational calculations spreadsheet. Storm sewer sizing and hydraulic grade line calculations were computed using StormCAD implementing the standard step method. Bentley FlowMaster (Edition Update 3) was used for the sizing and analysis of the western drive isle/drainage pan, proposed roof drains, and proposed 18" PVC storm pipe connecting to the existing 30" HDPE storm pipe to the east of the Site.

Proposed drainage features on-site have been analyzed and sized for the following storm events:

• Major Storm: 100-year Storm Event

One EDB is exists on Site and provides the required water quality capture volume, EURV volume and 100-year detention. The existing EDB is located to the south of the Site with an existing volume of 2.89 ac-ft and designed for the 100-year storm event. The minimum required volume for the EDB, in the proposed condition, is 1.758 ac-ft. Developed flows from the Site will be released at controlled rates from the EDB and is ultimately tributary to Sand Creek. Flows that are discharged from the pond will continue south through rip rap, low-tailwater basin for energy dissipation before continuing south. As flows continue south via historic drainage patterns, they will channelize and be conveyed through a 24" corrugated metal pipe (per ALTA Survey by LDC, Inc dated 10/20/2021), running beneath the existing gravel road. It is stated in the existing FDR for the Barbarick Subdivision that this pipe is 12" and that flows in excess of 5.7 cfs would overtop the gravel road, creating a tailwater elevation of 7018.0. This gravel road and corrugated metal pipe will be eliminated in the development of Sterling Ranch.

Proposed improvements to the EBD are associated with the outlet structure. The overflow weir dropbox shall be raised from a total height of 3.01 ft to 4.10 ft. The orifice plate and outlet restrictor plate shall both be replaced per the pond details provided in the Barbarick Transfer Station Construction Documents (COM-2346) as well as MHFD-Detention Spreadsheet in **Appendix E**. The EDB is designed to release the 5-year and 100-year flow rates below the predevelopment flow rate as well as in the existing site condition. The existing EDB as-built certification document *"Pond As-Built Verification for Barabrick Subdivision Lots 1-4 Construction"*, prepared by Matrix Design Group, dated January 16, 2017, was utilized for EDB storage calculations and design of the outlet structure modification. The EDB as-built certification is included in the **Appendix F.** See the "Compliance with Previous Studies" section of this report for specific flow rates and compliance details.

Concrete drainage pans, area inlets, grass lined swales, and storm sewer pipes are designed to carry flows to the EDB. Calculations for the proposed improvements are provided in the **Appendix E** and the design points are provided in the Proposed Drainage Map located in **Appendix H**.

Emergency overflows will be routed over the southern embankment of the pond through the emergency spillway. It will follow the historic drainage patterns that conveys drainage southward towards Sand Creek.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the County's "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection).

Step 1. **Employ Runoff Reduction Practices** - The Project is proposing a recycling and refuse transfer station. Although the proposed site increases in imperviousness by 1.7%, the cumulative direct runoff for the 100-year storm decreases by 3.23 cfs. The proposed grading and underground storm system were designed to broadly distribute on-site and off-site flows and slow the runoff velocity and reduce runoff peaks. The existing full spectrum detention pond will be used to capture and maintain flows discharging off Site at or below historic levels. The existing pond is sized adequately for the proposed improvements and only requires a modification of the outlet structure's restrictor plate.

Step 2. Stabilize Drainageways – Proposed drainage ways are stabilized by designing them with slopes that control the flow rates. Concrete drainage pans are utilized in areas of concentrated flow to better convey flows to the proposed inlets or discharge points. Discharge points feature adequately sized rip rap pads which will be constructed to reduce the velocities of runoff entering the pond. It is anticipated this will minimize erosion.

Step 3. Provide Water Quality Capture Volume (WQCV) – Permanent water quality measures and detention facilities will be provided with the Project via the existing Full Spectrum EDB. More specifically, this Project proposes a modification to the existing outlet structure's restrictor plate, to effectively meet water quality and detention requirements.

Step 4. Consider Need for Industrial and Commercial BMPs – The Project is proposing a fully enclosed recycling and refuse transfer station facility. The Project

responds to the covering of storage and handling areas by providing a building enclosure where all physical transfer operations will take place.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The existing condition of the Site consists of flows draining from the north to the south with an approximate average slope of 3%, all discharging into the existing full spectrum EDB to the south of the Site. The existing runoff conditions for the Site were developed utilizing the Rational Method described in the Hydrologic Criteria section of this report.

The proposed drainage patterns will match the overall historic patterns for the Barabrick Subdivision. To maintain historic flows, all flows will be routed to the existing full spectrum EDB which will capture and control the release of flows from the Site. Site drainage will be conveyed to the EDB via a series of swales, surface flow, and a storm sewer system.

Provided in the **Appendix D** are hydrologic calculations utilizing the Rational Method for the existing and proposed conditions. Provided in **Appendix E** are the hydraulic calculations for the proposed conditions, including the proposed detention basin sizing. As previously mentioned, the existing drainage map and proposed drainage map can be found in **Appendix H**.

SPECIFIC DETAILS

Sub-basins P1-P6 are subject to Site improvements including the transfer building, attendant shelter, and entrance/exit scales. In the proposed condition flows are routed to CDOT Type C grated area inlets, drainage pans, or swales laid out to effectively control flows as they are conveyed to the existing EDB. Flows captured by the existing EDB are released via the existing 30" CPP which conveying flows southwardly towards Sand Creek at a rate less than in the historic conditions from the existing FDR: "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2, and Lots 3 & 4" prepared by Matrix Design Group on June 6, 2016. (Existing FDR for the Barbarick Subdivision). Improvements to the pond include a new orifice plate, new outlet restrictor plate, and a cast-in-place increase in outlet structure weir-box height.

A forebay is not proposed for the existing EDB because the tributary area for any given subbasin is less than 1-acre. This tributary area was determined by adding together the impervious area at 100%, roof area at 90%, and gravel area at 80%, per their respective impervious rates as shown in the DCM. The maximum total tributary area entering the existing EDB at a single point is 41,798 s.f. or 0.96 acres. Proposed at this entrance point to the EDB is an adequately sized riprap pad: 24.0'x5.0' type M riprap, 12" depth. The purpose of this riprap pad is for the dissipation of runoff velocity and erosive forces.

Modeling of the existing pond, in the as built condition, and associated discharge calculations were done using the MHFD-Detention Spreadsheet, Version 4.06: Detention Basin Design Workbook (**Appendix E**) and AutoCAD Civil 3D. The staged storage calculations for the EDB were modeled using the design survey for the site. Per these staged storage calculations, the existing EDB has a capacity of 2.89 ac-ft. Outlet structure dimensions and elevations were referenced from the pond's As-Built Verification performed by Matrix Design Group on January 16, 2017. (**Appendix F**). In the proposed condition, the EDB is designed to release the 5-year and 100-year on-site flows at a discharge rate of 0.3 cfs and 7.7cfs, respectively. This is a reduction from the 5-year and 100-year on-site discharge rate of 0.3 cfs and 45.9 cfs as shown in the existing FDR for the Barbarick Subdivision, page 19 of the report (**Appendix F**).

Therefore, impact to downstream infrastructure is not anticipated and planned release rates are in compliance with the Existing FDR for the Barbarick Subdivision.

All proposed storm sewer infrastructure and the existing detention facility is located within the private property's boundary and will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices.

The hydrologic calculations, hydraulic calculations, and Drainage Maps are included in **Appendix D, Appendix E,** and **Appendix H,** respectively, of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

Since the Site was previously platted, there are no associated drainage and bridge fees due at this time. A cost estimate for the proposed private storm drain improvements is included in **Appendix G** of this report for reference.

GEOTECHNICAL RECOMMENDATIONS

Per the Geotechnical Subsurface Investigation by RMG – Rocky Mountain Group, dated October 23, 2023, it was determined that the soil is generally anticipated to be well draining, however groundwater was encountered at depths anticipated to impact the proposed construction. A subsurface perimeter drain and underslab drain are recommended and are included in the design. Geotechnical recommendations do not impact the existing detention facility to the south of the Site.

COMPLIANCE WITH PREVIOUS STUDIES

The Site area was previously included and studied as part of the existing FDR for the Barbarick Subdivision (*Final Drainage Report for Barbarick Subdivision, Portions of Lots 1,2 and Lots 3 & 4*) prepared by Matrix Design Group on June 6, 2016. The Site lies within sub-basins H1 and D1 of the historic and previously planned drainage conditions. Design points H3 and D2 correspond to Design Point P8, the proposed discharge from the existing detention pond, in the proposed condition. The existing FDR for the Barabrick Subdivision is provided in **Appendix F.**

HISTORIC CONDITION:

- Design Point H3 experiences flows of 21.3 cfs and 56.7 cfs for the 5-year and 100-year storm events, respectively.

EXISTION CONDITION:

- Design Point D2 experiences a flow of 0.3 cfs and 45.9 cfs (16.5 cfs+29.4 cfs_{bypass}) for the 5-year and 100-year storm event.
- EDB Capacity Provided: 2.64 ac-ft (Appendix F, Lot 3 FSD Pond)

PROPOSED CONDITION:

- Design Point P8 experiences a flow of 0.3 cfs and 7.7 cfs for the 5-year and 100-year storm event.
- EDB Capacity Required: 1.758 ac-ft
- EDB Capacity Provided per staged storage calculations: 2.85 ac-ft (Appendix E, EDB Modification Proposed Condition)

The existing EDB, in the proposed condition, will release the 5-year and 100-year storm events at 0.3 and 7.7 cfs respectively. These values are less than the historic flow rates at this design point. With the proposed modified outlet structure overflow weir, orifice plate, and outlet restrictor plate, the flows will be further controlled for the 100-year storm event than that of the existing condition at design point D2. Therefore, impact to downstream infrastructure is not anticipated and the planned release rates are in compliance with the Existing FDR for the Barbarick Subdivision.

SUMMARY

The proposed drainage design is to maintain the historic drainage patterns and release rates for the Site. Runoff from the Site will flow through a proposed storm sewer system to an existing full spectrum extended detention basin. The existing EDB is currently functioning properly, ultimately discharges to Sand Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. The proposed modifications to the pond outlet structure will adequately manage the increase in flows associated with the proposed site improvements. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including Sand Creek.

It is known that the existing EDB is in need of maintenance, and that maintenance of the pond must be completed prior to Preliminary Acceptance of this project.

REFERENCES

- 1. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 2. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0533G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).
- 7. "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1,2 and Lots 3 &4" prepared by Matrix Design Group. (June 6, 2016)
- 8. "Geotechnical Subsurface Soil Investigation" prepared by RMG Rocky Mountain Group. (October 23, 2023).

APPENDIX

APPENDIX A: VICINITY MAP

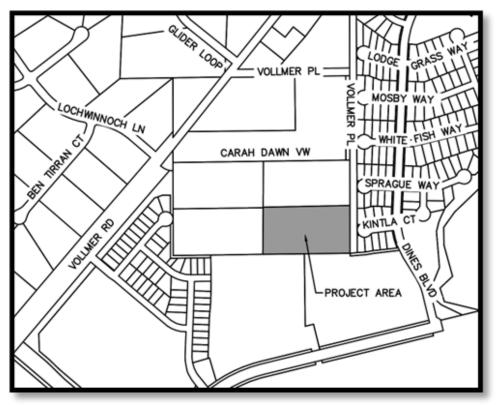


Figure 1: Vicinity Map (Not to Scale)

APPENDIX B: NRCS SOIL STUDY

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Barbarick Transfer Station

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map (Barbarick WTS)	
Legend	
Map Unit Legend (Barbarick WTS)	
Map Unit Descriptions (Barbarick WTS)	
El Paso County Area, Colorado	13
9—Blakeland-Fluvaquentic Haplaquolls	13
71—Pring coarse sandy loam, 3 to 8 percent slopes	14
Soil Information for All Uses	16
Soil Properties and Qualities	
Soil Erosion Factors	16
Wind Erodibility Index (Barbarick WTS)	
K Factor, Whole Soil (Barbarick WTS)	
Soil Qualities and Features	22
Hydrologic Soil Group (Barbarick WTS)	22
References	27

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

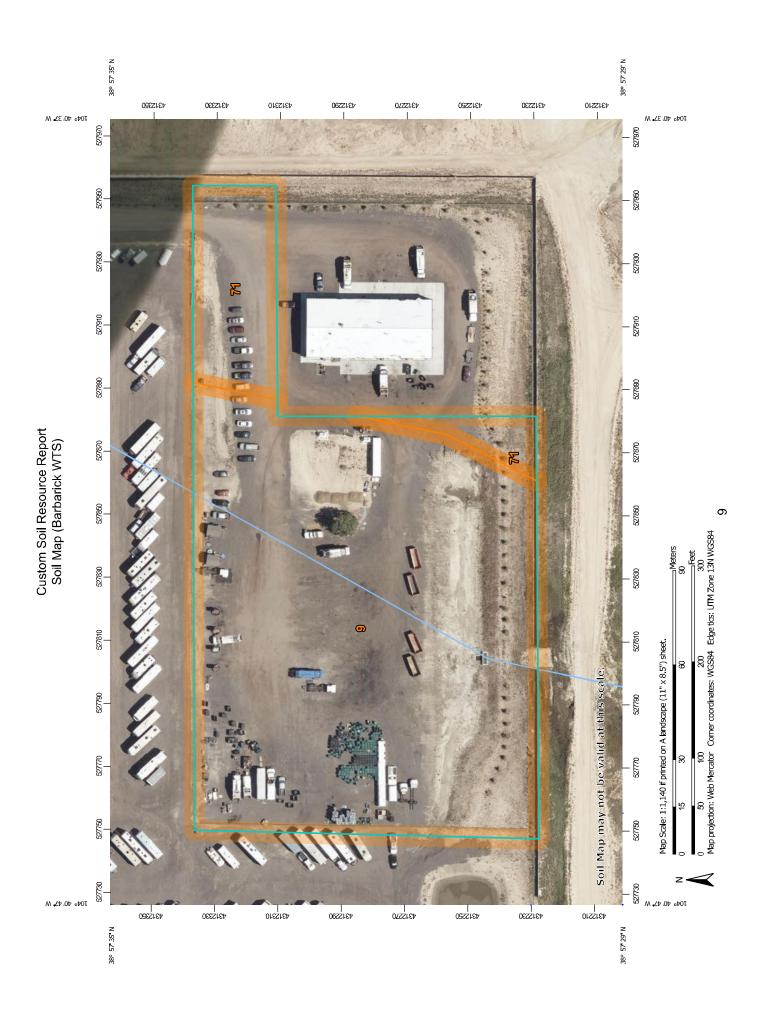
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LE	LEGEND		MAP INFORMATION
Area of Interest (AOI)	srest (AOI) Area of Interest (AOI)	0	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	8	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
ł	Soil Map Unit Lines	⊳ <	Wet Spot Other	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	1	Special Line Features	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Special F	Special Point Features	Water Features	tures	contrasting soils that could have been shown at a more detailed scale.
) 🛛	Borrow Pit	{	Streams and Canals	
1 Ж	Clay Spot	Transportation HH Rai	ation Rails	Please rely on the bar scale on each map sheet for map measurements.
0	Closed Depression	}	Interstate Highways	
×	Gravel Pit	2	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0 0 0	Gravelly Spot	8	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
٥	Landfill	8	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
V	Lava Flow	Background	nd	projection, which preserves direction and shape but distorts
1	Marsh or swamp	4	Aerial Photography	usiance and area. A projection that preserves area, out as the Albers equal-area conic projection, should be used if more
¢	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
>	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			
0 0 0 0	Sandy Spot			Soil map units are labeled (as space allows) for map scales
Û	Severely Eroded Spot			1:50,000 or larger.
٩	Sinkhole			Date(s) aerial images were photographed: Aug 19, 2018—Oct
A	Slide or Slip			20, 2018
Ø	Sodic Spot			The orthophoto or other base map on which the soil lines were
				compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
				snitting of map unit boundaries may be evident.

Map Unit Legend (Barbarick WTS)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	3.5	86.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	0.5	13.3%
Totals for Area of Interest		4.1	100.0%

Map Unit Descriptions (Barbarick WTS)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

9—Blakeland-Fluvaquentic Haplaquolls

Map Unit Setting

National map unit symbol: 36b6 Elevation: 3,500 to 5,800 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 110 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 60 percent Fluvaquentic haplaquolls and similar soils: 38 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose and/or eolian deposits derived from arkose

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 12 inches: variable *H2 - 12 to 60 inches:* stratified very gravelly sand to loam

Properties and qualities

Slope: 1 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
Depth to water table: About 0 to 24 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: D Ecological site: R048AY241CO - Mountain Meadow Hydric soil rating: Yes

Minor Components

Other soils

Percent of map unit: 1 percent *Hydric soil rating:* No

Pleasant

Percent of map unit: 1 percent *Landform:* Depressions *Hydric soil rating:* Yes

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO - Loamy Park Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

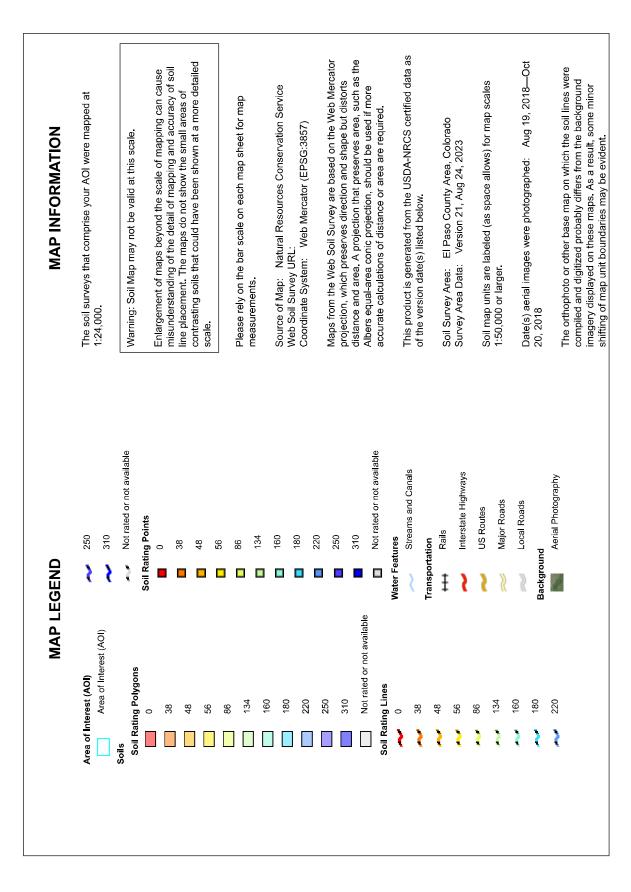
Other soils

Percent of map unit: Hydric soil rating: No

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.


Soil Erosion Factors

Soil Erosion Factors are soil properties and interpretations used in evaluating the soil for potential erosion. Example soil erosion factors can include K factor for the whole soil or on a rock free basis, T factor, wind erodibility group and wind erodibility index.

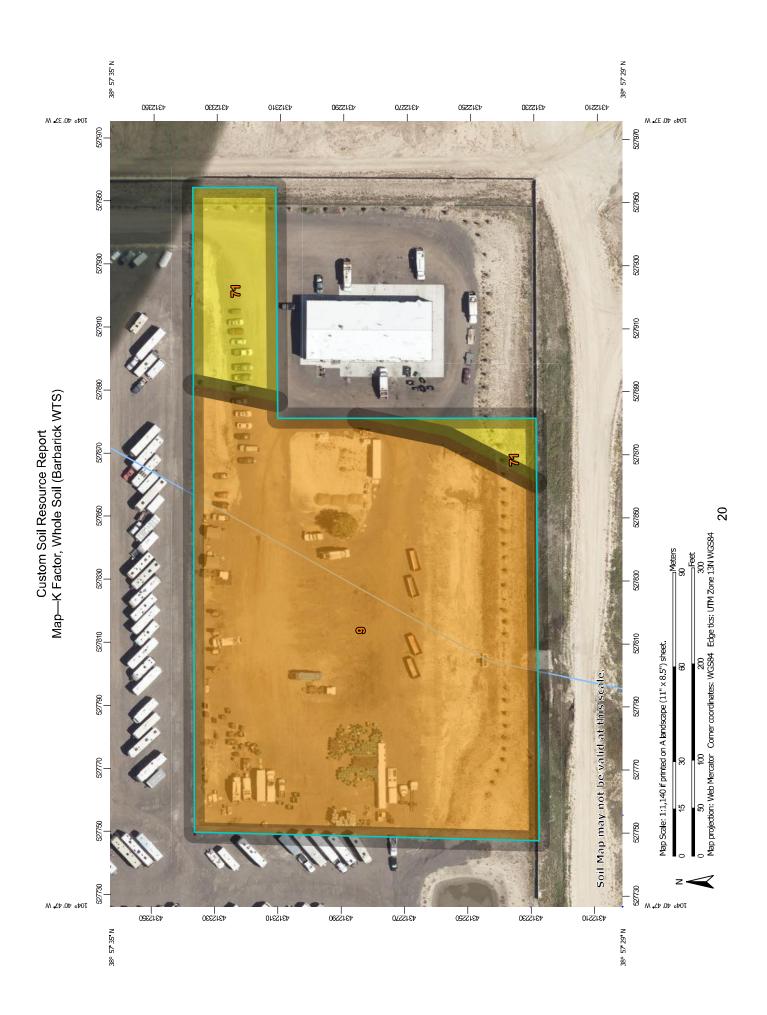
Wind Erodibility Index (Barbarick WTS)

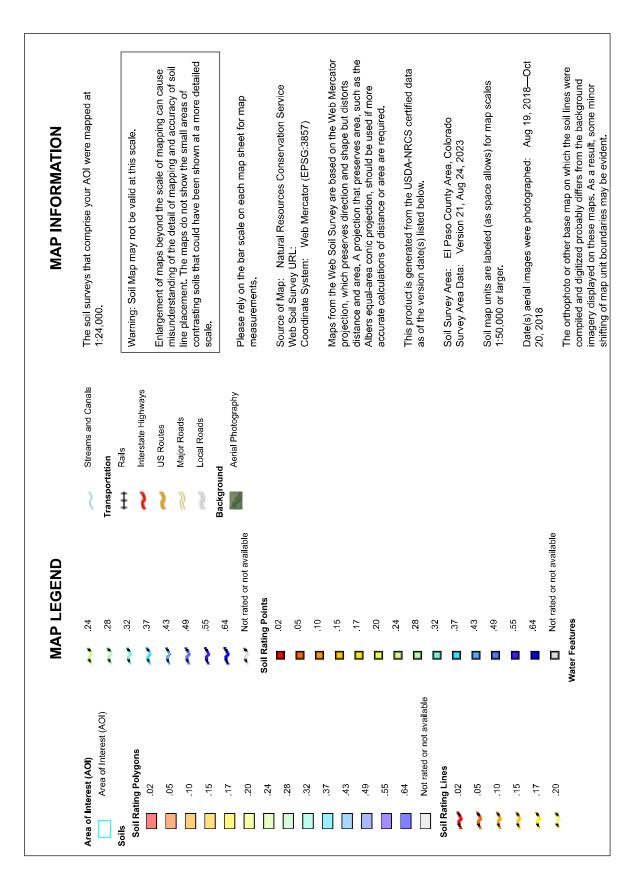
The wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Table-	-Wind Erodibility	Index (Barbarick WTS)
--------	-------------------	-----------------------

Map unit symbol	Map unit name	Rating (tons per acre per year)	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	134	3.5	86.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	86	0.5	13.3%
Totals for Area of Intere	st		4.1	100.0%

Rating Options—Wind Erodibility Index (Barbarick WTS)


Units of Measure: tons per acre per year Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


K Factor, Whole Soil (Barbarick WTS)

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Factor K does not apply to organic horizons and is not reported for those layers.

Table—K Factor, Whole Soil (I	Barbarick WTS)
-------------------------------	----------------

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	.10	3.5	86.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	.17	0.5	13.3%
Totals for Area of Intere	st		4.1	100.0%

Rating Options—K Factor, Whole Soil (Barbarick WTS)

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group (Barbarick WTS)

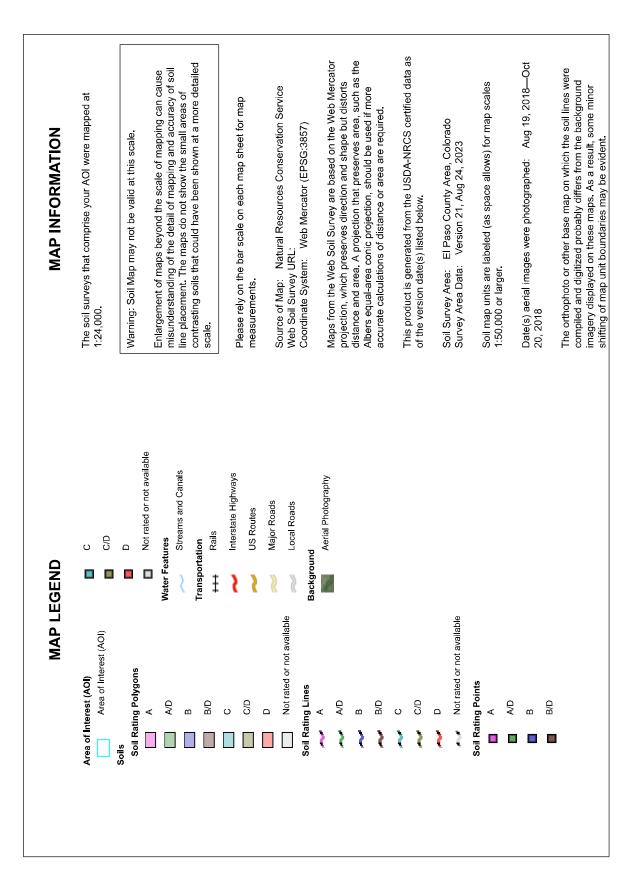
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained

Custom Soil Resource Report


soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Table—Hydrologic Soil Group (Barbarick WTS)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	A	3.5	86.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	0.5	13.3%
Totals for Area of Intere	st		4.1	100 . 0%

Rating Options—Hydrologic Soil Group (Barbarick WTS)

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C: FEMA FIRM MAP

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

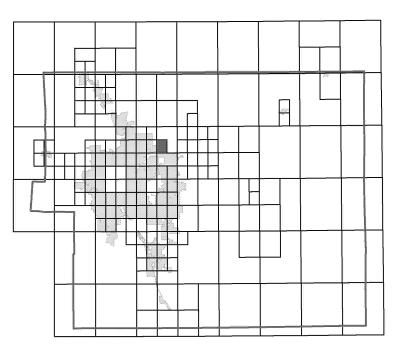
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

f you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

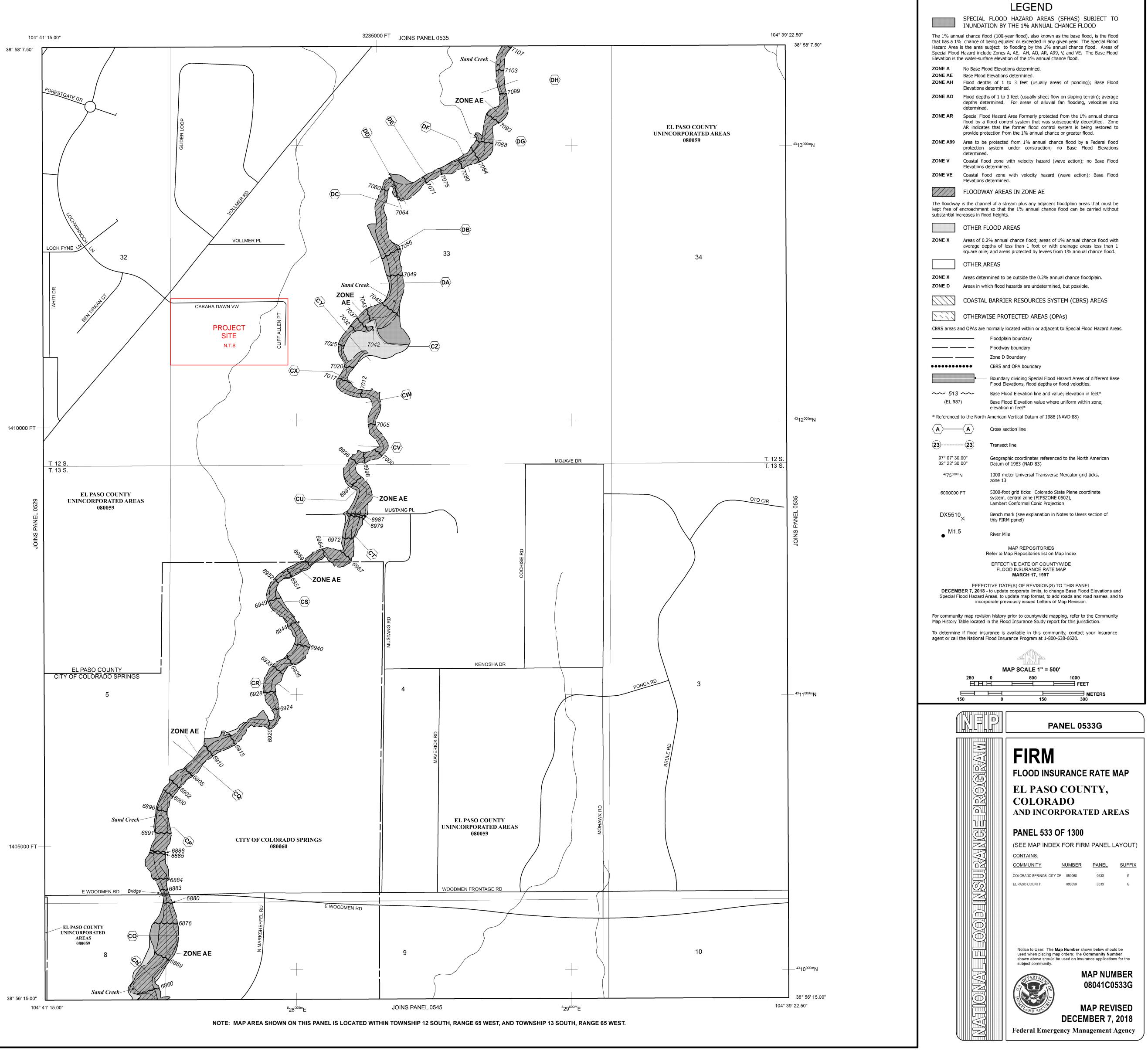
> El Paso County Vertical Datum Offset Table Vertical Datum


> > Offset (ft

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY

Flooding Source

FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

APPENDIX D: HYDROLOGIC ANALYSIS

Weighted Imperviousness Calculations - Existing Conditions

	AREA	AREA	GRAVEL	GRAVEL		GRA	VEL		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	TOTAL	PA	VEMEN	Γ / MILLIN	GS	ROOF	TOTAL		RO	OF		WEIGHTED	WEIG	HTED COE	FFICIENTS
SUB-BASI	I (SF)	(Acres)	AREA	IMP.	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	IMP	C2	C5	C10 C100
E1	16,873	0.39	11,670	80%	0.57	0.59	0.63	0.7	5,204	0%	0.02	0.08	0.15	0.35	0	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	55.3%	0.40	0.43	0.48 0.59
E2	112,891	2.59	87,610	80%	0.57	0.59	0.63	0.7	25,281	0%	0.02	0.08	0.15	0.35	0	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	62.1%	0.45	0.48	0.52 0.62
OE1	101,771	2.34	0	80%	0.57	0.59	0.63	0.7	3,243	0%	0.02	0.08	0.15	0.35	98,528	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	96.8%	0.86	0.87	0.90 0.94
OE2	108,087	2.48	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	108,087	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
OE3	49,856	1.14	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	49,856	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
OE4	35,615	0.82	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	35,615	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
OE5	42,290	0.97	31,640	80%	0.57	0.59	0.63	0.7	3,715	0%	0.02	0.08	0.15	0.35	2,959	100%	0.89	0.9	0.92	0.96	3,977	90%	0.71	0.73	0.75	0.81	75.3%	0.56	0.58	0.62 0.70
TOTAL	467,384	10.73	130,919	80%	0.57	0.59	0.63	0.70	37,443	0%	0.02	0.08	0.15	0.35	295,045	100%	0.89	0.90	0.92	0.96	3,977	90%	0.71	0.73	0.75	0.81	86.3%	0.73	0.75	0.78 0.84

Barbarick T	ransfer Sta	tion								Watercours	se Coeffici	ient				
Time of Cor	ncentration	- Existing	Conditio	ons	Forest a	& Meadow	2.50	Short Gr	ass Pastu	ire & Lawns	7.00			Grassed	Waterway	15.00
				ļ	Fallow or	Cultivation	5.00		Nearly B	are Ground	10.00		Paved A	rea & Sha	llow Gutter	20.00
		SUB-BASIN			INITIA	L / OVERL	AND*	TF	RAVEL TIN	ИE				T(c) CHEC	СK	FINAL
		DATA				TIME			T(t)				(URB/	ANIZED BA	SINS)	T©*
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
E1	E1	16,873	0.39	0.43	100	4.0%	7.7	145	1.8%	10.00	1.3	1.8	9.5	245	11.4	9.5
E2	E2	112,891	2.59	0.48	100	3.2%	7.8	0	0.0%	10.00	0.0	0.0	7.8	100	10.6	7.8
OE1	OE1	101,771	2.34	0.87	100	2.0%	3.3	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
OE2	OE2	108,087	2.48	0.90	100	2.5%	2.7	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
OE3	OE3	49,856	1.14	0.90	100	3.5%	2.4	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
OE4	OE4	35,615	0.82	0.90	100	3.0%	2.5	35	13.0%	10.00	3.6	0.2	5.0	135	10.8	5.0
OE5	OE5	42,290	0.97	0.58	100	3.8%	6.1	30	25.0%	10.00	5.0	0.1	6.2	130	10.7	6.2
TOTAL	TOTAL	467,384	10.73													

*Note: El Paso County Drainage Manual Chapter 6 indicates that the maximum overland flow length is 100ft for urbanized areas and 300ft for rural areas. The minimum time of concentration is 5 min for developed conditions, 10 min for undeveloped conditions.

