Final Drainage Report

Eagleview Subdivision El Paso County, Colorado

Prepared for: Joe DesJardin PT Eagleview LLC 1864 Woodmoor Drive, Suite 100 Monument, CO 80132

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Brice Hammersland, P.E.

Project #: 196288000 PCD Filing No.: SF-2242 Prepared: June 27, 2024

Kimley »Horn

Date

5601

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

Brice Hammersland, P.E. Colorado P.E. No. 56012

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

PT Eagleview LLC

 Image: Start Structure
 06/27/2024

 Authorized Signature
 Date

Joseph W. DesJardin

Director of Entitlements

Address: 1864 Woodmoor Drive Monument, CO 80132

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Josh Palmer, P.E. County Engineer/ ECM Administrator Date

Conditions:

Kimley *Whorn*

TABLE OF CONTENTS

CERTIFICATION
DESIGN ENGINEER'S STATEMENT
TABLE OF CONTENTS
INTRODUCTION4
PURPOSE AND SCOPE OF STUDY
DRAINAGE BASINS
MAJOR BASIN DESCRIPTIONS
DRAINAGE DESIGN CRITERIA10
DEVELOPMENT CRITERIA REFERENCE
DRAINAGE FACILITY DESIGN19
GENERAL CONCEPT
THE FOUR STEP PROCESS
DRAINAGE FEES AND REIMBURSABLE COSTS
SUMMARY
REFERENCES
APPENDIX APPENDIX A: FIGURES APPENDIX B: HYDROLOGY APPENDIX C: HYDRAULICS APPENDIX D: REFERENCES

APPENDIX E: DRAINAGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document the drainage design methodology in support of the proposed Eagleview Subdivision ("the Project") for PT Eagleview LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Therefore, the hydrologic and hydraulic design is based on the County's criteria which is described in further detail within the report.

LOCATION

The Project is located approximately 4 miles northwest of Falcon, Colorado within Section 26, Township 12 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado ("the Site"). The Site comprises two parcels of land which are bound by Stapleton Estates Filing No. 1 on the west and south, Paint Brush Hills Filing No. 14 (PCD File No. SF2024) to the east, and the Rodgwick Subdivision and MFY Farm Subdivision to the north. A vicinity map has been provided in the **Appendix A** of this report.

The Site is currently owned by PT Eagleview LLC and will be developed by PT Eagleview LLC.

DESCRIPTION OF PROPERTY

The Site is approximately 121 acres consisting of undeveloped land with native vegetation and is classified as "Open Space" per Table 5-4 of the Drainage Criteria Manual of El Paso County. Vegetation within the site is characterized primarily by prairie grasses along with some area of scrub brush and a limited occurrence of small oaks. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land. There are no existing irrigation ditches on the Site.

The existing topography consists of slopes ranging from 1% to 20%. The west tributary of the Falcon drainage basin runs from the northwest corner of the site to the southeast corner of the Site.

According to NRCS soil mapping data, USCS Type B soils are the primary soil type within the site, indicating high levels of permeability. Soils present at the Site consist mainly of "Pring coarse sandy loam" which represent a moderate hazard for erosion. **Appendix B** contains detailed NRCS soil data.

The development of this site will include 38, 2 ½ acre single family lots, roadway improvements to the site will include mowing, clearing and grubbing, weed control, paved access road construction, roadway grading, one full spectrum detention pond, two water quality ponds, roadside ditches, culverts, drainage swales, native seeding and a proposed channel to convey flows to the detention pond and water quality ponds.

A Topographic field survey was completed for the Project by Rampart Surveys dated June 24th, 2008 and is the basis for design for the drainage improvements.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Project is located within the West Tributary of the Falcon Drainage Basin. The watershed is generally located in the north central portion of El Paso County. The watershed contains three streams and has an overall area of approximately 10.6 square miles at the confluence of Black Squirrel Creek. The headwaters of the watershed are made up of ponderosa pine forest, grassland on undeveloped land, and 2-to-5-acre rural residential lots. There is no FEMA mapped floodplain on the project site. Refer to **Appendix A** for the Flood Insurance Rate Map (FIRM) number 08041C05350G effective date, December 7, 2018.

EXISTING SUB-BASIN DESCRIPTIONS

Historically the runoff from the Site drains into the West Tributary reach of the Falcon drainage basin. The West Tributary reach bisects the Site from north to south. The Site is located in upper portion of the Falcon drainage basin. The Site was divided into 4 onsite subbasins B1 – B4 and 8 offsite basins OB1 – OB8. Onsite and offsite flows generally flow from north to south overland over vacant and developed land to the West Tributary reach. The off-site basins draining to the site generally encompass rural land with pockets of residential development. Below is a description of the existing sub-basins.

Sub-Basin B1

The on-site sub-basin consists of an area of 5.55 acres, located in the southwest corner of the property. Drainage flows overland from the northwest to the southeast into the West Tributary. The curve number for this basin is 61.00. Runoff during the 5-year and 100-year events are 3.0 cfs and 8.5 cfs respectively.

Sub-Basin B2

The on-site sub-basin consists of an area of 41.43 acres, located on the west side of the property. Drainage flows overland from the northwest to the southeast into the West Tributary. The curve number for this basin is 60.68. Runoff during the 5-year and 100-year events are 15.4 cfs and 48.5 cfs respectively.

Sub-Basin B3

The on-site sub-basin consists of an area of 59.54 acres, located in the central portion of the property. Drainage flows overland from the northwest to the southeast into the West Tributary reach. The curve number for this basin is 60.90. Runoff during the 5-year and 100-year events are 36.4 cfs and 110.0 cfs respectively.

Sub-Basin B4

The on-site sub-basin consists of an area of 14.68 acres, located in the northeast portion of the property. Drainage flows overland from the north to the south into the West Tributary reach. The curve number for this basin is 61.00. Runoff during the 5-year and 100-year events are 5.4 cfs and 18.2 cfs respectively.

Sub-Basin OB1

The off-site sub-basin consists of an area of 10.37 acres, located on the southwest corner of the property. Drainage flows overland from the west to the east onto the property and continues to the southeast and outfalls along the south property line into the West Tributary reach at design

point J1. The curve number for this basin is 63.76. Runoff during the 5-year and 100-year events are 7.1 cfs and 18.8 cfs respectively.

Sub-Basin OB2

The off-site sub-basin consists of an area of 28.06 acres, located on the west side of the property. Drainage flows overland from the west to the east onto the property. Flows enter the site in a well-defined natural channel and continue to the southeast as channelized flow. Where the flows ultimately outfall along the south property line into the West Tributary reach at design point J2. The curve number for this basin is 64.16. Runoff during the 5-year and 100-year events are 20.6 cfs and 52.7 cfs respectively.

Sub-basin OB3

The off-site sub-basin consists of an area of 43.44 acres, located on the west of the property. Drainage flows overland from the northwest to the southeast and enters the site as channelized flow and continue to the southeast as channelized flow. Where the flows ultimately outfall at the south property line into the West Tributary reach at design point J2. The curve number for this basin is 63.62. Runoff during the 5-year and 100-year events are 25.3 cfs and 67.1 cfs respectively.

Sub-basin OB4

The off-site sub-basin consists of an area of 10.50 acres, located on the west side of the property. Drainage flows overland from the northwest to the southeast and enters the site as channelized flow and continues to the southeast as channelized flow. Where the flows ultimately outfall at the south property line into the West Tributary reach at design point J2. The curve number for this basin is 64.71. Runoff during the 5-year and 100-year events are 7.5 cfs and 18.9 cfs respectively.

Sub-basin OB5

The off-site sub-basin consists of an area of 143.82 acres, located on the northwest side of the property. Drainage flows overland from the northwest to the southeast and enters the site as channelized flow and continues to the southeast as channelized flow. Where the flows ultimately outfall into the West Tributary reach on-site at design point J4. The curve number for this basin is 59.98. Runoff during the 5-year and 100-year events are 36.8 cfs and 106.9 cfs respectively.

Sub-basin OB6

The off-site sub-basin consists of an area of 118.40 acres, located north side of the property. Drainage flows overland from the north to the south and enters the site as channelized flow and continues to the south where it outfalls into the West Tributary on-site at design point J4. The curve number for this basin is 61.77. Runoff during the 5-year and 100-year events are 40.8 cfs and 113.2 cfs respectively.

Sub-Basin OB7

The off-site sub-basin consists of an area of 421.20 acres, located on the north side of the property. Drainage flows overland from the north to the south and enters the site as channelized flow within the West Tributary reach. The curve number for this basin is 61.07. Runoff during the 5-year and 100-year events are 101.4 cfs and 284.2 cfs respectively.

Sub-Basin OB8

The offsite sub-basin consists of an area of 33.07 acres, located northeast of the property. Drainage flows overland from the north to the south and enters onto the site as shallow concentrated flow as there is no well-defined natural drainage channel in this area of the site. Flows then continue to the south in a more defined natural channel and outfall into the West

Tributary reach on-site at design point J3. The curve number for this basin is 64.89. Runoff during the 5-year and 100-year events are 19.5 cfs and 51.6 cfs respectively.

Refer to **Appendix E** for the Existing Drainage Conditions Map.

PROPOSED SUB-BASIN DESCRIPTIONS

For the proposed condition, stormwater will generally maintain historic flow patterns from north to south. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows back to the existing flow paths, which will ultimately outfall to existing natural drainage channels, full spectrum detention pond, or water quality ponds. The proposed project has been divided into 14 on-site sub-basins. The off-site basins are fully developed and no changes to the upstream basins are anticipated.

Sub-Basin PB1

The on-site sub-basin consists of 2 residential lots at the southwest corner of the property. The sub-basin has an area of 4.25 acres. The curve number for the sub-basin is 64.35. Runoff during the 5-year and 100-year events are 3.0 cfs and 7.7 cfs respectively. Runoff from this basin will travel across the lots and outfall to the south as it has done historically at design point P1.

Sub-Basin PB2

The on-site sub-basin consists of 1 residential lot at the southwest corner of the property. The sub-basin has an area of 1.08 acres. The curve number for the sub-basin is 65.38. Runoff during the 5-year and 100-year events are 1.0 cfs and 2.4 cfs respectively. Runoff from this basin will travel across the lot and outfall to the south as it has done historically at design point P1. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5. In addition to a small portion of roadway flows that are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.C.1.

Sub-Basin PB3

The on-site sub-basin consists of portions of 2 residential lots and the half street of the proposed local roadway at the southwest corner of the property. The sub-basin has an area of 1.38 acres. The curve number for the sub-basin is 67.68. Runoff during the 5-year and 100-year events are 1.5 cfs and 3.3 cfs respectively. Runoff from this basin will travel across the lots and be conveyed to Culvert 1 through a roadside ditch. Flows will then be conveyed through basin PB15 via a natural channel and outfall into Water Quality Pond 1 before out falling into the West Tributary reach at design point P2.

Sub-Basin PB4

The on-site sub-basin consists of 4 residential lots and the half streets of the proposed local roadway at the southwest corner of the property. The sub-basin has an area of 10.54 acres. The curve number for the sub-basin is 64.84. Runoff during the 5-year and 100-year events are 12.6 cfs and 30.2 cfs respectively. Runoff from this basin will travel across the lots and be conveyed by a natural channel to Culvert 2. Where flows will then be conveyed through basin PB15 via a

natural channel and outfall into Water Quality Pond 1 before out falling into the West Tributary reach at design point P2.

Sub-Basin PB5

The on-site sub-basin consists of 2 residential lots and the half street of the proposed local roadways at the west side of the property. The sub-basin has an area of 6.18 acres. The curve number for the sub-basin is 64.70. Runoff during the 5-year and 100-year events are 4.2 cfs and 10.4 cfs respectively. Runoff from this basin will travel across the lots and be conveyed by a natural channel to Culvert 7. Where flows will then be conveyed through basin PB4 and PB15 via a natural channel, Culvert 2, and outfall into Water Quality Pond 1 before out falling into the West Tributary reach at design point P2.

Sub-Basin PB6

The on-site sub-basin consists of 3 residential lots and the half street of the proposed local roadway near the central portion of the property. The sub-basin has an area of 11.09 acres. The curve number for the sub-basin is 65.33. Runoff during the 5-year and 100-year events are 8.6 cfs and 20.7 cfs respectively. Runoff from this basin will travel across the lots and roadside ditches to Culvert 3. Where flows will then be conveyed through basin PB15 via a natural channel and outfall into Water Quality Pond 1 before out falling into the West Tributary reach at design point P2.

Sub-Basin PB7

The on-site sub-basin consists of 3 residential lots and portions of the proposed local roadways near the central portion of the property. The sub-basin has an area of 3.46 acres. The curve number for the sub-basin is 66.22. Runoff during the 5-year and 100-year events are 3.2 cfs and 7.4 cfs respectively. Runoff from this basin will travel across the lots and roadside ditches to Culvert 4. Runoff will then be conveyed through a roadside ditch to Culvert 3. From there the runoff will be conveyed through basin PB15 via a natural channel and outfall into Water Quality Pond 1 before out falling into the West Tributary reach.

Sub-Basin PB8A

The on-site sub-basin consists of 2 residential lots, a large natural drainage channel and Pond 3 near the northwest corner of the property. The sub-basin has an area of 7.60 acres. The curve number for the sub-basin is 64.63. Runoff during the 5-year and 100-year events are 8.3 cfs and 20.3 cfs respectively. Runoff from this basin will travel across the lots and into the natural channel that outfall into Pond 3. Offsite sub-basin OB5 also discharges onto the property and is conveyed to Pond 3 through sub-basin PB8A via the natural channel and rock chutes.

Sub-Basin PB8B

The on-site sub-basin consists of 4 residential lots and a large natural drainage channel. The sub-basin has an area of 5.79 acres. The curve number for the sub-basin is 64.00. Runoff during the 5-year and 100-year events are 6.1 cfs and 15.2 cfs respectively. Runoff from this basin will travel across the lots and into the natural channel that outfalls into the main natural channel.

Sub-Basin PB9

The on-site sub-basin consists of 4 residential lots, a large natural drainage channel and a portion of the sub regional Pond 1 near the northern portion of the property. The sub-basin has an area of 12.80 acres. The curve number for the sub-basin is 64.39. Runoff during the 5-year and 100-year events are 9.8 cfs and 24.8 cfs respectively. Runoff from this basin will travel across the lots and into the natural channel.

Sub-Basin PB10

The on-site sub-basin consists of 4 residential lots near the northern portion of the property. The sub-basin has an area of 8.47 acres. The curve number for the sub-basin is 64.00. Runoff during the 5-year and 100-year events are 5.6 cfs and 14.4 cfs respectively. Runoff from this basin will travel across the lots and into the West Tributary reach.

Sub-Basin PB11

The on-site sub-basin consists of 6 residential lots and portions of the proposed local roadways near the northeast portion of the property. The sub-basin has an area of 17.56 acres. The curve number for the sub-basin is 65.20. Runoff during the 5-year and 100-year events are 13.6 cfs and 33.2 cfs respectively. Runoff from this basin will travel across the lots utilize roadside ditches and natural drainage channels to convey flows to Culvert 6. From there the runoff will be conveyed through basin PB14 via a natural channel and outfall into Water Quality Pond 2 before out falling into the West Tributary reach.

Sub-Basin PB13

The on-site sub-basin consists of a portion of the proposed local roadways near the east portion of the property. The sub-basin has an area of 4.02 acres. The curve number for the sub-basin is 65.12. Runoff during the 5-year and 100-year events are 4.9 cfs and 11.7 cfs respectively. Runoff from this basin will sheet flow into the West Tributary reach. From there the runoff will be conveyed to Culvert 8 and through basin PB14 via the West Tributary reach and outfall to design point P3. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5. In addition to a small portion of roadway flows that are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.C.1.

Sub-Basin PB14

The on-site sub-basin consists of 4 residential lots a portion of the proposed local roadways near the southeast portion of the property. The sub-basin has an area of 17.28 acres. The curve number for the sub-basin is 63.64. Runoff during the 5-year and 100-year events are 18.9 cfs and 46.3 cfs respectively. Runoff from this basin will sheet flow into the West Tributary reach and outfall to design point P3. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of EI Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5. In addition to a small portion of roadway flows that are not required to be conveyed to a water quality facility according to 1.7.1.C.1.

Sub-Basin PB15

The on-site sub-basin consists of 5 residential lots and portions of the proposed local roadways near the northeast portion of the property. The sub-basin has an area of 9.63 acres. The curve number for the sub-basin is 61.65. Runoff during the 5-year and 100-year events are 11.0 cfs and 26.3 cfs respectively. Runoff from this basin will travel across the lots utilize roadside ditches and natural drainage channels to convey flows to Water Quality Pond 1 out falling into the West Tributary reach at design point P2.

Sub-Basins OB1 – OB8

The offsite sub basins are fully built out per the DBPS and are anticipated to maintain historic flows and drainage patterns.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the El Paso County "Engineering Criteria Manual", Volumes 1 and 2 and the City of Colorado Springs May 2014 Drainage Criteria Manual, Volume 1, ("the DCM").

Site drainage is not significantly impacted by such constraints as utilities or existing development.

A Falcon Drainage Basin Planning Study prepared by Matrix Design Group, September 2015 (DBPS) was completed and includes the Eagleview subdivision. This planning study was used for reference to assist with drainage design for the proposed subdivision. Both the DBPS and the previously approved preliminary drainage report proposed a regional detention facility within the site. However, a DBPS Amendment to the Falcon DBPS (Dated March 8, 2024) was completed and approved through the Drainage Board on March 27, 2024 which proposed alternatives to the onsite detention location and improvements required along each reach of the tributary. As a part of this amendment, the regional detention facility is no longer being proposed and a full spectrum detention pond is now proposed. The new location of the detention pond is located off of the West Tributary reach. The proposed detention pond still provides water quality for onsite and offsite areas draining to it and also provides attenuation for the 100-yr storm event. As part West Tributary reach analysis, stream improvements were identified and conceptually designed for the entire reach. Refer to **Appendix D** for excerpts from the DBPS.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per the Engineering Manual. The model utilizes the NRCS Type II rainfall distribution, the cumulative depth for the 5-year storm 2.7 inches and the cumulative depth for the 100-year storm is 4.6 inches. Per the DCM both Frontal and Thunderstorms were evaluated to determine the higher design flow. The comparative analysis between the two storms shows that the Frontal Storm produces a significantly higher flow rates therefore, this storm was used for the drainage design. The rainfall distribution for the Frontal Storm was selected as the dominant storm-type for this project. See **Table 1** below for the rainfall values.

	Duration (HRS)			
Storm Event	1 HR	24 HR		
5 Year	1.5	2.7		
100 Year	2.52	4.6		

Table 1: Colorado Springs Rainfall Depths

It should be noted that the DBPS used a slightly lower cumulative depth for the 5-yr (2.6 inches) and used the same cumulative depth for the 100-year of (4.6 inches) because the DBPS used an aerial reduction of 2% to the rainfall depths as the Falcon Watershed is slightly larger than 10 square miles. This aerial reduction was not applied to the rainfall depths for this Site as the drainage area analyzed was smaller and didn't require an aerial reduction. Refer to Tables 6-2 and 6-4 in Chapter 6 of the DCM for the frontal rainfall distribution curve and Colorado Springs rainfall depths data for the 5-year and 100-year design storm events utilized for the project. The project model was compared to the DBPS model, and it generally reflects lower flows for the Type IIa rainfall distribution curve versus the DBPS model and design points J4 and P7 in the project models were used as critical points to compare the existing and proposed condition models.

Design runoff was calculated using the NRCS curve number method as established in the DCM. This aligns with what was completed in the Falcon Drainage Basin Planning Study (DBPS). The NRCS curve number method was used for existing conditions and proposed conditions due to the on-site and off-site basins containing more than 130 acres. Existing and future land uses were obtained from the County GIS department. Where possible, runoff curve numbers established in the DBPS were utilized since these were more conservative than equivalents found in the DCM. For all other areas, curve numbers were developed by using Table 6-10 (ARCII) in the DCM. The CN values calculated for basins in this analysis align closely with those found in the DBPS, with a weighted average of 61.5. **Table 2** below shows all CN values utilized for this report and their source. Calculations for the composite curve numbers are included in the **Appendix B**.

A combination of aerial imagery and available public GIS data were used to calculate weighted impervious values. However, the DBPS was found to underestimate imperviousness of the basins; the impervious values in the DBPS ranged between 1% and 4% with most basins having an impervious value of 2%. Calculations for impervious values are included in the **Appendix B**.

		Soil Type			
Cover Description	% Imp	А	В	С	D
Open Space		39	61	74	80
Gravel		76	85	89	91

Table 2: CN Values

Final Drainage Report Eagleview Subdivision, El Paso County, CO

		Soil Type			
Cover Description	% Imp	А	В	С	D
Paved		98	98	98	98
5 Acre Rural Residential (Woods Landuse) *		33	58	73	80
5 Acre Rural Residential (Rangeland Landuse) *		40	62	75	81
1/2 Acre Residential*	25	55	71	81	86
2 ½ Acre Rural Residential*	11	45	64	76	81

*Values from the Falcon Drainage Basin Planning Study (DBPS) completed in 2015.

The Manning's n values used to calculate the channelized flow regime for the time of concentration were developed by comparison with the DBPS HEC-HMS and HEC-RAS models and through physical confirmation at the site. The Manning's n values used to calculate the overland flow regime for the time of concentration were taken from Table 6-11 in the DCM and can be found in **Table 3** below.

Table 3: Manning's n	Roughness Coefficients
----------------------	-------------------------------

Surface Description	n Value
Short Grass Prairie	0.15
Woods – Light underbrush	0.4

The time of concentration was calculated following the guidance provided in TR-55 by summing the travel time for overland flow, sheet flow, and channelized flow segments along the longest flow path and a factor of 0.6 was then applied to generate the lag time, per Ch. 6 Section 4.6 of the DCM. The longest flow paths were manually delineated to match the drainage patterns in each sub basin based on existing topography. Time of concentration calculations for each basin can be found in **Appendix B**.

Routing of the stormwater runoff and modeling of drainageways for the project site, was done using the NRCS Curve Number Method as required by El Paso County. Routing of channelized flow was based on the Muskingum-Cunge method for all reaches for the existing and proposed model. This aligned with the methodology completed in the DBPS models.

Small existing channels onsite were modeled with a typical section using FlowMaster that has the following characteristics: a longitudinal slope of 0.025, side slopes of 1.3 (H:V), a Manning's n value of 0.030, and a normal depth of 2 feet. Calculated discharge for the typical channel and typical ditch are approximately 8 cfs and 67 cfs, respectively. See the FlowMaster worksheet in **Appendix C** for further details on the typical channel and typical ditch. Similarly, proposed roadside ditches were analyzed in FlowMaster with a typical section that has the following characteristics: a longitudinal slope of 0.025, side slopes of 4.0 (H:V), a Manning's n value of

value of 0.030, and a normal depth of 18 inches. In roadside ditch sections where velocities exceed 5 fps, TRM matting is being proposed to provide stability. The maximum permissible velocity of 5 fps is in agreement with Mile High Flood District criteria. The larger main tributary channel was modeled based on an averaging of cross sections within the DBPS HEC-RAS model for the subject reaches. The longest of these, R-PB13, has the following characteristics: a longitudinal slope of 0.02, side slopes of 3:1 (H:V), and a Manning's n value of 0.03.

There are no additional provisions selected or deviations from the criteria.

HYDRAULIC CRITERIA

Applicable design methods were utilized to size the proposed detention pond, water quality ponds, culverts, drainage channels, erosion protection, which include the use of Mile High Flood Districts UD-Detention spreadsheet, UD-Culvert spreadsheet, and FlowMaster. The Site is providing one full spectrum detention pond which will include water quality capture volume (WQCV), excess urban runoff volume (EURV), and 100-year detention per the DBPS. The site is also providing two additional water quality ponds. The Site is not significantly increasing the imperviousness of the Site and the Project is maintaining the historic drainage patterns as much as possible and not significantly increasing developed flows. Proposed drainage features on-site have been analyzed and sized for the Major Storm, 100-year design storm event.

DETENTION AND WATER QUALITY POND

The full spectrum detention pond design was completed utilizing Mile High Flood District's UD-Detention spreadsheet to design the Pond 3 outlet structure. The UD-detention spreadsheet in **Appendix C** was designed for the total area onsite and offsite draining to the Pond. The pond was designed to reduce the 100-YR peak flow by ~10% to reach the pre vs post ratio of 0.9. Once the design of Pond 3 was completed in UD-detention the stage storage curve and stage discharge curve from the spreadsheet was then input into HEC-HMS and run. The peak storage and peak outflow results from UD-detention spreadsheet compared to the HEC-HMS results were negligible. Therefore, verifying the detention Pond 3 was sized adequately for the 100-yr storm event.

The water quality capture volume for Pond 3 was determined using an empirical formula based on percent impervious. Refer to **Appendix C** for calculations.

As previously mentioned, a full spectrum detention pond and two water quality ponds are being proposed for the site. The full spectrum detention pond is a non-jurisdictional detention pond which has been designed for WQCV, EURV, and 100-year detention. The detention pond has been designed per the DBPS Amendment and restricts flow to be less than the historic flow leaving the site. See the Drainage Facility Design section of this report for a comparison between existing and proposed flows leaving the site. Maintenance of the detention Pond 3 and water quality ponds will be through Eagleview Metro District. Water quality ponds 1 and 2 will provide water quality control volumes of 0.13 ac-ft and 0.05 ac-ft, respectively. Flows in excess of the water quality control volume will be routed through the spillways of the water quality ponds. Sizing calculations for the forebays and trickle channels for all ponds are included in **Appendix C**.

Kimley *W* Horn

Pond	Proposed Volume (ac-ft)	100-yr Inflow (Developed) [cfs]	Flow Exiting Pond (Developed) [cfs]	Flow Ratio (Developed vs Historic)	100-yr Flows Detained
Pond 3	2.8 ac-ft	109	97	0.89	Yes
WQP1	0.13 ac-ft	181	181	-	No
WQP2	0.05 ac-ft	82	82	-	No

Table 4: Pond Summary Table

HEC-HMS results and UD-detention Pond calculations are provided in **Appendix B** and **Appendix C**.

The detention Pond 3 has two rock chutes proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chutes. The stilling basin for each rock chute will have dual purpose. The first purpose will be to assist in dissipating the energy before out falling into the pond bottom and second purpose is to serve as a forebay structure. The concrete line trickle channels will convey flows to the outlet structure micro pool. The outlet structure is designed to provide full spectrum characteristics. The 100-year storm volume will be released via 1-42" RCP. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of 1'. The emergency spillway has been designed to provide a minimum of 1' of freeboard. A 15' wide access road is proposed from top of the pond to the bottom of the pond for maintenance. The pond reduces proposed flows at the outfall below historic levels relative to the existing conditions analysis results.

Water Quality Pond 1 has two rock chutes proposed with a downstream stilling basin for each to dissipate the energy of the flow being conveyed into the water quality pond through the rock chutes. The stilling basin for each rock chute will have dual purpose. The first purpose will be to assist in dissipating the energy before out falling into the pond bottom and second purpose is to serve as a forebay structure. The concrete line trickle channel will convey flows to the outlet structure micro pool. The outlet structure is designed to provide water quality treatment only. The water quality flows will be released through a 24" RCP. Once a volume greater than the water quality volume is reached the flows will be conveyed through a combination of the outlet structure and spillway. The spillway has been designed to convey the 100-year flow of 181 cfs. The spillway has been designed to provide a minimum of 1' of freeboard. A 15" wide access road is proposed to the bottom of the pond for maintenance.

Water Quality Pond 2 has one rock chute proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the water quality pond through the rock chute. The stilling basin for each rock chute will have dual purpose. The first purpose will be to assist in dissipating the energy before out falling into the pond bottom and second purpose is to serve as a forebay structure. The concrete line trickle channel will convey flows to the outlet structure micro pool. The outlet structure is designed to provide water quality treatment only. The water quality flows will be released through a 18" RCP. Once a volume greater than the water quality volume is reached the flows will be conveyed through a combination of the outlet structure and spillway. The spillway has been designed to convey the 100-year flow of 82 cfs. The spillway has been designed to provide a minimum of 1' of freeboard. A 15" wide access road is proposed to the bottom of the pond for maintenance.

CULVERT SIZING

The proposed culverts for the site were designed utilizing Mile High Flood Districts UD-Culvert spreadsheet. Refer to **Appendix C** for culvert sizing and erosion protection calculations.

CHANNEL STABILIZATION

The Falcon Drainage Basin Study identifies the need for channel stabilization improvements with the Site. In particular, the DBPS calls for the construction of 24 small drop structures within the Eagleview Subdivision. A DBPS Amendment to the Falcon DBPS (Dated March 8, 2024) was completed and approved through the Drainage Board on March 27, 2024 which proposed alternatives to the onsite detention location and improvements required along each reach of the tributary. The proposed improvements represent the Amended improvements associated with the DBPS Amendment. See **Appendix E** for check structure and riffle drop locations based on hydraulic analysis of the site.

The channel stabilization was analyzed as part of this report. The larger main tributary channel was modeled in HEC-RAS to analyze the reach for stability. As the DBPS identified this reach for channel improvement. Refer to the HEC-RAS results and exhibits in **Appendix C**. Based on the HEC-RAS modeling results proposed amendments to the identified drainage features in the DBPS have been analyzed using the following hydraulic design parameters, in **Table 5**, consistent with the Mile High Flood Districts, Urban Drainage and Flood Control District Drainage Criteria Manuals (UDFCDCM), (Volumes 1,2, and 3), prepared by Wright-McLaughlin Engineers, June 2001, with the latest revisions.

Design Parameter	Design Value	
Maximum 100-year depth outside of bankfull channel	5 ft	
Roughness values	Per Table 8-5	
Maximum 5-year velocity, main channel (within bankfull channel width) (ft/s)	5 ft/s	
Maximum 100-year velocity, main channel (within bankfull channel width) (ft/s)	7 ft/s	
Froude No., 5-year, main channel (within bankfull channel width)	0.7	
Froude No., 100-year, main channel (within bankfull channel width)	0.8	
Maximum shear stress, 100-year, main channel (within bankfull channel width)	1.2 lb/sf	
Minimum bankfull capacity of bankfull channel (based on future development conditions)	70% of 2-year discharge or 10% of 100-yr discharge, whichever is greater ¹	
Minimum bankfull channel geometry	Per Table 8-2	1
Minimum bankfull channel width/depth ratio (Equation 8-3)	9	
Minimum entrenchment ratio (Equation 8-4)	3	
Maximum longitudinal slope of low flow channel (assuming unlined, unvegetated low flow channel)	0.2 percent	Revised to 0.4% based on Falcon DBPS
Bankfull channel sinuosity (Equation 8-5)	1.1 to 1.3	recommendations.
Maximum overbank side slope	4(H):1(V)	1
Maximum bankfull side slope	2.5(H):1(V)	
Minimum radius of curvature	2.5 times top width	

Table 5: Hydraulic Design Parameters for Natural Channels

¹Roughly equivalent to a 1.5-year event based on extrapolation of regional data.

As part of this hydraulic analysis the DBPS model was updated to represent the existing conditions of the channel more accurately. These updates included adding and removing cross-sections to better represent existing conditions. Manning's n adjustments we also done based on visual inspection. The velocity and Froude from the HEC-RAS modeling, of the Falcon DBPS, did not appear to match the channel stability of Falcon Creek as seen in the field. The reaches appear to function with more stability than the results of the DBPS imply in the initial DBPS HEC-RAS models. Additional field investigation was completed in an effort to evaluate Manning's n based on existing channel and vegetation conditions. Pictures were taken at each HEC-RAS cross section identified in the DBPS to assess vegetation type, height, and flow resistance. Engineering judgement was used to revise the Manning's n by considering flow depth relative to vegetation type. As a result of this evaluation, Manning's n values in the RWT092 and RWT054 reach were increased to be closer to 0.1 for the channel bottom and 0.045 for the channel slopes based on the following factors:

- Vegetation is comprised mostly of willows and cattails about 4 to 6 feet in height.
- Flow depths are 4-feet or less.
- Willows and cattails are known to be highly resistant to flow until they are submerged.

Where flow depths are unable to submerge the vegetation, a Manning's n roughness of 0.08 to 0.1 is an acceptable range hydraulic modeling in areas with this type of vegetation.

A HEC-RAS model was completed for the existing conditions, using flow rates determined based on hydrologic analyses completed as a part of the Eagleview Subdivision PDR and the results of that study are presented therein. A abbreviated overview of the existing results from revised HEC-RAS modeling is provided in **Table 6**.

		Revised Fal	HEC-RAS Section (Proposed C	ons Condition)			
		DBPS	5	Eaglev	iew	Eaglev	view
		Input	Output	Input	Output	Input	Output
	Cross Section	100-yr Flow (cfs)	Froude No.	100-yr Flow (cfs)	Froude No.	100-yr Flow (cfs)	Froude No.
Offsite	41218.78	480	0.74	285	0.57	285	0.57
Onsite	40884.05	480	0.97	285	0.40	285	0.40
	40418.78	480	0.91	285	0.49	285	0.49
Eagleview	40018.78	740	1.01	375	0.38	375	0.38
lev	39618.78 ¹	740	1.04	375	0.56	375	0.57
Eag	33010.70	740	1.04	478	0.29	478	0.28
	39218.78	740	1.15	478	0.51	478	0.52

Table 6: HEC-RAS Results Comparison Between Existing and Proposed Conditions

Final Drainage Report Eagleview Subdivision, El Paso County, CO

	38818.78	740	1.03	478	0.55	480	0.39
	38418.78 ²	740	1.07	478	0.75	480	0.56
	38018.78 ³	740	1.06	502	0.82	502	0.57
	37618.78 ⁴	740	1.04	502	0.87	502	0.77
Offsite	37218.78	740	0.93	502	0.82	502	0.82

¹ DBPS cross section 39618.78 corresponds to existing and proposed Eagleview cross sections 39666 and 39542

² DBPS and existing Eagleview cross section 38418.78 corresponds to proposed Eagleview cross section 38437

³ DBPS and existing Eagleview cross section 38018.78 corresponds to proposed Eagleview cross section 38001

⁴ DBPS and existing Eagleview cross section 37618.78 corresponds to proposed Eagleview cross section 37609

As shown in **Table 6**, there are sections of the reaches that are not in compliance with the hydraulic criteria in existing condition which will be improved, and comply with criteria, in the proposed condition. The proposed improvements that were modeled are described in detail in the following section of the report. Note that cross section 37218.78, the downstream offsite cross section, is not meeting criteria in the existing condition and the hydraulic results remain identical in the proposed condition. Full hydraulic results, including results for proposed design cross sections not present in the DBPS, are provided in **Appendix C**.

To mitigate the velocities and Froude numbers within the existing reaches, proposed improvements are proposed to provide a stable, natural channel through the Site. Through a combination of riffle drops, concrete check structures, and improved vegetation, the proposed improvements meet the design criteria for velocity and Froude. See **Appendix C** for proposed HEC-RAS results. The proposed improvements are based on the principle found in the El Paso County's Drainage Criteria Manual (DCM). Per Section 2.2.1 of the DCM "A stable channel reaches "equilibrium" over many years. Therefore, channel modifications should be minimal." A summary of the proposed improvements are included below.

RWT094

- A combination of natural riprap riffle drops, coir matting and channel grading will be shown south of the proposed road (South Arroya Lane) due to the width of the channel in this section, approximately DBPS stations 37+600 to 38+800.
- Concrete check structures north of South Arroya Lane to the confluence of RWT094 with RWT080 and RWT092, approximately DBPS stations 38+800 to 39+600. Check structures are proposed to be installed at grade in the existing channel to minimize disturbance and protect the channel by maintaining a three-foot maximum drop and a 0% longitudinal slope between structures.

RWT094 is located south the confluence with RWT080 and RWT092 and flows south to the southern property line and beyond. The portion of RWT094 within the Eagleview property is approximately bounded by DBPS stations 37+600 to 39+600. It is divided into two sections, split by the proposed South Arroya Lane. The section north of the proposed roadway (approximately DBPS stations 37+600 to 38+800) has a narrower cross section and more closely resembles the cross section of reach RWT092 to the north. A total of five check structures are proposed in the northern section of this reach.

South of the proposed South Arroya Lane, the channel becomes much wider with shallower slopes (approximately DBPS stations 38+800 to 39+600). A total of four constructed riffles are proposed within this section of the reach. The drop heights of the constructed riffles range from 2.3 feet to 3 feet with 3% to 4% slopes. The channel sections outside of the riffles within this reach use the DBPS recommended stable channel slope of 0.40% to reduce the potential of erosion. For the riffle portion of the RWT094 reach, the 2-year flow of 77.5 cfs at design point P3 was used as the basis to size the low flow portion of the channel in this reach that will be regraded. This results in a 22 foot wide low flow channel. The Falcon DBPS states, "The crest width for a natural channel drop structure is the channel width associated with the low flow (bankfull) event as defined in the DCM update Section 3.1.1.1". Thus riprap protection is provided for only the low flow portion of the riffle. A full analysis of the riffle drop structures in included in **Appendix C.**

RWT092

• Check structures are proposed to be installed at grade in the existing channel to minimize disturbance and protect the channel by maintaining a three-foot maximum drop and a 0% longitudinal slope between structures.

RWT092 is located between RWT054 and the sub regional detention pond SR1, approximately DBPS stations 39+600 to 40+150. A total of four check structures are proposed within this reach. The reach ends at the confluence with another smaller channel from the west.

RWT054

• Check structures are proposed to be installed at grade in the existing channel to minimize disturbance and protect the channel by maintaining a three-foot maximum drop and a 0% longitudinal slope between structures.

RWT054 is located north of reach RWT092, approximately DBPS stations 40+150 to 41+000. A total of one check structure is proposed within this reach at approximately 40+300. Due to the denser vegetation, including fully grown willows, cattails, and ponderosa trees within the low flow channel, no improvements are proposed north of structure at 40+300. A discussion and justification of the Manning's n was previously provided.

RWT080

• A full spectrum detention facility is proposed along this reach. Design details are included within this report.

RWT080 is located west of RWT092. TRM matting is proposed within RWT080 to mitigate erosion and provide stability to the channel. TRM matting is proposed as an alternative to willows stakings as there is some doubt as to whether or not willows would successfully establish in the intermittent and relatively dry channel.

The construction of the 11.03 AC-FT (100 YR) Sub Regional Pond (SR-1) will be completed by the County at a later date. A 2.8 AC-FT full spectrum detention basin is proposed on the RWT080 reach in the northwest corner of the Eagleview site.

CHANNEL MAINTENANCE

A maintenance agreement with the County will be required. As platted, the site will contain two distinct types of drainage easements: County easements and Metro District easements. The County drainage easements will include the channel improvements to be maintained by El Paso County while the Metro District drainage easements will include those portions of drainageways

to be maintained by the Metro District. Furthermore, the Metro District will be responsible for the maintenance of all vegetation occurring between and around the channel improvements located within the County drainage easements. Maintenance access for the channel is provided by two access roads on Arroya Lane. The access road for the northern portion of the channel will run along the east side of the channel, while access for the southern portion will be located on the west side of the channel.

PAINTBRUSH HILLS- POND C

Adjacent to the southeast corner of the site, Detention Pond C was designed and constructed with Paint Brush Hills Filing No 12 in approximately 2004. Pond C was recently upgraded to include water quality and increased emergency spillway flows with Paint Brush Hills Filing No 14 in the 2021 time frame.

The new spillway associated with redesigned Detention Pond C, discharges stormwater runoff straight to the west via a 3:1 rip-rap slope at the property line. The rate, form and path of runoff does not match historic. We recommend an additional 107 CY of 12" rip-rap be placed at the toe of slope. The additional rip-rap toe protection will allow the spillway runoff to turn 90 degrees south and return to the historic flow path. Also, a 18,048 SF easement is warranted on Lot 31 to reduce the chance of building in the path of the emergency spillway.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The Eagleview subdivision is a low-density residential development with 2 ½ acre lot sizes. The proposed drainage patterns will match the historic patterns as much as possible and not significantly increasing developed flows. To maintain historic flows, one detention pond (Pond 3) is being proposed and will capture and control a portion of the onsite and upstream offsite flows as outlined in the DBPS Amendment. The runoff from the proposed roads will be treated before releasing it into the West Tributary reach or on to the downstream properties at the historic discharge points.

Provided in the **Appendix B** are hydrologic calculations utilizing the NRCS/HEC-HMS method for the proposed conditions. Provided in **Appendix C** are the calculations for the proposed detention pond, water quality ponds, culvert, and channels. As previously mentioned, the existing and proposed drainage maps can be found in **Appendix E**.

SPECIFIC DETAILS

The existing site is undeveloped land consisting of mostly grassland. The existing conditions of the Site have flows being conveyed from the northwest to the southeast and discharging into the West Tributary reach of the Falcon drainage basin. The site is undeveloped and runoff conditions for the Site were modeled within this study using HEC-HMS. The proposed development looks to preserve the natural drainageways and drainage patterns as much as possible. Culverts have been sized using UD-Culvert and the calculations can be found in **Appendix C**.

The results from the HEC-HMS model for existing conditions show 578 cfs leaving the project site for the 100-year storm event and for the proposed conditions 561 cfs is leaving the project site at the south side. It is not anticipated that the development will negatively impact the drainageways and related facilities downstream of the development.

A Proposed Drainage Conditions Map is included **Appendix E** of this report for reference.

The U.S. Army Corps of Engineers (USACE) provided an approved jurisdictional determination (AJD) for the wetlands present within the Eagleview site. The USACE AJD found that the wetlands within the site were isolated and not Waters of the U.S. (WOTUS); therefore impacts to these wetlands will not require permitting under Section 404 of the Clean Water Act. Furthermore, the wetlands onsite are unregulated and shall not incur any additional permitting requirements beyond the scope of El Paso County.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE). The proposed detention pond will be non-jurisdictional and will therefore require the submission of a Non-Jurisdictional Water Impoundment Structure application form as a part of the platting process.

EXISTING MAJOR DRAINAGE CHANNELS

The DBPS has identified that stream improvements are need on the West Tributary reach specific to the project Site. The design of the identified improvements are included within this report. The design meets the goals from the DBPS but also minimizes the on-site stream mitigation measures needed to the West Tributary reach.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the El Paso County Engineering Manual for BMP selection as noted below:

Step 1. **Employ Runoff Reduction Practices** – The project is proposing a low-density residential development that will be designed to minimize the impact to the current existing terrain. The Site's proposed paved roadways will increase the Site's impervious area, however, roadside ditches and channels will be constructed to slow down the runoff velocity and reduce runoff peaks. The detention pond and two water quality ponds will be used to capture stormwater, provide water quality treatment, and maintain flows discharging off site at or below historic levels.

Step 2. Implement BMPs That Provide a Water Quality Capture Volume with Slow Release – Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways, excluding 0.97 acres which cannot practicably be treated. Per ECM Appendix I Section 7.1.C.1., 20% of the development site or less than 1 acre can be excluded from providing water quality. As mentioned, 0.97 acres of impervious area will not be able to be treated which is less than 1 acre of the overall site. Per ECM Appendix I Section 7.1.B.5, in development areas of low-density housing, water quality is required for all roads, but is not required for the entirety of the large-lots. Due to the Project consisting of single family large-lots, lot imperviousness shall be limited to 10 percent or less. Per ECM Appendix I Section 7.1.B.8, construction areas for stream improvements are excluded from water quality requirements. Refer to **Appendix E** for PBMP Tributary Areas map.

Step 3 Stabilize Drainageways– Stabilizing proposed roadside ditches, swales, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Check dams will be used in areas with steeper grades to slow the runoff. We anticipate this will minimize erosion. Existing drainage ways will be graded to reduce the velocity of the water to minimize erosion.

Step 4. Implement Site Specific and Other Source Control BMPs – The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

DRAINAGE FEES AND REIMBURSABLE COSTS

FEES

The project is within the Falcon Drainage Basin (CHWS1400) which is a part of the El Paso County Drainage Basin Fee Program, which is based on the total amount of impervious acres for the Site. Based on impervious calculations in the Appendix, there are 16.95 impervious acres for the proposed project. Sites larger than 2.5 acres are subject to a 25% reduction in total drainage fee/acre. Current rates are for the 2022 calendar year. See the detailed breakdown below.

- Drainage Fee/Acre = \$34,117 x 121.2 acres x 13.86% x 75% Imp = \$429,831
- Bridge Fee/Acre = \$4,687 x 121.2 acres x 13.86% Imp = \$78,734

Total = \$508,565

IMPROVEMENTS AND REIMBURSABLE COSTS

The Falcon Drainage Basin Study identifies two types improvements for the Site, County Costs or Developer Costs. Items identified as Developer Costs (those incurred by the Developer) are eligible for reimbursement. County Costs are not eligible for reimbursement. A DBPS Amendment to the Falcon DBPS (Dated March 8, 2024) was completed and approved through the Drainage Board on March 27, 2024 and amended the type of three reaches from a County Cost to a Developer Cost and thus making them reimbursable. A summary of the changes from the DBPS amendment are provided below:

Reach/Feature	Description	Type of Cost	Reimbursable	Amended
RWT094	South of SR1	Developer Cost	Yes	
SR1	Sub-Regional Pond	County Cost	No	Yes (Drainage Easement is Reimbursable)
RWT080	Northwest of SR1	County Cost	No	Yes
RWT092	Northeast of SR1	County Cost	No	Yes

Once construction of the reimbursable facilities is completed, procedures for Drainage Improvement Credits and Reimbursements outlined in Chapter 3 of the Drainage Criteria Manual will be in effect.

A summary of the anticipated construction costs for the reaches/ features in the DBPS Amendment are provided in a table below:

DBPS Reach	PROPOSED COST (2023) W/ 35% Contingency	Comments
RWT-094	\$469,342.00	
RWT-080	\$46,778.00	
RWT-092	\$200,367.00	
RWT-054	\$61,700.00	
Sub Regional Detention Pond (SR1)	\$773,776.00	Drainage Easement Only
Total:	\$1,822,785.00	

Following the Drainage reimbursement request application approval, the Drainage Fees will be as follows based on DBPS cost estimates:

- Drainage Fees= \$429,831
- Improvement Costs= \$1,822,785
- Reimbursement Credit= \$1,392,954

Fees are deferred at plat recordation due to reimbursement expenses being greater than the required drainage fees.

SUMMARY

This report has been prepared in accordance with El Paso County stormwater criteria. It outlines the Site design for the 5-year and 100-year storm events drainage system. The drainage design presented within this report conforms to the criteria presented in the MANUAL Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments.

REFERENCES

- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May 2014
- 2. El Paso County "Engineering Criteria Manual" Volumes 1 & 2, dated October 31, 2018
- 3. Natural Resources Conservation Service, Web Soil Survey, dated October 5, 2021.
- 4. Urban Drainage and Flood Control District Drainage Criteria Manuals (UDFCDCM), (Volumes 1, 2 and 3), prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 5. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0507F and 08041C0530F, Effective Date March 17, 1997, prepared by the Federal Emergency Management Agency (FEMA).
- 6. Falcon Drainage Basin Planning Study Selected Plan Report (DBPS), prepared by Matrix Design Group, September 2015. PCD File No. MP132.
- 7. Paintbrush Hills Fil. 14 FDR. (PCD File No. SF2024)
- 8. Eagleview Subdivision Preliminary Drainage Report (PDR), prepared by Kimley-Horn, October 28, 2022. PCD File No. SP216

APPENDIX

Kimley **»Horn**

APPENDIX A: FIGURES

Kimley **»Horn**

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address.

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

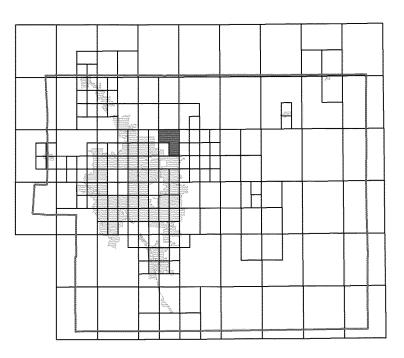
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

f you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

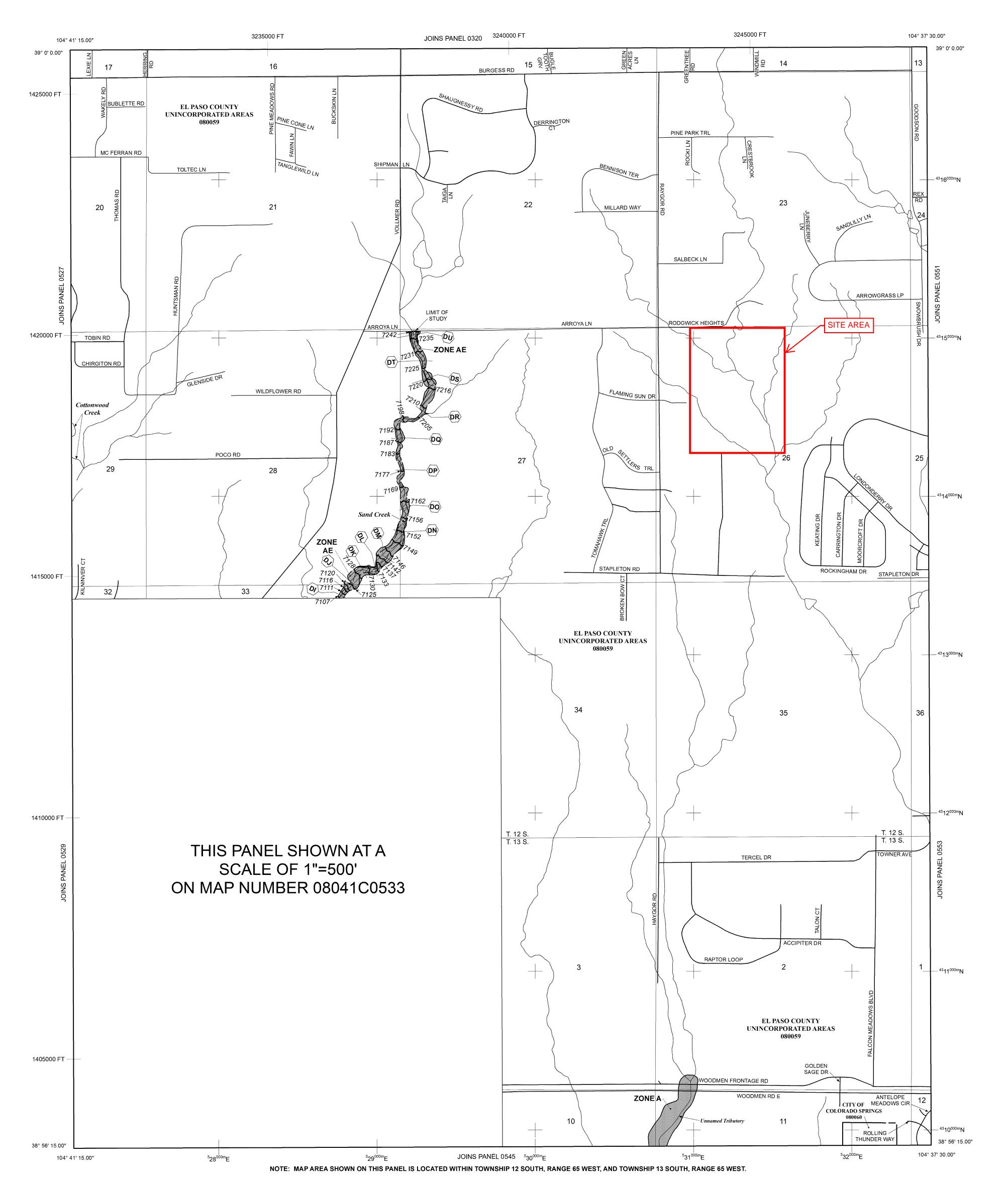
Flooding Source

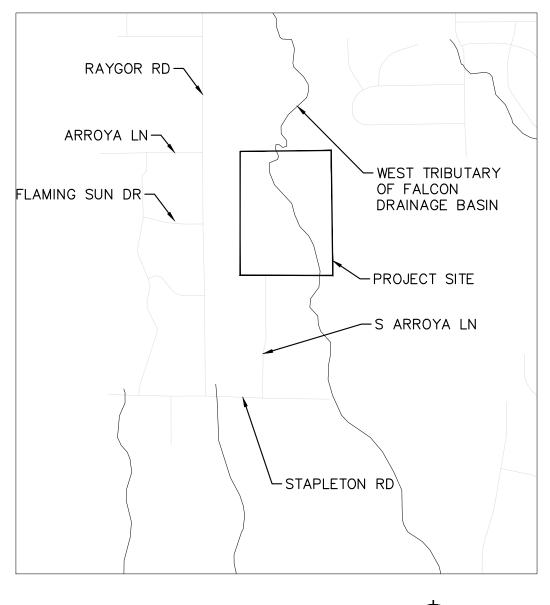

El Paso County Vertical Datum Offset Table Vertical Datum

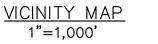
Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY

FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map


This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

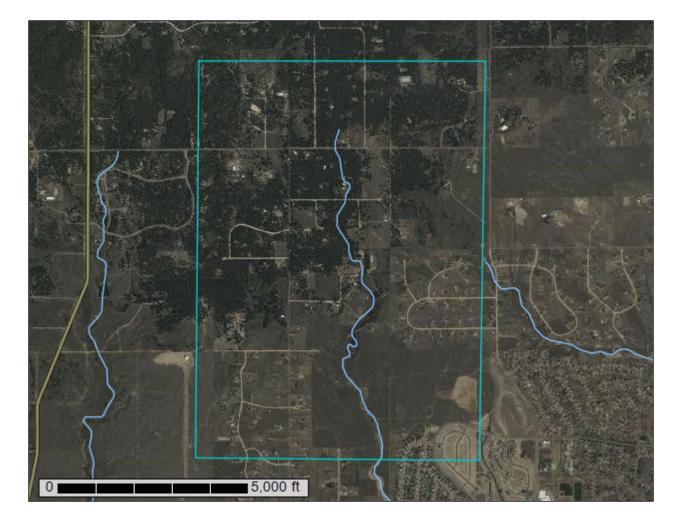


Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

	SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD	
	ual chance flood (100-year flood), also known as the base flood, is the flood 6 chance of being equaled or exceeded in any given year. The Special Flood	
Hazard Area	is the area subject to flooding by the 1% annual chance flood. Areas of Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood	
Elevation is the ZONE A	he water-surface elevation of the 1% annual chance flood. No Base Flood Elevations determined.	
ZONE AE	Base Flood Elevations determined.	
ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.	
ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also	
ZONE AR	determined. Special Flood Hazard Area Formerly protected from the 1% annual chance	
	flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to	
ZONE A99	provide protection from the 1% annual chance or greater flood. Area to be protected from 1% annual chance flood by a Federal flood	
	protection system under construction; no Base Flood Elevations determined.	
ZONE V	Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.	
ZONE VE	Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.	
	FLOODWAY AREAS IN ZONE AE	
	is the channel of a stream plus any adjacent floodplain areas that must be	
· ·	encroachment so that the 1% annual chance flood can be carried without creases in flood heights.	
	OTHER FLOOD AREAS	
ZONE X	Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1	
	square mile; and areas protected by levees from 1% annual chance flood.	
	OTHER AREAS	
ZONE X	Areas determined to be outside the 0.2% annual chance floodplain.	
ZONE D	Areas in which flood hazards are undetermined, but possible.	
	COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS	
$\sum_{i=1}^{n}$	OTHERWISE PROTECTED AREAS (OPAs)	
CBRS areas a	nd OPAs are normally located within or adjacent to Special Flood Hazard Areas.	
	Floodplain boundary	
······································	Floodway boundary Zone D Boundary	
	CBRS and OPA boundary	
	Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.	
~ 513		
(EL 987		
* Referenced	to the North American Vertical Datum of 1988 (NAVD 88)	
A	- Cross section line	
(23)	(23) Transect line	
97° 07' 30	.00" Geographic coordinates referenced to the North American	
32° 22' 30	and graphic and the second	
⁴² 75 ^{000m}	N 1000-meter Universal Transverse Mercator grid ticks, zone 13	
6000000		
	system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection	
DX5510) Bench mark (see explanation in Notes to Users section of this FIRM panel)	
M1.5	5 River Mile	
MAP REPOSITORIES Refer to Map Repositories list on Map Index		
	EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP	
EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to		
incorporate previously issued Letters of Map Revision.		
For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.		
To determine if flood insurance is available in this community, contact your insurance		
agent or call the National Flood Insurance Program at 1-800-638-6620.		
MAP SCALE 1" = 1000'		
	500 0 1000 2000	
_		
3	00 0 300 600	
(
	PANEL 0535G	
	FLOOD INSURANCE RATE MAP	
	EL PASO COUNTY,	
	COLORADO AND INCORPORATED AREAS	
	PANEL 535 OF 1300	
	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)	
	COLORADO SPRINGS, CITY OF 080060 0535 G EL PASO COUNTY 080059 0535 G	
	Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the	
	subject community.	
	08041C0535G	
	MAP REVISED	
	DECEMBER 7, 2018	
	Federal Emergency Management Agency	
ļ		

APPENDIX B: HYDROLOGY

United States Department of Agriculture


Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Eagleview

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
El Paso County Area, Colorado	13
19—Columbine gravelly sandy loam, 0 to 3 percent slopes	13
40—Kettle gravelly loamy sand, 3 to 8 percent slopes	14
41—Kettle gravelly loamy sand, 8 to 40 percent slopes	15
71—Pring coarse sandy loam, 3 to 8 percent slopes	16
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP	LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapp 1:24,000.
Soils Soil Map Unit Polygons Soil Map Unit Lines	 Very Stony Spot Wet Spot 	Please rely on the bar scale on each map sheet for neasurements.
Soil Map Unit Points	△ Other✓ Special Line Features	Source of Map: Natural Resources Conservation S Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
 Blowout Borrow Pit Clay Spot Closed Depression 	Water Features Streams and Canals Transportation Rails	Maps from the Web Soil Survey are based on the W projection, which preserves direction and shape but distance and area. A projection that preserves area, Albers equal-area conic projection, should be used i accurate calculations of distance or area are require
Gravel Pit Gravelly Spot	 Interstate Highways US Routes Major Roads 	This product is generated from the USDA-NRCS cer of the version date(s) listed below.
 Landfill Lava Flow Marsh or swamp 	Local Roads Background Aerial Photography	Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021 Soil map units are labeled (as space allows) for map
 Mine or Quarry Miscellaneous Water Perennial Water 		1:50,000 or larger. Date(s) aerial images were photographed: Sep 11, 20, 2018
Rock Outcrop Saline Spot Sandy Spot		The orthophoto or other base map on which the soil compiled and digitized probably differs from the back imagery displayed on these maps. As a result, some
 Severely Eroded Spot Sinkhole 		shifting of map unit boundaries may be evident.
Slide or Slip Sodic Spot		

pped at

or map

Service

Web Mercator ut distorts ea, such as the ed if more ired.

certified data as

ap scales

11, 2018—Oct

oil lines were ackground me minor

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	5.2	0.3%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	506.7	28.0%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	205.0	11.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	1,092.9	60.4%
Totals for Area of Interest		1,809.9	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

19—Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p Elevation: 6,500 to 7,300 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Columbine

Setting

Landform: Flood plains, fan terraces, fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam *C - 14 to 60 inches:* very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XY214CO - Gravelly Foothill Hydric soil rating: No

Minor Components

Fluvaquentic haplaquolls

Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

40—Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: F048AY908CO - Mixed Conifer Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: F048AY908CO - Mixed Conifer Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam *C - 14 to 60 inches:* gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO - Loamy Park Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

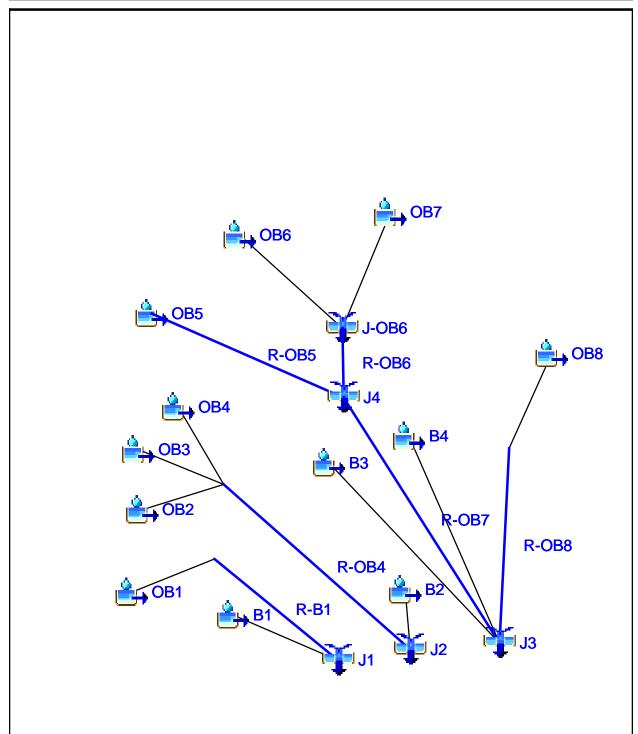
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Project : Eagleview_Subdivision

Basin Model : Eagleview_Existing Mar 11 13:21:39 MST 2022

El Paso County Chapter 5: Table 5-2 SCS 24- hr Type II Distribution for TR-20 Input											
		Minu	•								
Hour	15	30	45	60							
1	0.002	0.005	0.008	0.01							
2	0.014	0.017	0.020	0.02							
3	0.026	0.029	0.032	0.04							
4	0.038	0.041	0.044	0.05							
5	0.052	0.056	0.060	0.06							
6	0.068	0.072	0.076	0.08							
7	0.085	0.090	0.095	0.1							
8	0.105	0.110	0.115	0.12							
9	0.126	0.133	0.140	0.15							
10	0.155	0.163	0.172	0.18							
11	0.191	0.203	0.218	0.24							
12	0.257	0.283	0.387	0.66							
13	0.707	0.735	0.758	0.78							
14	0.791	0.804	0.815	0.83							
15	0.834	0.842	0.849	0.86							
16	0.863	0.869	0.875	0.88							
17	0.887	0.893	0.898	0.9							
18	0.908	0.913	0.918	0.92							
19	0.926	0.930	0.934	0.94							
20	0.942	0.946	0.950	0.95							
21	0.956	0.959	0.962	0.97							
22	0.968	0.971	0.974	0.98							
23	0.980	0.983	0.986	0.99							
24	0.992	0.995	0.998	1							