Barbar				in a Cor	ditions			5.14 01	- ·						
i ime o	r conce	ntratio	n - Exist	ing con	aitions	De	esign Storm	5 Year Stroi	m Event						
(Rationa	(Rational Method Procedure)														
BASIN	BASIN INFORMATION DIRECT RUNOFF CUMMULATIVE RUNOFF														
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	I	Q	T(c)	СхА		Q	NOTES			
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs				
E1	E1	0.39	0.43	9.5	0.17	4.20	0.70	9.5	2.0	4.20	8.58				
E2	E2	2.59	0.48	7.8	1.23	4.51	5.56	7.8	2.23	4.51	10.07				
OE1	OE1	2.34	0.87	5.0	2.04	5.17	10.55								
OE2	OE2	2.48	0.90	5.0	2.23	5.17	11.54								
OE3	OE3	1.14	0.90	5.0	1.03	5.17	5.32								
OE4	OE4	0.82	0.90	5.0	0.74	5.17	3.80								
OE5	OE5	0.97	0.58	6.2	0.56	4.84	2.73								
TOTAL	TOTAL	10.73	0.75				40.22								

	Fransfer Station ncentration - E		onditions		Desi	gn Storm	100 Year	r Storm	Event					
(Rational Met	ational Method Procedure)													
B/	BASIN INFORMATION DIRECT RUNOFF CUMMULATIVE RUNOFF													
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА		Q	T(c)	СхА		Q	NOTES		
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs			
E1	E1	0.39	0.59	9.5	0.23	7.06	1.62	9.5	2.2	7.06	15.51			
E2	E2	2.59	0.62	7.8	1.61	7.57	12.19	7.8	2.38	7.57	18.03			
OE1	OE1	2.34	0.94	5.0	2.20	8.68	19.07							
OE2	OE2	2.48	0.96	5.0	2.38	8.68	20.67							
OE3	OE3	1.14	0.96	5.0	1.10	8.68	9.54							
OE4	OE4	0.82	0.96	5.0	0.78	8.68	6.81							
OE5	OE5	0.97	0.70	6.2	0.68	8.13	5.51							
TOTAL	TOTAL	10.73	0.84				75.42							

	SUMMA	RY - EXISTI	NG RUNOFF TAE	BLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	BASIN IMPERVIOUSNESS (%)	DIRECT 5- YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)
E1	E1	0.39	55.3%	0.70	1.62
E2	E2	2.59	62.1%	5.56	12.19
OE1	OE1	2.34	96.8%	10.55	19.07
OE2	OE2	2.48	100.0%	11.54	20.67
OE3	OE3	1.14	100.0%	5.32	9.54
OE4	OE4	0.82	100.0%	3.80	6.81
OE5	OE5	0.97	75.3%	2.73	5.51
TOTAL		10.73	86.3%	40.22	75.42

Weighted Imperviousness Calculations - Proposed Conditions

	AREA	AREA	GRAVEL	GRAVEL		GRA	VEL		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	TOTAL	PA	VEMEN	Γ / MILLIN	GS	ROOF	TOTAL		RC	OOF		WEIGHTED	WEIGH	HTED COE	FFICIENTS
SUB-BASIN	(SF)	(Acres)	AREA	IMP.	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	AREA	IMP	C2	C5	C10	C100	IMP	C2	C5	C10 C100
P1	13,663	0.31	12,504	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	1,159	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	81.7%	0.60	0.62	0.65 0.72
P2	6,602	0.15	5,123	80%	0.57	0.59	0.63	0.7	509	0%	0.02	0.08	0.15	0.35	720	100%	0.89	0.9	0.92	0.96	250	90%	0.71	0.73	0.75	0.81	76.4%	0.57	0.59	0.63 0.71
P3	4,792	0.11	4,258	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	534	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	82.2%	0.61	0.62	0.66 0.73
P4	4,781	0.11	4,235	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	547	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	82.3%	0.61	0.63	0.66 0.73
P5	5,806	0.13	5,237	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	569	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	82.0%	0.60	0.62	0.66 0.73
P6	88,931	2.04	28,161	80%	0.57	0.59	0.63	0.7	30,941	0%	0.02	0.08	0.15	0.35	29,829	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	58.9%	0.49	0.52	0.56 0.67
R1	5,882	0.14	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	0	100%	0.89	0.9	0.92	0.96	5,882	90%	0.71	0.73	0.75	0.81	90.0%	0.71	0.73	0.75 0.81
R2	5,882	0.14	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	0	100%	0.89	0.9	0.92	0.96	5,882	90%	0.71	0.73	0.75	0.81	90.0%	0.71	0.73	0.75 0.81
01	65,975	1.51	0	80%	0.57	0.59	0.63	0.7	3,243	0%	0.02	0.08	0.15	0.35	62,732	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	95.1%	0.85	0.86	0.88 0.93
02	32,389	0.74	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	32,389	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
O3	19,087	0.44	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	19,087	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
04	45,546	1.05	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	45,546	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
O5	46,861	1.08	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	46,861	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
O6	49,856	1.14	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	49,856	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
07	35,615	0.82	0	80%	0.57	0.59	0.63	0.7	0	0%	0.02	0.08	0.15	0.35	35,615	100%	0.89	0.9	0.92	0.96	0	90%	0.71	0.73	0.75	0.81	100.0%	0.89	0.90	0.92 0.96
08	35,714	0.82	20,976	80%	0.57	0.59	0.63	0.7	3,715	0%	0.02	0.08	0.15	0.35	6,935	100%	0.89	0.9	0.92	0.96	4,088	90%	0.71	0.73	0.75	0.81	76.7%	0.59	0.61	0.65 0.73
TOTAL	467,384	10.73	80,494	80%	0.57	0.59	0.63	0.70	38,408	0%	0.02	0.08	0.15	0.35	332,379	100%	0.89	0.90	0.92	0.96	16,102	90%	0.71	0.73	0.75	0.81	88.0%	0.76	0.77	0.80 0.86

Barbarick T	ransfer Sta	tion								Watercours	se Coeffici	ent				
Time of Cor	ncentration	- Propose	d Condit	tions	Forest &	& Meadow	2.50	Short Gr	ass Pastu	re & Lawns	7.00			Grassed	Waterway	15.00
					Fallow or (Cultivation	5.00		Nearly B	are Ground	10.00		Paved /	Area & Sha	llow Gutter	20.00
		SUB-BASIN			INITIA	L / OVERL	AND*	TF	RAVELTIN					T(c) CHEC		FINAL
		DATA				TIME			T(t)				(URB	ANIZED BA	ASINS)	T©*
DESIGN POINT	DRAIN BASIN	AREA sq. ft.	AREA ac.	C(5)	Length ft.	Slope %	T(i) min	Length ft.	Slope %	Coeff.	Velocity fps	T(t) min.	COMP. T(c)	TOTAL LENGTH	L/180+10	min.
P1	P1	13,663	0.31	0.62	52	2.0%	5.1	30	2.5%	10.00	1.6	0.3	5.4	82	10.5	5.4
P2	P2	6,602	0.15	0.59	72	2.6%	5.8	42	3.5%	15.00	2.8	0.2	6.0	114	10.6	6.0
P3	P3	4,792	0.11	0.62	31	2.8%	3.4	25	1.6%	20.00	2.5	0.2	5.0	56	10.3	5.0
P4	P4	4,781	0.11	0.63	40	1.6%	4.7	26	1.2%	20.00	2.2	0.2	5.0	66	10.4	5.0
P5	P5	5,806	0.13	0.62	33	4.4%	3.1	136	1.9%	20.00	2.8	0.8	5.0	169	10.9	5.0
P6	P6	88,931	2.04	0.52	100	2.6%	7.8	438	1.0%	20.00	2.0	3.7	11.4	538	13.0	11.4
R1	R1	5,882	0.14	0.73	100	0.5%	8.5	0	0.0%	20.00	0.0	0.0	8.5	100	10.6	8.5
R2	R2	5,882	0.14	0.73	100	0.5%	8.5	0	0.0%	20.00	0.0	0.0	8.5	100	10.6	8.5
O1	O1	65,975	1.51	0.86	100	2.0%	3.5	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
O2	O2	32,389	0.74	0.90	100	2.5%	2.7	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
O3	O3	19,087	0.44	0.90	100	2.5%	2.7	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
O4	O4	45,546	1.05	0.90	100	3.0%	2.5	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
O5	O5	46,861	1.08	0.90	100	3.0%	2.5	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
O6	O6	49,856	1.14	0.90	100	3.5%	2.4	0	0.0%	10.00	0.0	0.0	5.0	100	10.6	5.0
07	07	35,615	0.82	0.90	100	3.0%	2.5	35	13.0%	10.00	3.6	0.2	5.0	135	10.8	5.0
O8	O8	35,714	0.82	0.61	100	3.8%	5.7	30	25.0%	10.00	5.0	0.1	5.8	130	10.7	5.8
TOTAL	TOTAL	467,384	10.73													

*Note: El Paso County Drainage Manual Chapter 6 indicates that the maximum overland flow length is 100ft for urbanized areas and 300ft for rural areas. The minimum time of concentration is 5 min for developed conditions, 10 min for undeveloped conditions.

Barbarick Transfer Station												
Time of Concentration - Proposed Conditions Design Storm 5 Year Strom Event												
(Rational Method Procedure)												
								-				
	INFORM				ECT RUN	OFF	1			TIVE RUNOFF		
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	. I	Q	T(c)	СхА		Q	NOTES
POINT	BASIN	ac.	COEFF	min	0.10	in/hr	cfs	min	1.0	in/hr	cfs	
P1	P1	0.31	0.62	5.4	0.19	5.06	0.98	10.4	1.3	4.07	5.30	O1 is tributary to P1
P2	P2	0.15	0.59	6.0	0.09	4.89	0.44					
P3	P3	0.11	0.62	5.0	0.07	5.17	0.36	5.0	1.0	5.17	5.22	O4 is tributary to P3
P4	P4	0.11	0.63	5.0	0.07	5.17	0.35	5.0	1.0	5.17	5.36	O5 is tributary to P4
P5	P5	0.13	0.62	5.0	0.08	5.17	0.43	5.0	1.1	5.17	5.75	O6 is tributary to P5
P6	P6	2.04	0.52	11.4	1.05	3.93	4.14					
R1	R1	0.14	0.73	8.5	0.10	4.36	0.43					
R2	R2	0.14	0.73	8.5	0.10	4.36	0.43					
01	01	1.51	0.86	5.0	1.30	5.17	6.73					
02	02	0.74	0.90	5.0	0.67	5.17	3.46					
03	03	0.44	0.90	5.0	0.39	5.17	2.04					
04	04	1.05	0.90	5.0	0.94	5.17	4.86					
05	05	1.08	0.90	5.0	0.97	5.17	5.00					
06	06	1.14	0.90	5.0	1.03	5.17	5.32					
07	07	0.82	0.90	5.0	0.74	5.17	3.80					
08	08	0.82	0.61	5.8	0.50	4.94	2.48					
TOTAL	TOTAL	10.73	0.77				41.26					

Barbarick Transfer Station												
Time of Concentration - Proposed Condition				S	Desi	gn Storm	100 Year	Storm	Event			
(Rational Met	thod Procedure)											
				-				-				
	ASIN INFORMATIO					RUNOFF	-			ATIVE RL	INOFF	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА		Q	T(c)	СхА	I.	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
P1	P1	0.31	0.72	5.4	0.23	8.49	1.92	5.4	1.4	8.49	11.96	O1 is tributary to P1
P2	P2	0.15	0.71	6.0	0.11	8.21	0.88					
P3	P3	0.11	0.73	5.0	0.08	8.68	0.70	5.0	1.1	8.68	9.41	O4 is tributary to P3
P4	P4	0.11	0.73	5.0	0.08	8.68	0.70	5.0	1.1	8.68	9.66	O5 is tributary to P4
P5	P5	0.13	0.73	5.0	0.10	8.68	0.84	5.0	1.1	8.68	9.54	O6 is tributary to P5
P6	P6	2.04	0.67	11.4	1.36	6.60	8.96					
R1	R1	0.14	0.81	8.5	0.11	7.33	0.80					
R2	R2	0.14	0.81	8.5	0.11	7.33	0.80					
01	01	1.51	0.93	5.0	1.41	8.68	12.23					
02	02	0.74	0.96	5.0	0.71	8.68	6.20					
O3	03	0.44	0.96	5.0	0.42	8.68	3.65					
O4	04	1.05	0.96	5.0	1.00	8.68	8.71					
O5	O5	1.08	0.96	5.0	1.03	8.68	8.96					
06	06	1.14	0.96	5.0	1.10	8.68	9.54					
07	07	0.82	0.96	5.0	0.78	8.68	6.81					
08	08	0.82	0.73	5.8	0.60	8.30	4.94					
TOTAL	TOTAL	10.73	0.86				76.63					

	SUMMARY - PROPOSED RUNOFF TABLE									
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	BASIN IMPERVIOUSNESS (%)	DIRECT 5- YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)					
P1	P1	0.31	81.7%	0.98	1.92					
P2	P2	0.15	76.4%	0.44	0.88					
P3	P3	0.11	82.2%	0.36	0.70					
P4	P4	0.11	82.3%	0.35	0.70					
P5	P5	0.13	82.0%	0.43	0.84					
P6	P6	2.04	58.9%	4.14	8.96					
R1	R1	0.14	90.0%	0.43	0.80					
R2	R2	0.14	90.0%	0.43	0.80					
01	01	1.51	95.1%	6.73	12.23					
02	02	0.74	100.0%	3.46	6.20					
03	03	0.44	100.0%	2.04	3.65					
04	O4	1.05	100.0%	4.86	8.71					
05	O5	1.08	100.0%	5.00	8.96					
06	06	1.14	100.0%	5.32	9.54					
07	07	0.82	100.0%	3.80	6.81					
08	08	0.82	76.7%	2.48	4.94					
TOTAL		10.73	88.0%	41.26	76.63					

APPENDIX E: HYDRAULIC ANALYSIS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ZONE 3 ZONE 2 ZONE 1 100-YR VOLUME EURV WQCV -100-YEAR ORIFICE ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

Watershed Information

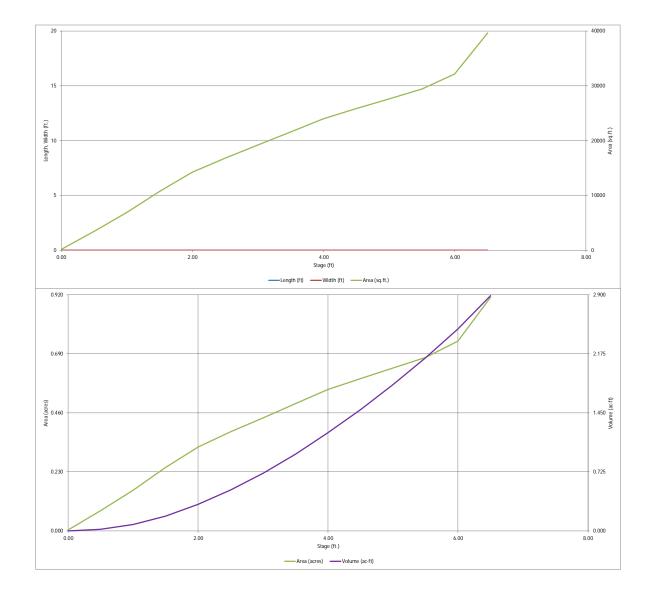
tersned information		
Selected BMP Type =	EDB	
Watershed Area =	10.73	acres
Watershed Length =	760	ft
Watershed Length to Centroid =	380	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	88.00%	percent
Percentage Hydrologic Soil Group A =	87.0%	percent
Percentage Hydrologic Soil Group B =	13.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capit	ol Building

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	grapn Procedu	re.
Water Quality Capture Volume (WQCV) =	0.344	acre-feet
Excess Urban Runoff Volume (EURV) =	1.247	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.865	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.116	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.320	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.551	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.770	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.018	acre-feet
500-yr Runoff Volume (P1 = 3.1 in.) =	2.537	acre-feet
Approximate 2-yr Detention Volume =	0.841	acre-feet
Approximate 5-yr Detention Volume =	1.093	acre-feet
Approximate 10-yr Detention Volume =	1.304	acre-feet
Approximate 25-yr Detention Volume =	1.520	acre-feet
Approximate 50-yr Detention Volume =	1.646	acre-feet
Approximate 100-yr Detention Volume =	1.758	acre-feet

Define	Zones	and	Basi	in	Geome	etry
		i	Zone	1	Volume	(W

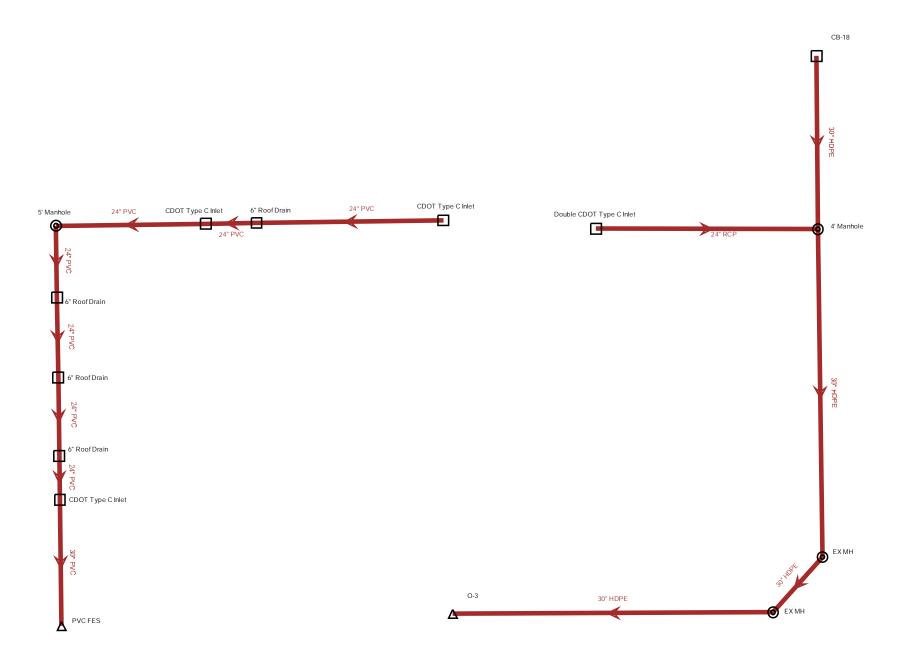
Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.344	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.903	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.511	acre-feet
Total Detention Basin Volume =	1.758	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

tion Pond)	Depth Increment = Stage - Storage	Stage	ft Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
lioni ondy	Description Top of Micropool	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²) 182	(acre)	(ft 3)	(ac-ft)
	7017		0.00				3,421	0.004	901	0.021
	7017.5		1.00				6,874	0.158	3,474	0.021
	7018		1.50				10,722	0.246	7,873	0.181
	7018.5		2.00				14,216	0.326	14,108	0.324
	7019		2.50				16,807	0.386	21,864	0.502
	7019.5		3.00				19,164	0.440	30,856	0.708
	7020 7020.5		3.50 4.00				21,579 23,992	0.495	41,042 52,435	0.942
	7021		4.50				25,854	0.594	64,896	1.490
	7021.5		5.00				27,601	0.634	78,260	1.797
	7022		5.50				29,437	0.676	92,520	2.124
	7022.5		6.00				32,186	0.739	107,925	2.478
Optional User Overrid	7023		6.50				39,656	0.910	125,886	2.890
acre-fee										
acre-fee	t									
1.19 inches										
1.50 inches 1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches										
3.10 inches										
						-				
						-				
				-						
				ł		1				
					-					
						1 1				
				: :	1	1				
				: :	1	: :				
					1 1					
			-				-			
				1 1						
				1						
					1 1 1					

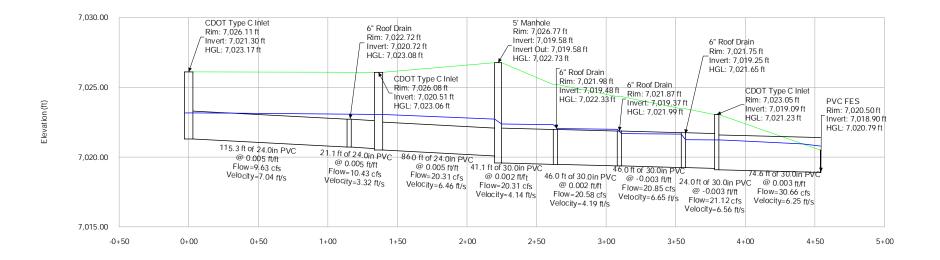
DETENTION BASIN STAGE-STORAGE TABLE BUILDER


DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022 Project: Barbarick Transfer Station Basin ID: EDB Modification - Proposed Condition Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type Zone 1 (WQCV) 2.07 0.344 Orifice Plate Zone 2 (EURV) 4.08 0.903 Orifice Plate 100-YEAR ZONE 1 AND 2 ORIFICES Zone 3 (100-year) Weir&Pipe (Restrict) 4.94 0.511 PERMAN Example Zone Configuration (Retention Pond) 1.758 Total (all zones) User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft^2 Underdrain Orifice Diameter N/A inches Underdrain Orifice Centroid N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) alculated Parameters for Plate Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row 0.00 N/A Depth at top of Zone using Orifice Plate = 4.10 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width : N/A feet Orifice Plate: Orifice Vertical Spacing = N/A inches Elliptical Slot Centroid N/A feet ft² Orifice Plate: Orifice Area per Row = N/A sq. inches Elliptical Slot Area N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest Row 3 (optional) Row 1 (required) Row 2 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 2.75 2.00 Orifice Area (sq. inches) 2.75 3.00 1 00 Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 9 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orific Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A N/A N/A N/A N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice Vertical Orifice Centroid = Vertical Orifice Diameter = N/A N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected N/A Overflow Weir Front Edge Height, Ho 4.10 N/A Height of Grate Upper Edge, Ht = ft (relative to basin bottom at Stage = 0 ft) 4.10 Overflow Weir Front Edge Length 12.00 N/A feet Overflow Weir Slope Length 4.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 47.80 N/A Horiz, Length of Weir Sides = 4 00 N/A feet Overflow Grate Open Area w/o Debris = 33 41 N/A N/A Overflow Grate Type Type C Grate N/A Overflow Grate Open Area w/ Debris = 16.70 50% Debris Clogging % = N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plat Zone 3 Restrictor Zone 3 Restrictor Not Selected Not Selected Depth to Invert of Outlet Pipe N/A Outlet Orifice Area 0.70 N/A 1.02 ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 0.30 N/A Restrictor Plate Height Above Pipe Invert = Half-Central Angle of Restrictor Plate on Pipe = N/A 6.00 0.93 inches User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage: 4 53 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth 0.53 feet Stage at Top of Freeboard = Spillway Crest Length 33.00 feet 6.06 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 0.76 acres Basin Volume at Top of Freeboard = Freeboard above Max Water Surface = 1.00 feet 2.52 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new volues in the Inflow Hydrographs table (Columns W through AF Design Storm Return Period WOC FUR\ Yea Ye: 10 Ye 50 Yea 100 Yea 5 Ye One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 CUHP Runoff Volume (acre-ft) 1.770 1.247 1.116 1.320 1.551 0.344 0.865 2.018 Inflow Hydrograph Volume (acre-ft) 1.770 0.865 1.551 N/A N/A 1.116 1.320 2.018 CUHP Predevelopment Peak Q (cfs) N/A N/A 0.1 0.3 9.5 0.2 4.0 6.4 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, g (cfs/acre) N/A N/A 0.01 0.02 0.03 0.38 0.60 0.89 Peak Inflow Q (cfs) N/A N/A 17.8 41.3 23.0 27.1 37.2 32.6 Peak Outflow Q (cfs) 0.2 0.4 0.3 0.3 0.4 5.7 7.7 3.0 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 15 14 07 0.9 0.8 Spillway Structure Controlling Flow Plate Plate Plate Plate Overflow V/eir 1 Overflow Weir 1 Overflow Weir 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A 0.0 0.1 0.2 0.2 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 39 74 63 71 77 76 75 74 Time to Drain 99% of Inflow Volume (hours) 41 79 67 75 81 82 81 81 Maximum Ponding Depth (ft) 2.07 4.08 3.25 3.74 4.11 4.24 4.32 4.53 Area at Maximum Ponding Depth (acres) 0.33 0.56 0.47 0.52 0.56 0.57 0.58 0.60 0.822 Maximum Volume Stored (acre-ft) = 0.347 1.248 1.064 1.333 1.384 1.265 1 502

Comment generated due to Kimley's response to my comment in the previous submittal:

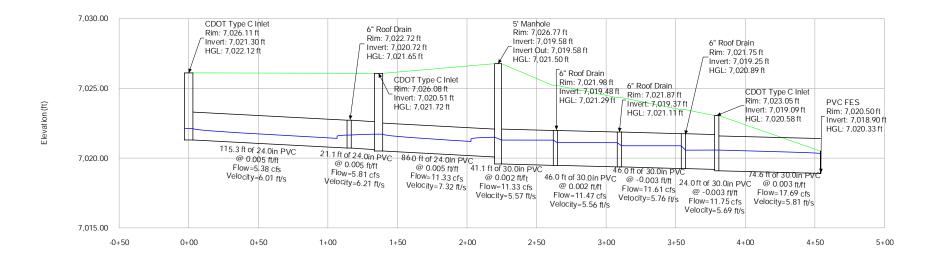
Stage = 0ft at 7016.5, per pg 61 of FDR. Then per this page, the "Depth to Invert of Outlet Pipe" is 1.02ft below Stage = 0ft which would be 7015.48ft. But on Sht C3.0 (pg 8) of CDS, the invert is labeled as 7015.42ft. So depth in these MHFD calcs should be 1.08ft.


BARBARICK WTS - STORMCAD LAYOUT

100-Year

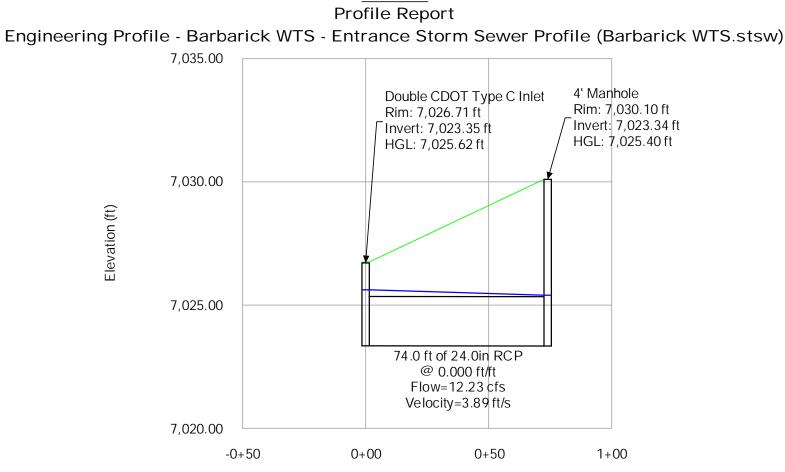
Engineering Profile - Barbarick WTS - Storm Sewer Profile (Barbarick WTS.stsw)

Station (ft)

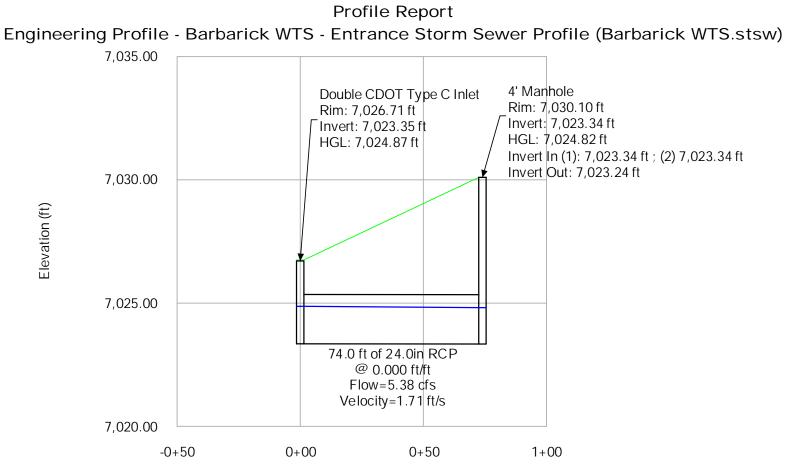

BarbarickWTS.stsw 3/6/2024

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1

<u>5-Year</u>


Engineering Profile - Barbarick WTS - Storm Sewer Profile (Barbarick WTS.stsw)

Station (ft)


BarbarickWTS.stsw 3/6/2024

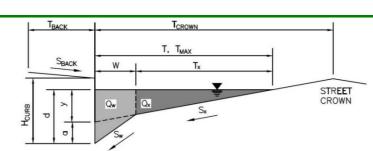
Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1

100-Year

Station (ft)

<u>5-Year</u> Profile Repor

Station (ft)

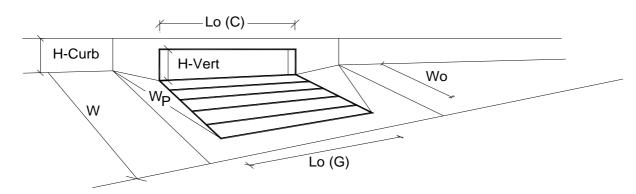

Barbarick WTS.stsw 3/6/2024

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1 MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Barbarick Transfer Station Inlet ID: Inlet P1



Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 0.0 ft $T_{BACK} =$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft S_{BACK} = Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} = Height of Curb at Gutter Flow Line $H_{CURB} =$ 10.80 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 71.0 ft Gutter Width W = 3.00 ft Street Transverse Slope $S_X =$ 0.010 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft $S_0 =$ Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.020 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 71.0 71.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 10.8 10.8 $d_{MAX} =$ Check boxes are not applicable in SUMP conditions \Box \Box MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition $\mathbf{Q}_{\text{allow}} =$ SUMP SUMP cfs

Barbarick WTS - Inlet Calcs.xlsm, Inlet P1

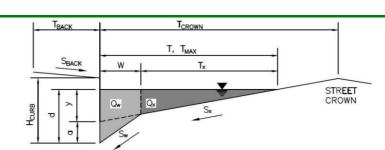
4/15/2024, 11:40 AM

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Ty	oe C Grate	
Warning 1 Local Depression (additional to continuous gutter depression 'a' from	above) a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	9.5	9.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	2.92	2.92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	3.00	3.00	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.70	0.70	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.80	0.80	ft
Depth for Curb Opening Weir Equation	$d_{Grate} = d_{Curb} = d_{Curb}$	N/A	N/A	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	-
combination filler renormance reduction ractor for Long fillets		14/7		
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.1	13.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak) Q _{PEAK REQUIRED} =	5.3	12.0	cfs

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Barbarick WTS - Inlet Calcs.xlsm, Inlet P1

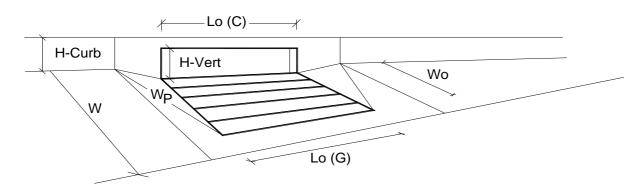

4/15/2024, 11:40 AM

MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Barbarick Transfer Station Inlet ID: Inlet P3



<u>Gutter Geometry:</u> Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$T_{BACK} = 0.0 ft S_{BACK} = ft/ft $
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{BACK} = $ $H_{CURB} = 10.98 \text{ inches}$ $T_{CROWN} = 68.0 \text{ ft}$ $W = 6.00 \text{ ft}$ $S_X = 0.010 \text{ ft/ft}$ $S_W = 0.083 \text{ ft/ft}$ $S_O = 0.000 \text{ ft/ft}$ $n_{STREET} = 0.020 \text{ ft/ft}$
Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions	$n_{\text{STREET}} = \underbrace{0.020}_{\text{Minor Storm}} Major Storm$ $T_{\text{MAX}} = \underbrace{68.0 \qquad 68.0 \qquad \text{ft}}_{\text{MAX}} = \underbrace{11.0 \qquad 11.0 \qquad \text{inches}}_{\text{max}}$
MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition	Minor Storm Major Storm Q allow = SUMP SUMP cfs

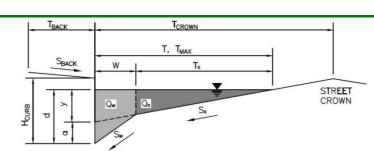
Barbarick WTS - Inlet Calcs.xlsm, Inlet P3

4/15/2024, 11:42 AM

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Typ	oe C Grate	
Warning 1 Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	11.0	11.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	2.92	2.92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.00	3.00	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.70	0.70	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	1.17	1.17	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	N/A	N/A	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	N/A	N/A	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	-
combination fileer chormance reduction ractor for Long filets		ЦЛ	μn	
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	14.0	14.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	5.2	9.4	cfs

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Barbarick WTS - Inlet Calcs.xlsm, Inlet P3

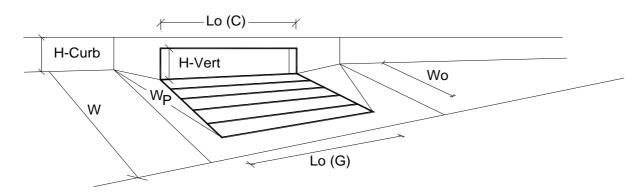

4/15/2024, 11:42 AM

MHFD-Inlet, Version 5.03 (August 2023)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Barbarick Transfer Station Inlet ID: Inlet P4



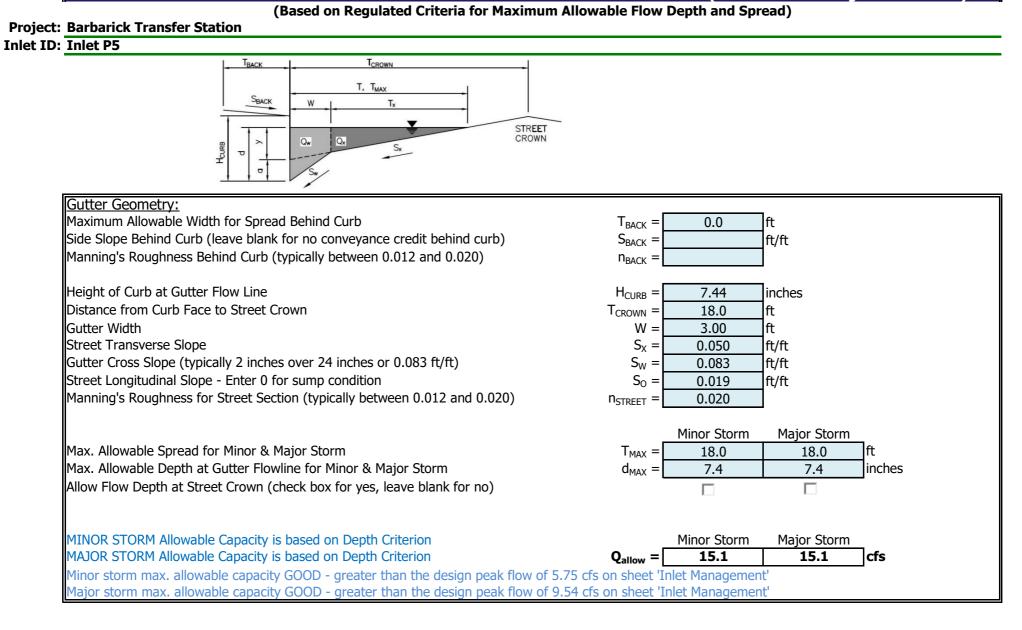
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 0.0 ft $T_{BACK} =$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft S_{BACK} = Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} = Height of Curb at Gutter Flow Line $H_{CURB} =$ 10.80 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 68.0 ft Gutter Width W = 4.50 ft Street Transverse Slope $S_X =$ 0.010 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft $S_0 =$ Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.020 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 68.0 68.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm inches 10.8 10.8 $d_{MAX} =$ Check boxes are not applicable in SUMP conditions \Box \Box MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition $\mathbf{Q}_{\text{allow}} =$ SUMP SUMP cfs

Barbarick WTS - Inlet Calcs.xlsm, Inlet P4

4/15/2024, 11:44 AM

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

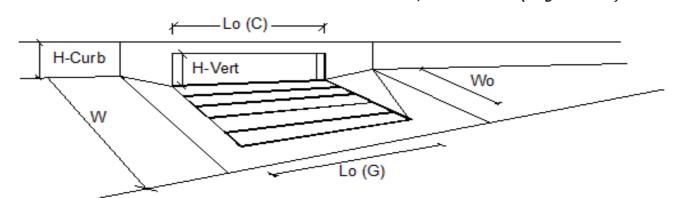
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Ty	pe C Grate	
Warning 1 Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	6.00	6.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	10.8	10.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	2.92	2.92	feet
Width of a Unit Grate	W _o =	2.92	2.92	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.70	0.70	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.00	3.00	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	0.70	0.70	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	N/A	N/A	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	N/A	N/A	inches
Angle of Throat	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	N/A	N/A	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	N/A	N/A	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	1.12	1.12	ſt
Depth for Curb Opening Weir Equation	$d_{Curb} =$	N/A	N/A	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	-
		,,,	,	→
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.0	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{\text{PEAK REQUIRED}} =$	5.4	9.7	cfs


Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Barbarick WTS - Inlet Calcs.xlsm, Inlet P4

4/15/2024, 11:44 AM

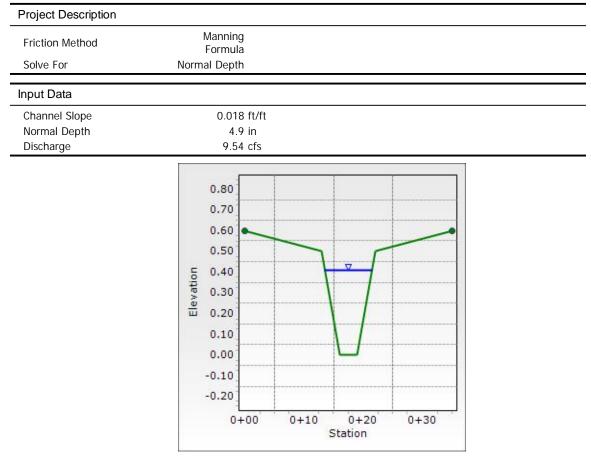
MHFD-Inlet, Version 5.03 (August 2023)


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

Barbarick WTS - Inlet Calcs.xlsm, Inlet P5

4/15/2024, 11:45 AM

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023)



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	СДОТ Тур	e C Grate	
Warning 1 Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	6.0	6.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	2.92	2.92	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	2.92	2.92	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.8	7.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.0	2.6	cfs
Capture Percentage = Q_a/Q_o	C% =	83	73	%

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Barbarick WTS - Inlet Calcs.xlsm, Inlet P5

4/15/2024, 11:45 AM

Inlet P5 - 100-YR Storm

Inlet P5 - Flow Master.fm8 3/5/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Rip-Rap Calculation 100-Year Outflow

100-Year Storm System Discharge Into Exisitng EDB

Applicable Equations:

$L_p = (1/2 \tan \Theta)(A_t/Y_t-D)$	Equation 9-11 per USCDM
$A_t = Q/V$	Equation 9-12 per USDCM
$\Theta = \tan^{-1}(1/(2^*ExpansionFactor))$	Equation 9-13 per USDCM
$W = 2(L_p tan\Theta) + D$	Equation 9-14 per USDCM
$T = 2D_{50}$	Equation 9-15 per USDCM

Assumptions

Acceptable major event velocity is 5 ft/s due to HSG B soils

Input parameters:

Description	Variable	Input Unit
Width of the conduit (use diameter for circular conduits),	D:	2.50 ft
HGL Elevation	INV to TOP	2.53 ft
Invert Elevation		1.00 ft
Tailwater depth (ft),	Y _t :	1.53 ft
Expansion angle of the culvert flow	Θ:	0.07 radians
Design discharge (cfs)*	Q:	30.66 cfs
Froude Number	F _r	0.89 Subcritical
Unitless Variables for Tables:		
For Fig	ure 9-35 Q/D ^{2.5}	3.10
For Fig	ure 9-35 Y _t /D	0.61
For Fig	ure 9-38 Q/D ^{1.5}	7.76
For Fig	ure 9-38 Y _t /D	0.61
Allowable non-eroding velocity in the downstream channel (ft/sec	c) V:	3 ft/sec
Expansion Factor (Figure 9-35), 1/(2tan(θ))		7.13

Solve for:

Solve for:		
Description	Variable	Output Unit
1. Required area of flow at allowable velocity (ft ²)	A _t :	10.22 ft ²
2. Length of Protection	L _p :	29.80 ft
	$L_p < 3D?$	No
	$L_{p} > 10D?$	Yes
	$L_p > 10D \& F_r > 6?$	No
	L _{pmin} :	25.00 ft
3. Width of downstream riprap protection	W:	6.00 ft
4. Rip Rap Type (Figure 9-38)	-	М
5. Rip Rap Size (Figure 8-34)	D ₅₀ :	12 inches
Rip Rap Summary		
Length	Lp	25.00 ft
Width	W _{min}	6.00 ft
Size	D ₅₀	12 inches
Туре	-	M -
Thickness	Т	24 inches

Rip-Rap Calculation 100-Year Outflow

100-Year Discharge Into Exisitng 24" CPP (P2)

Applicable	Equations:
------------	------------

$L_p = (1/2 \tan \Theta)(A_t Y_t - D)$	Equation 9-11 per USCDM
$A_t = Q/V$	Equation 9-12 per USDCM
$\Theta = \tan^{-1}(1/(2^*ExpansionFactor))$	Equation 9-13 per USDCM
$W = 2(L_p tan \Theta) + D$	Equation 9-14 per USDCM
$T = 2D_{50}$	Equation 9-15 per USDCM

Assumptions

Acceptable major event velocity is 5 ft/s due to HSG B soils

Input parameters:

Description	Variable	Input Unit
Width of the conduit (use diameter for circular conduits),	D:	2.00 ft
HGL Elevation	INV to TOP	2.03 ft
Invert Elevation		1.00 ft
Tailwater depth (ft),	Y _t :	1.03 ft
Expansion angle of the culvert flow	Θ:	0.07 radians
Design discharge (cfs)*	Q:	5.86 cfs
Froude Number	F _r	0.32 Subcritical
Unitless Variables for Tables:		
For Fiç	Jure 9-35 Q/D ^{2.5}	1.04
For Fiç	jure 9-35 Yt/D	0.52
For Fig	Jure 9-38 Q/D ^{1.5}	2.07
For Fiç	jure 9-38 Yt/D	0.52
Allowable non-eroding velocity in the downstream channel (ft/see	c) V:	3 ft/sec
Expansion Factor (Figure 9-35), 1/(2tan(θ))		7.13

Solve for:

Description	Variable	Output Unit
1. Required area of flow at allowable velocity (ft ²)	A _t :	1.95 ft ²
2. Length of Protection	L _p :	-0.74 ft
	L _p < 3D?	Yes
	L _p > 10D?	No
	$L_p > 10D \& F_r > 6?$	No
	L _{pmin} :	6.00 ft
3. Width of downstream riprap protection	W:	3.00 ft
4. Rip Rap Type (Figure 9-38)	-	М
5. Rip Rap Size (Figure 8-34)	D ₅₀ :	12 inches
Rip Rap Summary		
Length	L _p	6.00 ft
Width	W _{min}	3.00 ft
Size	D ₅₀	12 inches
Туре	-	M -
Thickness	Т	24 inches

APPENDIX F: EX. FINAL DRAINAGE REPORT FOR BARBARICK SUBDIVISION

FINAL DRAINAGE REPORT

For

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: **El Paso County Development Services Engineering Division**

NEW DOC

On Behalf of: Wykota Construction 430 Beacon Light Road, Suite 130 Monument, CO 80132

Prepared by: 2435 Research Parkway, Suite 300

Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

June 2016

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report in conformity with the master plan of the drainage basin.

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

	Wykota Construction	_
	Business Name	_
ву:	Kallar	_
	Justin Ballard	-
Title:	President	_
Address:	430 Beacon Light Road, Suite 130	_

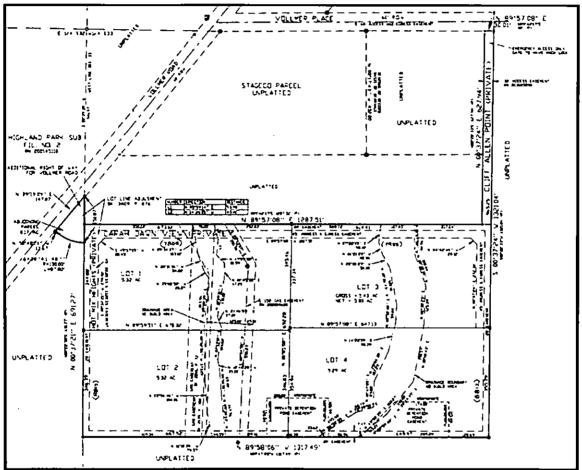
Monument, CO 80132

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

JUNE 2014 Print Name · JUNE JELIN RELE IRVINDATE County Engineer / ECM Administrator

June	2016

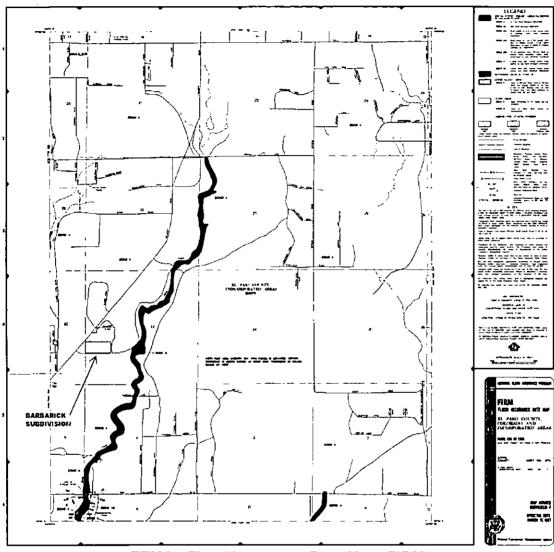

June 2016	Barbarick Subdivision – Lots 1, 2, 3 and 4 - Final Drainage Report	
	TABLE of CONTENTS	
	GENERAL LOCATION AND DESCRIPTION	
1	Background	
1	Location	
	Property Description	
5	Soil Description	
	HYDROLOGIC AND HYDRAULIC ANALYSIS	
6	Basin Description	
6	Design Criteria	
	EXISTING DRAINAGE DISCUSSION	
	EXISTING DRAINAGE DISCUSSION (continued)	
	PROPOSED DRAINAGE DISCUSSION	
	RECOMMENDED DESIGN	
	DRAINAGE, BRIDGE, AND POND FEES	
	MAINTENANCE	
	EROSION CONTROL	
	Cost Estimate	
	REFERENCES	

Page Missing or Blank on EDARP <u>Surrounding Developments.</u> The following are the existing or planned general land uses adjacent to the property.

<u>North:</u> Un-platted parcels that contain commercial/industrial uses. Carah Dawn View is on the north side of the property.

<u>East and South</u>: Although this adjacent area is currently undeveloped, the Sterling Ranch Master Planned area is in the process of developing this area (future single family development).

<u>West:</u> This is an undeveloped, un-platted lot. Across Vollmer Road is a low density single family development (Highland Park, Fil 2).



Barbarick Subdivision Plat

Property Description

- <u>Major Drainage Way</u>: The entire site is located within the Sand Creek Drainage Basin. The Main Fork of Sand Creek is located about 1500 feet to the east. The site currently drains to the south into natural drainage ways that direct runoff to Sand Creek. The Sand Creek Drainage Basin is located in the northeastern portion of the City of Colorado Springs and El Paso County. The general drainage pattern of this larger basin flows to the southwest and ultimately feeds into Fountain Creek.
- 2. Project Site Area: This site is approximately 21.37 acres in area.
- 3. <u>Ground Cover</u>: This site is covered with native grasses.
- 4. <u>General Topography:</u> The site drains from north to the south with average grades ranging from 1% to 5%. There are two natural drainage ways that drain through these lots.
- 5. <u>Irrigation Facilities</u>: No known functioning irrigation facilities are located on the site. A small detention pond does exist to the northeast of the property; however, the outfall of this pond will be re-routed in order to direct runoff around the perimeter of the proposed development.
- 6. <u>Utilities</u>: Utilities in the project area include; but are not limited to, telephone, high pressure gas/petroleum and electrical lines. Water & wastewater service is provided through wells & individual septic systems. These utilities will be examined on a case-by-case basis and avoided where feasible, or they will be relocated. Any relocation of these utilities will be coordinated with the respective utility contact. Utility services will be extended into the site as necessary. There are large gas easements that run north-south through these lots. These easements contain one 6 inch and two 20 inch high pressure gas/petroleum pipelines. These Utility Easements will be no-build zones and grading will be fill only.
- 7. <u>On-Site Drainage Ways:</u> The plat shows two "Drainage Boundary No Build Area(s)" draining through the subdivision. These are not regulated FEMA floodplains. The site development will include the installation of pass through culverts for offsite flows, and regraded. An amended plat has been completed for the removal of the no build areas, identification of new drainage easements, and relocation of water quality ponds.

8. <u>Floodplain Statement:</u> Review of the Flood Insurance Rate Map (FIRM) 535 (08041CO535 F), effective date March 17, 1997, published by the Federal Emergency Management Agency (FEMA) reveals that no portion of Barbaric Subdivision lie within any designated 100-year floodplain.

FEMA - Flood Insurance Rate Map (FIRM)

HYDROLOGIC AND HYDRAULIC ANALYSIS

Basin Description

The Barbarick Subdivision is located within the Sand Creek Drainage Basin. The tributary area that drains through the Barbarick Subdivision is developed, which includes large lot single-family parcels and some commercial/industrial land uses. Subbasins were delineated using surveyed information, proposed contours and field observations. See the Drainage Basin Maps in the Appendix.

This study is in conformance with the following two approved Drainage Reports:

- 1. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015 AKA: "SR-PDR"
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
 AKA: "WS-FDR"

This study is *not* in conformance with the following approved Drainage Report due to changes from the approved recent reports cited above that supercede the original report:

 Preliminary and Final Drainage Plan and Report, Barbarick Subdivision a Replat of Lot "D", McClintock Subdivision, El Paso County, Oliver E. Watts, Consulting Engineer, Inc., August 15, 2007
 AKA: "BS-FDR"

Design Criteria

This report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated November 1991 including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the *City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II*, dated May 2014 (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3*, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 with some sections update November 2015), has also been used to supplement the ECM.

Hydrologic Criteria

Where:

٨

Hydrologic analyses for the site have been completed using the Rational Method for onsite basins. The SCS Method was used in the referenced studies for the larger off-site basins (greater than 100 acres). The design storms for each method are:

Initial Storm = 5-Year Storm Major Storm = 100-Year Storm

Rational Method: The Rational Method will be utilized to evaluate smaller basins (under 100 acres). This methodology is used for the design of localized facilities such as inlets, storm drain, drainage swales and detention:

Rational Method peak flow rate equation (cfs): Q=C*I*A

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

I = Average rainfall intensity in inches per hour

A = Area of drainage sub-basin in acres

Runoff Coefficient

Rational Method coefficients are derived from UDFCD Vol 1 (Chapter 6 – Runoff, 2016-01 Rev) for the various land uses, including parking areas, drives, walks, roofs, lawns and open space areas. The Runoff Coefficients associated with these land uses also have a corresponding impervious value that is used in the detention calculations. The Rational Method Coefficients used in this study include:

<u>Land Use or Surface Type</u>	<u>% Impervious</u>	Runoff Coefficient (B Soil	
		<u>(5-Year)</u>	(100-Year)
Greenbelts/Agricultural	2%	.03	.46
Gravel (packed)	40%	.37	.65
Drives & Walks	90%	.84	.90

•

.

Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential:	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 - 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

Table 6-3. Recommended percentage imperviousness values

,

Total or Effective % Imperviousness	NRCS Hydrologic Soil Group A					
	2-vr	5-vr	10-vr	25-ут	50-vr	100-yr
2%	0.02	0.02	0.02	0.02	0.02	0.17
5%	0.04	0.05	0.05	0.05	0.05	0.19
10%	0.09	0.09	0.09	0.09	0.1	0.23
15%	0.13	0.14	0.14	0.14	0.14	0.28
20%	0.18	0.19	0.19	0.19	0.19	0.32
25%	0.22	0.23	0.24	0.24	0.24	0.36
30%	0.27	0.28	0.28	0.28	0.29	0.4
35%	0.31	0.33	0.33	0.33	0.33	0.44
40%	0.36	0.37	0.38	0.38	0.38	0.48
45%	0.4	0.42	0.42	0.42	0.43	0.52
50%	0.45	0.47	0.47	0.47	0.48	0.56
55%	0.49	0.51	0.52	0.52	0.52	0.6
60%	0.53	0.56	0.56	0.57	0.57	0.64
65%	0.58	0.6	0.61	0.61	0.62	0.68
70%	0.62	0.65	0.66	0.66	0.67	0.72
75%	0.67	0.7	0.71	0.71	0.71	0.76
80%	0.71	0.74	0.75	0.76	0.76	0.8
85%	0.76	0.79	0.8	0.8	0.81	0.84
90%	0.8	0.84	0.85	0.85	0.86	0.88
95%	0.85	0.88	0.89	0.9	0.9	0.92
100%	0,89	0.93	0.94	0.94	0.95	0.96
Total or Effective % Imperviousness		NRCS	Hydrolog	gie Soil G	roup B	
2%	0.02	0.02	0.14	0.24	0.38	0.46
5%	0.04	0.05	0.17	0.27	0.39	0.48
10%	0.09	0.09	0.21	0.3	0.42	0.5
15%	0.13	0.14	0.25	0.34	0.45	0.53
20%	0.18	0.19	0.29	0.37	0.48	0.55
25%	0.22	0.23	0.33	0.41	0.51	0.58
30%	0.27	0.28	0.37	0.44	0.54	0.6
35%	0.31	0,33	0.41	0.48	0.57	0.63
40%	0.36	0.37	0.45	0.51	0.6	0,65
45%	0.4	0.42	0.49	0.55	0.63	0.67
50%	0.45	0.47	0.53	0.58	0.66	0.7
55%	0.49	0.51	0.57	0.62	0.69	0.72
60%	0,53	0.56	0.61	<u>0.65</u>	0.72	0.75
65%	0.58	0,6	0.65	0.69	0.75	0.77
70%	0.62	0.65	0.69	0.72	0.78	0.8
75%	0.67	0.7	0.73	0.76	0.81	0.82
80%	0.71	0.74	0.77	0.79	0.84	0.85
85%	0.76	0,79	0.81	0.83	0:87	0.87
90%	0.8	0.84	0.85	0.86	0.89	0.9
95%	0.85	0.88	0.89	0.9	0.92	0.92
100%	0.89	0.93	0.94	0.94	0.95	0.94

Table 6-5. Runoff coefficients, c

Time of Concentration

The time of concentration (T_c) for the Rational Method was calculated by methods derived from the UDFCD. The time of concentration consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an initial time or overland flow time (t_i) plus the time of travel (t_t) in concentrated form, such as a swale or drainageway. A minimum T_c of 5 minutes and 10 minutes were used for the final calculations in developed and undeveloped conditions, respectively.

Storm Drain Systems

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner.

The storm drain hydraulics is analyzed using *Bentley's* <u>FlowMaster</u>, CulvertMaster & <u>StormCAD</u> design software. Colorado Department of Transportation (CDOT) type inlets will be used where necessary.

The designated outfall locations for the proposed on-site storm drains are the natural drainage ways at the south end of the property. The proposed storm drain infrastructure will be discussed in more detail below.

EXISTING DRAINAGE REPORT DISCUSSION

The approved Barbarick Subdivision Final Drainage Report (BS-FDR) and the approved Woodmen Storage Final Drainage Report (WS-FDR) both apply to the existing general drainage conditions for this site. The off-site basins and general flow patterns in the BS-FDR and WS-FDR still apply. Excerpts from these reports are provided below for reference.