Table 6-2. 24hr Rainfall Depths for Colorado Springs										
Return Period	Depths									
2-yr	2.1									

2-yr	2.1
5-yr	2.7
10-yr	3.2
25-yr	3.6
50-yr	4.2
100-yr	4.6

		Fraction of 1-hr						
	Time (mins)	Rainfall Depth	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
	0	0	0	0	-	0	0	0
	15	0.002	0.0042	0.0054		0.0072	0.0084	0.0092
	30	0.005	0.0105	0.0135		0.018	0.021	0.023
	45	0.008	0.0168			0.0288	0.0336	0.0368
1	60	0.011	0.0231	0.0297	0.0352	0.0396	0.0462	0.0506
	75	0.014	0.0294		0.0448	0.0504	0.0588	0.0644
	90	0.017	0.0357	0.0459	0.0544	0.0612	0.0714	0.0782
2	105	0.02	0.042	0.054		0.072	0.084	0.092
2	120 135	0.023	0.0483	0.0621	0.0736	0.0828	0.0966	0.1058
		0.026	0.0546	0.0702	0.0832	0.0936	0.1092	0.1196 0.1334
	150 165	0.029	0.0609	0.0783	0.0928	0.1044	0.1218	0.1334
3	185	0.032	0.0672	0.0884	0.1024	0.1152	0.1344	0.1472
ა	180	0.035	0.0735			0.128	0.147	0.1748
	210	0.038	0.0798	0.1026	0.1216	0.1368	0.1596	0.1748
	210	0.041	0.0881	0.1107	0.1312	0.1478	0.1722	0.1886
4	225	0.044	0.0924	0.1188		0.1584	0.1848	0.2024
7	240	0.048	0.1008	0.1290	0.1530	0.1728	0.2018	0.2208
	233	0.052	0.1072	0.1404	0.1792	0.1072	0.2352	0.2576
	285	0.06	0.126		0.1772	0.2010	0.252	0.276
5	300	0.0604	0.12684	0.16308	0.19328	0.21744	0.25368	0.27784
•	315	0.068	0.1428			0.2448	0.2856	0.3128
	330	0.072	0.1512	0.1944	0.2304	0.2592	0.3024	0.3312
	345	0.076	0.1596		0.2432	0.2736	0.3192	0.3496
6	360	0.08	0.168			0.288	0.336	0.368
	375	0.085	0.1785	0.2295		0.306	0.357	0.391
	390	0.09	0.189	0.243	0.288	0.324	0.378	0.414
	405	0.095	0.1995	0.2565	0.304	0.342	0.399	0.437
7	420	0.1	0.21	0.27	0.32	0.36	0.42	0.46
	435	0.105	0.2205	0.2835	0.336	0.378	0.441	0.483
	450	0.11	0.231	0.297	0.352	0.396	0.462	0.506
	465	0.115	0.2415	0.3105	0.368	0.414	0.483	0.529
8	480	0.12	0.252	0.324	0.384	0.432	0.504	0.552
	495	0.126	0.2646	0.3402	0.4032	0.4536	0.5292	0.5796
	510	0.133	0.2793	0.3591	0.4256	0.4788	0.5586	0.6118
	525	0.14	0.294			0.504	0.588	0.644
9	540	0.147	0.3087	0.3969	0.4704	0.5292	0.6174	0.6762
	555	0.155	0.3255	0.4185	0.496	0.558	0.651	0.713
	570		0.3423		0.5216	0.5868	0.6846	0.7498
	585	0.172	0.3612	0.4644	0.5504	0.6192	0.7224	0.7912
10	600	0.181	0.3801	0.4887	0.5792	0.6516	0.7602	0.8326
	615	0.191	0.4011	0.5157	0.6112	0.6876	0.8022	0.8786
	630	0.203	0.4263	0.5481	0.6496	0.7308	0.8526	0.9338
14	645	0.218	0.4578	0.5886	0.6976	0.7848	0.9156	1.0028
11	660	0.236	0.4956	0.6372	0.7552	0.8496	0.9912	1.0856
	675	0.257	0.5397	0.6939	0.8224	0.9252	1.0794	1.1822
	690 705	0.283	0.5943		0.9056	1.0188	1.1886	1.3018
12	705	0.387	0.8127	1.0449	1.2384	1.3932	1.6254	1.7802
12	720 735	0.663	1.3923	1.7901 1.9089	2.1216 2.2624	2.3868 2.5452	2.7846 2.9694	3.0498 3.2522
		0.707	1.4847		2.2624			
	750 765	0.735	1.5435 1.5918		2.352	2.646	3.087	3.381
13		0.758		2.0466 2.0952	2.4256	2.7288 2.7936	3.1836	3.4868
13	780 795	0.776 0.791	1.6296	2.0952	2.4832		3.2592 3.3222	3.5696
	795 810		1.6611 1.6884			2.8476 2.8944	3.3222	3.6386 3.6984
	810	0.804 0.815	1.0884		2.5728	2.8944	3.3768	3.6984

14	840	0.825	1.7325	2.2275	2.64	2.97	3.465	3.795
	855	0.834	1.7514	2.2518	2.6688	3.0024	3.5028	3.8364
	870	0.842	1.7682	2.2734	2.6944	3.0312	3.5364	3.8732
	885	0.849	1.7829	2.2923	2.7168	3.0564	3.5658	3.9054
15	900	0.856	1.7976	2.3112	2.7392	3.0816	3.5952	3.9376
	915	0.863	1.8123	2.3301	2.7616	3.1068	3.6246	3.9698
	930	0.869	1.8249	2.3463	2.7808	3.1284	3.6498	3.9974
	945	0.875	1.8375	2.3625	2.8	3.15	3.675	4.025
16	960	0.881	1.8501	2.3787	2.8192	3.1716	3.7002	4.0526
	975	0.887	1.8627	2.3949	2.8384	3.1932	3.7254	4.0802
	990	0.893	1.8753	2.4111	2.8576	3.2148	3.7506	4.1078
	1005	0.898	1.8858	2.4246	2.8736	3.2328	3.7716	4.1308
17	1020	0.903	1.8963	2.4381	2.8896	3.2508	3.7926	4.1538
	1035	0.908	1.9068	2.4516	2.9056	3.2688	3.8136	4.1768
	1050	0.913	1.9173	2.4651	2.9216	3.2868	3.8346	4.1998
	1065	0.918	1.9278	2.4786	2.9376	3.3048	3.8556	4.2228
18	1080	0.922	1.9362	2.4894	2.9504	3.3192	3.8724	4.2412
	1095	0.926	1.9446	2.5002	2.9632	3.3336	3.8892	4.2596
	1110	0.93	1.953	2.511	2.976	3.348	3.906	4.278
	1125	0.934	1.9614	2.5218	2.9888	3.3624	3.9228	4.2964
19	1140	0.938	1.9698	2.5326	3.0016	3.3768	3.9396	4.3148
	1155	0.942	1.9782	2.5434	3.0144	3.3912	3.9564	4.3332
	1170	0.946	1.9866	2.5542	3.0272	3.4056	3.9732	4.3516
	1185	0.95	1.995	2.565	3.04	3.42	3.99	4.37
20	1200	0.953	2.0013	2.5731	3.0496	3.4308	4.0026	4.3838
	1215	0.956	2.0076	2.5812	3.0592	3.4416	4.0152	4.3976
	1230	0.959	2.0139	2.5893	3.0688	3.4524	4.0278	4.4114
	1245	0.962	2.0202	2.5974	3.0784	3.4632	4.0404	4.4252
21	1260	0.965	2.0265	2.6055	3.088	3.474	4.053	4.439
	1275	0.968	2.0328	2.6136	3.0976	3.4848	4.0656	4.4528
	1290	0.971	2.0391	2.6217	3.1072	3.4956	4.0782	4.4666
	1305	0.974	2.0454	2.6298	3.1168	3.5064	4.0908	4.4804
22	1320	0.977	2.0517	2.6379	3.1264	3.5172	4.1034	4.4942
	1335	0.98	2.058	2.646	3.136	3.528	4.116	4.508
	1350	0.983	2.0643	2.6541	3.1456	3.5388	4.1286	4.5218
	1365	0.986	2.0706	2.6622	3.1552	3.5496	4.1412	4.5356
23	1380	0.989	2.0769	2.6703	3.1648	3.5604	4.1538	4.5494
	1395	0.992	2.0832	2.6784	3.1744	3.5712	4.1664	4.5632
	1410	0.995	2.0895	2.6865	3.184	3.582	4.179	4.577
	1425	0.998	2.0958	2.6946	3.1936	3.5928	4.1916	4.5908
24	1440	1	2.1	2.7	3.2	3.6	4.2	4.6

IMPERVIOUS FACTOR CALCULATION TABLE - EXISTING CONDITIONS

	Basin	Area (Acre)	Open Space (2%)	Buildings (100%)	Paved Roadway (100%)	Gravel Roadway (80%)	Total % Check	Weighted Impervious
	B1	5.55	93%	0%	0%	6%	99%	7%
Onsite	B2	41.43	100%	0%	0%	0%	100%	2%
Unsite	B3	59.54	100%	0%	0%	0%	100%	2%
	B4	14.68	100%	0%	0%	0%	100%	2%
	OB1	10.37	93%	2%	4%	2%	100%	9%
	OB2	28.06	90%	3%	3%	5%	100%	11%
	OB3	43.44	92%	2%	2%	4%	100%	9%
Offsite	OB4	10.50	87%	4%	5%	4%	100%	13%
Unsite	OB5	143.82	94%	2%	1%	3%	100%	7%
	OB6	118.40	93%	1%	2%	4%	100%	8%
	OB7	421.43	93%	2%	1%	4%	100%	8%
	OB8	33.08	93%	2%	1%	5%	100%	8%
Total		930.30						10.6%

Pre-Developmen

Pre Runoff Analysis Time of Concentration

Project Information

Г

Project Name:		Eagleview	
KHA Project #:		196288000	
Designed by:	DCM	Date:	3/17/2022
Revised by:		Date:	
Checked by:	BAH	Date:	3/17/2022

Minimum Time of Concentration 5.0 2YR-24HR Rainfall, P2 2.10

Drainage Area: 081													
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)	
SHEET	T1 SHEET FLOW	300.00	0.073	0.15	2.10						17.35		
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1118.00	0.038			U				3.14	5.93		
								evelopment Time of	Concentratio	n, OB1	23.28	13.97	

Pre-Deve	elopment											
Drainage Area:	Drainage Area: OB2											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.063	0.15	2.10						18.41	ĺ
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	554.00	0.046			U				3.45	2.67	
CHANNEL	T2 CHANNEL FLOW	841.00	0.029	0.05		U	9.50	6.60	1.44	6.45	2.17	
				Pre-De	evelopment Time of	Concentratio	n, OB2	23.26	13.95			

Pre-Deve	elopment											
Drainage Area: OB3												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.074	0.15	2.10						17.26	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2436.00	0.034			U				2.97	13.65	
•		Pre-De	evelopment Time of	Concentratio	n, OB3	30.91	18.55					

FIG-Deve	alopinent											
Drainage Area:	OB4											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
		(14)	510pe, 3 (1011)	coenicient, ii	12 ()	onpared	1104, 4(11)	(14)	1 (14)	(143)	()	()
SHEET	T1 SHEET FLOW	300.00	0.042	0.15	2.10						21.65	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	783.00	0.038			U				3.16	4.13	-
CHANNEL	T2 CHANNEL FLOW	577.00	0.028	0.05		U	9.50	6.60	1.44	6.36	1.51	
							Pre-De	evelopment Time of	Concentratio	n, OB4	27.29	16.38

Pre-Dev	elopment											
Drainage Area:	OB5											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.037	0.40	2.10						49.91	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	3838.00	0.033			U				2.93	21.83	
CHANNEL	T2 CHANNEL FLOW	1407.00	0.024	0.04		U	9.50	6.60	1.44	7.36	3.19	
							Pre-De	evelopment Time of	Concentratio	n, OB5	74.93	44.96

Pre-Deve	elopment											
Drainage Area:	OB6											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.064	0.40	2.10						40.09	1
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2569.00	0.038			U				3.14	13.62	í
CHANNEL	T2 CHANNEL FLOW	2110.00	0.027	0.04		U	9.50	6.60	1.44	7.73	4.55	
							Pre-De	velopment Time of	Concentratio	n, OB6	58.25	34.95

Pre-Deve	elopment											
Drainage Area:	OB7											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.028	0.40	2.10						55.80	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2068.00	0.036			U				3.06	11.26	
CHANNEL	T3 CHANNEL FLOW	6198.00	0.03	0.04		U	12.00	22.00	0.55	4.09	25.29	
							Pre-De	evelopment Time of	Concentratio	n, OB7	92.35	55.41

Pre-Deve	elopment											(
Drainage Area:	OB8											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.029	0.15	2.10						25.10	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1117.00	0.043			U				3.34	5.57	
CHANNEL	T2 CHANNEL FLOW	762.00	0.033	0.03		U	9.50	6.60	1.44	11.43	1.11	
							Pre-De	evelopment Time of	Concentratio	n, OB8	31.78	19.07

Pre-Deve	elopment											
Drainage Area:	B1											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.027	0.15	2.10						25.83	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	368.00	0.033			U				2.91	2.11	
CHANNEL	T2 CHANNEL FLOW	210.00	0.034	0.03		U	9.50	6.60	1.44	11.68	0.30	
							Pre-D	evelopment Time o	f Concentratio	on, B1	28.24	16.94

Pre-Deve	elopment											
Drainage Area:	B2											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.022	0.15	2.10						28.04	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	737.00	0.025			U				2.55	4.82	
CHANNEL	T3 CHANNEL FLOW	1086.00	0.02	0.03		U	9.50	6.60	1.44	9.18	1.97	
							Pre-D	evelopment Time o	f Concentratio	on, B2	34.83	20.90

Pre-Dev	elopment											
Drainage Area:	B3											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
CHANNEL	T3 CHANNEL FLOW	2985.00	0.02	0.03		U	14.00	34.00	0.41	3.58	13.88	ĺ
							Pre-D	evelopment Time a	f Concentration	on, B3	13.88	8.33

Project Information

Pre Runoff Analysis Time of Concentration

Project Name:		Eagleview	
KHA Project #:		196288000	
Designed by:	DCM	Date:	3/17/2022
Revised by:		Date:	
Checked by:	BAH	Date:	3/17/2022

	Minimum Time of Concentration	5.0	minutes									
	2YR-24HR Rainfall, P2	2.10										
Pre-Deve	elopment											
Drainage Area:	B4											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.020	0.15	2.10						29.13	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	181.00	0.044			U				3.37	0.90	
CHANNEL	T2 CHANNEL FLOW	1548.00	0.033	0.03		U	9.50	6.60	1.44	11.50	2.24	
							Pre-D	evelopment Time o	f Concentratio	on, B4	32.27	19.36

Pre Runoff Analysis Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	3/17/2022
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	3/17/2022

Pre-	Development				
Drainage Area	I: OB1				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	9.79	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.38	
IMPERVIOUS	Gravel (including right of way)	В	85.00	0.20	
	CUTSOM				
COMPOSITE SC	S CURVE NUMBER - OB1	63	3.76	10.37	0.569

Pre	Pre-Development						
Drainage Are	a: OB2						
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA		
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	25.92			
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.86			
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.28			
	CUTSOM						
COMPOSITE S	CS CURVE NUMBER - OB2	64	.16	28.06	0.559		

Pre-l	Development							
Drainage Area	Drainage Area: OB3							
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA			
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	40.88				
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.89				
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.67				
	CUTSOM							
COMPOSITE SC	S CURVE NUMBER - OB3	63	.62	43.44	0.572			

Pre-	Development				
Drainage Area	: OB4				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	9.55	0.00
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.52	0.55
IMPERVIOUS	Gravel (including right of way)	В	85.00	0.43	9.95
	CUTSOM				
COMPOSITE SC.	S CURVE NUMBER - OB4	64	.71	10.50	0.545

Pre	e-Development				
Drainage Are	a : OB5				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	28.58	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	109.48	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	1.12	
IMPERVIOUS	Gravel (including right of way)	В	85.00	4.64	
	CUTSOM				
COMPOSITE S	CS CURVE NUMBER - OB5	59	.98	143.82	0.667

Pre	-Development				
Drainage Are	a: OB6				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	60.64	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	51.19	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	2.04	
IMPERVIOUS	Gravel (including right of way)	В	85.00	4.53	
	CUTSOM				
COMPOSITE S	CS CURVE NUMBER - OB6	61	.77	118.40	0.619

Pre Runoff Analysis

Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	3/17/2022
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	3/17/2022

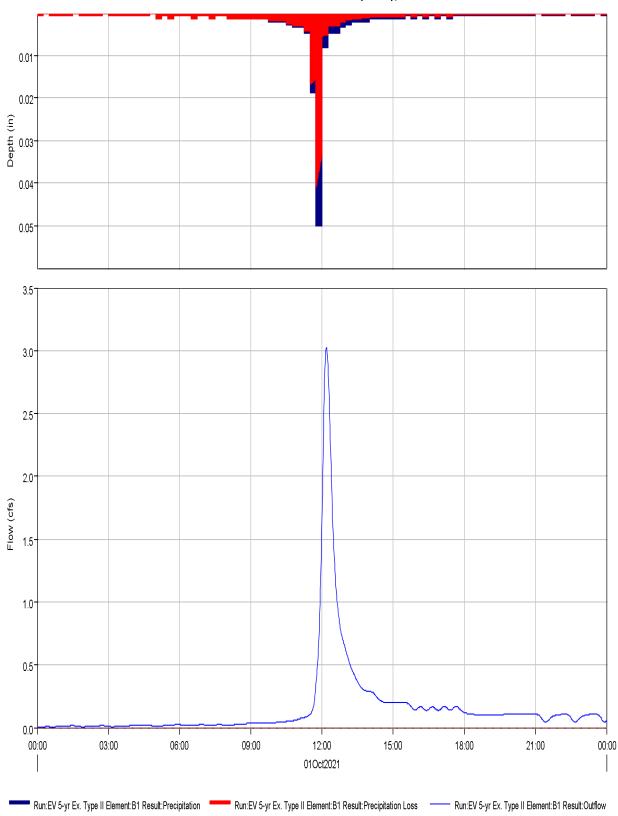
Pre-	Development				
Drainage Area	I: OB7				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, I
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	122.08	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	259.48	
RESIDENTIAL	2.5 acre	В	64.00	16.02	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	5.46	
IMPERVIOUS	Gravel (including right of way)	В	85.00	18.17	
	CUTSOM				
COMPOSITE SC	S CURVE NUMBER - OB7	61	.07	421.20	0.637

Pre-D	Development							
Drainage Area:	Drainage Area: OB8							
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA			
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	8.71				
RESIDENTIAL	2.5 acre	В	64.00	21.76				
RESIDENTIAL	1/2 acre (25% imp.)	В	71.00	0.79				
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.24				
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.57				
	CUTSOM							
COMPOSITE SCS	CURVE NUMBER - OB8	64	.89	33.07	0.541			

Pre-D	Pre-Development							
Drainage Area:	Drainage Area: B1							
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA			
OPEN_SPACE	Good condition (grass cover >75%)	В	61.00	5.55				
	CUTSOM							
COMPOSITE SC	S CURVE NUMBER - B1	61	.00	5.55	0.639			

Pre-D	evelopment				
Drainage Area:	B2				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
OPEN_SPACE	Good condition (grass cover >75%)	Α	39.00	0.61	
OPEN_SPACE	Good condition (grass cover >75%)	В	61.00	40.82	
	CUTSOM				
COMPOSITE SC	S CURVE NUMBER - B2	60).68	41.43	0.648

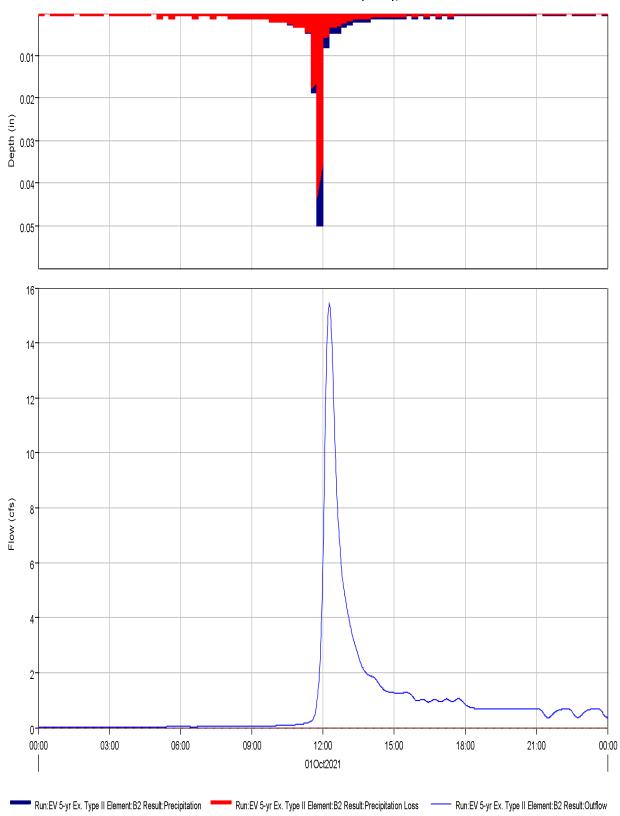
Pre-	Development				
Drainage Area	: B3				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
OPEN_SPACE	Good condition (grass cover >75%)	Α	39.00	0.28	
OPEN_SPACE	Good condition (grass cover >75%)	В	61.00	59.27	
	CUTSOM				
COMPOSITE SO	CS CURVE NUMBER - B3	60	0.90	59.54	0.642


Pre-Development							
Drainage Area:	Drainage Area: B4						
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA		
OPEN_SPACE	Good condition (grass cover >75%)	В	61.00	14.68			
	CUTSOM						
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - B4		.00	14.68	0.639		

Project: Eagleview_Subdivision Simulation Run: EV 5-yr Ex. Type II

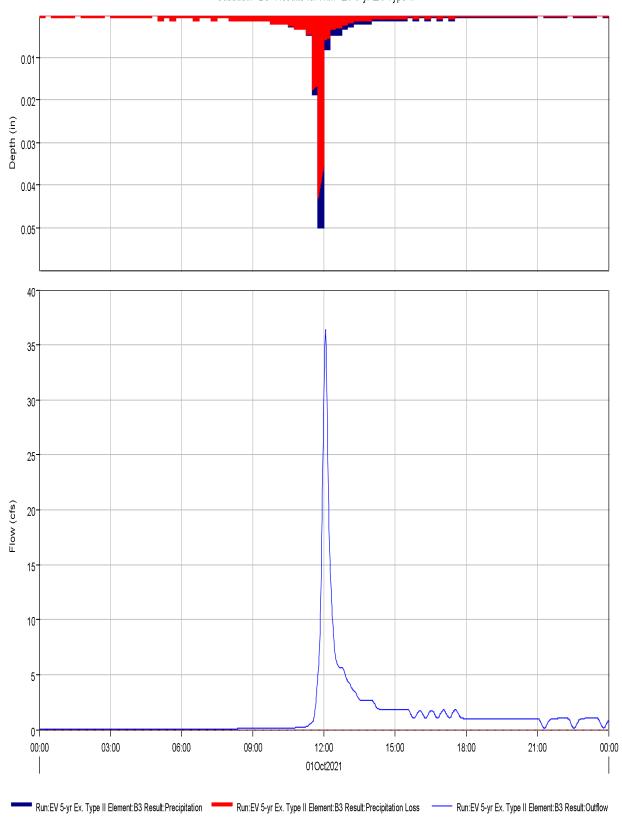
Start of Run:01Oct2021, 00:00End of Run:02Oct2021, 00:00Compute Time:11Mar2022, 14:50:40

Basin Model:Eagleview_ExistingMeteorologic Model:5-yr Type IIControl Specifications: 24-hr Storm


Hydrologic Element	Drainage Area (MI2)	Peak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
B1	0.0091800	3.0	01Oct2021, 12:11	0.3
B2	0.0647266	15.4	01Oct2021, 12:16	1.8
B3	0.0930359	36.4	01Oct2021, 12:04	2.7
B4	0.0229422	5.8	01Oct2021, 12:14	0.7
J1	0.0253831	10.1	01Oct2021, 12:11	1.0
J2	0.1928516	67.5	01Oct2021, 12:15	7.3
J3	1.2354980	183.1	01Oct2021, 12:47	42.8
J4	1.0678500	169.2	01Oct2021, 12:46	37.4
J-OB6	0.8431300	132.4	01Oct2021, 12:45	30.1
OB1	0.0162031	7.1	01Oct2021, 12:08	0.7
OB2	0.0438438	20.6	01Oct2021, 12:08	1.9
OB3	0.0678750	25.3	01Oct2021, 12:13	2.8
OB4	0.0164062	7.5	01Oct2021, 12:10	0.8
OB5	0.2247200	36.8	01Oct2021, 12:42	7.4
OB6	0.1850100	40.8	01Oct2021, 12:30	6.8
OB7	0.6581200	101.4	01Oct2021, 12:53	23.3
OB8	0.0516699	19.5	01Oct2021, 12:13	2.1
R-B1	0.0162031	7.1	01Oct2021, 12:11	0.7
R-OB4	0.1281250	52.2	01Oct2021, 12:14	5.4
R-OB5	0.2247200	36.8	01Oct2021, 12:45	7.4
R-OB6	0.8431300	132.4	01Oct2021, 12:46	30.0
R-OB7	1.0678500	169.2	01Oct2021, 12:49	37.3
R-OB8	0.0516699	19.4	01Oct2021, 12:17	2.1

Subbasin "B1" Results for Run "EV 5-yr Ex. Type II"

---- Run:EV 5-yr Ex. Type II Element:B1 Result:Baseflow


	,	agleview_Subdivision / 5-yr Ex. Type II Subbasin:	B1	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:40	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm	
Volume Units: AC-FT				
Computed Results				
Peak Discharge Total Precipitati Total Loss : Total Excess :	()	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 01Oct2021, 12:11 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT)	

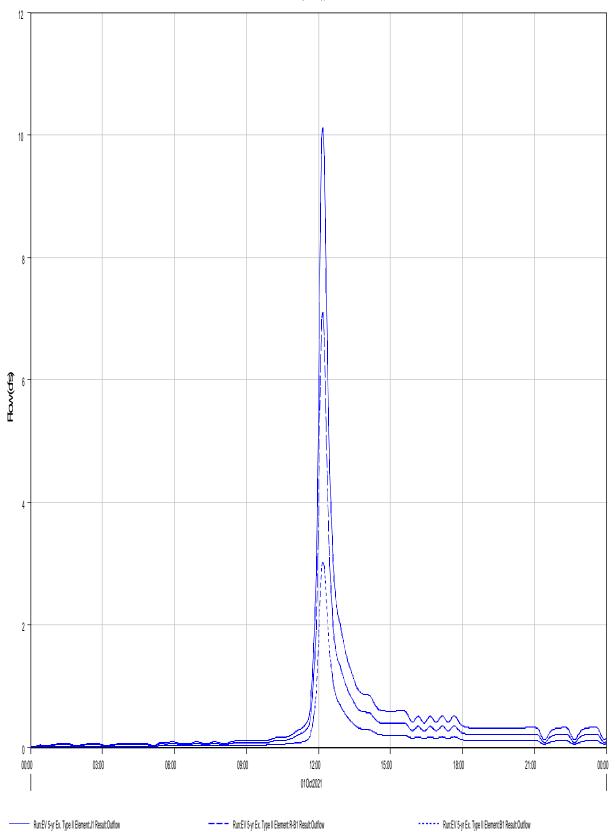
Subbasin "B2" Results for Run "EV 5-yr Ex. Type II"

---- Run:EV 5-yr Ex. Type II Element:B2 Result:Baseflow

	,	Eagleview_Subdivision V 5-yr Ex. Type II Subbasin:	B2	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:44	Basin Model: Meteorologic Model: 0 Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm	
Volume Units: AC-FT				
Computed Resul	ts			
Peak Discharge Total Precipitati Total Loss : Total Excess :	()	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 01Oct2021, 12:16 1.8 (AC-FT) 0.0 (AC-FT) 1.8 (AC-FT)	

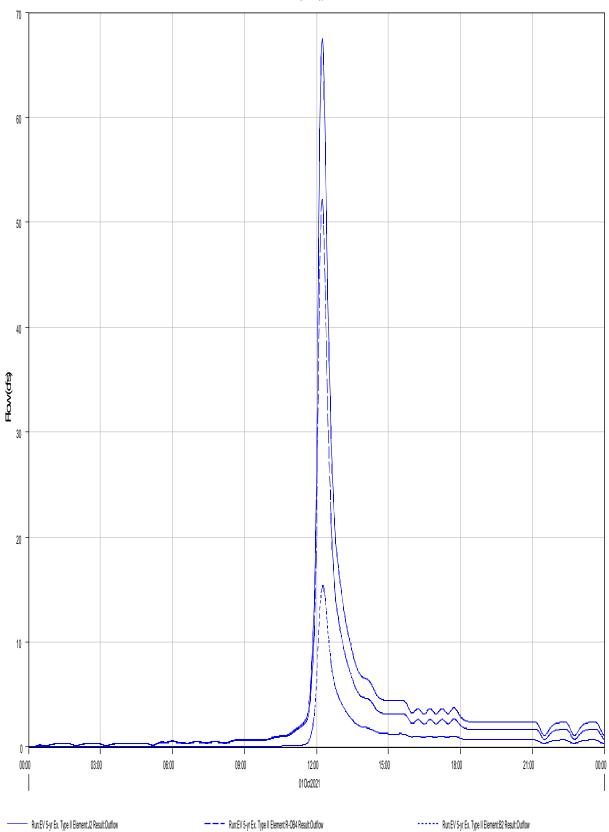
Subbasin "B3" Results for Run "EV 5-yr Ex. Type II"

---- Run:EV 5-yr Ex. Type II Element:B3 Result:Baseflow

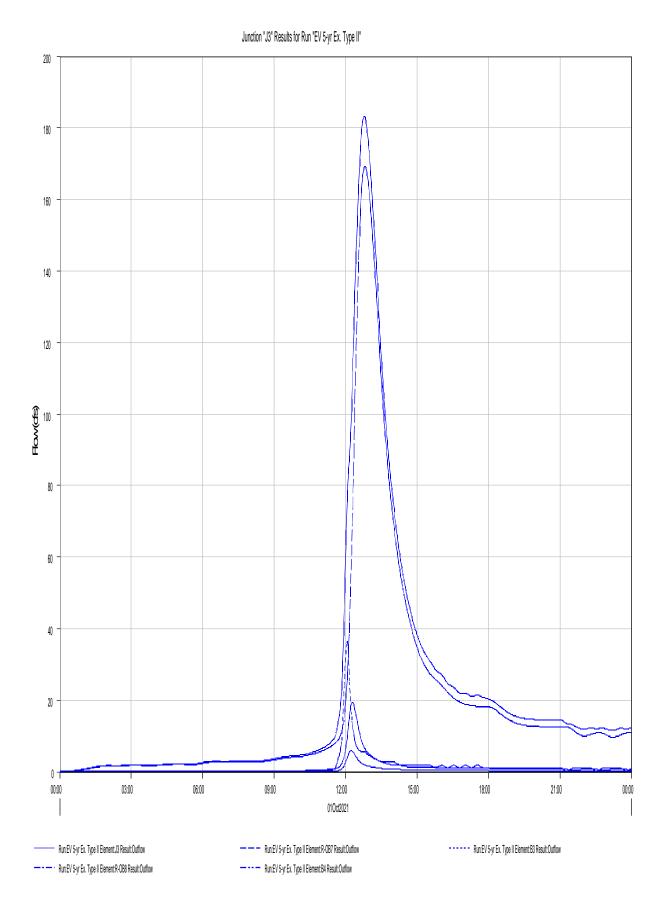

	Project: Simulation Run:	Eagleview_Subdivis EV 5-yr Ex. Type II		B3	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50	Meteorologi	c Model:	Eagleview_Existing 5-yr Type II 24-hr Storm	
	Volume I	Units: AC-F	Т		
Computed Resul	ts				
Peak Discharge	: 36.4 (CFS)	Date/Time of Pe	eak Discharge	: 01Oct2021, 12:04	
Total Precipitation	on : 13.4 (AC-FT	 Total Direct Rur 	noff:	2.7 (AC-FT)	
Total Loss :	10.7 (AC-FT	T) Total Baseflow	:	0.0 (AC-FT)	
Total Excess :	2.7 (AC-FT)	Discharge :		2.7 (AC-FT)	

Γ 0.01 0.02-Depth (in) Depth (in) 0.04-0.05-6-5-4-Flow (cfs) 3-2-1-0+ 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 01Oct2021 Run:EV 5-yr Ex. Type II Element:B4 Result:Precipitation Run:EV 5-yr Ex. Type II Element:B4 Result:Precipitation Loss -Run:EV 5-yr Ex. Type II Element:B4 Result:Outflow

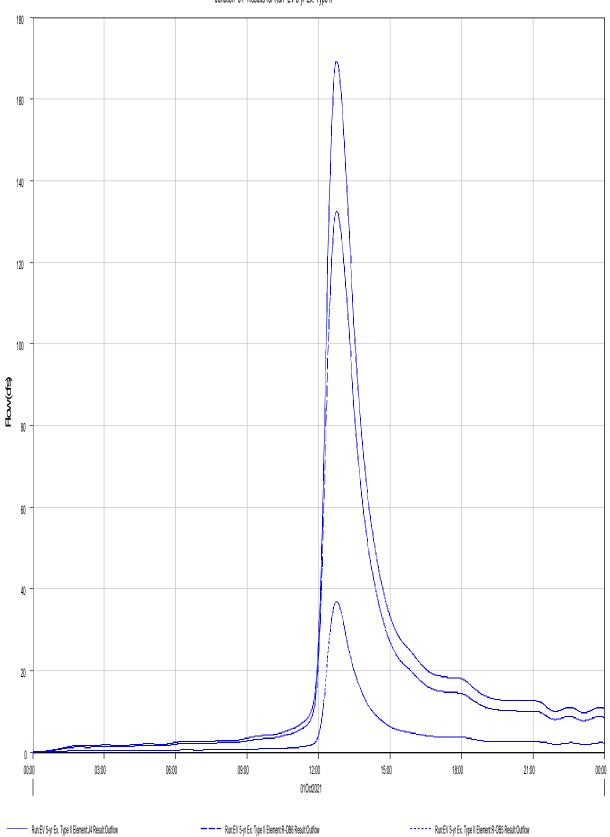
---- Run:EV 5-yr Ex. Type II Element:B4 Result:Baseflow


Subbasin "B4" Results for Run "EV 5-yr Ex. Type II"

	,	agleview_Subdivision / 5-yr Ex. Type II Subbasin:	B4	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:40	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm	
Volume Units: AC-FT				
Computed Results				
Peak Discharge Total Precipitati Total Loss : Total Excess :	()	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 01Oct2021, 12:14 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT)	

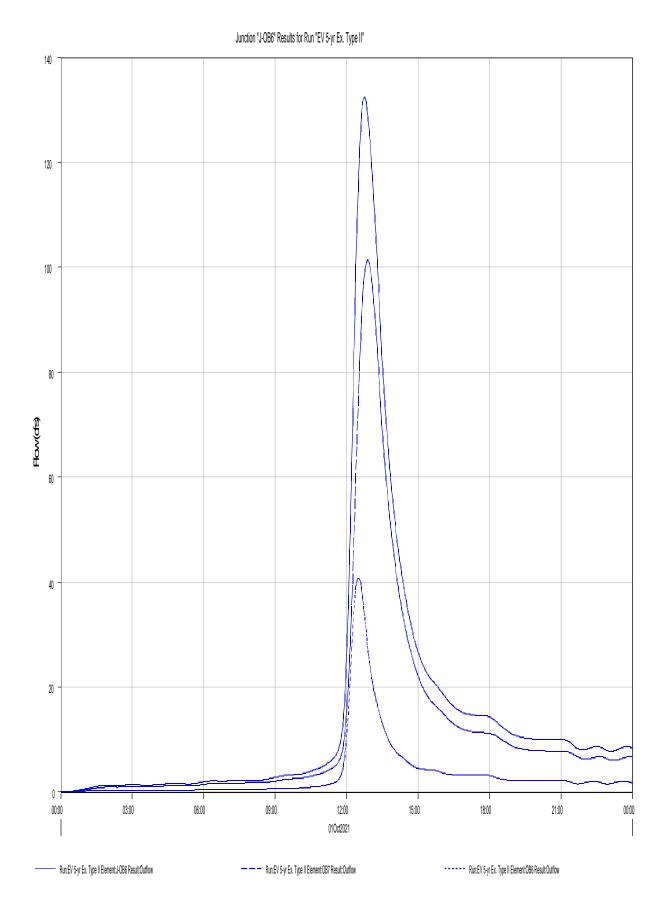

Junction "J1" Results for Run "EV 5-yr Ex. Type II"

	,	Eagleview_Subdivision EV 5-yr Ex. Type II Junction:	J1	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4 Volume Un		Eagleview_Existing 5-yr Type II 24-hr Storm	
- Computed Deculte				
Computed Results				
Peak Outflow Total Outflow	()	Date/Time of Peak Outflow :	01Oct2021, 12:11	

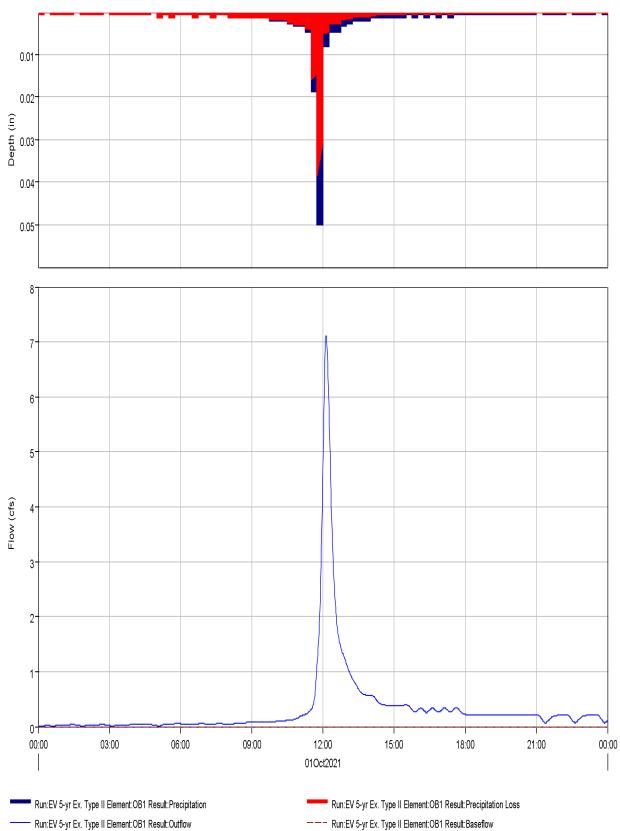


Junction "J2" Results for Run "EV 5-yr Ex. Type II"

	,	Eagleview_Subdivision EV 5-yr Ex. Type II Junction:	J2	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4 Volume Un	·	Eagleview_Existing 5-yr Type II 24-hr Storm	
Computed Res				
Peak Outflov Total Outflov		Date/Time of Peak Outflow :	01Oct2021, 12:15	

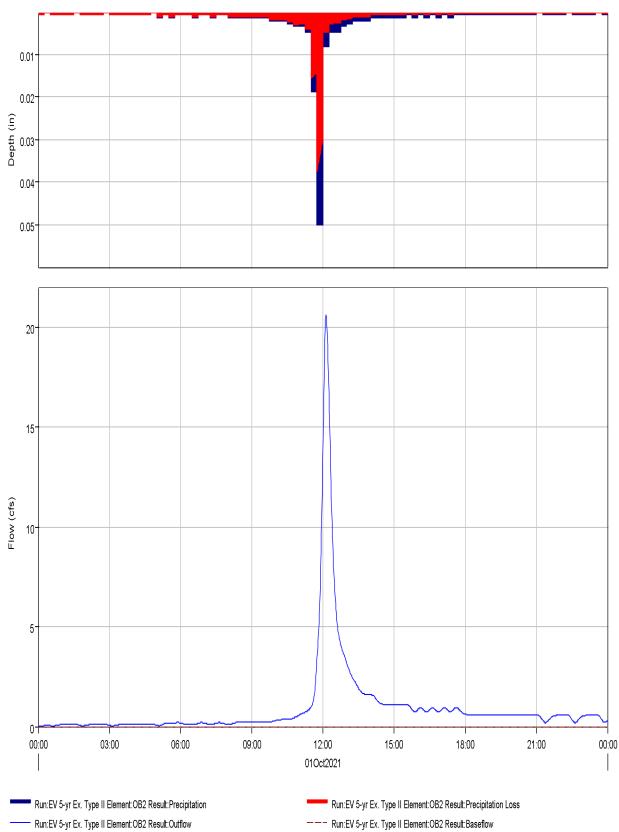


	,	Eagleview_Subdivision V 5-yr Ex. Type II Junction:	J3	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:40	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm	
	Volume Unit	ts: AC-FT		
Computed Results				
Peak Outflow Total Outflow		Date/Time of Peak Outflow :	01Oct2021, 12:47	

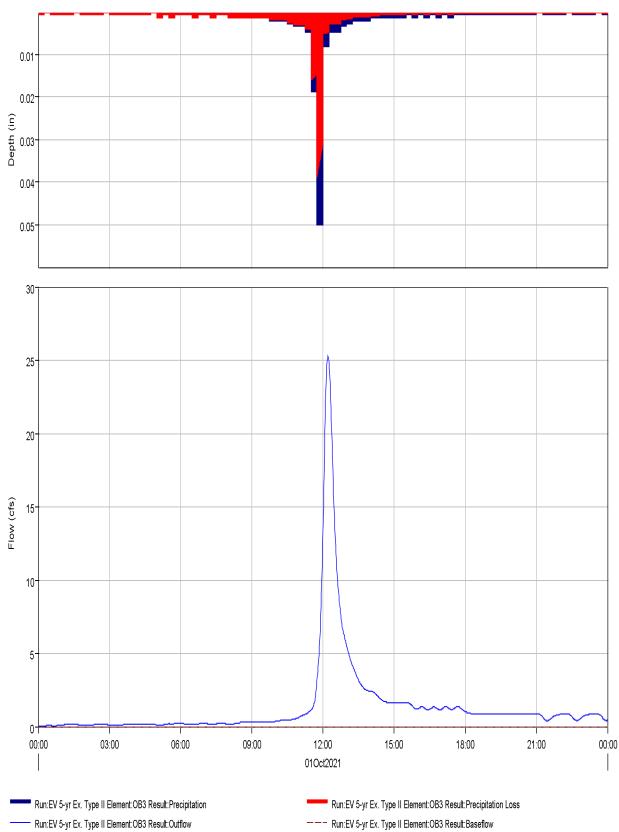


Junction "J4" Results for Run "EV 5-yr Ex. Type II"

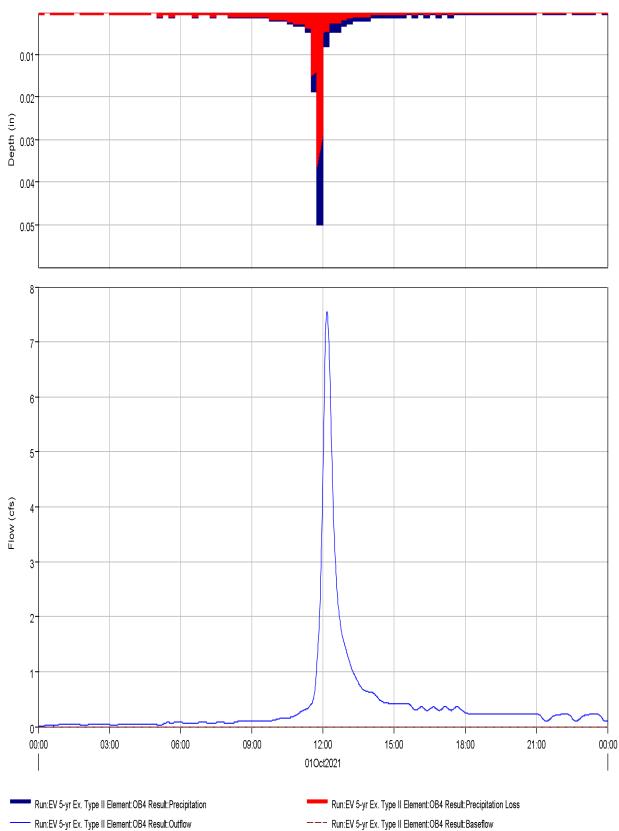
		Eagleview_Subdivision V 5-yr Ex. Type II Junction:	J4		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:40	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm		
	Volume Uni	ts: AC-FT			
Computed Results					
Peak Outflow Total Outflow		Date/Time of Peak Outflow :	01Oct2021, 12:46		



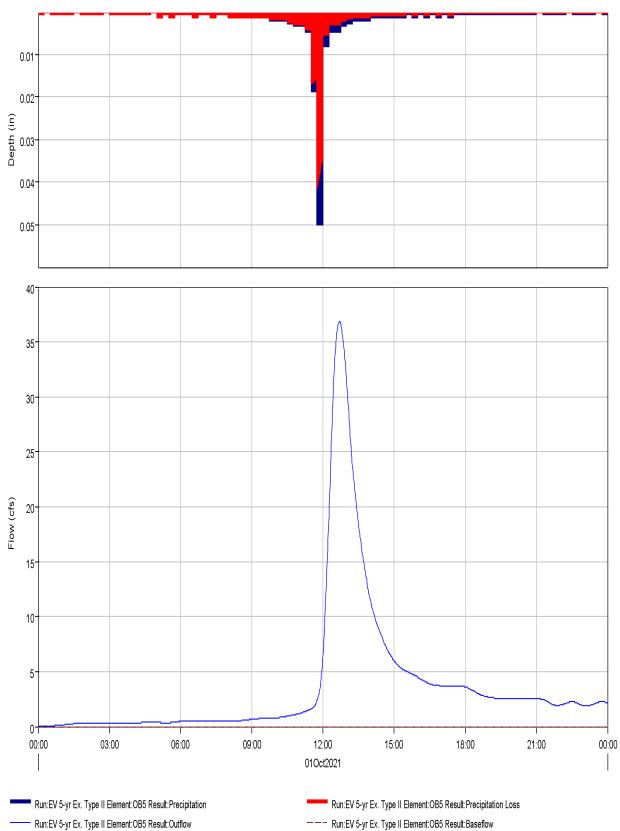
Project: Eagleview_Subdivision							
	Simulation Run: EV 5-yr Ex. Type II Junction: J-OB6						
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:40 Volume Unit	, , , , , , , , , , , , , , , , , , ,	Eagleview_Existing 5-yr Type II 24-hr Storm				
Computed Re	culte						
computed Re	Suits						
Peak Outflow		Date/Time of Peak Outflow :	01Oct2021, 12:45				
Total Outflow	v : 30.1 (AC-FT)						


Subbasin "OB1" Results for Run "EV 5-yr Ex. Type II"

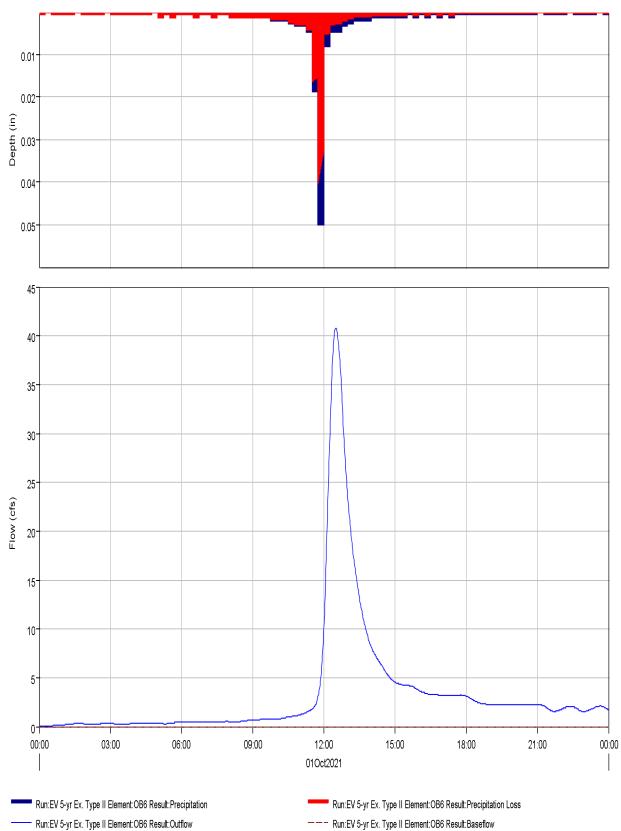
	P Simulation F	•	Ũ	view_Subdiv Ex. Type II		OB	1	
	Simulation	nu∏. ⊏∖	v S-yr	Ex. Type II	Suppasin.	UD		
Start of Run:	01Oct2021	I, 00:00		Basin Mod	el:	Ea	agleview_Existing	
End of Run:	02Oct2021	I, 00:00		Meteorolog	jic Model:	5-	yr Type II	
Compute Time:	11Mar202	2, 14:50:4	0	Control Sp	ecifications:	24	1-hr Storm	
Volume Units: AC-FT								
Computed Resu	lts							
Peak Discharge	e: 7.1	(CFS)	Dat	te/Time of P	eak Dischar	ge :	01Oct2021, 12:08	3
Total Precipitati	ion : 2.3	(AC-FT)	Tot	al Direct Ru	noff :		0.7 (AC-FT)	
Total Loss :	1.7	(AC-FT)	Tot	al Baseflow	:		0.0 (AC-FT)	
Total Excess :	0.7	(AC-FT)	Dis	charge :			0.7 (AC-FT)	


Subbasin "OB2" Results for Run "EV 5-yr Ex. Type II"

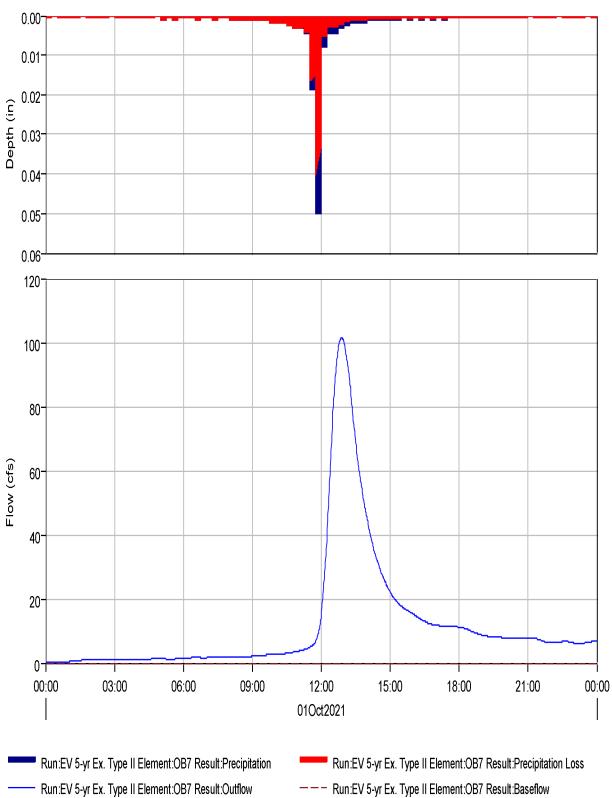
	Project: Simulation Run: E	Eagleview_Subdivision V 5-yr Ex. Type II Subbasin:	OB2			
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4	Basin Model: Meteorologic Model: 40 Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm			
Volume Units: AC-FT						
Computed Resul	lts					
Peak Discharge Total Precipitat Total Loss : Total Excess :	()	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Oct2021, 12:08 1.9 (AC-FT) 0.0 (AC-FT) 1.9 (AC-FT)			


Subbasin "OB3" Results for Run "EV 5-yr Ex. Type II"

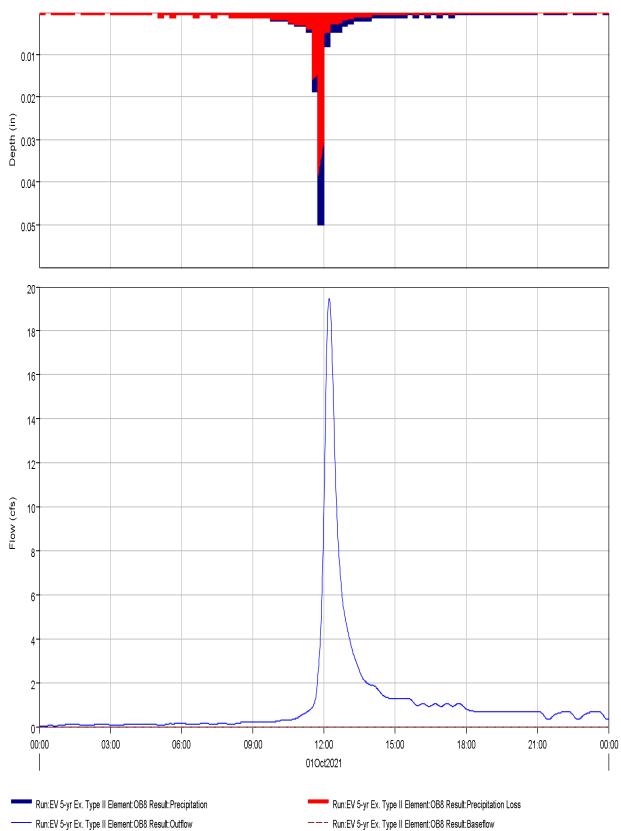
	Project: Simulation Run: E	Eagleview_Subdivision V 5-yr Ex. Type II Subbasin:	OB3
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4	Basin Model: Meteorologic Model: 40 Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm
	Volume U	nits: AC-FT	
Computed Resul	Its		
Peak Discharge Total Precipitat Total Loss : Total Excess :	· · · ·	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	ge : 01Oct2021, 12:13 2.8 (AC-FT) 0.0 (AC-FT) 2.8 (AC-FT)


Subbasin "OB4" Results for Run "EV 5-yr Ex. Type II"

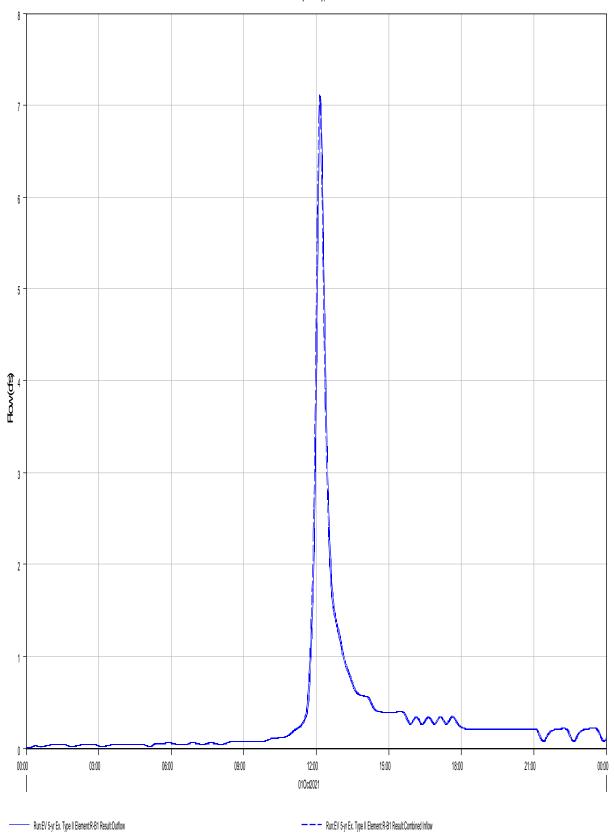
Project: Eagleview_Subdivision							
	Simulation Run	: EV 5-y	r Ex. Type II	Subbasin:	OB4		
Start of Run: End of Run: Compute Time:	01Oct2021, 0 02Oct2021, 0 11Mar2022, 1	0:00	Basin Mod Meteorolog Control Sp		5-y	gleview_Existing r Type II hr Storm	
Volume Units: AC-FT							
Computed Resu	lts						
Peak Discharge	e : 7.5 (CF	S) D	ate/Time of P	eak Discharge	e:	01Oct2021, 12:10	
Total Precipitati		,	otal Direct Ru	noff :		0.8 (AC-FT)	
Total Loss :	1.6 (AC	,	otal Baseflow	:		0.0 (AC-FT)	
Total Excess :	0.8 (AC	-FT) D	ischarge :			0.8 (AC-FT)	


Subbasin "OB5" Results for Run "EV 5-yr Ex. Type II"

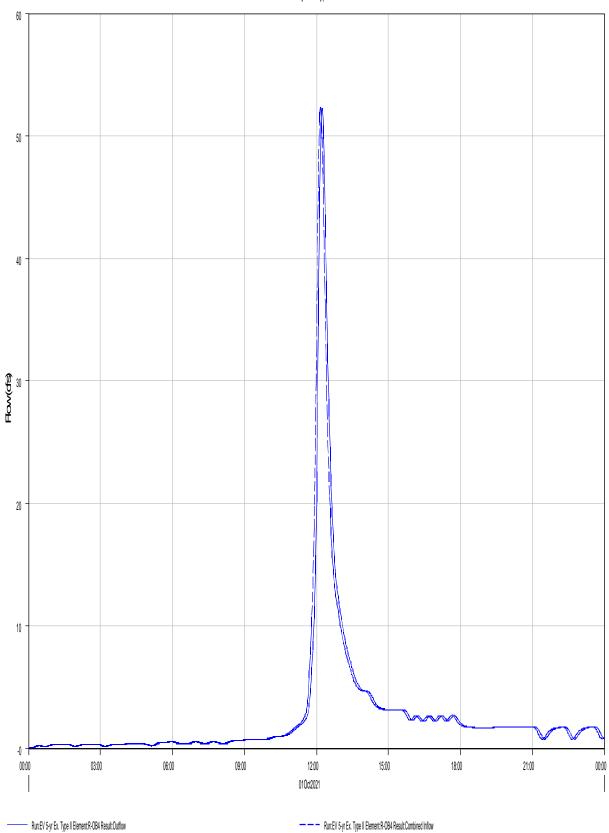
	Project Simulation Run:	•	iew_Subdiv Ex. Type II	ision Subbasin:	OB5		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:0 02Oct2021, 00:0 11Mar2022, 14:	00	Basin Mode Meteorolog Control Spe		Eagley 5-yr T 24-hr		
	Volume	e Units:	AC-F	Т			
Computed Resul	ts						
Peak Discharge	: 36.8 (CFS) Dat	e/Time of P	eak Discharg	je: 0	1Oct2021, 12:42	
Total Precipitation	on : 32.4 (AC-F	T) Tot	al Direct Ru	noff:	7	.4 (AC-FT)	
Total Loss :	24.8 (AC-F	T) Tot	al Baseflow	:	0	.0 (AC-FT)	
Total Excess :	7.6 (AC-F	T) Dise	charge :		7	.4 (AC-FT)	


Subbasin "OB6" Results for Run "EV 5-yr Ex. Type II"

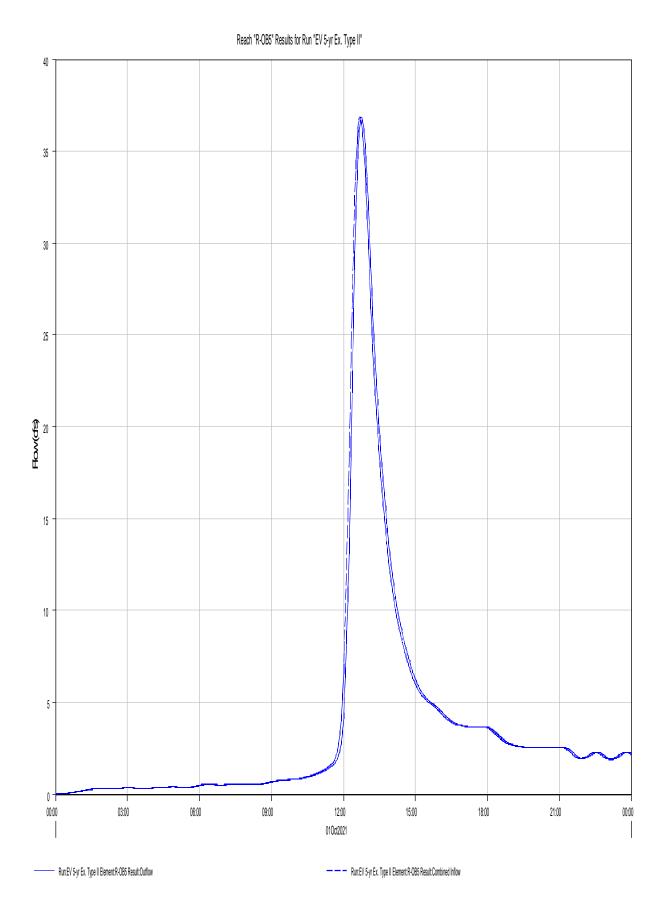
	Proje Simulation Run:	•	eview_Subdiv Ex. Type II	ision Subbasin:	OB6	
Start of Run: End of Run: Compute Time:	01Oct2021, 00 02Oct2021, 00 11Mar2022, 14	:00	Basin Mode Meteorolog Control Spe		Eaglevi 5-yr Typ 24-hr Si	
	Volun	ne Units:	AC-F	T		
Computed Resul	ts					
Peak Discharge	: 40.8 (CF	S) Da	ate/Time of F	eak Discharg	e: 010	Oct2021, 12:30
Total Precipitation	on : 26.6 (AC	-FT) To	otal Direct Ru	inoff:	6.8	B (AC-FT)
Total Loss :	19.8 (AC	-FT) To	otal Baseflow	:	0.0) (AC-FT)
Total Excess :	6.9 (AC-	=T) Di	scharge :		6.8	3 (AC-FT)