On-site and Off-Site Basin Descriptions from the BS-FDR and WS-FDR:

The following summary is taken from the Barbarick Subdivision Final Drainage Report (BS-FDR):

Off-site:

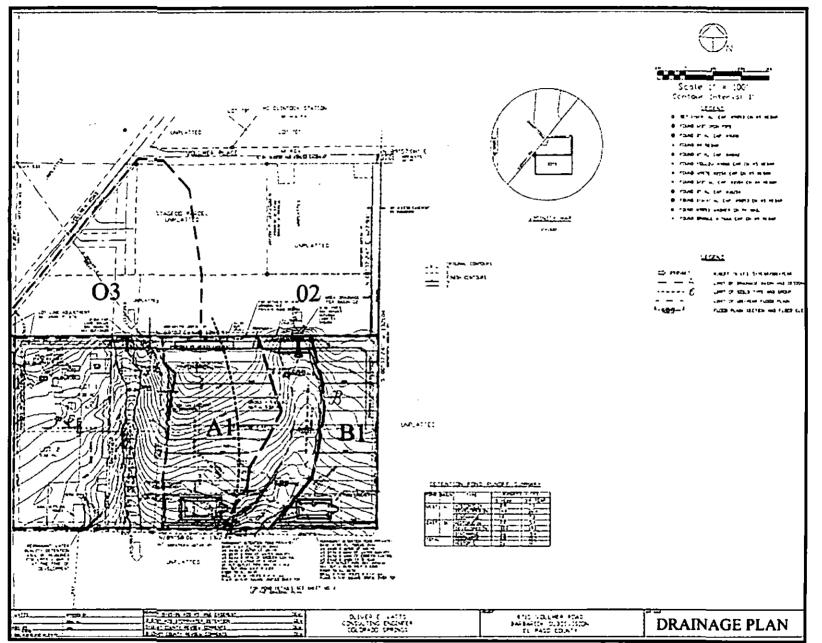
Off-site Basin O3 This basin encompasses approximately 7.03 acres and represents the area north and northwest of Lot 1. This basin drains into Lot 1 through a series of (2) 24" CMP pipes which control the flow of 14/36 cfs in the 5/100 year storm events.

Lots 1 & 2 – these lots are considered fully developed lots and drain north to south collecting at the existing concrete settling pond on Lot 2. This developed flow (20.8 cfs /57.2 cfs) combines with Off-site Basin O3 to total 30.5 cfs / 80.8 cfs in the greenbelt offsite south of Lot 2. At the time of development permit for these developed lots, a detention pond for water quality will be required, probably in the area of the existing concrete settling pond, that will accommodate Lots 1 and 2 west of the gas easement and flood plain area.

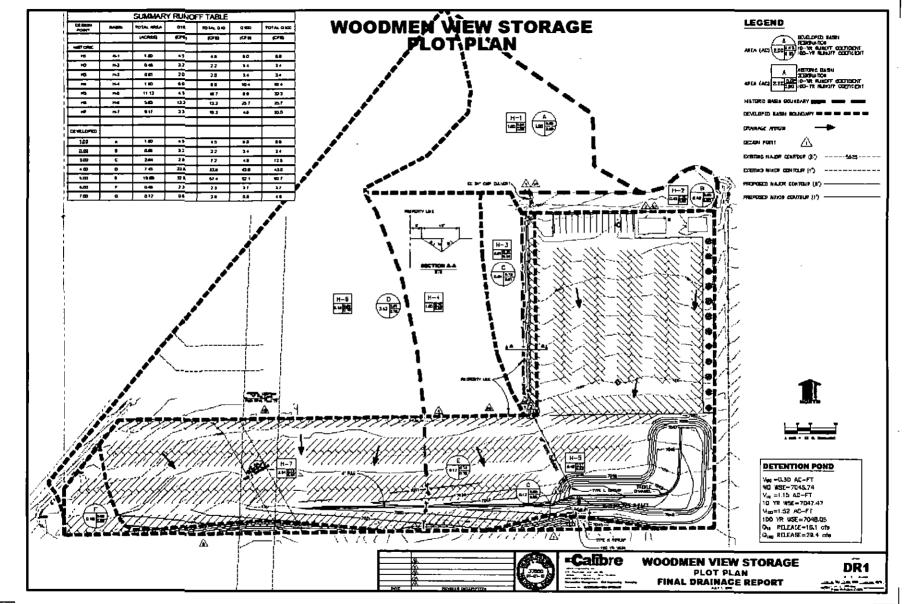
On-site:

On-site Basins A1 and B1 (for portions of Lots 1 and 2, and Lots 3 & 4) These basins encompass approximately 5.3 & 3.8 acres and represent the buildable portions of the property as described in the BS-FDR (see Basin Map from BS-FDR below). These basins were slated (in the BS-FDR) to drain into small detention ponds that would release to historic rates. These discharge rates were calculated to be 2.9/7.3 and 2.2/5.4 cfs (5/100 year). The BS-FDR does not include the drainage ways in any hydrology calculations due to the fact that this no-build drainage area was not planed on being developed. This drainage way allowed off-site flows from O1+O2 to pass-through Lots 3 & 4. The drainage way to the west of A1 passes through flows from offsite O3. Since the approval of this report, offsite tributary basins O1+O2 have been changed, and the development of the property encompasses the whole property, including the previously determined no-build area.

The following summary is taken from the Woodmen Storage Final Drainage Report (WS-FDR):

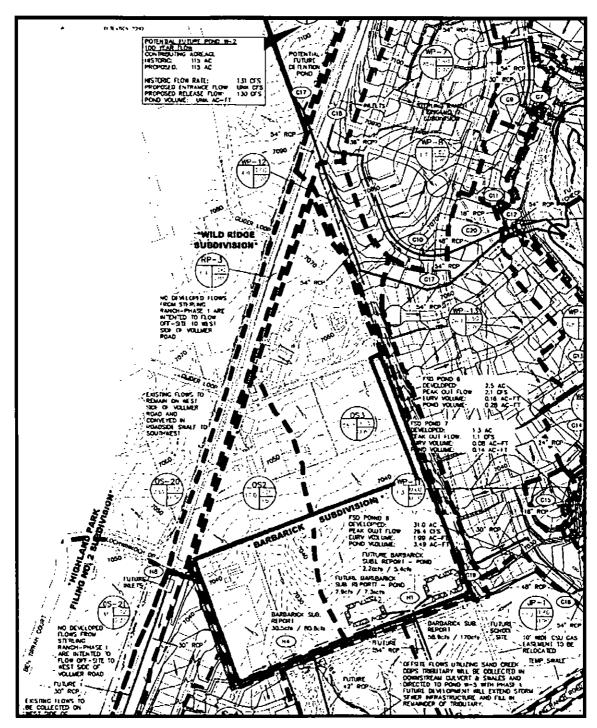

Off-site:

Design Point 5 - This design point encompasses approximately 19.69 acres and represents the tributary area north of the project site. This basin drains into a proposed detention pond near the northeast corner of the property and generates 57.4/92.7 cfs in the 10/100 year storm events, historic flows are 16.7/30.3 cfs. The releases rates from this pond are lower than historic 16.1 cfs/29.4 cfs in the 10/100-year storm events. These flows are conveyed along the east property line of the site and into the eastern natural drainage way that leaves the property to the south.


Review of the Sterling Ranch Preliminary Drainage Report (SR-PDR):

The Barbarick Subdivision is surrounded on three sides by the planned Sterling Ranch Development. The approved Sterling Ranch PDR was prepared by M&S Civil Consultants in May of 2015. This Sterling Ranch PDR re-analyzes runoff from Barbarick Subdivision and plans for storm drain improvements to convey this runoff to a full spectrum detention and water quality pond to be located down stream of Barbarick Subdivision as part of Sterling Ranch Phase One.

In summary; the Sterling Ranch PDR is planning on receiving 73.3/139.2 cfs (5/100 year) from Basin OS3. A 54" RCP is planned to convey this flow through Sterling Ranch. The Sterling Ranch PDR is planning on receiving 45/86 cfs (5/100 year) from OS2, encompasses Lots 1 & 2 and OS3 encompasses Lots 3 & 4 and the Basin north of Lot 3. A 48" RCP is planned to convey this flow through Sterling Ranch. The cumulative runoff from the northerly property and Lots 1 through 4 does not exceed the anticipated rates in the SR-PDR.


Basin Map - from the Barbarick Subdivision FDR

Basin Map - from the FDR

	STERLING RANCH PHASE 1		
PROPOSED - DRAINAGE MAP ()VER			
CIVIL CONSULTANTS, INC.	PROJECT NO. 09-001 SCALE DATE: 5/0815 DESIGNED BY. DLM HOR2: 1"= 200		
102 E. PRES PEAK AVE. STE 306 COLORADO SPRINCS, CO 80903 (719) 955-5485, FAX (719) 448-8427	DRAMH BY: DLM VERT: N/A SHEET 1 F 1 D2		

Basin Map from the Sterling Ranch PDR

Matrix Design Group, Inc., 2016@

STORM SEV	MER ROUTING	SUMMARY				
DESIGN POINT		Q.20 (0.1)				
G4A	640	1584				
C5	78	146				
G6	32	66				
C7	82	157				
G8	20	42				
C9	14	29				
G10	47	97				
GH	4	9	I			
G12	72	144				
G13	12	25				
G14	7	14	I			
G15	3	7	l			
Ç16	60	125				
G17	80	130				
G18	29	54				
G19	11	23				
C20	69	1.58				
G21	1044	1767				
G22	5	10				
G23	64	133				
G25	1056	1795				
н1	73	139				
H2	46	92				
нЗ	103	200				
H4	45	8 0				
. H5	30	61				
H6	68	134				
811	16	29				
ни	22	45	(ACINI C	1111110	<u> </u>
H12	31	62	f			
H13	57	118	BASIN	AREA (+0#LS)	()s	Q as (0 th
H14	196	382	051	110.1	68	167
H16	31	. 65	0S2	17.0	45	86
H17	26	54	0S3	28.7	73	139
H18	224	441	0\$4	5.0	5	11

Flow Summary from the Sterling Ranch PDR

EXISTING SITE DRAINAGE DISCUSSION:

On-Site (Existing Conditions):

On-site Basin H1 This basin covers approximately 10.7 acres and represents the majority of Lots 3 & 4. This basin is modeled as good condition undeveloped rangeland. This drains to the south and generates 2.6/23.7 cfs in the 5/100 year storm events.

On-site Basin H2 This existing basin covers approximately 3.70 acres and represents the eastern half of Lots 1 & 2.This basin is modeled as good condition rangeland and generates 0.9/8.2 cfs in the 5/100 year storm events.

On-site Basin H3 This existing basin covers 1.1 acres and represents the a small portion of lots 3 & 4 that drains south easterly. This basin is modeled as good

condition rangeland and generates 0.3/2.7 cfs in the 5/100 year storm events. This basin sheet flows offsite where it is captured in a small swale between the site and existing roadway and conveyed westerly to the low point south of the outfall of Basin H1.

These existing basins encompass the previously unmodelled drainage area from the BS-FDR. The total historic flow from the site is 3.8/34.6 cfs in the 5/100 year storm events. The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	5/100 Release	Comments
DP H1	16.7*/30.3 cfs	DP H5 WS-FDR - * is 10year
DP H2	13.7/35.5 cfs	O3 BS-FDR
DP H3	56.7 cfs	DPH1+H1+H3 (100-year)
DP H4	14.6/43.7 cfs	DPH2 + H2

Design Point H3 will release a flow lower than previously anticipated within the BS-FDR (52.9/170 cfs). It is the introduction of development within the Sterling Ranch site that has eliminated offsite flows from BS-FDR Basin O1 that significantly changed the drainage pattern. The historic release is now contained solely to the historic flows from WS-FDR design point H5 and the proposed onsite historic flows.

Design Point H4 will combine with the western half of Lots 1&2. Per the BS-FDR the combined portions of Lots 1&2 and O3 to release a combined flow of 30.5/80.8 cfs downstream. The flow anticipated in the BS-FDR appears consistent with the smaller basin analysis of this report and should be used for downstream analysis.

PROPOSED DRAINAGE DISCUSSION

Introduction

The proposed site will be developed differently than anticipated in the previous BS-FDR. The previous plan for this site maintained the existing native drainage way down the middle of Lots 1 & 2 and 3 & 4, thereby splitting the buildable area into the outer thirds of these lots. The native drainage way and "Drainage Boundary – No Build Area" (as shown on the Plat & FDR) will be eliminated with the proposed development. The proposed site and proposed drainage improvements will allow this native drainage way to be eliminated while maintaining the pass through of major flows. These modifications to the site and to the drainage patterns will allow a larger buildable area.

The existing retention pond, located just north of Lot 3, will be modified by others to become a water quality/detention pond pursuant to the WS-FDR. A new outlet works and a storm drain pipe will convey runoff from this detention pond (16.1/29.4 cfs in the 10/100 year storm events) discharging at the property line. This development is proposing a CDOT Type D inlet to capture the discharged flow and pipe it downstream along the east side of Lots 3 & 4 to discharge into the proposed Full Spectrum Extended

Detention Basin (EDB) in Lot 4. The EDB is designed to pass through, and not treat or detain, these offsite flows.

A new EDB will be provided in Lot 4. This detention basin will provide water quality treatment for portions of Lots 1 & 2, and Lots 3 & 4. In the approved Barbarick FDR there were to be two separate ponds. The new site development has been planned for a single pond to treat the developed flows. Tributary water sheet flow across the site to shallow swales that will direct runoff to the proposed EDB. The EDB will have a forebay at the confluence of the two pipe outfalls, a concrete trickle channel that terminates at a micropool structure, and is designed to treat the WQCV, EURV and 100-year detention.

A second SFB water quality with detention catchment basin will be provided at the south east/downstream end of Lot 2. This SFB will not have an outlet structure to release flows due to requirements from the gas main utility ownership of no structure to be built within the existing easements. There will be a small spillway to allow the release of large storm events. Runoff will be directed to the proposed SFB where possible.

Flow from the area north of Lot 1 (Basin O3) will pass through the site via two 24" culverts and will be discharged at the southern boundary of Lot 2, as historically done. An earthen channel will run north-south along the east side of the existing Lot 1 and Lot 2 developments. The channel is approximately 1-ft deep with 4:1 side slopes and will capture and convey any westerly flowing nuisance runoff from the proposed improvements to the sand filter detention pond as discussed in the original Barbarick Subdivision FDR, instead of the existing Lot 1 and 2 improved areas.

Runoff from the property is at historic flows and will not exceed the anticipated runoff as determined in the Sterling Ranch PDR. This is described in more detail below. The Sterling Ranch PDR includes an analysis of future drainage conditions and includes recommended infrastructure to convey this runoff. Since the Sterling Ranch surrounds the Barbarick Subdivision, it is appropriate to include the recommendations from the SR-PDR in this Proposed Drainage Discussion.

Proposed On-Site Basin Descriptions: (See Basin Map in the pocket)

On-site Basin D1 (D for Developed condition) - This developed basin encompasses approximately 11.4 acres - the majority of Lots 3 & 4 and small portions of Lots 1 & 2. This basin generates 19.7/56.0 cfs in the 5/100 year storm events and sheet flows into shallow swales that direct the runoff into the proposed EDB to be located in Lot 4. Lot 3 is based on Owner provided information for a gravel parking/vehicle storage area, and Lot 4 has been based on proposed building site improvements as identified in the rezoning application. Any changes to the land use will require an update to the Final Drainage Report; much like the original Barbarick Subdivision Final Drainage Report is being updated with the grading and Lot 4 development application.

On-site Basin D2 This undeveloped basin encompasses 1.2 acres and represents the south portion of Lot 4, below and south of the two detention ponds. This basin is historic in nature and generates 0.8/3.0 cfs and drains directly into a road side ditch within the Sterling Ranch development.

On-site Basin D3 This developed basin encompasses approximately 3.13 acres - the remaining proposed infill portions of Lots 1 and 2 (east of the currently built out Lots 1&2). As discussed in the original Barbarick Subdivision FDR, development of these areas will require a detention water quality pond. This basin generates 4.1/11.6 cfs in the 5/100 year storm events and sheet flows southerly to the proposed SFB located at the southern-most portion of Lot 2.

The following design point table is for combined allowable discharge rates from the property at respective locations including historic flows from the tributary upstream basins:

Design Point	<u>5/100 Year</u>	<u>Comments</u>
DP D1	85.4 cfs (100)	D1+O2 Pass Through
DP D2	48.9 cfs (100)	Pond Release+D2
DP D3	4 1/11.6 cfs	D3
DP D4	13.8/39.1 cfs	Pond Release +03 Pass Through

All release flows downstream are at or below historic levels.

RECOMMENDED DESIGN

Off-site Detention Facility:

This shallow pond will be modified for the proposed development to the north as part of the WS-FDR. This will eliminate the retention properties in this pond, will provide detention for off-site flows, will provide a suitable outlet structure, and will remove accumulated sediment. The modified pond will store up to 1.52 acft (66,211 cuft) to the principal spillway (elevation = 7048.05). A summary of flows into and out of this pond:

Off-site Pond Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Proposed Flow into offsite pond (Basin G/DP 5)	<u>57.4</u>	<u>92.7</u>
Increase in peak flow due to development	46.2	51.3
Proposed flow out of modified pond Reduction in peak flow	<mark>16.1</mark> 41.3	<mark>29.4</mark> 63.3

For complete pond design, refer to the WS-FDR.

Proposed 30" HDPE Storm Drain from Modified Off-site Detention Pond:

This storm drain will capture flows from the discharged offsite pond and route them along the perimeter of the property daylighting into the EDB in Lot 4. 4' precast concrete manholes will be used for maintenance access at all bends and grade breaks. A grouted riprap forebay will help dissipate energy at the outlet of the pipe, and allow for settling prior to entering the pond. See the Appendix for the hydraulic analysis of this storm drain (StormCAD).

In the event of an emergency and the offsite pond fails, developed flow (Q100=93.0 cfs) will overtop the pond and be collected between the proposed roadway and pond berm.. Flow not captured by the proposed inlet will bypass easterly to the proposed offsite swale between this property and the Sterling Ranch property and conveyed southerly.

Proposed 18" HDPE Storm Drain Culvert:

A 18" HDPE culvert will convey collected runoff from Lot 3 (Developed Q100 = 15.90cfs) through Lot 4 to the FSD Pond and join sheet flow from Lot 4 and the 30" piped bypass flow from basin O2. This culvert will be privately owned and maintained by the property owners. See the Appendix for open channel calculations.

On-site FSD - EDB Pond in Lot 4 (Basin D1):

This On-site Full Spectrum Extended Detention Basin Pond provides water quality, EURV and 100-year detention. Onsite flows will combine with the 30-inch bypass flows from the north and pass through the EDB. The pond has been sized for the release of historic flows from Basin D1, as well as provides capacity for pass through conveyance of historic flows from the north.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	2.2	16.5
Developed On-site Flow (Basin D1)	<u>19.7</u>	<u>56.0</u>
Increase in peak flow due to development	17.5	39.5
Proposed Pass Through Flow from Off-Site Pond	<u>16.1*</u>	<u>29.4</u>
Proposed total flow out of EDB pond	<u>0.3</u>	45.9**

*Includes 10 year from WS-FDR **Includes Pass Through flow of 29.4 cfs

Water Quality Benefits:

Stormwater from Lots 3 & 4, and portions of 1 &2 will drain directly to the proposed Full Spectrum Extended Detention Pond. This pond will be privately maintained and provide water quality treatment to approximately 11.4 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater FSD Design Workbook (UD-FSD 1.11) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this EDB, where the "initial flush" of storm water will be drained over a 40-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The EDB Pond will have a a forebay, concrete trickle channel and micro-pool within the outlet structure (per UDFCD). This outlet structure will have a bar screen and an orifice plate containing 3 rows outlets (1.55 sq in orifices for the first two, and 3.8 sq in for the last row). The EURV has been designed to an elevation of 7021.50. The top of the inlet will have a grate to allow flows that exceed the WQCV and EURV to drain through the outlet works without overtopping the spillway, with an internal orifice plate of 2.37-ft diameter constricting flows to historic release rates (Q100 _{Onsite} = 16.5 cfs + Q100_{bypass} = 29.4 Total Release = 45.9 cfs).

The EDB pond can store up to 64,904 cuft (1.49 acft) to the principal spillway (7023.20). The pond bottom elevation will be at 7018.50 and the top of the embankment will be at elevation 7025.10. Should the outlet works become fully blocked; the 36' spillway will have the capacity to pass the combined 100 year peak developed runoff and northerly bypass with a flow depth = 0.90' (55.0 + 29.4 = 84.4 cfs) maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume = 0.203 ac-ft depth 1.53-ft (40 hour release)
- EURV Volume Stored = 0.677 ac-ft at depth 2.98 ft (72 hour release)
- 5 Year Volume Stored = 0.673 ac-ft at depth 2.98 ft (72 hour release)
- 100 Year Volume Stored = 1.261 ac-ft depth 4.26-ft (77 hour release)
- Emergency Spilllway Volume at Crest = 1.49 ac-ft at depth 4.7ft.

A 30" HDPE pipe will drain this outlet structure. A Low-Tailwater basin will be provided at the outlet for energy dissipation. This storm drain will daylight into the open channel just south of Lot 4 near the entrance of an existing 12" CMP. This existing 12" CMP drains under a dirt road. This dirt road will be eliminated upon development of the Sterling Ranch. Due to the limited capacity of this existing 12" CMP, runoff in excess of 5.7 cfs will overtop this dirt road, creating tail water to 7018.0. See the Appendix for the calculation results (CulvertMaster).

On-site Sand Filter Basin w/ Detention in Lot 2 (Basin D3):

A sand filter basin detention pond is being proposed to treat runoff from the proposed gravel parking portions of Lots 1 and 2 prior to discharging from the site. Due to the high pressure gas mains within this basin, grading is limited to fill only and no structures are allowed within the gas easement, so this pond will have underdrain design with partial infiltration and a controlled overflow design for the 100-year event.

The following table outlines the onsite existing and developed flow, required detention, and modifications to required detention utilizing the upstream over detention.

On-site Basin Flow Summary (cfs)	<u>5 year</u>	<u>100 year</u>
Existing On-site Flow at Pond	0.5	4.2
Developed On-site Flow (Basin D3)	<u>4.1</u>	<u>11.6</u>
Increase in peak flow due to development	3.6	7.4
Proposed total flow out of Sand Filter pond	<u>0.1</u>	<u>3.6</u>

Water Quality Benefits:

Stormwater from portions of 1 &2 will drain directly to the proposed Sand Filter Pond. This pond will be privately maintained and provide water quality treatment to approximately 3.13 acres of developed land.

The proposed Water Quality facility is sized using the methods derived from the UDFCD Stormwater Detention Design Workbook (UD-Detention 3.04) (see Appendix). The Water Quality Capture Volume (WQCV) will be provided in this SFB, where the "initial flush" of storm water will be drained over a 12-hour time period.

The impervious area ratio is used in the UDFCD workbook to calculate the WQCV. An adjusted impervious ratio of 57% to correlate with the land use charts and Runoff Coefficients (provided above) is being utilized for the sizing of the facility.

The sand filter will contain a 4" underdrain beneath 18" of CDOT Class C material. The underdrain will contain a 1.27" diameter orifice to control the outflow time in accordance with UDFCD.

The SFB pond can store up to 16,247 cu ft (0.373 acft) to the principal spillway (7025.50). The pond bottom elevation will be at 7023.00 and the top of the embankment will be at elevation 7027.37. Because the spillway acts as the 100-year control structure and notched weir design is proposed. The spillway is 5-ft wide for a depth of 10-inches for the release of the 100-year flow (3.6 cfs which is less than the 4.2 historic) then the spillway widens to 10ft for a depth of 18-inches which will have the capacity to pass the combined 100 year peak developed runoff (11.6cfs) with a flow depth = 0.5' maintaining 1-ft of freeboard.

Summary results include:

- WQCV Volume =0.039 ac-ft depth 0.37-ft (12 hour release)
- EURV Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 5 Year Volume Stored = 0.181 ac-ft at depth 1.52 ft (42 hour release)
- 100 Year Volume Stored = 0.394 ac-ft depth 2.83-ft (68 hour release)

Proposed (2) 24" HDPE Storm Drain Culvert:

Two 24" pipes will convey offsite flows through Lots 1 and 2 discharging to the south. The culverts will connect to a pair of existing 24" culverts entering the property and will discharge to a riprap settling basing prior to the released downstream. These culverts will be privately owned and maintained by the property owners. See the Appendix for the hydraulic analysis of this storm drain (CulvertMaster). Flow from these pipes will join the flow from the Sand Filter and discharge at Design Point 4 (combined 39.4 cfs in the 100-year event). Per the BS-FDR this flow combines with the westerly portions of Lots 1 & 2 offsite for a total release of 30.5/80.8 cfs in the 5/100 year events.

As stated above in the summary from the Sterling Ranch PDR, the anticipated runoff from this proposed discharge point (aka: SR-PDR Basin H4) is 30.5/80.8 cfs (5/100 year) due to the large pass through flow. A 42" RCP is planned to convey this flow through Sterling Ranch.

DRAINAGE, BRIDGE, AND POND FEES

This subdivision has already been platted. No additional Drainage, Bridge or Pond fees are required.

MAINTENANCE

All proposed storm drain infrastructure will be located within private property and will be owned and maintained by the property owner. The detention pond will be owned and maintained by the property owner and will require maintenance consisting of routine inspections, removal of debris from the detention area, and bi-annual inspections for hydraulic performance of the basin. Refer to the DCM for exact maintenance criteria and for other Best Management Practices (BMP).

EROSION CONTROL

Best Management Practices (BMPs) will be utilized to minimize erosion during construction and will be shown on the construction drawings. These will be in accordance with will be utilized as deemed necessary by the contractor and/or engineer. The contractor shall minimize the amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities;

- 1. Install down slope and side slope perimeter BMPs <u>before</u> the land disturbing activity occurs.
- 2. Do not disturb area until it is necessary for the construction activity to proceed.
- 3. Cover or stabilize exposed areas as soon as possible.
- 4. Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- 5. The construction of permanent filtration BMPs should wait until the end of the construction project when drainage areas have been stabilized.
- 6. Do not remove the temporary erosion controls until after all areas are stabilized.

Slopes

Erosion control soil retention blankets shall be installed where noted on slopes 3:1 or steeper. At a minimum, coconut/straw blend fiber material blankets should be used. The silt fence or erosion logs shall be installed at the toe of fill slopes where noted on a level contour. Erosion logs shall also be installed on slopes greater than ten feet in height where noted to reduce runoff length. The erosion logs shall be installed on a level contour. Disturbed surfaces shall be left in a roughened condition at all times when horizontal depressions approximately 2" to 4" deep, spaced 4" to 6" apart. Silt fence and erosion logs shall remain in place until all construction is complete and/or "finally stabilized", after which the silt fence and erosion logs shall be installed per manufacturer's installation instructions.

Stockpiles/Mobilization/Winter Shutdown

Soils stockpiled for more than 30 days shall be mulched with mulch tackifier and native seeding within 14 days of stockpile construction. After mobilization and prior to winter shutdown, all disturbed slopes not completed shall be mulched with mulch tackifier and native seeding.

Inlet and Outlet Protection

Storm Drain Inlet Protection shall be provided at all storm inlets. Outlet protection shall be provided at all pipe outlet and runoff / rundown treatment locations. All materials shall be installed per manufacturer's installation instructions.

Concrete Washout

Concrete washout structures shall be installed for cleaning concrete trucks. The concrete washout structure shall be constructed such that water can only evaporate or infiltrate from the structure. Residue and concrete from the washout structure shall be periodically cleaned out and properly disposed.

Erosion Control Supervisor and Maintenance

The erosion control supervisor shall be a person other than the superintendent. The erosion control supervisor shall inspect at least every 14 days and after any precipitation or snowmelt event that causes surface erosion. At sites where construction has been completed but a vegetative cover has not been established, these inspections must occur at least once per month.

All erosion control measures shall remain in place until all construction is complete and final stabilization has been achieved. "Final stabilization" is where all disturbed areas

have been built on, paved, or germinated with a uniform vegetative cover with a density of at least 70% of pre-disturbance levels. Equivalent permanent, physical erosion reduction methods may also be employed. Any areas not meeting this standard shall be repaired according to the BMP guidelines. Accumulated sediment and debris shall be removed when the sediment level reaches one half the height of the BMP or when the sediment/debris adversely impacts the functionality of the BMP. The Contractor shall remove all sediment, mud, and construction debris that may accumulate in public right of ways not designated before-hand as a result of this construction project. All repairs, removals, and replacements stated above shall be conducted in a timely manner.

Cost Estimate

The proposed drainage system to be constructed will be privately owned and maintained. The developer will be responsible for constructing the proposed improvements.

An engineer's estimate of probable construction costs has been provided for the proposed improvements. The storm sewer systems will be located in the Sand Creek Drainage Basin. The construction cost for the improvements are not eligible for reimbursement.

Engineer's Estimate of Probable Construction Costs Tri-Lakes Construction - Sand Creek Drainage Basin Non-Reimbursable Private Improvements

ltem	Unit	Quantity	Unit Cost	Total Cost
Precast Manhole	EA	4	\$2,500	\$10,000
18" HDPE Pipe	LF	231	\$45	\$10,395
24" HDPE Pipe	LF	1212 [·]	\$60	\$72,720
30" HDPE Pipe	LF	1128	\$72	\$81,216
18" Flared End	EA	2	\$225	\$450
24" Flared End	EA	2	\$250	\$500
24" CMP-HDPE	EA	2	\$200	\$400
30" Flared End	EA	1	\$350	\$350
CDOT Type D Inlet	EA	1	\$4,000	\$4,000
EDB Pond Outlet	EA	1	\$35,000	\$35,000
			SubTotal	\$215,031.00
			15% Contingency	\$32,254.65
			Total Estimate	\$247,285.65

REFERENCES

- 1. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated May 2014 including subsequent updates
- 2. City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated November 1991 including subsequent updates
- 3. Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008).
- 4. Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District, (Volumes 1 & 2 dated 2016, Volume 3 dated 2015)
- 5. Preliminary Drainage Report for Sterling Ranch-Phase 1, Sand Creek Drainage Basin, M & S Civil Consultants, Inc., May 2015
- Woodmen Storage Final Drainage Report, El Paso County, Calibre Engineering, Inc., July 2004; Revised February, 2010; Revised May, 2010; Revised July, 2010
- Preliminary and Final Drainage Plan and Report for Barbarick Subdivision, El Paso County, Oliver E. Watts Consulting Engineer Inc., January 2005; Revised October 2005; Revised December 2006; Revised May 2007; Revised August 15, 2007
- 8. **NOAA Atlas 14, Volume 8 Version 2** U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Hydrometeorological Design Studies Center.
- 9. FEMA Map Service Center: <u>http://msc.fema.gov</u>
- 10. NRCS Web Soil Survey. http://websoilsurvey.nrcs.usda.gov

÷

.

APPENDIX A

HYDROLOGIC AND HYDRAULIC CALCULATIONS

	CALC		OF A PEA		F USING	RATIONA	L METHO	D
	Project Title: Catchment ID:			Barb	arick Subdiv H-1 5 Year	vision		
					III J Teat			
I.	Catchment Hydro	ologic Data						
Percen	Catchment ID = Area = it Imperviousness = NRCS Soil Type =	10,70 2.00	Acres % A, B, C, or I	D				
11.	Rainfall Informat	ion I (inch/l	hr) = C1 • P	1 /(C2 + Td) [,]	^C3			
Design Storm	Return Period, Tr = C1 = C2= C3= P1=	28,50 10.00 0.786		(input the va (input the va (input the va	alue of C2) alue of C3)		t "Design Info	5")
01.	Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	1		
Overide Run 5-yr. Runof	off Coefficient, C = loff Coefficient, C = if Coefficient, C-5 = loff Coefficient, C =	0.08			lue if desired		k to accept ca	alculated C.)
						~		
						verland Y	LEGEND	ו
			Reach 2		ach I () Beginning	
				9			Flow Direction	n
	k	Reach 3					Catrhment Boundary	
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	vreas &
	Туре	Meadow	Field	Pasture/ Lawns	Bare Ground	Swales/ Waterways	Shallow Par (Sheet	
	Conveyance	2.5	5	7	10	15	2	
	Calculations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
		D	s	Ľ	Runoff	Convey-	Velocity	Time
			ft/ft	ft	Coeff C-5	ance	∨ fps	Tf minutes
			input	input	output	input	output	output
		Overland 1	0.0300	300 338	0.08	N/A 10.00	0.23	22.16 3.25
		2	0.0000					0.20
		3						
		4	·	<u> </u>				
			Sum	638	1	Coi	nputed Tc =	25.42
		· · · ·			-	R	egional Tc =	13.54
						User-E	Intered Tc =	13.54
IV.	Peak Runoff Pred	liction						
	all Intensity at Com			inch/hr			wrate, Qp =	1.85 cfs
	nfall Intensity at Reg Intensity at User-De			inch/hr inch/hr			wrate, Qp = wrate, Qp =	2.56 cfs 2.56 cfs
	-			-				

UD-Rational v1.02a.xls, Tc and PeakQ

Catchment ID: I. Catchment Hydro Catchment ID = Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Informat rsign Storm Return Period, Tr = C1 = C2=	Diogic Data H1 10.70 2.00 B	% A, B, C, or I		H-1 100 Yea	<u>r </u>		
Catchment ID = Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Informat Isign Storm Return Period, Tr = C1 =	H1 10.70 2.00 B	% A, B, C, or I	ם				
Area = Percent Imperviousness = NRCS Soil Type = II. Rainfall Informat Isign Storm Return Period, Tr = C1 =	10.70 2.00 B	% A, B, C, or I	D				
Percent Imperviousness = NRCS Soil Type = II. Rainfall Informat Isign Storm Return Period, Tr = C1 =	2.00 B	% A, B, C, or I	D				
NRCS Soil Type = II. Rainfall Informat Isign Storm Return Period, Tr = C1 =	<u> </u>	A, B, C, or I	D				
sign Storm Return Period, Tr = C1 =	ion (inch/i						
sign Storm Return Period, Tr = C1 =	ion I (inch/i						
C1 =		nr) = C1 " P	1 /(C2 + Td)/	°C3			
		years		•	esign storm)		
			(input the va (input the va				
C3=			(input the va				
P1=	2.57	inches	(input one-h	r precipitatio	nsee Sheet	t "Design Info	")
III. Analysis of Flow	Time (Time	of Concent	tration) for a	Catchment	1		
Runoff Coefficient, C =	0.36						
Overide Runoff Coefficient, C ≠		(enter an ov	veride C value	e if desired, o	or leave blani	to accept ca	alculated C
5-yr. Runoff Coefficient, C-5 =							
de 5-yr. Runoff Coefficient, C ≠		(enter an ov	veride C-5 val	lue if desired	, or leave bla	ink to accept	calculated
			<u>illustration</u>				
					~		
		_		Q	>		
	_		Rea		verland	EGEND	
		Reach 2	*		T JK) Beginning	
			2			Flow Direction	n
1.						Catchment	
K	Reach 3					Boundary	
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	Areas &
Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Par	-
Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	(Sheet	
			<u> </u>				
Calculations:	Reach	Slope	Length	5-yr	NRCS	Flow	Flow
	ID	S	L	Runoff Coeff	Convey- ance	Velocity V	Time Ti
		ft/ft	ft	C-5	GIICO	fps	minutes
		input	input	output	input	output	output
	Overland 1	0.0300	300 338	0.08	N/A 10,00	0.23	22.16 3.25
	2						
	3						
	4						
		Sum	638		Cor	nputed Tc =	25,42
						egional Tc =	13.54
					User-E	Intered Tc =	13.54

	CALC		OF A PEA		F USING	RATIONA	L METHO	D
	Project Title: Catchment ID:			Barba	arick Subdiv H-2 5 Year	vision		
1.	. Catchment Hydro				TP2 J Tear			
	- Catchment ID =	H2						
	Area =	3.70	Acres					
Percer	nt Imperviousness =							
	NRCS Soil Type =	<u> </u>	A, B, C, or [C				
U.	. Rainfall Informat	íon I (i n ch/l	hr) = C1 * P	1 /(C2 + Td) [,]	°C3			
Design Storm	Return Period, Tr =		years	· •	period for d	esign storm)		
	C1 = C2=			(input the va				
	C2- C3=			(input the va (input the va				
	P1=		inches			nsee Shee	t "Design Info) ")
m.	. Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment	:		
Rur	noff Coefficient, C =	0.08						
Overide Rur	noff Coefficient, C =		(enter an ov	eride C value	e if desired, c	or leave blan	k to accept ca	alculated C.)
5-yr, Runo	ff Coefficient, C-5 =	0.08						
Overide 5-yr. Rur	noff Coefficient, C =		(enter an ov	eride C-5 val	lue if desired	, or leave bla	ink to accept	calculated C-
				Illustration				
					_			
			_		O	`		_
				Rez		verland	LEGEND	
			Reach 2	*	1		🔵 Beginning	
		\sim					Flow Directio:	n
							Caichment	1
	K	Reach 3			-		Boundary]
	NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved A	
	Туре	Meadow	Field	Pasture/	Bare	Swales/	Shallow Par	
	Conveyance	2.5	5	Lawns 7	Ground 10	Waterways 15	(Sheet	
				·				
	Calculations:	Reach	Slope	Length	5-уг	NRCS	Flow	Flow
		D	S	L	Runoff	Convey-	Velocity	Time
			ft/ft	ft	Coeff C-5	ance	V fps	Tf minutes
		.	input	input	output	input	output	output
		Overland	0.0380	155	0.08	N/A	0.18	14.74
		1	0.0350	515		10.00	1.87	4,59
		2						
		3		<u> </u>		· · · • • · ·		
		5			1			
			Sum	670	1	Col	nputed Tc =	19.32
				•	•		egional Tc =	13.72
					t		ntered Tc =	13.72
							-	
	 Peak Runoff Prec foll Intensity at Com 		0.40	iach/k-		Deels Cl		A 74
	fall Intensity at Com infall Intensity at Re	•		inch/hr inch/hr			wrate, Qp = wrate, Qp =	<u> </u>
	Intensity at User-De	-		inch/hr			wrate, Qp =	0.88 c
1 10411 1011			2.01			. Quarter fo		0.00 0

١

.

,

Project Titl				arick Subdiv			
Catchment I	D:			H-2 100 Yea	r		
I. Catchment Hyd	rologic Data						
Catchment ID							
Area		Acres					
Percent Imperviousness NRCS Soil Type		™ A, B, C, or [C				
II. Rainfall Inform	ation I (inch/I	1r) = C1 * P	1 /(C2 + Td) [,]	°C3			
Design Storm Return Period, Tr	the second s	years		period for d	esign storm))	
C1	= <u>28.50</u> = 10.00		(input the va (input the va	,			
C			(input the va	•			
P1		inches			nsee Shee	t "Design Info	o'')
UI. Analysis of Flo	w Time (Time	of Concent	ration) for a	Catchment	1		
Runoff Coefficient, C	= 0.36						
Overide Runoff Coefficient, C		(enter an ov	veride C value	e if desired, o	or leave blan	k to accept ca	alculated C.)
5-yr. Runoff Coefficient, C-5		(
reride 5-yr. Runoff Coefficient, C		(enter an ov	veride C-5 va	lue if desired	. or leave bla	ank to accept	calculated C
		(0110) 011 01	Illustration		, 01 10010 01		
					_		
					verland		-
	_		Rea			LEGEND	
		Reach 2	\star			🔵 Beginning	
	/					Flow Directio	n
						←──	
, L	Reach 3					Catchment Boundary	
NRCS Land	Heavy	Tillage/	Short	Nearly	Grassed	Paved /	Areas &
Туре	Meadow	Field	Pasture/	Bare	Swales/		ved Swales
Conveyance	2.5	5	Lawns	Ground 10	Waterways	(<u> </u>	t Flow)
Conveyance			· <u> </u>			<u> </u>	•
Calculations:	Reach	Slope	Length	5-ут	NRCS	Flow	Flow
	ID	S	L .	Runoff	Сопиеу-	Velocity	Time
			.	Coeff	ance	V	Tf
		fl/ft input	ft input	C-5 output	input	fps output	minutes output
	Overland	0.0380	155	0.08	N/A	0.18	14.74
	1	0.0350	515		10.00	1.87	4.59
	2						
	3						
	4						
		Sum	670		Co	mputed Tc =	19.32
					R	egional Tc =	13.72
					User-l	Entered Tc =	13.72

IV. Peak Runoff Prediction			
Rainfall Intensity at Computed Tc, I =	5.15 inch/hr	Peak Flowrate, Qp =	6.90 cfs
Rainfall Intensity at Regional Tc, I =	6.08 inch/hr	Peak Flowrate, Qp =	8.15 cfs
Rainfall Intensity at User-Defined Tc, I =	6.08 inch/hr	Peak Flowrate, Op =	8.15 cfs

.

r

Latchment ID: H-3 5 year I. Catchment ID = H3 Area = 1.11 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = 8 A. B. C. or D I. Rainfall Information 1 (incl/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period. Tr = 5 years (input intervalue of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 order 6 S-yr. Runoff Coefficient, C = 0.08 order 5 - yr. Runoff Coefficient, C = 0.08 order 6 S-yr. Runoff Coefficient, C = 0.08 order 5 - yr. Runoff Coefficient, C = 0.08 order 6 S- yr. Runoff Coefficient, C = 0.08 order 6 S-yr. Runoff Coefficient, C = 0.08 order 6 S-yr. Runoff Coefficient, C = 0.08 order 6 - yr. Runoff Coefficient, C = 0				Barba	arick Subdiv	ision			
Catchment ID = H3 Area = 1.11 Area = 200 % NRCS Soil Type = B A. B. C. or D I. Rainfall Information 1 (inclu/lyr) = C1 * P1 /(C2 + Td)*C3 Design Storm Return Period. Tr = 5 years (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.123 inches (input the value of C3) C3 = 0.786 (enter an overide C value if desired, or leave blank to accept calculated C 5-yr. Runoff Coefficient, C = 0.08 Overide Runoff Runoff Runoff Runoff Runoff Runoff Runoff Runoff Runoff R	•		-						
$Area = \frac{111}{2} Area = \frac{111}{2} Area = \frac{111}{2} Area = \frac{111}{2} Area = \frac{1200}{2} \%$ $NRCS Soil Type = \underline{0} & A, B, C, or D$ I. Rainfall Information I (inclv/hr) = C1 * P1 /(C2 + Td)*C3 Design Storm Return Period, Tr = <u>5</u> years (input trevalue of C1) C2 = 10.00 (input the value of C3) C3 = 0.766 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = <u>0.08</u> Overide Runoff Coefficient, C = <u>0.08</u> (enter an overide C value if desired, or leave blank to accept calculated C S-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated Intervalued C S-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated Intervalued C S-yr. Runoff Coefficient, C = <u>0.08</u> (enter an overide C-5 value if desired, or leave blank to accept calculated Intervalued C S-yr. Runoff Coefficient, C = <u>0.08</u> NRCS Land Heavy Tillage/ Pasture/ Reach 1 NRCS Land Heavy Tillage/ Pasture/ Bare Stales Shallow Paved Areas 4 (Sheet Flow) Calculations: Reach 2 Conveyance 2.5 5 7 7 10 1 2 20 Calculations: Reach 2 Sum 338 Computed Tc = <u>724 98</u> Regional Tc = <u>724 98</u> Regional Tc = <u>711.88</u> User-Entered Tc = <u>724 98</u> Regional Tc = <u>72</u>	I. Catchment Hydro	ologic Data							
Percent Imperviousness = 200 % NRCS Soil Type = 8 A, B, C, or D I. Rainfall Information 1 (inclufthr) = C1 * P1 /(C2 + Td)*C3 Design Storm Return Period, Tr = 5 years (input the value of C1) C1 = 28.50 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.22 inches (input the value of C3) P1 = 1.22 inches (input the value of C3) P1 = 1.22 inches (input one-hr precipitation-see Sheet *Design Info*) II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 aride 5-yr. Runoff									
NRCS Soil Type =									
Design Storm Return Period, Tr = 5 years (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.7866 (input the value of C3) P1 = 1.23 inches (input the value of C3) P1 = 1.23 inches (enter an overide C value if desired, or leave blank to accept calculated C 5-yr. Runoff Coefficient, C = 0.08 ende 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D Itustration (enter an overide C-5 value if desired, or leave blank to accept calculated D (enter an overide C-5 value if desired, or leave blank to accept calculated D (enter an overide C-5 value if desired, or leave blank to accept calculated D (enter an overide C-5 value if desired, or leave blank to accept calculated D (enter an overide C-5 value if desired, or leave blank to accept calculated D (enter an overide C-5 value if desire				C					
C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input the value of C3) P1 = 1.23 inches (input the value of C3) P1 = 0.08 (input the value of C3) Cveride Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated C S-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calculated Interval to accept calculated C S-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated Interval to accept calculated Inter	II. Rainfall Informat	ion I(inch/I	וז) = C1 * P	1 /(C2 + Td)'	°C3				
C2= 10.00 C3= (input the value of C2) (input the value of C3) P1= P1= 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated C 5-yr. Runoff Coefficient, C = Syr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration Waterways (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration Waterways (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration Waterways (enter an overide C-5 value if desired, or leave blank to accept calculated Illustration NRCS Land Heavy Tillage/ Field Short Nearly Grassed Paved Areas & (Sheet Flow) NRCS Land Heavy Tillage/ Field Short Nearly Grassed Paved Areas & (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length S-yr NRCS Flow Time T 0 0.0250 338 0.08 NA 0.23 <td>Design Storm Return Period, Tr =</td> <td></td> <td>years</td> <td></td> <td></td> <td>esign storm)</td> <td></td> <td></td>	Design Storm Return Period, Tr =		years			esign storm)			
C3= 0.786 P1= (input the value of C3) (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calculated C 5-yr. Runoff Coefficient, C = Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C S-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C S-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C NRCS Land NRCS Land NRCS Land NRCS Land NRCS Land NRCS Flow Conveyance 2.5 NRCS Flow Conveyance 2.5 NRCS Flow Time from Conveyance 2.5 Conveyance 2.5 5					•				
II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = Overide Runoff Coefficient, C = Concentration) for a Catchment S-yr. Runoff Coefficient, C = Overide Runoff Coefficient, C = Image: Coefficient, C = Image: Coefficient, C = Reach 2 Net Coefficient, C = Image: Reach 2 Net Coefficient, C = Teach Teach Teach Teach Short Teach Short <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>					•				
Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 eride 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated International internatintereve	P1=	1.23	inches	(input one-h	r precipitatio	nsee Shee	"Design Info	")	
Overide Runoff Coefficient, C =	III. Analysis of Flow	Time (Time	of Concent	ration) for a	Catchment				
5-yr. Runoff Coefficient, C =	Runoff Coefficient, C =	0.08							
aride 5-yr. Runoff Coefficient, C =	Overide Runoff Coefficient, C =		(enter an ov	eride C value	e if desired, c	r leave blank	to accept ca	culated C	
Illustration Reach 2 NRCS Land Heavy Tillage/ Field Nearly Grassed Paved Areas & Baildow Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 S T 10 15 20 Calculations: Reach Slope Length S-yr NRCS Flow Flow Conveyance 2.5 S 7 10 15 20 Calculations: Reach Slope Length S-yr NRCS Flow Flow Overland O.0250 338 Ocenter of the pastore o	•								
werthand Bow werthand Bow Reach 2 werthand Bow Reach 2 NRCS Land Type Heavy Meadow Field Pasture/ Bare Grassed Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Convey- Velocity Time ID S L Convey- Velocity Time Overland 0.0250 338 <th col<="" td=""><td>eride 5-yr. Runoff Coefficient, C =</td><td></td><td>(enter an ov</td><td></td><td></td><td>, or leave bla</td><td>ink to accept of</td><td>calculated</td></th>	<td>eride 5-yr. Runoff Coefficient, C =</td> <td></td> <td>(enter an ov</td> <td></td> <td></td> <td>, or leave bla</td> <td>ink to accept of</td> <td>calculated</td>	eride 5-yr. Runoff Coefficient, C =		(enter an ov			, or leave bla	ink to accept of	calculated
Reach 1 Beginning Reach 2 Beginning Reach 3 NRCS Land Heavy Tillage/ Field Short Pasture/ Lawns Nearly Bare Ground Grassed Swales/ Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time 11 S S S S S 2 S S S S S 3 S <td></td> <td></td> <td></td> <td>Illustration</td> <td></td> <td></td> <td></td> <td></td>				Illustration					
Reach 1 Beginning Reach 2 Beginning Reach 3 NRCS Land Heavy Tillage/ Field Short Pasture/ Lawns Nearly Bare Ground Grassed Swales/ Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time 11 S S S S S 2 S S S S S 3 S <th></th> <th></th> <th></th> <th></th> <th></th> <th>~</th> <th></th> <th></th>						~			
Reach 1 Beginning Reach 2 Beginning Reach 3 NRCS Land Heavy Tillage/ Field Short Pasture/ Lawns Nearly Bare Ground Grassed Swales/ Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time 11 S S S S S 2 S S S S S 3 S <th></th> <th></th> <th>_</th> <th></th> <th>Q</th> <th>`Ç_</th> <th></th> <th></th>			_		Q	` Ç_			
Reach 2 Observation Beginning NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & NRCS Land Heavy Tillage/ Pasture/ Bare Swales/ Shallow Paved Swales Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time ID S L Runoff Convey- Velocity Time Overland 0.0250 338 0.08 N/A 0.23 24.98 1				Rea		····· []]	EGEND		
Reach 3 Catchment Boundary NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length S-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time ID Verland 0.0250 338 0.08 N/A 0.23 24.98 1			Reach 2	*	-		Beginning		
NRCS Land Heavy Tillage/ Short Nearly Bare Grassed Paved Areas & Type Meadow Field Pasture/ Bare Ground Waterways Shallow Paved Swales Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time ID S L Runoff Convey- Velocity Time Overland 0.0250 338 0.08 N/A 0.23 24.98 1)			Flow Direction	4	
NRCS Land Heavy Tillage/ Short Nearly Bare Grassed Paved Areas & Type Meadow Field Pasture/ Bare Ground Waterways Shallow Paved Swales Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time ID S L Runoff Convey- Velocity Time Overland 0.0250 338 0.08 N/A 0.23 24.98 1	((
TypeMeadowFieldPasture/ LawnsBare GroundSwales/ WaterwaysShallow Paved Swales (Sheet Flow)Conveyance2.557101520Calculations:Reach IDSlope IDLength ID5-yr RunoffNRCS Convey- VelocityFlow VelocityFlow Time Time outputOverland0.02503380.08N/A0.2324.9812345	K	Reach 3							
TypeMeadowFieldPasture/ LawnsBare GroundSwales/ WaterwaysShallow Paved Swales (Sheet Flow)Conveyance2.557101520Calculations:Reach IDSlope IDLength ID5-yr RunoffNRCS Convey- VelocityFlow VelocityFlow Time Time outputOverland0.02503380.08N/A0.2324.9812345			Tillenel	Chart	Needu	Created		, 	
Conveyance2.557101520Calculations:Reach IDSlope IDLength S5-yr LNRCS Runoff Convey- VelocityFlow Time Time Time Time Coeff anceFlow VelocityFlow Time Time Time OutputOverland0.02503380.08N/A0.2324.9812345Sum338Computed Tc =24.98 Regional Tc =11.88 User-Entered Tc =11.88 11.88									
Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time ft/ft ft C-5 fps minutes output input output input output Overland 0.0250 338 0.08 N/A 0.23 24.98 1				Lawns	Ground	Waterways	(Sheet	Flow)	
ID S L Runoff Convey- ance Velocity Time ft/ft ft ft C-5 fps minutes input input output input output output Overland 0.0250 338 0.08 N/A 0.23 24.98 1	1,00	2.5			10	15	20		
ft/ft ft Coeff ance V Tf input input input output input output output Overland 0.0250 338 0.08 N/A 0.23 24.98 1		<u> </u>	5	7		NRCS			
ft/ft ft C-5 fps minutes Overland 0.0250 338 0.08 N/A 0.23 24.98 1	Conveyance			·/	5-yr		Flow	Flow	
input input output input output Overland 0.0250 338 0.08 N/A 0.23 24.98 1	Conveyance	Reach	Slope	Length	Runoff	-	Velocity	Time	
Overland 0.0250 338 0.08 N/A 0.23 24.98 1	Conveyance	Reach	Slop e S	Length	Runoff Coeff	-	Velocity V	Time Tf	
2	Conveyance	Reach	Slop e S fvft	Length L	Runoff Coeff C-5	ance	Velocity V fps	Time Tf minutes	
3	Conveyance	Reach ID	Slope S fvft input	Length L ft input	Runoff Coeff C-5 output	input	Velocity V fps output	Time Tf minutes output	
4 5 5 5 Sum 338 Computed Tc = 24.98 Regional Tc = 11.88 User-Entered Tc = 11.88	Conveyance	Reach ID Overland	Slope S fvft input	Length L ft input	Runoff Coeff C-5 output	input	Velocity V fps output	Time Tf minutes output	
Sum 338 Computed Tc = 24.98 Regional Tc = 11.88 User-Entered Tc = 11.88	Conveyance	Reach ID Overtand 1 2	Slope S fvft input	Length L ft input	Runoff Coeff C-5 output	input	Velocity V fps output	Time Tf minutes output	
Regional Tc = 11.88 User-Entered Tc = 11.88	Conveyance	Reach ID Overtand 1 2 3 4	Slope S fvft input	Length L ft input	Runoff Coeff C-5 output	input	Velocity V fps output	Time Tf minutes output	
User-Entered Tc = 11.88	Conveyance	Reach ID Overtand 1 2 3 4	Slope S ft/ft input 0.0250	Length L ft input 338	Runoff Coeff C-5 output	ance input N/A	Velocity V fps output 0.23	Time Tf minutes output 24.98	
	Conveyance	Reach ID Overtand 1 2 3 4	Slope S ft/ft input 0.0250	Length L ft input 338	Runoff Coeff C-5 output	ance input N/A	Velocity V fps output 0.23	Time Tf minutes output 24.98 24.98	
	Conveyance	Reach ID Overtand 1 2 3 4	Slope S ft/ft input 0.0250	Length L ft input 338	Runoff Coeff C-5 output	ance input N/A Cor R	Velocity V fps output 0.23 nputed Tc = egional Tc =	Time Tf minutes output 24.98 24.98 11.88	
	Conveyance	Reach ID Overland 1 2 3 4 5 5	Slope S ft/ft input 0.0250	Length L ft input 338	Runoff Coeff C-5 output	ance input N/A Cor Cor R User-E	Velocity V fps output 0.23 nputed Tc = egional Tc =	Time Tf minutes output 24.98 24.98 11.88	

UD-Rational v1.02a.xls, Tc and PeakQ

CAL	CULATION	OF A PEA		FUSING	RATIONA		D
Project Tit Catchment				arick Subdiv H-3 100 year			
I. Catchment Hy				<u>100 jeu</u>			<u></u>
Catchment II Are Percent Imperviousnes	a = <u>1.11</u>	Acres					
NRCS Soil Typ		A, B, C, or [D				
II. Rainfall Inform	nation I (inch/I	hr) = C1 * P [.]	1 /(C2 + Td)/	°C3			
C	1 = <u>28.50</u> 2= <u>10.00</u> 3= <u>0.786</u>		(input the va (input the va (input the va	lue of C2) lue of C3)		: "Design Info	y")
III. Analysis of Fi	ow Time (Time	of Concent	ration) for a	Catchment			
Runoff Coefficient, (Overide Runoff Coefficient, C 5-yr. Runoff Coefficient, C- Overide 5-yr. Runoff Coefficient, (C = 5 =0.08			lue if desired		to accept cannot be accept	alculated C.) calculated C-5.
		Reach 2	Rea			<u>EGEND</u> Beginning	
	Reach 3					Catrhment Boundary	
NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	Paved A Shallow Pa (Sheet	ved Swales Flow)
Conveyance	2.5	5	7	10	15	2	0
Calculations:	Reach 1D	Slope S	Length L	5-yr Runoff Coeff	NRCS Convey- ance	Flow Velocity V	Flow Time Tf
	Overland	ft/ft input 0.0250	ft input 338	C-5 output 0.08	input N/A	fps output 0.23	minutes output 24.98
	1 2	0,0200		0.00			
	3						
	5	Sum	338		Coi	mputed Tc =	24.98
						egional Tc = Intered Tc =	11.88 11.88
IV. Peak Runoff P Rainfall Intensity at C Rainfall Intensity at Rainfall Intensity at User	omputed Tc, I = Regional Tc, I =	6.73	inch/hr inch/hr inch/hr		Peak Flo	wrate, Qp = wrate, Qp = wrate, Qp =	1.87 cfs 2.71 cfs 2.71 cfs

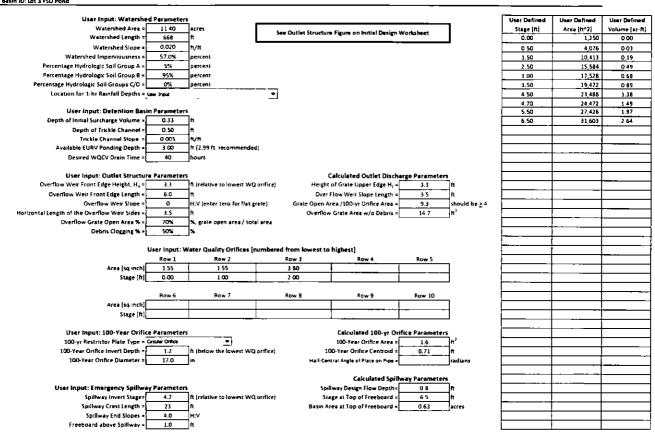
UD-Rational v1.02a.xls, Tc and PeakQ

Project Title: Barbarick Subdivision Catchment ID: D-2 5 Year I. Catchment Hydrologic Data Catchment ID = D2 Area = 1.20 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input treturn period for design storm) C1 = 28.50 (input the value of C1) C2 = 10.000 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide S-yr. Runoff Coefficient, C = 0.08 Reach 2 Breg	
I. Catchment Hydrologic Data Catchment ID = D2 Area = 1.20 Ares Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D I. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitation-see Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide S-yr. Runoff Coefficient, C = 0.08 Overide 5-yr. Runoff Coefficient, C = 0.08 Catchment I (Inter an overide C-5 value if desired, or leave blank to accept calculation Reach 2 (Inter an overide C-5 value if desired, or leave blank to accept calculation Flow Direction Catchment Bewindary	
Catchment ID = D2 Area = 120 Acres Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D I. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C3) P1 = 1.23 inches (input net-nr precipitationsee Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 Overide 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (Bow Direction Catchment Boundary	
Percent Imperviousness = 2.00 % NRCS Soil Type = B A, B, C, or D I. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3 Design Storm Return Period, Tr = 5 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2 = 10.00 (input the value of C2) C3 = 0.786 (input the value of C3) P1 = 1.23 inches (input one-hr precipitationsee Sheet "Design Info") II. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide S-yr. Runoff Coefficient, C = 0.08 (enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 (enter an overide C-5 value if desired, or leave blank to accept calcul 11. Lecenno Reach 2 0.08 Catchment Bendary	
Design Storm Return Period, Tr =5 years (input return period for design storm) C1 =10.00 (input the value of C1) C2 =10.00 (input the value of C3) C3 =0.786 (input the value of C3) P1 =123 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =(enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C =(enter an overide C-5 value if desired, or leave blank to accept calcul 111111111111111111111111111111111111	
C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calcul 111ustration Reach 2 Reach 1 Reach 1	
C3= 0.786 (input the value of C3) P1= 1.23 inches (input one-hr precipitationsee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = 0.08 Overide S-yr. Runoff Coefficient, C = 0.08 Dveride 5-yr. Runoff Coefficient, C = 0.08 Dverid	
III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =	
Runoff Coefficient, C = 0.08 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calcul 5-yr. Runoff Coefficient, C = 0.08 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calcul Illustration Reach 2 Reach 1 Bow Erginning Flow Direction Catchment Boundary	
Overide Runoff Coefficient, C =	
5-yr. Runoff Coefficient, C-5 = 0.08 Diveride 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calc Illustration Verland Reach 2 Reach 1 Boy Reach 1 Catchment Boundary	
Diveride 5-yr. Runoff Coefficient, C =	ated C.)
Reach 2 Reach 1 Reach 3 Reach 1 Reach	ulated C-
Reach 3 Reach 3 Reach 1 Reach	
Reach 2 Reach 3 Reach 3 Reach 1 Bow Reach 1 Bow Catchment Boundary	
Reach 2 Reach 3 Reach 3 Reach 1 Boundary	
Reach 3	
Reach 3 Boundary	
NRCS Land Heavy Tillage/ Short Nearly Grassed Paved Area Type Meadow Field Pasture/ Bare Swales/ Shallow Paved	
Lawns Ground Waterways (Sheet Flor	
Conveyance 2.5 5 7 10 15 20	
	Flow
ID S L Runoff Convey- Velocity Coeff ance V	Time Tř
ft/ft ft C-5 fps m	inutes
	output 18.21
1	
	18.21 10.86
IV. Peak Runoff Prediction	18.21 10.86 10.86
Rainfall Intensity at Computed Tc, I = 2.54 inch/hr Peak Flowrate, Qp =	10.86
Rainfall Intensity at Regional Tc, I = <u>3.22</u> inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = <u>3.22</u> inch/hr Peak Flowrate, Qp =	10.86

۲

I.