Subbasin "OB7" Results for Run "EV 5-yr Ex. Type II"

Project: Eagleview_Subdivision						
	Simulation Run:	EV 5-yr Ex. Type I	Subbasin:	OB7		
Start of Run:	01Oct2021, 00:0	00 Basin Mo	del:	Eagleview_Existing		
End of Run:	02Oct2021, 00:0	00 Meteorolo	ogic Model:	5-yr Type II		
Compute Time:	11Mar2022, 14:	50:40 Control S	pecifications:	24-hr Storm		
Volume Units: AC-FT						
Computed Results						
Peak Discharge	: 101.4 (CF	S) Date/Time of	Peak Discharge	: 01Oct2021, 12:53		
Total Precipitati	on : 94.8 (AC-F	FT) Total Direct F	Runoff :	23.3 (AC-FT)		
Total Loss :	70.9 (AC-F	FT) Total Baseflo	w :	0.0 (AC-FT)		
Total Excess :	23.9 (AC-F	FT) Discharge :		23.3 (AC-FT)		


Subbasin "OB8" Results for Run "EV 5-yr Ex. Type II"

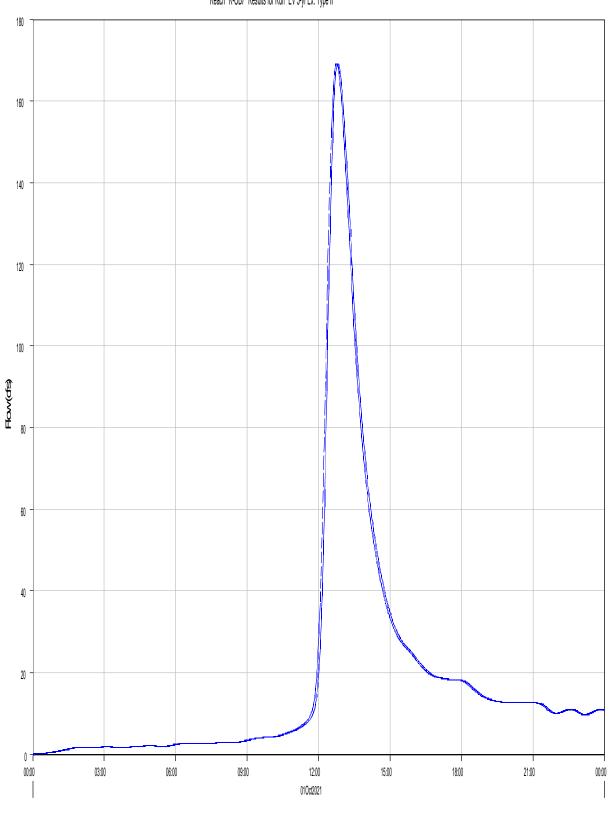
	Project: Simulation Run:	Eagleview_Subdivision EV 5-yr Ex. Type II Subb	pasin: OB8			
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50	Meteorologic Mo	, ,,			
Volume Units: AC-FT						
Computed Resul	lts					
Peak Discharge Total Precipitat Total Loss : Total Excess :	()) Total Baseflow :	ischarge : 01Oct2021, 12:13 2.1 (AC-FT) 0.0 (AC-FT) 2.1 (AC-FT)			


Reach "R-B1" Results for Run "EV 5-yr Ex. Type II"

		Eagleview_Subdivision EV 5-yr Ex. Type II Reach:	R-B1		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4	Basin Model: Meteorologic Model: O Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm		
	Volume Un	its: AC-FT			
Computed Results					
Peak Inflow	: 7.1 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:08		
Peak Outflow	v: 7.1 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:11		
Total Inflow	: 0.7 (AC-FT)	Total Outflow :	0.7 (AC-FT)		

Reach "R-OB4" Results for Run "EV 5-yr Ex. Type II"

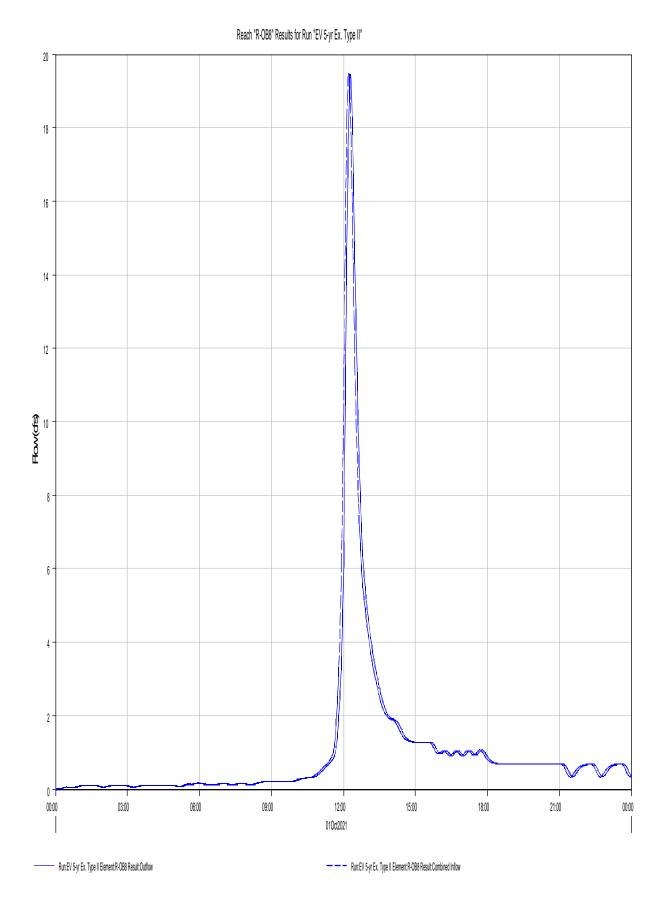
	Project:	Eagleview_Subdivision	
	Simulation Run: E	V 5-yr Ex. Type II Reach: I	R-OB4
Start of Run:	01Oct2021, 00:00	Basin Model:	Eagleview_Existing
End of Run:	02Oct2021, 00:00	Meteorologic Model:	5-yr Type II
Compute Time:	11Mar2022, 14:50:4	40 Control Specifications:	24-hr Storm
	Volume Ur	nits: AC-FT	
Computed Re	sults		
Peak Inflow	: 52.3 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:10
Peak Outflo	w : 52.2 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:14
Total Inflow	: 5.4 (AC-FT)	Total Outflow :	5.4 (AC-FT)


Project: Eagleview_Subdivision Simulation Run: EV 5-yr Ex. Type II Reach: R-OB5								
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4	Basin Model: Meteorologic Model:	Eagleview_Existing 5-yr Type II 24-hr Storm					
Volume Units: AC-FT								
Computed Results								
Peak Inflow	: 36.8 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:42					
Peak Outflo		Date/Time of Peak Outflow :	01Oct2021, 12:45					
Total Inflow	: 7.4 (AC-FT)	Total Outflow :	7.4 (AC-FT)					

Run:EV 5-yr Ex. Type II Element:R-OB6 Result:Outflow

——— Run: EV 5-yr Ex. Type II Element:R-OB6 Result:Combined Inflow

Project: Eagleview_Subdivision Simulation Run: EV 5-yr Ex. Type II Reach: R-OB6								
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 14:50:4	Basin Model: Meteorologic Model: 0 Control Specifications:	Eagleview_Existing 5-yr Type II 24-hr Storm					
Volume Units: AC-FT								
Computed Results								
Peak Inflow	: 132.4 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:45					
Peak Outflow	w: 132.4 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:46					
Total Inflow	: 30.1 (AC-FT)	Total Outflow :	30.0 (AC-FT)					



Reach "R-OB7" Results for Run "EV 5-yr Ex. Type II"

Run:EV 5-yr Ex. Type II Element:R-OB7 Result:Outflow

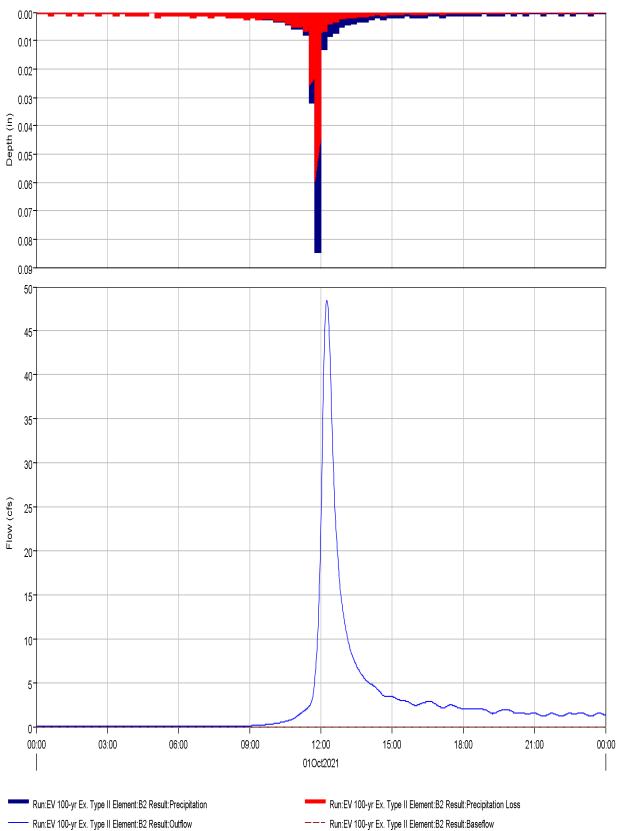
——— Run: EV 5-yr Ex. Type II Element:R-OB7 Result:Combined Inflow

Project: Eagleview_Subdivision								
	Simulation Run: E\	/ 5-yr Ex. Type II Reach: R	-OB7					
Start of Run: End of Run:	01Oct2021, 00:00 02Oct2021, 00:00	Basin Model: Meteorologic Model:	Eagleview_Existing 5-yr Type II					
Compute Time:	11Mar2022, 14:50:4	0 Control Specifications:	24-hr Storm					
	Volume Uni	its: AC-FT						
Computed Re	sults							
Peak Inflow	: 169.2 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:46					
Peak Outflow	<i>w</i> : 169.2 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:49					
Total Inflow	: 37.4 (AC-FT)	Total Outflow :	37.3 (AC-FT)					

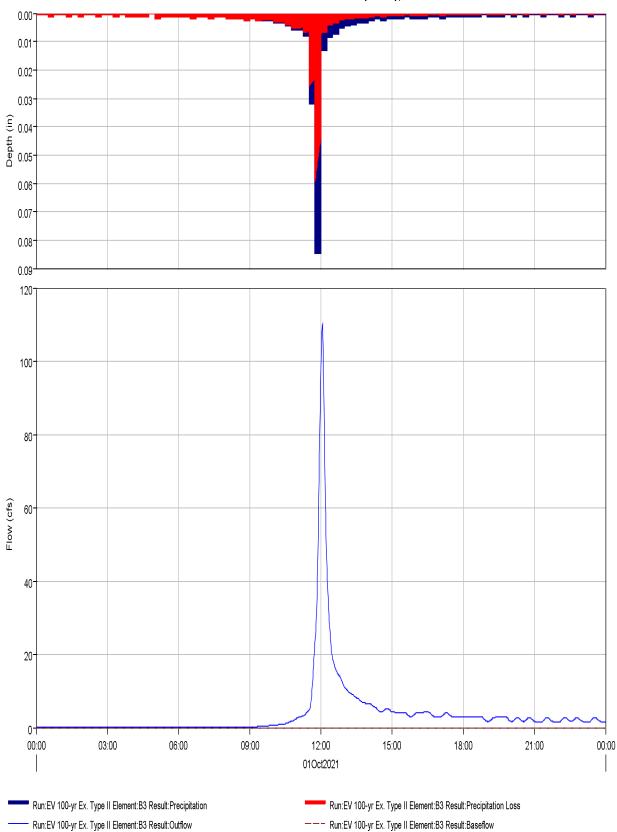
Project: Eagleview_Subdivision								
	Simulation Run: E	V 5-yr Ex. Type II Reach: I	R-OB8					
Start of Run:	01Oct2021, 00:00	Basin Model:	Eagleview_Existing					
End of Run:	02Oct2021, 00:00	Meteorologic Model:	5-yr Type II					
Compute Time:	11Mar2022, 14:50:4	40 Control Specifications:	24-hr Storm					
	Volume Ur	nits: AC-FT						
Computed Re	Computed Results							
Peak Inflow	: 19.5 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:13					
Peak Outflo	w : 19.4 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:17					
Total Inflow	: 2.1 (AC-FT)	Total Outflow :	2.1 (AC-FT)					

Project: Eagleview_Subdivision Simulation Run: EV 100-yr Ex. Type II

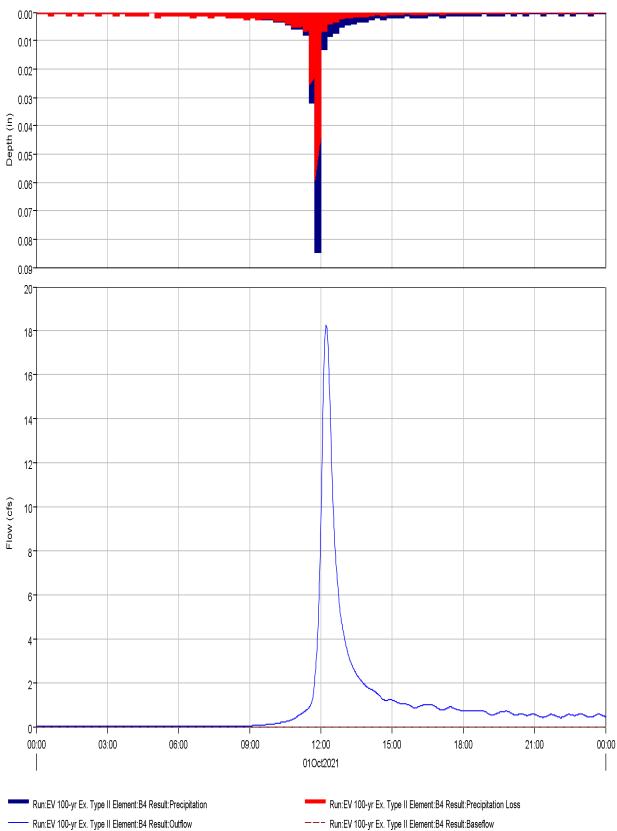
Start of Run:01Oct2021, 00:00End of Run:02Oct2021, 00:00Compute Time:11Mar2022, 10:12:01


Basin Model:Eagleview_ExistingMeteorologic Model:100-yr Type IIControl Specifications: 24-hr Storm

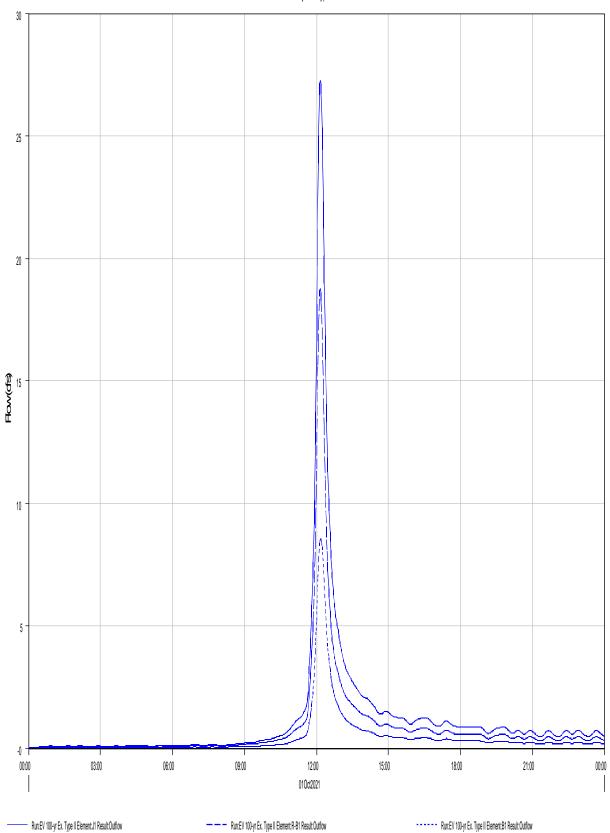
Hydrologic Element	Drainage Area (MI2)	Peak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
B1	0.0091800	8.5	01Oct2021, 12:11	0.8
B2	0.0647266	48.5	01Oct2021, 12:15	5.3
B3	0.0930359	110.0	01Oct2021, 12:04	7.8
B4	0.0229422	18.2	01Oct2021, 12:13	1.9
J1	0.0253831	27.3	01Oct2021, 12:10	2.5
J2	0.1928516	183.8	01Oct2021, 12:13	18.8
J3	1.2354980	515.5	01Oct2021, 12:44	112.7
J4	1.0678500	478.0	01Oct2021, 12:44	97.8
J-OB6	0.8431300	371.3	01Oct2021, 12:43	78.1
OB1	0.0162031	18.8	01Oct2021, 12:08	1.7
OB2	0.0438438	52.7	01Oct2021, 12:08	4.7
OB3	0.0678750	67.1	01Oct2021, 12:12	6.9
OB4	0.0164062	18.9	01Oct2021, 12:10	1.8
OB5	0.2247200	106.9	01Oct2021, 12:40	19.7
OB6	0.1850100	113.2	01Oct2021, 12:29	17.5
OB7	0.6581200	284.2	01Oct2021, 12:52	60.6
OB8	0.0516699	51.6	01Oct2021, 12:13	5.4
R-B1	0.0162031	18.7	01Oct2021, 12:10	1.7
R-OB4	0.1281250	135.8	01Oct2021, 12:13	13.4
R-OB5	0.2247200	106.8	01Oct2021, 12:43	19.7
R-OB6	0.8431300	371.3	01Oct2021, 12:44	78.1
R-OB7	1.0678500	477.9	01Oct2021, 12:46	97.7
R-OB8	0.0516699	51.5	01Oct2021, 12:16	5.4


Subbasin "B1" Results for Run "EV 100-yr Ex. Type II"

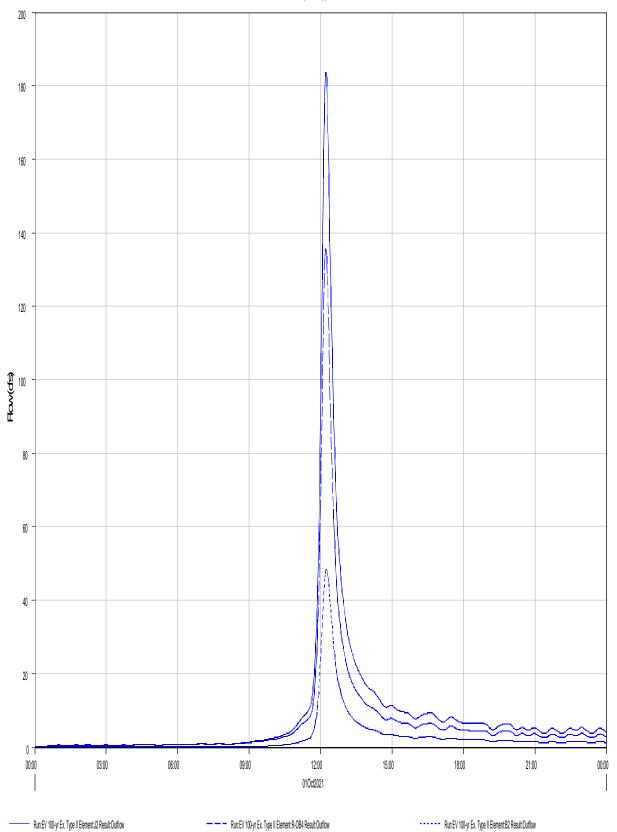
	Simulat	Project ion Run:	•	eview_Subdivis -yr Ex. Type II	sion Subbasin:	B1		
Start of Run: End of Run: Compute Time:	02Oc	t2021, 00:0 t2021, 00:0 r2022, 10:	00	Basin Model Meteorologic Control Spec	Model:	100-	eview_Existing yr Type II r Storm	
		Volume	e Units:	AC-F	Г			
Computed Resu	ilts							
Peak Discharge	e:	8.5 (CFS)	D	ate/Time of Pea	ak Discharge	: (01Oct2021, 12:11	
Total Precipitati	ion :	2.3 (AC-F	T) To	otal Direct Rund	off:	(0.8 (AC-FT)	
Total Loss :		1.4 (AC-F	T) To	otal Baseflow :		(0.0 (AC-FT)	
Total Excess :		0.8 (AC-F	T) D	ischarge :		(0.8 (AC-FT)	


Subbasin "B2" Results for Run "EV 100-yr Ex. Type II"

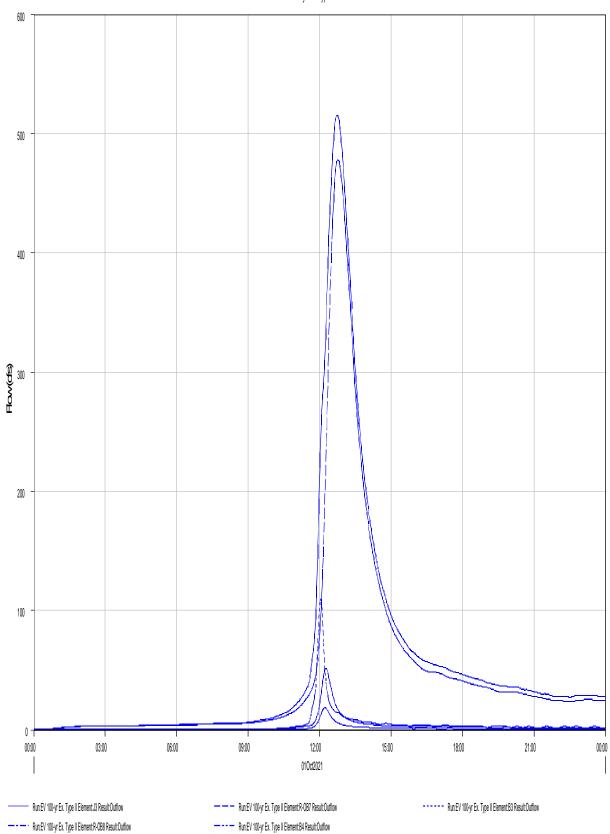
:	Pr Simulation Ri	,	agleview_Subd 100-yr Ex. Type		sin: B2		
Start of Run: End of Run: Compute Time:	01Oct2021 02Oct2021 11Mar2022	, 00:00		del: ogic Model: pecification:	100	gleview_Existing -yr Type II hr Storm	
	Vo	olume Unit	s: AC	-FT			
Computed Resul	ts						
Peak Discharge	: 48.5 ((CFS)	Date/Time of	Peak Disch	arge :	01Oct2021, 12	:15
Total Precipitation	on: 15.9 ((AC-FT)	Total Direct F	Runoff :		5.3 (AC-FT)	
Total Loss :	10.5 ((AC-FT)	Total Baseflo	w :		0.0 (AC-FT)	
Total Excess :	5.4 (A	AC-FT)	Discharge :			5.3 (AC-FT)	


Subbasin "B3" Results for Run "EV 100-yr Ex. Type II"

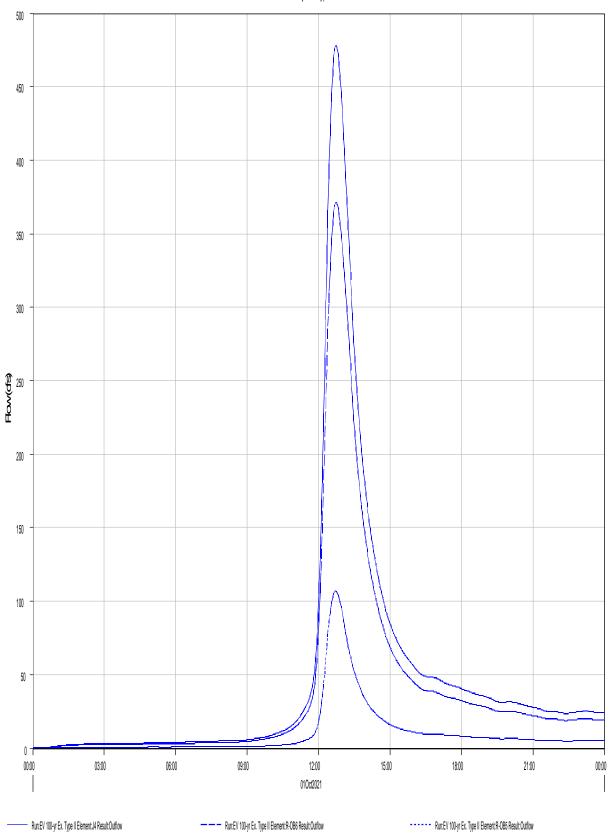
	Project:	Eagleview_Subdivisi	on	
	Simulation Run:	EV 100-yr Ex. Type II	Subbasin:	B3
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12	Meteorologic	Model:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume	Units: AC-FT		
Computed Resul	ts			
Peak Discharge Total Precipitati Total Loss :	on : 22.8 (AC-FT 15.0 (AC-FT	 Total Direct Rund Total Baseflow : 	•	7.8 (AC-FT) 0.0 (AC-FT)
Total Excess :	7.8 (AC-FT)	Discharge :		7.8 (AC-FT)


Subbasin "B4" Results for Run "EV 100-yr Ex. Type II"

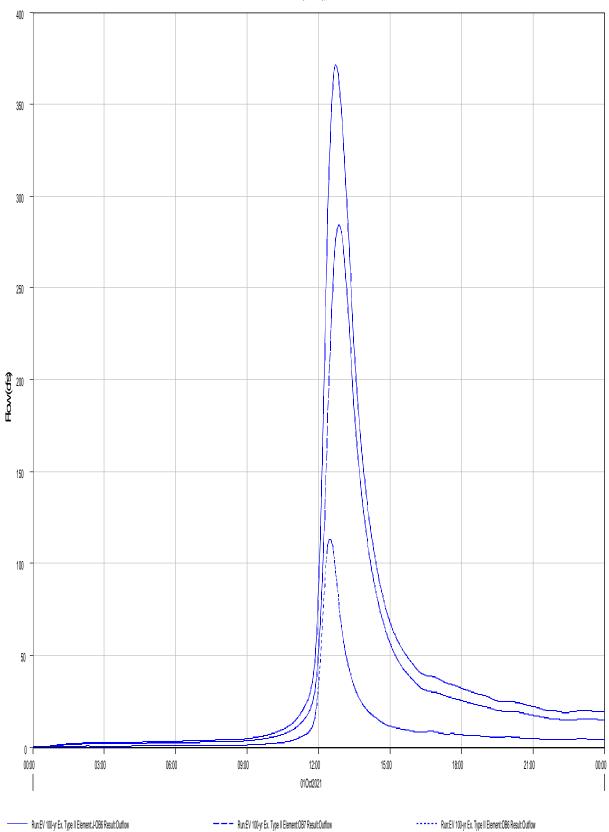
	Project: Simulation Run: E	Eagleview_Subdivision V 100-yr Ex. Type II	on Subbasin:	B4
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:	Basin Model: Meteorologic 01 Control Specif	Model:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume U	nits: AC-FT		
Computed Resul	ts			
Peak Discharge	()	Date/Time of Peak	0	
Total Precipitati	(/	Total Direct Runof	f:	1.9 (AC-FT)
Total Loss :	3.7 (AC-FT)	Total Baseflow :		0.0 (AC-FT)
Total Excess :	1.9 (AC-FT)	Discharge :		1.9 (AC-FT)


Junction "J1" Results for Run "EV 100-yr Ex. Type II"

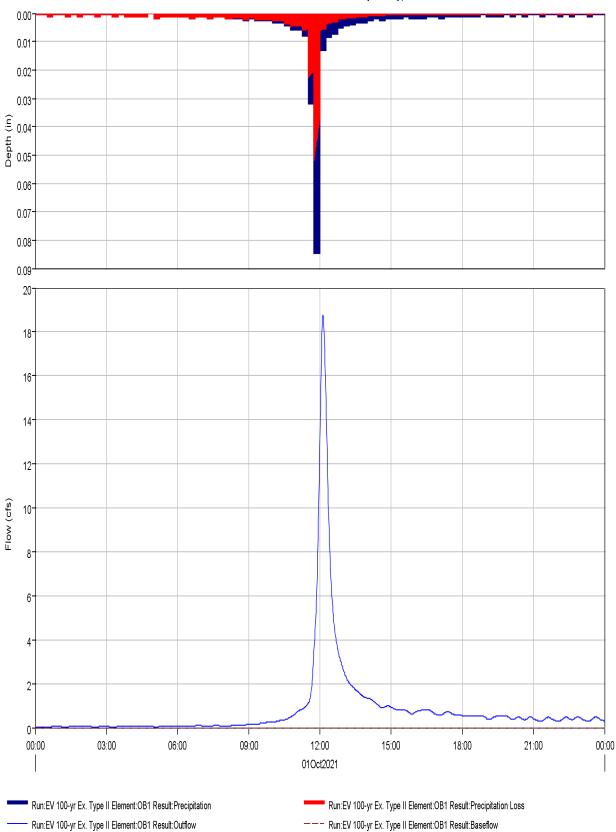
	Project:	Eagleview_Subdivision	
	Simulation Run: E	V 100-yr Ex. Type II Junction:	J1
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:0	Basin Model: Meteorologic Model: 01 Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume Ur	nits: AC-FT	
Computed Re	esults		
Peak Outflo Total Outflo		Date/Time of Peak Outflow :	01Oct2021, 12:10


Junction "J2" Results for Run "EV 100-yr Ex. Type II"

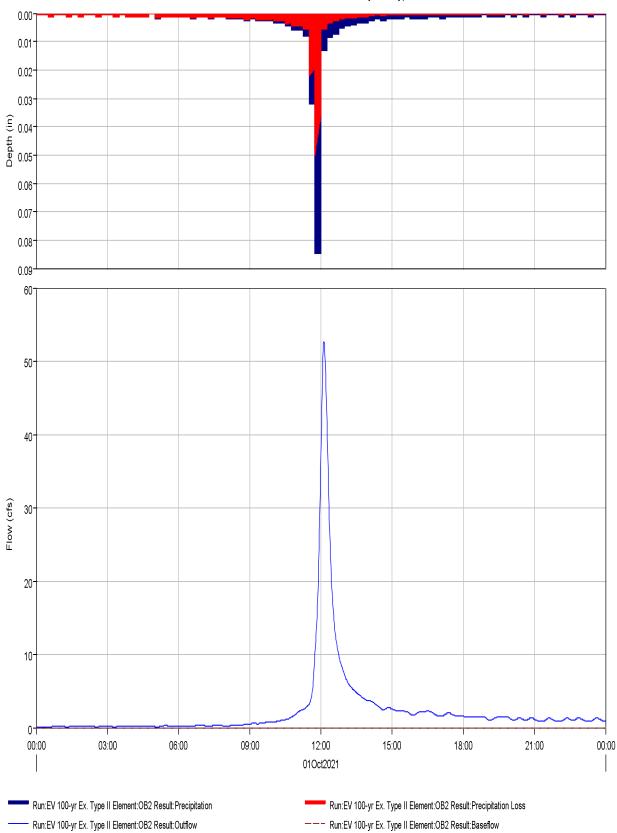
		agleview_Subdivision 100-yr Ex. Type II Junction:	J2
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:01 Volume Unit	·	Eagleview_Existing 100-yr Type II 24-hr Storm
		5. AU-FT	
Computed Re		Date/Time of Peak Outflow :	01Oct2021, 12:13
Total Outflow	()		010012021, 12.10


Junction "J3" Results for Run "EV 100-yr Ex. Type II"

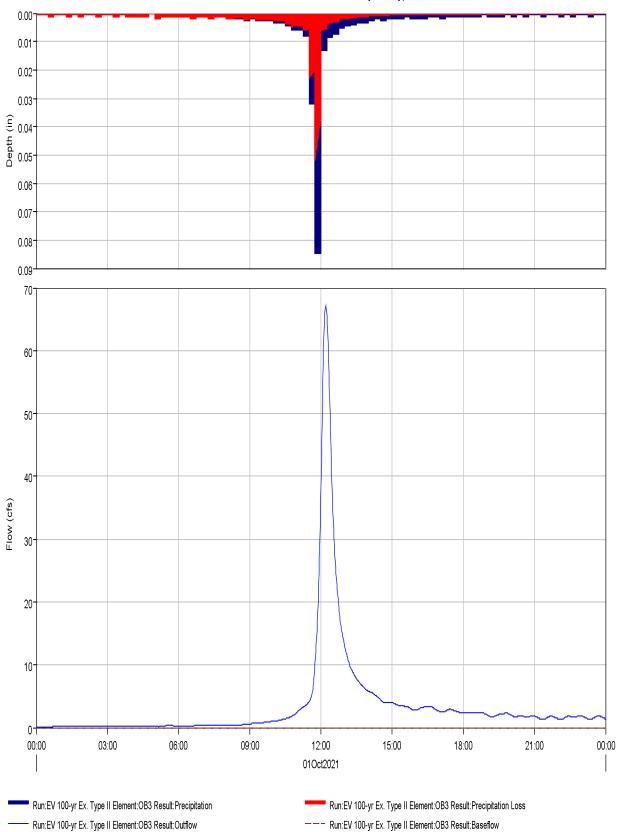
		agleview_Subdivision 100-yr Ex. Type II Junction:	J3
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:01 Volume Units	Basin Model: Meteorologic Model: Control Specifications: s: AC-FT	Eagleview_Existing 100-yr Type II 24-hr Storm
Computed Re	sults		
		Date/Time of Peak Outflow :	01Oct2021 12:44
Peak Outflow Total Outflow	()	Date/Time of Peak Outhow .	01Oct2021, 12:44


Junction "J4" Results for Run "EV 100-yr Ex. Type II"

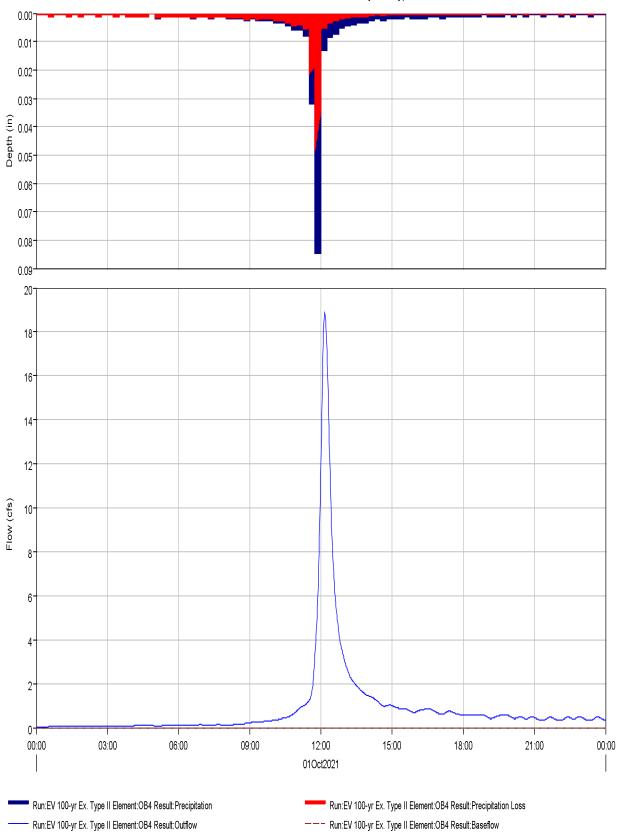
	Project:	Eagleview_Subdivision	
	Simulation Run: E	V 100-yr Ex. Type II Junction:	J4
Start of Run:	01Oct2021, 00:00	Basin Model:	Eagleview_Existing
End of Run:	02Oct2021, 00:00	Meteorologic Model:	100-yr Type II
Compute Time:	11Mar2022, 10:12:0	01 Control Specifications:	24-hr Storm
	Volume Ur	nits: IN	
Computed Re	sults		
Peak Outflo	w : 478.0 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:44
Total Outflow	w: 1.72 (IN)		


Junction "J-OB6" Results for Run "EV 100-yr Ex. Type II"

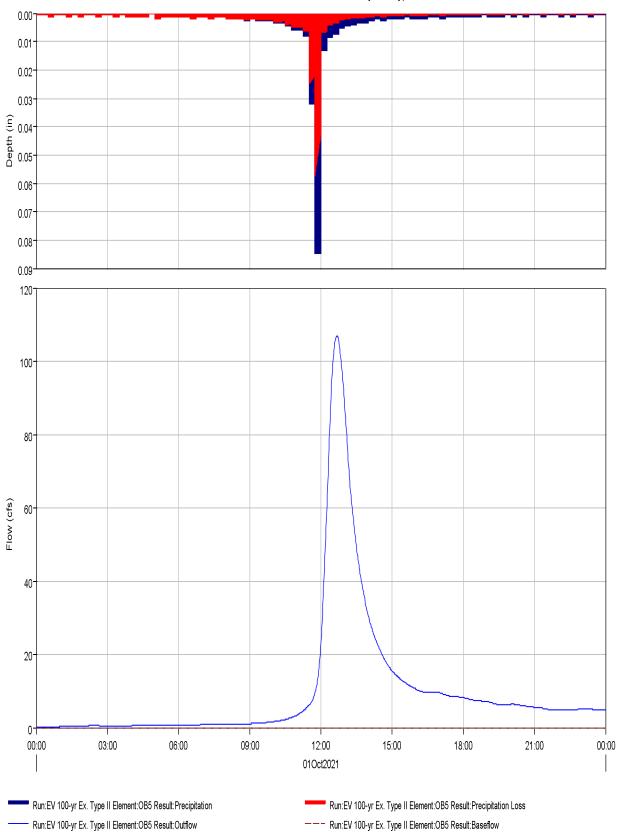
Si	-	Eagleview_Subdivision 00-yr Ex. Type II Junction:	J-OB6
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:01 Volume Unit	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
Computed Res	sults		
Peak Outflow Total Outflow	v : 371.3 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:43


Subbasin "OB1" Results for Run "EV 100-yr Ex. Type II"

S	•	Eagleview_Subdivision 100-yr Ex. Type II Subbasin:	OB1
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:01	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume Uni	ts: AC-FT	
Computed Resul	ts		
Peak Discharge Total Precipitati Total Loss : Total Excess :	· · · ·	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 01Oct2021, 12:08 1.7 (AC-FT) 0.0 (AC-FT) 1.7 (AC-FT)


Subbasin "OB2" Results for Run "EV 100-yr Ex. Type II"

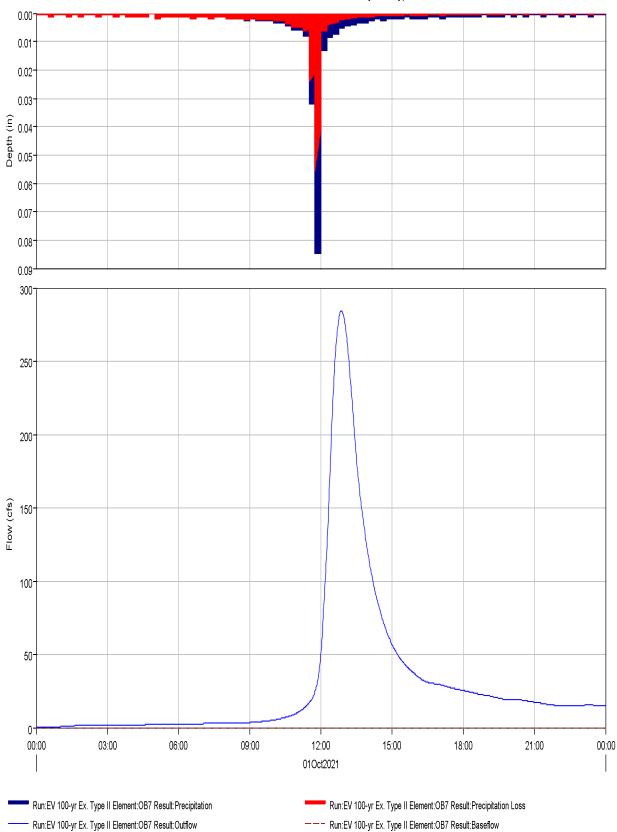
	Project:	Eagleview_Subdivis	sion		
S	imulation Run: EV	/ 100-yr Ex. Type II	Subbasin:	OB2	
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:	Basin Model Meteorologio 01 Control Spec	c Model:	Eagleview_Existing 100-yr Type II 24-hr Storm	
	Volume U	nits: AC-F	Г		
Computed Result	ts				
Peak Discharge Total Precipitatic Total Loss : Total Excess :	()	Date/Time of Pe Total Direct Run Total Baseflow : Discharge :	noff:	 01Oct2021, 12:08 4.7 (AC-FT) 0.0 (AC-FT) 4.7 (AC-FT) 	


Subbasin "OB3" Results for Run "EV 100-yr Ex. Type II"

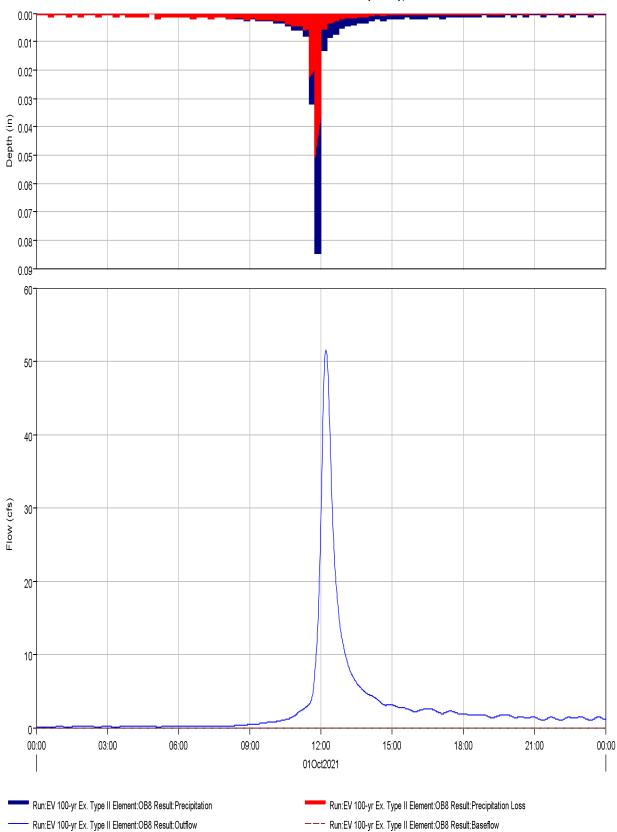
			OB3
End of Run: 02	1Oct2021, 00:00 2Oct2021, 00:00 1Mar2022, 10:12:01	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume Units	s: AC-FT	
Computed Results			
Peak Discharge :	67.1 (CFS)	Date/Time of Peak Discharge	
Total Precipitation :	()	Total Direct Runoff : Total Baseflow :	6.9 (AC-FT)
Total Loss :	9.7 (AC-FT)		0.0 (AC-FT)
Total Excess :	7.0 (AC-FT)	Discharge :	6.9 (AC-FT)


Subbasin "OB4" Results for Run "EV 100-yr Ex. Type II"

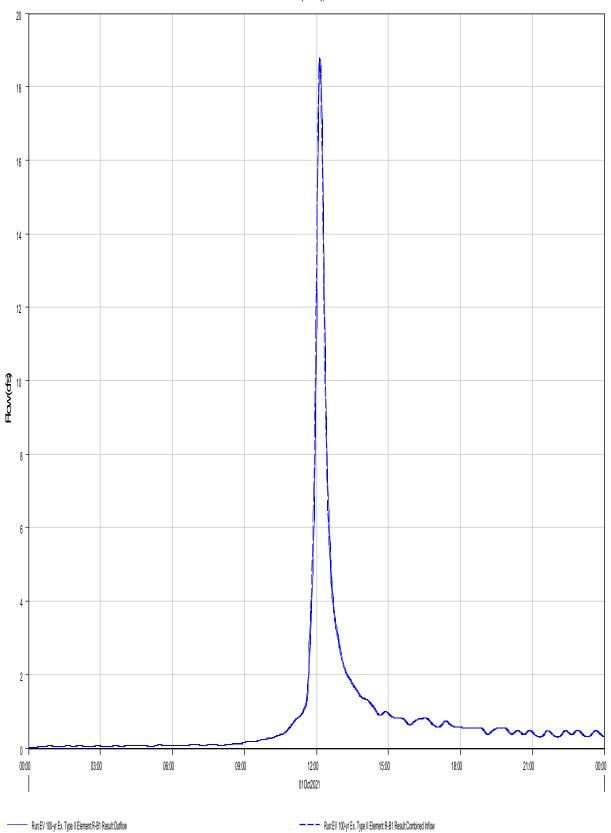
	Simula	Project tion Run:	•	eview_Subdiv yr Ex. Type II		: OB	34
Start of Run: End of Run: Compute Time:	020	ct2021, 00:0 ct2021, 00:0 ar2022, 10:	00	Basin Mode Meteorolog Control Spe		100	gleview_Existing 0-yr Type II -hr Storm
		Volume	e Units:	AC-F	- 1		
Computed Res	ults	Volume	e Units:	AC-F	-1		
Computed Res Peak Dischar		Volume 18.9 (CFS		AC-F ate/Time of Pe		ge :	01Oct2021, 12:10
•	ge:		6) D		eak Discharg	ge :	01Oct2021, 12:10 1.8 (AC-FT)
	ge:	18.9 (CFS	S) D T) T	ate/Time of Pe	eak Discharg	ge :	


Subbasin "OB5" Results for Run "EV 100-yr Ex. Type II"

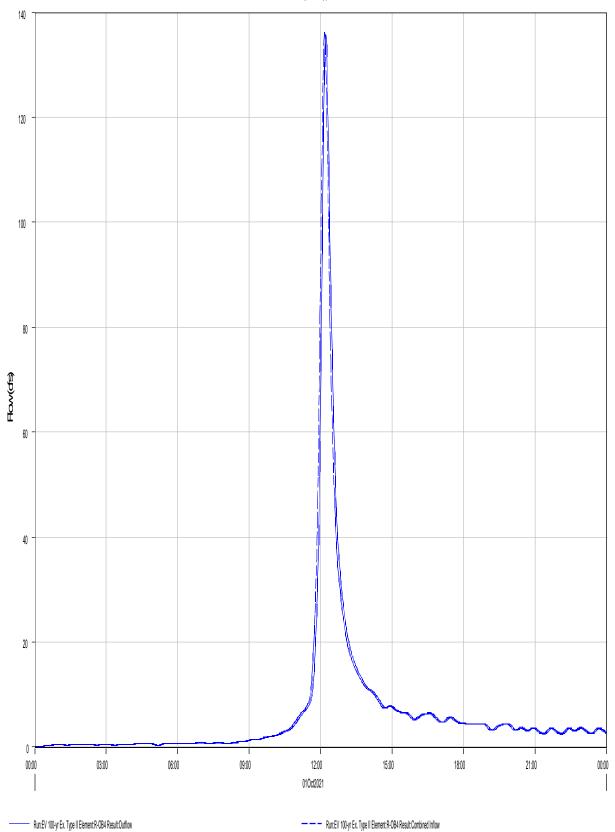
S	Project: imulation Run: E	EV 100-yr Ex. Type II Subb	asin: OB5
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12	Meteorologic Mode	
	Volume	Units: AC-FT	
Computed Result		Units: AC-FT	
Computed Result Peak Discharge	S		charge : 01Oct2021, 12:40
·	s : 106.9 (CFS)) Date/Time of Peak Dis	charge : 01Oct2021, 12:40 19.7 (AC-FT)
Peak Discharge	s : 106.9 (CFS)) Date/Time of Peak Dis T) Total Direct Runoff :	•


Subbasin "OB6" Results for Run "EV 100-yr Ex. Type II"

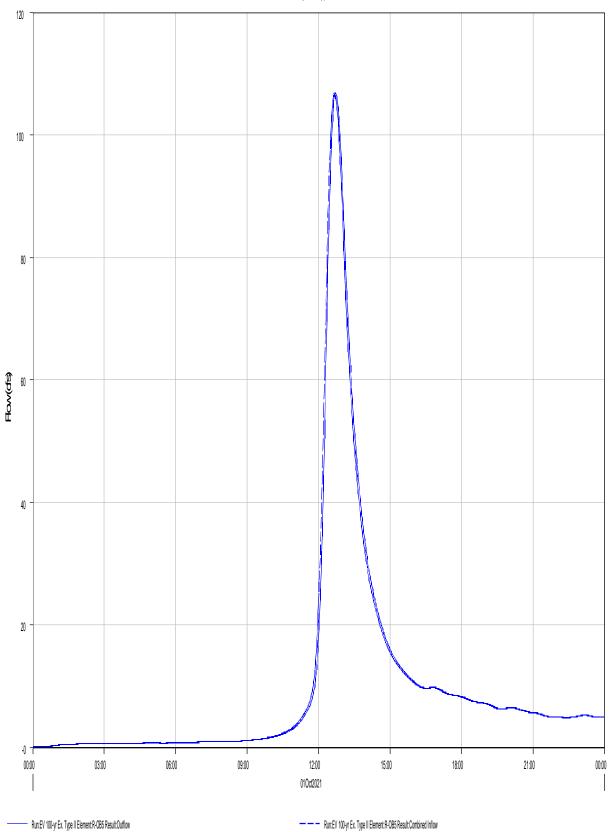
S	Project imulation Run:	EV 100-yr E	—	on Subbasin:	OB6
Start of Run: End of Run: Compute Time:	01Oct2021, 00: 02Oct2021, 00: 11Mar2022, 10:	00 N	Basin Model: Aeteorologic Control Speci	Model:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volum	e Units:	AC-FT		
omputed Result		e Units:	AC-FT		
omputed Result Peak Discharge	S		AC-FT	ak Discharg	le : 01Oct2021, 12:2
•	s : 113.2 (CF	S) Date		0	le : 01Oct2021, 12:2 17.5 (AC-FT)
Peak Discharge	s : 113.2 (CF	S) Date FT) Total	/Time of Pea	0	


Subbasin "OB7" Results for Run "EV 100-yr Ex. Type II"

S	•	gleview_Subdivision 0-yr Ex. Type II Subbasin:	OB7		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:01	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm		
	Volume Units	: AC-FT			
Computed Results					
Peak Discharge Total Precipitatio	(<i>)</i>	Date/Time of Peak Discharge Total Direct Runoff :	e : 01Oct2021, 12:52 60.6 (AC-FT)		
Total Loss :	99.5 (AC-FT)	Total Baseflow :	0.0 (AC-FT)		
Total Excess :	62.0 (AC-FT)	Discharge :	60.6 (AC-FT)		


Subbasin "OB8" Results for Run "EV 100-yr Ex. Type II"

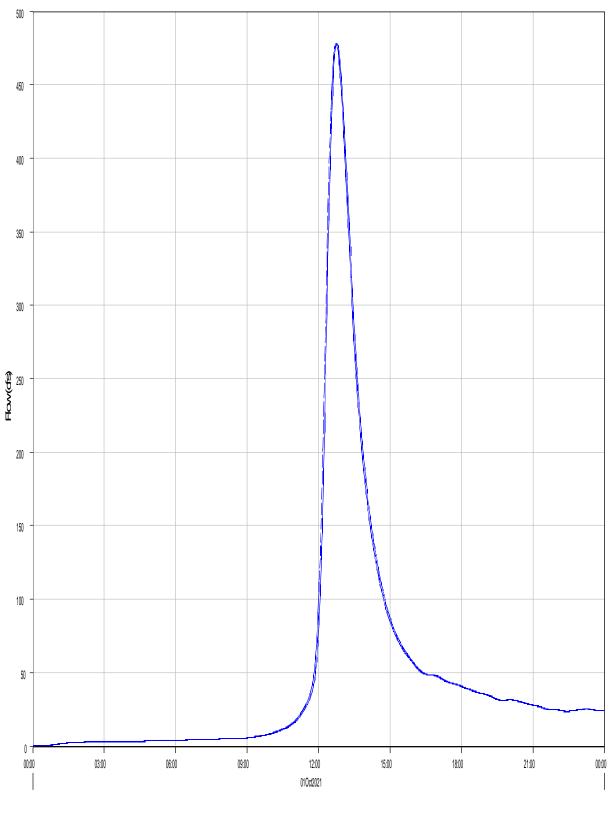
S	Projec imulation Run:	0	/iew_Subdivis [·] Ex. Type II		OB8	
Start of Run: End of Run: Compute Time:	01Oct2021, 00 02Oct2021, 00 11Mar2022, 10	:00	Basin Model Meteorologic Control Spec	c Model:	Eagleview 100-yr Tyj 24-hr Stor	pe II
	Volum	ne Units:	AC-F	Г		
Computed Result	ts					
Peak Discharge	: 51.6 (CF	S) Da	te/Time of Pe	eak Discharge	e: 01Oc	t2021, 12:13
Total Precipitation	n : 12.7 (AC	-FT) To	tal Direct Rur	noff:	5.4 (/	AC-FT)
Total Loss :	7.3 (AC-I	T) To	tal Baseflow :	:	0.0 (/	AC-FT)
Total Excess :	5.4 (AC-F	T) Dis	scharge :		5.4 (#	AC-FT)


Reach "R-B1" Results for Run "EV 100-yr Ex. Type II"

Project: Eagleview_Subdivision Simulation Run: EV 100-yr Ex. Type II Reach: R-B1					
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:0	Basin Model: Meteorologic Model: 01 Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm		
	Volume Ur	nits: AC-FT			
Computed Results					
Peak Inflow Peak Outflo Total Inflow	ow : 18.7 (CFS)	Date/Time of Peak Inflow : Date/Time of Peak Outflow : Total Outflow :	01Oct2021, 12:08 01Oct2021, 12:10 1.7 (AC-FT)		


Reach "R-OB4" Results for Run "EV 100-yr Ex. Type II"

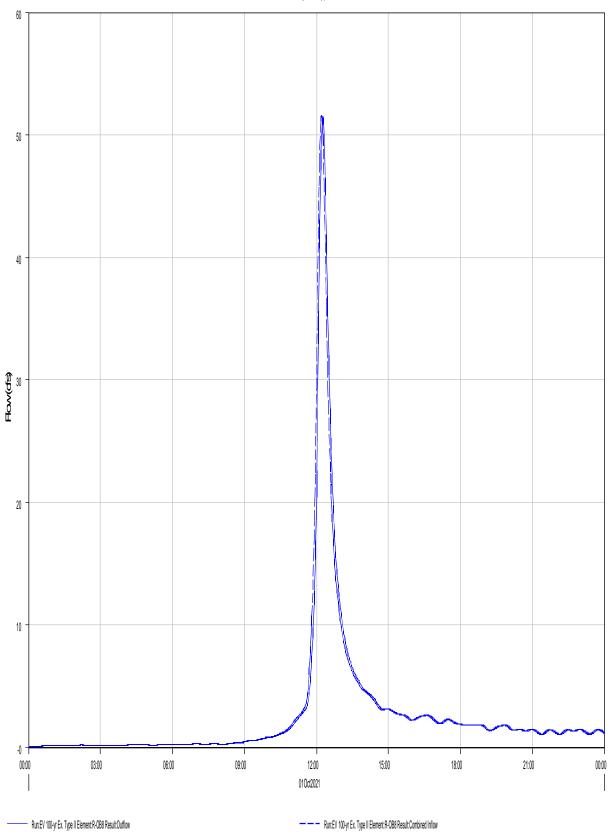
		Eagleview_Subdivision 100-yr Ex. Type II Reach:	R-OB4		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00	Basin Model: Meteorologic Model:	Eagleview_Existing 100-yr Type II 24-hr Storm		
	Volume Uni	its: AC-FT			
Computed Results					
Peak Inflow	: 136.1 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:10		
Peak Outflo	w : 135.8 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:13		
Total Inflow	: 13.5 (AC-FT)	Total Outflow :	13.4 (AC-FT)		


Reach "R-OB5" Results for Run "EV 100-yr Ex. Type II"

	,	Eagleview_Subdivision	D 005		
	Simulation Run: EV	100-yr Ex. Type II Reach:	R-OB5		
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:0	Basin Model: Meteorologic Model: 1 Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm		
	Volume Uni	its: AC-FT			
Computed Results					
Peak Inflow	: 106.9 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:40		
Peak Outflor	w: 106.8 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:43		
Total Inflow	: 19.7 (AC-FT)	Total Outflow :	19.7 (AC-FT)		

Reach "R-OB6" Results for Run "EV 100-yr Ex. Type II"

	Project:	Eagleview_Subdivision	
Ş	Simulation Run: EV	100-yr Ex. Type II Reach:	R-OB6
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:0	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume Un	its: AC-FT	
-Computed De	culto		
Computed Re	Suits		
Peak Inflow	: 371.3 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:43
Peak Outflow	v: 371.3 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:44
Total Inflow	: 78.1 (AC-FT)	Total Outflow :	78.1 (AC-FT)

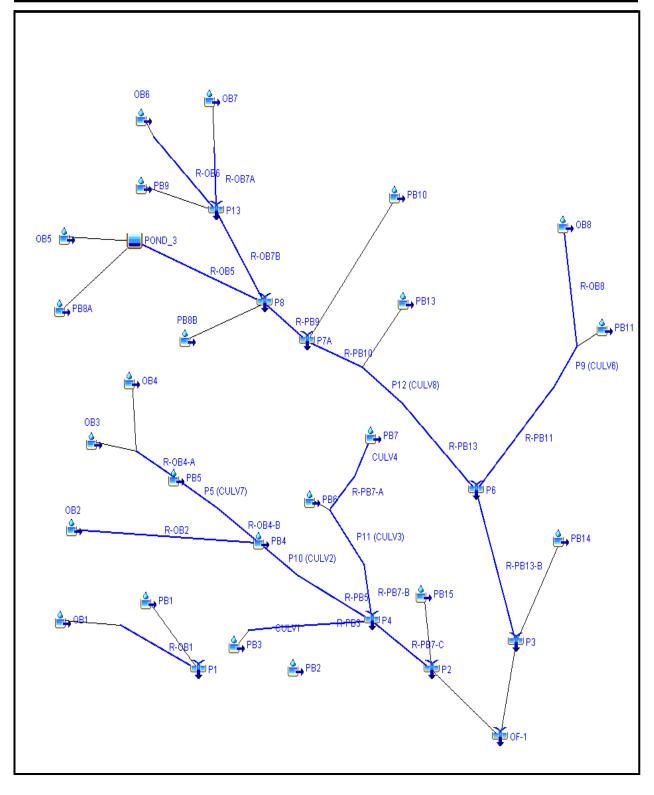


Reach "R-OB7" Results for Run "EV 100-yr Ex. Type II"

Run:EV 100-yr Ex. Type II Element:R-OB7 Result:Outflow

----- Run:EV 100-yr Ex. Type II Element:R-OB7 Result:Combined Inflow

c	,	Eagleview_Subdivision	
3	Simulation Run: EV	100-yr Ex. Type II Reach:	R-OB7
Start of Run: End of Run:	01Oct2021, 00:00 02Oct2021, 00:00	Basin Model: Meteorologic Model:	Eagleview_Existing 100-yr Type II
Compute Time:	11Mar2022, 10:12:0	Ũ	24-hr Storm
	Volume Uni	ts: AC-FT	
Computed Res	sults		
Peak Inflow :	478.0 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:44
Peak Outflow	/: 477.9 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:46
Total Inflow :	97.8 (AC-FT)	Total Outflow :	97.7 (AC-FT)


Reach "R-OB8" Results for Run "EV 100-yr Ex. Type II"

	Project:	Eagleview_Subdivision	
S	Simulation Run: EV	100-yr Ex. Type II Reach:	R-OB8
Start of Run: End of Run: Compute Time:	01Oct2021, 00:00 02Oct2021, 00:00 11Mar2022, 10:12:0	Basin Model: Meteorologic Model: Control Specifications:	Eagleview_Existing 100-yr Type II 24-hr Storm
	Volume Ur	its: AC-FT	
Computed Re	sults		
Peak Inflow	: 51.6 (CFS)	Date/Time of Peak Inflow :	01Oct2021, 12:13
Peak Outflo	w : 51.5 (CFS)	Date/Time of Peak Outflow :	01Oct2021, 12:16
Total Inflow	: 5.4 (AC-FT)	Total Outflow :	5.4 (AC-FT)

Project : Eagleview_Subdivision

Basin Model : Eagleview_Proposed Apr 16 11:49:13 MDT 2024

IMPERVIOUS FACTOR CALCULATION TABLE - PROPOSED CONDITIONS

	Basin	Area (Acre)	Open Space (2%)	2.5 Acre Lot (11%)	Buildings (90%)	Paved Roadway (100%)	Gravel Roadway (80%)	Total % Check	Weighted Impervious
	PB1	4.25	0%	99%	0%	1%	0%	100%	12%
	PB2	1.08	0%	94%	0%	6%	0%	100%	16%
	PB3	1.38	0%	85%	0%	15%	0%	100%	24%
	PB4	10.54	0%	97%	0%	3%	0%	100%	14%
	PB5	6.18	0%	97%	0%	3%	0%	100%	13%
	PB6	11.09	0%	95%	0%	5%	0%	100%	16%
	PB7	3.46	0%	91%	0%	9%	0%	100%	19%
Onsite	PB8A	7.60	0%	98%	0%	3%	0%	100%	13%
	PB8B	5.79	0%	100%	0%	0%	0%	100%	11%
	PB9	12.80	0%	98%	0%	2%	0%	100%	12%
	PB10	8.47	0%	100%	0%	0%	0%	100%	11%
	PB11	17.56	0%	96%	0%	4%	0%	100%	15%
	PB13	4.02	0%	96%	0%	4%	0%	100%	15%
	PB14	17.28	0%	97%	0%	3%	0%	100%	13%
	PB15	9.63	0%	93%	0%	7%	0%	100%	17%
	OB1	10.37	93%	0%	2%	4%	2%	100%	9%
	OB2	28.06	90%	0%	3%	3%	5%	100%	11%
	OB3	43.44	92%	0%	2%	2%	4%	100%	9%
Offsite	OB4	10.50	87%	0%	4%	5%	4%	100%	13%
Unsite	OB5	143.82	94%	0%	2%	1%	3%	100%	7%
	OB6	118.40	92%	0%	1%	2%	5%	100%	9%
	OB7	421.43	93%	0%	2%	1%	4%	100%	8%
	OB8	33.08	93%	0%	2%	1%	5%	100%	8%
Total		930.25							12.2%

Post-Development

Post Runoff Analysis Time of Concentration

Project Information

Г

Project Name:		Eagleview	
KHA Project #:		196288000	
Designed by:	DCM	Date:	4/16/2024
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Minimum Time of Concentration 5.0 2YR-24HR Rainfall, P2 2.10

Drainage Area:	OB1											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.073	0.15	2.10						17.35	ĺ
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1118.00	0.038			U				3.14	5.93	ĺ
							Post-De	evelopment Time o	f Concentratio	on, OB1	23.28	13.97

Post-Dev	elopment											
Drainage Area:	OB2											
		Flow Length, L			Two-year, 24-hr rainfall,	Paved or	cross Sectional Area of	Wetted Perimeter, pw			Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.063	0.15	2.10						18.41	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	554.00	0.046			U				3.45	2.67	
CHANNEL	T2 CHANNEL FLOW	841.00	0.029	0.05		U	9.50	6.60	1.44	6.45	2.17	
							Post-De	evelopment Time o	f Concentratio	on, OB2	23.26	13.95

Post-Dev	relopment											
Drainage Area:	OB3											
		Flow Length, L			Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw			Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.074	0.15	2.10						17.26	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2436.00	0.034			U				2.97	13.65	
•							Post-De	evelopment Time o	f Concentratio	on, OB3	30.91	18.55
Post-Dev	relopment											

Post-Dev	elopment											
Drainage Area:	OB4											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.042	0.15	2.10						21.65	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	783.00	0.038			U				3.16	4.13	
CHANNEL	T2 CHANNEL FLOW	577.00	0.028	0.05		U	9.50	6.60	1.44	6.36	1.51	
							Post-D	evelopment Time o	Concentratio	on, OB4	27.29	16.38

Post-Dev	elopment											
Drainage Area:	OB5											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.037	0.40	2.10						49.91	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	3838.00	0.033			U				2.93	21.83	
CHANNEL	T2 CHANNEL FLOW	1407.00	0.024	0.04		U	9.50	6.60	1.44	7.36	3.19	
							Post-De	evelopment Time o	f Concentratio	in, OB5	74.93	44.96

Post-Dev	elopment											
Drainage Area:	OB6											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	300.00	0.064	0.40	2.10						40.09	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2569.00	0.038			U				3.14	13.62	
CHANNEL	T2 CHANNEL FLOW	2110.00	0.027	0.04		U	9.50	6.60	1.44	7.73	4.55	
							Post-D	evelopment Time o	f Concentratic	in, OB6	58.25	34.95

Post-Dev	relopment											
Drainage Area:	OB7											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.028	0.40	2.10						55.80	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	2068.00	0.036			U				3.06	11.26	
CHANNEL	T3 CHANNEL FLOW	6198.00	0.03	0.04		U	12.00	22.00	0.55	4.09	25.29	_
							Post-D	velopment Time o	f Concentratic	n OB7	02.25	EE /1

Post-Dev	relopment											
Drainage Area:	OB8											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.029	0.15	2.10						25.10	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1117.00	0.043			U				3.34	5.57	
CHANNEL	T2 CHANNEL FLOW	762.00	0.033	0.03		U	9.50	6.60	1.44	11.43	1.11	
							Post-De	evelopment Time o	f Concentratio	on, OB8	31.78	19.07

Post-Dev	elopment											
Drainage Area: PB1												
	Flow Length, L Manning's Roughness Two-year, 24-hr rainfall, Paved o (ft) Slope, s (fL/ft) Coefficient, n P2 (in) Unpave								Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.033	0.15	2.10						23.84	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	400.00	0.041			U				3.27	2.04	
		Post-D	evelopment Time a	f Concentration	on, PB1	25.88	15.53					

Post-Dev	relopment											
Drainage Area:	PB2											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	227.00	0.033	0.15	2.10						19.07	ĺ
Post-Development Time of Concentration, PB2 19,											19.07	11.44
Post-Development												
Drainage Area:	Drainage Area: PB3											

SHEET TI SHEET AGAW 313.00 0.05 0.15 2.10 Image: Constraint of the state of			Flow Length, L			Two-year, 24-hr rainfall,	Paved or		Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
OWNEL DOWNELROW 315.00 0.02 0.031 U 9.00 12.40 0.73 6.68 0.66			(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
	SHEET	T3 SHEET FLOW	313.00	0.05	0.15	2.10						21.59	
Post-Development Time of Concentration PB3 22.46 13.47	CHANNEL	T3 CHANNEL FLOW	315.00	0.02	0.03		U	9.00	12.40	0.73	6.08	0.86	
Tox bottophone mile of bottom and in the								Post-D	22.46	13.47			

Post-Dev	relopment											
Drainage Area: PB4												
Flow Length, L (ft) Manning's Roughness Two-year, 24-hr rainfall, Pared or Pared or							Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
MINIMUM TC	T2 MINIMUM TC FLOW										5.00	
•			Post-D	evelopment Time a	f Concentratio	on, PB4	5.00	3.00				

Post-Develo

Post Runoff Analysis Time of Concentration

Project Information

Г

Project Name:		Eagleview	
(HA Project #:		196288000	
Designed by:	DCM	Date:	4/16/2024
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Minimum Time of Concentration 5.0 minutes 2YR-24HR Rainfall, P2 2.10

	211(-24) IK Kali Itali, 12	2.10										
Post-Dev	elopment											
Drainage Area: PB5												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.021	0.15	2.10						28.56	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	292.00	0.024			U				2.50	1.95	
CHANNEL	T2 CHANNEL FLOW	44.00	0.032	0.03		U	9.50	6.60	1.44	11.33	0.06	
			Post-D	evelopment Time o	f Concentratio	on, PB5	30.58	18.35				

Post-Dev	elopment											
Drainage Area:	PB6											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	SHEET TI SHEET FLOW 300.00 0.034 0.15 2.10										23.56	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	650.00	0.036			U				3.06	3.54	
CHANNEL	T2 CHANNEL FLOW	66.00	0.001	0.03		U	9.00	12.40	0.73	1.27	0.87	
									f Concentratio	on, PB6	27.96	16.78

Post-Dev	elopment											
Drainage Area:	PB7											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW						21.44					
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	235.00	0.051			U				3.64	1.08	
CHANNEL	T2 CHANNEL FLOW	539.00	0.035	0.03		U	9.00	12.40	0.73	7.50	1.20	
					Post-D	evelopment Time o	of Concentratio	on, PB7	23.72	14.23		

1031-064	elopinent											
Drainage Area:	PB8A											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
SHEET	T1 SHEET FLOW	100.00	0.090	0.15	2.10						6.63	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	100.00	0.030			U	2.79				0.60	
CHANNEL	T2 CHANNEL FLOW	572.00	0.090	0.03		U	14.00	34.00	0.41	8.24	1.16	
								evelopment Time of	Concentratio	n, PB8A	8.38	5.03

Post-Dev	elopment											
Drainage Area: P88B												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	30.00	0.040	0.15	2.10						3.50	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	250.00	0.080			U		ĺ		4.56	0.91	
CHANNEL	T2 CHANNEL FLOW	780.00	0.029	0.03		U	14.00	34.00	0.41	4.68	2.78	
							Post-De	n, PB8B	7.19	4.31		

Post-Dev	elopment											
Drainage Area:	PB9											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW						18.77					
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	171.00	0.072			U				4.33	0.66	
CHANNEL	T2 CHANNEL FLOW	873.00	0.028	0.03		U	14.00	34.00	0.41	4.60	3.16	
					Post-D	evelopment Time o	f Concentration	on, PB9	22.59	13.56		

Post-Dev	/elopment											
Drainage Area:	Drainage Area: PB10											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.035	0.15	2.10						23.29	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	395.00	0.034			U				2.97	2.21	
CHANNEL	T2 CHANNEL FLOW	771.00	0.042	0.03		U	14.00	34.00	0.41	5.63	2.28	
							Post-De	evelopment Time o	f Concentratio	n. PB10	27.78	16.67

	Post-Dev	elopment											
	Drainage Area:	PB11											
			Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
			(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
	SHEET	T1 SHEET FLOW	300.00	0.031	0.15	2.10						24.44	
	CHANNEL	T2 CHANNEL FLOW	1252.00	0.025	0.03		U	9.50	6.60	1.44	10.01	2.08	
_								Post-De	evelopment Time of	f Concentratio	n, PB11	26.53	15.92

Post-Dev	elopment											
Drainage Area: PB13												
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	Paved or	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,	Average Velocity, V	Travel Time, Tt	Lag Time
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Unpaved	Flow, A (ft ²)	(ft)	r (ft)	(ft/s)**	(min)	(min)
CHANNEL	T2 CHANNEL FLOW	316.00	0.018	0.03		U	14.00	34.00	0.41	3.64	1.45	
MINIMUM TC	T2 MINIMUM TC FLOW										5.00	
•							Post-De	velopment Time of	Concentratio	n, PB13	5.00	3.00

Post-Dev	elopment											
Drainage Area: PB14												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	40.00	0.085	0.013	2.10						0.46	
CHANNEL	T2 CHANNEL FLOW	244.00	0.060	0.03		U	9.00	12.40	0.73	9.82	0.41	
CHANNEL	T2 CHANNEL FLOW	1123.00	0.014	0.03		U	14.00	34.00	0.41	3.25	5.76	
							Post-De	evelopment Time of	Concentratio	n, PB14	6.63	3.98

Post-Dev	elopment											
Drainage Area: PB15												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
MINIMUM TC	T2 MINIMUM TC FLOW										5.00	
							Post-De	velopment Time of	Concentratio	n, PB15	5.00	3.00

Post Runoff Analysis

Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	4/18/2024
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Post-L	Development				
Drainage Area:	OB1				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	9.79	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.38	
IMPERVIOUS	Gravel (including right of way)	В	85.00	0.20	
	CUTSOM				
COMPOSITE SCS	63	.76	10.37	0.569	

Post-	-Development				
Drainage Area	: OB2				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	25.92	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.86	
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.28	
	CUTSOM			i	
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - OB2		1.16	28.06	0.559

Post-l	Development				
Drainage Area:	OB3				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	40.88	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.89	
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.67	
	CUTSOM				
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - OB3			43.44	0.572

Post-l	Development				
Drainage Area:	OB4				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	9.55	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.52	
IMPERVIOUS	Gravel (including right of way)	В	85.00	0.43	
	CUTSOM				
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - OB4			10.50	0.545

Post	-Development				
Drainage Area	a: OB5				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	28.58	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	109.48	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	1.12	
IMPERVIOUS	Gravel (including right of way)	В	85.00	4.64	
	CUTSOM				
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - OB5			143.82	0.667

Post-	Development				
Drainage Area:	OB6				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	60.64	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	51.19	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	2.04	
IMPERVIOUS	Gravel (including right of way)	В	85.00	4.53	
	CUTSOM				
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - OB6			118.40	0.619

Post Runoff Analysis

Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	4/18/2024
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Drainage Area	t-Development				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	122.08	
RESIDENTIAL	RR-5 (Woods Landuse)	В	58.00	259.48	
RESIDENTIAL	2.5 acre	В	64.00	16.02	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	5.46	
IMPERVIOUS	Gravel (including right of way)	В	85.00	18.17	
	CUTSOM				
COMPOSITE SC	CS CURVE NUMBER - OB7	61	.07	421.20	0.637

Post	-Development				
Drainage Area	a: OB8				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RR-5 (Rangeland Landuse)	В	62.00	8.71	
RESIDENTIAL	2.5 acre	В	64.00	21.76	
RESIDENTIAL	1/2 acre (25% imp.)	В	71.00	0.79	
IMPERVIOUS	Paved; curbs and storm sewers (excluding right-of- way)	В	98.00	0.24	
IMPERVIOUS	Gravel (including right of way)	В	85.00	1.57	
	CUTSOM				
COMPOSITE SC	CS CURVE NUMBER - OB8	64	.89	33.07	0.541

Pos	t-Development				
Drainage Are	a: PB1				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	4.19	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.06	
	CUTSOM				
COMPOSITE S	CS CURVE NUMBER - PB1	64	1.35	4.25	0.554

Post-L	Development				
Drainage Area:	PB2				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	1.02	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.06	
	CUTSOM				
COMPOSITE SCS	CURVE NUMBER - PB2	65	.38	1.08	0.530

Post	-Development				
Drainage Area	a: PB3				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	1.18	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.20	
	CUTSOM				
COMPOSITE SC	CS CURVE NUMBER - PB3	67	.68	1.38	0.478

Post-	Development				
Drainage Area.	: PB4				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	10.18	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.35	
	CUTSOM				
COMPOSITE SC	S CURVE NUMBER - PB4	64	.84	10.54	0.542

Post-I	Development				
Drainage Area:	PB5				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	6.01	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.17	
	CUTSOM				
COMPOSITE SCS	CURVE NUMBER - PB5	64	.70	6.18	0.546

Post Runoff Analysis

Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	4/18/2024
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Post-	Development				
Drainage Area:	PB6				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	10.50	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.59	
	CUTSOM				
COMPOSITE SCS	S CURVE NUMBER - PB6	65	.33	11.09	0.531

Post-	Development				
Drainage Area:	PB7				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	3.15	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.31	
	CUTSOM				
COMPOSITE SCS	S CURVE NUMBER - PB7	66	5.22	3.46	0.510

Post-L	Development				
Drainage Area:	PB8A				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	2.5 acre	В	64.00	7.41	
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.19	
	CUTSOM				
COMPOSITE SCS	CURVE NUMBER - PB8A	64	.63	7.60	0.547

Post-L	Development				
Drainage Area:	PB8B				
COVER DESCRIPTION	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA	
RESIDENTIAL 2.5 acre		В	64.00	5.79	
IMPERVIOUS Paved; open ditches (including right-of-way)		В	89.00	0.00	
CUTSOM					
COMPOSITE SCS CURVE NUMBER - PB8B		64.00		5.79	0.563

Post-Development							
Drainage Area:	PB9						
COVER DESCRIPTION	COVER DESCRIPTION COVER TYPE		SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA		
RESIDENTIAL	2.5 acre	В	64.00	12.60			
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)			0.20			
	CUTSOM						
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - PB9			12.80	0.553		

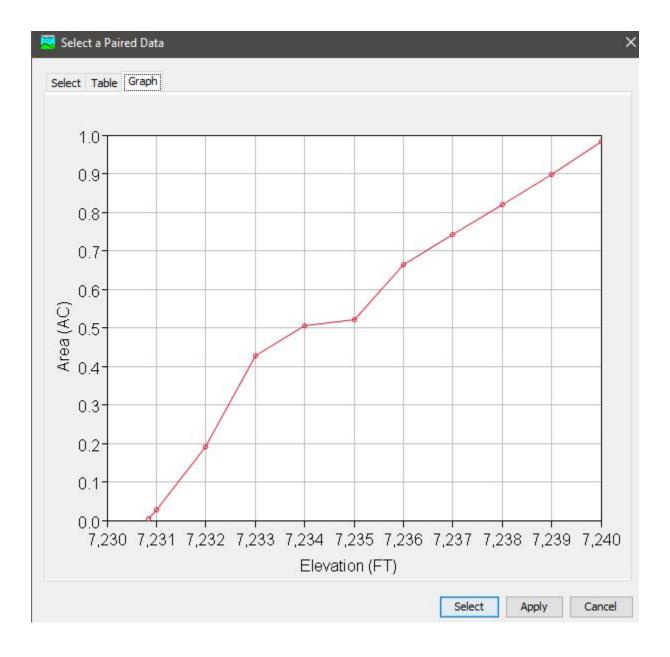
Post	-Development								
Drainage Area	Drainage Area: PB10								
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA				
RESIDENTIAL	RESIDENTIAL 2.5 acre		64.00	8.47					
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)		89.00	0.00					
	CUTSOM								
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - PB10			8.47	0.563				

Post	-Development				
Drainage Area	n: PB11				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RESIDENTIAL 2.5 acre		64.00	16.72	
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)		89.00	0.84	
	CUTSOM				
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - PB11			17.56	0.534

Post Runoff Analysis Composite CN

Project Name:	Eagleview		
KHA Project #:	196288000		
Designed by:	DCM	Date:	4/18/2024
Revised by:		Date:	
Revised by:		Date:	
Checked by:	BAH	Date:	4/16/2024

Post-Development								
Drainage Area:	PB13							
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	INITIAL ABSTRACTION, IA			
RESIDENTIAL	RESIDENTIAL 2.5 acre		64.00	3.84				
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)		89.00	0.18				
COMPOSITE SCS	65	.12	4.02	0.536				


Post-Development								
Drainage Area:	Drainage Area: PB14							
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER DESCRIPTION COVER TYPE			AREA, A (ac.)	INITIAL ABSTRACTION, IA			
RESIDENTIAL	RESIDENTIAL 2.5 acre		45.00	0.28				
RESIDENTIAL	RESIDENTIAL 2.5 acre		64.00	16.54				
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)		89.00	0.46				
	CUTSOM							
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - PB14			17.28	0.571			

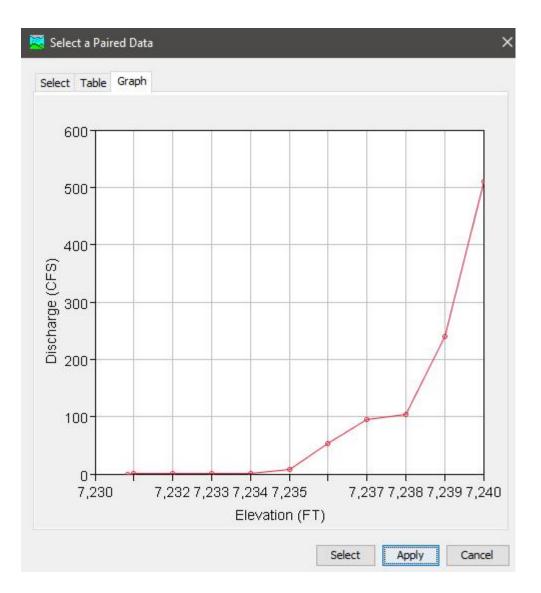
Post-l	Development				
Drainage Area:	PB15				
COVER DESCRIPTION	COVER DESCRIPTION COVER TYPE			AREA, A (ac.)	INITIAL ABSTRACTION, IA
RESIDENTIAL	RESIDENTIAL 2.5 acre		45.00	0.61	
RESIDENTIAL	RESIDENTIAL 2.5 acre		64.00	8.38	
IMPERVIOUS	IMPERVIOUS Paved; open ditches (including right-of-way)		89.00	0.65	
	CUTSOM				
COMPOSITE SCS	COMPOSITE SCS CURVE NUMBER - PB15			9.63	0.622

Pond 3 Stage Area Curve

Select a Paired Data	
Elevation (FT)	Area (AC)
7230.83	0.004
7231.00	0.026
7232.00	0.190
7233.00	0.422
7234.00	0.50
7235.00	0.52
7236.00	0.664
7237.00	0.742
7238.00	0.81
7239.00	0.898
7240.00	0.98
	Select Apply Cancel

<

DETENTION BASIN OUTLET STRUCTURE DE


MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the ta The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confi

Stage - Storage	Stage	Area	Area	Volume	Volume
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]
7230.83	0.00	162	0.004	0	0.000
7231	1.17	1,148	0.026	704	0.016
7232	2.17	8,283	0.190	5,419	0.124
7233	3.17	18,607	0.427	18,864	0.433
7234	4.17	21,993	0.505	39,164	0.899
7235	5.17	22,691	0.521	61,506	1.412
7236	6.17	28,920	0.664	87,311	2.004
7237	7.17	32,308	0.742	117,925	2.707
7238	8.17	35,680	0.819	151,919	3.488
7239	9.17	39,108	0.898	189,313	4.346
7240	10.17	42,799	0.983	230,267	5.286

	1	
Elevation (FT		Discharge (CFS)
	7230.83	0.00
	7231.00	0.06
	7232.00	0.14
	7233.00	0.24
	7234.00	0.61
	7235.00	7.88
	7236.00	52.70
	7237.00	95.56
	7238.00	103.01
	7239.00	239.56
	7240.00	510.21

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
7230.83	0.00	162	0.004	0	0.000	0.00	For best results, include the
7231	1.17	1,148	0.026	704	0.016	0.06	stages of all grade slope
7232	2.17	8,283	0.190	5,419	0.124	0.14	changes (e.g. ISV and Floor) from the S-A-V table on
7233	3.17	18,607	0.427	18,864	0.433	0.24	Sheet 'Basin'.
7234	4.17	21,993	0.505	39,164	0.899	0.61	
7235	5.17	22,691	0.521	61,506	1.412	7.88	Also include the inverts of all
7236	6.17	28,920	0.664	87,311	2.004	52.70	outlets (e.g. vertical orifice,
7237	7.17	32,308	0.742	117,925	2.707	95.56	overflow grate, and spillway,
7238	8.17	35,680	0.819	151,919	3.488	103.01	where applicable).
7239	9.17	39,108	0.898	189,313	4.346	239.56	
7240	10.17	42,799	0.983	230,267	5.286	510.21	
							1
]

Project: Eagleview_Subdivision

Simulation Run: EV_Proposed_5-yr

 Start of Run:
 01Oct2021, 00:00

 End of Run:
 02Oct2021, 00:00

 Compute Time:
 19Apr2024, 08:27:02

Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm

Show Elements: All	Elements 🗸 🗸 Ve	olume Units: 🔘 I	N AC-FT So	rting: Hydrologic
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
OB7	0.6581200	101.4	01Oct2021, 12:53	23.3
R-OB7A	0.6581200	101.4	01Oct2021, 12:55	23.2
OB6	0.1850100	40.8	01Oct2021, 12:30	6.8
R-OB6	0.1850100	40.8	01Oct2021, 12:31	6.8
PB9	0.0199984	9.8	01Oct2021, 12:08	0.9
P13	0.8631284	133.8	01Oct2021, 12:46	30.9
R-OB7B	0.8631284	133.8	01Oct2021, 12:47	30.9
OB5	0.2247200	37.0	01Oct2021, 12:42	7.4
PB8A	0.0118750	8.3	01Oct2021, 12:01	0.6
POND_3	0.2365950	34.8	01Oct2021, 12:54	7.0
R-OB5	0.2365950	34.8	01Oct2021, 12:58	7.0
PB8B	0.0090469	6.1	01Oct2021, 12:01	0.4
P8	1.1087703	167.3	01Oct2021, 12:51	38.3
R-PB9	1.1087703	167.3	01Oct2021, 12:52	38.3
PB10	0.0132344	5.6	01Oct2021, 12:11	0.6
P7A	1.1220047	168.5	01Oct2021, 12:52	38.8
R-PB10	1.1220047	168.5	01Oct2021, 12:52	38.8
PB13	0.0062812	4.9	01Oct2021, 12:00	0.3
P12 (CULV8)	1.1282859	168.9	010ct2021, 12:52	39.1
R-PB13	1.1282859	168.9	010ct2021, 12:53	39.1
OB8	0.0516742	19.5	010ct2021, 12:13	2.1
R-OB8	0.0516742	19.5	01Oct2021, 12:16	2.1
PB11	0.0274375	13.6	01Oct2021, 12:10	1.4
P9 (CULV6)	0.0791117	31.8	010ct2021, 12:14	3.5
R-PB11	0.0791117	31.7	010ct2021, 12:14	3.5
P6	1.2073976	177.3	01Oct2021, 12:52	42.6
R-PB13-B	1.2073976	177.3	01Oct2021, 12:53	42.6
PB14	0.0270031	18.9	01Oct2021, 12:01	1.2
P3	1.2344007	179.0	01Oct2021, 12:53	43.8
OB3	0.0678750	25.4	010ct2021, 12:13	2.8
OB4	0.0164062	7.5	01Oct2021, 12:10	0.8
R-OB4-A	0.0842812	32.7	010ct2021, 12:13	3.5
PB5	0.0096625	4.2	010ct2021, 12:12	0.5
P5 (CULV7)	0.0939437	36.9	010ct2021, 12:13	4.0
R-OB4-B	0.0939437	36.8	01Oct2021, 12:15	4.0
OB2	0.0438438	20.5	01Oct2021, 12:08	1.9
R-OB2	0.0438438	20.5	01Oct2021, 12:10	1.9
PB4	0.0164672	12.6	01Oct2021, 12:00	0.8
P10 (CULV2)	0.1542547	58.0	01Oct2021, 12:13	6.7
R-PB5	0.1542547	58.0	010ct2021, 12:14	6.7
PB6	0.0173312	8.6	01Oct2021, 12:11	0.9
PB7	0.0054062	3.2	01Oct2021, 12:08	0.3
CULV4	0.0054062	3.2	01Oct2021, 12:08	0.3
R-PB7-A	0.0054062	3.2	01Oct2021, 12:10	0.3
P11 (CULV3)	0.0227374	11.7	01Oct2021, 12:11	1.2

R-PB7-B	0.0227374	11.7	01Oct2021, 12:12	1.2	
PB3	0.0021625	1.5	01Oct2021, 12:07	0.1	
CULV1	0.0021625	1.5	01Oct2021, 12:08	0.1	
R-PB3	0.0021625	1.5	01Oct2021, 12:09	0.1	
P4	0.1791546	70.8	01Oct2021, 12:14	8.0	
R-PB7-C	0.1791546	70.7	01Oct2021, 12:15	8.0	1
PB15	0.0150500	11.0	01Oct2021, 12:00	0.7	
P2	0.1942046	72.7	01Oct2021, 12:15	8.7	
OF-1	1.4286053	198.9	01Oct2021, 12:49	52.5	
OB1	0.0162031	7.1	01Oct2021, 12:08	0.7	
R-OB1	0.0162031	7.1	01Oct2021, 12:10	0.7	
PB1	0.0066453	3.0	01Oct2021, 12:10	0.3	
P1	0.0228484	10.1	01Oct2021, 12:10	1.0	1
PB2	0.0016935	1.0	01Oct2021, 12:06	0.1	~

	Project: 6	Eagleview Subdivision	
			n: OB7
End of Run: 0	010ct2021, 00:00 020ct2021, 00:00 19Apr2024, 08:27:0	Basin Model: Meteorologic Model: 02 Control Specification	5-yr Type II
		Inits: 🔵 IN 💿 AC-FT	
Computed Result		Inits: 🔵 IN 💿 AC-FT	
Computed Result: Peak Discharge :	S	Inits: O IN O AC-FT	arge : 01Oct2021, 12:53
· Peak Discharge :	S	Ŭ Ŭ	arge : 01Oct2021, 12:5: 23.3 (AC-FT)
· Peak Discharge : Total Precipitatio	s 101.4 (CFS)	Date/Time of Peak Discha	

Summary Results for Reach "R-OB7A"

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-OB7A

X

Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:00	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm
Volume U	nits: 🔘 IN 💿 AC-FT
Computed Results	
Peak Inflow : 101.4 (CFS) Peak Outflow : 101.4 (CFS) Total Inflow : 23.3 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:53 Date/Time of Peak Outflow : 01Oct2021, 12:55 Total Outflow : 23.2 (AC-FT)

	Project: F	Eagleview Subdivision	
S		Proposed_5-yr Subbasi	n: OB6
Start of Run: 01 End of Run: 02	•	Basin Model: Meteorologic Model:	
Compute Time: 19			r ()
	Volume U	nits: 🔵 IN 💿 AC-FT	
Computed Results			
Peak Discharge :	40.8 (CFS)	Date/Time of Peak Disch	arge : 01Oct2021, 12:3
Total Precipitation	: 26.6 (AC-FT)	Total Direct Runoff :	6.8 (AC-FT)
Total Loss :	19.8 (AC-FT)	Total Baseflow :	0.0 (AC-FT)
	6.9 (AC-FT)	Discharge :	6.8 (AC-FT)

ŧ	📰 Summary Results for Reach "R-OB6" 📃 🖃 💌
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-OB6
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm
	Volume Units: O IN O AC-FT
	Computed Results
	Peak Inflow :40.8 (CFS)Date/Time of Peak Inflow :01Oct2021, 12:30Peak Outflow :40.8 (CFS)Date/Time of Peak Outflow :01Oct2021, 12:31Total Inflow :6.8 (AC-FT)Total Outflow :6.8 (AC-FT)

Summary Results	for Subbasin "F	°B9"	
Sir		Eagleview_Subdivision /_Proposed_5-yr Subbasin:	PB9
Start of Run: 010 End of Run: 020 Compute Time: 19A	ct2021, 00:00	Basin Model: Meteorologic Model:)2 Control Specifications	r r .
	Volume U	nits: 🔿 IN 💿 AC-FT	
Computed Results	/		
Peak Discharge :		Date/Time of Peak Dischar	- · · · · · · · · · · · · · · · · · · ·
Total Precipitation		Total Direct Runoff :	0.9 (AC-FT)
Total Loss :	2.0 (AC-FT)	Total Baseflow :	0.0 (AC-FT)
	0.9 (AC-FT)	Discharge :	0.9 (AC-FT)

Summary Results for Junction "P13"	- • •
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction: P13	
Start of Run:01Oct2021, 00:00Basin Model:EagleEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr 1Compute Time:19Apr2024, 08:27:02Control Specifications:24-hr	· · ·
Volume Units: O IN AC-FT	
Computed Results	
Peak Outflow : 133.8 (CFS) Date/Time of Peak Outflow : 0100 Total Outflow : 30.9 (AC-FT)	:t2021, 12:46

_

2.6

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subba	sin: OB5
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic ModelCompute Time:19Apr2024, 08:27:02Control Specification	el: 5-yr Type II
Volume Units: O IN (AC-FT Computed Results	
Peak Discharge :37.0 (CFS)Date/Time of Peak DiscTotal Precipitation :32.4 (AC-FT)Total Direct Runoff :Total Loss :24.8 (AC-FT)Total Baseflow :Total Excess :7.6 (AC-FT)Discharge :	charge : 01Oct2021, 12:42 7.4 (AC-FT) 0.0 (AC-FT) 7.4 (AC-FT)

Summary Result	s for Subbasin "	PB8A"	
S	-	Eagleview_Subdivision /_Proposed_5-yr Subbasir	n: PB8A
Start of Run: 02 End of Run: 02 Compute Time: 19	2Oct2021, 00:00	Basin Model: Meteorologic Model: 02 Control Specification	: 5-yr Type II
		Jnits: 🔵 IN 💿 AC-FT	
Computed Result	8		
Peak Discharge :	8.3 (CFS)	Date/Time of Peak Disch	arge : 01Oct2021, 12:01
Total Precipitation	n : 1.7 (AC-FT)	Total Direct Runoff :	0.6 (AC-FT)
	1.2 (AC-ET)	Total Baseflow :	0.0 (AC-FT)
Total Loss :	1.2 (ACT 1)		

Summary Results for Reservoir	"POND_3"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reservoir: POND_3		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II 02 Control Specifications: 24-hr Storm	
Volume Units: O IN (AC-FT		
Computed Results		
Peak Inflow : 37.9 (CFS) Peak Outflow : 34.8 (CFS) Total Inflow : 8.0 (AC-FT) Total Outflow : 7.0 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:42 Date/Time of Peak Outflow : 01Oct2021, 12:54 Peak Storage : 1.7 (AC-FT) Peak Elevation : 7235.6 (FT)	

E	📖 Summary Results for Reach "R-OB5" 📃 🖃 💌		
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-OB5		
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm		
	Volume Units: 🔵 IN 💿 AC-FT		
	Computed Results		
	Peak Inflow :34.8 (CFS)Date/Time of Peak Inflow :01Oct2021, 12:54Peak Outflow :34.8 (CFS)Date/Time of Peak Outflow :01Oct2021, 12:58Total Inflow :7.0 (AC-FT)Total Outflow :7.0 (AC-FT)		
	Total Inflow : 7.0 (AC-FT) Total Outflow : 7.0 (AC-FT)		

i e

Summary Results for Sub	basin "PB8B"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB8B				
Start of Run: 01Oct2021 End of Run: 02Oct2021 Compute Time: 19Apr2024	, 00:00 Meteorologic Mod	Eagleview_Proposed del: 5-yr Type II tions: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Peak Discharge : 6.1 (Cl Total Precipitation : 1.3 (Al Total Loss : 0.9 (Al Total Excess : 0.4 (Al	C-FT) Total Direct Runoff : C-FT) Total Baseflow :	charge : 01Oct2021, 12:01 0.4 (AC-FT) 0.0 (AC-FT) 0.4 (AC-FT)		

Summary Results for Junction "P8"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction: P8		
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 08:27:02Control Specifications:		
Volume Units: 🔘 IN 💿 AC-FT		
Computed Results		
Peak Outflow : 167.3 (CFS) Date/Time of Peak Outflow : Total Outflow : 38.3 (AC-FT)	01Oct2021, 12:51	

📰 Summary Results for Reach "R-PB9"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB9			
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm			
Volume Units: O IN (AC-FT			
Computed Results			
Peak Inflow : 167.3 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:51 Peak Outflow : 167.3 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:52 Total Inflow : 38.3 (AC-FT) Total Outflow : 38.3 (AC-FT)			

Summary Results	for Subbasin "P	PB10"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB10			
Start of Run: 010 End of Run: 020 Compute Time: 19/	Oct2021, 00:00	Basin Model: Meteorologic Model: 2 Control Specifications	
Volume Units: O IN AC-FT Computed Results			
Peak Discharge : Total Precipitation		Date/Time of Peak Discharg	ge : 01Oct2021, 12:11 0.6 (AC-FT)
Total Loss : Total Excess :	1.3 <mark>(</mark> AC-FT)	Total Baseflow : Discharge :	0.0 (AC-FT) 0.6 (AC-FT)

i ra

Summary Results for Junction "P7A"			
Project: Eagleview_Subdivis Simulation Run: EV_Proposed_5-yr			
· · · · · ·	el: Eagleview_Proposed pic Model: 5-yr Type II ecifications: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Outflow: 168.5 (CFS) Date/Time of Pea Total Outflow: 38.8 (AC-FT)	ak Outflow : 01Oct2021, 12:52		

±	🛛 Summary Results for Reach "R-PB10"				
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB10				
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm				
	Volume Units: O IN AC-FT				
	Computed Results				
	Peak Inflow : 168.5 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:52 Peak Outflow : 168.5 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:52 Total Inflow : 38.8 (AC-FT) Total Outflow : 38.8 (AC-FT)				

Summary Results for Subbasin "	PB13" 🗖 🗖 🔁			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB13				
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II 02 Control Specifications: 24-hr Storm			
Volume Units: O IN (AC-FT				
Computed Results				
Peak Discharge : 4.9 (CFS)	Date/Time of Peak Discharge : 01Oct2021, 12:00			
Total Precipitation : 0.9 (AC-FT)	Total Direct Runoff: 0.3 (AC-FT)			
Total Loss : 0.6 (AC-FT)	Total Baseflow : 0.0 (AC-FT)			
Total Excess : 0.3 (AC-FT)	Discharge : 0.3 (AC-FT)			

📰 Summary Results for Reach "P12 (CULV8)"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: P12 (CULV8)			
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm	ł		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow: 168.9 (CFS) Date/Time of Peak Inflow: 01Oct2021, 12:52 Peak Outflow: 168.9 (CFS) Date/Time of Peak Outflow: 01Oct2021, 12:52 Total Inflow: 39.1 (AC-FT) Total Outflow: 39.1 (AC-FT)			

🛄 Summary Results for Reach "R-PB13"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB13			
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 08:27:02Control Specification			
Volume Units: O IN (AC-FT			
Computed Results			
Peak Inflow :168.9 (CFS)Date/Time of Peak InflowPeak Outflow :168.9 (CFS)Date/Time of Peak OutflowTotal Inflow :39.1 (AC-FT)Total Outflow :			

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yrSubbasin: OB8				
End of Run: 0)1Oct2021, 00:00)2Oct2021, 00:00 !9Apr2024, 08:27:		: 5-yr Type II	
Volume Units: 🔘 IN 💿 AC-FT				
Computed Result	S			
Peak Discharge	: 19.5 (CFS)	Date/Time of Peak Disch	arge : 01Oct2021, 12:13	
Total Precipitatio	on : 7.4 (AC-FT)	Total Direct Runoff :	2.1 (AC-FT)	
	5.3 (AC-FT)	Total Baseflow :	0.0 (AC-FT)	
Total Loss :			2.1 (AC-FT)	

💷 Summary Results for Reach "R-OB8" 📃 🖃 🗾			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-OB8			
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic ModelCompute Time:19Apr2024, 08:27:02Control Specificatio	· · · · ·		
Volume Units: O IN AC-FT			
Computed Results			
Peak Inflow :19.5 (CFS)Date/Time of Peak InflowPeak Outflow :19.5 (CFS)Date/Time of Peak OutflowTotal Inflow :2.1 (AC-FT)Total Outflow :	· · · · · · · · · · · · · · · · · · ·		

Summary Results for Subbasin "PB11"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB11				
Start of Run:01Oct2021, 00:00Basin Model:EagleEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yrCompute Time:19Apr2024, 08:27:02Control Specifications:24-hr				
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Total Loss : 2.6 (AC-FT) Total Baseflow : 0.	1Oct2021, 12:10 .4 (AC-FT) .0 (AC-FT) .4 (AC-FT)			

💷 Summary Results for Reach "P9 (CULV6)"			
-	Eagleview_Subdivision Proposed_5-yr Reach: P9 (CULV6)		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II 02 Control Specifications: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow: 31.8 (CFS) Peak Outflow:31.8 (CFS) Total Inflow: 3.5 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:14 Date/Time of Peak Outflow : 01Oct2021, 12:14 Total Outflow : 3.5 (AC-FT)		

📰 Summary Results for Reach "R-PB11" 📃 🖃 💌			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB11			
End of Run: 02Oct2021, 00:00 Me	sin Model: Eagleview_Proposed teorologic Model: 5-yr Type II ntrol Specifications: 24-hr Storm		
Volume Units: O IN AC-FT 			
Computed Results			
	e of Peak Inflow : 01Oct2021, 12:14 e of Peak Outflow : 01Oct2021, 12:14 flow : 3.5 (AC-FT)		

📰 Summary Results for Junction "P6"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction: P6			
End of Run: 02Oct2021, 00:00	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm		
Volume Units: O IN O AC-FT			
Computed Results			
Peak Outflow : 177.3 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:52 Total Outflow : 42.6 (AC-FT)			

Summary Results for Reach "R-PB13-B"	- 🗆 🗙
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB13-B	
Start of Run:01Oct2021, 00:00Basin Model:EaglevEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr TyCompute Time:19Apr2024, 08:27:02Control Specifications:24-hr State	
Volume Units: O IN O AC-FT	
Computed Results	
Peak Inflow :177.3 (CFS)Date/Time of Peak Inflow :01OctPeak Outflow :177.3 (CFS)Date/Time of Peak Outflow :01OctTotal Inflow :42.6 (AC-FT)Total Outflow :42.6 (AC-FT)	

Summary Results	for Subbasin "F	PB14"	
Si		Eagleview_Subdivision /_Proposed_5-yr Subbas	sin: PB14
Start of Run: 010 End of Run: 020 Compute Time: 19	Oct2021, 00:00	Basin Model: Meteorologic Mode 02 Control Specification	
Computed Depute	Volume L	Jnits: 🔘 IN 💿 AC-FT	
Computed Results Peak Discharge :	18.9 (CFS)	Data/Time of Boak Diad	harge : 01Oct2021, 12:01
Total Precipitation	· · · · · ·	Total Direct Runoff :	1.2 (AC-FT)
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·
Total Loss :	2.7 (AC-FT)	Total Baseflow :	0.0 (AC-FT)

1	🗄 Summary Results for Junction "P3"
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction: P3
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm
	Volume Units: 🔘 IN 💿 AC-FT
	Computed Results
	Peak Outflow : 179.0 (CFS)Date/Time of Peak Outflow : 01Oct2021, 12:53Total Outflow : 43.8 (AC-FT)

Summary Results for	Subbasin "OB3	п	- • ×
Simul		leview_Subdivision oposed_5-yr Subbasin:	OB3
Start of Run: 01Oct End of Run: 02Oct Compute Time: 19Apr	2021, 00:00	Basin Model: Meteorologic Model: Control Specifications:	
	Volume Units	∷ ⊖ IN (● AC-FT	
Computed Results			
-		ate/Time of Peak Discharg	• •
Total Precipitation : 9		otal Direct Runoff :	2.8 (AC-FT)
Total Loss: 7		otal Baseflow :	0.0 (AC-FT)
Total Excess: 2	.8 (AC-FT) D	ischarge :	2.8 (AC-FT)

Summary Results for Subbasin "OB4"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: OB4		
Start of Run:01Oct2021, 00:00Basin Model:EaglevieEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr TypCompute Time:19Apr2024, 08:27:02Control Specifications:24-hr St		
Volume Units: O IN O AC-FT		
Total Loss : 1.6 (AC-FT) Total Baseflow : 0.0 (t2021, 12:10 AC-FT) AC-FT) AC-FT) AC-FT)	

Summary Results for Reach "R-OB4	4-A" 🗖 🗖 💌
	eview_Subdivision posed_5-yr Reach: R-OB4-A
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:02	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm
Volume Units	: O IN () AC-FT
Computed Results	
Peak Outflow : 32.7 (CFS) Dat	e/Time of Peak Inflow: 01Oct2021, 12:12 e/Time of Peak Outflow:01Oct2021, 12:13 al Outflow: 3.5 (AC-FT)

Summary Results	for Subbasin "F	PB5"	
S	-	Eagleview_Subdivision /_Proposed_5-yr Subbasin:	: PB5
Start of Run: 010 End of Run: 020 Compute Time: 19/	Oct2021, 00:00	Basin Model: Meteorologic Model: 02 Control Specifications	5-yr Type II
	Volume U	nits: 🔾 IN 💿 AC-FT	
Computed Results			
Peak Discharge :	4.2 (CFS)	Date/Time of Peak Dischar	ge : 01Oct2021, 12:12
Total Precipitation	: 1.4 (AC-FT)	Total Direct Runoff :	0.5 (AC-FT)
		TILD 0	
Total Loss :	0.9 (AC-FT)	Total Baseflow :	0.0 (AC-FT)

Summary Results for Reach "P!	5 (CULV7)"	
-	Eagleview_Subdivision Proposed_5-yr Reach: P5 (CULV7)
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:	Basin Model: Meteorologic Model: 02 Control Specifications	5-yr Type II
Volume U	Jnits: 🔘 IN 💿 AC-FT	
Computed Results		
Peak Inflow: 36.9 (CFS) Peak Outflow:36.9 (CFS) Total Inflow: 4.0 (AC-FT)	Date/Time of Peak Inflow : Date/Time of Peak Outflow : Total Outflow :	· · · · · · · · · · · · · · · · · · ·

##	🏽 Summary Results for Reach "R-OB4-B"		
	-	agleview_Subdivision Proposed_5-yr Reach: R-OB4-B	
	Start of Run: 010ct2021, 00:00	Basin Model: Eagleview_Prop	osed
	End of Run: 02Oct2021, 00:00	Meteorologic Model: 5-yr Type II	
	Compute Time: 19Apr 2024, 08:27:0	2 Control Specifications: 24-hr Storm	
	Volume Ur	iits: 🔘 IN 💿 AC-FT	
	Computed Results		
	Peak Outflow : 36.8 (CFS)	Date/Time of Peak Inflow : 01Oct2021, 12: Date/Time of Peak Outflow : 01Oct2021, 12: Total Outflow : 4.0 (AC-FT)	

🛄 Summary Results	for Subbasin "C)B2"	- • ×
Si	•	Eagleview_Subdivision /_Proposed_5-yr Subbasin	1: OB2
Start of Run: 010 End of Run: 020 Compute Time: 19/	Oct2021, 00:00	Basin Model: Meteorologic Model: 2 Control Specification	5-yr Type II
	Volume U	nits: 🔵 IN 💿 AC-FT	
Computed Results			
Peak Discharge : Total Precipitation Total Loss : Total Excess :	4.4 (AC-FT)	Date/Time of Peak Discha Total Direct Runoff : Total Baseflow : Discharge :	rge : 01Oct2021, 12:08 1.9 (AC-FT) 0.0 (AC-FT) 1.9 (AC-FT)

Summary Results for Reach "R-OB2"	x
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-OB2	
Start of Run:01Oct2021, 00:00Basin Model:EagleEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yrCompute Time:19Apr2024, 08:27:02Control Specifications:24-h	 ed
Volume Units: 🔘 IN 💿 AC-FT	
Computed Results	
Peak Inflow :20.5 (CFS)Date/Time of Peak Inflow :010cPeak Outflow :20.5 (CFS)Date/Time of Peak Outflow :010cTotal Inflow :1.9 (AC-FT)Total Outflow :1.9 (AC-FT)	

eview_Subdivision oposed_5-yr Subbasin: PB4
Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm
: OIN OAC-FT
ate/Time of Peak Discharge : 01Oct2021, 12:00otal Direct Runoff :0.8 (AC-FT)otal Baseflow :0.0 (AC-FT)scharge :0.8 (AC-FT)

💷 Summary Results for Reach "P10 (CULV2)"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: P10 (CULV2)				
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm				
Volume Units: O IN AC-FT				
Computed Results				
Peak Inflow :58.0 (CFS)Date/Time of Peak Inflow :01Oct2021, 12:13Peak Outflow :58.0 (CFS)Date/Time of Peak Outflow :01Oct2021, 12:13Total Inflow :6.7 (AC-FT)Total Outflow :6.7 (AC-FT)				

🛄 Summary Results for Reach "R-PB5"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB5			
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm			
Volume Units: O IN (AC-FT			
Computed Results			
Peak Inflow :58.0 (CFS)Date/Time of Peak Inflow :01Oct2021, 12:13Peak Outflow :58.0 (CFS)Date/Time of Peak Outflow :01Oct2021, 12:14Total Inflow :6.7 (AC-FT)Total Outflow :6.7 (AC-FT)			

Summary Results for S	Subbasin "PB6"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB6			
Start of Run: 01Oct20 End of Run: 02Oct20 Compute Time: 19Apr20		l: Eagleview_Proposed ic Model: 5-yr Type II ecifications: 24-hr Storm	
Volume Units: O IN O AC-FT			
· Peak Discharge : 8.6 Total Precipitation : 2.5 Total Loss : 1.6	(AC-FT) Total Direct Run	ak Discharge : 01Oct2021, 12:11 off : 0.9 (AC-FT) 0.0 (AC-FT) 0.9 (AC-FT)	

Summary Results for Subbasi	n "PB7"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB7			
Start of Run: 01Oct2021, 00:0 End of Run: 02Oct2021, 00:0 Compute Time: 19Apr2024, 08:2	00 Meteorologic Model:		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Discharge : 3.2 (CFS)	Date/Time of Peak Dischar	ge : 01Oct2021, 12:08	
Total Precipitation : 0.8 (AC-FT)) Total Direct Runoff :	0.3 (AC-FT)	
Total Loss : 0.5 (AC-FT)) Total Baseflow :	0.0 (AC-FT)	
Total Excess : 0.3 (AC-FT)) Discharge :	0.3 (AC-FT)	

<u>#</u> #	Summary Results for Reach "CULV4"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: CULV4				
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm			
	Volume Units: O IN AC-FT			
	Computed Results			
	Peak Inflow : 3.2 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:08 Peak Outflow : 3.2 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:08 Total Inflow : 0.3 (AC-FT) Total Outflow : 0.3 (AC-FT)			

Summary Results for Reach "R-PB7-A"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB7-A				
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 08:27:02Control Specifications	r r			
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Peak Inflow :3.2 (CFS)Date/Time of Peak Inflow :Peak Outflow :3.2 (CFS)Date/Time of Peak Outflow :Total Inflow :0.3 (AC-FT)Total Outflow :	· · · · · · · · · · · · · · · · · · ·			

Summary Results for Reach "P11 (CULV3)"			x
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: P11 (CULV3)			
· · · · · · · · · · · · · · · · · · ·	eview_		ed
End of Run: 02Oct2021, 00:00 Meteorologic Model: 5-yr			
Compute Time: 19Apr2024, 08:27:02 Control Specifications: 24-h	r Storn	1	
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow :11.7 (CFS)Date/Time of Peak Inflow :0100Peak Outflow :11.7 (CFS)Date/Time of Peak Outflow :0100	.t2021,	12:11	
Total Inflow : 1.2 (AC-FT) Total Outflow : 1.2 (AC-FT)		

📰 Summary Results for Reach "R-PB7-B"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB7-B				
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm				
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Peak Inflow : 11.7 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:11 Peak Outflow : 11.7 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:12 Total Inflow : 1.2 (AC-FT) Total Outflow : 1.2 (AC-FT)				

Summary Results for Subbasin "PB3"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: PB3			
Start of Run: 01 End of Run: 02 Compute Time: 19	Oct2021, 00:00	Basin Model: Meteorologic Model: 02 Control Specification	5-yr Type II
Volume Units: O IN (AC-FT			
Computed Results			
	1.5 (CFS)	Date/Time of Peak Discha	
Total Precipitation		Total Direct Runoff :	0.1 (AC-FT)
Total Loss :	0.2 (AC-FT)	Total Baseflow :	0.0 (AC-FT)
	0.1 (AC-FT)	Discharge :	0.1 (AC-FT)

Summary Results for Reach "Cl	JLV1"
-------------------------------	-------

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: CULV1

- • ×

Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27	Meteorologic Model: 5-yr Type II			
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Peak Inflow : 1.5 (CFS) Peak Outflow : 1.5 (CFS) Total Inflow : 0.1 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:07 Date/Time of Peak Outflow : 01Oct2021, 12:08 Total Outflow : 0.1 (AC-FT)			

Summary Results for Reach "R-	PB3"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Reach: R-PB3			
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:0	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm		
Volume Units: O IN O AC-FT			
Computed Results			
Peak Inflow : 1.5 (CFS) Peak Outflow : 1.5 (CFS) Total Inflow : 0.1 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:08 Date/Time of Peak Outflow : 01Oct2021, 12:09 Total Outflow : 0.1 (AC-FT)		

🔠 Summary Results for Junction "P4" 📃 🖃 🔀
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction: P4
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:5-yr Type IICompute Time:19Apr2024, 08:27:02Control Specifications:24-hr Storm
Volume Units: 🔘 IN 💿 AC-FT
Computed Results
Peak Outflow : 70.8 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:14 Total Outflow : 8.0 (AC-FT)

Summary Results for Reach "R-PB7	-C"
· · · · · · · · · · · · · · · · · · ·	eview_Subdivision posed_5-yr Reach: R-PB7-C
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:02	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm
Volume Units	: 🔾 IN 💿 AC-FT
Computed Results	
Peak Outflow : 70.7 (CFS) Dat	e/Time of Peak Inflow: 01Oct2021, 12:14 e/Time of Peak Outflow:01Oct2021, 12:15 al Outflow: 8.0 (AC-FT)

— — –

###	Summary Results	for Subbasin "Pl	B15"	
	Sir		agleview_Subdivision _Proposed_5-yr Subbasin: F	°B15
	Start of Run: 010 End of Run: 020 Compute Time: 194	oct2021, 00:00	Basin Model: Meteorologic Model: 2 Control Specifications:	· · · · ·
		Volume Ur	nits: 🔵 IN 💿 AC-FT	
	Computed Results			
	Peak Discharge : Total Precipitation Total Loss : Total Excess :	: 2.2 (AC-FT)	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Oct2021, 12:00 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT)

Summary Results for Junction "P2"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Junction:	P2			
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 08:27:02Control Specifications:				
Volume Units: 🔘 IN 💿 AC-FT				
Computed Results				
Peak Outflow : 72.7 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:15 Total Outflow : 8.7 (AC-FT)				

Summary Results for Junction "OF-1"	
Project: Eagleview_Subd Simulation Run: EV_Proposed_5-yr	
Start of Run: 01Oct2021, 00:00 Basin Mo	odel: Eagleview_Proposed
End of Run: 02Oct2021, 00:00 Meteorol	logic Model: 5-yr Type II
Compute Time: 19Apr2024, 08:27:02 Control S	Specifications: 24-hr Storm
Volume Units: 🔘 IN 🧕	AC-FT
Computed Results	
Peak Outflow : 198.9 (CFS) Date/Time of F Total Outflow : 52.5 (AC-FT)	Peak Outflow : 01Oct2021, 12:49

Summary Results for S	ubbasin "OB1	1				x
Simulat	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_5-yr Subbasin: OB1					
Start of Run: 01Oct20 End of Run: 02Oct20 Compute Time: 19Apr20	21, 00:00	Basin Model: Meteorologic Model: Control Specifications:	5-yr T	ype II	ropose	ed
	Volume Units:	OIN ● AC-FT				
Computed Results						
Peak Discharge : 7.1	(CFS) Da	te/Time of Peak Discharg	je : 010	Oct202	1, 12:	08
Total Precipitation : 2.3	•	tal Direct Runoff :		' <mark>(</mark> AC-F		
Total Loss: 1.7	• •	tal Baseflow :		(AC-F		
Total Excess : 0.7	(AC-FT) Di	charge :	0.7	' (AC-F	T)	

📰 Summary Results for Reach "R-OB1" 📃 🖃 🛋					
	agleview_Subdivision _Proposed_5-yr Reach: R-OB1				
Start of Run: 01Oct2021, 00:00	Basin Model: Eagleview_Proposed				
End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:0	Meteorologic Model: 5-yr Type II Control Specifications: 24-hr Storm				
Volume Ur	nits: 🔿 IN 💿 AC-FT				
Computed Results					
Peak Outflow : 7.1 (CFS)	Date/Time of Peak Inflow : 01Oct2021, 12:08 Date/Time of Peak Outflow : 01Oct2021, 12:10 Total Outflow : 0.7 (AC-FT)				

		Eagleview_Subdivision	
S	imulation Run: E	/_Proposed_5-yr Subbasin	: PB1
Start of Run: 01	Oct2021, 00:00	Basin Model:	Eagleview Propose
End of Run: 02	Oct2021, 00:00	Meteorologic Model:	5-yr Type II
Compute Time: 19/	Apr 2024, 08:27:	02 Control Specification:	s: 24-hr Storm
	Volume U	Inits: 🔵 IN 💿 AC-FT	
Computed Results			
Peak Discharge :	3.0 (CFS)	Date/Time of Peak Dischar	ge : 01Oct2021, 12:1
Total Precipitation	: 1.0 (AC-FT)	Total Direct Runoff :	0.3 (AC-FT)
Total Loss :	0.7 (AC-FT)	Total Baseflow :	0.0 (AC-FT)
TO GELUSS .	0.3 (AC-FT)	Discharge :	0.3 (AC-FT)

Summary Results for Subbasin "I	PB2"
	Eagleview_Subdivision /_Proposed_5-yr Subbasin: PB2
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 08:27:0	Basin Model: Eagleview_Proposed Meteorologic Model: 5-yr Type II 02 Control Specifications: 24-hr Storm
	Inits: O IN (AC-FT
Computed Results	
Peak Discharge : 1.0 (CFS)	Date/Time of Peak Discharge : 01Oct2021, 12:06
Total Precipitation : 0.2 (AC-FT)	Total Direct Runoff: 0.1 (AC-FT)
Total Loss: 0.2 (AC-FT)	Total Baseflow : 0.0 (AC-FT)
Total Excess : 0.1 (AC-FT)	Discharge : 0.1 (AC-FT)

🖾 Global Summary Results for Run "EV_Proposed_100-yr"

Project: Eagleview_Subdivision

Simulation Run: EV_Proposed_100-yr

Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53

Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II

Control Specifications: 24-hr Storm Show Elements: All Elements 🗸 Volume Units: () IN () AC-FT Sorting: Hydrologic 🗸

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume	
Element	(MI2)	(CFS)		(IN)	
OB7	0.6581200	284.3	01Oct2021, 12:52	1.73	~
R-OB7A	0.6581200	284.3	01Oct2021, 12:53	1.72	
OB6	0.1850100	113.3	01Oct2021, 12:29	1.78	
R-OB6	0.1850100	113.3	01Oct2021, 12:30	1.78	
PB9	0.0199984	24.8	01Oct2021, 12:07	2.05	
P13	0.8631284	375.0	01Oct2021, 12:44	1.74	
R-0878	0.8631284	374.9	01Oct2021, 12:45	1.74	
OB5	0.2247200	107.1	01Oct2021, 12:40	1.65	
PB8A	0.0118750	20.3	01Oct2021, 12:01	2.10	
POND_3	0.2365950	97.1	01Oct2021, 12:55	1.58	
R-OB5	0.2365950	97.1	01Oct2021, 12:58	1.58	
PB8B	0.0090469	15.2	01Oct2021, 12:01	2.00	
P8	1.1087703	472.4	01Oct2021, 12:46	1.71	
R-PB9	1.1087703	472.3	01Oct2021, 12:46	1.71	
PB10	0.0132344	14.4	01Oct2021, 12:10	2.00	
P7A	1.1220047	475.7	01Oct2021, 12:46	1.71	
R-PB10	1.1220047	475.6	01Oct2021, 12:47	1.71	
PB13	0.0062812	11.7	01Oct2021, 12:00	2.18	
P12 (CULV8)	1.1282859	476.7	01Oct2021, 12:47	1.71	
R-PB13	1.1282859	476.7	01Oct2021, 12:47	1.71	
OB8	0.0516742	51.6	01Oct2021, 12:13	1.96	
R-OB8	0.0516742	51.6	01Oct2021, 12:15	1.95	
PB11	0.0274375	33.2	01Oct2021, 12:10	2.17	
P9 (CULV6)	0.0791117	82.3	01Oct2021, 12:13	2.03	
R-PB11	0.0791117	82.2	01Oct2021, 12:13	2.03	
P6	1.2073976	500.7	01Oct2021, 12:46	1.73	
R-PB13-B	1.2073976	500.6	01Oct2021, 12:47	1.73	
PB14	0.0270031	46.3	01Oct2021, 12:01	2.04	
P3	1.2344007	505.2	01Oct2021, 12:46	1.74	
OB3	0.0678750	67.2	01Oct2021, 12:12	1.92	
OB4	0.0164062	18.9	01Oct2021, 12:10	2.09	
R-OB4-A	0.0842812	85.7	01Oct2021, 12:13	1.95	
PB5	0.0096625	10.4	01Oct2021, 12:12	2.09	
P5 (CULV7)	0.0939437	96.1	010ct2021, 12:13	1.97	
R-OB4-B	0.0939437	95.9	010ct2021, 12:14	1.97	
OB2	0.0438438	52.7	010ct2021, 12:08	2.01	
R-OB2	0.0438438	52.5	01Oct2021, 12:09	2.00	
PB4	0.0164672	30.2	01Oct2021, 12:00	2.14	
P10 (CULV2)	0.1542547	150.2	010ct2021, 12:12	1.99	
R-PB5	0.1542547	150.1	010ct2021, 12:13	1.99	
PB6	0.0173312	20.7	01Oct2021, 12:10	2.21	
PB7	0.0054062	7.4	01Oct2021, 12:08	2.34	
CULV4	0.0054062	7.4	01Oct2021, 12:08	2.34	
R-PB7-A	0.0054062	7.4	01Oct2021, 12:09	2.34	~

- - X

P11 (CULV3)	0.0227374	28.0	01Oct2021, 12:10	2.24	
R-PB7-B	0.0227374	27.9	01Oct2021, 12:11	2.24	
PB3	0.0021625	3.3	01Oct2021, 12:07	2.55	
CULV1	0.0021625	3.3	01Oct2021, 12:07	2.55	
R-PB3	0.0021625	3.3	01Oct2021, 12:09	2.55	
P4	0.1791546	180.8	01Oct2021, 12:12	2.03	
R-PB7-C	0.1791546	180.8	01Oct2021, 12:13	2.03	
PB15	0.0150500	26.3	01Oct2021, 12:00	2.07	
P2	0.1942046	185.4	01Oct2021, 12:13	2.03	
OF-1	1.4286053	560.8	01Oct2021, 12:43	1.78	
OB1	0.0162031	18.8	01Oct2021, 12:08	1.93	
R-OB1	0.0162031	18.7	01Oct2021, 12:09	1.93	
PB1	0.0066453	7.7	01Oct2021, 12:09	2.04	
P1	0.0228484	26.4	01Oct2021, 12:09	1.96	
PB2	0.0016935	2.4	010ct2021, 12:06	2.21	~

🛄 Summary Result	ts for Subbasin "OB	7"	- • ×
	-	gleview_Subdivision roposed_100-yr Subbasi	n: OB7
End of Run:	01Oct2021, 00:00 02Oct2021, 00:00 19Apr2024, 09:33:53	Basin Model: Meteorologic Model: Control Specifications	
Computed Result		ts: O IN AC-FT	
Peak Discharge : Total Precipitatio Total Loss : Total Excess :	n : 161.5 (AC-FT) 99.5 (AC-FT)	Date/Time of Peak Discha Total Direct Runoff : Total Baseflow : Discharge :	arge : 01Oct2021, 12:52 60.6 (AC-FT) 0.0 (AC-FT) 60.6 (AC-FT)

Summary Results for Reach "R-OB7A"
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-OB7A
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm
Volume Units: 🔘 IN 💿 AC-FT
Computed Results
Peak Inflow : 284.3 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:52 Peak Outflow : 284.3 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:53 Total Inflow : 60.6 (AC-FT) Total Outflow : 60.5 (AC-FT)