Project Tit			Barb	arick Subdi	vision		
Catchment	D:			D2 - 100yr			
I. Catchment Hyd	Irologic Data						
Catchment IE							
Area Percent Imperviousness		Acres					
NRCS Soil Type		A, B, C, or (C				
II. Rainfali Inform	ation I (inch/	hr) = C1 * P'	1 /(C2 + Td) [,]	^C 3			·
Design Storm Return Period, Ti	r= 100	years	(input return	period for d	esign storm)		
C1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(input the va		congin atomi,		
	2≈ 10.00		(input the va	•			
	3=	inches	(input the va (input one-h		nsee Shee	t "Design Info	۳ì
			•			. Songrinni	~ ,
III. Analysis of Flo	w Time (Time	of Concent	ration) for a	Catchment	1		
Runoff Coefficient, C	= 0.36						
Overide Runoff Coefficient, C	-	(enter an ov	eride C value	e if desired, d	or leave blani	to accept ca	Iculated C
5-yr. Runoff Coefficient, C-5	= 0.08					•	
		·					
eride 5-yr. Runoff Coefficient, C	:=	(enter an ov	reride C-5 va	lue if desired	, or leave bla	ink to accept	calculated
eride 5-yr. Runoff Coefficient, C	;=	(enter an ov	eride C-5 va <u>Illustration</u>		, or leave bla	ink to accept	calculated
eride 5-yr. Runoff Coefficient, C	;=	(enter an ov			, or leave bla	ink to accept	calculated
eride 5-yr. Runoff Coefficient, C	:=	(enter an ov			, or leave bla	ink to accept	calculated
eride 5-yr. Runoff Coefficient, C	:=	(enter an ov	<u>Illustration</u>	-0			caiculated
eride 5-yr. Runoff Coefficient, C	·		<u>Illustration</u>			LEGEND]
eride 5-yr. Runoff Coefficient, C		Reach 2	<u>Illustration</u>		verland low	_EGEND) Beginning]
eride 5-yr. Runoff Coefficient, C	·=		<u>Illustration</u>		verland low	LEGEND]
eride 5-yr. Runoff Coefficient, C			<u>Illustration</u>		verland low	LEGEND) Beginning How Direction Catchment]
eride 5-yr. Runoff Coefficient, C	Reach 3		<u>Illustration</u>		verland low	EGEND Beginning]
eride 5-yr. Runoff Coefficient, C			<u>Illustration</u>		verland low	LEGEND) Beginning How Direction Catchment	n
	Reach 3	Reach ?	Rea Short Pasture/	wch 1 f	Grassed Swales/	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pa	n Areas & ved Swales
NRCS Land Type	Reach 3 Heavy Meadow	Reach 2 Tillage/ Field	Re: Short Pasture/ Lawns	wch 1 f	Grassed Swales/ Waterways	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet	Areas & ved Swales Flow)
NRCS Land	Reach 3 Heavy	Reach ? Tillage/	Rea Short Pasture/	wch 1 f	Grassed Swales/	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Pa	Areas & ved Swales Flow)
NRCS Land Type	Reach 3 Heavy Meadow 2.5 Reach	Reach 2 Tillage/ Field 5 Slope	Short Pasture/ Lawns 7 Length	Nearly Bare Ground 10 5-yr	Grassed Swales/ Waterways	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 2 Flow	Areas & wed Swales Flow) 0 Flow
NRCS Land Type Conveyance	Reach 3 Heavy Meadow	Reach 2 Tillage/ Field 5	Short Pasture/ Lawns 7	Nearly Bare Ground 10 5-yr Runoff	Grassed Swales/ Waterways 15 NRCS Convey-	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 2 Flow Velocity	n Areas & wed Swales Flow) 0 Flow Time
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach	Reach 2 Tillage/ Field 5 Slope	Short Pasture/ Lawns 7 Length	Nearly Bare Ground 10 5-yr	Grassed Swales/ Waterways	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 2 Flow	Areas & wed Swales Flow) 0 Flow
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach	Reach 2 Tillage/ Field 5 Slope S fyft input	Illustration Rea Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	EGEND Beginning Flow Direction Catt hmeni Boundary Paved A Shallow Par (Sheet 2 Flow Velocity V	Areas & ved Swales Flow) 0 Flow Time Tf
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland	Reach 2 Tillage/ Field 5 Slope S ft/ft	Short Pasture/ Laswns 7 Length L ft	Nearly Bare Ground 10 5-yr Runoff Coeff C-5	Grassed Swales/ Waterways 15 NRCS Convey- ance	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 2 Thow Velocity V fps	Areas & ved Swales Flow) 0 Flow Time Tf minutes
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland 1	Reach 2 Tillage/ Field 5 Slope S fyft input	Illustration Rea Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	EGEND Beginning Flow Direction Catthment Boundary Paved A Shallow Pav (Sheet Catthment Boundary Flow Velocity V fps output	Arreas & ved Swales Flow) 0 Flow Time Tf minutes output
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland	Reach 2 Tillage/ Field 5 Slope S fyft input	Illustration Rea Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	EGEND Beginning Flow Direction Catthment Boundary Paved A Shallow Pav (Sheet Catthment Boundary Flow Velocity V fps output	Arreas & ved Swales Flow) 0 Flow Time Tf minutes output
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Reach 2 Tillage/ Field 5 Slope S fyft input	Illustration Rea Short Pasture/ Lawns 7 Length L ft input	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input	EGEND Beginning Flow Direction Catthment Boundary Paved A Shallow Pav (Sheet Catthment Boundary Flow Velocity V fps output	Arreas & ved Swales Flow) 0 Flow Time Tf minutes output
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland 1 2 3	Reach 2 Tillage/ Field 5 Slope S ft/ft input 0.0200	Illustration Re: Short Pasture/ Lawns 7 Length L ft input 85	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	EGEND Beginning Flow Direction Catchment Boundary Paved A Shallow Par (Sheet 2 Flow Velocity V fps output 0.11	Areas & wed Swales Flow) 0 Flow Time Tf minutes output 13.49
NRCS Land Type Conveyance	Reach 3 Heavy Meadow 2.5 Reach ID Overland 1 2 3 4	Reach 2 Tillage/ Field 5 Slope S fyft input	Illustration Re: Short Pasture/ Lawns 7 Length L ft input 85	Nearly Bare Ground 10 5-yr Runoff Coeff C-5 output	Grassed Swales/ Waterways 15 NRCS Convey- ance input N/A	EGEND Beginning Flow Direction Catthment Boundary Paved A Shallow Pav (Sheet Catthment Boundary Flow Velocity V fps output	Arreas & ved Swales Flow) 0 Flow Time Tf minutes output


•

	CALCI		DF A PEA		FUSING	RATIONA		D
	Project Title: Catchment ID:				arick Subdiv 3-Culvert 10			
I. Ca	Itchment Hydro	logic Data			·.			
Percent In	Catchment ID = Area = nperviousness = RCS Soil Type =	4.86 57.00)				
II. Ra	iinfall Informati	on I(inch/h	nr) = C1 * P1	l /(C2 + Td)/	^C 3			
Design Storm Ret	um Period, Tr = C1 = C2= C3= P1=	28.50 10.00 0.786	years inches	(input the va (input the va (input the va	alue of C2) alue of C3)		t "Design Info) ")
Runoff Overide Runoff	oefficient, C-5 =	0.55	(enter an ov	eride C value	e if desired, c lue if desired	ır leave blanı	to accept ca	Iculated C.) calculated C-
			Reach 2		0	low /]	_EGEND) Beginning]
	k	Reach 3					Flow Direction Catchment Boundary	n
	NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	Paved A Shallow Pa (Sheet	ved Swales
	Conveyance	2.5	5	7	10	15	2	0
Ca	alculations:	Reach ID	Slop e S	Length L	5-yr Runoff Coeff	NRCS Convey- ance	Flow Velocity V	Flow Time Tf
			ft/ft input	ft input	C-5 output	input	fps output	minutes output
		Overland	0.0300	300	0.39	N/A	0.32	15.41
		2	0.0100	500	ł	10.00	1.00	8.33
		3			1			
		5			1			
		L	Sum	800	J	R	mputed Tc = egional Tc =	23.74 14.44
Rainfall	eak Runoff Pred Intensity at Com	puted Tc, I =		_inch/hr		Peak Fic	Entered Tc =	<u>14.44</u>]
	II Intensity at Recently at Recent the second se			inch/hr inch/hr			owrate, Qp =	<u> </u>

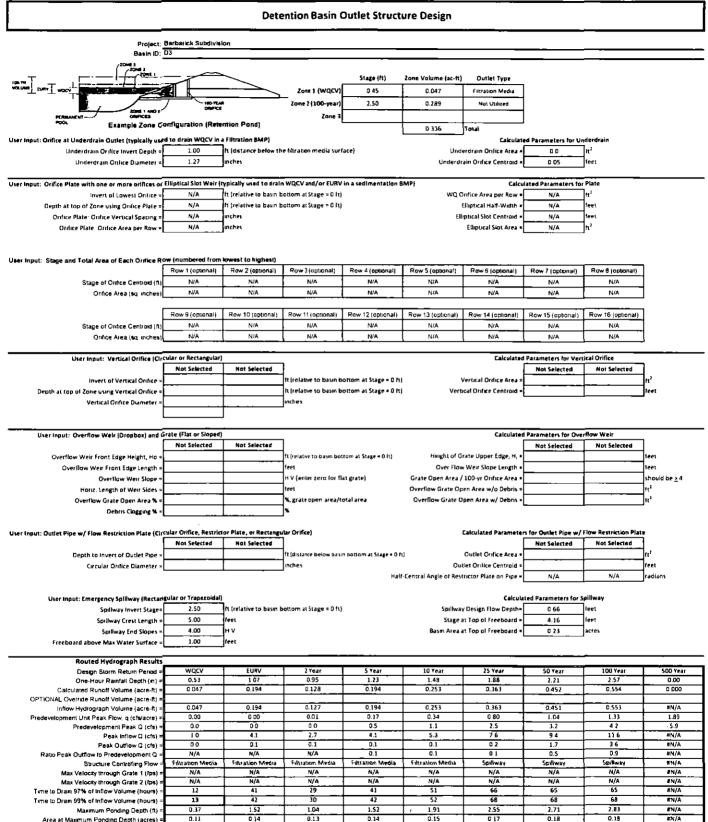
Final Design for Full Spectrum Detention Basins

Project: Barbarick Subdivision Basin ID: Lot 3 FSD Pond

,

Page Missing or Blank on EDARP

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


Project	Barbarick 1-			
Ramin (D				
• All 10	<u> </u>			
		_	~	
		1		
	ا کے کیے	6	_	\geq
	· • · /	<u>`</u>	•	
Example Zone	an Configurate		na Baarb	
	ou ngu na			
Required Volume Calculation				
Saterind (MP Type •	8F	}		
Watershed Area •	313	-		
Watershei Length •	648			
Vision-Net Sign -	0 550	a n		
Watershed Imperviculation #	57 00%	percent		
Percentage Hydrologic Soil Group A +	50%	percent		
Percentage Hydrologic Sol Group B =	95.0%	percent		
Percentage Hydrologic Sol Groups C/D +	0.0%	percent		
Descal WQCV Dran Time *	12 0	hours		
Location for 1-te Flamfall Depths =		- and		
Cocation for 1-te Hianfall Depits = Water Quality Capture Volume (WQCV) =	0.047	1		
		ac ro-foot	Optional Lise 1-hr Precipia	ingaul Inco
Excess Lines Runof Volume (EURV) =	0184	ACTO-1001		
2-yr Runaff Volume (P1 = 0.95 et.) =	0128	acre-feet	0 95	inches
5-yr Ruhoff Volume (P1 + 1 23 er.) +	0 194		123	Pic has
l0-yr Runoff¥bluma (P1+I48an.) =	0753	a:10-leal	148	nche
25-yr Runof Volume (P1 = 1 88 m) =	0.363	1279 Her	155	esche.
S0-yr Runolf Volume (P1 + 2 21 et.) +	0452	2.19- 19 0	2 21	enches
100-yr Runoff Volume (P1 = 2.57 m.) =	0554	10.10-100	2 57	nche
500-yr Runoff Volume (P1 = 0 m) =	0.000	at 70-400		TE DE
Approximate 2-yr Detenition Volume *	0 122	C10-100		
Approximate 5-yr Owanian Volume =	0,171	acte-feel		
Approximate 10-yr Oetentian Volume -	0.204	acre ledi		
Approximate 25-yi Delenikon Volume =	0 2 3 7	acre-lesi		
Approximate 50-yr Delenitos Volume =	0 273	m:10-Had		
Approximate 100-yr Detention Volume •	0.338	acra-feel		
Stage-Storage Calculation				
Zone 1 Volume (WDCV) =	0 047	acre feel		
Zone 2 Volume (100-year - Zone 1) *	0 259	acteriant		
Select Zone 3 Storage Volume (Openel) =		CIR-Herr		
Toler Deterior Base Volume •	0 236	acro-last		
Indial Surt Narger Volume (ISV) =	NA	10		
Initial Surcharge Capity (ISC) =	NA			
Total Available Desertan Depth (*i.e.,) =	2 50			
Depth of Traitie Chernel (H, .) =	NA	C		
Slope of Tricale Chernel (S.,) =	NA	an .		
Super of Man Bean Stim (5., .) =		μv		
Basun Langth-to-Whith Ratio (R _{ve}) =	15			
		1		
ivini Surcharge Area (A _{vy}) =	0	1-2		
Suicharge Volume Length (Lev) *	0.0	1		
Surcharge Volume Wath (W _m) =	40	7		
Depth of Smith Plote (H _{strat}) =	000			
Length of Beau Floor (Harrison) +	0			
Width of Basan Flore (W _{riters}) =	540	l"		
Area of Basen Floor (Al _{stane}) =	4370			
Volume of Basin Floor (V _{rume}) =	0/1*	#2		
	-	1.3		
Depth of Man Basin (H _{and}) =	2 50	1		
Longin of Mun Basin (L) -	101 0			

Virigite of Malain Areas of Malain Volume of Malain

Stage - Storage	Stage	Optional Originale	Langth	Water	Avera	Optional Original	Alca	Volume	Vator
Description	(F)	Stage (1)	Ċ,	<u></u>	(77)	Acto (17)	(10074)	Ø3)	(
Media Surface	0.00		81.0	540	4 370		0 100	1	İ.
	0 10	1	41 B	54.8	4 471	1	0 103	402	0 01
	0.20		825	50.5	4 577		0 105	650	0 02
	0.30	1	60 7	56.3	+ 684	1	0 108	1 1313	0 00
	6 #0	i	641	571	4 601	1	D 110	1,788	Í 004
Zone 1 (WD/CV)	0.45		B4 5	57.6	4 553	1	0 112	2 078	0.04
-	0 50	1	64.9	57 8	4.974	1	0 1 1 3	2 273	005
	0 60	1	55 7	58 7	5029		0 1 15	2,770	0.08
	070		65 5	59.5	5145		0 1 18	3 279	0.07
-	0.60		67 3	60 J	5 263	i.	0 121	3 800	0.08
	0.60		56 1	6 1	5301		0 124	4 332	0.09
	100		65.9	61.9	5 501	•	0 126	4 876	011
	1 10		597	627	5 677	-	0 129	5 437	0 12
	120		805	63.5	8 745	-	0 132	5 000	0 13
·	1.30	i	E I G	64 J	5 66.9	1	0 135	6 361	0 15
· · · · · ·	140	i	E 1	66.1	5 204	i	0 138	7,174	0 16
	150		R2 9	15 P	6120	1	0 141	7,780	0 17
	150	t i	83.7	417	6.748	<u>i</u>	0140	1 388	0 19
i	170	1	945	67.5	6,377		0 146	9039	0 20
	1 80		86.) ···	681)	6,50/	1	0149		0 22
	190	<u> </u>	861	491	6 639	1	0 152		0 73
	200		98.9	69.1	6771		0 155	-	075
	7 10	<u>∤</u> ·──	97.8	70 8	8916		0 159	<u> </u>	0 77
	2 20		986	71.6	7 054	1	0 162		i 0 2 🖬
	2.30		99.4	72.4	7,191		0 155	13 185	0.30
<u> </u>	2.40	├ ──┤	100 2	732	7,329		0 165		030
Zone 2 (100-year)	2 50		101 0	74 0	7.400		0 166	14 601	033
	2 50		101 6	74.8	7 609		0 175	15 385	0 35
	2 80	i – I	101 8	75.6	7,751	<u> </u>	0 175	15 385	0 35
			103.4	78.4	7 694		0 181	16 805	0.37
	2 80				8039				
<u> </u>	2 90		104 2	77.2 18.0	3 184		0 165 D 158	+	0.40
	•	<u> </u>		·	+		0 191		042
	2 10		105.6	78.8	8 331	1		19 269	
	3 20		106.6	796	0.480		0.195	70,709	0 -5
			107.4	80.4	8 629		0 198	21 085	044
	340	!	106.2	412	6 780			21955	0 50
	3 50		1090	820	6 802		0.205	22 821	0.52
	740		109.8	62.6	9 (865	+	0 209	23 722	0.54
	370		1104	818	9 240		0 212	24 638	0 56
	340	ļ ;	111.4	84.4	9 396		0.218	25 570	0.54
	190	<u> </u>	112.2	65.7	9563		0 219	20 517	0 60
	4 00		113.0	68 0	9712		0 223	27 480	0.63
	4 10		113.8	80.6	0 872		0 227	28 480	28.0
	4 20	<u> </u>	114.8	676	10 00.3		0 220	29 455	067
	4.30	· · · -	115.4	68.4	10 195		0 234	30466	0.62
	140		1152	897			0 236	31.494	072
	450		1170	90 0	10 523		0 242	32 538	0 74
	4 60		1178	906	10 990		0 245	33 550	0 77
	470		1 SE 8	91.6	10.467		0.340	34 676	079
	4 80		1194	924	11.028		0.253	15 m	0.62
	490		120.2	937	11,195	!	0 257	35 (8)	0.64
	5 10	<u>↓</u> • • •	121.0	140 146	11,367		0 261	39 155	
	5 10		121 8	858	11,540		0 265		092
	5.30	<u>├</u>	1234	964	11,889		0 273	40.317	
	540		124.2	_ 9/7	17,055		0 277	42,695	0.00
7	550		1210	666	17,741		0 251	41 011	0
	5 70		125.8	- 968	12,422		0 255	45 44	106
	580		127 4	100.4	12,94		0 293	47,664	1 09
	590		128.2	101 2	12,557		0 302	48,952 50,3%	112
	6 10		129 8	107.6			0.355	51.562	114
	6.20	- 1	1308	103.6	13,109 13,523 13,711		0310	52,921	121
	6.40		1222	105.2	13,900		0 319	55 117	127
	6 50		1310	105.0	14 090	_	0.357	57,047	130
	6.70		1.24	107.6	14,45		0 328	56,495	134
	6 50		1354)_ YON 4	14,670		0 337	81,380	140
i	700	- 	137.0	1092	14 885	i	0.341	62,667	14
	7 10		137.4	1100	19,200	<u>i </u>	0.350	61 870	- 5
	7 73	H - T	1386	1110	15 400		0355	67.401 M 253	
	740		140 2		15,063		0.354	04 PC-7	154
	7 50		1410	1140	16 006		0.369	77.13	10
<u> </u>	760	<u> </u>	141.8	1148	16,271		0 374 0 376	70,761 76,394	160
	7,80		14.) 4	1104	16 604 16 892		0 345	75,364 77,048 78,725	176
	7 60	1	1412	1173	10 002	<u> </u>	0 388	7177	180
			163	1180	17,102		0 393	82.43	- 35
	8 20		148.8	1196	17.6.5		0.402	81,887	1 1 1 2
	8 30		147 4	120.4	17.625 17.736 17.943	+	0407	85,674	100
	6 5 9		149.0	122.0	18 169		0 417	09,741 91,069	204
	8 60		1411	122.0	18 169		0 422	91,069	i 209
	8 70		150.8	123.8	18 805	1	0 427	92,919 94 790	213
	8 90		152.2	125.2	19.047		0.437	91,684	1 2 2 2
	- 9 (5)		1530	126 0	19,249		0 442	98 598	220
	9 10 9 20		1516	124.0	19 491		0 447	100,534	2 35
i	9.30	1 <u> </u>	1518	128.4	20 172	L. 1	0465	104.441	230
	9.40	. 1	154 2	1701	20,172		0.463	105 457	2 44
	8 50		1570	-1300 	20 401 20 631		0468	106,516	249 253

۰ ۰

ea at Maximum Ponding Depth (acres) Maximum Volume Stored (acre-fi)

0.039

0 181

0117

0 161

0.240

0 343

0 371

0.394

RN/A

Page Missing or Blank on EDARP

ι

١

APPENDIX B

.

STORMCAD INFORMATION

Culvert Calculator Report Twin 24" Culvert

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	2.00	ft	Headwater Depth/Heig	ht 1.32	
Computed Headwater Elev	7,038.15	ft	Discharge	35.50	cfs
Inlet Control HW Elev.	7,038.10	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,038.15	ft	Control Type	Entrance Control	
Grades					-
Upstream Invert	7,035.51	ft	Downstream Invert	7,020.00	fi
Length	606.00	ft	Constructed Slope	0.025594	ft/ft
Hydraulic Profile					-
Profile	 S2		Depth, Downstream	0.94	ft
Slope Type	Steep		Normal Depth	0.94	ft
Flow Regime	Supercritical		Critical Depth	1.52	ft
Velocity Downstream	12.17	ft/s	Critical Slope	0.006140	ft/ft
Section					-
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	7,038.15	ft	Upstream Velocity Hea	d 0.75	ft
Ке	0.50		Entrance Loss	0.37	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,038.10	ft	Flow Control	Transition	
Inlet Type Square edge	e w/headwall		Area Full	6.3	ft²
К	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

Culvert Calculator Report Outlet Pipe

•

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	7,023.10 f	it	Headwater Depth/Height	2.07	
Computed Headwater Elev	i 7,023.10 f	ft	Discharge	55.60	cfs
Inlet Control HW Elev.	7,023.10 f	't	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	7,022.97 f	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	7,017.92 f	it	Downstream invert	7,017.52	ft
Length	40.00 f	ì	Constructed Slope	0.010000	ft/ft
Hydraulic Profile					
Profile CompositeM2Pre	essureProfile		Depth, Downstream	2.36	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.36	ft
Velocity Downstream	11.58 f	it/s	Critical Slope	0.013538	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Material	Concrete		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	7,022.97 f	it	Upstream Velocity Head	1.99	ft
Ке	0.20		Entrance Loss	0.40	ft
Inlet Control Properties					
Inlet Control HW Elev.	7,023.10 f	it	Flow Control	Submerged	
Inlet Type Beveled ring,	33.7° bevels		Area Full	4.9	ft²
К	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	В	
С	0.02430		Equation Form	1	
Y	0.83000				

02-Overflow Channel

Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Roughness Coefficient	0.050
Channel Slope	0.02000 ft/ft
Normal Depth	2.00 ft
eft Side Slope	3.00 ft/ft (H:V)
Right Side Slope	3.00 ft/ft (H:V)
Bottom Width	4.00 ft
Results	
Discharge	94.99 ft³/s
flow Area	20.00 ft ²
Vetted Perimeter	16.65 ft
lydraulic Radius	1.20 ft
op Width	16.00 ft
Critical Depth	1.73 ft
Critical Slope	0.03707 ft/ft
/elocity	4.75 ft/s
/elocity Head	0.35 ft
Specific Energy	2.35 ft
froude Number	0.75
low Type	Subcritical

Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.73	ft
Channel Slope	0.02000	ft/ft

Bentley Systems, Inc. Haestad Methods Solutionti@efituevMaster V8I (SELECTseries 1) [08.11.01.03] 5/31/2016 10:27:58 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

02-Overflow Channel

GVF/Output/Data

Critical Slope

0.03707 ft/ft

W	orksheet for Open Channel Cuivert Lot 3
Project Description	
Friction Method	Manning Formula
Solve For	Normai Depth
Input Data	
Roughness Coefficient	0.012
Channel Slope	0.03000 ft/ft
Diameter	1.50 ft
Discharge	15.90 ft³/s
Results	
Normal Depth	1.02 ft
Flow Area	1.28 ft ²
Wetted Perimeter	2.91 ft
Hydraulic Radius	0.44 ft
Top Width	1.40 ft
Critical Depth	1. 42 ft
Percent Full	68.1 %
Critical Slope	0.01690 ft/ft
Velocity	12.41 ft/s
Velocity Head	2.39 ft
Specific Energy	3.41 ft
Froude Number	2.29
Maximum Discharge	21.20 ft³/s
Discharge Full	19.71 ft ³ /s
Slope Full	0.01952 ft/ft
Flow Type	SuperCritical
GVF Input Data	e le président de la préside de la company de la préside de la préside de la préside de la préside de la présid La préside de la préside de
Downstream Depth	0.00 ft
Length	00.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Average End Depth Over Rise	0.00 %
Normal Depth Over Rise	68.08 %
Downstream Velocity	Infinity <i>tt/s</i>

.

 Bentley Systems, Inc.
 Haestad Methods Sol@iontl@efilowMaster V8I (SELECTseries 1) [08.11.01.03]

 5/31/2016 11:49:32 AM
 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

•-

Worksheet for Open Channel Culvert Lot 3

GVF Output Data			New York
Upstream Velocity	Infinity	ft/s	
Normal Depth	1.02	ft	
Critical Depth	1.42	ft	
Channel Slope	0.03000	fVR	
Critical Slope	0.01690	ft/ft	

Bentley Systems, Inc. Haestad Methods SoldRiontl@efitervMaster V8I (SELECTseries 1) [08.11.01.03] 5/31/2016 11:49:32 AM 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Worksheet for Outlet with Passthrough-Weir

Project Description

Fioject Description		
Solve For	Discharge	
Input Data		
Headwater Elevation	1.40	ft
Crest Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Weir Coefficient	3.00	US
Crest Length	32.00	ft
Number Of Contractions	0	
Results		
Discharge	159.02	ft³/s
Headwater Height Above Crest	1.40	ft
Tailwater Height Above Crest	0.00	ft
Flow Area	44.80	ft²
Velocity	3.55	ft/s
Wetted Perimeter	34.80	ft
Top Width		ft
159.02 70% 50%	s more restrictue 265 48-te Opening 2005 200	than Onifice that Shick and Restrictor and e.

	Worksheet for (<u>Dutlet wPa</u>	<u>ass - Orifi</u>
Project Description	۱,		
Solve For	Discharge		
Input Data			
Headwater Elevation		1.40	ft
Centroid Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Discharge Coefficient		0.60	
Opening Width		4.00	ft
Opening Height		12.00	ft
Results			•
Discharge		273.35	ft³/s
Headwater Height Above Centro	id	1.40	ft
Tailwater Height Above Centroid	1	0.00	ft
Flow Area		48.00	ft?
Velocity		5.69	fl/s
Top Box (Deir is more Weir Celask	Restricture	,
USE	Weir Celask	trans.	