Summary Results for	Subbasin "OB6"		
Simul		eview_Subdivision posed_100-yr Subbasin	: OB6
Start of Run: 01Oc End of Run: 02Oc Compute Time: 19Ap	t2021, 00:00	Basin Model: Meteorologic Model: Control Specifications:	100-yr Type II
Computed Results	Volume Units:	OIN OAC-FT	
Peak Discharge: 1 Total Precipitation: 4 Total Loss: 2 Total Excess: 1	5.4 (AC-FT) To 7.6 (AC-FT) To	ate/Time of Peak Discharg otal Direct Runoff : otal Baseflow : ischarge :	ge : 01Oct2021, 12:29 17.5 (AC-FT) 0.0 (AC-FT) 17.5 (AC-FT)

Summary Results for Reach "R-OB6"			х
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: Rei	-OB6		
End of Run: 02Oct2021, 00:00 Meteorologic Model: Compute Time: 19Apr2024, 09:33:53 Control Specifications:	· · · ·	e II	ed
Volume Units: O IN AC-FT Computed Results 			
Peak Inflow :113.3 (CFS)Date/Time of Peak Inflow :Peak Outflow :113.3 (CFS)Date/Time of Peak Outflow :Total Inflow :17.5 (AC-FT)Total Outflow :		, 12:30	

Summary Results for Subbasin "PE	B9" 🗖 🗖 💌
	agleview_Subdivision Proposed_100-yr Subbasin: PB9
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:5	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm
	nits: 🔿 IN 💿 AC-FT
Computed Results	
Peak Discharge : 24.8 (CFS)	Date/Time of Peak Discharge : 01Oct2021, 12:07
Total Precipitation : 4.9 (AC-FT)	Total Direct Runoff: 2.2 (AC-FT)
Total Loss: 2.7 (AC-FT)	Total Baseflow : 0.0 (AC-FT)
Total Excess : 2.2 (AC-FT)	Discharge : 2.2 (AC-FT)

Summary Results for Junction "P13"			×	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junction: P13				
Start of Run: 01Oct2021, 00:00 Basin Model: Eagleview_Proposed End of Run: 02Oct2021, 00:00 Meteorologic Model: 100-yr Type II Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: O IN AC-FT			sed	
Computed Results Peak Outflow : 375.0 (CFS) Date/Time of Peak Outflow : 0100 Total Outflow : 80.3 (AC-FT)	:t202:	1, 12:4	4	

🔜 Summary Results for Reach "R-OB7B"
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-OB7B
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm
Volume Units: O IN AC-FT
Computed Results
Peak Inflow : 375.0 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:44 Peak Outflow : 374.9 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:45 Total Inflow : 80.3 (AC-FT) Total Outflow : 80.2 (AC-FT)

Summary Results for Subbasin "OB	35"	
-	agleview_Subdivision Proposed_100-yr Subbasin	1: OB5
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:5	Basin Model: Meteorologic Model: 3 Control Specifications	· · · · · · · · · · · · · · · · · · ·
Volume Un Computed Results	iits: 🔾 IN 💿 AC-FT	
Peak Discharge : 107.1 (CFS) Total Precipitation : 55.1 (AC-FT) Total Loss : 35.0 (AC-FT) Total Excess : 20.2 (AC-FT)	Date/Time of Peak Dischar Total Direct Runoff : Total Baseflow : Discharge :	ge : 01Oct2021, 12:40 19.8 (AC-FT) 0.0 (AC-FT) 19.8 (AC-FT)

Summary Results	for Subbasin "F	PB8A"	
Sim		Eagleview_Subdivision Proposed_100-yr Subbas	in: PB8A
Start of Run: 01 End of Run: 02 Compute Time: 19	Oct2021, 00:00	Basin Model: Meteorologic Model: 53 Control Specification	100-yr Type II
	Volume L	Inits: 🔿 IN 💿 AC-FT	
Computed Results			
Peak Discharge :	20.3 (CFS)	Date/Time of Peak Discha	
Total Precipitation	: 2.9 (AC-FT)	Total Direct Runoff :	1.3 (AC-FT)
Total Loss :	1.6 (AC-FT)	Total Baseflow :	0.0 (AC-FT)
Total Excess :	1.3 (AC-FT)	Discharge :	1.3 (AC-FT)

Summary Results for Reservoir "POND_3"			x
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reservoir: PON	D_3		
Start of Run:01Oct2021, 00:00Basin Model:EagEnd of Run:02Oct2021, 00:00Meteorologic Model:100Compute Time:19Apr2024, 09:33:53Control Specifications:24-		e II	sed
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
· · ·		i, 12:5)	

IIII Summary Results for Reach "R-OB5"			x
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-	-OB5		
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 09:33:53Control Specifications:		e II	ed
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow :97.1 (CFS)Date/Time of Peak Inflow :Peak Outflow :97.1 (CFS)Date/Time of Peak Outflow :Total Inflow :19.9 (AC-FT)Total Outflow :		, 12:58	

Summary Results for Subbasin "PB8B				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB8B				
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm			
Volume Units: O IN AC-FT Computed Results				
Total Precipitation : 2.2 (AC-FT) To Total Loss : 1.3 (AC-FT) To	ate/Time of Peak Discharge : 01Oct2021, 12:01 otal Direct Runoff : 1.0 (AC-FT) otal Baseflow : 0.0 (AC-FT) scharge : 1.0 (AC-FT)			

🛄 Summary Results for Junction "P8"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junction: P8			
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm			
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Outflow : 472.4 (CFS)Date/Time of Peak Outflow : 01Oct2021, 12:46Total Outflow : 101.1 (AC-FT)			

Summary Results for Reach "R-PB9"	
Project: Eagleview_Subdiv Simulation Run: EV_Proposed_100-y	
End of Run: 02Oct2021, 00:00 Meteorold Compute Time: 19Apr2024, 09:33:53 Control Sp	del: Eagleview_Proposed ogic Model: 100-yr Type II pecifications: 24-hr Storm
Volume Units: O IN Computed Results	AC-FT
	eak Inflow : 01Oct2021, 12:46 eak Outflow : 01Oct2021, 12:46 101.1 (AC-FT)

🔜 Summary Results for Subbasin "PB10"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB10			
End of Run: 02Oct2021, 00:00	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Total Precipitation : 3.2 (AC-FT) Total Total Loss : 1.8 (AC-FT) Total	/Time of Peak Discharge : 01Oct2021, 12:10Direct Runoff :1.4 (AC-FT)Baseflow :0.0 (AC-FT)arge :1.4 (AC-FT)		

Summary Results for Junction "P7A"		
Project: Eagleview Simulation Run: EV_Proposed		
End of Run: 02Oct2021, 00:00 Me	in Model: Eagleview_Proposed teorologic Model: 100-yr Type II ntrol Specifications: 24-hr Storm	
Volume Units: O IN AC-FT		
Computed Results		
Peak Outflow : 475.7 (CFS)Date/Time of Peak Outflow : 01Oct2021, 12:46Total Outflow : 102.5 (AC-FT)		

Summary Results for Reach "R-P	PB10"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-PB10		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm	
Volume Units: 🔘 IN 💿 AC-FT		
Computed Results		
Peak Inflow : 475.7 (CFS) Peak Outflow : 475.6 (CFS) Total Inflow : 102.5 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:46 Date/Time of Peak Outflow : 01Oct2021, 12:47 Total Outflow : 102.4 (AC-FT)	

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB13 Start of Run: 01Oct2021, 00:00 Basin Model: Eagleview_Proposed End of Run: 02Oct2021, 00:00 Meteorologic Model: 100-yr Type II Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: IN AC-FT Computed Results Peak Discharge : 11.7 (CFS) Date/Time of Peak Discharge : 01Oct2021, 12:00 Total Precipitation : 1.5 (AC-FT) Total Direct Runoff : 0.7 (AC-FT) Total Loss : 0.8 (AC-FT) Total Baseflow : 0.0 (AC-FT) Total Excess : 0.7 (AC-FT) Discharge : 0.7 (AC-FT)	🛄 Summary Results for Subbasin "Pl	813" 🗖 🗖 💌		
End of Run: 02Oct2021, 00:00 Meteorologic Model: 100-yr Type II Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: O IN O AC-FT Computed Results Peak Discharge : 11.7 (CFS) Date/Time of Peak Discharge : 01Oct2021, 12:00 Total Precipitation : 1.5 (AC-FT) Total Direct Runoff : 0.7 (AC-FT) Total Loss : 0.8 (AC-FT) Total Baseflow : 0.0 (AC-FT)				
Computed Results Peak Discharge : 11.7 (CFS) Date/Time of Peak Discharge : 01Oct2021, 12:00 Total Precipitation : 1.5 (AC-FT) Total Loss : 0.8 (AC-FT) Total Baseflow : 0.0 (AC-FT)	End of Run: 02Oct2021, 00:00	Meteorologic Model: 100-yr Type II		
Peak Discharge : 11.7 (CFS) Date/Time of Peak Discharge : 01Oct2021, 12:00 Total Precipitation : 1.5 (AC-FT) Total Direct Runoff : 0.7 (AC-FT) Total Loss : 0.8 (AC-FT) Total Baseflow : 0.0 (AC-FT)	Volume Units: O IN (AC-FT			
Total Precipitation: 1.5 (AC-FT) Total Direct Runoff: 0.7 (AC-FT) Total Loss: 0.8 (AC-FT) Total Baseflow: 0.0 (AC-FT)	Computed Results			
	Total Precipitation : 1.5 (AC-FT) Total Loss : 0.8 (AC-FT)	Total Direct Runoff: 0.7 (AC-FT) Total Baseflow: 0.0 (AC-FT)		

Summary Results for Reach "P12 (CULV8)"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: P12 (CULV8)			
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 09:33:53Control Specification	100-yr Type II		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow :476.7 (CFS)Date/Time of Peak InflowPeak Outflow :476.7 (CFS)Date/Time of Peak OutfloTotal Inflow :103.2 (AC-FT)Total Outflow :			

##	Summary Results for Reach "R-PB13"			
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-PB13			
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type II			
	Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: O IN O AC-FT			
	Computed Results			
	Peak Inflow: 476.7 (CFS) Date/Time of Peak Inflow: 01Oct2021, 12:47 Peak Outflow: 476.7 (CFS) Date/Time of Peak Outflow: 01Oct2021, 12:47 Total Inflow: 103.2 (AC-FT) Total Outflow: 103.1 (AC-FT)			
	Total Inflow: 103.2 (AC-FT) Total Outflow: 103.1 (AC-FT)			

🛄 Summary Results for Subbasin "OB8"			x	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: OB8				
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm			ł	
Volume Units: O IN (AC-FT	Volume Units: O IN AC-FT			
Computed Results				
Total Loss : 7.3 (AC-FT) Total Baseflow : 0.1	.Oct202 4 (AC-F 0 (AC-F 4 (AC-F	т) т)	13	

🔢 Summary Re	sults for Reach "R-C)B8"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-OB8			
End of Run:	01Oct2021, 00:00 02Oct2021, 00:00 19Apr2024, 09:33:5	Basin Model: Meteorologic Model: 3 Control Specifications	
Volume Units: 🔵 IN 💿 AC-FT			
Computed Re	esults		
Peak Outflo	w : 51.6 (CFS) [Date/Time of Peak Inflow : Date/Time of Peak Outflow : Fotal Outflow :	· · · · · · · · · · · · · · · · · · ·

Summary Results for	or Subbasin "PB1	1"		
Simula	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB11			
Start of Run: 0100 End of Run: 0200 Compute Time: 19Ap	t2021, 00:00	Basin Model: Meteorologic Model: Control Specifications:	· · · ·	
	Volume Unit	s: 🔾 IN 💿 AC-FT		
Computed Results	Computed Results			
Peak Discharge : Total Precipitation : Total Loss : Total Excess :	6.7 (AC-FT) 1 3.5 (AC-FT) 1	Date/Time of Peak Discharg Total Direct Runoff : Total Baseflow : Discharge :	e : 01Oct2021, 12:10 3.2 (AC-FT) 0.0 (AC-FT) 3.2 (AC-FT) 3.2 (AC-FT)	

📰 Summary Results for Reach "P9 (CULV6)"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: P9 (CULV6)			
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 09:33:53Control Specifications:			
Volume Units: O IN (AC-FT			
Computed Results			
Peak Inflow :82.3 (CFS)Date/Time of Peak Inflow :0Peak Outflow :82.3 (CFS)Date/Time of Peak Outflow :0Total Inflow :8.6 (AC-FT)Total Outflow :8	· · · · · · · · · · · · · · · · · · ·		

iew_Subdivision sed_100-yr Reach: R-PB11
Basin Model:Eagleview_ProposedMeteorologic Model:100-yr Type IIControl Specifications:24-hr Storm
◯ IN () AC-FT
Time of Peak Inflow : 01Oct2021, 12:13 Time of Peak Outflow : 01Oct2021, 12:13 Outflow : 8.6 (AC-FT)
() () ()

Summary Results for Junction "P6"	- • ×
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junction: P6	
Start of Run:01Oct2021, 00:00Basin Model:EagleEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yCompute Time:19Apr2024, 09:33:53Control Specifications:24-hr	
Volume Units: 🔘 IN (AC-FT	
Computed Results	
Peak Outflow : 500.7 (CFS)Date/Time of Peak Outflow : 010Total Outflow : 111.7 (AC-FT))ct2021, 12:46

Summary Results for Reach "R-I	PB13-B"
-	Eagleview_Subdivision roposed_100-yr Reach: R-PB13-B
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:5	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm
Volume U	nits: 🔵 IN 💿 AC-FT
Computed Results	
Peak Inflow : 500.7 (CFS) Peak Outflow : 500.6 (CFS) Total Inflow : 111.7 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:46 Date/Time of Peak Outflow : 01Oct2021, 12:47 Total Outflow : 111.6 (AC-FT)

journing neour	s for Subbasin "I	PB14"	
Si	-	Eagleview_Subdivision _Proposed_100-yr Subbas	in: PB14
Start of Run: 0 End of Run: 0 Compute Time: 1	· · · · · · · · · · · · · · · · · · ·	Basin Model: Meteorologic Model: 53 Control Specification	100-yr Type II
	Volume L	Jnits: 🔘 IN 💿 AC-FT	
Computed Result			
· Peak Discharge :	46.3 (CFS)	Date/Time of Peak Discha	
	46.3 (CFS)	Date/Time of Peak Discha Total Direct Runoff :	arge : 01Oct2021, 12:01 2.9 (AC-FT)
· Peak Discharge : Total Precipitatio	46.3 (CFS)	· · · · · · · · · · · · · · · · · · ·	

📰 Summary Results for Junction "P3"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junction: P3				
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm				
Volume Units: O IN (AC-FT				
Computed Results				
Peak Outflow : 505.2 (CFS)Date/Time of Peak Outflow : 01Oct2021, 12:46Total Outflow : 114.6 (AC-FT)				

Summary Resul	ts for Subbasin "C)B3"	
		Eagleview_Subdivision Proposed_100-yr Subba	sin: OB3
End of Run: (01Oct2021, 00:00 02Oct2021, 00:00 19Apr2024, 09:33:	Basin Model: Meteorologic Model: 53 Control Specification	100-yr Type II
-Computed Resul		Inits: 🔾 IN 💿 AC-FT	
Peak Discharge :		Date/Time of Peak Disch Total Direct Runoff : Total Baseflow :	arge : 01Oct2021, 12:12 7.0 (AC-FT)

🔢 Summary Resi	ults for Subbasin "O)B4"	- C ×
	-	Eagleview_Subdivision Proposed_100-yr Subba	asin: OB4
End of Run:	01Oct2021, 00:00 02Oct2021, 00:00 19Apr2024, 09:33:	Basin Model: Meteorologic Model 53 Control Specificatio	l: 100-yr Type II
	Volume U	Inits: 🔿 IN 💿 AC-FT	
Computed Res	ults		
Total Loss :	e : 18.9 (CFS) tion : 4.0 (AC-FT) 2.2 (AC-FT) 1.8 (AC-FT)	Date/Time of Peak Disch Total Direct Runoff : Total Baseflow : Discharge :	arge : 01Oct2021, 12:10 1.8 (AC-FT) 0.0 (AC-FT) 1.8 (AC-FT)

Summary Results for Reach "R-OB4-A"	- C ×
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-(OB4-A
	Eagleview_Proposed
End of Run: 02Oct2021, 00:00 Meteorologic Model: Compute Time: 19Apr2024, 09:33:53 Control Specifications:	· · · ·
Volume Units: O IN AC-FT	
Computed Results	
Peak Inflow :85.8 (CFS)Date/Time of Peak Inflow :Peak Outflow :85.7 (CFS)Date/Time of Peak Outflow :Total Inflow :8.8 (AC-FT)Total Outflow :	· · · · · · · · · · · · · · · · · · ·

Summary Results for Subba	sin "PB5"	
	oject: Eagleview_Subdivision In: EV_Proposed_100-yr Subb	oasin: PB5
Start of Run: 01Oct2021, 0 End of Run: 02Oct2021, 0 Compute Time: 19Apr2024, 0	0:00 Meteorologic Mode	Eagleview_Proposed el: 100-yr Type II ions: 24-hr Storm
Vol	ume Units: 🔘 IN 💿 AC-FT	
Computed Results		
Peak Discharge : 10.4 (CF Total Precipitation : 2.4 (AC- Total Loss : 1.3 (AC- Total Excess : 1.1 (AC-	FT) Total Direct Runoff : FT) Total Baseflow :	harge : 01Oct2021, 12:12 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

III Summary Results for Reach "P5 (CULV7)"
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: P5 (CULV7)
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm
Volume Units: 🔘 IN 💿 AC-FT
Computed Results
Peak Inflow : 96.1 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:13 Peak Outflow : 96.1 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:13 Total Inflow : 9.9 (AC-FT) Total Outflow : 9.9 (AC-FT)

Summary Results for Reach "R	-OB4-B"
• • • • •	Eagleview_Subdivision _Proposed_100-yr Reach: R-OB4-B
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33	Meteorologic Model: 100-yr Type II
Volume	Units: 🔘 IN 💿 AC-FT
Computed Results	
Peak Inflow : 96.1 (CFS) Peak Outflow : 95.9 (CFS) Total Inflow : 9.9 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:13 Date/Time of Peak Outflow : 01Oct2021, 12:14 Total Outflow : 9.8 (AC-FT)

Summary Results	for Subbasin "OB	2"	- O X
Sim	-	gleview_Subdivision roposed_100-yr Subbasin	: OB2
Start of Run: 010 End of Run: 020 Compute Time: 19/	Oct2021, 00:00	Basin Model: Meteorologic Model: Control Specifications:	· · · · · · · · · · · · · · · · · · ·
	Volume Uni	ts: 🔵 IN 💿 AC-FT	
Computed Results			
Total Precipitation	52.7 (CFS) : 10.8 (AC-FT) 6.0 (AC-FT) 4.7 (AC-FT)	Date/Time of Peak Dischary Total Direct Runoff : Total Baseflow : Discharge :	ge : 01Oct2021, 12:08 4.7 (AC-FT) 0.0 (AC-FT) 4.7 (AC-FT)

Summary Results for Reach "R-OB	2" 🗖 🗖 💌
· · · · ·	eview_Subdivision posed_100-yr Reach: R-OB2
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53 Volume Units	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm : O IN O AC-FT
Computed Results	
Peak Outflow : 52.5 (CFS) Dat	te/Time of Peak Inflow: 01Oct2021, 12:08 te/Time of Peak Outflow:01Oct2021, 12:09 tal Outflow: 4.7 (AC-FT)

Project: Eagleview_Subdivision			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB4			
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposeEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm	:d		
Volume Units: O IN (AC-FT			
Computed Results Peak Discharge: 30.2 (CFS) Date/Time of Peak Discharge: 01Oct2021, 12:	00		
Total Precipitation : 4.0 (AC-FT) Total Direct Runoff : 1.9 (AC-FT) Total Loss : 2.2 (AC-FT) Total Baseflow : 0.0 (AC-FT)			
Total Excess : 1.9 (AC-FT) Discharge : 1.9 (AC-FT)			

🛄 Summary Results for Reach "P10 (CULV2)"
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: P10 (CULV2)
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm
Volume Units: O IN AC-FT
Computed Results
Peak Inflow : 150.3 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:12 Peak Outflow : 150.2 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:12 Total Inflow : 16.4 (AC-FT) Total Outflow : 16.4 (AC-FT)

Summary Results for Reach "R-PE	85" 🗖 🗖 💌		
	gleview_Subdivision roposed_100-yr Reach: R-PB5		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Outflow : 150.1 (CFS) E	Date/Time of Peak Inflow : 01Oct2021, 12:12 Date/Time of Peak Outflow : 01Oct2021, 12:13 Total Outflow : 16.4 (AC-FT)		

Summary Results for Subbasin "F	PB6" 🗖 🗖 🔁			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB6				
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II 53 Control Specifications: 24-hr Storm			
Volume Units: O IN AC-FT Computed Results				
Peak Discharge : 20.7 (CFS) Total Precipitation : 4.3 (AC-FT) Total Loss : 2.2 (AC-FT)	Date/Time of Peak Discharge : 01Oct2021, 12:10 Total Direct Runoff : 2.0 (AC-FT) Total Baseflow : 0.0 (AC-FT)			
Total Excess : 2.1 (AC-FT)	Discharge : 2.0 (AC-FT)			

37" 🗖 🗖 💌
gleview_Subdivision roposed_100-yr Subbasin: PB7
Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm
ts: 🔘 IN 💿 AC-FT
Date/Time of Peak Discharge : 01Oct2021, 12:08Total Direct Runoff :0.7 (AC-FT)Total Baseflow :0.0 (AC-FT)Discharge :0.7 (AC-FT)

Summary Results for Reach "CI	JLV4"	×	
-	Eagleview_Subdivision _Proposed_100-yr Reach: CULV4		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:	Basin Model: Eagleview_Propo Meteorologic Model: 100-yr Type II 53 Control Specifications: 24-hr Storm	osed	
Volume Units: 🔵 IN 💿 AC-FT			
Computed Results			
Peak Inflow: 7.4 (CFS) Peak Outflow:7.4 (CFS) Total Inflow: 0.7 (AC-FT)	Date/Time of Peak Inflow : 01Oct2021, 12:0 Date/Time of Peak Outflow : 01Oct2021, 12:0 Total Outflow : 0.7 (AC-FT)		

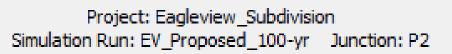
Summary Results for Reach "R-F	PB7-A"		
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-PB7-A			
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:5	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm		
Volume Units: O IN AC-FT			
Computed Results			
Peak Outflow : 7.4 (CFS)	Date/Time of Peak Inflow: 01Oct2021, 12:08 Date/Time of Peak Outflow:01Oct2021, 12:09 Total Outflow: 0.7 (AC-FT)		

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: P11 (CULV3) Start of Run: 01Oct2021, 00:00 Basin Model: Eagleview_Proposed End of Run: 02Oct2021, 00:00 Meteorologic Model: 100-yr Type II Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: O IN O AC-FT
End of Run: 02Oct2021, 00:00 Meteorologic Model: 100-yr Type II Compute Time: 19Apr2024, 09:33:53 Control Specifications: 24-hr Storm Volume Units: O IN O AC-FT
Computed Results
Peak Inflow : 28.0 (CFS) Date/Time of Peak Inflow : 01Oct2021, 12:10 Peak Outflow : 28.0 (CFS) Date/Time of Peak Outflow : 01Oct2021, 12:10 Total Inflow : 2.7 (AC-FT) Total Outflow : 2.7 (AC-FT)

🛄 Summary Results for Reach "R-PB7-B"				
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-PB7-B				
Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposedEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm				
Volume Units: O IN AC-FT Computed Results				
Peak Inflow :28.0 (CFS)Date/Time of Peak Inflow :01Oct2021, 12:10Peak Outflow :27.9 (CFS)Date/Time of Peak Outflow :01Oct2021, 12:11Total Inflow :2.7 (AC-FT)Total Outflow :2.7 (AC-FT)				

Summary Results for Subbasin	"PB3"			
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB3				
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33) Meteorologic Model	· · · · ·		
Volume Units: O IN (AC-FT				
Computed Results				
Peak Discharge : 3.3 (CFS) Total Precipitation : 0.5 (AC-FT) Total Loss : 0.2 (AC-FT) Total Excess : 0.3 (AC-FT)	Date/Time of Peak Disch Total Direct Runoff : Total Baseflow : Discharge :	harge : 01Oct2021, 12:07 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)		

Summary Results for	Reach "CULV1	п	
Simulati		view_Subdivision posed_100-yr Reach: (CULV1
Start of Run: 01Oct20 End of Run: 02Oct20 Compute Time: 19Apr20	021, 00:00	Basin Model: Meteorologic Model: Control Specifications	· · · · ·
	Volume Units:	◯ IN () AC-FT	
Computed Results			
Peak Inflow: 3.3(Peak Outflow:3.3(Total Inflow: 0.3((CFS) Date	e/Time of Peak Inflow : e/Time of Peak Outflow : al Outflow :	· · · · · · · · · · · · · · · · · · ·


Summary Results for Reach "R-	°B3" 📃 🖃 💌
-	agleview_Subdivision Proposed_100-yr Reach: R-PB3
Start of Run: 01Oct2021, 00:00	Basin Model: Eagleview_Proposed
End of Run: 02Oct2021, 00:00	Meteorologic Model: 100-yr Type II
Compute Time: 19Apr2024, 09:33:	3 Control Specifications: 24-hr Storm
Volume U	its: IN AC-FT
Computed Results	
Peak Inflow : 3.3 (CFS)	Date/Time of Peak Inflow : 01Oct2021, 12:07
Peak Outflow : 3.3 (CFS)	Date/Time of Peak Outflow : 01Oct2021, 12:09
Total Inflow : 0.3 (AC-FT)	Total Outflow : 0.3 (AC-FT)

Summary Results for Junction "P4"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junct	ion: P4
Start of Run:01Oct2021, 00:00Basin Model:End of Run:02Oct2021, 00:00Meteorologic Model:Compute Time:19Apr2024, 09:33:53Control Specification	: 100-yr Type II
Volume Units: 🔘 IN 💿 AC-FT	
Computed Results	
Peak Outflow : 180.8 (CFS) Date/Time of Peak Outflo Total Outflow : 19.4 (AC-FT)	w : 01Oct2021, 12:12

Summary Results for Reach "R-PB7-C"			×
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R-PB7-	с		
Start of Run:01Oct2021, 00:00Basin Model:EagEnd of Run:02Oct2021, 00:00Meteorologic Model:100Compute Time:19Apr2024, 09:33:53Control Specifications:24-1		e II	ed;
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Inflow :180.8 (CFS)Date/Time of Peak Inflow :010Peak Outflow :180.8 (CFS)Date/Time of Peak Outflow :010Total Inflow :19.4 (AC-FT)Total Outflow :19.4		, 12:13	

##	🗉 Summary Results for Subbasin "PB15" 📃 💷	×		
	Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Subbasin: PB15			
	Start of Run:01Oct2021, 00:00Basin Model:Eagleview_ProposeEnd of Run:02Oct2021, 00:00Meteorologic Model:100-yr Type IICompute Time:19Apr2024, 09:33:53Control Specifications:24-hr Storm	ed		
	Volume Units: O IN (AC-FT			
	Computed Results			
	Peak Discharge :26.3 (CFS)Date/Time of Peak Discharge :01Oct2021, 12:Total Precipitation :3.7 (AC-FT)Total Direct Runoff :1.7 (AC-FT)Total Loss :2.0 (AC-FT)Total Baseflow :0.0 (AC-FT)Total Excess :1.7 (AC-FT)Discharge :1.7 (AC-FT)	00		

###	Summary	Results fo	r Junction	"P2"
al a	J			

- C ×

Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm
its: 🔘 IN 💿 AC-FT
Date/Time of Peak Outflow : 01Oct2021, 12:13

Summary Results for Junction			
	ct: Eagleview_Subdivisi EV_Proposed_100-yr		
Start of Run: 01Oct2021, 00: End of Run: 02Oct2021, 00: Compute Time: 19Apr2024, 09:	00 Meteorologia	Eagleview Model: 100-yr Ty tifications: 24-hr Stor	•
Volum	e Units: 🔘 IN 💿 AC	C-FT	
Computed Results			
Peak Outflow : 560.8 (CFS) Total Outflow : 135.7 (AC-FT)		k Outflow : 01Oct20	21, 12:43

Summary Results for Subbasin "Ol	81" 🗖 🗖 🔀
	agleview_Subdivision Proposed_100-yr Subbasin: OB1
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:5	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm
Volume Un	its: 🔿 IN 💿 AC-FT
Peak Discharge : 18.8 (CFS) Total Precipitation : 4.0 (AC-FT) Total Loss : 2.3 (AC-FT) Total Excess : 1.7 (AC-FT)	Date/Time of Peak Discharge : 01Oct2021, 12:08Total Direct Runoff :1.7 (AC-FT)Total Baseflow :0.0 (AC-FT)Discharge :1.7 (AC-FT)

Summary Results for Reach "R-OB1"	
Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Reach: R	-OB1
End of Run: 02Oct2021, 00:00 Meteorologic Model: Compute Time: 19Apr2024, 09:33:53 Control Specifications:	· · · ·
Volume Units: O IN O AC-FT Computed Results	
Peak Inflow :18.8 (CFS)Date/Time of Peak Inflow :Peak Outflow :18.7 (CFS)Date/Time of Peak Outflow :Total Inflow :1.7 (AC-FT)Total Outflow :	· · · · · · · · · · · · · · · · · · ·

Summary Results for Subbasin "PB	1" 🗖 🗖 💌		
	gleview_Subdivision roposed_100-yr Subbasin: PB1		
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33:53	Basin Model: Eagleview_Proposed Meteorologic Model: 100-yr Type II Control Specifications: 24-hr Storm		
Volume Units: 🔘 IN 💿 AC-FT			
Computed Results			
Peak Discharge : 7.7 (CFS)	Date/Time of Peak Discharge : 01Oct2021, 12:09		
Total Precipitation : 1.6 (AC-FT)	Total Direct Runoff : 0.7 (AC-FT)		
Total Loss: 0.9 (AC-FT)	Total Baseflow : 0.0 (AC-FT)		
Total Excess: 0.7 (AC-FT)	Discharge : 0.7 (AC-FT)		

Project: Eagleview_Subdivision Simulation Run: EV_Proposed_100-yr Junction: P1

End of Run:	01Oct2021, 00:00 02Oct2021, 00:00 19Apr2024, 09:33:		Model: 1	Eagleview_Proposed 100-yr Type II 24-hr Storm
		nits: 🔿 IN 💿 AC	-FT	
Computed Re	sults			
	w:26.4 (CFS) w:2.4 (AC-FT)	Date/Time of Peak	Outflow : 0	10ct2021, 12:09

	Eagleview_Subdivision /_Proposed_100-yr Subba	sin: PB2
Start of Run: 01Oct2021, 00:00 End of Run: 02Oct2021, 00:00 Compute Time: 19Apr2024, 09:33	Meteorologic Model	: 100-yr Type II
Volume	Units: 🔵 IN 💿 AC-FT	
Computed Results		
Peak Discharge : 2.4 (CFS)	Date/Time of Peak Disch	arge : 01Oct2021, 12:06
Total Precipitation : 0.4 (AC-FT)	Total Direct Runoff :	0.2 (AC-FT)
	Total Baseflow :	0.0 (AC-FT)
Total Loss : 0.2 (AC-FT)		0.2 (AC-FT)

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.031 ft/ft	
Left Side Slope	1.300 H:V	
Right Side Slope	1.300 H:V	
Discharge	18.80 cfs	
Results		
Normal Depth	18.3 in	
Flow Area	3.0 ft ²	
Wetted Perimeter	5.0 ft	
Hydraulic Radius	7.2 in	
Top Width	3.96 ft	
Critical Depth	20.0 in	
Critical Slope	0.019 ft/ft	
Velocity	6.23 ft/s	
Velocity Head	0.60 ft	
Specific Energy	2.13 ft	
Froude Number	1.258	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	18.3 in	
Critical Depth	20.0 in	
Channel Slope	0.031 ft/ft	
Critical Slope	0.019 ft/ft	

Worksheet for R-B1 (Tri)

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.020 ft/ft	
Left Side Slope	1.300 H:V	
Right Side Slope	1.300 H:V	
Discharge	136.10 cfs	
Results		
Normal Depth	41.7 in	
Flow Area	15.7 ft ²	
Wetted Perimeter	11.4 ft	
Hydraulic Radius	16.5 in	
Top Width	9.03 ft	
Critical Depth	44.2 in	
Critical Slope	0.015 ft/ft	
Velocity	8.67 ft/s	
Velocity Head	1.17 ft	
Specific Energy	4.64 ft	
Froude Number	1.160	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	41.7 in	
Critical Depth	44.2 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.015 ft/ft	

Worksheet for R-OB4 (Tri)

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.020 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	15.00 ft	
Discharge	106.90 cfs	
Results		
Normal Depth	11.6 in	
Flow Area	17.4 ft ²	
Wetted Perimeter	21.1 ft	
Hydraulic Radius	9.9 in	
Top Width	20.82 ft	
Critical Depth	13.0 in	
Critical Slope	0.014 ft/ft	
Velocity	6.15 ft/s	
Velocity Head	0.59 ft	
Specific Energy	1.56 ft	
Froude Number	1.187	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.6 in	
Critical Depth	13.0 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.014 ft/ft	

Worksheet for R-OB5 (Trap)

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.020 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	15.00 ft	
Discharge	371.30 cfs	
Results		
Normal Depth	23.4 in	
Flow Area	40.7 ft ²	
Wetted Perimeter	27.3 ft	
Hydraulic Radius	17.9 in	
Top Width	26.70 ft	
Critical Depth	27.3 in	
Critical Slope	0.011 ft/ft	
Velocity	9.13 ft/s	
Velocity Head	1.30 ft	
Specific Energy	3.25 ft	
Froude Number	1.304	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	23.4 in	
Critical Depth	27.3 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.011 ft/ft	

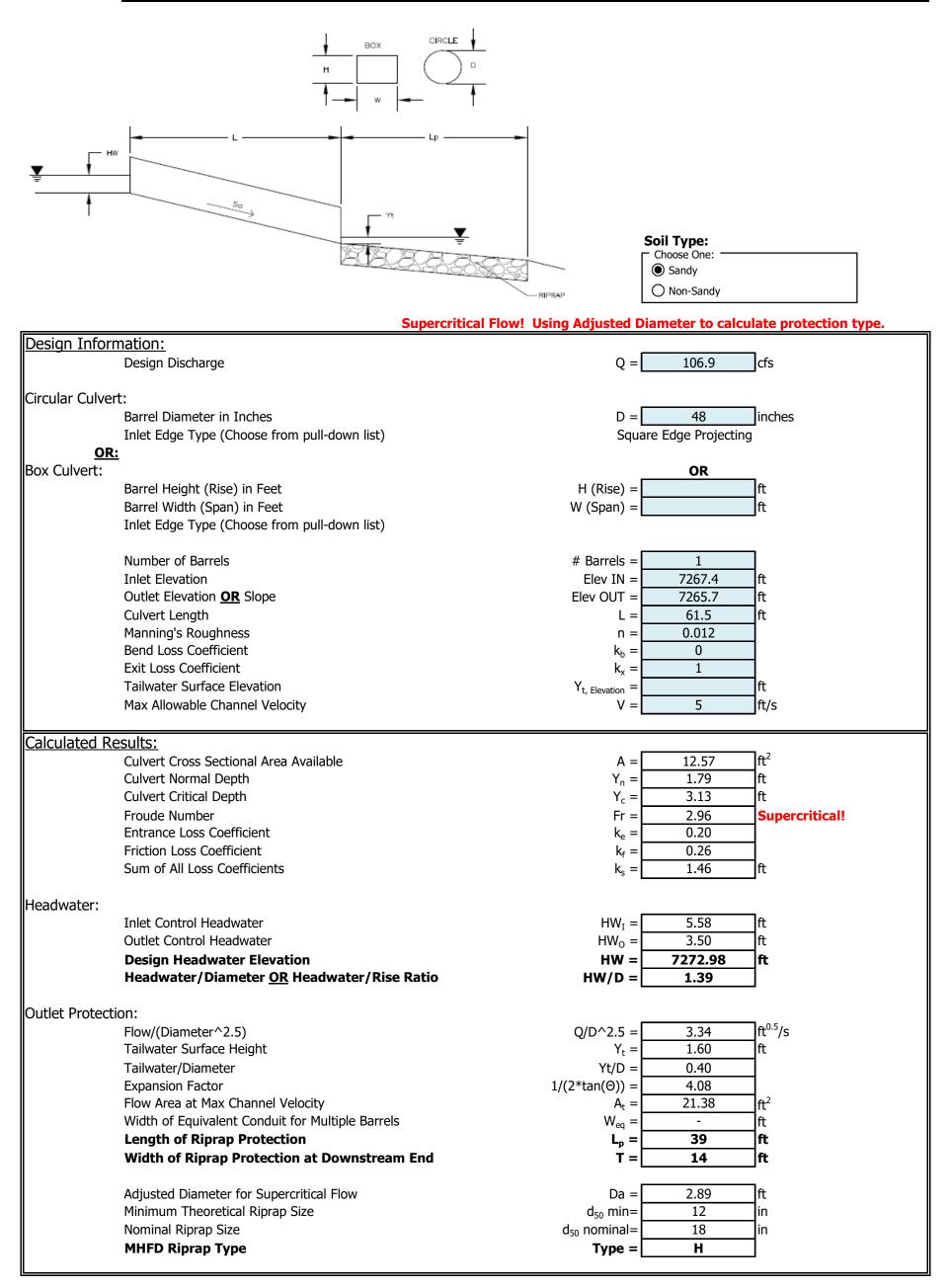
Worksheet for R-OB6 (Trap)

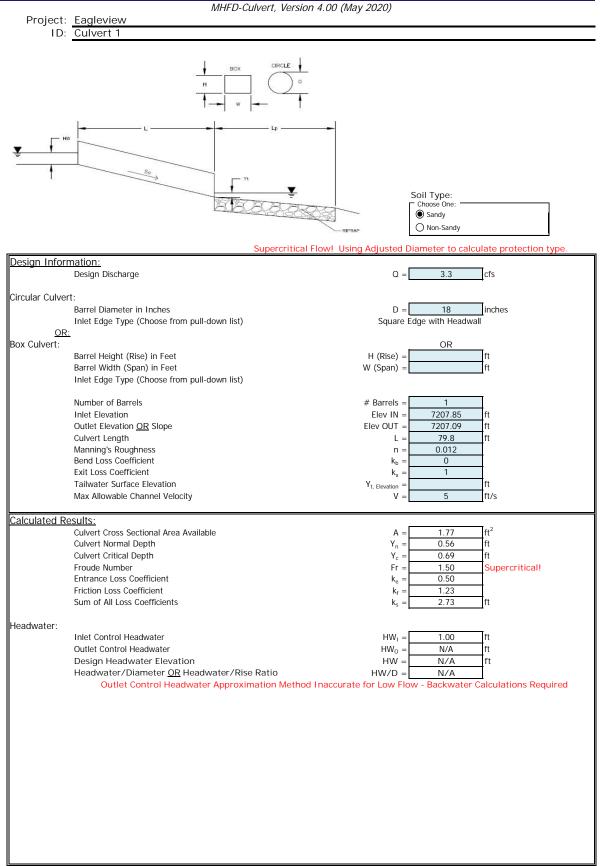
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.020 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	15.00 ft	
Discharge	478.00 cfs	
Results		
Normal Depth	26.8 in	
Flow Area	48.6 ft ²	
Wetted Perimeter	29.1 ft	
Hydraulic Radius	20.0 in	
Top Width	28.42 ft	
Critical Depth	31.6 in	
Critical Slope	0.011 ft/ft	
Velocity	9.84 ft/s	
Velocity Head	1.51 ft	
Specific Energy	3.74 ft	
Froude Number	1.328	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	26.8 in	
Critical Depth	31.6 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.011 ft/ft	

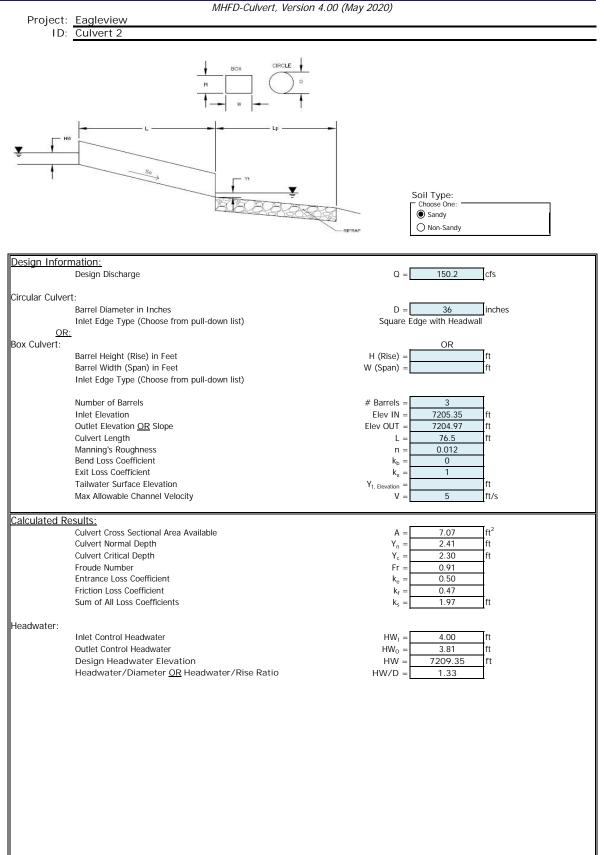
Worksheet for R-OB7 (Trap)

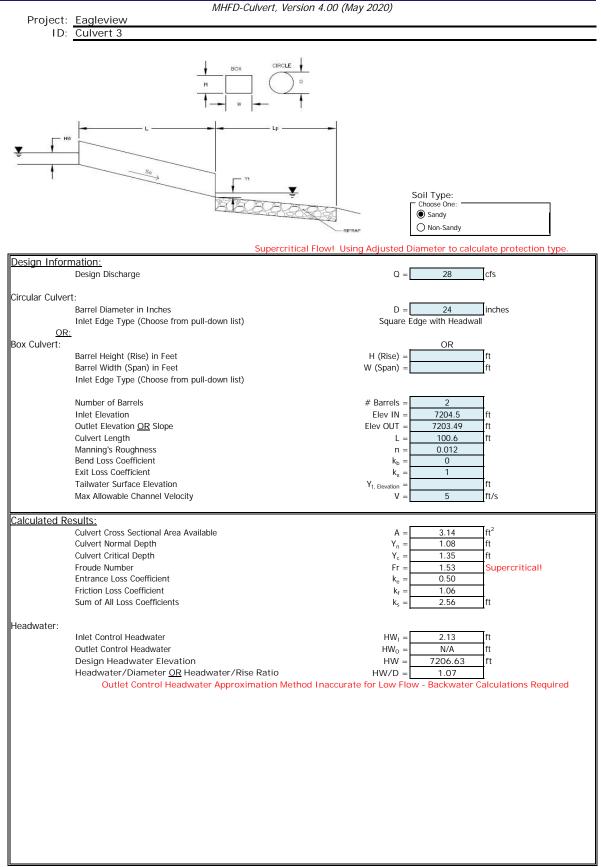
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.033 ft/ft	
Left Side Slope	1.300 H:V	
Right Side Slope	1.300 H:V	
Discharge	51.60 cfs	
Results		
Normal Depth	26.4 in	
Flow Area	6.3 ft ²	
Wetted Perimeter	7.2 ft	
Hydraulic Radius	10.5 in	
Top Width	5.72 ft	
Critical Depth	30.0 in	
Critical Slope	0.017 ft/ft	
Velocity	8.21 ft/s	
Velocity Head	1.05 ft	
Specific Energy	3.25 ft	
Froude Number	1.380	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	26.4 in	
Critical Depth	30.0 in	
Channel Slope	0.033 ft/ft	
Critical Slope	0.017 ft/ft	

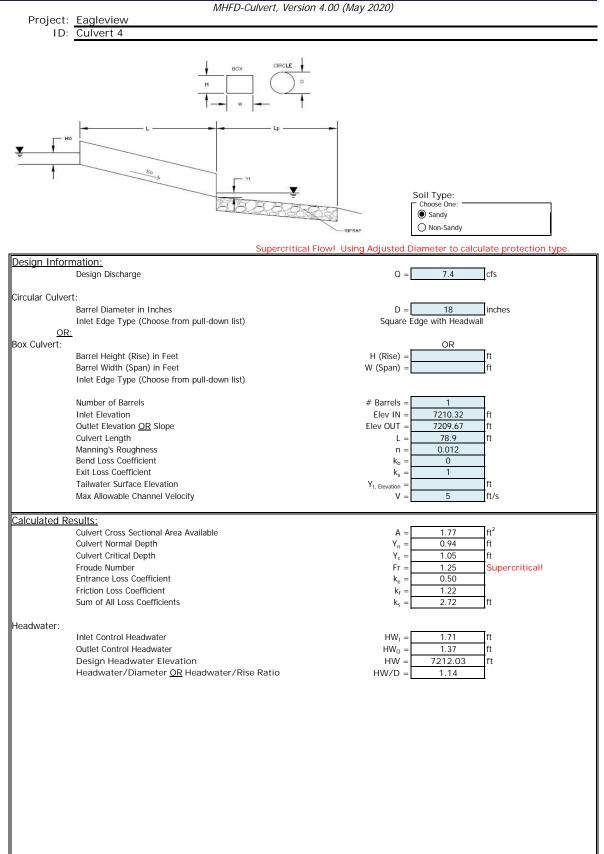
Worksheet for R-OB8 (Tri)

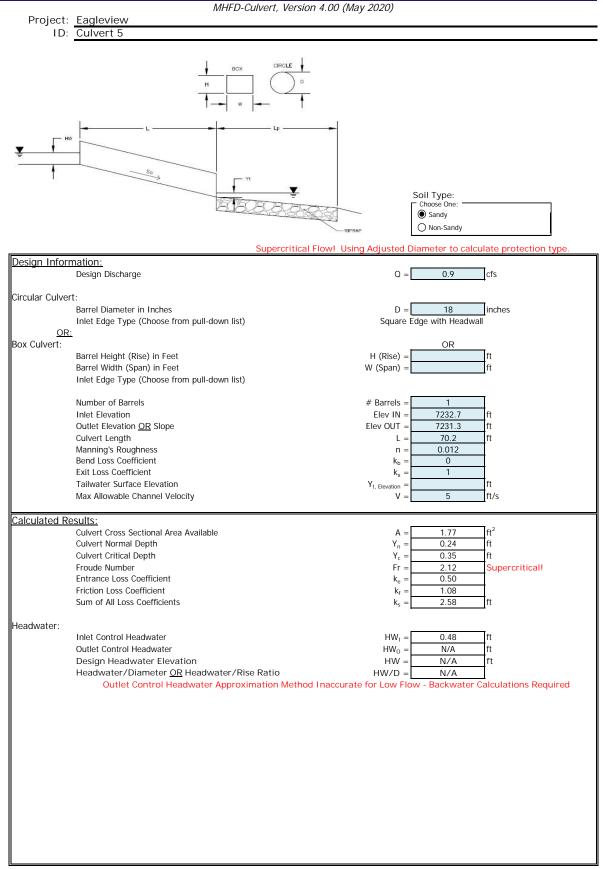

APPENDIX C: HYDRAULICS

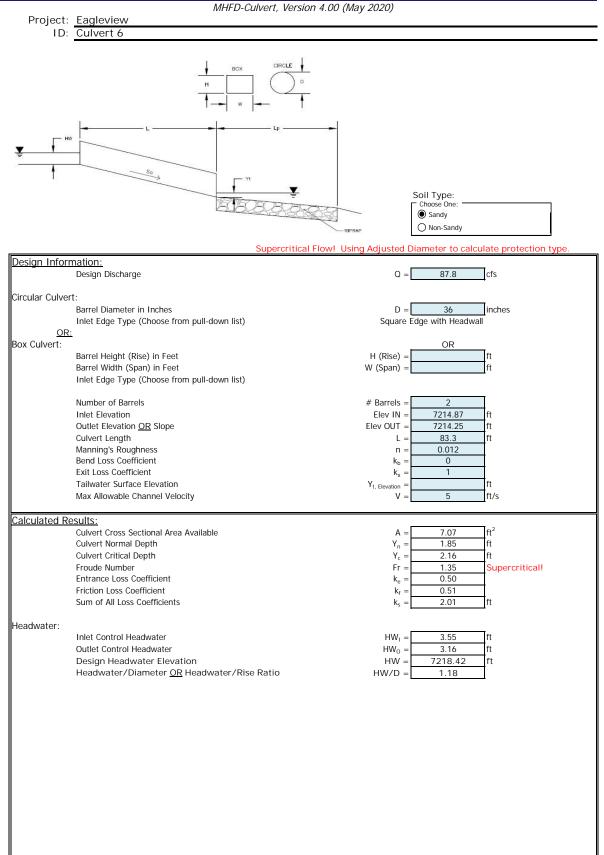

	Culvert Summary Table											
Culvert	Design Point	Pipe Size (in)	Barrels (No.)	Design Discharge Q100 (cfs)	Low Tailwater Basin Bottom Width -W (ft)	Low Tailwater Basin Length - L (ft)	Low Tailwater Basin Top Width (ft)	Headwater Depth	Upstream Invert	HW/D	HGL (Upstream Ponding Depth Elevation)	Culvert Normal Depth [HGL in Culvert] (ft)
(Ex.) Arroya Ln	OB5	48	1	106.9	11	24	23	5.58	7267.4	1.40	7272.98	1.79
1	PB3	18	1	3.3	4	15	16	1	7207.85	0.67	7208.85	0.56
2	P10	36	3	150.2	26	20	38	4	7205.31	1.33	7209.31	2.41
3	P11	24	2	28	12	15	24	2.13	7204.44	1.07	7206.57	1.08
4	PB7	18	1	7.4	4	15	16	1.71	7210.32	1.14	7212.03	0.94
5	N/A	18	1	0.9	4	15	16	0.48	7232.7	0.32	7233.18	0.36
6	P9	36	2	87.8	16	20	28	3.26	7214.87	1.09	7218.13	1.73
7	P5	36	2	96.1	16	20	28	3.82	7230.29	1.27	7234.11	1.35
8	P12	66	2	474.8	22	32	34	7.7	7201.96	1.40	7209.66	4.04
Det Pond 3	N/A	42	1	101	11	24	23	N/A	7230.04	N/A	N/A	3.5
*WQ Pond 1	N/A	24	1	19.3	4	15	16	N/A	7192	N/A	N/A	2
*WQ Pond 2	N/A	18	1	7.6	4	15	16	N/A	7199.39	N/A	N/A	0.98

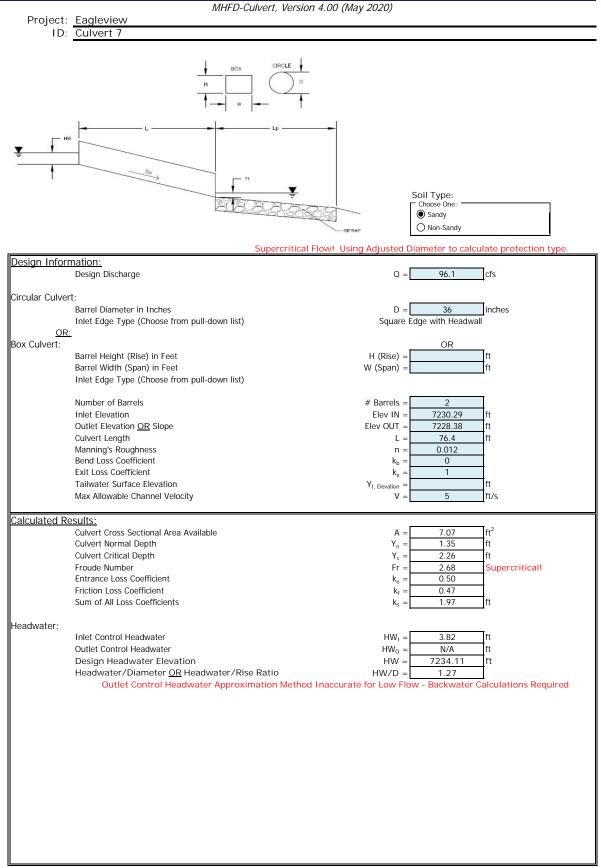

MHFD-Culvert, Version 4.00 (May 2020)

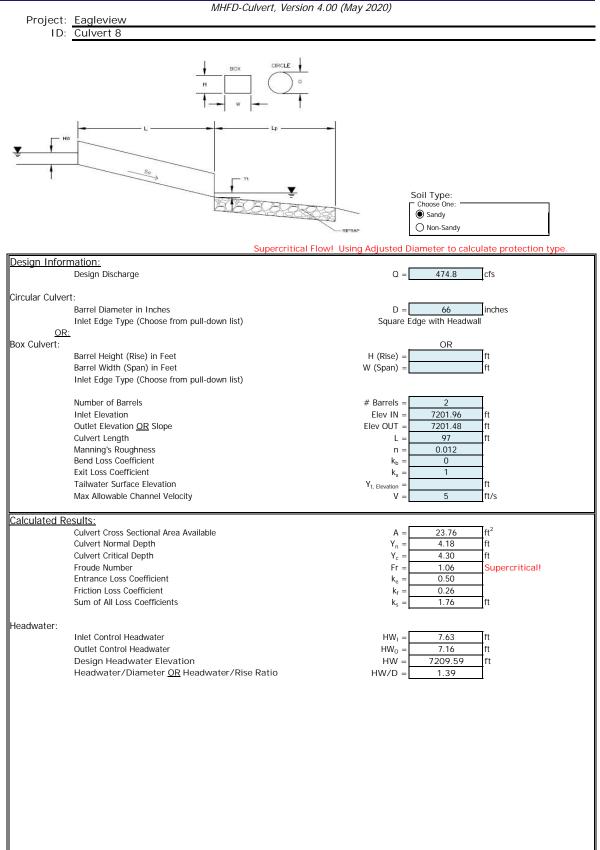

Project: Eagleview


ID: EXISTING Culvert - Arroya Lane









DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4.00 (May 2020)

D	MHFD-Culvert, Version	4.00 (May 2020)
	Eagleview Pond #3 Outfall Culvert 42-inch	
ID:	Pond #3 Outrail Culvert 42-Inch	
₹ 		-
	<u>2</u> 2555	Soil Type: Choose One: Sandy Non-Sandy
Design Infor	mation:	
	Design Discharge	Q = 101 cfs
Classifier Cultur		
Circular Culve	Barrel Diameter in Inches	D = 42 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
OF	• • • • •	
Box Culvert:		OR
	Barrel Height (Rise) in Feet	H (Rise) =ft
	Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	W (Span) =ft
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7230.34 ft
	Outlet Elevation OR Slope	Elev OUT = 7230.04 ft
	Culvert Length	L = 61 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_b = 0$
	Exit Loss Coefficient Tailwater Surface Elevation	$k_x = 1$ Y_t Elevation = ft
	Max Allowable Channel Velocity	$Y_{t, Elevation} = $ ft V = ft/s
Calculated R		
Calculated R	Culvert Cross Sectional Area Available	$A = 9.62 \text{ ft}^2$
	Culvert Normal Depth	$Y_{n} = \frac{7.62}{3.50}$ ft
	Culvert Critical Depth	$Y_{c} = 3.08$ ft
	Froude Number	Fr = - Pressure flow!
	Entrance Loss Coefficient	k _e = 0.50
	Friction Loss Coefficient	$k_{f} = 0.30$
	Sum of All Loss Coefficients	$k_{s} = 1.80$ ft
Headwater:		
	Inlet Control Headwater	$HW_1 = 6.68$ ft
	Outlet Control Headwater	$HW_{0} = 6.08 \text{ ft}$
	Design Headwater Elevation Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW = 7237.02 ft HW/D = 1.91 HW/D > 1.5!
Outlet Protect		
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 4.41$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 1.40$ ft
	Tailwater/Diameter Expansion Factor	$\begin{array}{c c} Yt/D = & 0.40 \\ 1/(2^{*}\tan(\Theta)) = & 3.06 \end{array}$
	Flow Area at Max Channel Velocity	$A_t = 20.20$ ft ²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} = -$ ft
	Length of Riprap Protection	$L_p = 34$ ft
	Width of Riprap Protection at Downstream End	T = 15 ft
	Adjusted Diameter for Supercritical Flow	Da =ft
	Minimum Theoretical Riprap Size	d_{50} min= 13 in
	Nominal Riprap Size	d ₅₀ nominal= 18 in
	MHFD Riprap Type	Type = H

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4.00 (May 2020) Project: <u>Eagleview</u> ID: Water Quality Pond 1 Outfall CIRCLE Soil Type: Choose One Sandy O Non-Sandy Design Information: 19.3 Design Discharge Q = cfs Circular Culvert: Barrel Diameter in Inches D = 24 inches Inlet Edge Type (Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) ft Barrel Width (Span) in Feet W (Span) Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels : 1 Elev IN Inlet Elevation 7192 ft Outlet Elevation OR Slope Elev OUT 7191.74 ft Culvert Length 52 ft L Manning's Roughness 0.012 n = Bend Loss Coefficient k_{b} 0 Exit Loss Coefficient k_x 1 Tailwater Surface Elevation ft $Y_{t,\;Elevation}$ 5 Max Allowable Channel Velocity ft/s ۷ : Calculated Results: Culvert Cross Sectional Area Available A = 3.14 ft² Y_n -Culvert Normal Depth 2.00 ft Culvert Critical Depth $Y_c =$ 1.58 ft Froude Number Fr : Pressure flow! Entrance Loss Coefficient 0.20 k_{e} Friction Loss Coefficient 0.55 $k_{\rm f}$ Sum of All Loss Coefficients k_s 1.75 ft Headwater: Inlet Control Headwater HW₁ = 2 57 ft Outlet Control Headwater HW_{O} 2.55 ft Design Headwater Elevation 7194 57 HW : ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 1.29 Outlet Protection: ft^{0.5}/s Flow/(Diameter^2.5) Q/D^2.5 = 3.41 Tailwater Surface Height 0.80 ft \mathbf{Y}_{t} Tailwater/Diameter Yt/D : 0.40 Expansion Factor 1/(2*tan(Θ)) 4.02 Flow Area at Max Channel Velocity A_t 3.86 ft² W_{eq} = Width of Equivalent Conduit for Multiple Barrels ft 12 Length of Riprap Protection L_{p} ft Width of Riprap Protection at Downstream End Ť = 5 ft Adjusted Diameter for Supercritical Flow Da : Ift Minimum Theoretical Riprap Size d₅₀ min= 6 in d₅₀ nominal= Nominal Riprap Size 6 in MHFD Riprap Type VI Type =

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4.00 (May 2020) Project: <u>Eagleview</u> ID: Water Quality Pond 2 Outfall CIRCLE Soil Type: Choose One Sandy O Non-Sandy Design Information: Design Discharge Q = 7.6 cfs Circular Culvert: Barrel Diameter in Inches D = 18 inches Inlet Edge Type (Choose from pull-down list) Grooved Edge Projecting OR: Box Culvert: OR Barrel Height (Rise) in Feet H (Rise) ft Barrel Width (Span) in Feet W (Span) Inlet Edge Type (Choose from pull-down list) Number of Barrels # Barrels : 1 Elev IN 7199.39 Inlet Elevation ft Outlet Elevation OR Slope Elev OUT 7199 ft Culvert Length 78.5 ft L Manning's Roughness 0.012 n = Bend Loss Coefficient k_{b} 0 Exit Loss Coefficient k_x 1 Tailwater Surface Elevation ft $Y_{t,\;Elevation}$ 5 Max Allowable Channel Velocity ft/s ۷ : Calculated Results: Culvert Cross Sectional Area Available A = 1.77 ft² Culvert Normal Depth 1.16 ft Y_n : Culvert Critical Depth $Y_c =$ 1.07 ft Froude Number Fr : 0.84 Entrance Loss Coefficient 0.20 k. Friction Loss Coefficient $k_{\rm f}$ 1.21 Sum of All Loss Coefficients k_s 2.41 ft Headwater: Inlet Control Headwater HW₁ = 1.62 ft Outlet Control Headwater HW_{O} 1.59 ft Design Headwater Elevation 7201 01 HW : ft Headwater/Diameter OR Headwater/Rise Ratio HW/D = 1.08 Outlet Protection: ft^{0.5}/s Flow/(Diameter^2.5) Q/D^2.5 = 2.76 Tailwater Surface Height 0.60 ft \mathbf{Y}_{t} Tailwater/Diameter Yt/D : 0.40 Expansion Factor 1/(2*tan(Θ)) 4.71 Flow Area at Max Channel Velocity A_t 1.52 ft² W_{eq} = Width of Equivalent Conduit for Multiple Barrels ft Length of Riprap Protection L_{p} 5 ft Width of Riprap Protection at Downstream End Ť = 3 ft Adjusted Diameter for Supercritical Flow Da : Ift Minimum Theoretical Riprap Size d₅₀ min= 3 in d₅₀ nominal= Nominal Riprap Size 6 in MHFD Riprap Type VI Type =

	I I			CULVERT SIZING TABLE	
	Basin Located				
Lot	in	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes
1	PB3	<8	18	North side of lot	Cross roadside ditch
1	PB1	<8	18	East side of lot	Cross roadside ditch
2	PB3	<8	18	Northeast side of lot	Cross roadside ditch
3	PB4	<8	18	East side of lot	Cross roadside ditch
4	PB4	<8	18	South side of lot	Cross roadside ditch
					Cross roadside ditch. If culvert is placed on the southwest side of the lot, the driveway would cross drainage way that would require an additional 3-3
5	PB4	<8	18	Southwest side of lot	RCPs to be built.
5	PB6	<8	18	Southeast side of lot	Cross roadside ditch
6	PB6	15.9	24	East side of lot	Cross roadside ditch
6	PB6	<8	18	North side of lot	Cross roadside ditch
7	PB6	<8	18	Northeast side of lot	Cross roadside ditch
8	PB6	<8	18	North side of lot	Cross roadside ditch
9	PB6	<8	N/A	Northwest side of lot	Sheet flows off road and through Lot 9
10	PB4	<8	18	Southeast side of lot	Cross roadside ditch
11	PB5	<8	18	Southeast side of lot	Cross roadside ditch
12	PB5	<8	18	South side of lot	Cross roadside ditch
13	PB7	<8	18	South side of lot	Cross roadside ditch
14 15	PB7 PB7	<8	<u>18</u> 18	Southwest side of lot	Cross roadside ditch
		<8		Southwest side of lot	Cross roadside ditch
16	PB15	<8	18	West side of lot	Cross roadside ditch
16 17	PB15 PB15	<8	<u>18</u> 18	South side of lot	Cross roadside ditch Cross roadside ditch
18	PB15 PB15	<8 <8	18	West side of lot North side of lot	Cross roadside ditch
10	1013		10	North side of lot	Sheet flows off road and through Lot 19. If culver placed on the northeast side of the lot, the driver would cross a drainage way that would require a
19	PB15	<8	N/A	Northeast side of lot	additional 2-24" RCPs to be built.
19	PB15	<8	18	Northwest side of lot	Cross roadside ditch
				Northwest side of lot south of	
20	PB15	<8	N/A	intersection	Sheet flows off road and through Lot 20
21	PB10	<8	18	East side of lot	Cross roadside ditch
22	PB10	<8	18	East side of lot	Cross roadside ditch
23	PB10	<8	18	Southeast side of lot	Cross roadside ditch
24	PB10	<8	18	South side of lot	Cross roadside ditch
25	PB11	<8	18	Southwest side of lot	Cross roadside ditch
26	PB11	<8	18	Southwest side of lot	Cross roadside ditch
27	PB11	<8	18	West side of lot	Cross roadside ditch
28	PB11	<8	18	West side of lot	Cross roadside ditch
29	PB11	8.2	24	West side of lot	Cross roadside ditch
30	PB11	9.0	24	West side of lot	Cross roadside ditch
30	PB11	<8	18	South side of lot	Cross roadside ditch. Culvert would need to be pla east of the Culvert 6 crossing underneath Acequia
30	PB11 PB14	<8	18	North side of lot	Shared Lot 31 and 32 driveway
32	PB14 PB14	<8	18	North side of lot	Shared Lot 31 and 32 driveway
33	PB14 PB14	<8	18	North side of lot	Cross roadside ditch
			10		Cross roadside ditch. Culvert would need to be pla
34	PB14	<8	18	North side of lot	east of the Culvert 6 crossing underneath Acequia
34	PB14	<8	18	Northwest side of lot	Cross roadside ditch. If culvert is placed on the northwest side of the lot, the driveway would cro drainage way that would require an additional cul that would be larger than an 18" RCP to be build that would be larger than an 18" RCP to be build that would be larger than an the statement of the statement
35	PB8	<8	18	North side of lot	Cross roadside ditch
36	PB9	<8	18	Northwest side of lot	Sheet flows off road and through Lot 36
37	PB9	<8	18	Northwest side of lot	Sheet flows off road and through Lot 37
38	PB9	<8	18	West side of lot	Cross roadside ditch
38*	PB9	120.9	2 - 42"	Inside of lot culvert	Culvert crossing natural Channel section A in Lot

Generic Driveway Culvert Sizing Table*

Culvert Diameter (in)	# of Barrels	Allowable Flow (cfs)
18	1	8
24	1	18
30	1	30
36	1	45
42	1	70
48	1	100
42	2	150

 42
 2
 150

 *See Generic Driveway Culvert Sizing calculations for Hw/D and culvert slope assumptions for each culvert size.
 150

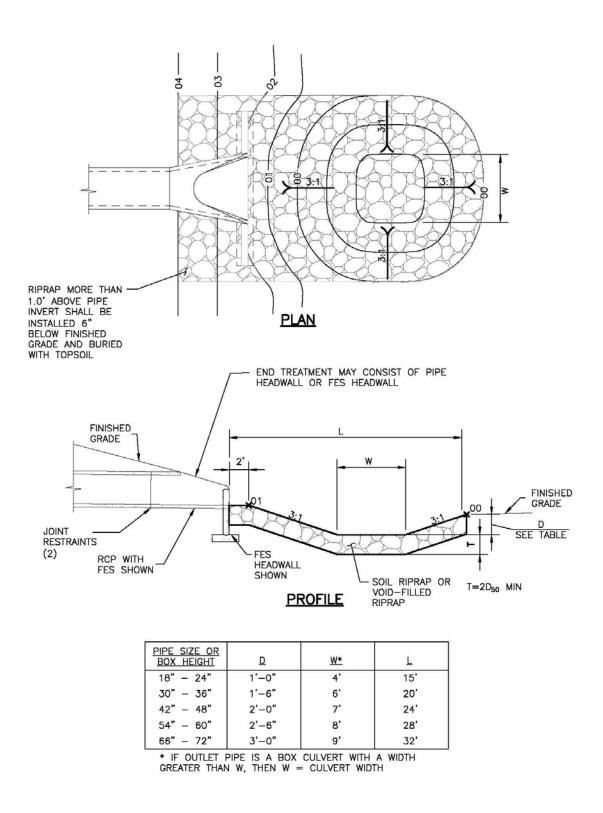


Figure 9-37. Low tailwater riprap basin

	Eagleview Low Tailwater Basin Summary Table										
						Tailwater Basin	D50	RipRap Thickness -	MHFD Riprap		
Culvert	Pipe Size (in)	Barrels (No.)	Bottom Width -W (ft)	Length - L (ft)	Top Width (ft)	Depth - D (ft)	(in)	[2*D50] (ft)	Туре	Vol (ft^3)	Vol (yd^3)
(Ex.) Arroya Ln	48	1	11	24	23	2	18	3	Н	1656	61.33
1	18	1	4	15	16	1	6	1	VL	240	8.89
2	36	3	26	20	38	1.5	9	1.5	L	1140	42.22
3	24	2	12	15	24	1	6	1	VL	360	13.33
4	18	1	4	15	16	1	6	1	VL	240	8.89
5	18	1	4	15	16	1	6	1	VL	240	8.89
6	36	2	16	20	28	1.5	9	1.5	L	840	31.11
7	36	2	16	20	28	1.5	9	1.5	L	840	31.11
8	66	2	22	32	34	3	18	3	Н	3264	120.89
Pond 3 Outfall	42	1	11	24	23	2	18	3	Н	1656	61.33
WQ Pond 1	24	1	4	15	16	1	6	1	VL	240	8.89
WQ Pond 2	18	1	4	15	16	1	6	1	VL	240	8.89
Total			115	176	223					8820	327

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHED-Culvert, Version 4.00 (May 2020)

		ion 4.00 (May 2020)
	Eagleview	
ID:	Generic Driveway Culvert 18-inch	
Ţ Ţ		Soil Type:
		Sandy Non-Sandy
	Supercritic	al Flow! Using Adjusted Diameter to calculate protection type.
Design Infor	<u>mation:</u> Design Discharge	Q = scfs
Circular Culve	rt.	
	Barrel Diameter in Inches	D = 18 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
	2.	
Box Culvert:	Barrel Height (Rise) in Feet	H (Rise) = ft
	Barrel Width (Span) in Feet	W (Span) = ft
	Inlet Edge Type (Choose from pull-down list)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	$\begin{array}{c c} Elev IN = & 7222.1 & ft \\ Elev OUT = & 7222 & ft \end{array}$
	Outlet Elevation <u>OR</u> Slope Culvert Length	L = 10 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_{\rm b} = 0$
	Exit Loss Coefficient	k _x = 1
	Tailwater Surface Elevation	$Y_{t, Elevation} = ft$
	Max Allowable Channel Velocity	V = 5 ft/s
Calculated R	esults.	
	Culvert Cross Sectional Area Available	A = 1.77 ft ²
	Culvert Normal Depth	$Y_n = 0.93$ ft
	Culvert Critical Depth	$Y_{c} = 1.10$ ft
	Froude Number	Fr = 1.39 Supercritical!
	Entrance Loss Coefficient	$k_{e} = 0.50$
	Friction Loss Coefficient	$k_{\rm f} = 0.15$
	Sum of All Loss Coefficients	$k_{s} = 1.65$ ft
Headwater:		
	Inlet Control Headwater	HW ₁ = 1.82 ft
	Outlet Control Headwater	$HW_{O} = 1.72 ft$
	Design Headwater Elevation	HW = 7223.92 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.21
Outlet Protect	tion:	
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 2.90$ ft ^{0.5} /s
	Tailwater Surface Height	Y _t = 0.60 ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.51$
	Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels	$\begin{array}{c c} A_t = & 1.60 & ft^2 \\ W_{eq} = & - & ft \end{array}$
	Length of Riprap Protection	$W_{eq} = - ft$ $L_{p} = 6 ft$
	Width of Riprap Protection at Downstream End	$T = \frac{3}{100}$
	Adjusted Diameter for Supercritical Flow	Da = 1.21 ft
	Minimum Theoretical Riprap Size	$d_{50} \text{ min} = 4 \text{ in}$
	Nominal Riprap Size	d_{50} nominal = 6 in
	MHFD Riprap Type	Type = VL
<u> </u>		

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHED-Culvert, Version 4.00 (May 2020)

. .		ion 4.00 (May 2020)
	Eagleview	
ID	Generic Driveway Culvert 24-inch	
₹ <u>†</u>		Soil Type: Choose One:
		RIPRAP O Non-Sandy
	Supercritic	al Flow! Using Adjusted Diameter to calculate protection type.
Design Infor	r <u>mation:</u> Design Discharge	Q = 18 cfs
Circular Culve	ert: Barrel Diameter in Inches	D = 24 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
OF Box Culvort:	<u> </u>	
Box Culvert:	Barrel Height (Rise) in Feet	H (Rise) = ft
	Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	W (Span) = ft
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7222.1 ft
	Outlet Elevation <u>OR</u> Slope Culvert Length	Elev OUT = 7222 ft L = 10 ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	k _b = 0
	Exit Loss Coefficient	k _x = 1
	Tailwater Surface Elevation Max Allowable Channel Velocity	$Y_{t, Elevation} = ft$ V = 5 ft/s
Calculated R		$A = \boxed{3.14} \text{ ft}^2$
	Culvert Cross Sectional Area Available Culvert Normal Depth	$A = 3.14 \text{ ft}^2$ $Y_n = 1.27 \text{ ft}$
	Culvert Critical Depth	$Y_c = \frac{1.27}{1.53}$ ft
	Froude Number	Fr = 1.44 Supercritical!
	Entrance Loss Coefficient	k _e = 0.50
	Friction Loss Coefficient	$k_{\rm f} = 0.11$
	Sum of All Loss Coefficients	$k_{s} = 1.61$ ft
Headwater:		
	Inlet Control Headwater	HW ₁ = 2.64 ft
	Outlet Control Headwater	HW _o = 2.48 ft
	Design Headwater Elevation	HW = 7224.74 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.32
Outlet Protec	tion:	
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 3.18$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 0.80$ ft
	Tailwater/Diameter Expansion Factor	$\begin{array}{c} Yt/D = & 0.40 \\ 1/(2^{*}\tan(\Theta)) = & 4.22 \end{array}$
	Flow Area at Max Channel Velocity	$A_{t} = \frac{4.22}{3.60}$ ft ²
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} = - ft$
	Length of Riprap Protection	$L_p = 11$ ft
	Width of Riprap Protection at Downstream End	T = 5 ft
	Adjusted Diameter for Supercritical Flow	Da = 1.64 ft
	Minimum Theoretical Riprap Size	d_{50} min = 6 in
	Nominal Riprap Size	d_{50} nominal = 6 in
	MHFD Riprap Type	Type = VL
<u> </u>		

	MHFD-Culvert, Vers	on 4.00 (May 2020)	
	Eagleview		
ID:	Generic Driveway Culvert 30-inch		
		-	
Ţ Ţ		Soil Type: Choose One: Sandy Non-Sandy	
	Supercritic	I Flow! Using Adjusted Diameter to calculate protection	on type.
Design Infor	<u>mation:</u> Design Discharge	Q = <u>30</u> cfs	
Circular Culve	rt.		
	Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list)	D = <u>30</u> inches Square Edge with Headwall	
Box Culvert:		OR	
	Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	H (Rise) = ft W (Span) = ft	
	Number of Barrels	# Barrels = 1	
	Inlet Elevation	Elev IN = 7222.1 ft	
	Outlet Elevation OR Slope	Elev OUT = 7222 ft	
	Culvert Length Manning's Roughness	L = 10 ft n = 0.012	
	Bend Loss Coefficient	$k_{\rm b} = 0$	
	Exit Loss Coefficient	$k_x = 1$	
	Tailwater Surface Elevation	Y _{t, Elevation} =ft	
	Max Allowable Channel Velocity	V = 5 ft/s	
Calculated R	esults:		
	Culvert Cross Sectional Area Available	$A = 4.91 \text{ ft}^2$	
	Culvert Normal Depth	$Y_n = 1.50$ ft	
	Culvert Critical Depth Froude Number	$Y_c = 1.87$ ft Fr = 1.53 Supercritica	
	Entrance Loss Coefficient	$k_{\rm e} = 0.50$	
	Friction Loss Coefficient	k _f = 0.08	
	Sum of All Loss Coefficients	k _s = <u>1.58</u> ft	
Headwater:			
	Inlet Control Headwater	HW ₁ = 3.15 ft	
	Outlet Control Headwater	HW ₀ = <u>3.00</u> ft	
	Design Headwater Elevation	HW = 7225.25 ft	
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.26	
Outlet Protect	ion:		
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 3.04 \text{ ft}^{0.5}/\text{s}$	
	Tailwater Surface Height	$Y_t = 1.00$ ft	
	Tailwater/Diameter Expansion Factor	$\begin{array}{c} Yt/D = & 0.40 \\ 1/(2^{*}tan(\Theta)) = & 4.35 \end{array}$	
	Flow Area at Max Channel Velocity	$A_t = 6.00$ ft ²	
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =ft	
	Length of Riprap Protection	$L_p = 16$ ft	
	Width of Riprap Protection at Downstream End	T = <u>7</u> ft	
	Adjusted Diameter for Supercritical Flow	Da = 2.00 ft	
	Minimum Theoretical Riprap Size	d ₅₀ min= 7 in	
	Nominal Riprap Size	d_{50} nominal = 9 in	
	MHFD Riprap Type	Type = L	
I			

		ion 4.00 (May 2020)	
	Eagleview		
TD:	Generic Driveway Culvert 36-inch		
<u>₹</u>		Soil Type: Choose One: Sandy Non-Sandy	
	Supercritic	al Flow! Using Adjusted Diameter to calculate	protection type.
Design Infor	<u>mation:</u> Design Discharge	Q = 45 cfs	
Circular Culve	rt.		
	Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list)	D = <u>36</u> inch Square Edge with Headwall	es
Box Culvert:	_	OR	
	Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	H (Rise) =ft W (Span) =ft	
	Number of Barrels	# Barrels = 1	
	Inlet Elevation	Elev IN = 7222.1 ft	
	Outlet Elevation OR Slope	Elev OUT = 7222 ft	
	Culvert Length Manning's Roughness	L = 10 ft n = 0.012	
	Bend Loss Coefficient	$k_{\rm b} = 0$	
	Exit Loss Coefficient	k _x = 1	
	Tailwater Surface Elevation Max Allowable Channel Velocity	$Y_{t, Elevation} = ft$ V = 5 ft/s	
		v – <u> </u>	
Calculated R			
	Culvert Cross Sectional Area Available	A = 7.07 ft ²	
	Culvert Normal Depth Culvert Critical Depth	$Y_n = 1.71$ ft $Y_c = 2.19$ ft	
	Froude Number		percritical!
	Entrance Loss Coefficient	k _e = 0.50	
	Friction Loss Coefficient	$k_{f} = 0.06$	
	Sum of All Loss Coefficients	$k_{s} = 1.56$ ft	
Headwater:			
	Inlet Control Headwater	$HW_1 = 3.62$ ft	
	Outlet Control Headwater	$HW_0 = 3.48$ ft HW = 7225.72 ft	
	Design Headwater Elevation Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	$\frac{HW}{HW/D} = \frac{7225.72}{1.21} \text{ ft}$	
Outlet Protect		$Q/D^{2.5} = 2.89$ ft ^{0.5}	/-
	Flow/(Diameter^2.5) Tailwater Surface Height	$Q/D^{2.5} = 2.89$ ft ^{0.5} $Y_t = 1.20$ ft	15
	Tailwater/Diameter	Yt/D = 0.40	
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.54$	
	Flow Area at Max Channel Velocity	$A_t = 9.00 \text{ ft}^2$	
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} = - ft$ $L_{p} = 21 ft$	
	Length of Riprap Protection Width of Riprap Protection at Downstream End	$L_{p} = 21 \qquad ft$ $T = 8 \qquad ft$	
	Adjusted Diameter for Supercritical Flow	Da = 2.36 ft	
	Minimum Theoretical Riprap Size	$d_{50} min = 8$ in	
	Nominal Riprap Size	d ₅₀ nominal = 9 in	
	MHFD Riprap Type	Type = L	
<u> </u>			

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHED-Culvert, Version 4.00 (May 2020)

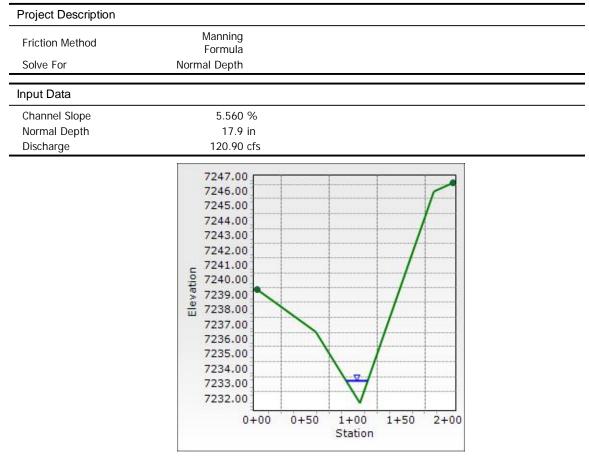
. .		ion 4.00 (May 2020)
	Eagleview	
ID	Generic Driveway Culvert 42-inch	
Ť		Soil Type: Choose One:
		RIPRAP O Non-Sandy
	Supercritic	al Flow! Using Adjusted Diameter to calculate protection type.
Design Infor	rmation:	
	Design Discharge	Q = 70 cfs
Circular Culve	ht.	
	Barrel Diameter in Inches	D = 42 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
<u>OF</u>		. •
Box Culvert:		OR
	Barrel Height (Rise) in Feet	H (Rise) = ft
	Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list)	W (Span) =ft
	mier Euge Type (choose nom pail-down iist)	
	Number of Barrels	# Barrels = 1
	Inlet Elevation	Elev IN = 7222.1 ft
	Outlet Elevation OR Slope	Elev OUT = 7222 ft
	Culvert Length	L = <u>10</u> ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient Exit Loss Coefficient	$k_b = 0$ $k_c = 1$
	Tailwater Surface Elevation	*
	Max Allowable Channel Velocity	$Y_{t, Elevation} = ft$ V = 5 ft/s
Calculated R		
	Culvert Cross Sectional Area Available	$A = 9.62 \text{ ft}^2$
	Culvert Normal Depth	$Y_n = 2.04$ ft $Y_c = 2.62$ ft
	Culvert Critical Depth Froude Number	$Y_c = 2.62 ft Fr = 1.64 Supercritical!$
	Entrance Loss Coefficient	$k_e = 0.50$
	Friction Loss Coefficient	k _f = 0.05
	Sum of All Loss Coefficients	$k_{s} = 1.55$ ft
Lloodwater		
Headwater:	Inlet Control Headwater	HW ₁ = 4.44 ft
	Outlet Control Headwater	$HW_0 = \frac{4.44}{10}$ ft
	Design Headwater Elevation	HW = 7226.54 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.27
Outlet Protec	tion: Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 3.05$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = \frac{3.05}{1.40}$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.33$
	Flow Area at Max Channel Velocity	$A_t = 14.00 ext{ ft}^2$
	Width of Equivalent Conduit for Multiple Barrels	$W_{eq} = -$ ft
	Length of Riprop Protection	$L_{p} = \frac{29}{11} ft$
	Width of Riprap Protection at Downstream End	T = 11 ft
	Adjusted Diameter for Supercritical Flow	Da = 2.77 ft
	Minimum Theoretical Riprap Size	$d_{50} min = 10$ in
	Nominal Riprap Size	d_{50} nominal = 12 in
	MHFD Riprap Type	Type = M
<u> </u>		

Projet: Englaview 10 Centric Driveway Culvert 48-inch		MHFD-Culvert, Versio	n 4.00 (May 2020)	
Solid Type: Solid Type: Solid Type: Solid Type: Solid Type: Design Enformation: Base Colume: Base Enformation: Base Enformation: Design Enformation: Design Enformation: Base Enformation:				
Image: Section 2 Section	ID.	Generic Driveway Curvert 48-inch		
Image: constraint of the second state of the second st				
Design Information: Design Discharge 0 - 100 cfs Circular Culvert: Barrel Diameter in Inches Square Edge with Headwald Inches DB, Culvert: D = 48 Inches Box Culvert: D = 48 Inches Barrel Height (Rise) in Feet H (Rise) - 0R ft Barrel Height (Rise) in Feet H (Rise) - 0R ft Barrel Height (Rise) in Feet H (Rise) - 1 ft Barrel Height (Rise) in Feet H (Rise) - 1 ft Barrel Height (Rise) in Feet H (Rise) - 1 ft Outer Edwartion Ogg Stope Elev UIT 1 72221 ft Outer Edwartion Ogg Stope Elev UIT 100 ft 1 Manning's Roughness n 0.012 ft 1 Berd Loss Coefficient k ₆ 0 0 ft/s Calculated Results: Culvert Normal Depth V + 5 ft/s Calculated Results: Culvert Normal Depth V + 3.03 n Culvert Normal Depth V +	¥		Choose One:	
Design Discharge $0 = 100$ cfsCircular Culvert: Barrel Dismeter in Inches Inlet Edge Type (Choose from pull-down list) $D = 48$ square Edge with Headwall 		Supercritica	Flow! Using Adjusted Diameter to calculate protection t	ype.
Barrel Dameter in Inches Intel Edge Type (Choose from pull-down list) Det Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Intel Elowation QB Stope Culvert (Bread Components) Elow Out = 72222 in ft Culvert (Inter Sectorel In the Height (Rise) in the Inter Sectorel Inter Inter Inter Inter Inter Inter In	Design Infor	mation:		
Barrel Dameter in Inches Intel Edge Type (Choose from pull-down list) Det Barrel Height (Rise) in Feet Barrel Height (Rise) in Feet Intel Elowation QB Stope Culvert (Bread Components) Elow Out = 72222 in ft Culvert (Inter Sectorel In the Height (Rise) in the Inter Sectorel Inter Inter Inter Inter Inter Inter In				
Barrel Height (Rise) in Feet H (Rise) = ft ft ft ft (Rise) in Feet W (Span) in Feet W (Spa		Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list)		
Barrel With (Span) in Feet W (Span) = $\begin{bmatrix} rt \\ Inlet Edge Type (Choose from pull-down list) \\ \\ Number of Barrels & # Barrels & 1 \\ Inlet Elevation GR Stope Elev IN = \begin{bmatrix} rt \\ 7222 1 \\ 7222 1 \\ 7222 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		_		
Inlet ElevationElev IN =7222.1 T222ftOutlet Elevation \underline{OB} SlopeElev ON =7222.1 T222ftOutlet Elevation \underline{OB} SlopeL10ftManning's Roughnessn=0.012Bend Loss Coefficientk, =1ftTailwater Surface ElevationK, =1ftMax Allowable Channel VelocityV5ft//sCalculated Results:Culvert Cross Sectional Area AvailableA =12.57ft²Culvert Normal DepthV, =3.03ftCulvert Normal DepthV, =3.03ftFroude NumberFr =1.67Supercritical!Friction Loss Coefficientk, =0.04ftSum of All Loss CoefficientK, =0.04ftHeadwater:Inlet Control HeadwaterHW/n =7.227.28ftOutlet Protection:Flow/(Dameter ^2.5)Q/D ^2.5 =3.13ft^0.5/sTailwater Surface HeightY/D0.404.27ftTailwater/Diameter 02Headwater/Rise RatioHW/D1.301/(2'tan(0)) =Outlet Protection:Flow/Area at Max Channel VelocityWa $A =$ 20.00ft²Flow Area at Max Channel VelocityWight of Elytopation Conductor Multiple BarrelsWeightT1.30Adjusted Diameter for Supercritical How Width of Riprap Protection at Downstream EndT1.31ftAdjusted Diameter for Supercritical How Winth of Riprap Protection at Downstream		Barrel Width (Span) in Feet		
Outlet Elevation \underline{OR} SlopeElev OUT =7222 10ftCulvert Lengthn101Manning's Roughnessn00.012Bend Loss Coefficientks01Exit Loss Coefficientks11Tallwater Surface ElevationYt. Ebeation1Max Allowable Channel VelocityV5ft/sCalculated Results:Culvert Cross Sectional Area AvailableA =12.57Culvert Critical DepthYt. EbeationYt. EbeationftCulvert Critical DepthYt. EbeationSupercritical!Froude NumberFr1.67Supercritical!Entrance Loss Coefficientks. =0.004Sum of All Loss Coefficientsks. =1.64Headwater:Inlet Control HeadwaterHW0 =Inlet Control Headwater Diameter OB Headwater/Rise RatioHW0 =1.225Headwater/Diameter 0D Headwater /Rise RatioHW0 =1.30Outlet Protection:10.04ftFlow /(Diameter^2.5)0/D^2.5 =3.13Taliwater/DiameterYt.0 =1.60Expansion Factor1/(2*tan(0)) =4.27Flow Area at Max Channel VelocityXi =3.75Width of Riprap ProtectionLip =3.7Width of Riprap Protection at Downstream EndT1.1Adjusted Diameter for Supercritical FlowDa =3.16Adjusted Diameter for Supercritical FlowDa =3.16Minimum Theoretical Riprap Sizedon mina <t< td=""><td></td><td>Number of Barrels</td><td># Barrels = 1</td><td></td></t<>		Number of Barrels	# Barrels = 1	
Culvert Length L = 10 Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient Tailwater Surface Elevation Max Allowable Channel Velocity Calculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Crowert Normal Depth Froude Number Entrance Loss Coefficient Sum of All Loss Coefficient Sum of All Loss Coefficient Headwater: Inlet Control Headwater Outlet Control Headwater Culvert Chroise Elevation Headwater: Inlet Control Headwater Outlet Control Headwater Culvert Chroise Ratio Headwater: Inlet Control Headwater Culvert Chroise Ratio Headwater: Inlet Control Headwater Culvert Chroise Ratio Headwater: Inlet Control Headwater Outlet Protection: Flow (Diameter ^2.5) Flow (Diameter ^2.5) Flow (Diameter ^2.5) Tailwater Surface Height Tailwater Surface Height Adjusted Diameter of Supercritical Flow Minimum Theoretical Flow Minimum				
$ \begin{array}{c c} Manning's Roughness \\ Bend Loss Coefficient \\ Exit Loss Coefficient \\ Tailwater Surface Elevation \\ Max Allowable Channel Velocity \\ \hline \\ $				
Bend Loss Coefficientk, a0Exit Loss Coefficientk, a1Tallwates Surface ElevationYt, EnventonMax Allowable Channel Velocityy5Calculated Results:Culvert Cross Sectional Area AvailableA =Culvert Normal DepthYn =2.33Culvert Normal DepthYc =3.03Culvert Normal DepthYc =Supercritical DepthYc =Froude NumberFr =Entrance Loss Coefficientk, a =Sum of All Loss Coefficientk, a =Sum of All Loss Coefficientsk, s =Utel Control HeadwaterHW, aDesign Headwater Close Headwater/Rise RatioHW/ aHeadwater/Diameter ^2.5)Culvert Close HeightTaliwater/Diameter ^2.5)Taliwater/Size Close Close TrainedTaliwater/Diameter Actor1/(2*tan(6)) =How Area at Max Channel VelocityAn =Width of Riprap ProtectionLog =Adjusted Diameter for Supercritical FlowDa =Adjusted Diameter for Supercritical Flow </td <td></td> <td>-</td> <td></td> <td></td>		-		
Tailwater Surface Elevation $Y_{1, Bevalue}$ ftMax Allowable Channel VelocityV5Calculated Results:Culvert Cross Sectional Area AvailableACulvert Normal Depth $Y_n =$ Culvert Corrical Depth $Y_n =$ Froude NumberFrEntrance Loss Coefficient $K_e =$ Sum of All Loss Coefficient $K_e =$ Sum of All Loss Coefficient $K_e =$ Outlet Control HeadwaterHW ₀ =Outlet Control HeadwaterHW ₀ =Design Headwater FlevationHW =Headwater/Diameter ^2.5)C/D ^2.5 =Tailwater/Diameter ^2.5)O/D ^2.5 =Tailwater/Diameter Cley Headwater / Rise RatioHW/D =Outlet Protection: $V_1 =$ Flow Area at Max Channel Velocity $A_1 =$ Plow Area at Max Channel Velocity $A_1 =$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ Length of Riprap Protection at Downstream EndTAdjusted Diameter for Supercritical FlowDa =Adjusted Diameter for Supercritical FlowDa =Adjusted Diameter for Supercritical FlowDa =Adjusted Diameter for Supercritical FlowTHow Area at Max Channel VelocityTHow Area at Max Channel Velocity </td <td></td> <td></td> <td></td> <td></td>				
Max Allowable Channel VelocityV5ft/sCalculated Results: Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss CoefficientA = 12.57 (1.3.3.4.57)ft^2 (1.3.3.4.5.5.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5			·	
Culvert Cross Sectional Area AvailableA =12.57ft²Culvert Normal Depth $Y_n =$ 2.33ftCulvert Critical Depth $Y_c =$ 3.03ftFroude Number $Fr =$ 1.67Supercritical!Entrance Loss Coefficient $k_e =$ 0.50 $K_r =$ Sum of All Loss Coefficients $k_s =$ 1.54ftHeadwater:Inlet Control Headwater $HW_1 =$ 5.18ftOutlet Control Headwater $HW_0 =$ 4.93ftDesign Headwater Clevation $HW =$ 7227.28ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D =$ 1.30ftOutlet Protection:Flow/(Diameter ^2.5) $Q/D^2.5 =$ 3.13ft^0.5/sTailwater Surface Height $Y_t =$ 1.60ftTailwater Surface Height $Y_t =$ 0.40ft²Vidth of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -ft²Length of Riprap Protection $L_p =$ 3.16ftAdjusted Diameter for Supercritical FlowDa =3.16ftMinimum Theoretical Riprap Size d_{so} nominal11in				
Culvert Cross Sectional Area AvailableA =12.57ft²Culvert Normal Depth $Y_n =$ 2.33ftCulvert Critical Depth $Y_c =$ 3.03ftFroude Number $Fr =$ 1.67Supercritical!Entrance Loss Coefficient $k_e =$ 0.50 $K_r =$ Sum of All Loss Coefficients $k_s =$ 1.54ftHeadwater:Inlet Control Headwater $HW_1 =$ 5.18ftOutlet Control Headwater $HW_0 =$ 4.93ftDesign Headwater Clevation $HW =$ 7227.28ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D =$ 1.30ftOutlet Protection:Flow/(Diameter ^2.5) $Q/D^2.5 =$ 3.13ft^0.5/sTailwater Surface Height $Y_t =$ 1.60ftTailwater Surface Height $Y_t =$ 0.40ft²Vidth of Equivalent Conduit for Multiple Barrels $W_{eq} =$ -ft²Length of Riprap Protection $L_p =$ 3.16ftAdjusted Diameter for Supercritical FlowDa =3.16ftMinimum Theoretical Riprap Size d_{so} nominal11in	Coloulated D	aguilta:		
Culvert Normal Depth $Y_n =$ 2.33 ftCulvert Critical Depth $Y_c =$ 3.03 ftFroude Number $Fr =$ 1.67 Supercritical!Entrance Loss Coefficient $k_s =$ 0.50 Friction Loss Coefficients $k_s =$ 0.04 Sum of All Loss Coefficients $k_s =$ 1.54 Headwater:Inlet Control Headwater $HW_r =$ 5.18 Inlet Control Headwater Clevation $HW_o =$ $7.27.28$ Design Headwater Elevation $HW =$ 7227.28 Headwater/Diameter OR W 0.40 Elow/(Diameter^2.5) $0/D^2.5 =$ 3.13 Tailwater Surface Height $Y_r =$ 1.60 Tailwater Surface Height $Y_r =$ 0.40 Expansion Factor $1/(2*\tan(0)) =$ 4.27 Flow Area at Max Channel Velocity $A_r =$ 20.00 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ Length of Riprap Protection $L_p =$ 3.16 Adjusted Diameter for Supercritical Flow $Da =$ 3.16 Adjusted Diameter for Supercritical Flow $Da =$ 3.16 Minimum Theoretical Riprap Size d_{a_0} mininal 11 InIn M 12 In 12 11 12	Calculated R		A = 12.57 ft ²	
Froude Number $Fr =$ 1.67Supercritical!Entrance Loss Coefficient $k_{g} =$ 0.50Friction Loss Coefficients $k_{r} =$ 0.04Sum of All Loss Coefficients $k_{r} =$ 0.04Headwater:Inlet Control Headwater $HW_{l} =$ 1.54Outlet Control Headwater $HW_{0} =$ 4.93Design Headwater /Diameter OR Headwater/Rise Ratio $HWV =$ 7227.28It Headwater/Diameter OR Headwater/Rise Ratio $HWV =$ 1.30Outlet Protection: $Fr =$ 1.60ftFlow/(Diameter^2.5) $Q/D^2.5 =$ 3.13 ft ^{0.5} /sTailwater/Diameter $Y_{t} =$ 1.60ftExpansion Factor $1/(2* \tan(\Theta)) =$ 4.27 ftFlow Area at Max Channel Velocity $A_{t} =$ 20.00 ft ² Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ ftLength of Riprap Protection $L_{p} =$ 37 ftWidth of Riprap Protection at Downstream EndT =13ftAdjusted Diameter for Supercritical Flow $Da =$ 3.16 ftMinimum Theoretical Riprap Size d_{s0} nominal =11in			$Y_n = 2.33$ ft	
Entrance Loss Coefficientke =0.50Friction Loss Coefficientkf =0.04Sum of All Loss Coefficientskg =0.04Headwater:Inlet Control HeadwaterHWr =Outlet Control HeadwaterHWr = 5.18 Design Headwater ElevationHW = 7227.28 Headwater/Diameter <u>OR</u> Headwater/Rise RatioHW =Tailwater/Diameter <u>OR</u> Headwater/Rise RatioHW =Nutlet Protection: $V_1 = 1.30$ Flow/(Diameter^2.5) $O/D^2.5 = 3.13$ Tailwater/Diameter $Y_1 = 1.60$ Tailwater/Diameter $Y/D = 0.40$ Expansion Factor $1/(2*\tan(\Theta)) = 4.27$ Flow Area at Max Channel Velocity $A_t = 20.00$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} = \frac{.}{.}$ Uvidth of Riprap Protection at Downstream EndT =Adjusted Diameter for Supercritical Flow $Da = 3.16$ Adjusted Diameter for Supercritical Flow $Da = 3.16$ Minimum Theoretical Riprap Size d_{s0} nominal =Itin			~	
Friction Loss Coefficient $k_r = 0.04$ Sum of All Loss Coefficients $k_s = 1.54$ Headwater:Inlet Control HeadwaterOutlet Control Headwater $HW_t = 5.18$ Design Headwater Elevation $HW_e = 4.93$ Headwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW = 7227.28$ ft $T227.28$ Headwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D = 1.30$ Outlet Protection: $Q/D^2.5 = 3.13$ Flow/(Diameter ^2.5) $Q/D^2.5 = 3.13$ Tailwater/Diameter $Y_t = 1.60$ Flow Area at Max Channel Velocity $Y_t = 1.60$ Width of Equivalent Conduit for Multiple Barrels $W_{eq} = -$ Length of Riprap Protection $L_p = 37$ Width of Riprap Protection at Downstream End $T = 13$ Adjusted Diameter for Supercritical Flow $Da = 3.16$ Minimum Theoretical Riprap Size d_{50} min=Nominal Riprap Size d_{50} nominal =				
Headwater: Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter <u>OR</u> Headwater/Rise Ratio Outlet Protection: Flow/(Diameter^2.5) Tailwater/Diameter Expansion Factor Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size Media Control Headwater Arise Ratio HW, D = HW,		Friction Loss Coefficient	k _f = 0.04	
Inlet Control Headwater $HW_1 =$ $\overline{5.18}$ ft Outlet Control Headwater $HW_0 =$ 4.93 ft Design Headwater Elevation $HW =$ 7227.28 ft Headwater/Diameter \underline{OR} Headwater/Rise Ratio $HW =$ 1.30 Outlet Protection: $V/D = 1.30$ 1.30 Flow/(Diameter^2.5) $O/D^2.5 =$ 3.13 $ft^{0.5}/s$ Tailwater/Diameter $Y_1 =$ 1.60 ft Tailwater/Diameter $Y/D =$ 0.40 1.27 Expansion Factor $1/(2*tan(\Theta)) =$ 4.27 ft^2 Flow Area at Max Channel Velocity $A_1 =$ 20.00 ft^2 Width of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream End $T =$ 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} nominal 12 in		Sum of All Loss Coefficients	$k_{s} = 1.54$ ft	
Inlet Control Headwater $HW_1 =$ $\overline{5.18}$ ft Outlet Control Headwater $HW_0 =$ 4.93 ft Design Headwater Elevation $HW =$ 7227.28 ft Headwater/Diameter \underline{OR} Headwater/Rise Ratio $HW =$ 1.30 Outlet Protection: $V/D = 1.30$ 1.30 Flow/(Diameter^2.5) $O/D^2.5 =$ 3.13 $ft^{0.5}/s$ Tailwater/Diameter $Y_1 =$ 1.60 ft Tailwater/Diameter $Y/D =$ 0.40 1.27 Expansion Factor $1/(2*tan(\Theta)) =$ 4.27 ft^2 Flow Area at Max Channel Velocity $A_1 =$ 20.00 ft^2 Width of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream End $T =$ 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} nominal 12 in	Headwater:			
Design Headwater Elevation $HW = \frac{7227.28}{1.30}$ ftHeadwater/Diameter <u>OR</u> Headwater/Rise Ratio $HW/D = \frac{1.30}{1.30}$ Outlet Protection: $Q/D^{2.5} = \frac{3.13}{1.60}$ ftFlow/(Diameter ^2.5) $Q/D^{2.5} = \frac{3.13}{1.60}$ ftTailwater/Diameter $Y_t = \frac{1.60}{1.60}$ ftTailwater/Diameter $YtD = 0.40$ Expansion Factor $1/(2^*tan(\theta)) = \frac{4.27}{1.60}$ ftFlow Area at Max Channel Velocity $A_t = \frac{20.00}{1.20}$ ft²Width of Equivalent Conduit for Multiple Barrels $W_{eq} = \frac{-}{13}$ ftLength of Riprap Protection $L_p = \frac{37}{10}$ ftWidth of Riprap Protection at Downstream EndT = \frac{1.3}{13} ftAdjusted Diameter for Supercritical Flow $Da = \frac{3.16}{11}$ ftMinimum Theoretical Riprap Size d_{50} nominalNominal Riprap Size d_{50} nominal				
Headwater/Diameter OR Headwater/Rise Ratio $HW/D =$ 1.30Outlet Protection:Flow/(Diameter^2.5) $Q/D^2.5 =$ 3.13 $ft^{0.5}/s$ Tailwater/Diameter ^2.5) $Y_t =$ 1.60 ft Tailwater/Diameter $Y/D =$ 0.40 4.27 Flow Area at Max Channel Velocity $A_t =$ 20.00 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream EndT $=$ 13 ft Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size d_{50} min= 11 inNominal Riprap Size d_{50} nominal= 12 in				
Flow/(Diameter ^2.5) $Q/D^{2.5} =$ 3.13 $ft^{0.5}/s$ Tailwater Surface Height $Y_t =$ 1.60 ft Tailwater/Diameter $Yt/D =$ 0.40 Expansion Factor $1/(2*tan(0)) =$ 4.27 Flow Area at Max Channel Velocity $A_t =$ 20.00 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream End $T =$ 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} nominal 11 inNominal Riprap Size d_{50} nominal 12 in				
Flow/(Diameter ^2.5) $Q/D^{2.5} =$ 3.13 $ft^{0.5}/s$ Tailwater Surface Height $Y_t =$ 1.60 ft Tailwater/Diameter $Yt/D =$ 0.40 Expansion Factor $1/(2*tan(0)) =$ 4.27 Flow Area at Max Channel Velocity $A_t =$ 20.00 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream End $T =$ 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} nominal 11 inNominal Riprap Size d_{50} nominal 12 in				
Tailwater Surface Height $Y_t =$ 1.60ftTailwater/Diameter $Yt/D =$ 0.40 Expansion Factor $1/(2^*tan(\Theta)) =$ 4.27 Flow Area at Max Channel Velocity $A_t =$ 20.00 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $ ft$ Length of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream EndT = 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} min= 11 inNominal Riprap Size d_{50} nominal= 12 in	Outlet Protect		$O/D^{2.5} = 3.13$ ft ^{0.5} /s	
Tailwater/DiameterYt/D = 0.40 Expansion Factor $1/(2*tan(\Theta)) =$ 4.27 Flow Area at Max Channel Velocity $A_t =$ 20.00 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ $-$ Length of Riprap Protection $L_p =$ 37 Width of Riprap Protection at Downstream EndT = 13 Adjusted Diameter for Supercritical Flow $Da =$ 3.16 Minimum Theoretical Riprap Size d_{50} min= 11 Nominal Riprap Size d_{50} nominal= 12				
Flow Area at Max Channel Velocity $A_t =$ 20.00 ft^2 Width of Equivalent Conduit for Multiple Barrels $W_{eq} =$ - ft Length of Riprap Protection $L_p =$ 37 ft Width of Riprap Protection at Downstream EndT = 13 ft Adjusted Diameter for Supercritical Flow $Da =$ 3.16 ft Minimum Theoretical Riprap Size d_{50} min= 11 inNominal Riprap Size d_{50} nominal= 12 in			Yt/D = 0.40	
Width of Equivalent Conduit for Multiple Barrels $W_{eq} = \frac{-}{ft}$ Length of Riprap Protection $L_p = \frac{37}{ft}$ Width of Riprap Protection at Downstream End $T = \frac{13}{13}$ Adjusted Diameter for Supercritical Flow $Da = \frac{3.16}{ft}$ Minimum Theoretical Riprap Size d_{50} min=Nominal Riprap Size d_{50} nominal=12in		•		
Length of Riprap Protection $L_p = 37$ ftWidth of Riprap Protection at Downstream EndT = 13ftAdjusted Diameter for Supercritical FlowDa = 3.16ftMinimum Theoretical Riprap Size d_{50} min=11Nominal Riprap Size d_{50} nominal=12				
Adjusted Diameter for Supercritical FlowDa = 3.16 ftMinimum Theoretical Riprap Size d_{50} min=11inNominal Riprap Size d_{50} nominal=12in			$L_p = 37$ ft	
Minimum Theoretical Riprap Size d_{50} min=11inNominal Riprap Size d_{50} nominal=12in		Width of Riprap Protection at Downstream End		
Minimum Theoretical Riprap Size d_{50} min=11inNominal Riprap Size d_{50} nominal=12in		Adjusted Diameter for Supercritical Flow	Da = 3.16 ft	
		Minimum Theoretical Riprap Size	d ₅₀ min= 11 in	
Ivine v Riprap Type I type M				
		мыго киргар туре	Type = M	

Drojoct:	MHFD-Culvert, Version	n 4.00 (May 2020)
	Eagleview Generic Driveway Culvert Double 42-inch	
ID.	Generic Driveway curvert Double 42-Inch	
¥ T		
ł		Soil Type:
	E755566	RIPRAP O Non-Sandy
Design Infor		Flow! Using Adjusted Diameter to calculate protection type.
203igir miðri	Design Discharge	Q = 150 cfs
Circular Culve	rt:	
	Barrel Diameter in Inches	D = 42 inches
	Inlet Edge Type (Choose from pull-down list)	Square Edge with Headwall
OR	o b i i i i i i	
Box Culvert:	-	OR
	Barrel Height (Rise) in Feet	H (Rise) =
	Barrel Width (Span) in Feet	W (Span) = ft
	Inlet Edge Type (Choose from pull-down list)	
	Number of Barrels	# Barrels = 2
	Inlet Elevation	Elev IN = 7222.1 ft
	Outlet Elevation OR Slope	Elev OUT = 7222 ft
	Culvert Length	L = <u>10</u> ft
	Manning's Roughness	n = 0.012
	Bend Loss Coefficient	$k_{\rm b} = 0$
	Exit Loss Coefficient	$k_x = 1$
	Tailwater Surface Elevation	$Y_{t, Elevation} = $ ft
	Max Allowable Channel Velocity	V = 5 ft/s
Calculated Re		- [r ²
	Culvert Cross Sectional Area Available	$A = 9.62 \text{ ft}^2$
	Culvert Normal Depth	$Y_n = 2.04$ ft
	Culvert Critical Depth	$Y_c = 2.62$ ft
	Froude Number Entrance Loss Coefficient	$Fr = 1.64 Supercritical!$ $k_a = 0.50$
	Friction Loss Coefficient	$k_{e} = 0.50$ $k_{f} = 0.05$
	Sum of All Loss Coefficients	$k_{\rm f} = \frac{0.03}{1.55}$ ft
Headwater:		
	Inlet Control Headwater	HW ₁ = 4.44 ft
	Outlet Control Headwater	$HW_0 = 4.23$ ft
	Design Headwater Elevation	HW = 7226.54 ft
	Headwater/Diameter <u>OR</u> Headwater/Rise Ratio	HW/D = 1.27
		·
Outlet Protect		
	Flow/(Diameter ^ 2.5)	$Q/D^{2.5} = 3.27$ ft ^{0.5} /s
	Tailwater Surface Height	$Y_t = 1.40$ ft
	Tailwater/Diameter	Yt/D = 0.40
	Expansion Factor	$1/(2^{*}\tan(\Theta)) = 4.14$
	Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels	$A_{t} = \frac{30.00}{W_{eq}} ft^{2}$ $W_{eq} = 7.00$ ft
	Length of Riprap Protection	$L_p = 29 \qquad ft T = 15 \qquad ft$
	Width of Riprap Protection at Downstream End	
	Adjusted Diameter for Supercritical Flow	Da = 2.77 ft
	Minimum Theoretical Riprap Size	$d_{50} \text{ min} = \frac{2.77}{10} \text{ in}$
	Nominal Riprap Size	$d_{50} \text{ nominal} = 12 \text{ in }$
	MHFD Riprap Type	Type = M

	EXISTING CHANNEL FLOWS SUMMARY					
Reach/Channel ID	Contributing Basins	Tributary Areas (ac)	Flows (cfs)	Slope (%)		
CHNL A	(7%B3) + OB6	122.6	120.9	5.65		
CHNL B	(7%B3) + (100%OB5)	148.0	114.6	5.98		
CHNL C	(4%B3) + (62%OB5)	91.6	70.7	8.54		
CHNL D	(9%B3) + (1%OB7)	9.6	12.7	3.32		
CHNL E	(70%B4) + OB8	43.3	64.3	2.57		
CHNL F	(7%B2) + OB4	13.4	22.3	2.05		
CHNL G	(86%B4) + OB8	45.7	67.3	2.29		
CHNL H	(11%B2) + OB4 + OB3 + OB2	86.6	144.0	2.45		
CHNLI	(17%B2) + OB4 + OB3 + OB2	89.0	146.9	2.22		
CHNL J	(40%B2)	16.6	19.4	1.25		
CHNL K	(27%B2) + OB4 + OB3 + OB2	93.2	151.8	2.46		
CHNL L	(16%B1) + OB1	11.3	20.2	3.87		
CHNL M	(34%B2) + OB4 + OB3 + OB2	96.1	155.2	4.54		
CHNL O	(65%B2)	26.9	31.5	3.26		
CHNL P	(7%B3)	4.2	7.7	7.65		

Worksheet for EX CHNL A


Friction Method Solve For Input Data Channel Slope Discharge	Manning Formula Normal Depth			_
Input Data Channel Slope				
Channel Slope				_
-				-
	5.560 % 120.90 cfs			_
	Se	ction Definitions		-
Statio	on		Elevation	
(ft)			(ft)	
		0+00		7,239.40
		0+61		7,236.49
		1+07		7,231.74
		1+84		7,246.00
		2+04		7,246.60
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,239.40)		(2+04, 7,246.60)		0.040
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	17.9 in			_
Roughness Coefficient	0.040			
Elevation	7,233.23 ft			
Elevation Range	7,231.7 to 7,246.6 ft			
Flow Area	16.9 ft ²			
Wetted Perimeter	22.9 ft			
Hydraulic Radius	8.9 in			
Top Width	22.68 ft			
Normal Depth	17.9 in			
Critical Depth	20.8 in			
Critical Slope	2.476 %			
Velocity	7.16 ft/s			
Velocity Head	0.80 ft			
Specific Energy	2.29 ft			
Froude Number	1.461			
Flow Type	Supercritical			
51		ems, Inc. Haestad Methods Solution		– FlowMas

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.9 in	
Critical Depth	20.8 in	
Channel Slope	5.560 %	
Critical Slope	2.476 %	

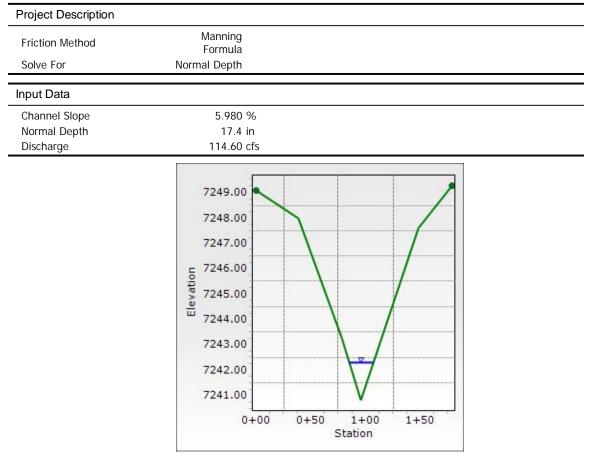
Worksheet for EX CHNL A

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Cross Section for EX CHNL A

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 1


Worksheet for EX CHNL B

Project Description				-
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Solve Fol	Normal Depth			_
Input Data				_
Channel Slope	5.980 %			
Discharge	114.60 cfs			_
	Se	ection Definitions		
Statio (ft)	n		Elevation (ft)	
		0+00		7,249.10
		0+38		7,248.00
		0+78		7,243.32
		0+95		7,240.83
		1+48		7,247.55
		1+79		7,249.28
	Roughne	ess Segment Definitions	5	
Start Station		Ending Station	Roughness Coefficient	t
(0+00, 7,249.10)		(1+79, 7,249.28)	J. J	0.040
Ontiona				_
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	17.4 in			_
Roughness Coefficient	0.040			
Elevation	7,242.28 ft			
Elevation Range	7,240.8 to 7,249.3 ft			
Flow Area	15.7 ft ²			
Wetted Perimeter	21.8 ft			
Hydraulic Radius	8.6 in			
Top Width	21.60 ft			
Normal Depth	17.4 in			
Critical Depth	20.6 in			
Critical Slope	2.484 %			
Velocity	7.30 ft/s			
Velocity Head	0.83 ft			
Specific Energy	2.28 ft			
Froude Number	1.509			
channelCalcs.fm8	Bentley Syst	terns, Inc. Haestad Methods Solution Center		FlowMast [10.03.00.0
2/22/2022		non Company Drive Suite 200 W n, CT 06795 USA +1-203-755-1666		Page 1 of

Results		
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
Upstream Depth	0.0 in	
GVF Output Data		
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.4 in	
Critical Depth	20.6 in	
Channel Slope	5.980 %	
Critical Slope	2.484 %	

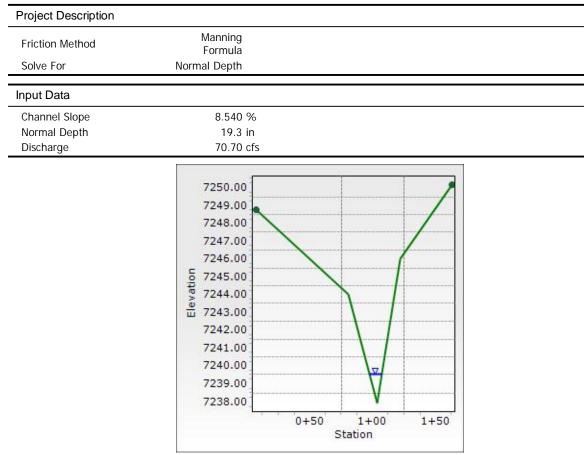
Worksheet for EX CHNL B

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Cross Section for EX CHNL B

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Worksheet for EX CHNL C


Project Description				_
Friction Method	Manning Formula			
Solve For	Normal Depth			_
Input Data				-
Channel Slope Discharge	8.540 % 70.70 cfs			_
	Se	ction Definitions		_
Statior	1		Elevation	
(ft)			(ft)	
		0+07		7,248.7
		0+81		7,244.0
		1+03		7,237.9
		1+22		7,246.0
		1+63		7,250.2
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+07, 7,248.79)		(1+63, 7,250.20)		0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	19.3 in			_
Roughness Coefficient	0.040			
Elevation	7,239.54 ft			
Elevation Range	7,237.9 to 7,250.2 ft			
Flow Area	7.8 ft ²			
Wetted Perimeter	10.3 ft			
Hydraulic Radius	9.1 in			
Top Width	9.74 ft			
Normal Depth	19.3 in			
Critical Depth	24.3 in			
Critical Slope	2.497 %			
Velocity	9.05 ft/s			
Velocity Head	1.27 ft			
Specific Energy	2.88 ft			
Froude Number				
Froude Number Flow Type	1.780 Supercritical Bentley Syste	ems, Inc. Haestad Methods Solution		

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	19.3 in	
Critical Depth	24.3 in	
Channel Slope	8.540 %	
Critical Slope	2.497 %	

Worksheet for EX CHNL C

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL C

Worksheet for EX CHNL D

Friction Method	Manning Formula	
Solve For	Normal Depth	
	I	
nput Data	•	
	3.320 %	

Elevation
(ft)
00 7,237.14
7,237.45
7,235.70
7,235.20
7,236.20
2 7,236.63
58 7,239.52
o9 7,239.77

Roughness Segment Definitions

Start Station	Ending Station Roughness Coefficie	ent
(0+00, 7,237.14)	(1+69, 7,239.77)	0.040
Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	7.0 in	
Roughness Coefficient	0.040	
Elevation	7,235.78 ft	
Elevation Range	7,235.2 to 7,239.8 ft	
Flow Area	4.5 ft ²	
Wetted Perimeter	16.9 ft	
Hydraulic Radius	3.2 in	
Top Width	16.86 ft	
Normal Depth	7.0 in	
Critical Depth	6.9 in	
Critical Slope	3.641 %	
Velocity	2.81 ft/s	
Velocity Head	0.12 ft	
hannelCalcs.fm8 2/22/2022	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	FlowMast [10.03.00.0 Page 1 of

	nerrestie	
Results		
Specific Energy	0.71 ft	
Froude Number	0.956	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	7.0 in	
Critical Depth	6.9 in	
Channel Slope	3.320 %	
Critical Slope	3.641 %	

Worksheet for EX CHNL D

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL D

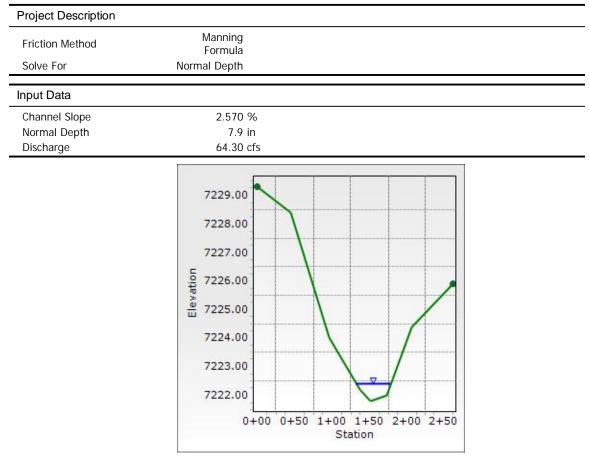
ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL E

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slone	2.570 %	
Channel Slope	2.370 70	

Section	Definitions
Station (ft)	Elevation (ft)
0+0	0 7,229.28
0+4	5 7,228.39
0+9	6 7,224.00
1+3	7 7,222.21
1+5	2 7,221.75
1+7	3 7,222.00
2+0	7 7,224.35
2+6	2 7,225.92


Roughness Segment Definitions

Start Station	Enc	ling Station	Roughness Coefficient	
0+00, 7,229.28)		(2+62, 7,225.92)		0.040
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	7.9 in			
Roughness Coefficient	0.040			
Elevation	7,222.41 ft			
Elevation Range	7,221.8 to 7,229.3 ft			
Flow Area	19.3 ft ²			
Wetted Perimeter	46.5 ft			
Hydraulic Radius	5.0 in			
Top Width	46.45 ft			
Normal Depth	7.9 in			
Critical Depth	7.6 in			
Critical Slope	3.175 %			
Velocity	3.32 ft/s			
Velocity Head	0.17 ft			
hannelCalcs.fm8 2/22/2022	27 Siemon Cor	c. Haestad Methods Solution Center npany Drive Suite 200 W 3795 USA +1-203-755-1666	[1	FlowMaste 0.03.00.03 Page 1 of

	Montania	
Results		
Specific Energy	0.83 ft	
Froude Number	0.908	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	7.9 in	
Critical Depth	7.6 in	
Channel Slope	2.570 %	
Critical Slope	3.175 %	

Worksheet for EX CHNL E

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL E

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL F

Project Description			-	
Friction Method	Manning			_
Solve For	Formula			
Solve Fol	Normal Depth			_
Input Data				
Channel Slope	2.050 %			
Discharge	22.30 cfs			_
	Se	ction Definitions		
Statio	n		Elevation	
(ft)		0+04	(ft)	7,238.00
		0+58		7,238.00
		1+10		7,237.86
		1+28		7,238.35
	Davadara		_	
	Rougnne	ss Segment Definitions	5	
Start Station		Ending Station	Roughness Coefficient	
(0+04, 7,238.00)		(1+28, 7,238.35)		0.040
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's			
Method	Method			_
Results				
Normal Depth	5.2 in			
Roughness Coefficient	0.040			
Elevation	7,237.50 ft			
Elevation Range	7,237.1 to			
	7,238.4 ft			
Flow Area	11.6 ft ²			
Wetted Perimeter	53.3 ft			
Hydraulic Radius	2.6 in			
Top Width	53.27 ft			
Normal Depth	5.2 in			
Critical Depth	4.6 in			
Critical Slope	4.045 %			
Velocity	1.92 ft/s			
Velocity Head	0.06 ft			
Specific Energy	0.49 ft			
Froude Number	0.727			
Flow Type	Subcritical			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.2 in	
Critical Depth	4.6 in	
Channel Slope	2.050 %	
Critical Slope	4.045 %	

Worksheet for EX CHNL F

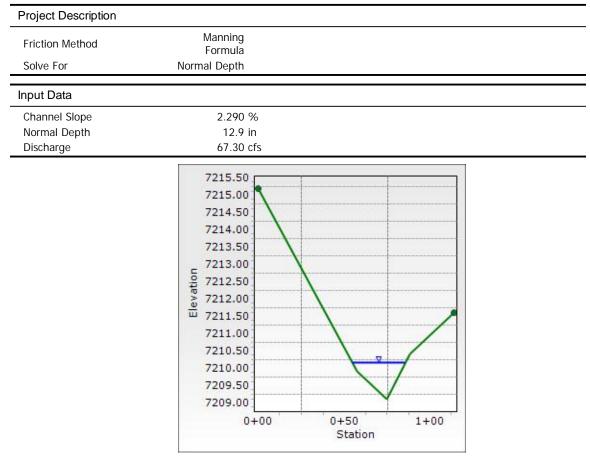
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL F

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL G


Eviation Mathead	Manning			_
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				-
Channel Slope	2.290 %			_
Discharge	67.30 cfs			_
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
(1)		0+00		7,215.1
		0+58		7,209.9
		0+75		7,209.0
		0+88		7,210.4
		1+14		7,211.5
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,215.15)		(1+14, 7,211.58)		0.04
Options				-
Options				
Current Roughness Weighted Method	Pavlovskii's Method			_
Current Roughness Weighted				_
Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			- -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method 12.9 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft 12.9 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft 12.9 in 12.3 in 2.871 %			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft 12.9 in 12.3 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft 12.9 in 12.3 in 2.871 % 3.85 ft/s			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 12.9 in 0.040 7,210.16 ft 7,209.1 to 7,215.2 ft 17.5 ft ² 30.8 ft 6.8 in 30.70 ft 12.9 in 12.3 in 2.871 % 3.85 ft/s 0.23 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.9 in	
Critical Depth	12.3 in	
Channel Slope	2.290 %	
Critical Slope	2.871 %	