Worksheet for Outlet wPass - Orifice

٠

Worksheet for FSD Outlet Orifice Plate

Project Description Solve For Diameter Input Data 45.90 Hys (16.5 His + 29.4 PLac) Discharge 4.70 ft Headwater Elevation **Centroid Elevation** 0.00 ft **Tailwater Elevation** 0.00 ft **Discharge Coefficient** 0.60 Results 2.37 ft Diameter Headwater Height Above Centroid 4.70 ft Tailwater Height Above Centroid 0.00 ft Flow Area 4.40 ft² Velocity 10.43 ft/s

Worksheet for FSD Overflow - Pass				
Project Description				
Solve For	Discharge			
nput Data				
Headwater Elevation		0.90	ft	
Crest Elevation		0.00	ft	
failwater Elevation		0.00	ft	
Crest Surface Type	Gravel			
Crest Breadth		12.00	ft	
Crest Length		36.00	ft	
Results				
Discharge		86.22	ft³/s	(551)+29.4 pres = 44.4 d
leadwater Height Above Crest		0.90	ft	
ailwater Height Above Crest		0.00	ft	
Veir Coefficient		2.80	US	
Submergence Factor		1.00		
Adjusted Weir Coefficient		2.80	US	
Flow Area		32.40	ft²	
/elocity		2.66	ft∕s	
Wetted Perimeter		37.80	ft	
Fop Width		36.00	ft	

,

Worksheet for SFB Overflow Developed

Project Description

Solve For	Discharge
and the state of the second	at the attended with the second second

Input Data

Headwater Elevation		0.45	ft
Crest Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Crest Surface Type	Gravel		
Crest Breadth		6.00	ft
Crest Length		10.00	ft

Results

Discharge	8.08	ft³/s
Headwater Height Above Crest	0.45	ft
Tailwater Height Above Crest	0.00	ft
Weir Coefficient	2.68	US
Submergence Factor	1.00	
Adjusted Weir Coefficient	2.68	US
Flow Area	4.50	ft²
Velocity	1.80	ft/s
Wetted Perimeter	10.90	ft
Top Width	10.00	ft

Worksheet for Type D Inlet - Weir

Project Description

Solve For	Discharge		
Input Data			
Headwater Elevation		1.50	ft
Crest Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		17.17	ft
Results			
Discharge		94.61	ft³/s
Headwater Height Above Crest		1.50	ft
Flow Area		25.75	ft²
Velocity		3.67	ft/s
Wetted Perimeter		20.17	ft
Top Width		17,17	ft

Type D Weir is most restrictive 94.610Gs 70% Grate Opening 50% Clogging = 3311 chs > 29.4 chs tributury

5/27/2016 1:31:01 PM

Worksheet for Type D Inlet - Orifice

Project Description

Solve For	Discharge	
Input Data		
Headwater Elevation	1.50	ft
Centroid Elevation	0.00	ît
Tailwater Elevation	0.00	ft
Discharge Coefficient	0.60	
Opening Width	2.92	ft
Opening Height	5.67	ft
Results		
Discharge	97.50	ft³/s
Headwater Height Above Centroid	1.50	ft
Tailwater Height Above Centroid	0.00	ft
Flow Area	16.54	ft²
Velocity	5.89	ft/s

Type D Weir is more restrictive -> Use Weir Calculations

www.words.com/www.com/com/com/com/com/com/	orksheet for Western Cha	
Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.02000	ft/ft
Normal Depth	1.00	ft
Left Side Slope	4.00	ft∕ft (H:V)
Right Side Slope	4.00	ft/ft (H∶V)
Results		
Discharge	17.30	fi³/s
Flow Area	4.00	ft²
Welted Perimeter	8.25	ft
Hydraulic Radius	0.49	ft
Fop Width	8.00	ft
Critical Depth	1.03	ft
Critical Slope	0.01703	ft/ft
/elocity	4.32	ft/s
/elocity Head	0.29	ft
Specific Energy	1.29	ft
Froude Number	1.08	
flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
.ength	0.00	ft
Number Of Steps	0	
GVF Output Data		
Jpstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
ownstream Velocity	Infinity	ft/s
Jpstream Velocity	Infinity	ft/s
Iormal Depth	1.00	ft
	1.03	ft
Critical Depth		
Critical Depth Channel Slope	0.02000	ft/ft

.... . ----- -

5/27/2016 1:31:20 PM

Benticy Systems, Inc. Haestad Methods SoluBitonti@efilowMaster V8i (SELECTseries 1) [08.11.01.03] Page 1 of 1 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page Missing or Blank on EDARP

							Upstream		System
				Branch	Length	Upstream	Intensity	Upstream Inlet	Intensity
Label	Start Node	Stop Node	Branch ID	Element ID	(Unified) (ft)	Inlet C	(in/h)	Area (acres)	(in/h)
CO-1	CB-1	MH-1	1	1	255.4	(N/A)		8 (N/A)	8
CO-2	MH-1	MH-2	1	2	295.1	(N/A)		8 (N/A)	8
CO-3	MH-2	MH-3	1	3	295.1	(N/A)		8 (N/A)	8
CO-4	MH-3	MH-4	1	4	44.9	(N/A)		8 (N/A)	8
CO-5	MH-4	OF-1	1	5	198.3	(N/A)		8 (N/A)	8

	System		Rise		Velocity	Invert	Invert	
	Rational Flow	Total Flow	(Unified)	Capacity (Full	(Average)	(Upstrea	(Downstream	
	(ft³/s)	(ft³/s)	(in)	Flow) (ft³/s)	(ft/s)	m) (ft)) (ft)	Slope (ft/ft)
CO-1	0	29.4	30	44.49	9.68	7032.21	7029.65	0.01
CO-2	0	29.4	30	44.43	9.67	7029.35	7026.4	0.01
CO-3	0	29.4	30	38.97	8.72	7026.2	7023.93	0.008
CO-4	0	29.4	30	57.43	11.77	7023.63	7022.88	0.017
CO-5	0	29.4	30	44.4	9.67	7022.88	7020.9	0.01

APPENDIX C

STANDARD DESIGN CHARTS AND TABLES

•

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Colorado Springs, Colorado, US* Latitude: 38.9514°, Longitude: -104.6905° Elevation: 6984 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

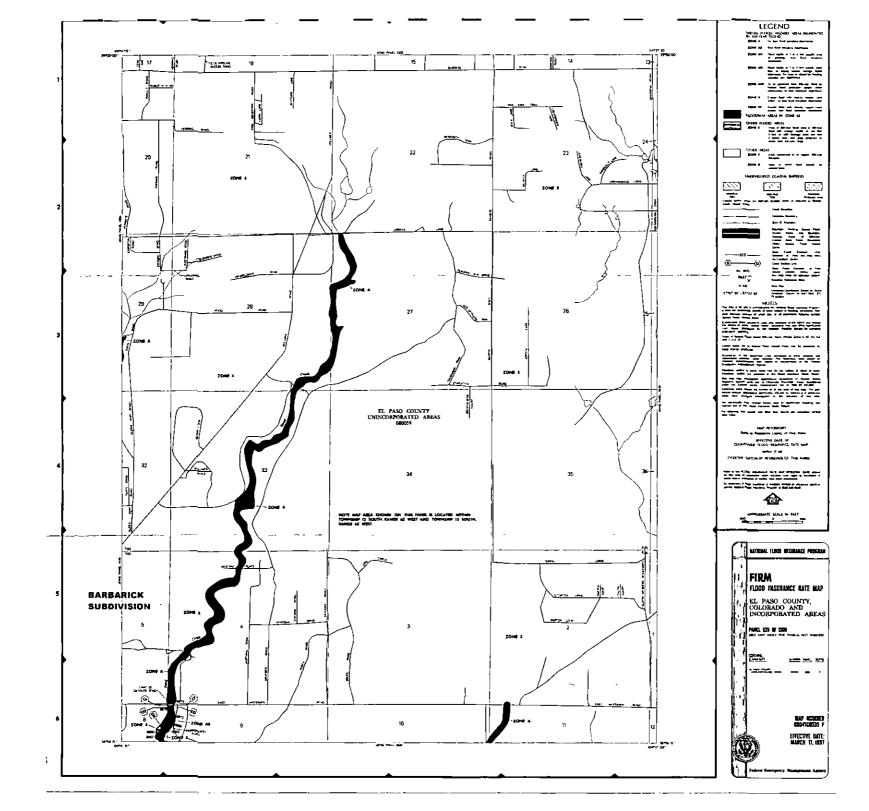
Sanja Penca, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Date Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)										
Duration		2	5	10	25	50	100	200	500	1000	
5-min	0.237 (0.195-0.290)	0.289 (0.238-0.355)	0.380 (0.311-0.467)	0.460 (0.374-0.568)	0.577 (0.456-0.746)	0.674 (0.517-0 880)	0.775 (0 573-1.04)	0.883 (0 625-1.21)	1.03 (0.701-1.46)	1.15 (0.759-1.65)	
10-min	0.347 (0.285-0.425)	0.424 (0.348-0.520)	0.556 (0.455-0.684)	0.673 (0.548-0.832)	0.846 (0.667-1.09)	0.987 (0.757-1.29)	1.14 (0.839-1.52)	1.29 (0.914-1.78)	1.51 (1.03-2.14)	1.69 (1.11-2.41)	
15-min	0.423 (0.348-0.519)	0.516 (0.424-0.634)	0.678 (0.555-0.834)	0.821 (0.668-1.01)	1.03 (0.814-1.33)	1.20 (0.924-1.57)	1.38 (1.02-1.85)	1.58 (1.11-2.17)	1.84 (1.25-2.61)	2.06 (1.35-2.94)	
30-min	0.613 (0.504-0.751)	0.747 (0.614-0.917)	0.980 (0.802-1.21)	1.19 (0.965-1.47)	1.49 (1.17-1.92)	1.74 (1.33-2.27)	2.00 (1.48-2.67)	2.27 (1.61-3 13)	2.66 (1.80-3.76)	2.97 (1.95-4.24)	
60-min	0.795 (0.654-0.974)	0.948 (0.779-1.16)	1.23 (1.00-1.51)	1.48 (1.21-1.83)	1.88 (1.49-2.44)	2.21 (1.70-2.90)	2.57 (1.91-3.46)	2.96 (2.10-4.09)	3.52 (2.39-4.99)	3.97 (2.61-5.67)	
2-hr	0.977 (0.809-1.19)	1.15 (0.951-1.40)	1.47 (1.22-1.80)	1.78 (1.46-2.19)	2.27 (1.82-2.94)	2.68 (2.09-3.51)	3.14 (2.35-4.21)	3.65 (2.61-5.02)	4.38 (3.00-6.18)	4.98 (3.30-7.06)	
 3-hr	1.08 (0.897-1.31)	1.25 (1.04-1.51)	1.58 (1.31-1.93)	1.92 (1.57-2.34)	2.45 (1.98-3.19)	2.92 (2.29-3.83)	3.45 (2.60-4.62)	4.04 (2.91-5.55)	4.90 (3.39-6.92)	5.62 (3.75-7.95)	
6-hr	1.26 (1.05·1.51)	1.44 (1.20-1.73)	1.81 (1.51-2.18)	2.19 (1.81-2.65)	2.81 (2.30-3.64)	3.37 (2.66-4.39)	4.00 (3.04-5.34)	4.71 (3.43-6.45)	5.77 (4.02-8.09)	6.65 (4.46-9.33)	
12-hr	1.45 (1.23-1.74)	1.68 (1.41-2.00)	2.12 (1.78-2.54)	2.55 (2.13-3.07)	3.26 (2.68-4.19)	3.89 (3.10-5.03)	4.59 (3.52-6 08)	5.38 (3.94-7.31)	6.54 (4.59-9.11)	7.51 (5.08-10.5)	
24-hr	1.68 (1.43-1.99)	1.97 (1.67·2.33)	2.50 (2.12·2.98)	3.01 (2.53-3.60)	3.80 (3.13-4.80)	4.48 (3.58-5.72)	5.23 (4.02-6.83)	6.04 (4.45-8.11)	7.23 (5.09-9.96)	8.20 (5.58-11.4)	
2-day	1.95 (1.67-2.29)	2.31 (1.97-2.72)	2.95 (2.51-3.48)	3.53 (2.99-4.18)	4.39 (3.62-5.46)	5.11 (4.10-6.44)	5.88 (4.55-7.59)	6.71 (4.96-8.91)	7.89 (5.59-10.8)	8.83 (6 07-12.2)	
3-day	2.15 (1.85-2.51)	2.54 (2.18-2.97)	3.22 (2.75-3.78)	3.83 (3 26-4.52)	4.74 (3.92-5.87)	5.50 (4.42-6.88)	6.30 (4.89-8.09)	7.16 (5.31-9.45)	8.37 (5.96-11.4)	9.34 (6 45-12.8)	
4-day	2.31 (2.00-2.70)	2.72 (2.34-3.17)	3.42 (2.94-4.01)	4.06 (3 46-4.78)	5.00 (4.15-6.16)	5.78 (4.67-7.21)	6.61 (5.14-8.46)	7.50 (5.58-9.87)	8.75 (6.25-11.8)	9.76 (6.75-13.3)	
7-day	2.74 (2.38-3.18)	3.17 (2.75-3.68)	3.92 (3.39-4.57)	4.60 (3.95-5.38)	5.60 (4.67-6.86)	6.43 (5.23-7.97)	7.32 (5.73-9.30)	8.27 (6.19-10.8)	9.60 (6.90-12.9)	10.7 (7.44-14.5)	
10-day	3.11 (2.71-3.60)	3.58 (3.11-4.14)	4.39 (3.80-5.09)	5.11 (4 40-5.95)	6.17 (5.17-7.51)	7.05 (5.75-8.69)	7.98 (6.27-10.1)	8.97 (6.75-11.7)	10.4 (7.47-13.9)	11.5 (8.03-15.5)	
20-day	4.18 (3.67-4.79)	4.79 (4.20-5.50)	5.83 (5.09-6.71)	6.72 (5.84-7.77)	7.99 (6.71-9.59)	9.01 (7.38 11 0)	10.0 (7.94-12.6)	11.1 (8.42·14.3)	12.6 (9.17-16.7)	13.8 (9.73-18.6)	
30-day	5.05 (4.46-5.77)	5.80 (5.11-6.63)	7.04 (6.18-8.07)	8.08 (7.05-9.30)	9.51 (8.01-11.3)	10.6 (8.73-12.8)	11.8 (9.32-14.6)	12.9 (9.79-16.5)	14.4 (10.5-19.0)	15.6 (11.1-20.9)	
45-day	6.14 (5.44-6.98)	7.06 (6.25-8.03)	8.54 (7.53-9.74)	9.75 (8.55-11.2)	11.4 (9.60-13.4)	12.6 (10.4-15.1)	13.8 (11.0-17.0)	15.0 (11.4-19.1)	16.6 (12.1-21.7)	17.7 (12.6-23.7)	
60-day	7.05 (6.27-7.99)	8.12 (7.20-9.20)	9.80 (8.66-11.1)	11.1 (9.80-12.7)	12.9 (10.9-15.2)	14.2 (11.8-17.0)	15.5 (12.4-19.0)	16.7 (12.8-21.1)	18.3	19.4 (13.9-25.8)	


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Page Missing or Blank on EDARP

Map Unit Legend

El Paso County Area, Colorado (CO625)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
9	Blakeland-Fluvaquentic Haplaquolls	12.5	76.4%		
71 	Pring coarse sandy loam, 3 to 8 percent slopes	3.9	23.6%		
Totals for Area of Interest		16.4	100.0%		

٠.

El Paso County Area, Colorado

9—Blakeland-Fluvaquentic Haplaquolls

Map Unit Setting

National map unit symbol: 36b6 Elevation: 3,500 to 5,800 feet Mean annual precipitation: 13 to 17 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 110 to 165 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 60 percent Fluvaquentic haplaquolls and similar soils: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose and/or eolian deposits derived from arkose

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO)

<u>USDA</u>

Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 12 inches: variable

Properties and qualities

Slope: 1 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr) Depth to water table: About 0 to 24 inches Frequency of flooding: Occasional Frequency of ponding: None Salinity, maximum in profile: Nonsaline to stightly saline (0.0 to 4.0 mmhos/cm)

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: D

Minor Components

Other soils

Percent of map unit:

Pleasant

Percent of map unit: Landform: Depressions

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO)

Minor Components

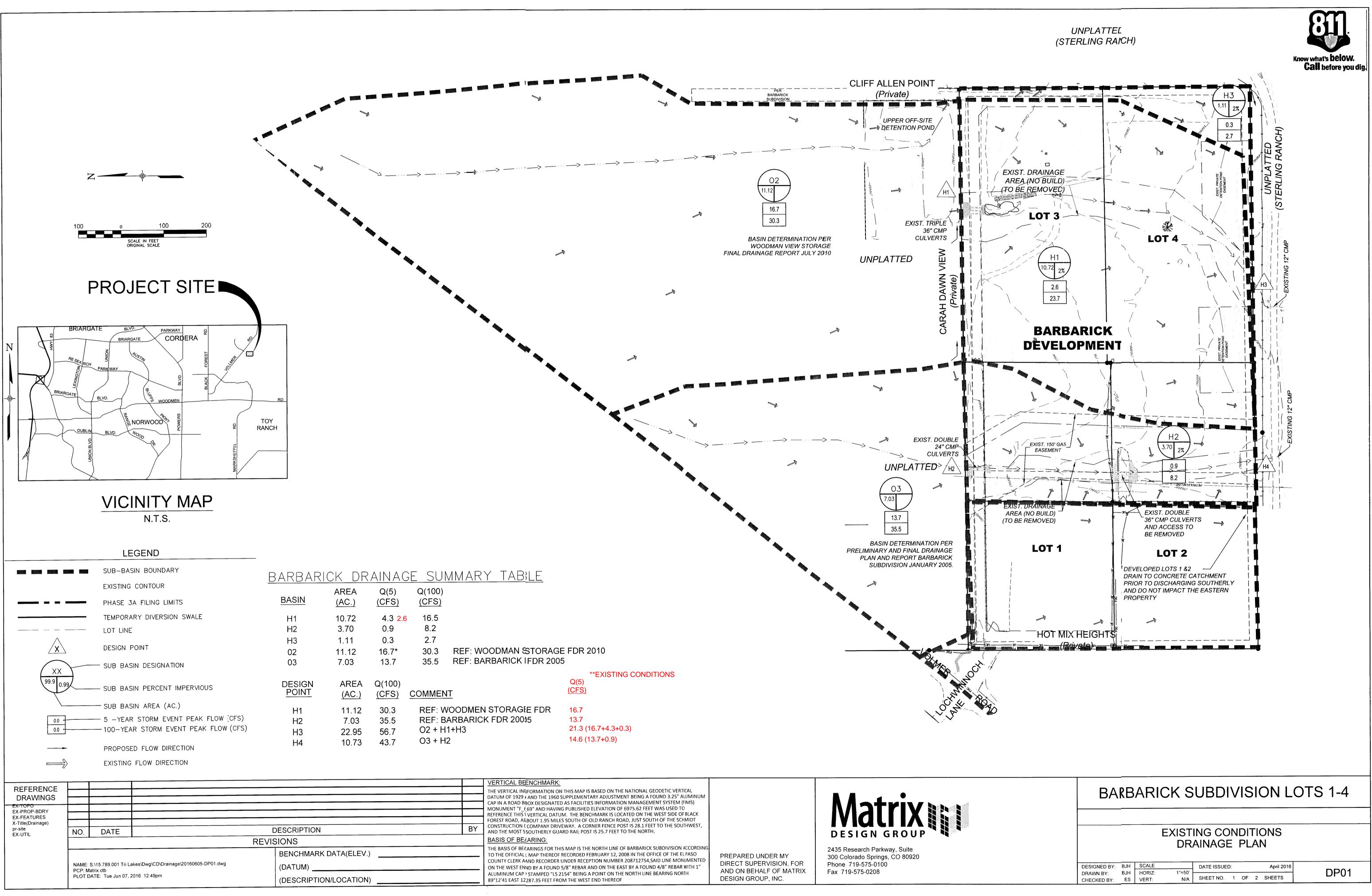
Other soils

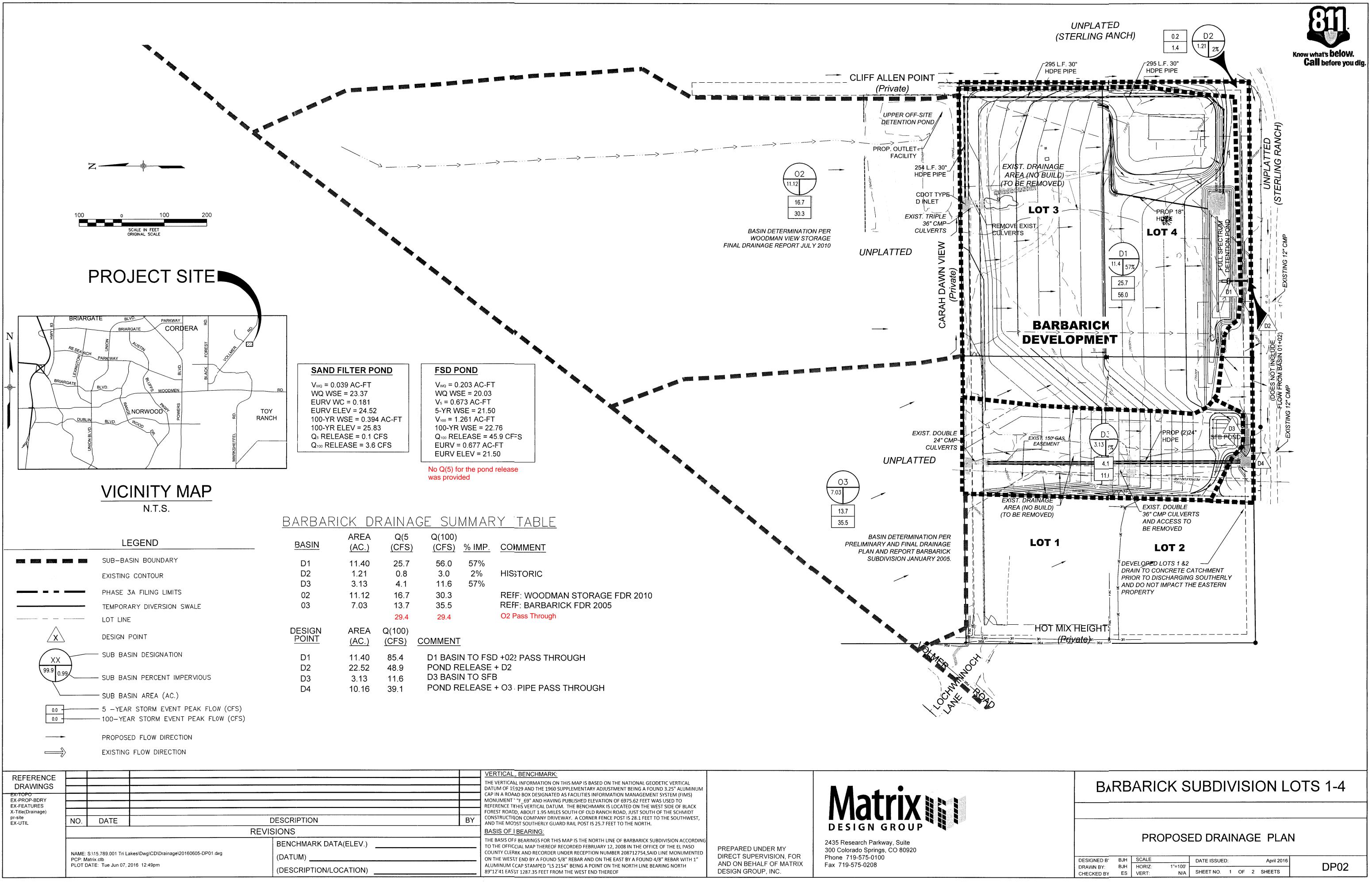
Percent of map unit:

Pleasant

Percent of map unit:

Landform: Depressions


Data Source Information


Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 13, Sep 22, 2015

,

APPENDIX D

MAPS

-		
	VERTICAL_ BENCHMARK:	
	THE VERTICAUL INFORMATION ON THIS MAP IS BASED ON THE NATIONAL GEODETIC VERTICAL DATUM OF 15929 AND THE 1960 SUPPLEMENTARY ADJUSTMENT BEING A FOUND 3.25" ALUMINUM	
	CAP IN A ROAAD BOX DESIGNATED AS FACILITIES INFORMATION MANAGEMENT SYSTEM (FIMS) MONUMENT ' "F 69" AND HAVING PUBLISHED ELEVATION OF 6975.62 FEET WAS USED TO	
	REFERENCE TITHIS VERTICAL DATUM. THE BENCHMARK IS LOCATED ON THE WEST SIDE OF BLACK	
	FOREST ROADD, ABOUT 1.95 MILES SOUTH OF OLD RANCH ROAD, JUST SOUTH OF THE SCHMIDT	
BY	CONSTRUCTION COMPANY DRIVEWAY. A CORNER FENCE POST IS 28.1 FEET TO THE SOUTHWEST, AND THE MODST SOUTHERLY GUARD RAIL POST IS 25.7 FEET TO THE NORTH.	
	BASIS OF LEARING:	
	THE BASIS OFF BEARINGS FOR THIS MAP IS THE NORTH LINE OF BARBARICK SUBDIVISION ACCORDING TO THE OFFICCIAL MAP THEREOF RECORDED FEBRUARY 12, 2008 IN THE OFFICE OF THE EL PASO COUNTY CLERRK AND RECORDER UNDER RECEPTION NUMBER 208712754, SAID LINE MONUMENTED	
	ON THE WEST,T END BY A FOUND 5/8" REBAR AND ON THE EAST BY A FOUND 4/8" REBAR WITH 1" ALUMINUM CCAP STAMPED "LS 2154" BEING A POINT ON THE NORTH LINE BEARING NORTH	

2435 Research Parkway, Suite 300 Colorado Springs, Colorado 80920 Phone: 719-575-0100 www.matrixdesigngroup.com

January 16, 2017

Justin Ballard Wykota Construction 430 Beacon Light Road Monument, CO 80132

Subject: Pond As-Built Verification for Barbarick Subdivision Lots 1-4 Construction

Dear Mr. Ballard,

Please accept this letter as certification of the post-construction measurements and volume calculations of the subject sand filter pond and the full spectrum pond. The table below depicts the design elevations and volumes from the construction plans with the post-construction measured elevations and volumes. The as-built survey was completed by Matrix Design Group on January 12, 2017 and the criteria shown below was compiled from this survey data. The benchmark used for this survey is a found 3-1/4" aluminum cap in road box designated as FIMS F_69 and having a published NGVD 29 elevation of 6975.62 feet.

Full Spectrum Detention Pond Outlet Structure Elevations					
	Design Elevation	As Built Elevation	Delta Elevation		
bottom of micropool	7016.00	7016.14	0.14		
orifice slot1 CL	7018.50	7018.89	0.39		
orifice slot2 CL	7019.50	7019.87	0.37		
orifice slot3 CL	7020.50	7020.87	0.37		
micropool wall top	7018.50	7018.60	0.10		
orifice plate wall top	7021.00	7021.35	0.35		
Trash Rack wall Top	7021.80	7021.90	0.10		
invert 30" cpp	7017.80	7017.87	0.07		

Full Spectrum Detention Pond Elevations & Volumes						
	Design Elevation	As Built Elevation	Delta Elevation			
WQWSE	7020.03	7020.17	0.14			
5-Year WSE	7021.50	7021.64	0.14			
100-Year (weir)	7022.76	7022.92	0.16			
EURV	7021.50	7021.64	0.14			
	Design Volume	As Built Volume	Delta Volume			
WQ volume	0.203 ac-ft	0.182 ac-ft	(-)0.021 ac-ft			
5-Year volume	0.673 ac-ft	0.695 ac-ft	0.002 ac-ft			
100-Year (weir)	1.261 ac-ft	1.286 ac-ft	0.025 ac-ft			
EURV	0.677 ac-ft	0.695 ac-ft	0.018 ac-ft			

Denver Colorado Springs Phoenix Anniston Atlanta Niceville Parsons Pueblo Sacramento Washington, D.C. S:\15.789.001 Tri Lakes\Survey\Pond Volumes\Pond Certification Letter.doc

Sand Filter Pond Elevations & Volumes					
	Design Elevation	As Built Elevation	Delta Elevation		
WQ WSE	7023.38	7023.37	-0.01		
100-Year (weir)	7025.83	7025.02	-0.81		
EURV	7024.52	7024.52	0.00		
	Design Volume	As Built Volume	Delta Volume		
WQ volume	0.039 ac-ft	0.258 ac-ft	0.219 ac-ft		
100-Year (weir)	0.394 ac-ft	0.517 ac-ft	0.123 ac-ft		
EURV	0.181 ac-ft	0.429 ac-ft	0.248 ac-ft		

I, Justin A. Conner, a Colorado licensed Professional Land Surveyor, certify on behalf of Matrix Design Group that the above as-built elevations and volumes were derived from a field survey performed on January 12, 2017 under my direct supervision and is true and correct to the best of my knowledge and belief.

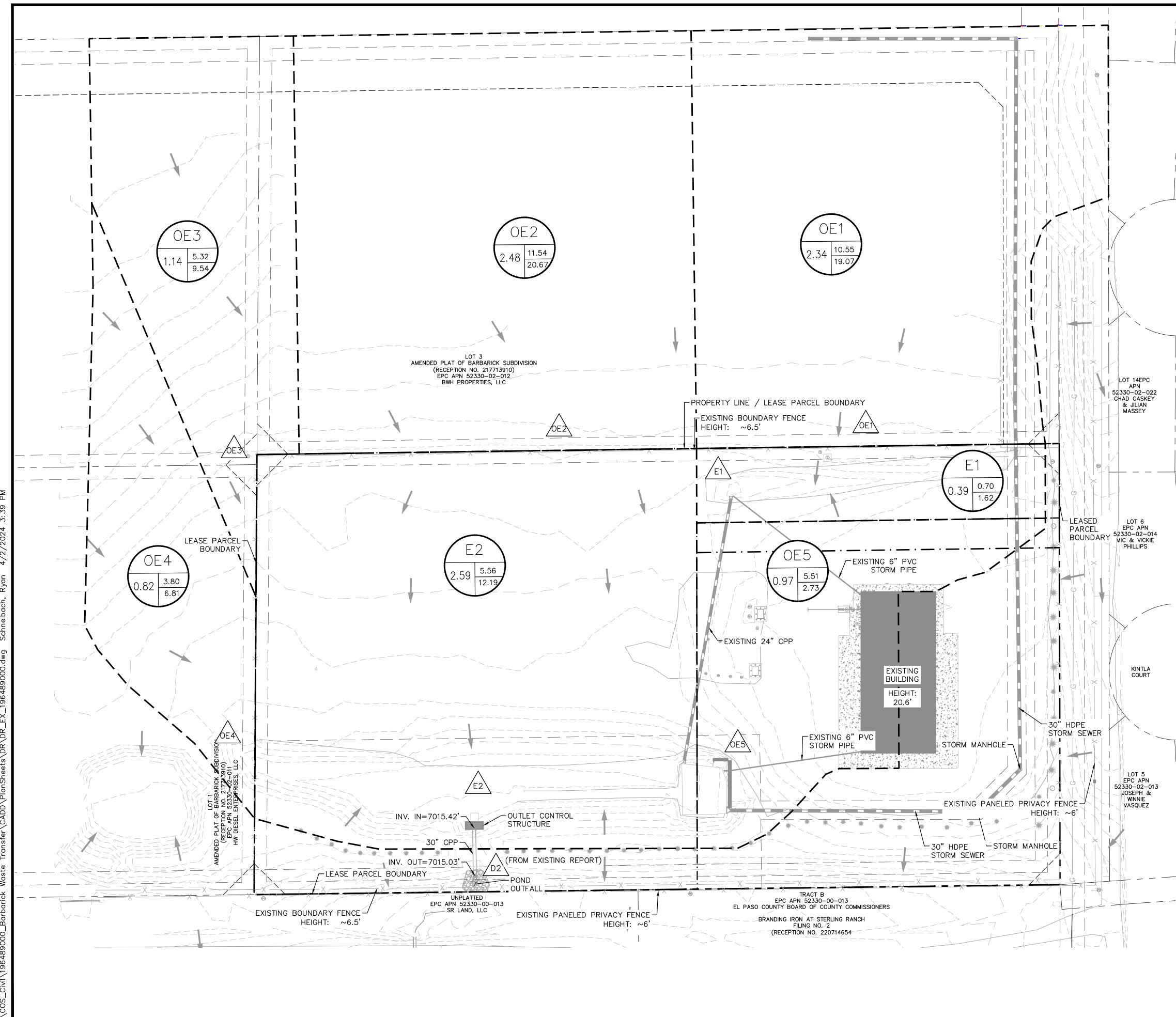
Justin A. Conner, PLS 38421 Prepared for and on behalf of Matrix Design Group, Inc.