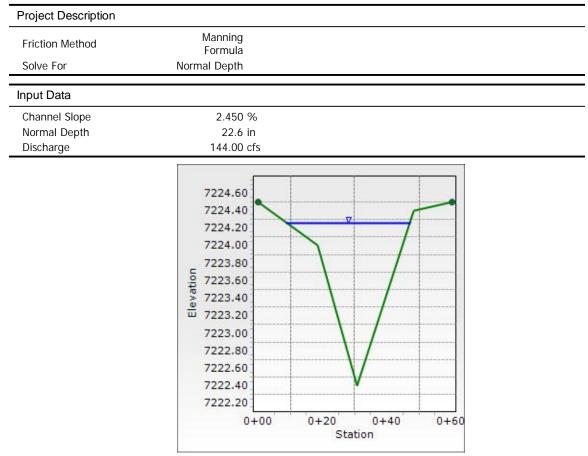
Worksheet for EX CHNL G

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL G

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL H


	Manning			_
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	2.450 %			_
Discharge	144.00 cfs			_
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
(11)		0+00	(11)	7,224.4
		0+19		7,224.0
		0+31		7,222.3
		0+48		7,224.3
		0+60		7,224.5
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
0+00, 7,224.47)		(0+60, 7,224.54)		0.04
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Current Roughness Weighted Method Open Channel Weighting Method				-
Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's			- - -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's Method			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 22.6 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft 22.6 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft 22.6 in 22.4 in 2.566 %			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft 22.6 in 22.4 in 2.566 % 4.86 ft/s			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft 22.6 in 22.4 in 2.566 %			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 22.6 in 0.040 7,224.26 ft 7,222.4 to 7,224.5 ft 29.7 ft ² 38.9 ft 9.2 in 38.64 ft 22.6 in 22.4 in 2.566 % 4.86 ft/s 0.37 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	22.6 in	
Critical Depth	22.4 in	
Channel Slope	2.450 %	
Critical Slope	2.566 %	

Worksheet for EX CHNL H

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL H

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL I

Project Description				-
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Input Data				-
Channel Slope	2.220 %			_
Discharge	146.90 cfs			_
	Se	ection Definitions		
Statio (ft)	n		Elevation (ft)	
(1)		0+00	(1)	7,218.3
		0+47		7,218.5
		0+86		7,216.5
		1+59		7,221.0
		1+71		7,221.3
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,218.31)		(1+71, 7,221.35)		0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
	16.4 in			_
Normal Depth	0.040			
Roughness Coefficient Elevation	7,217.96 ft			
Elevation Range	7,216.6 to 7,221.4 ft			
Flow Area	34.2 ft ²			
Wetted Perimeter	50.2 ft			
Hydraulic Radius	8.2 in			
Top Width	50.08 ft			
Normal Depth	16.4 in			
Critical Depth	15.8 in			
Critical Slope	2.683 %			
Velocity	4.29 ft/s			
Velocity Head	0.29 ft			
Specific Energy	1.65 ft			
Froude Number	0.915			
Flow Type	Subcritical			
		ems, Inc. Haestad Methods Solution		– FlowMa

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	16.4 in	
Critical Depth	15.8 in	
Channel Slope	2.220 %	
Critical Slope	2.683 %	

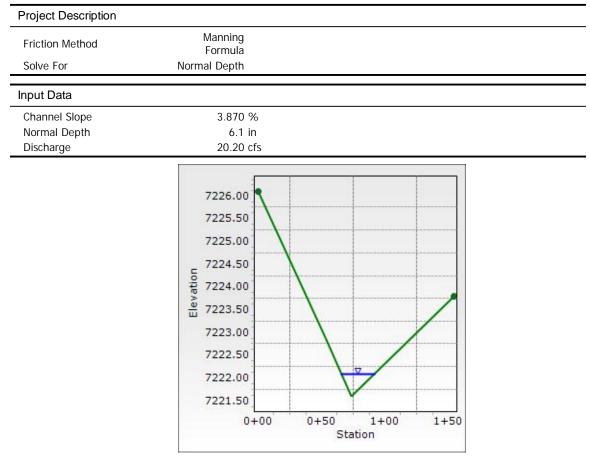
Worksheet for EX CHNL I

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL I

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL L


				_
Project Description				_
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				-
Channel Slope	3.870 %			_
Discharge	20.20 cfs			
	Se	ction Definitions		
Statio	on		Elevation	
(ft)			(ft)	
		0+00		7,226.12
		0+53		7,222.85
		0+74 1+55		7,221.57 7,223.80
		1100		7,220.00
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,226.12)		(1+55, 7,223.80)		0.040
Options				-
Current Roughness Weighted Method	Pavlovskii's			_
Open Channel Weighting Method	Method Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Method	Wethod			_
Results				_
Normal Depth	6.1 in			
Roughness Coefficient	0.040			
Elevation Elevation Range	7,222.08 ft 7,221.6 to 7,226.1 ft			
Flow Area	6.9 ft ²			
Wetted Perimeter				
Hydraulic Radius	26.8.ft			
	26.8 ft 3.1 in			
5	3.1 in			
Top Width	3.1 in 26.79 ft			
Top Width Normal Depth	3.1 in			
Top Width Normal Depth Critical Depth	3.1 in 26.79 ft 6.1 in 6.2 in			
Top Width Normal Depth Critical Depth Critical Slope	3.1 in 26.79 ft 6.1 in 6.2 in 3.664 %			
Top Width Normal Depth Critical Depth Critical Slope Velocity	3.1 in 26.79 ft 6.1 in 6.2 in 3.664 % 2.94 ft/s			
Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	3.1 in 26.79 ft 6.1 in 6.2 in 3.664 % 2.94 ft/s 0.13 ft			
Top Width Normal Depth Critical Depth Critical Slope Velocity	3.1 in 26.79 ft 6.1 in 6.2 in 3.664 % 2.94 ft/s			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.1 in	
Critical Depth	6.2 in	
Channel Slope	3.870 %	
Critical Slope	3.664 %	

Worksheet for EX CHNL L

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL L

Worksheet for EX CHNL M


Project Description				
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			-
Input Data				
Channel Slope	4.540 %			_
Discharge	155.20 cfs			_
	Se	ction Definitions		
Statior (ft)	1		Elevation (ft)	
(1)		0+00		7,203.94
		0+72		7,201.87
		1+11		7,198.36
		1+38		7,202.50
		2+08		7,202.04
	Roughne	ss Segment Definitions		
Start Station	U	Ending Station	Roughness Coefficient	
(0+00, 7,203.94)		(2+08, 7,202.04)		0.040
(0+00, 7,203.94)		(2+00, 7,202.04)		
		(2+00, 7,202.04)		-
Options Current Roughness Weighted	Pavlovskii's	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method	Pavlovskii's Method	(2+00, 7,202.0+)		-
Options Current Roughness Weighted		(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method	(2+00, 7,202.0+)		- -
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 19.3 in	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040	(2+00, 7,202.0+)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Results Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ²			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft 19.3 in			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft 19.3 in 21.7 in			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft 19.3 in 21.7 in 2.434 %			-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft 19.3 in 21.7 in 2.434 % 6.81 ft/s			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 19.3 in 0.040 7,199.97 ft 7,198.4 to 7,203.9 ft 22.8 ft ² 28.6 ft 9.6 in 28.37 ft 19.3 in 21.7 in 2.434 % 6.81 ft/s 0.72 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

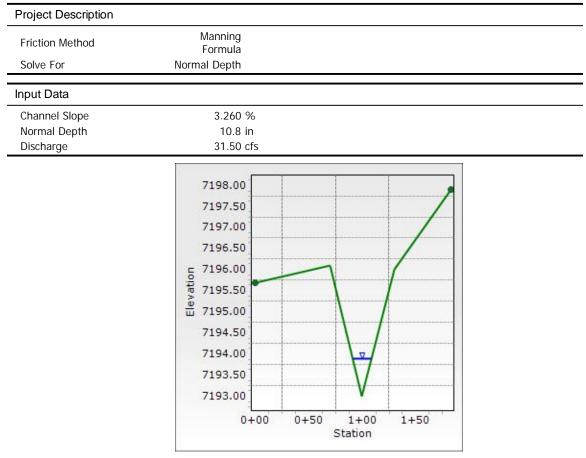
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	19.3 in	
Critical Depth	21.7 in	
Channel Slope	4.540 %	
Critical Slope	2.434 %	

Worksheet for EX CHNL M

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL M

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Worksheet for EX CHNL O

Project Description				_
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope Discharge	3.260 % 31.50 cfs			_
	Se	ection Definitions		-
Static (ft)	n		Elevation (ft)	
(17)		0+00	(10)	7,195.73
		0+70		7,196.09
		1+00		7,192.99
		1+30		7,195.99
		1+83		7,195.99
		1103		7,177.00
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,195.73)		(1+83, 7,197.86)		0.040
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				2
Normal Depth	10.8 in			
Roughness Coefficient	0.040			
Elevation	7,193.89 ft			
Elevation Range	7,193.0 to 7,197.9 ft			
Flow Area	8.0 ft ²			
Wetted Perimeter	17.9 ft			
Hydraulic Radius	5.4 in			
Top Width	17.79 ft			
Normal Depth	10.8 in			
Critical Depth	11.0 in			
Critical Slope	3.049 %			
Velocity Velocity	3.93 ft/s			
Velocity Head	0.24 ft			
Specific Energy	1.14 ft			
Froude Number	1.032			
Flow Type	Supercritical			_
	Bentley Syste	ems, Inc. Haestad Methods Solution		FlowN

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

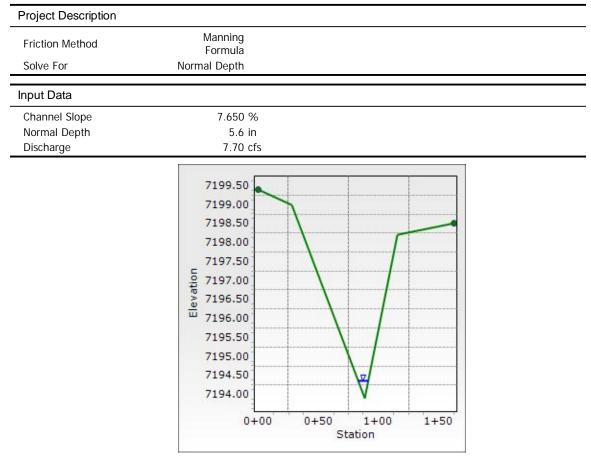
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.8 in	
Critical Depth	11.0 in	
Channel Slope	3.260 %	
Critical Slope	3.049 %	

Worksheet for EX CHNL O

Cross Section for EX CHNL O

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL P


Project Description				
Friction Method	Manning			-
	Formula Normal Depth			
				-
Input Data				_
Channel Slope Discharge	7.650 % 7.70 cfs			_
	Se	ction Definitions		
Statior (ft)	ı		Elevation (ft)	
(17)		0+00		7,199.3
		0+28		7,199.0
		0+88		7,193.89
		1+16		7,198.1
		1+63		7,198.52
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,199.37)				0.040
(0+00, 7, 199.37)		(1+63, 7,198.52)		
Options		(1+63, 7,198.52)		-
	Pavlovskii's Method	(1+63, 7,198.52)		-
Options Current Roughness Weighted		(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040	(1+63, 7,198.52)		- -
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Results Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ²	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft	(1+63, 7,198.52)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft 5.6 in	(1+63, 7,198.52)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft 5.6 in 6.4 in	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft 5.6 in 6.4 in 3.649 %	(1+63, 7,198.52)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft 5.6 in 6.4 in 3.649 % 3.87 ft/s	(1+63, 7,198.52)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,194.36 ft 7,193.9 to 7,193.9 to 7,199.4 ft 2.0 ft ² 8.6 ft 2.8 in 8.53 ft 5.6 in 6.4 in 3.649 % 3.87 ft/s 0.23 ft	(1+63, 7,198.52)		

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.6 in	
Critical Depth	6.4 in	
Channel Slope	7.650 %	
Critical Slope	3.649 %	

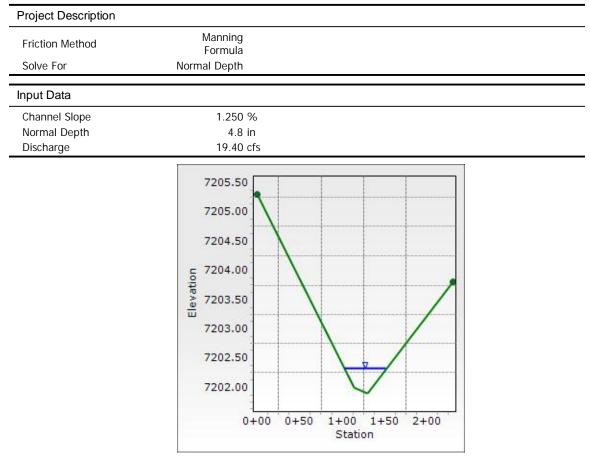
Worksheet for EX CHNL P

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL P

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL J


Project Description				_
	Manning			
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				-
Channel Slope	1.250 %			_
Discharge	19.40 cfs			_
	Se	ction Definitions		
Static	n		Elevation	
(ft)		0+00	(ft)	7,205.29
		1+14		7,203.29
		1+30		7,201.92
		2+31		7,203.75
	Roughne	ss Segment Definitions		
	Roughine	-		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,205.29)		(2+31, 7,203.75)		0.040
Options				
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	4.8 in			_
Roughness Coefficient	0.040			
Elevation	7,202.32 ft			
Elevation Range	7,201.9 to 7,205.3 ft			
Flow Area	12.0 ft ²			
Wetted Perimeter	49.2 ft			
Hydraulic Radius	2.9 in			
Top Width	49.18 ft			
Normal Depth	4.8 in			
Critical Depth	3.7 in			
Critical Slope	4.048 %			
Velocity	1.62 ft/s			
Velocity Head	0.04 ft			
Specific Energy	0.44 ft			
Froude Number	0.579			
Flow Type	Subcritical			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.8 in	
Critical Depth	3.7 in	
Channel Slope	1.250 %	
Critical Slope	4.048 %	

Worksheet for EX CHNL J

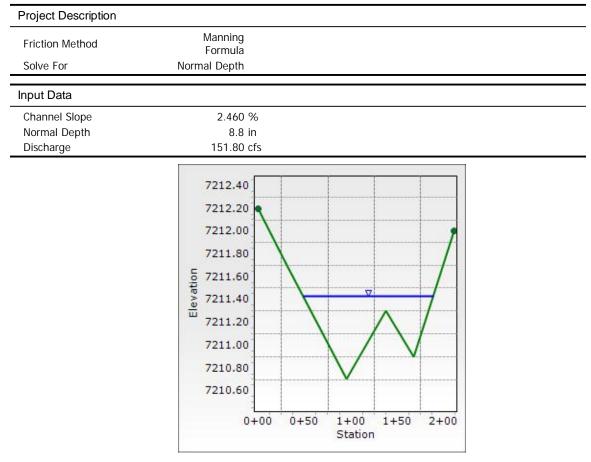
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for EX CHNL J

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX CHNL K


Project Description				
Friction Method	Manning			-
	Formula Normal Depth			
				_
Input Data				_
Channel Slope Discharge	2.460 % 151.80 cfs			
	Se	ction Definitions		_
Statior (ft)	ı		Elevation (ft)	
(17)		0+00	(17)	7,212.20
		0+95		7,210.70
		1+38		7,211.30
		1+68		7,210.90
		2+11		7,211.97
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0, 00, 7, 010, 00)		4		0.040
(0+00, 7,212.20)		(2+11, 7,211.97)		0.040
Options		(2+11, 7,211.97)		_
	Pavlovskii's Method	(2+11, 7,211.97)		-
Options Current Roughness Weighted		(2+11, 7,211.97)		- -
Options Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's	(2+11, 7,211.97)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(2+11, 7,211.97)		- -
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(2+11, 7,211.97)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 8.8 in	(2+11, 7,211.97)		0.04(
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040	(2+11, 7,211.97)		U.U4(
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ²	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in	(2+11, 7,211.97)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft	(2+11, 7,211.97)		U.U+1
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft 8.8 in	(2+11, 7,211.97)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft 8.8 in 8.4 in	(2+11, 7,211.97)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft 8.8 in 8.4 in 3.352 %	(2+11, 7,211.97)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft 8.8 in 8.4 in 3.352 % 2.97 ft/s 0.14 ft	(2+11, 7,211.97)		U.U41
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 8.8 in 0.040 7,211.43 ft 7,210.7 to 7,212.2 ft 51.2 ft ² 140.8 ft 4.4 in 140.76 ft 8.8 in 8.4 in 3.352 % 2.97 ft/s	(2+11, 7,211.97)		

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	8.8 in	
Critical Depth	8.4 in	
Channel Slope	2.460 %	
Critical Slope	3.352 %	

Worksheet for EX CHNL K

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

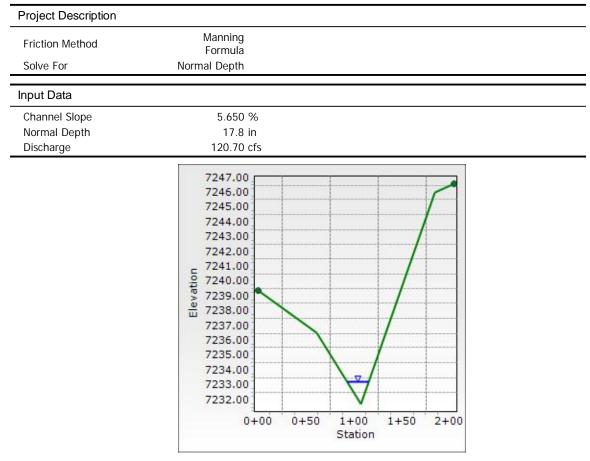
Cross Section for EX CHNL K

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	PROPOSED CHANNEL FLO	WS SUMMARY			
Reach/Channel ID	Contributing Basins	Tributary Areas (ac)	Flows (cfs)	Slope (%)	Lining
CHNL A	(30%PB9) + OB6	122.2	120.7	5.65	TRM
CHNL B	(34%PB8) + OB5	147.8	117.4	5.98	TRM
CHNL C	(20%PB8) + (2%OB5)	5.2	8.2	8.54	TRM
CHNL D	(47%PB10) + (1%OB7)	38.5	61.2	3.32	TRM
CHNL E	PB11 + OB8	49.2	81.4	2.57	TRM
CHNL F	(46%PB5) + OB4	13.3	23.7	2.05	-
CHNL G	(6%PB14) + PB11 + OB8	50.2	84.2	2.29	TRM
CHNL H	(20%PB4) + OB2 + OB3 + OB4	84.1	144.8	2.45	TRM
CHNL I	(45%PB4) + OB2 + OB3 + OB4	86.7	152.4	2.22	TRM
CHNL J	(7%PB15) + PB6 + PB7	15.2	29.9	1.25	-
CHNL K	(95%PB4) + OB2 + OB3 + OB4	92.0	167.5	2.46	-
CHNL L	(40%PB1) + OB1	12.1	21.9	3.87	TRM
CHNL M	(10%PB15) + OB2 + OB3 + OB4 + PB5 + PB4 + PB3	101.1	185.3	4.54	TRM
CHNL N	(50%PB15) + PB6 + PB7	19.4	41.3	0.50	-
CHNL O	(21%PB15)	2.0	5.5	3.26	TRM
CHNL P	(5%PB14)	0.9	2.3	7.65	TRM

Worksheet for PROP CHNL A


				_
Friction Method	Manning Formula			
Solve For	Normal Depth			_
Input Data				-
Channel Slope	5.650 % 120.70 cfs			_
Discharge				-
		ction Definitions		
Station (ft)	٦		Elevation (ft)	
		0+00		7,239.4
		0+61		7,236.4
		1+07		7,231.7
		1+84		7,246.0
		2+04		7,246.6
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,239.40)		(2+04, 7,246.60)		0.04
Options				-
Options				
Current Roughness Weighted Method	Pavlovskii's Method			_
Current Roughness Weighted				_
Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 17.8 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in 2.476 %			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in 2.476 % 7.20 ft/s			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in 2.476 % 7.20 ft/s 0.80 ft			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in 2.476 % 7.20 ft/s 0.80 ft 2.29 ft			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 17.8 in 0.040 7,233.22 ft 7,231.7 to 7,246.6 ft 16.8 ft ² 22.8 ft 8.8 in 22.60 ft 17.8 in 20.8 in 2.476 % 7.20 ft/s 0.80 ft			-

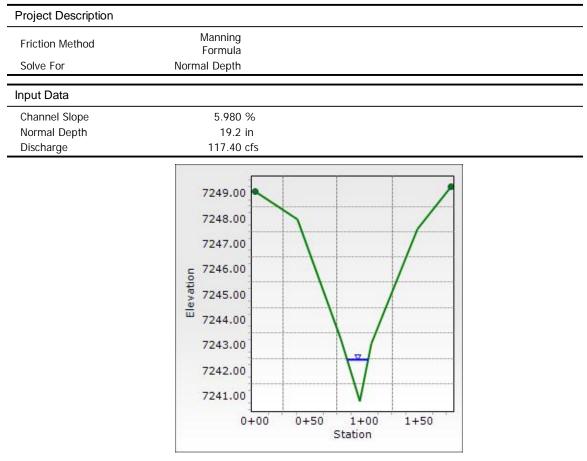
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.8 in	
Critical Depth	20.8 in	
Channel Slope	5.650 %	
Critical Slope	2.476 %	

Worksheet for PROP CHNL A

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL A


Worksheet for PROP CHNL B

Project Description				_
Friction Method	Manning			
Solve For	Formula Normal Depth			
				=
Input Data				
Channel Slope	5.980 %			
Discharge	117.40 cfs			
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
		0+00		7,249.10
		0+38		7,248.00
		0+78		7,243.32
		0+95		7,240.83
		1+06		7,243.14
		1+48		7,247.55
		1+79		7,249.28
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficien	t
(0+00, 7,249.10)		(1+79, 7,249.28)	Roughness coefficient	0.040
Options				_
Current Roughness Weighted	Pavlovskii's			_
Method	Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			
Results				
Normal Depth	19.2 in			
Roughness Coefficient	0.040			
Elevation	7,242.43 ft			
Elevation Range	7,240.8 to			
-	7,249.3 ft			
Flow Area	15.1 ft ²			
Wetted Perimeter	19.2 ft			
Hydraulic Radius	9.5 in			
Top Width	18.94 ft			
Normal Depth	19.2 in			
Critical Depth	22.7 in			
Critical Slope	2.420 %			
Velocity	7.75 ft/s			
Velocity Head	0.93 ft			
Specific Energy	2.53 ft			
hannelCalcs.fm8		ems, Inc. Haestad Methods Solution Center		FlowMaste [10.03.00.03
2/22/2022	27 Siem Watertown	on Company Drive Suite 200 W , CT 06795 USA +1-203-755-1666		Page 1 of

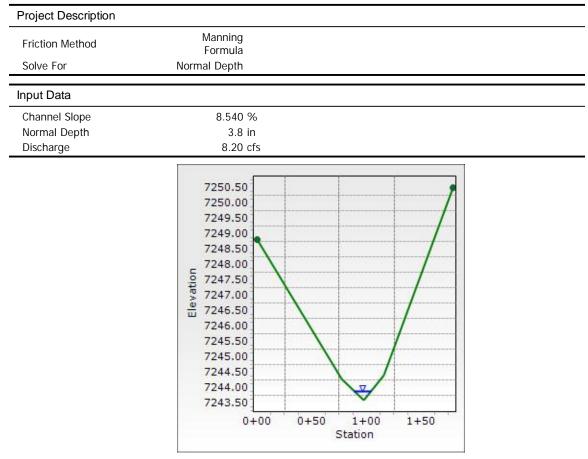
Worksheet for	PROP CHNL	В
---------------	-----------	---

Results		
Froude Number	1.528	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	19.2 in	
Critical Depth	22.7 in	
Channel Slope	5.980 %	
Critical Slope	2.420 %	

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL B

Worksheet for PROP CHNL C


Friction Method	Manning			
	Formula			
Solve For	Normal Depth			
Input Data				_
Channel Slope Discharge	8.540 % 8.20 cfs			
	Se	ction Definitions		-
Static (ft)	n		Elevation (ft)	
		0+00		7,248.7
		0+77		7,244.2
		0+98		7,243.5
		1+16		7,244.4
		1+79		7,250.5
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
0+00, 7,248.79)		(1+79, 7,250.54)		0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
				_
Normal Depth	3.8 in			
Normal Depth Roughness Coefficient	3.8 in 0.040			
Normal Depth Roughness Coefficient Elevation	0.040			
Roughness Coefficient	0.040 7,243.88 ft 7,243.6 to			
Roughness Coefficient Elevation	0.040 7,243.88 ft			
Roughness Coefficient Elevation Elevation Range Flow Area	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ²			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft 3.8 in			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft 3.8 in 4.4 in 4.108 %			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft 3.8 in 4.4 in 4.108 % 3.19 ft/s			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft 3.8 in 4.4 in 4.108 %			
Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	0.040 7,243.88 ft 7,243.6 to 7,250.5 ft 2.6 ft ² 16.1 ft 1.9 in 16.05 ft 3.8 in 4.4 in 4.108 % 3.19 ft/s 0.16 ft			

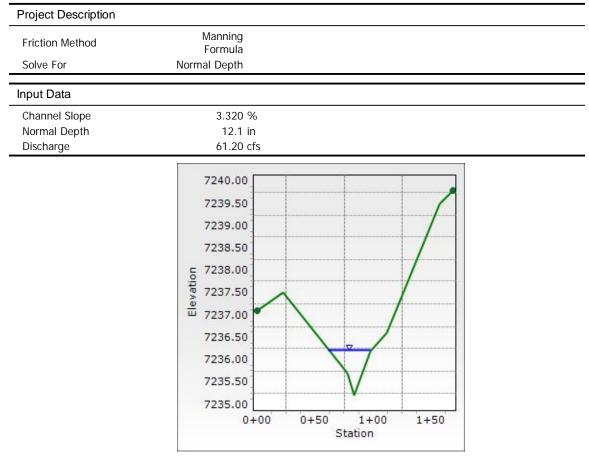
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.8 in	
Critical Depth	4.4 in	
Channel Slope	8.540 %	
Critical Slope	4.108 %	

Worksheet for PROP CHNL C

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL C


ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL D

- · · · · · ·	Manning			_
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				-
Channel Slope	3.320 %			-
Discharge	61.20 cfs			_
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
		0+00		7,237.14
		0+22		7,237.45
		0+78		7,235.70
		0+84		7,235.20
		0+98		7,236.20
		1+12		7,236.6
		1+58		7,239.5
		1+69		7,239.7
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
0+00, 7,237.14)		(1+69, 7,239.77)		0.040
				_
Options				_
	Pavlovskii's			
Current Roughness Weighted Method	Method			
Method Open Channel Weighting	Method Pavlovskii's			
Method Open Channel Weighting Method	Method Pavlovskii's Method			
Method Open Channel Weighting	Method Pavlovskii's			_
Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			=
Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.1 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ²			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in 36.22 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in 36.22 ft 12.1 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in 36.22 ft 12.1 in 12.3 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in 36.22 ft 12.1 in 12.3 in 3.076 %			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 12.1 in 0.040 7,236.21 ft 7,235.2 to 7,239.8 ft 15.8 ft ² 36.3 ft 5.2 in 36.22 ft 12.1 in 12.3 in 3.076 % 3.88 ft/s 0.23 ft	ems, Inc. Haestad Methods Solution Center		FlowMas [10.03.00.

	Worksheet	
Results		
Specific Energy	1.24 ft	
Froude Number	1.038	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.1 in	
Critical Depth	12.3 in	
Channel Slope	3.320 %	
Critical Slope	3.076 %	

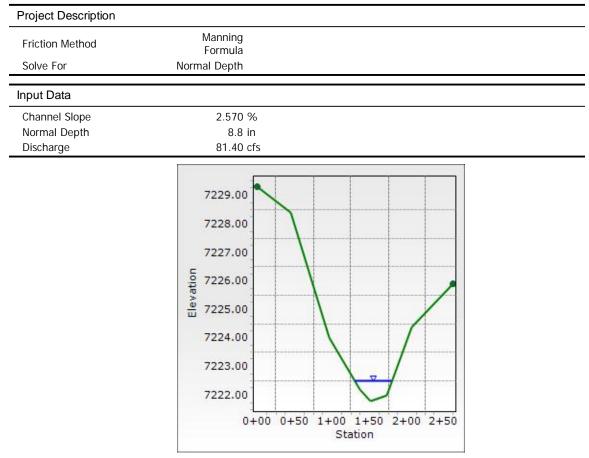
Worksheet for PROP CHNL D

Cross Section for PROP CHNL D

Worksheet for PROP CHNL E

Friction Method	Manning Formula
Solve For	Normal Depth
ata	
nput Data Channel Slope	2.570 %

Section Definitions


Station (ft)	Elevation (ft)
0+00	7,229.28
0+45	7,228.39
0+96	7,224.00
1+37	7,222.21
1+52	7,221.75
1+73	7,222.00
2+07	7,224.35
2+62	7,225.92

Roughness Segment Definitions

Start Station	Ending Station Roug	hness Coefficient
(0+00, 7,229.28)	(2+62, 7,225.92)	0.040
Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	8.8 in	
Roughness Coefficient	0.040	
Elevation	7,222.48 ft	
Elevation Range	7,221.8 to 7,229.3 ft	
Flow Area	22.8 ft ²	
Wetted Perimeter	49.2 ft	
Hydraulic Radius	5.6 in	
Top Width	49.15 ft	
Normal Depth	8.8 in	
Critical Depth	8.5 in	
Critical Slope	3.053 %	
Velocity	3.57 ft/s	
Velocity Head	0.20 ft	
ChannelCalcs.fm8 2/22/2022	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	FlowMaste [10.03.00.03 Page 1 of

Worksheet for PROP CHNL E

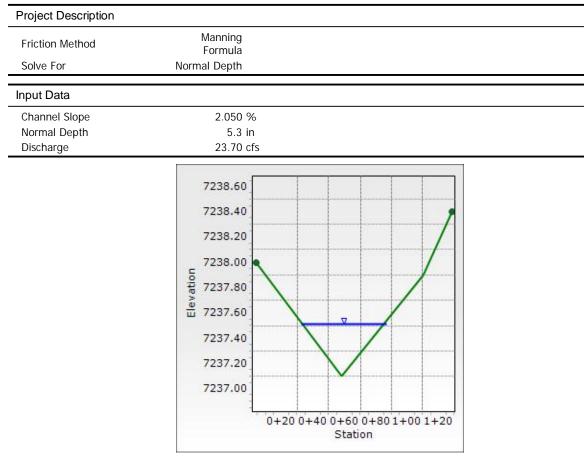
Results		
Specific Energy	0.93 ft	
Froude Number	0.924	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	8.8 in	
Critical Depth	8.5 in	
Channel Slope	2.570 %	
Critical Slope	3.053 %	

Cross Section for PROP CHNL E

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL F


Drain at Deparimtion				_
Project Description	N 4 - m - i - m - m			_
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				_
Channel Slope	2.050 %			_
Discharge	23.70 cfs			
	Se	ction Definitions		-
Statio	n		Elevation	
(ft)			(ft)	
		0+04		7,238.00
		0+58		7,237.06
		1+10 1+28		7,237.86 7,238.35
				.,
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+04, 7,238.00)		(1+28, 7,238.35)		0.040
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	5.3 in			
Roughness Coefficient	0.040			
Elevation	7,237.51 ft			
	7,237.1 to			
Elevation Range	7,238.4 ft			
Flow Area	12.1 ft ²			
Wetted Perimeter	54.5 ft			
Hydraulic Radius	2.7 in			
Top Width	54.50 ft			
Normal Depth	5.3 in			
Critical Depth	4.7 in			
Critical Slope	4.013 %			
Velocity	1.95 ft/s			
Valaaity Llaad				
Velocity Head	0.06 ft			
Specific Energy	0.50 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.3 in	
Critical Depth	4.7 in	
Channel Slope	2.050 %	
Critical Slope	4.013 %	

Worksheet for PROP CHNL F

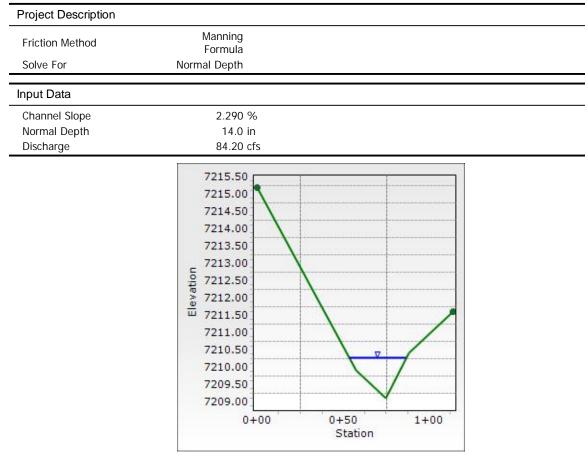
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL F

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL G


Eriction Mothod	Manning			_
Friction Method	Formula			
Solve For	Normal Depth			
Input Data				_
Channel Slope Discharge	2.290 % 84.20 cfs			_
Discharge		ction Definitions		_
		ction Definitions		
Statio (ft)	n		Elevation (ft)	
		0+00		7,215.1
		0+58		7,209.9
		0+75		7,209.0
		0+88		7,210.4
		1+14		7,211.5
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,215.15)		(1+14, 7,211.58)		0.04
Options				_
				_
Current Roughness Weighted Method	Pavlovskii's Method			
Method Open Channel Weighting	Method Pavlovskii's			
Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 14.0 in			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 14.0 in			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ²			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ²			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft			=
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft 14.0 in			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft 14.0 in 13.5 in 2.772 %			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft 14.0 in 13.5 in 2.772 % 4.11 ft/s			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 7avlovskii's Method 7,210.26 ft 7,209.1 to 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft 14.0 in 13.5 in 2.772 % 4.11 ft/s 0.26 ft			-
Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 14.0 in 0.040 7,210.26 ft 7,209.1 to 7,215.2 ft 20.5 ft ² 32.8 ft 7.5 in 32.71 ft 14.0 in 13.5 in 2.772 % 4.11 ft/s			-

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

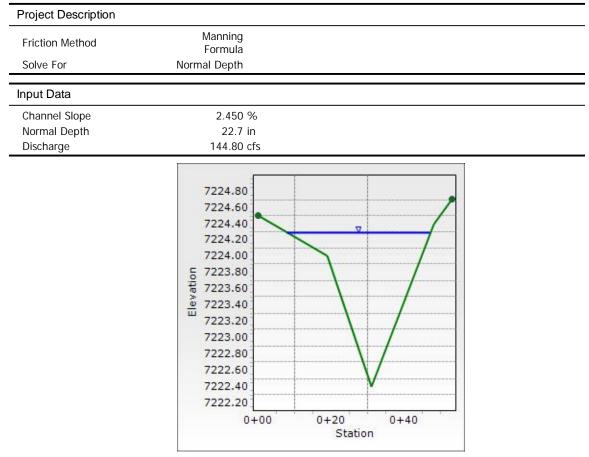
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.0 in	
Critical Depth	13.5 in	
Channel Slope	2.290 %	
Critical Slope	2.772 %	

Worksheet for PROP CHNL G

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL G

Worksheet for PROP CHNL H


Friation Mathed	Manning			
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	2.450 %			_
Discharge	144.80 cfs			_
	Se	ction Definitions		
Statio	n		Elevation	
(ft)		0.00	(ft)	7 004 5
		0+00 0+19		7,224.5
		0+31		
				7,222.4
		0+48 0+53		7,224.4 7,224.6
		0133		7,224.0
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,224.50)		(0+53, 7,224.66)		0.04
Options				-
Current Roughness Weighted	Pavlovskii's			
Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			_ _ _
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			- - -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			- - -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 22.7 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,224.29 ft 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,224.29 ft 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft 22.7 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft 22.7 in 22.5 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft 22.7 in 22.5 in 2.571 %			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft 22.7 in 22.5 in 2.571 % 4.84 ft/s			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 22.7 in 0.040 7,224.29 ft 7,222.4 to 7,224.7 ft 29.9 ft ² 39.4 ft 9.1 in 39.15 ft 22.7 in 22.5 in 2.571 % 4.84 ft/s 0.36 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	22.7 in	
Critical Depth	22.5 in	
Channel Slope	2.450 %	
Critical Slope	2.571 %	

Worksheet for PROP CHNL H

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL H

Worksheet for PROP CHNL I

Friction Method	Manning			
	Formula			
Solve For N	lormal Depth			_
nput Data				_
Channel Slope Discharge	2.220 % 152.40 cfs			_
5	Se	ction Definitions		-
Station			Elevation	
(ft)		0.00	(ft)	7 010 0
		0+00 0+47		7,218.3 7,218.5
		0+86		7,216.5
		1+59		7,210.5
		1+59		7,221.0
				7,221.5
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
00 7 040 04)		(1 74 7 004 05)		0.04
+00, 7,218.31)		(1+71, 7,221.35)		0.04
+00, 7,218.31) 		(1+71,7,221.35)		_
Options Current Roughness Weighted	Pavlovskii's Method	(1+71,7,221.35)		- -
Options	Pavlovskii's Method Pavlovskii's Method	(1+71,7,221.35)		-
Options Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's	(1+71, 7,221.35)		— —
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's	(1+71, 7,221.35)		- -
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's Method	(1+71, 7,221.35)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Cesults Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 16.6 in	(1+71, 7,221.35)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Cosed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040	(1+71, 7,221.35)		- -
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Cesults Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to	(1+71, 7,221.35)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Scient Constant Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft	(1+71, 7,221.35)		-
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Scient Comman Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ²	(1+71, 7,221.35)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Cha	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft	(1+71, 7,221.35)		-
Poptions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft	(1+71, 7,221.35)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Channel Weighting Method Closed Channel Weighting Closed Cha	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in	(1+71, 7,221.35)		
Poptions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Cesults Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft	(1+71, 7,221.35)		
Poptions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Cesults Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft 16.6 in	(1+71, 7,221.35)		
Potions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft 16.6 in 16.1 in	(1+71, 7,221.35)		- -
Pptions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Normal Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft 16.6 in 16.1 in 2.670 % 4.33 ft/s	(1+71, 7,221.35)		
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Closed Channel Weighting Method Status Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft 16.6 in 16.1 in 2.670 %	(1+71, 7,221.35)		
Pptions Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Normal Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 16.6 in 0.040 7,217.98 ft 7,216.6 to 7,221.4 ft 35.2 ft ² 50.9 ft 8.3 in 50.78 ft 16.6 in 16.1 in 2.670 % 4.33 ft/s 0.29 ft	(1+71, 7,221.35)		

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	16.6 in	
Critical Depth	16.1 in	
Channel Slope	2.220 %	
Critical Slope	2.670 %	

Worksheet for PROP CHNL I

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

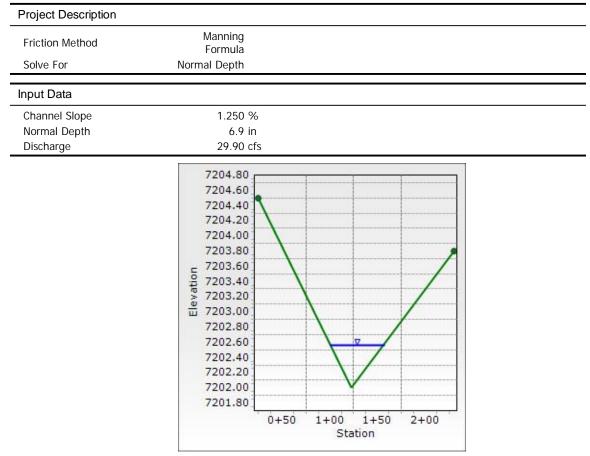
Cross Section for PROP CHNL I

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL J

Project Description				-
Friction Method	Manning Formula			_
Solve For	Normal Depth			_
Input Data				_
Channel Slope Discharge	1.250 % 29.90 cfs			_
Discharge		ection Definitions		-
		ection Demittions		
Statio (ft)			Elevation (ft)	
.,		0+24		7,204.53
		1+22 2+31		7,201.99 7,203.75
	Roughne	ess Segment Definitions		
	Roughine	_		
Start Station (0+24, 7,204.53)		Ending Station (2+31, 7,203.75)	Roughness Coefficient	0.040
(0+24, 7,204.55)		(2+31, 7,203.73)		0.040
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			_
Results				_
Normal Depth	6.9 in			_
Roughness Coefficient	0.040			
Elevation	7,202.56 ft			
Elevation Range	7,202.0 to 7,204.5 ft			
Flow Area	16.5 ft ²			
Wetted Perimeter	57.5 ft			
Hydraulic Radius	3.4 in			
Top Width	57.48 ft			
Normal Depth	6.9 in			
Critical Depth	5.6 in			
Critical Slope	3.787 %			
Velocity	1.81 ft/s			
Velocity Head	0.05 ft			
Specific Energy	0.63 ft			
Froude Number	0.595			
	0.070			


GVF Input Data

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.9 in	
Critical Depth	5.6 in	
Channel Slope	1.250 %	
Critical Slope	3.787 %	

Worksheet for PROP CHNL J

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL J

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL K

Project Description				_
Friction Method	Manning			_
Solve For	Formula			
				_
Input Data	2.4(0.0)			
Channel Slope Discharge	2.460 % 167.50 cfs			
	Se	ction Definitions		_
Statio	n		Elevation	
(ft)		0+00	(ft)	7,212.20
		0+96		7,212.20
		1+60		7,210.71
		1+65		7,211.30
		1+05		
		1+72		7,210.90
		1+75		7,211.02 7,213.46
	Doughpo			,
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficien	t
(0+00, 7,212.20)		(1+83, 7,213.46)		0.040
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method			
Results				-
Normal Depth	8.9 in			
Roughness Coefficient	0.040			
Elevation	7,211.46 ft			
Elevation Range	7,210.7 to			
-	7,213.5 ft			
Flow Area	52.4 ft ²			
Wetted Perimeter	128.9 ft			
Hydraulic Radius	4.9 in			
Top Width	128.77 ft			
Normal Depth	8.9 in			
Critical Depth	8.5 in			
Critical Slope	3.224 %			
Velocity	3.20 ft/s			
Velocity Head	0.16 ft			
Specific Energy	0.90 ft			
hannelCalcs.fm8 2/22/2022	27 Siem	ems, Inc. Haestad Methods Solution Center Ion Company Drive Suite 200 W , CT 06795 USA +1-203-755-1666		FlowMas [10.03.00.0 Page 1 o

Worksheet for PROP CHNL K

Results		
Froude Number	0.883	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	8.9 in	
Critical Depth	8.5 in	
Channel Slope	2.460 %	
Critical Slope	3.224 %	

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL K

ChannelCalcs.fm8 12/22/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL L


				_
Project Description				_
Friction Method	Manning Formula			
Solve For	Normal Depth			
	I			_
Input Data				_
Channel Slope	3.870 %			
Discharge	21.90 cfs			_
	Se	ction Definitions		
Stati			Elevation	
(ft)		(ft)	
		0+12		7,226.0
		0+53 0+74		7,222.8
		1+55		7,223.8
		1100		7,220.0
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+12, 7,226.00)		(1+55, 7,223.80)	_	0.04
				_
Options				_
Current Roughness Weighted	Pavlovskii's			
Method Open Channel Weighting	Method Pavlovskii's			
Method	Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			_
Results				_
Normal Depth	6.3 in			_
Roughness Coefficient	0.040			
Elevation	7,222.10 ft			
Elevation Range	7,221.6 to			
	7,226.0 ft			
Flow Area Wetted Perimeter	7.3 ft ² 27.6 ft			
Hydraulic Radius	3.2 in			
Top Width	27.62 ft			
Normal Depth	6.3 in			
-	6.4 in			
Critical Depth				
Critical Slope	3.624 %			
Velocity	3.00 ft/s			
Velocity Head	0.14 ft			
Specific Energy	0.67 ft			
Froude Number	1.031			
Flow Type	Supercritical			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.3 in	
Critical Depth	6.4 in	
Channel Slope	3.870 %	
Critical Slope	3.624 %	

Worksheet for PROP CHNL L

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL L


Worksheet for PROP CHNL M **Project Description** Manning Friction Method Formula Solve For Normal Depth Input Data Channel Slope 4.540 % Discharge 185.30 cfs Section Definitions Station Elevation (ft) (ft) 0+00 7,203.94 0+72 7,201.87 1 + 117,198.36 1+38 7,202.50 2+08 7,202.04 **Roughness Segment Definitions** Start Station **Ending Station Roughness Coefficient** (0+00, 7,203.94) (2+08, 7,202.04) 0.040 Options Current Roughness Weighted Pavlovskii's Method Method **Open Channel Weighting** Pavlovskii's Method Method Closed Channel Weighting Pavlovskii's Method Method Results Normal Depth 20.6 in **Roughness Coefficient** 0.040 Elevation 7,200.08 ft 7,198.4 to **Elevation Range** 7,203.9 ft Flow Area 26.0 ft² Wetted Perimeter 30.5 ft Hydraulic Radius 10.2 in Top Width 30.32 ft Normal Depth 20.6 in Critical Depth 23.3 in Critical Slope 2.377 % Velocity 7.12 ft/s Velocity Head 0.79 ft Specific Energy 2.50 ft 1.355 Froude Number Flow Type Supercritical

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

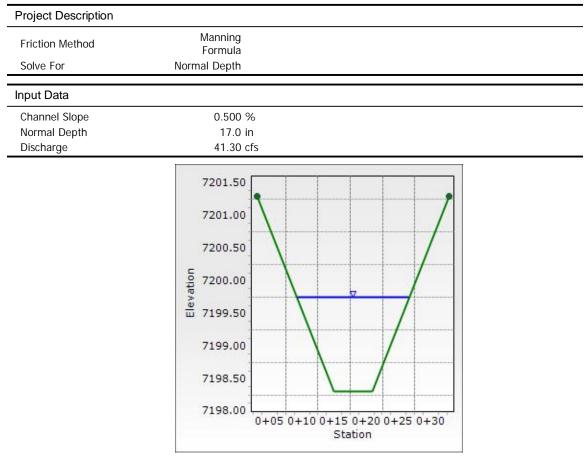
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	20.6 in	
Critical Depth	23.3 in	
Channel Slope	4.540 %	
Critical Slope	2.377 %	

Worksheet for PROP CHNL M

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL M

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Worksheet for PROP CHNL N

Project Description				_
Friction Method	Manning			
	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope Discharge	0.500 % 41.30 cfs			
Discharge				_
	Se	ction Definitions		
Statio (ft)			Elevation (ft)	
		0+03	(1)	7,201.34
		0+15		7,198.34
		0+21		7,198.34
		0+33		7,201.34
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	ł
(0+03, 7,201.34)		(0+33, 7,201.34)	Roughiless oberheieri	0.040
				_
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			_
Results				
Normal Depth	17.0 in			_
Roughness Coefficient	0.040			
Elevation	7,199.75 ft			
Elevation Range	7,198.3 to 7,201.3 ft			
Flow Area	16.5 ft ²			
Wetted Perimeter	17.7 ft			
Hydraulic Radius	11.2 in			
Top Width	17.31 ft			
Normal Depth	17.0 in			
Critical Depth	11.0 in			
Critical Slope	2.729 %			
Velocity	2.51 ft/s			
Velocity Head	0.10 ft			
Specific Energy	1.51 ft			
Froude Number	0.453			
Flow Type	Subcritical			
	0000111001			_

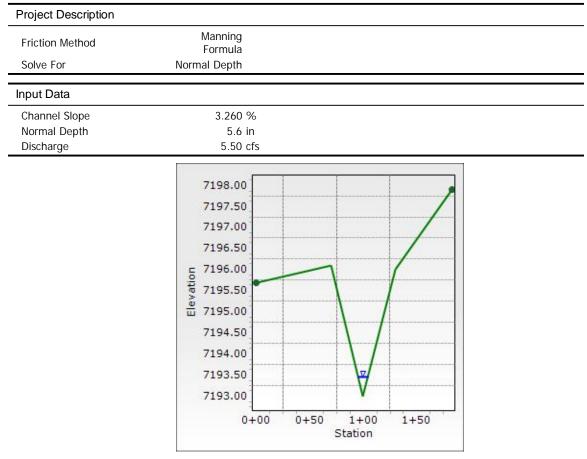
ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.0 in	
Critical Depth	11.0 in	
Channel Slope	0.500 %	
Critical Slope	2.729 %	

Worksheet for PROP CHNL N

Cross Section for PROP CHNL N

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Worksheet for PROP CHNL O

Friction Mothed	Manning			_
Friction Method	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope Discharge	3.260 % 5.50 cfs			_
2.00.1.1.90		ction Definitions		-
Station	1		Elevation	
(ft)			(ft)	
		0+00		7,195.7
		0+70		7,196.0
		1+00		7,192.9
		1+30		7,195.9
		1+83		7,197.8
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,195.73)		(1+83, 7,197.86)		0.04
Options				_
Options Current Roughness Weighted Method	Pavlovskii's Method			_
Current Roughness Weighted				-
Current Roughness Weighted Method Open Channel Weighting	Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Method Pavlovskii's Method Pavlovskii's			_ _ _
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method			- -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft 5.6 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft 5.6 in 5.5 in			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft 5.6 in 5.5 in 3.848 %			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft 5.6 in 5.5 in 3.848 % 2.54 ft/s			
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 5.6 in 0.040 7,193.46 ft 7,193.0 to 7,197.9 ft 2.2 ft ² 9.3 ft 2.8 in 9.25 ft 5.6 in 5.5 in 3.848 % 2.54 ft/s 0.10 ft			

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

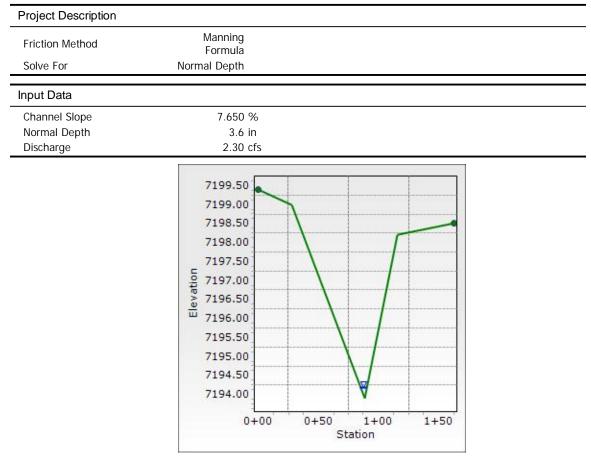
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.6 in	
Critical Depth	5.5 in	
Channel Slope	3.260 %	
Critical Slope	3.848 %	

Worksheet for PROP CHNL O

Cross Section for PROP CHNL O

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP CHNL P


Friction Method Solve For Input Data Channel Slope Discharge Station (ft)	1	ction Definitions 0+00 0+28 0+88 1+16 1+63 ss Segment Definitions Ending Station	Elevation (ft)	7,199.3 7,199.0 7,193.8 7,198.1 7,198.5
Input Data Channel Slope Discharge Station	Normal Depth 7.650 % 2.30 cfs Se	0+00 0+28 0+88 1+16 1+63 ss Segment Definitions	(ft)	7,199.0 7,193.8 7,198.1
Channel Slope Discharge Station	2.30 cfs Se	0+00 0+28 0+88 1+16 1+63 ss Segment Definitions	(ft)	7,199.0 7,193.8 7,198.1
Discharge	2.30 cfs Se	0+00 0+28 0+88 1+16 1+63 ss Segment Definitions	(ft)	7,199.0 7,193.8 7,198.1
Station	1	0+00 0+28 0+88 1+16 1+63 ss Segment Definitions	(ft)	7,199.0 7,193.8 7,198.1
		0+28 0+88 1+16 1+63 ss Segment Definitions	(ft)	7,199.0 7,193.8 7,198.1
(ft)	Roughne	0+28 0+88 1+16 1+63 ss Segment Definitions		7,199.0 7,193.8 7,198.1
	Roughne	0+28 0+88 1+16 1+63 ss Segment Definitions		7,199.0 7,193.8 7,198.1
	Roughne	0+88 1+16 1+63 ss Segment Definitions		7,193.8 7,198.1
	Roughne	1+16 1+63 ss Segment Definitions		7,198.1
	Roughne	1+63 ss Segment Definitions		
	Roughne	ss Segment Definitions		7,198.5
	Roughne	_		
		Ending Station		
Start Station			Roughness Coefficient	
(0+00, 7,199.37)		(1+63, 7,198.52)		0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
Normal Depth	3.6 in			-
Roughness Coefficient	0.040			
Elevation	7,194.19 ft			
Elevation Range	7,193.9 to 7,199.4 ft			
Flow Area	0.8 ft ²			
Wetted Perimeter	5.5 ft			
Hydraulic Radius	1.8 in			
Top Width	5.42 ft			
Normal Depth	3.6 in			
Critical Depth	4.0 in			
Critical Slope	4.288 %			
Velocity	2.86 ft/s			
Velocity Head	0.13 ft			
Specific Energy	0.42 ft			
Froude Number	1.312			
Flow Type	Supercritical			
21° -		ems, Inc. Haestad Methods Solution		- FlowMa

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.6 in	
Critical Depth	4.0 in	
Channel Slope	7.650 %	
Critical Slope	4.288 %	

Worksheet for PROP CHNL P

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP CHNL P

ChannelCalcs.fm8 12/22/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

ROADSIDE DITCH SUMMARY TABLE

Ditch #	ROADWAY	FROM STA	TO STA	PROPOSED SLOPE (%)	SIDE	SIDE SLOPE (L/R)	CHANNEL DEPTH (FT)	FRICTION FACTOR	BASIN	Q100 FLOW (CFS)	DITCH FLOW % OF BASIN	DITCH FLOW (CFS)	Q100 DEPTH (FT)	Q100 VELOCITY (FT/S)	Froude No. (Fr)	DITCH LINING
1	1 ARROYA COURT	80+36	84+06	2.62%	LEFT	4:1/4:1	2.5	0.04	5%OB5	107.1	5%	5.4	0.7	2.9	0.9	GRASS
2	2 S. ARROYA LANE	8+67	12+00	1.18%	LEFT	4:1/4:1	2.5	0.04	PB7 + 10%PB6	28.1	34%	12.6	1.2	2.6	0.6	GRASS
(II)	3 S. ARROYA LANE	8+67	12+00	1.18%	RIGHT	4:1/4:1	2.5	0.04	1%PB14	46.3	1%	0.5	0.3	1.2	0.5	GRASS
Z	4 S. ARROYA LANE	15+88	20+00	2.69%	RIGHT	4:1/4:1	2.5	0.04	30%PB11	8.2	30%	2.5	0.5	2.4	0.8	GRASS
5	5 S. ARROYA LANE	20+00	24+28	2.16%	RIGHT	4:1/4:1	2.5	0.04	12%PB11	8.2	12%	1.0	0.4	1.8	0.7	GRASS
6	5 S. ARROYA LANE	20+00	24+28	2.16%	LEFT	4:1/4:1	2.5	0.04	5%PB10	24.8	5%	7.4	0.8	2.9	0.8	GRASS
7	7 ACEQUIA COURT	70+30	71+00	1.12%	LEFT	4:1/4:1	2.5	0.04	30%PB11	8.2	30%	2.5	0.6	1.7	0.6	GRASS
8	8 ACEQUIA COURT	71+60	75+44	1.00%	LEFT	4:1/4:1	2.5	0.04	5%PB11	8.2	5%	0.4	0.3	1.1	0.5	GRASS
ç	9 ACEQUIA COURT	71+60	75+44	1.00%	RIGHT	4:1/4:1	2.5	0.04	10%PB14	46.3	10%	4.6	0.8	1.9	0.5	GRASS
10	FLAMING SUN DRIVE	24+40	26+88	1.84%	RIGHT	4:1/4:1	2.5	0.04	10%OB2	52.7	10%	5.3	0.7	2.5	0.7	GRASS
11	1 FLAMING SUN DRIVE	26+88	30+80	2.14%	LEFT	4:1/4:1	2.5	0.04	5% OB2 + 2%OB3	67.2	3%	2.2	0.5	2.1	0.7	GRASS
12	2 FLAMING SUN DRIVE	26+88	30+80	2.14%	RIGHT	4:1/4:1	2.5	0.04	10%OB2	52.7	10%	5.3	0.7	2.7	0.8	GRASS
13	3 FLAMING SUN DRIVE	34+00	35+90	1.10%	LEFT	4:1/4:1	2.5	0.04	20%PB5	10.4	20%	2.1	0.6	1.6	0.5	GRASS
14	4 FLAMING SUN DRIVE	34+00	35+90	1.10%	RIGHT	4:1/4:1	2.5	0.04	1%PB6	20.7	1%	0.2	0.2	0.9	0.5	GRASS
15	5 FLAMING SUN DRIVE	36+88	44+00	3.34%	LEFT	4:1/4:1	2.5	0.04	75%PB7	7.4	75%	5.6	0.7	3.2	1.0	GRASS/TRM
16	5 FLAMING SUN DRIVE	43+10	44+00	3.34%	RIGHT	4:1/4:1	2.5	0.04	8%PB6	20.7	8%	1.7	0.4	2.4	0.9	GRASS/TRM
17	7 CHAMITA TRAIL	60+00	63+78	2.18%	LEFT	4:1/4:1	2.5	0.04	15%PB15+1%PB14	46.3	15%	6.9	0.8	2.9		GRASS

NOTE: ALL PROPOSED GRASS IS EL PASO COUNTY NATIVE SEED MIX.

Specifications

A variety of test methods are utilized to determine performance and conformance values for Rolled Erosion Control Products (RECPs). Information within this document is presented to provide conformance values and recommended design values. Test results obtained for the Excel PP5-12 Turf Reinforcement Mat (TRM) and general design values are presented in Tables 1-4. For specific information detailing testing protocols, results and application of design values, refer to document number WE_EXCEL_PERF_GEN.

Table 1 - Bench Scale Testing / NTPEP						
Test Method	Condition	Result				
	2 in per hour	14.53				
ASTM D7101 Bench Scale Rainfall and Rainsplash Test	4 in per hour	5.59				
	6 in per hour	4.82				
ASTM D7207 Bench Scale Shear Resistance Test	3.0 psf (145 PA)	0.5 in (12 mm)				
ASTM D7322 Bench Scale Vegetation Establishment Test	Top Soil, Fescue, 21 Day Incubation	661 %				
NTPEP Report Number	ECP-2016-03-	008				

Design Value	Unvegetated	Vegetated		
Typical RUSLE Cover Factor (C Factor)**	0.03	N/A		
Maximum Slope Gradient (RUSLE)	1H:1V	N/A 15.0 ft/s (4.6 m/s)		
Max Allowable Velocity (0.5 in (12mm) soil loss)***	9.0 ft/s (2.7 m/s)			
Max Allowable Shear Stress (0.5 in (12mm) soil loss)***	2.8 psf (134 PA)	12.0 psf (575 PA)		
CFveg/CFTRM	N/A	0.26		

Table 2 - Texas Transportation Institute (TTI) Results

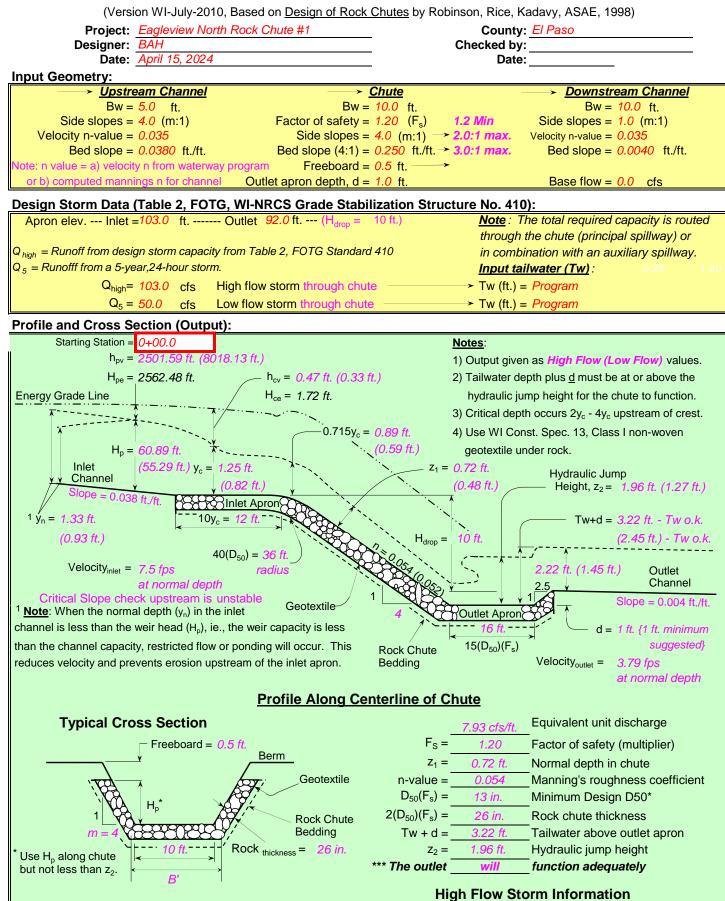
Class	Test Condition	Result
Α	< 3H:1 Clay Slope Test	N/A
В	< 3H:1 Sand Slope Test	N/A
С	> 3H:1 Clay Slope Test	N/A
D	> 3H:1 Sand Slope Test	N/A
E	2 psf Partially Vegetated Channel Test	Approved
F	4 psf Partially Vegetated Channel Test	Approved
G	6 psf Partially Vegetated Channel Test	Approved
Н	8 psf Partially Vegetated Channel Test	Approved

Table 4 - HEC-15 Resistance to Flow Values
--

Design Value	Unvegetated
Manning's n @ Tau _{lower} (0.7 psf (34 PA))	0.027
Manning's n @ Tau _{mid} (1.4 psf (67 PA))	0.027
Manning's n @ Tau _{upper} (2.8 psf (134 PA))	0.027

Recommended Design Values are based on results of standardized industry full-scale testing and may not be applicable for all field conditions. For most accurate computation of field performance, consult Excel Erosion Design (EED) at www.westernexcelsior.com.

The information contained herein may represent product index data, performance ratings, bench scale testing or other material utility quantifications. Each representation may have unique utility and limitations. Every effort has been made to ensure accuracy, however, no warranty is claimed and no liability shall be assumed by Western Excelsior Corporation (WEC) or its affiliates regarding the completeness, accuracy or fitness of these values for any particular application or interpretation. While testing methods are provided for reference, values shown may be derived from interpolation or adjustment to be representative of intended use. For further information, please feel free to contact WEC.