APPENDIX G: COST ESTIMATE / FINANCIAL ASSURANCES ESTIMATE

Kimley »Horn 2 North Nevada, Suite 900

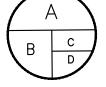
Colorado Springs, Colorado 80903

Barbarick Transfer Station - COM-2346	Prepared By: RES
196489000	Checked By: EJG
March 5, 2024	
	196489000


COS	S Bid Item #	Item Description	Unit	Unit Cost	Quantity	Extended Cost
1	1	EARTHWORK	CY	\$5.00	8,606	\$43,030
2	2	PERMANENT SEEDING	AC	\$1,875.00	1	\$2,25
3	3	CONCRETE WASHOUT BASIN	EA	\$1,090.00	1	\$1,09
4	4	INLET PROTECTION	EA	\$202.00	8	\$1,610
5	5	SAFETY FENCE (CONSTRUCTION FENCE)	LF	\$3.00	960	\$2,880
6	6	SILT FENCE	LF	\$3.00	841	\$2,523
7	7	SEDIMENT BASIN (EXISTING DETENTION POND)	EA	\$2,135.00	1	\$1,06
8	8	STRAW WATTLE/ROCK SOCK	LF	\$7.00	601	\$4,20
9	9	TEMPORARY EROSION CONTROL BLANKET	SY	\$3.00	32	\$96
10	10	VEHICLE TRACKING CONTROL	EA	\$2,870.00	1.0	\$2,870
11	11	AGGREGATE BASE COURSE (135LB/CF)	TON	\$34.00	962	\$32,708
12	12	ASPHALT PAVEMENT (147LB/CF)	TON	\$106.00	872	\$92,432
13	13	EPOXY PAVEMENT MARKING	SF	\$16.00	233	\$3,728
14	14	THERMOPLASTIC PAVEMENT MARKING	SF	\$28.00	12	\$336
15	15	ELECTRICAL CONDUIT (1-INCH)	LF	\$20.00	1,030	\$20,600
16	16	ELECTRICAL CONDUIT (2-INCH)	LF	\$20.00	910	\$18,200
17	17	MSE BLOCK RETAINING WALL (8' MAX)	SF	\$50.00	1,400	\$70,000
18	18	CONCRETE RETAINING WALL (8' MAX)	SF	\$80.00	985	\$78,800
19	19	GRATED INLET (CDOT TYPE C)(DEPTH < 5')	EA	\$6,000.00	5	\$30,000
20	20	STORM SEWER MANHOLE, BOX BASE	EA	\$14,061.00	2	\$28,122
21	21	4" PERFORATED PVC PIPE	LF	\$70.00	941	\$65,870
22	22	6" PVC PIPE	LF	\$75.00	205	\$15,375
23	23	24" PVC PIPE	LF	\$80.00	371	\$29,680
24	24	30" PVC PIPE	LF	\$90.00	70	\$6,300
25	25	30" PVC FES	EA	\$800.00	1	\$800
26	26	24" RCP Pipe	LF	\$100.00	71	\$7,10
27	27	4' CONCRETE DRAINAGE PAN (6", FIBERMESH REINFORCED)	LF	\$100.00	848	\$84,80
28	28	RIP RAP (TYPE M, 12 INCH DEPTH)	TON	\$97.00	21	\$2,03
29	29	WATER SERVICE LINE (INCLUDING TAP AND VALVES)	EA	\$1,601.00	2	\$3,20
30	30	SANITARY SERVICE LINE	EA	\$1,696.00	1	\$1,69
31	31	TREES (PONDEROSA PINE)	EA	\$600.00	34	\$20,40
32	32	SEEDING (EPC LOW GROW MIX)	SF	\$0.50	50,413	\$25,20
		PROJECT CONSTRUCTION BID ITEMS COST			в	\$699,02
Con	ntingencies (Cons	struction Items)	(0 - 25%) of B		10.0%	\$69,902
Tota	al Project Cost					\$768,924

Conceptual Opinion of Probable Construction Cost The Engineer has no control over the cost of labor, materials, equipment, or over the Contractor's methods of determining prices or over competitive bidding or market conditions. Opinions of probable costs provided herein are based on the information known to Engineer at this time and represent only the Engineer's judgment as a design professional familiar with the construction industry. The Engineer cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from its opinions of probable costs.

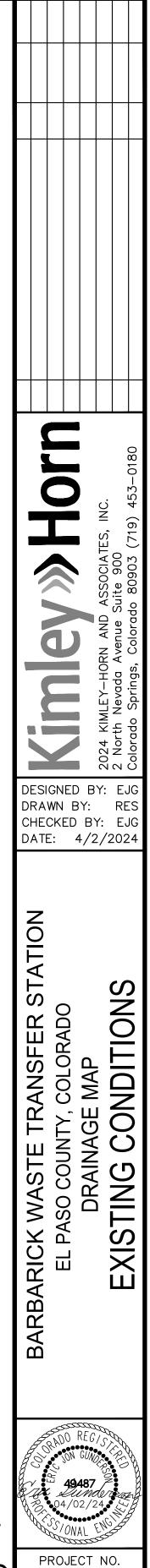
K:\COS_Civil196489000_Barbarick Waste Transfer_Project Files\Eng\FAE\Barbarick Transfer Station - COM - OPCCxlsx.xlsx]Cost Estimate


03/08/24 11:11:49

APPENDIX H: DRAINAGE MAPS

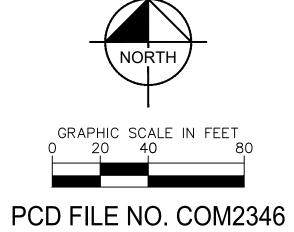
LEGEND

	- PROPERTY LINE
· · ·	- LEASED PARCEL BOUNDARY
	- EXISTING UTILITY & DRAINAGE EASEMENT
X	- EXISTING FENCE
	EXISTING STORM SEWER
G	— EXISTING GAS MAIN
○ *	EXISTING VEGETATION
(E)	EXISTING TRANSFORMER
— — -60XX- — -	- EXISTING MAJOR CONTOUR
60XX	- EXISTING MINOR CONTOUR
60XX	- PROPOSED MAJOR CONTOUR
60XX	- PROPOSED MINOR CONTOUR
	- PROPOSED BASIN BOUNDARY

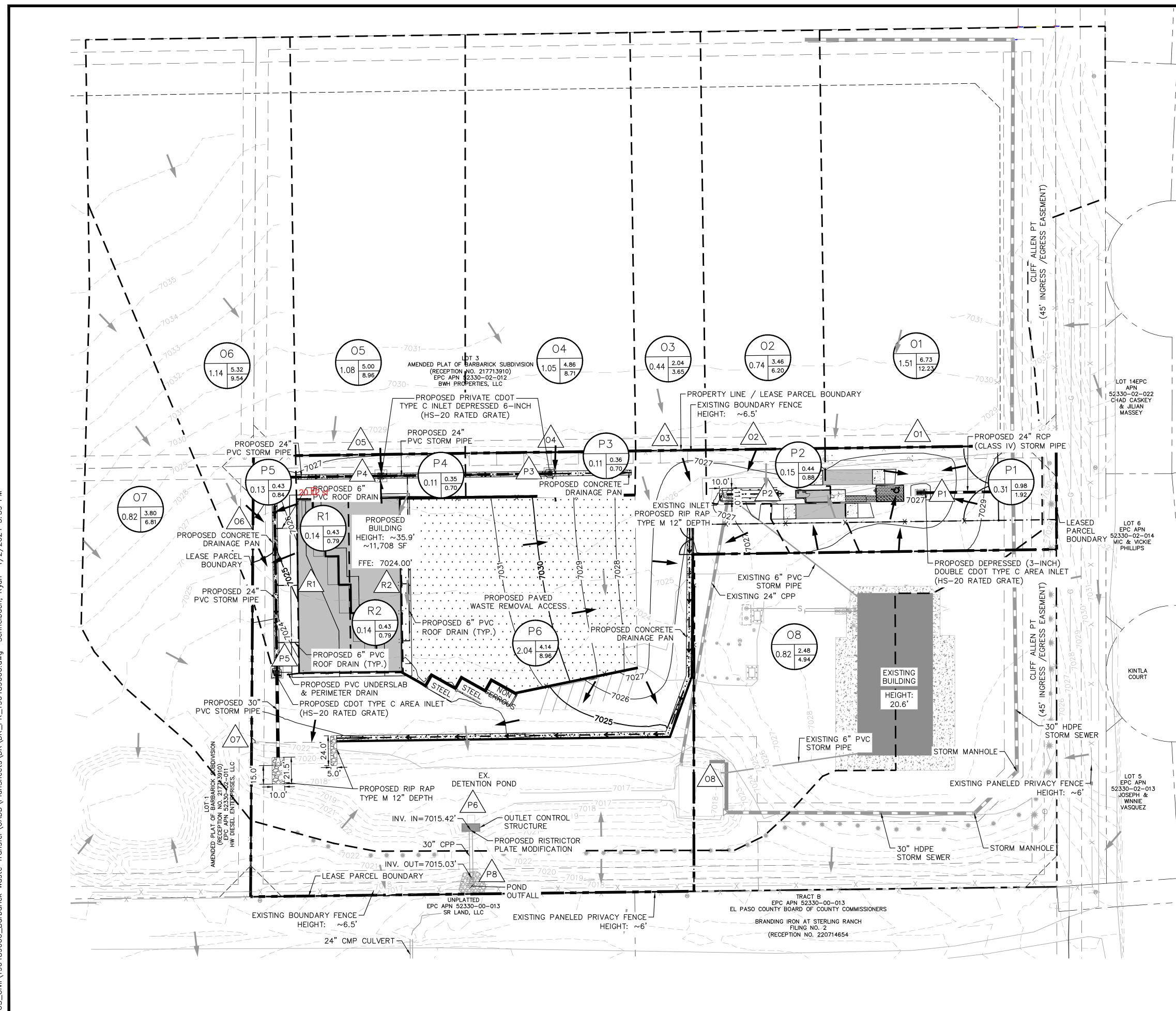


A	=	SUB-BASIN NAME
З	=	BASIN SIZE (ACRE)
С	=	5-YEAR RUNOFF
C	=	100-YEAR RUNOFF

DESIGN POINT


EXISTING FLOW ARROW

	SUMMARY - EXISTING RUNOFF TABLE							
DESIGN POINT	BASIN DESIGNATION	BASIN BASIN AREA IMPERVIOUSNESS (ACRES) (%)		DIRECT 5-YR RUNOFF	DIRECT 100-YR RUNOFF			
E1	E1	0.39	55.3%	(CFS) 0.70	(CFS) 1.62			
E2	E2	2.59	62.1%	5.56	12.19			
OE1	OE1	2.34	96.8%	10.55	19.07			
OE2	OE2	2.48	100.0%	11.54	20.67			
OE3	OE3	1.14	100.0%	5.32	9.54			
OE4	OE4	0.82	100.0%	3.80	6.81			
OE5	OE5	0.97	75.3%	2.73	5.51			
TOTAL		10.73	86.3%	40.22	75.42			



DR-1

\COS_Civil\196489000_Barbarick Waste Transfer\CADD\PlanSheets\DR\DR_PR_196489000.dwg Schnelbach, Ryan 4/2/2024 3: \

Image: State in the intervent of the interv		LEG	END						
					ERTY LINE				
	_	<u> </u>	· · · -		D PARCEL BOUND	ARY			
				— EXISTI	NG UTILITY & DRA	AINAGE E	EASEMENT		
			X	EXISTI	NG FENCE				
				EXISTI	NG STORM SEWER				
			G	EXISTI	NG GAS MAIN				
			○ *	EXISTI	NG VEGETATION				
			Ē	EXISTI	NG TRANSFORMER				
			F		OSED UNDERGROUI	ND FIFC	TRIC		
	` `								
				7		I			
			4						
		[· 							
60XX PROPOSED MINOR CONTOUR A SUMPARATION A SUP-BASIN MAME B B SUP-BASIN MAME B B SUP-BASIN MAME B B SUP-BASIN MAME B B DESIGN POINT B EXISTING FLOW ARROW PROPOSED FLOW ARROW PSP 0.31 SUMMARY PROPOSED RUNOFF TABLE DESIGN POINT DESIGN POINT B 2.0 PSP 0.11 B 2.04 PSP 0.11 B 2.04 B 0.11 B 2.00 PSP 0.11 B 0.00 B 0.3									
60XX PROPOSED MINOR CONTOUR A SUMPARATION A SUP-BASIN MAME B B SUP-BASIN MAME B B SUP-BASIN MAME B B SUP-BASIN MAME B B DESIGN POINT B EXISTING FLOW ARROW PROPOSED FLOW ARROW PSP 0.31 SUMMARY PROPOSED RUNOFF TABLE DESIGN POINT DESIGN POINT B 2.0 PSP 0.11 B 2.04 PSP 0.11 B 2.04 B 0.11 B 2.00 PSP 0.11 B 0.00 B 0.3									53–(
	,								1) 45
	/		— 60XX ——		DSED MINOR CONT	OUR		щ N	(719
					DSED BASIN BOUN	DARY			3003
				۸ _ ۲				ASSC	Jo 80
CONTRICT DESIGN POINT EXISTING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW <u>DESIGN POINT DESIGNATION (AGRES) (CS) (CS) (CS) (CS) (CS) (CS) (CS) (C</u>			$\left(\begin{array}{c} A \\ \end{array}\right)$	B = 6	BASIN SIZE (ACRE)			
EXISTING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW SUMIMARY - PROPOSED RUNOFF TABLE DIRECT DIRECT DESIGN BASIN AREA IN INPERVIOUSNESS STR 100-YR DESIGN TO DESIGNATION AREA IN INPERVIOUSNESS STR 100-YR P1 P1 0.31 B1.7% 0.98 1.92 P2 P3 0.11 82.2% 0.36 0.70 P5 P5 0.13 81.7% 0.98 1.92 01 1.51 95.1% 6.73 12.23 0.00 CM 0.00 CM 02 0.2 0.74 100.0% 3.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>, Co</td></t<>						-			, Co
EXISTING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW SUMIMARY - PROPOSED RUNOFF TABLE DIRECT DIRECT DESIGN BASIN AREA IN INPERVIOUSNESS STR 100-YR DESIGN TO DESIGNATION AREA IN INPERVIOUSNESS STR 100-YR P1 P1 0.31 B1.7% 0.98 1.92 P2 P3 0.11 82.2% 0.36 0.70 P5 P5 0.13 81.7% 0.98 1.92 01 1.51 95.1% 6.73 12.23 0.00 CM 0.00 CM 02 0.2 0.74 100.0% 3.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>auu ings</td></t<>									auu ings
EXISTING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW SUMIMARY - PROPOSED RUNOFF TABLE DIRECT DIRECT DESIGN BASIN AREA IN INPERVIOUSNESS STR 100-YR DESIGN TO DESIGNATION AREA IN INPERVIOUSNESS STR 100-YR P1 P1 0.31 B1.7% 0.98 1.92 P2 P3 0.11 82.2% 0.36 0.70 P5 P5 0.13 81.7% 0.98 1.92 01 1.51 95.1% 6.73 12.23 0.00 CM 0.00 CM 02 0.2 0.74 100.0% 3.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 6.83 8.86 <t< td=""><td></td><td></td><td>\wedge</td><td></td><td></td><td></td><td></td><td></td><td>Spr</td></t<>			\wedge						Spr
EXISING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW Image: Constraint of the state of			<u> </u>	DESIG	N POINT			T X	rado
EXISING FLOW ARROW PROPOSED FLOW ARROW PROPOSED FLOW ARROW Image: Constraint of the state of									Colo Colo
SUMMARY - PROPOSED RUNOFF TABLE DIRECT DIRECT <thdirect< th=""> DIRECT <thdirect<< td=""><td></td><td></td><td></td><td>EXISTI</td><td>NG FLOW ARROW</td><td></td><td></td><td></td><td></td></thdirect<<></thdirect<>				EXISTI	NG FLOW ARROW				
SULVIMARY - PROPOSED RUNOFF TABLE DIRECT DIRECT <thdirect< th=""> DIRECT <thdirec< td=""><td></td><td></td><td>-</td><td>PROP</td><td>DSED FLOW ARROW</td><td>N</td><td></td><td></td><td></td></thdirec<></thdirect<>			-	PROP	DSED FLOW ARROW	N			
DESIGN BASIN BASIN BASIN MPERVOUSNESS 5-YR 100-YR 100-YR NOTER			SUMMAR	Y - PROPC	SED RUNOFF TA	ABLE		DATE: 4/2/20	024
POINT DESIGNATION AREA (ACRES) IMPERVICUSNESS (%) RUNOFF (CSS) R		DEGION	DACINI	BASIN	BASIN				
P3 P3 0.11 82.2% 0.36 0.70 P4 P4 0.11 82.3% 0.35 0.70 P5 P5 0.13 82.0% 0.43 0.80 P6 P6 2.04 58.9% 4.14 8.96 R1 R1 0.14 90.0% 0.43 0.80 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 5.06 8.96 04 04 1.05 100.0% 3.80 6.81 05 05 1.08 100.0% 3.80 6.81 07 07 0.82 100.0% 3.80 6.81 08 0.82 76.7% 2.48 4.94 4.126 76.63 DESIGN POINT P8 5 5 7.7 CFS PS								7	
P3 P3 0.11 82.2% 0.36 0.70 P4 P4 0.11 82.3% 0.35 0.70 P5 P5 0.13 82.0% 0.43 0.80 P6 P6 2.04 58.9% 4.14 8.96 R1 R1 0.14 90.0% 0.43 0.80 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 5.06 8.96 04 04 1.05 100.0% 3.80 6.81 05 05 1.08 100.0% 3.80 6.81 07 07 0.82 100.0% 3.80 6.81 08 0.82 76.7% 2.48 4.94 4.126 76.63 DESIGN POINT P8 5 5 7.7 CFS PS			D 4					0	
P3 P3 0.11 82.2% 0.36 0.70 P4 P4 0.11 82.3% 0.35 0.70 P5 P5 0.13 82.0% 0.43 0.80 P6 P6 2.04 58.9% 4.14 8.96 R1 R1 0.14 90.0% 0.43 0.80 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 5.06 8.96 04 04 1.05 100.0% 3.80 6.81 05 05 1.08 100.0% 3.80 6.81 07 07 0.82 100.0% 3.80 6.81 08 0.82 76.7% 2.48 4.94 4.126 76.63 DESIGN POINT P8 5 5 7.7 CFS PS									
Image: R2 0.14 90.0% 0.43 0.88 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 3.46 6.20 04 04 1.05 100.0% 4.86 6.71 05 05 1.08 100.0% 5.00 8.96 07 07 0.82 100.0% 5.32 9.54 07 07 0.82 100.0% 4.426 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS 9.64 9.49 GRAPHIC SCALE IN FEET 0.3 CFS 7.7 CFS CALL UTILITY NOTIFICATION 1.800-922-1987 CALL DEBORD 2.900 SHEET <	<u> </u>								7
Image: R2 0.14 90.0% 0.43 0.88 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 3.46 6.20 04 04 1.05 100.0% 4.86 6.71 05 05 1.08 100.0% 5.00 8.96 07 07 0.82 100.0% 5.32 9.54 07 07 0.82 100.0% 4.426 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS 9.64 9.49 GRAPHIC SCALE IN FEET 0.3 CFS 7.7 CFS CALL UTILITY NOTIFICATION 1.800-922-1987 CALL DEBORD 2.900 SHEET <		-							5
Image: R2 0.14 90.0% 0.43 0.88 01 01 1.51 95.1% 6.73 12.23 02 02 0.74 100.0% 3.46 6.20 03 03 0.44 100.0% 3.46 6.20 04 04 1.05 100.0% 4.86 6.71 05 05 1.08 100.0% 5.00 8.96 07 07 0.82 100.0% 5.32 9.54 07 07 0.82 100.0% 4.426 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS 9.64 9.49 GRAPHIC SCALE IN FEET 0.3 CFS 7.7 CFS CALL UTILITY NOTIFICATION 1.800-922-1987 CALL DEBORD 2.900 SHEET <									
03 03 0.44 100.0% 2.04 3.65 04 04 1.05 100.0% 4.86 8.71 05 05 1.08 100.0% 5.00 8.96 06 06 1.14 100.0% 5.32 9.54 07 07 0.82 76.7% 2.48 4.94 10.73 88.0% 41.26 76.63 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS Call before you dig. 9.987 0.3 CFS 7.7 CFS Call before you dig. 9.40 0 40 80 9.00 100.02 9.00 0 40 80 9.00 1.800-922-1987 9.00 9.6489000 SHET DR-2 1.800-922-1987 1.800-922-1987 1.900-922-1987 1.900-922-1987					58.9%	4.14	0.90		
03 03 0.44 100.0% 2.04 3.65 04 04 1.05 100.0% 4.86 8.71 05 05 1.08 100.0% 5.00 8.96 06 06 1.14 100.0% 5.32 9.54 07 07 0.82 76.7% 2.48 4.94 10.73 88.0% 41.26 76.63 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS Call before you dig. 9.987 0.3 CFS 7.7 CFS Call before you dig. 9.40 0 40 80 9.00 100.02 9.00 0 40 80 9.00 1.800-922-1987 9.00 9.6489000 SHET DR-2 1.800-922-1987 1.800-922-1987 1.900-922-1987 1.900-922-1987		I D 2	R1	0.14	90.0%	0.43	0.80		
03 03 0.44 100.0% 2.04 3.65 04 04 1.05 100.0% 4.86 8.71 05 05 1.08 100.0% 5.00 8.96 06 06 1.14 100.0% 5.32 9.54 07 07 0.82 76.7% 2.48 4.94 10.73 88.0% 41.26 76.63 76.63 POND DISCHARGE (DESIGN POINT P8) 5-YEAR 100-YEAR 0.3 CFS 7.7 CFS 0.3 CFS 7.7 CFS Call before you dig. 9.987 0.3 CFS 7.7 CFS Call before you dig. 9.40 0 40 80 9.00 100.02 9.00 0 40 80 9.00 1.800-922-1987 9.00 9.6489000 SHET DR-2 1.800-922-1987 1.800-922-1987 1.900-922-1987 1.900-922-1987			R1 R2	0.14 0.14	90.0% 90.0%	0.43 0.43	0.80 0.80	NSFE OLOR/ IAP	
08 08 0.82 76.7% 2.48 4.94 TOTAL 10.73 88.0% 41.26 76.63 POND DISCHARGE (DESIGN POINT P8) 5—YEAR 100—YEAR 0.3 CFS 7.7 CFS More that is below. Call before you dig. O Q Q Q More that is below. Call before you dig. O Colspan="2">O Q Q Q O Q Q Q O Colspan="2">O Q Q Q O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O O Y Colspan="2" O O Y Co		01	R1 R2 O1	0.14 0.14 1.51	90.0% 90.0% 95.1%	0.43 0.43 6.73	0.80 0.80 12.23	ANSFE color/ MAP	
08 08 0.82 76.7% 2.48 4.94 TOTAL 10.73 88.0% 41.26 76.63 POND DISCHARGE (DESIGN POINT P8) 5—YEAR 100—YEAR 0.3 CFS 7.7 CFS More that is below. Call before you dig. O Q Q Q More that is below. Call before you dig. O Colspan="2">O Q Q Q O Q Q Q O Colspan="2">O Q Q Q O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O O Y Colspan="2" O O Y Co		01 02	R1 R2 01 02 03	0.14 0.14 1.51 0.74 0.44	90.0% 90.0% 95.1% 100.0% 100.0%	0.43 0.43 6.73 3.46	0.80 0.80 12.23 6.20	TRANS TY, COLC GE MAP	
08 08 0.82 76.7% 2.48 4.94 TOTAL 10.73 88.0% 41.26 76.63 POND DISCHARGE (DESIGN POINT P8) 5—YEAR 100—YEAR 0.3 CFS 7.7 CFS More that is below. Call before you dig. O Q Q Q More that is below. Call before you dig. O Colspan="2">O Q Q Q O Q Q Q O Colspan="2">O Q Q Q O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O O Y Colspan="2" O O Y Co		01 02 03 04	R1 R2 O1 O2 O3 O4	0.14 0.14 1.51 0.74 0.44 1.05	90.0% 90.0% 95.1% 100.0% 100.0% 100.0%	0.43 0.43 6.73 3.46 2.04 4.86	0.80 0.80 12.23 6.20 3.65 8.71	TRANS TY, COLC GE MAP	
08 08 0.82 76.7% 2.48 4.94 TOTAL 10.73 88.0% 41.26 76.63 POND DISCHARGE (DESIGN POINT P8) 5—YEAR 100—YEAR 0.3 CFS 7.7 CFS More that is below. Call before you dig. O Q Q Q More that is below. Call before you dig. O Colspan="2">O Q Q Q O Q Q Q O Colspan="2">O Q Q Q O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O Q Q Q O O Y Colspan="2">O O Y Colspan="2" O O Y Co		01 02 03 04 05	R1 R2 01 02 03 04 05	0.14 0.14 1.51 0.74 0.44 1.05 1.08	90.0% 90.0% 95.1% 100.0% 100.0% 100.0%	0.43 0.43 6.73 3.46 2.04 4.86 5.00	0.80 0.80 12.23 6.20 3.65 8.71 8.96	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET State 0 40 800 80 1 20 40 80 1 20	_	01 02 03 04 05 06 07	R1 R2 01 02 03 04 05 06 07	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET State 0 40 800 80 1 20 40 80 1 20	_	01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.7%	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET State 0 40 800 80 1 20 40 80 1 20	/	01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 88.0%	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET State 0 40 800 80 1 20 40 80 1 20	_	01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET State 0 40 800 80 1 20 40 80 1 20	_	01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8)	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2	_	01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
NORTH Call before you dig. GRAPHIC SCALE IN FEET CALL UTILITY NOTIFICATION 0 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE SHEET DR-2 DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET 0 20 40 80 CALL UTILITY NOTIFICATION CENTER OF COLORADO 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63	TRANS TY, COLC GE MAP	D CUND
GRAPHIC SCALE IN FEET 0 20 40 80 CALL UTILITY NOTIFICATION CENTER OF COLORADO 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE DEFORE YOU DIG, GRADE, OR EXCAVATE DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC 5-	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63	BARBARICK WASTE TRANS EL PASO COUNTY, COLO BRAINAGE MAP	D CUND
CENTER OF COLORADO 20 40 80 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE DR-2		01 02 03 04 05 06 07 08	R1 R2 01 02 03 04 05 06 07 08 PC 5-	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 0.82 10.73 DND DIS (DESIGN	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63	BARBARICK WASTE TRANS EL PASO COUNTY, COLO BRAINAGE MAP	D CUND
CALL 2-BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE		01 02 03 04 05 06 07 08 TOTAL	R1 R2 01 02 03 04 05 06 07 08 PC 5- 0	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 10.73 OND DIS (DESIGN -YEAR 0.3 CFS	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63	BARBARICK WASTE TRANS EL PASO COUNTY, COLO EL PASO COUNTY, COLO DRAINAGE MAP	
PCD FILE NO. COM2346		01 02 03 04 05 06 07 08 TOTAL	R1 R2 01 02 03 04 05 06 07 08 PC 5- (0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 10.73 OND DIS (DESIGN -YEAR 0.3 CFS	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63	BARBARICK WASTE TRANS BARBARICK WASTE TRANS EL PASO COUNTY, COLO BRAINAGE MAP DRAINAGE MAP	
		01 02 03 04 05 06 07 08 TOTAL	R1 R2 01 02 03 04 05 06 07 08 PC 5- 0 5- 0 0 5- 0 0 0 0 0 0 0 0 0 0 0 0 0	0.14 0.14 1.51 0.74 0.44 1.05 1.08 1.14 0.82 0.82 10.73 OND DIS (DESIGN -YEAR 0.3 CFS	90.0% 90.0% 95.1% 100.0% 100.0% 100.0% 100.0% 100.0% 76.7% 88.0% SCHARGE POINT P8) 100-YEAR 7.7 CFS	0.43 0.43 6.73 3.46 2.04 4.86 5.00 5.32 3.80 2.48 41.26	0.80 0.80 12.23 6.20 3.65 8.71 8.96 9.54 6.81 4.94 76.63 s below. fore you dig. NOTIFICATION COLORADO 22-1987 s DAYS IN ADVANCE RADE, OR EXCAVAT	BARBARICK WASTE TRANS EL PASO COUNTY, COLO EL PASO COUNTY, COLO BRANCE MAP DRAINAGE MAP DRAINAGE MAP SHEET	