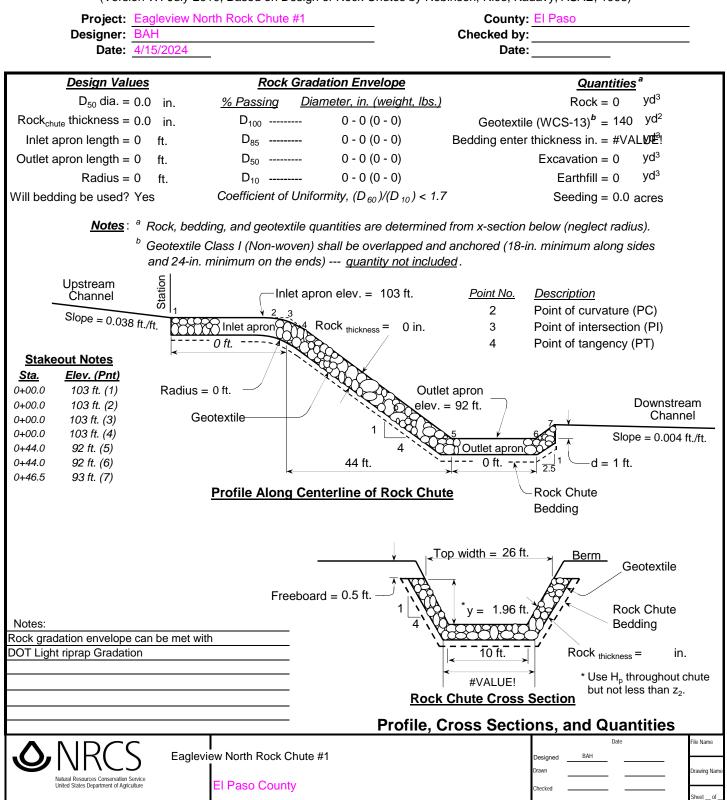

ROCK CHUTE DETAILS

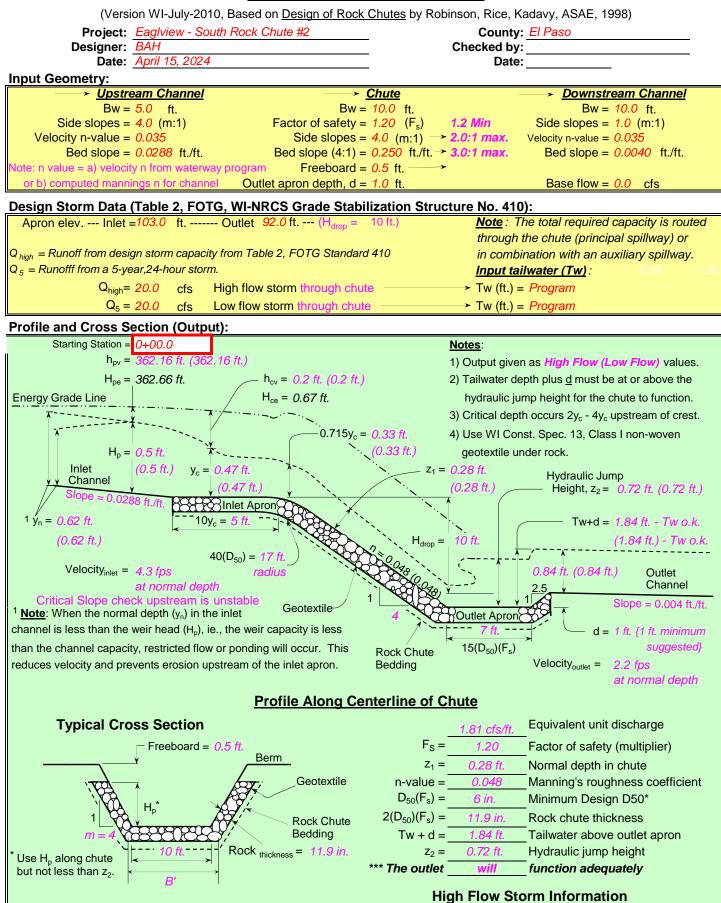
Rock Chute ID	Rock Chute Location	Contributing Basins	Q100 Flow (cfs)	Upstream Inlet Apron Length (ft)	Drop (ft) (Inlet Apron to Outlet Apron)	Chute Length (ft)	Downstream Outlet Apron Length (ft)	Chute Width (ft)	D50 (in)	Rock Chute Thickness (in)	Rock Chute Depth* (ft)	Top Chute Width** (ft)
1	PB8A	PB8A(60%), OB5	103	12	10	44	16	10	18	36	3.0	34
2	PB8A	PB8A (40%)	20	5	10	44	7	10	12	24	2.0	26
		OB8, PB11, PB14										
3	PB14	(10%)	96	12	6	64	16	10	12	24	3.0	34
4	PB15	PB6, PB7, PB15(55%)	43	6	5	24	13	14	12	24	2.0	30
		OB2, OB3, OB4, PB3,										
5	PB15	PB4, PB5, PB15 (10%)	185	14	4	20	23	18	24	48	3.5	46

NOTES:

*: Rock Chute Depth accounts for 1' of freeboard.

**: Top Chute Width accounts for 1' of freeboard.

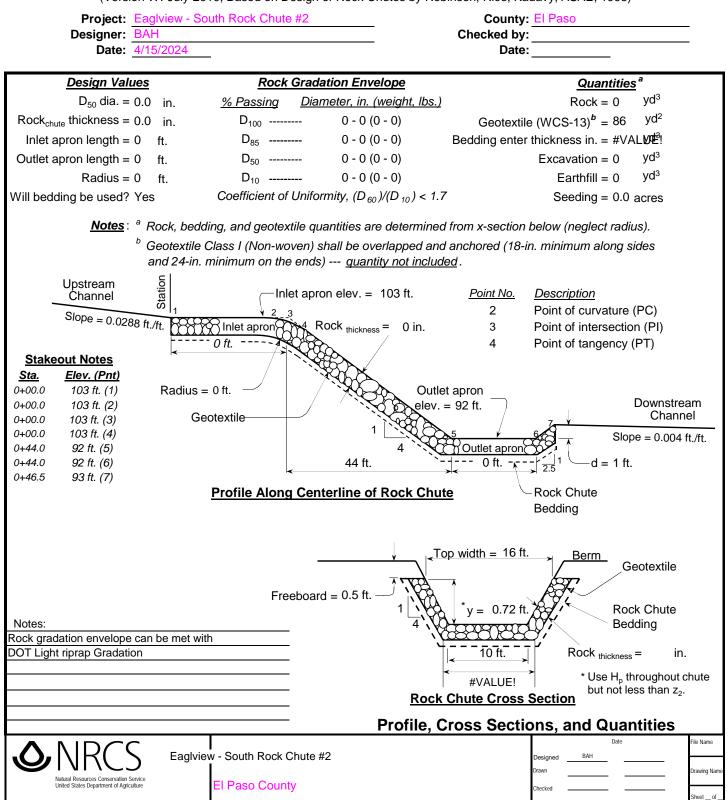


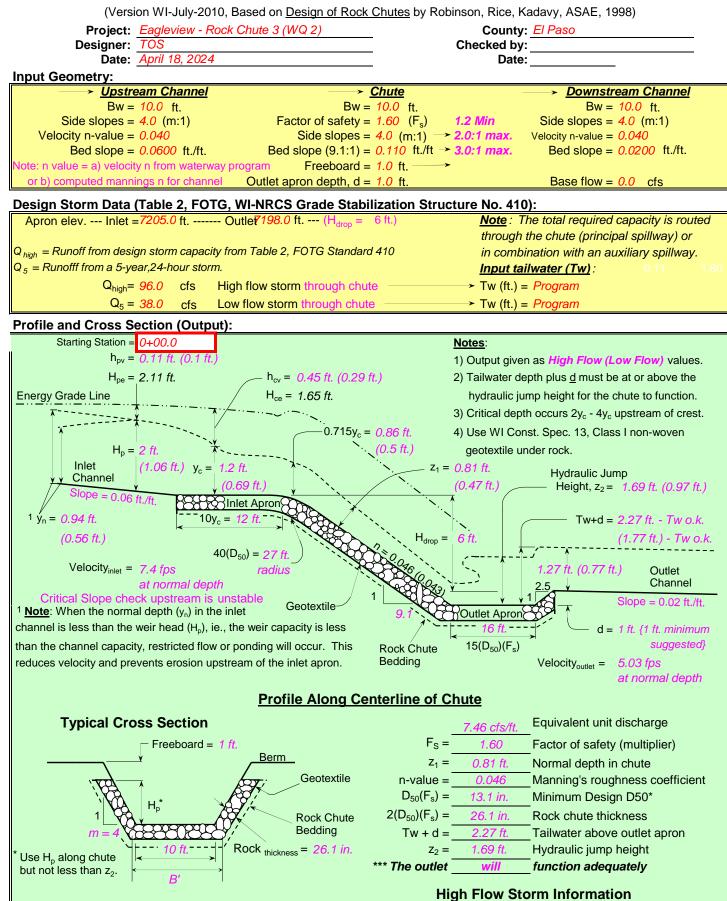

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) Project: Eagleview North Rock Chute #1 County: El Paso Designer: BAH Checked by: Date: Date: <u>Minimum</u> Enter Design Values Plan Values **Rock Gradation Envelope** Quantities^a D₅₀ dia. = Diameter, in. (weight, lbs.) Rock = 0yd³ 13.0 in. % Passing in. Geotextile $(WCS-13)^b = 140$ 0 - 0 (0 - 0)yd² D₁₀₀ -----26.0 in. Rock_{chute} thickness = in. Bedding enter thickness in. = #VALV@ D₈₅ -----0 - 0 (0 - 0)12 ft. Inlet apron length = ft. yd³ D₅₀ -----0 - 0 (0 - 0)Excavation = 016 ft. Outlet apron length = ft. yd³ Earthfill = 0D₁₀ -----0 - 0 (0 - 0)36 ft. Radius = 0 ft. Depth (in.) = *enter thickness* Seeding = 0.0 acres Will bedding be used? Yes _____ Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 50% angular, 50% rounded 1 2 100 % rounded Upstream Inlet apron elev. = 103 ft. Channel Slope = 0.038 ft./f Rock thickness = 0 in. Inlet apron Rock Chute Radius = 0 ft. Outlet apron Downstream **Stakeout Notes** elev. = 92 ft. Channel Geotextile Sta. Elev. (Pnt) 0+00.0 103 ft. (1) lope = 0.004 ft./ft. 0+00.0 103 ft. (2) Outlet apron 44 ft. 0+00.0 103 ft. (3) d = 1 ft.0 ft 2.5 0+00.0 103 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+44.0 92 ft. (5) 0+44.0 92 ft. (6) function adequately 0+46.5 93 ft. (7) Top width = 26 ft. Berm Class I non-woven Geotextile Freeboard = 0.5 ft. Rock gradation envelope can be met with Rock Chute OOT Light riprap Gradation Bedding Rock thickness = Rock Chute Cost Estimate in Unit Unit Cost Cost * Use H_p throughout chute Rock **\$10.00** /yd³ \$0.00 #VALUE! but not less than z2. Geotextile \$12.00/yd² \$1.680.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 **#VALUE! Profile, Cross Sections, and Quantities** \$12.00/yd3 \$0.00 Excavation Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 \$0.00 /ac. Date ile Name Eagleview North Rock Chute #1 rawing Name El Paso County Sheet ____ of

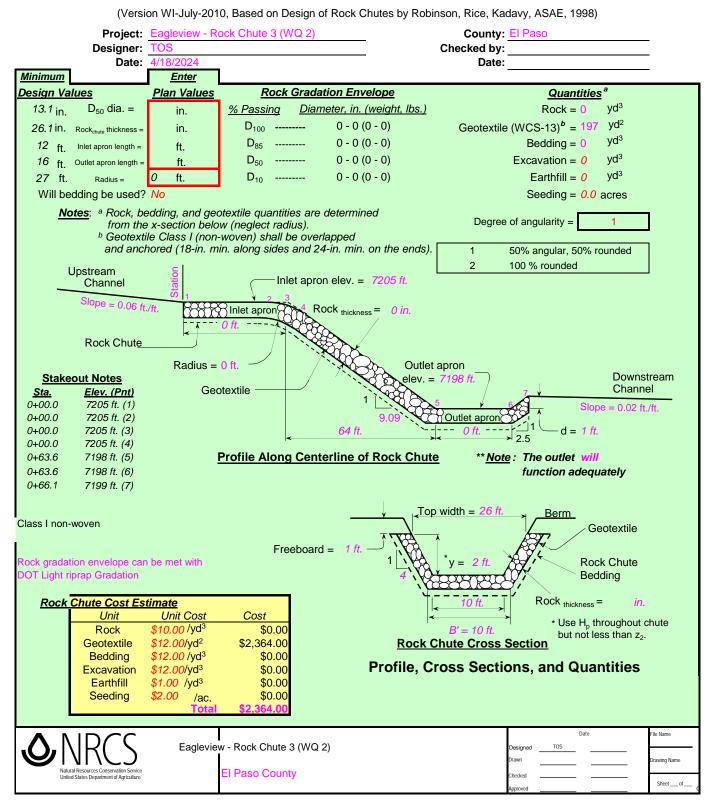
Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

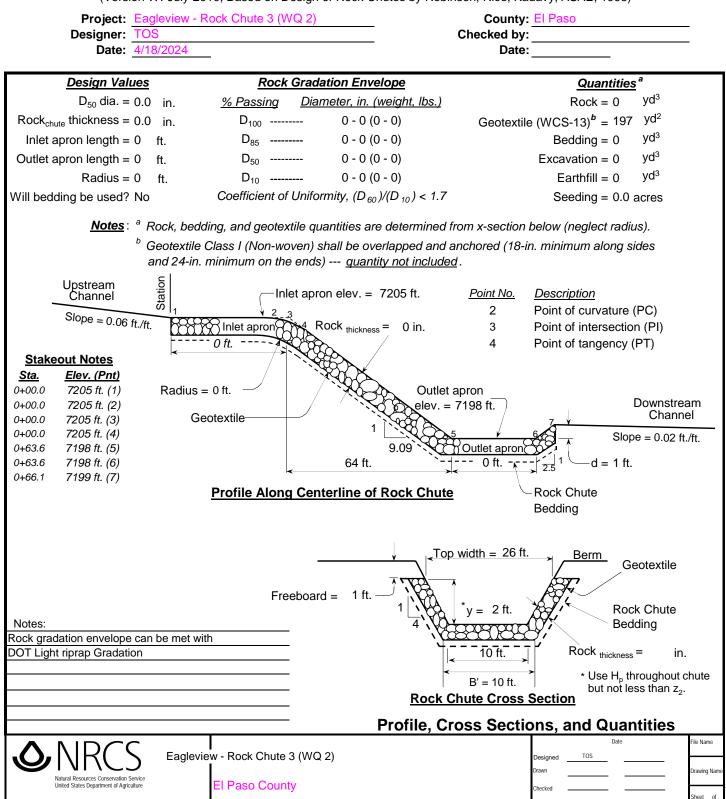


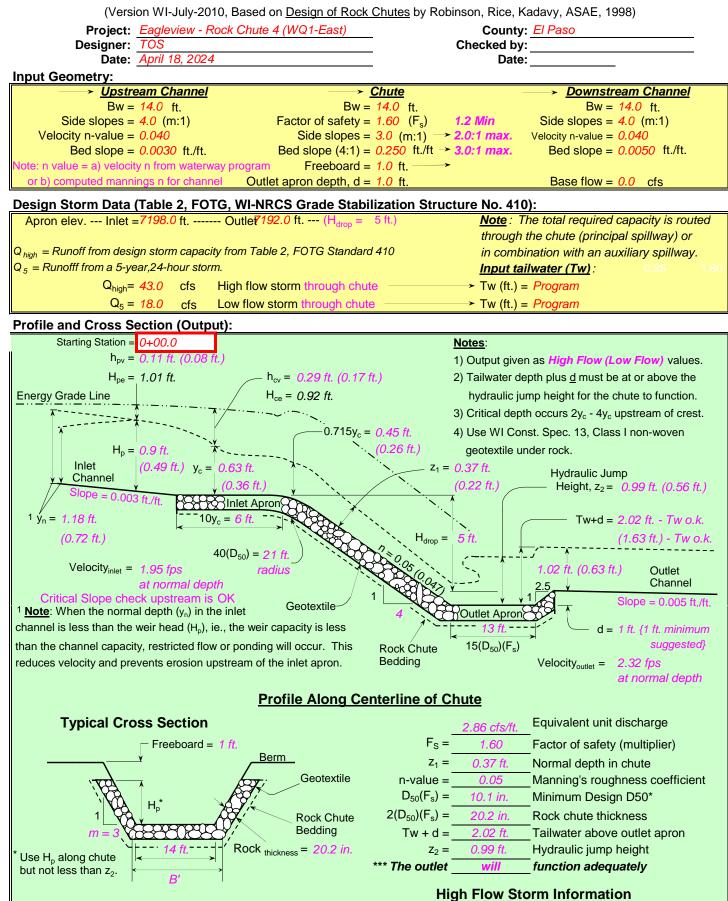

Rock Chute Design - Plan Sheet

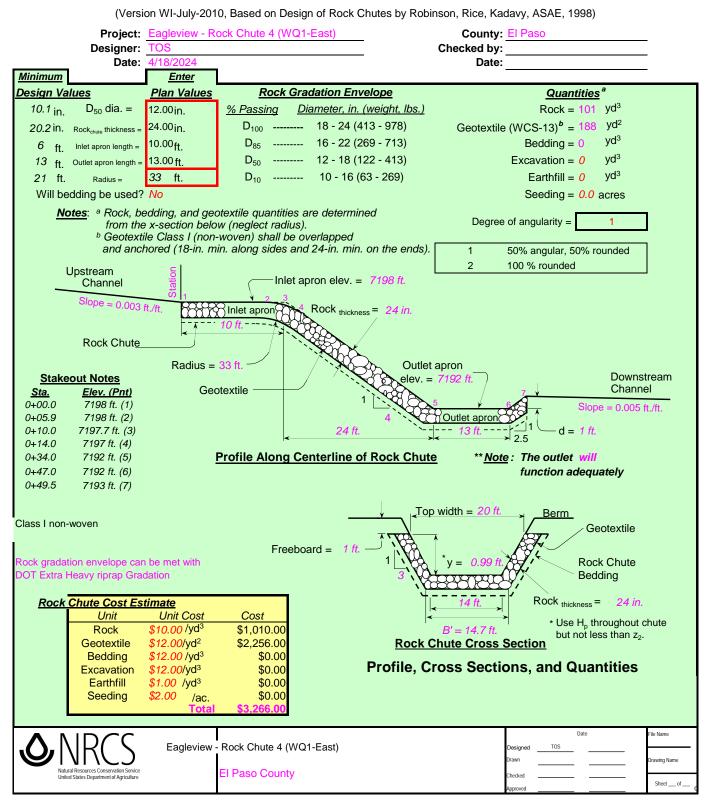
(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) **Project:** Eaglview - South Rock Chute #2 County: El Paso Designer: BAH Checked by: Date: Date: <u>Minimum</u> Enter Design Values Plan Values **Rock Gradation Envelope** Quantities^a 6.0 in. D₅₀ dia. = Diameter, in. (weight, lbs.) Rock = 0vd³ % Passing in. Geotextile $(WCS-13)^{b} = 86$ 0 - 0 (0 - 0)yd² D₁₀₀ -----11.9 in. Rock_{chute} thickness = in. Bedding enter thickness in. = #VALV@ D₈₅ -----0 - 0 (0 - 0)5 ft. Inlet apron length = ft. yd³ D₅₀ ----ft. Outlet apron length = 0 - 0 (0 - 0)Excavation = 07 ft. yd³ Earthfill = 0D₁₀ -----0 - 0 (0 - 0)17 ft. Radius = 0 ft. Depth (in.) = *enter thickness* Seeding = 0.0 acres Will bedding be used? Yes _____ Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 50% angular, 50% rounded 1 2 100 % rounded Upstream Inlet apron elev. = 103 ft. Channel lope = 0.0288 ft./ft Rock thickness = 0 in. Inlet apron Rock Chute Radius = 0 ft. Outlet apron Downstream **Stakeout Notes** elev. = 92 ft. Channel Geotextile Sta. Elev. (Pnt) 0+00.0 103 ft. (1) lope = 0.004 ft./ft. 0+00.0 103 ft. (2) Outlet apron 44 ft. 0+00.0 103 ft. (3) d = 1 ft.0 ft 2.5 0+00.0 103 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+44.0 92 ft. (5) 0+44.0 92 ft. (6) function adequately 0+46.5 93 ft. (7) Top width = 16 ft.Berm Class I non-woven Geotextile Freeboard = 0.5 ft. Rock gradation envelope can be met with Rock Chute OOT Light riprap Gradation Bedding Rock thickness = Rock Chute Cost Estimate in Unit Unit Cost Cost * Use H_p throughout chute Rock **\$10.00** /yd³ \$0.00 #VALUE! but not less than z2. Geotextile \$12.00/yd² \$1.032.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 **#VALUE! Profile, Cross Sections, and Quantities** \$12.00/yd3 \$0.00 Excavation Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 \$0.00 /ac. Date ile Name Eaglview - South Rock Chute #2 rawing Name El Paso County Sheet ____ of


Rock Chute Design - Cut/Paste Plan

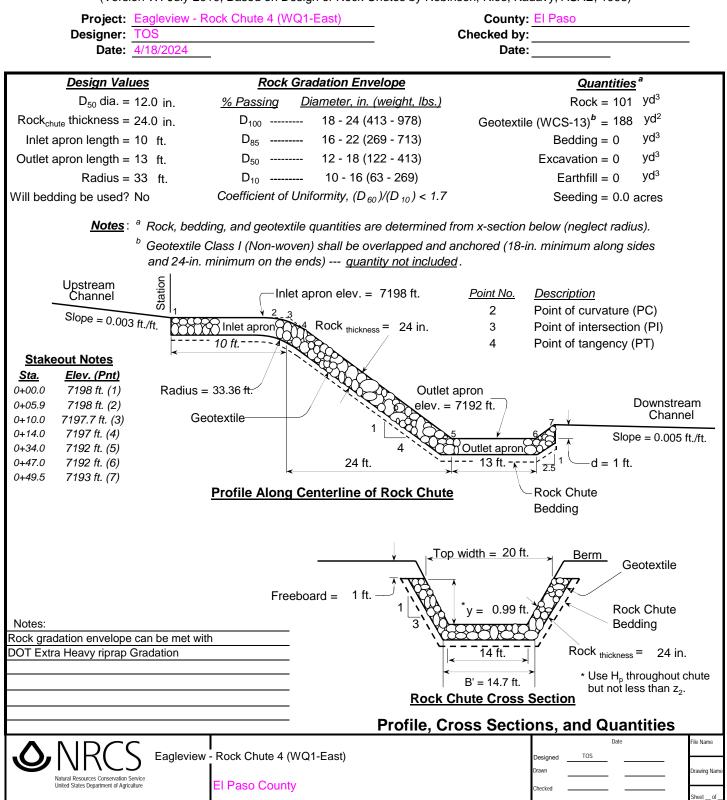
(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

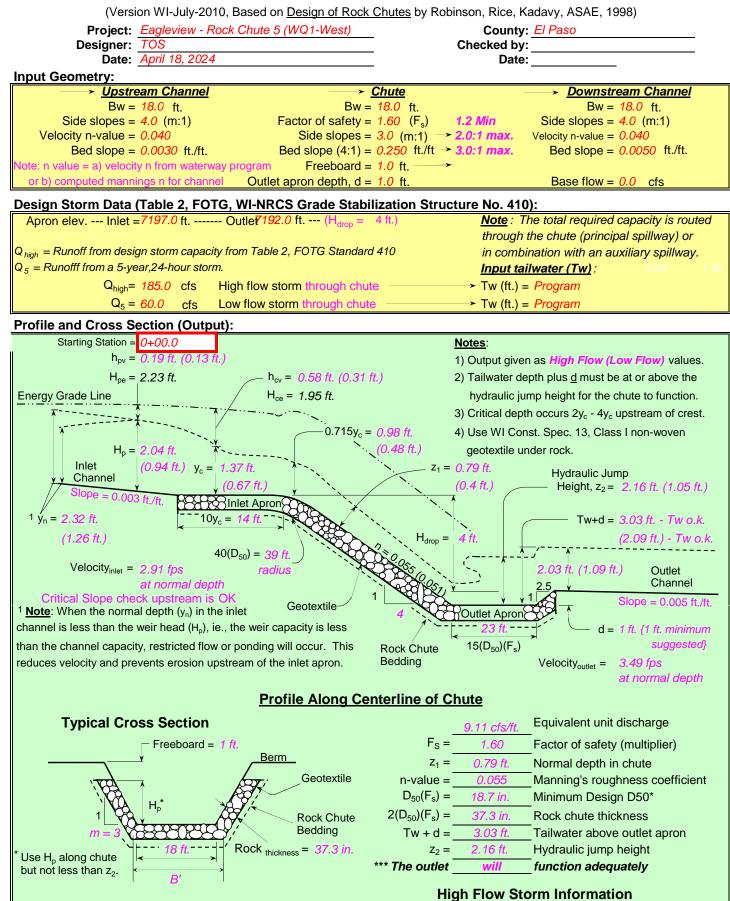



Rock Chute Design - Plan Sheet


Rock Chute Design - Cut/Paste Plan

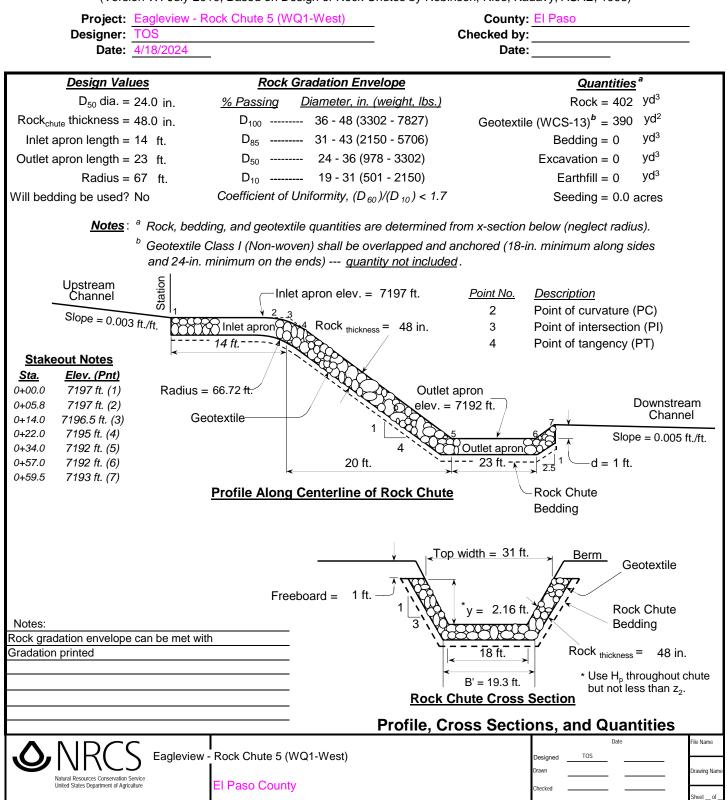
(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)




Rock Chute Design - Plan Sheet

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)



Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) Project: Eagleview - Rock Chute 5 (WQ1-West) County: El Paso Designer: TOS Checked by: Date: Date: <u>Minimum</u> Enter Design Values Plan Values **Rock Gradation Envelope** Quantities^a D₅₀ dia. = 24.00 in. Rock = 402 yd³ 18.7 in. % Passing Diameter, in. (weight, lbs.) D₁₀₀ ----- 36 - 48 (3302 - 7827) Geotextile $(WCS-13)^{b} = 390$ yd² 48.00 in. 37.3 in. Rock_{chute} thickness = yd³ 14.00_{ft} D₈₅ ----- 31 - 43 (2150 - 5706) Bedding = 014 ft. Inlet apron length = yd³ 23 ft. Outlet apron length = 23.00 ft. D₅₀ ----- 24 - 36 (978 - 3302) Excavation = 0yd³ D₁₀ ----- 19 - 31 (501 - 2150) Earthfill = 039 ft. Radius = 67 ft. Seeding = 0.0 acres Will bedding be used? No Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 1 50% angular, 50% rounded 2 100 % rounded Upstream Inlet apron elev. = 7197 ft. Channel Slope = 0.003 ft./f Rock thickness = 48 in. Inlet apron Rock Chute Radius = 67 ft. Outlet apron Downstream **Stakeout Notes** elev. = 7192 ft Channel Geotextile Sta. Elev. (Pnt) 0+00.0 7197 ft. (1) Slope = 0.005 ft./ft. 0+05.8 7197 ft. (2) Outlet apron 20 ft. 0+14.0 7196.5 ft. (3) d = 1 ft.2.5 0+22.0 7195 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+34.0 7192 ft. (5) 0+57.0 7192 ft. (6) function adequately 0+59.5 7193 ft. (7) Top width = 31 ft. Berm Class I non-woven Geotextile Freeboard = Rock gradation envelope can be met with Rock Chute Gradation printed Bedding Rock Chute Cost Estimate Rock thickness = 48 in. Unit Unit Cost Cost * Use H_p throughout chute Rock **\$10.00** /yd³ \$4,020.00 -19.3 ftbut not less than z2. Geotextile \$12.00/vd² \$4.680.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 \$0.00 **Profile, Cross Sections, and Quantities** \$12.00/yd3 \$0.00 Excavation Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 /ac. \$0.00 ሰበ በበ Date ile Name Eagleview - Rock Chute 5 (WQ1-West) rawing Name El Paso County Sheet ____ of

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

possible for as much of the reach as possible to the maximum prudent values for the hydraulic parameters in the 100 year event. The designer should determine the return period where these parameters would be achieved and, with the owner and local jurisdiction, determine if the associated risks are acceptable.

On the other hand, if the recommendation to avoid floodplain filling is not followed and fill is proposed, this should only happen in floodplains where the maximum prudent values for the hydraulic parameters shown in Table 8-1 are not exceeded in the 100-year event.

Tuble 0 1. Muximum product values for internet injurgance parameters							
Design Parameter	Non-Cohesive Soils or Poor Vegetation	Cohesive Soils and Vegetation					
Maximum flow velocity (average of section)	5 ft/s	7 ft/s					
Maximum Froude number	0.6	0.8					
Maximum tractive force (average of section)	0.60 lb/sf	1.0 lb/sf					
Maximum depth outside bankfull channel	5 ft	5 ft					

Table 8-1. Maximum prudent values for natural channel hydraulic parameters

Stream Restoration Principle 8: Evaluate Hydraulics of Streams over a Range of Flows

Representative Design Tasks and Deliverables

- 1. Document hydraulic analyses of the project reach following the guidance of Section 7.0.
 - 2. Describe how hydraulic performance of the project reach compares to maximum prudent values for the hydraulic parameters shown in Table 8-1 for several return periods (including 2-, 10-, and 100-year events at a minimum). Describe any locations in the reach where these parameters are exceeded and discuss efforts made to improve hydraulics.
- 3. Confirm that hydraulic parameters of Table 8-1 are satisfied in for the100-year event in all locations where fill is proposed in the floodplain.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project:	EAGLEVIEW
Basin ID:	POND 3
ZONE 3	2 DNE 1

-100-YEAR ORIFICE

ional User Overr

1.19 inches 1.50

1.75

2.00 inches 2.25

2.52

3.14

ZONE 1 AND 2 ORIFICES Example Zone Configuration (Retention Pond) PERMA

Watershed Information

100-YR VOLUME EURV WQCV

ersned miormation		
Selected BMP Type =	EDB	
Watershed Area =	151.47	acres
Watershed Length =	5,000	ft
Watershed Length to Centroid =	2,500	ft
Watershed Slope =	0.006	ft/ft
Watershed Imperviousness =	8.20%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours

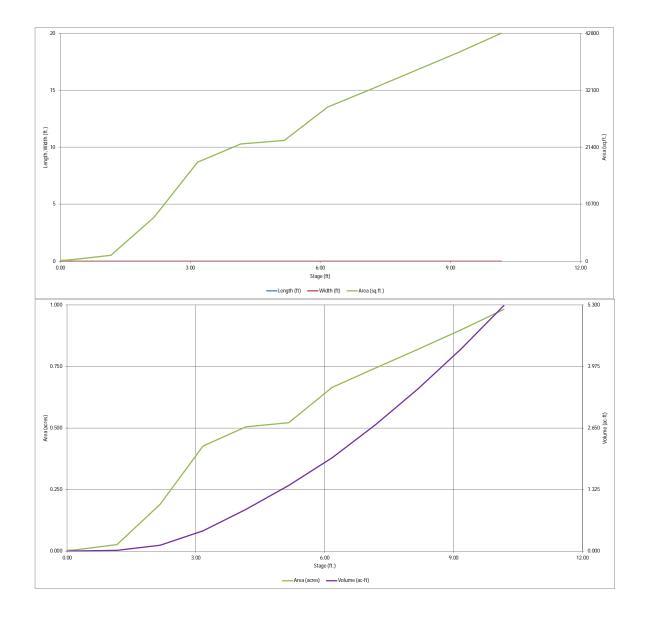
Location for 1-hr Rainfall Depths = User Input After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure

the embedded Colorado Urban Hydrograph Procedure.								
Water Quality Capture Volume (WQCV) =	0.713	acre-feet						
Excess Urban Runoff Volume (EURV) =	1.149	acre-feet						
2-yr Runoff Volume (P1 = 1.19 in.) =	1.820	acre-feet						
5-yr Runoff Volume (P1 = 1.5 in.) =	4.208	acre-feet						
10-yr Runoff Volume (P1 = 1.75 in.) =	6.619	acre-feet						
25-yr Runoff Volume (P1 = 2 in.) =	11.003	acre-feet						
50-yr Runoff Volume (P1 = 2.25 in.) =	13.954	acre-feet						
100-yr Runoff Volume (P1 = 2.52 in.) =	18.242	acre-feet						
500-yr Runoff Volume (P1 = 3.14 in.) =	26.002	acre-feet						
Approximate 2-yr Detention Volume =	0.718	acre-feet						
Approximate 5-yr Detention Volume =	1.146	acre-feet						
Approximate 10-yr Detention Volume =	2.607	acre-feet						
Approximate 25-yr Detention Volume =	3.754	acre-feet						
Approximate 50-yr Detention Volume =	3.902	acre-feet						
Approximate 100-yr Detention Volume =	5.099	acre-feet						

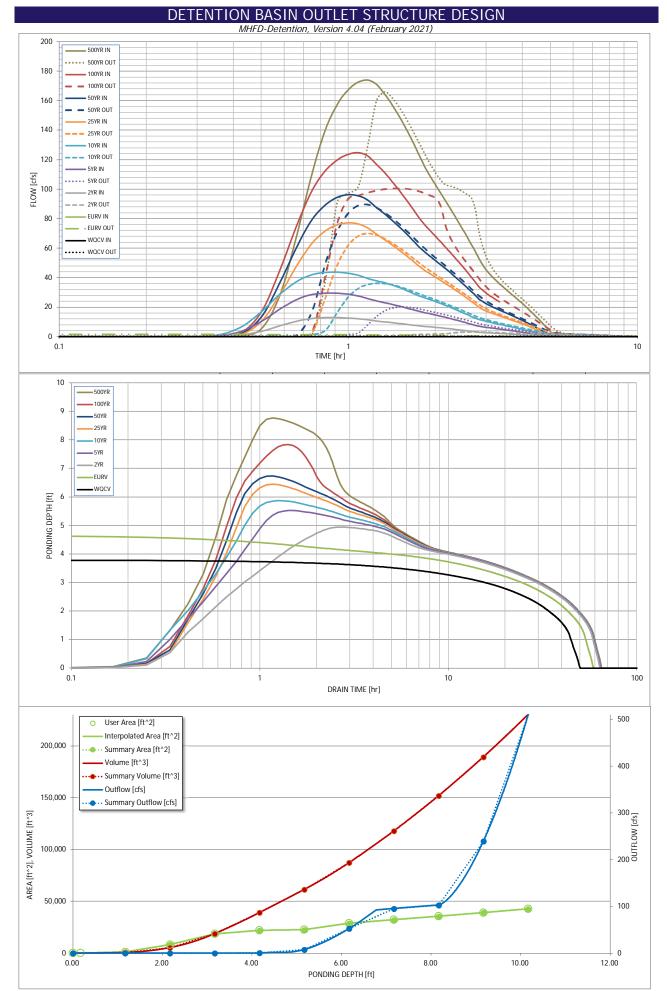
Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.713	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.436	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	3.950	acre-feet
Total Detention Basin Volume =	5.099	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	1

Initial Surcharge Area (A_{ISV}) = user Surcharge Volume Length (LISV) = user Surcharge Volume Width (WISV) user Depth of Basin Floor (H_{FLOOR}) user Length of Basin Floor (L_{FLOOR}) = user Width of Basin Floor (W_{FLOOR}) user Area of Basin Floor (A_{FLOOR}) user Volume of Basin Floor (V_{FLOOR}) = user Depth of Main Basin (H_{MAIN}) user Length of Main Basin (L_{MAIN}) user Width of Main Basin (WMAIN) user Area of Main Basin (A_{MAIN}) user Volume of Main Basin (V_{MAIN}) = user Calculated Total Basin Volume (V_{total}) = user


ft

acre.feet


Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volum (ac-ft
Top of Micropool		0.00				162	0.004		
7231		0.17				200	0.005	31	0.001
7232		1.17				1,148	0.026	704	0.016
7233		2.17				8,283	0.190	5,419	0.124
7234		3.17				18,607	0.427	18,864	0.433
7235		4.17				21,993	0.505	39,164	0.899
7236		5.17				22,691	0.521	61,506	1.412
7237		6.17				28,920	0.664	87,311	2.004
7238		7.17				32,308	0.742	117,925	2.707
7239		8.17				35,680	0.819	151,919	3.488
7240		9.17				39,108	0.898	189,313	4.346
7241		10.17				42,799	0.983	230,267	5.286
								1	
								<u> </u>	
								<u> </u>	
								L	
								1	
								<u> </u>	
								1	
								1	
								<u> </u>	
								1	
								L	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Next StateWith State	MHFD-Detention, Version 4.04 (February 2021)										
	-										
		POND 3									
	ZONE 2	\frown				Estimated					
	100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	•			
		Zone 1 (WQCV)	3.79	0.713	Orifice Plate						
Image Image <th< td=""><td></td><td>10-10</td><td>Zone 2 (EURV)</td><td>4.67</td><td>0.436</td><td>Rectangular Orifice</td><td></td><td></td><td></td></th<>		10-10	Zone 2 (EURV)	4.67	0.436	Rectangular Orifice					
matrix Example Zone Configuration (Determined real in Junch 2011) Example Zone Zone International Charles Industries Example Zone Zone Zone International Charles Industries Determine Chines and the Charles and International International International Charles Source Charles And International International Charles And International Internatinterea International International International Inter	PERMANENT ORIFICES	UNITOL		Zone 3 (100-year)	9.98	3.950	Weir&Pipe (Restrict)				
Define Leffer at Leffer and Public P	POOL Example Zone	4									
Underland Offse Dammel - MA metric Lind Mark Linds will not may affrage of Hall Mark Argenting Linds and States - 101 Will Cinter Area in Hall - MA MA Dark Mark Linds Will not may affrage of Hall Mark Argenting Linds and States - 101 Will Cinter Area in Hall - MA MA MA Dark Mark Linds Will not may affrage of Hall - 0.000 Hall Mark Linds Will Not Field Will Not	User Input: Orifice at Underdrain Outlet (typical	ly used to drain WQ	CV in a Filtration Bl	MP)		Į	4	Calculated Parame	ters for Underdrain		
The funct Other and a construction of the ord and ord and of the ord an	Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	drain Orifice Area =	N/A	ft ²		
Inter of Jacoba Differe Example of the State Differe Exam	Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet										
Inter of Jacobs Dame Output at loss of source Dame Number of Jacobs Dame Numer of Jacobs Dame Number of Jacobs Dame											
Departing of two using of two using of two using some balance at \$2000 m. \$2000	User Input: Orifice Plate with one or more orific	ces or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	imentation BMP)		Calculated Parame			
Druge place Office Versage Nor-	Invert of Lowest Orifice =		ft (relative to basin	n bottom at Stage =	= 0 ft)	WQ Orifi	ice Area per Row =		ft ²		
Ontime Patie: Name Patient of Stort Area Name Patient Stort Area Name Name Control: Stort Area	Depth at top of Zone using Orifice Plate =			n bottom at Stage =	= 0 ft)	Ell	iptical Half-Width =		feet		
Unr. Hund. State and Table Area of Safe Office Science In Neural Contrasts Neural Con											
Support Office Generation Import Operation Import O	Orifice Plate: Orifice Area per Row =	N/A	inches			E	Elliptical Slot Area =	N/A	ft²		
Support Office Great (see Section 1 and 2 (partorn) The 2 (
Support Office Great (see Section 1 and 2 (partorn) The 2 (De la									
Spage of othice Centres (th) Dot 0.61 1.20 <th1.20< th=""> 1.20 <th1.20< th=""> <th1< td=""><td>User input: Stage and Total Area of Each Orific</td><td></td><td>-</td><td>1</td><td>David (11 11</td><td>Davis (</td><td>David (11 11</td><td>Dev. 7 (</td><td>Dev. 0 (</td><td>1</td></th1<></th1.20<></th1.20<>	User input: Stage and Total Area of Each Orific		-	1	David (11 11	Davis (David (11 11	Dev. 7 (Dev. 0 (1	
Orice Area (q. tetes) 100								Row / (optional)	Row 8 (optional)		
Stage of office Centrol (the Centr	5			1							
Stage of Units Central PD Image: Stage of Units Central PD Calculated Parameters for Ventral Office Jorr Input: Ventral Office Constant Restangual: Const 2 Mechangual: March 1 Mechangua: March 1 Mechangual: March 1 Mechangual: March 1 Mechangua:	Unifice Area (sq. inches)	1.00	1.00	1.00	1.20	1.20	1.20			1	
Stope of onice control on the control on the control of the control on the control of th		Pow Q (optional)	Pow 10 (optional)	Pow 11 (optional)	Pow 12 (ontional)	Pow 13 (options)	Pow 14 (optional)	Pow 15 (ontional)	Pow 16 (ontional)	1	
Office Area Ga, Indest Index	Stage of Orifice Centroid (ft)		Row TO (optional)	Row IT (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row to (optional)		
Insert Insul: Calculated Differe (Grinder or Bestanguale Constrained Parameters for Vertical Ordine. Calculated Parameters for Vertical Ordine. Constrained Parameters for Vertical Ordine. Depth at top of Zore using Vertical Ordine. 4.47 N/A http://discussion. Not Selected United Ordine. 4.47 N/A http://discussion. Not Selected Not Selected United Ordine. 4.47 N/A http://discussion. Not Selected Not Selected Not Selected Vertical Ordine. 16.00 nucles nucles Not Selected Not Sel											
Two: Processing and the Selected Two: Two: Proceedings Most Selected Two: Depth at top of Zore using Vertical Orfice 4.47 MVA ft (relative to basin bottom at Stage = 0 ft) Vertical Orfice Centrole = 0.15 NVA rest User Input: Overflow Vertical Orfice Centrole = 0.15 NVA rest Depth at top of Zore using Vertical Orfice Centrole = 0.15 NVA rest Deverflow Vertical Orfice Vertice Toronts with Falls or Structed Toront And Toronts Vertical Orfice Vertice Ver	Office Area (sq. incles,]	
Two: Processing and the Selected Two: Two: Proceedings Most Selected Two: Depth at top of Zore using Vertical Orfice 4.47 MVA ft (relative to basin bottom at Stage = 0 ft) Vertical Orfice Centrole = 0.15 NVA rest User Input: Overflow Vertical Orfice Centrole = 0.15 NVA rest Depth at top of Zore using Vertical Orfice Centrole = 0.15 NVA rest Deverflow Vertical Orfice Vertice Toronts with Falls or Structed Toront And Toronts Vertical Orfice Vertice Ver	User Input: Vertical Orifice (Circular or Rectand	ular)						Calculated Parame	ters for Vertical Ori	fice	
Unvertion Vertical Orfice 4.00 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orfice Centrols = 0.35 N/A ft Depth at op of Zeeu using Vertical Orfice 4.60 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orfice Centrols = 0.15 N/A ft of Vertical Orfice 6.61 N/A ft of ft of <td></td> <td></td> <td>Not Selected</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>			Not Selected	1						1	
Vertical Orifice Height = 3.50 N/A mches User Input: Overflow Weir (Dropbox with Flat or Speed Catte and OutBL Pipe 0) 6.00 100	Invert of Vertical Orifice =	4.00	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Ver				ft ²	
Vertical Orlice With 16.00 inches User Ingut: Overflow Weir Drophox with Flat or Sovied Grate and Dullet Pipe CB. Revenauler / Inguestation at Stage = 0 (1) Height of Grate Upper Edge, H ₁ = 5.00 Contrast Weir Not Selected 5.00 N/A Overflow Weir Front Edge Height. - 15.00 N/A Het Overflow Weir Stope Length = 5.00 5.00 N/A Overflow Weir Front Edge Height. - 15.00 N/A Het Overflow Weir Stope = 5.00 5.00 N/A Overflow Weir Front Edge Height. - 5.00 N/A Het Overflow Weir Grate Open Area i/Oper Office Area 5.00 N/A Overflow Weir Front Edge Height. - 5.00 N/A Het Overflow Grate Open Area w/o Debris 5.02 N/A Overflow Weir Front Edge Height. - 5.00 N/A Ket Overflow Grate Open Area w/o Debris 5.02 N/A Debris Cloging % - 5.00 N/A Ket Overflow Grate Open Area w/o Debris 5.02 N/A Debris Cloging % - 0.04 Bearritor N/A Ket	Depth at top of Zone using Vertical Orifice =	4.67	N/A		-		I Orifice Centroid =	0.15	N/A	feet	
User Insut: Overflow Weir Droubko with Flat or Societide Zone 3 War Not Solekted Overflow Weir Front Edge Height, He 4.80 N/A fred status to basin bottom at Stage - 0.1) Height of Grate Upper Edge, H, et al. 5.00 N/A Overflow Weir Front Edge Height, He in the sole and Double Diverflow Weir Grate Sope in the sole and Double Diverflow Weir Grate Sope in the sole and Double Diverflow Weir Grate Sope in the sole and Double Diverflow Weir Grate Sope in the sole and Double Diverflow Weir Grate Sope in the sole and Double Diverflow Weir Grate Diper Edge, H, et al. 5.02 N/A Not Solekter Type C Grate N/A Feet Overflow Weir Grate Open Area w/Debris 5.24 N/A n² Desris Cloging % Type C Grate N/A N/A N/A N/A n² Desris Cloging % Sole Nictor N/A N/A N/A N/A n² Desris Cloging % Sole Nictor N/A N/A N/A N/A n² Desris Cloging % Sole Nictor N/A N/A N/A N/A N/A Desris Cloging % Sole Nictor N/A N/A N/A N/A N/A N/A	Vertical Orifice Height =	3.50	N/A	inches	-				•		
Zure 3 Wair Net Selected Overflow Weir Front Edge Height, Ho 480 N/A ff (relative to basin bottom at Stage = 0.1). Height of Grate Upper Edge, H ₁ 5.02 N/A feet Overflow Weir Grate Stope 10.00 N/A feet Overflow Grate Vice 5.02 N/A feet Overflow Weir Grate Stope 10.00 N/A feet Overflow Grate Open Area / 100 yr Office Area 6.57 N/A feet Overflow Grate Type 100 Grate N/A feet Overflow Grate Open Area / 100 yr Office Area 6.57 N/A frei User Insut: Outlet Pipe w/ Erow Restriction Pites Contail orDine, Restrictor Pites or Restrictor Not Selected N/A f/A X/A frei 2.6.23 N/A frei Depth to Invert of Outlet Pipe 4 0.09 N/A frei (distance betw basin bottom at Stage - 0.1) Outlet Office Area 2.0.1 N/A frei Restrictor Pite Height Above Pipe Invert 4 32.50 inches Half Central Argle of Restrictor Pite Not Not Selected 1.0.4 N/A frei Sellivary Cortal orDine Areatine Pipin 0.7.1 (relative	Vertical Orifice Width =	16.00		inches							
Zure 3 Wair Net Selected Overflow Weir Front Edge Height, Ho 480 N/A ff (relative to basin bottom at Stage = 0.1). Height of Grate Upper Edge, H ₁ 5.02 N/A feet Overflow Weir Grate Stope 10.00 N/A feet Overflow Grate Vice 5.02 N/A feet Overflow Weir Grate Stope 10.00 N/A feet Overflow Grate Open Area / 100 yr Office Area 6.57 N/A feet Overflow Grate Type 100 Grate N/A feet Overflow Grate Open Area / 100 yr Office Area 6.57 N/A frei User Insut: Outlet Pipe w/ Erow Restriction Pites Contail orDine, Restrictor Pites or Restrictor Not Selected N/A f/A X/A frei 2.6.23 N/A frei Depth to Invert of Outlet Pipe 4 0.09 N/A frei (distance betw basin bottom at Stage - 0.1) Outlet Office Area 2.0.1 N/A frei Restrictor Pite Height Above Pipe Invert 4 32.50 inches Half Central Argle of Restrictor Pite Not Not Selected 1.0.4 N/A frei Sellivary Cortal orDine Areatine Pipin 0.7.1 (relative											
Overflow Weir Front Edge Height, Ho. 4 80 N/A frestawe to basis bottom at Stage = 0 ft) Height of Grate Upper Tage, H., 5.30 N/A feet Overflow Weir Front Edge Length = 15.00 N/A feet Overflow Weir Stope Length = 5.02 N/A feet Overflow Weir Grate Spee 5.00 N/A feet Overflow Grate Open Area v/ Debris = 5.22 N/A feet Overflow Grate Type - Type C Grate Feet Overflow Grate Open Area v/ Debris = 5.23 N/A feet Overflow Grate Type - Type C Grate Feet Overflow Grate Open Area w/ Debris = 5.23 N/A fr² User Input: Outlet Pipe w/ Flow Restriction Piate Concater Office Restrictor Piate One Piate Pi	User Input: Overflow Weir (Dropbox with Flat of	or Sloped Grate and	Outlet Pipe OR Red	ctangular/Trapezoid	al Weir (and No Ou	utlet Pipe)		Calculated Parame	ters for Overflow W	<u>/eir</u>	
Overflow Wer Front Edge Length - 15:00 N/A feet Overflow Case Open Area + 5:02 N/A feet Horiz. Length OW Wer State Stope 10:00 N/A feet Overflow Grate Open Area w/o Debris 5:02 N/A freet Overflow Grate Type Type C Grate N/A feet Overflow Grate Open Area w/o Debris 5:02 N/A fr ² Debris Clogging % = Type C Grate N/A % Overflow Grate Open Area w/o Debris = 5:02 N/A fr ² Debris Clogging % = Type C Grate N/A % Overflow Grate Open Area w/ Debris = 5:02 N/A fr ² Debris Clogging % = Type C Grate N/A % Overflow Grate Open Area w/ Debris = 5:02 N/A fr ² Debris Clogging % = Type C Grate N/A fr Overflow Grate Open Area w/ Debris = 5:02 N/A fr Debris Cloggin Site Open Area w/ Edw Area Top Of Freetorat = Top Of Freetorat = 7:99 N/A freet Splitway freet Length = 8:10 feet		Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected		
Overflow Weir Gate Siges 10.00 N/A HV Grafe Open Area / 100-yr Orifes Area 6.57 N/A Horiz. Length of Weir Sides 5.00 N/A feet Overflow Grate Open Area w/o Debris 52.46 N/A ft ² Detris Clengting % 50% N/A % Overflow Grate Open Area w/o Debris 52.46 N/A ft ² User Input: Cutlet Pipe w/ Flow Restriction Disto Section N/A % Overflow Grate Open Area //O Overflow Gra					bottom at Stage = 0					feet	
Horiz. Length of Weir Sides 5.00 N/A feet Overflow Grate Open Area w/o Debris 5.24.6 N/A ft ² Detridow Grate Type Gow N/A % Overflow Grate Open Area w/o Debris 26.23 N/A ft ² User Input: Cutlet Pipe w/ Flow Restriction Plate Circular Ortifice. Some Caculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected 7.99 N/A ft ² Outlet Pipe Diameter Outlet Ortifice Area Care 3 Restrictor Not Selected 7.99 N/A ft ² Splitway (rest Length 32.50 inches Half-Central Angle of Restrictor Plate on Pipe 2.15 N/A ft ² Splitway (rest Length 8.17 ft (relative to basin bottom at Stage = 0 ft) Splitway (rest Length 0.00 Feet 0.98 acres Splitway (rest Length 8.17 ft (relative to basin bottom at Stage = 0 ft) Splitway (rest Length 0.00 Feet 0.98 acres Splitway (rest Length 8.17 ft (relative to basin bottom at Stage = 0 ft) Splitway (rest Length 0.00 feet	0 0									feet	
Overflow Grate Type = Detris Clogging % =Type C GrateN/AN/AtransmitterDetris Clogging % =Type C GrateN/AN/AtransmitterDetris Clogging % =Conclast of files, Restrictor Plate, or Rectangular Orffico)Calculated Parameters for Cullet Plae w/ Flow Restrictor PlateCone 3 Restrictor Not SelectedDeptit to Invert of Outlet PlaeCone 3 Restrictor Not SelectedCone 3 Restrictor Not SelectedSelected Parameters for SullivarSelected Stage = 0 ft)Splikway (rest Stage = 100)feet selected Parameters for SullivarSelected Paramete							5				
Detris Clogging % = 50% N/A % User Input: Outlet Pipe V/ Evw Restriction Plate. Circular Orffice. Restrictor Plate. or Rectangular Orffice) Catculated Parameters for Outlet Pipe V/ Evw Restriction Plate Depth to Invert of Outlet Pipe biameter = Zone 3 Restrictor Not Selected Tt ² Outlet Pipe Diameter = Zone 3 Restrictor Not Selected Tt ² Outlet Pipe Diameter = Zone 3 Restrictor Not Selected Tt ² Restrictor Plate Height Above Pipe Invert = 32.50 inches Outlet Orffice Centrol = 1.49 N/A ft deitance below basin bottom at Stage = 0 ft) Spillway (Rectangular or Trapecodal) Calculated Parameters for Spillway User Input: Emergency Spillway (Rectangular or Trapecodal) Calculated Parameters for Spillway Calculated Parameters for Spillway Easin Volume 10 op 77 feet Spillway Creat Length = 4.00 H-V Basin Area at Top of Freeboard = 0.98 acres Spillway Design Flow Depth - 0.97 feet 0.91 1.01.1 feet Spillway Design Flow Depth Results The Lese can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrograph Valume force-10 <td< td=""><td>ů.</td><td></td><td></td><td>feet</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ů.			feet							
User Line Calculated Plane Restriction Plate Circular Orlico. Restrictor Plate orlico. Restrictor Not Selected Core 3 Restrictor Core 3 Restrictor Core 3 Restrictor Core 3 Restrictor Not Selected Depth to Invert of Outlet Pipe w 0.049 N/A ft (istance below basin bottom at Stage = 0 ft) Outlet Orlice Area = 7.99 N/A ft ² Outlet Pipe blaneter = 0.021 0.021 N/A ft ² inches Outlet Orlice Centroid = 1.49 N/A ft ² Quitet Pipe Vallex View Pipe Invert 32.50 inches Hair-Central Angle of Restrictor Plate on Pipe = 2.15 N/A radians User Input: Emergency Sollway (Rectangular or Tragezolda) Calculated Parameters for Sollway Calculated Parameters for Sollway 0.97 feet Spillway Invert Stage * 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depthe 0.97 feet Spillway Invert Stage * 1.00 feet Basin Area at Top of Freeboard = 0.97 feet Spillway Invert Stage * 1.00 feet Basin Area at Top of Freeboard = 0.97 feet 2.26<	51				C	Overflow Grate Ope	n Area w/ Debris =	26.23	N/A	ft ²	
Zone 3 Restrictor Not Selected Not Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = 0.49 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 7.9 N/A ft ² Restrictor Plate Height Above Pipe Invert = 22.50 inches Outlet Orifice Area = 7.9 N/A ft ² Spillway Invert Stage = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.97 feet Spillway Crest Length = 40.00 feet Spillway Design Flow Depth = 0.97 feet Spillway End Stopes 4.00 feet Basin Notas at Top of Freeboard = 0.98 acres is Spillway Stord Stopes 1.00 feet 1.00 Spillway 60 Stopes 5.26 acres is Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs Isable Columns W through AF). N/A N/A 1.00 1.03 1.3.954 18.242 26.002 OPTIOWAL, Overflow Hording Carce Hydrograph Isable (office Hydrograph Stable Column Wind (acrce Hydrograph Stable Column W Hydrograph Stable Column W Hydrogra	Debris Clogging % =	50%	N/A	%							
Zone 3 Restrictor Not Selected Not Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = 0.49 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 7.9 N/A ft ² Restrictor Plate Height Above Pipe Invert = 22.50 inches Outlet Orifice Area = 7.9 N/A ft ² Spillway Invert Stage = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.97 feet Spillway Crest Length = 40.00 feet Spillway Design Flow Depth = 0.97 feet Spillway End Stopes 4.00 feet Basin Notas at Top of Freeboard = 0.98 acres is Spillway Stord Stopes 1.00 feet 1.00 Spillway 60 Stopes 5.26 acres is Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs Isable Columns W through AF). N/A N/A 1.00 1.03 1.3.954 18.242 26.002 OPTIOWAL, Overflow Hording Carce Hydrograph Isable (office Hydrograph Stable Column Wind (acrce Hydrograph Stable Column W Hydrograph Stable Column W Hydrogra		(0)				0.					
Depth to Invert of Outlet Pipe limeter Outlet Pipe limeter Restrictor Plate Height Above Pipe Invert # 0.49 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orffice Centroid = 0.799 N/A ft ² Feet Restrictor Plate Height Above Pipe Invert # 32.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.15 N/A Feet User Input: Emergency Spillway (Rectangular or Trappoidal Spillway Invert Stage Spillway Crest Length = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.97 feet Spillway Crest Length = 40.00 feet Stage at Top of Freeboard = 0.98 acres Freeboard above Max Water Surface 10.00 feet Stage at Top of Freeboard = 0.98 acres Rouled Hydrograph Results The user can override the default CURP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Ecolumns W through AF). CUHP Reunoff Volume (acre-ft) O.713 1.149 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIOUAL Overfie Predevelopment Peak Q(r5) N/A N/A 8.6 24.55 38.6	User Input: Outlet Pipe W/ Flow Restriction Plate			ectangular Orifice)		La	liculated Parameters			ate	
Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = 42.00 N/A Inches Outlet Orifice Centrold = 1.49 N/A feet Restrictor Plate Height Above Pipe Invert = 32.50 inches Half-Central Angle of Restrictor Plate on Pipe = 2.15 N/A radians User Input: Emergency Spillway (Rectangular or Tracezoidal) free tasks Spillway Invert Stage = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Desting Flow Depth = 0.97 feet Spillway Invert Stage = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Desting Flow Depth = 0.97 feet 10.14 feet 0.98 acres Spillway Invert Stage = 1.00 feet Basin Volume at Top of Freeboard = 5.26 acres 5.26 acres 10.14 feet 0.93 acres 5.26 acres 10.04 feet 0.93 acres 5.26 acres 10.04 feet 0.93 acres 5.26 acres 5.26 acres 10.04 feet 0.93 acres 5.26 acres 10.04<	Dopth to Invort of Outlot Ding			ft (distance below b	asia hottom at Stags	0.6%)	utlat Orifica Araa			e+2	
Restrictor Plate Height Above Pipe Invert = 32.50 inches Half-Central Angle of Restrictor Plate on Pipe = 2.15 N/A radians User Input: Emergency Sollway (Rectangular or Trapezoida) Spilway Crest Length = 8.17 ft (relative to basin bottom at Stage = 0 ft) Spilway Design Flow Depth = 0.97 feet 10.14 feet Spilway Crest Length = 4.00 H/V Basin Area at Top of Freeboard = 0.98 acres Freeboard above Max Water Surface = 1.00 Feet Basin Area at Top of Freeboard = 0.98 acres/1 Non- Cutled Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrograph Stable (Columns W through AF). Design Storm Return Period - N/A N/A 1.19 1.50 1.75 2.00 2.25 5.26 3.14 CUHP Runoff Volume (acreft) = N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONL Override Predevelopment Peak (G) N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242					asin bottom at stage	,				-	
User Image: Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.97 feet Spillway End Slopes = 4.00 feet Stage at Top of Freeboard = 0.98 acres.t Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 0.98 acres.t Besign Storm Return Period One-Hour Rainfall Depth (n) = 0.713 1.149 1.50 1.75 2.00 2.25 2.52 3.14 CUHP Renotive Name (acre-ft) = 0.713 1.149 1.80 4.208 6.619 11.003 13.954 18.242 26.002 CHIP Redvelopment Peak O(fs) = N/A N/A 1.86 24.5 3.86 71.9 90.8 110.46 1.8242 26.002 CHIP Redvelopment Peak O(fs) = N/A N/A 8.6 24.5 3.86 71.9 90.8 110.9 1.60 1.60 1.60 1.60 1.72 96.3 124.8			N/A		Half-Cen						
Spillway Invert Stage 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.97 feet Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = 4.00 H:V Basin Area at Top of Freeboard = 0.98 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). CUHP Runoff Volume (acreft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 0.6 0.16 0.26 0.47 0.60 0.79 1.1140 Predevelopment P	Resident fate freight house tipe intert -	32.50	1	literies		and Angle of Restric	tor ridte on ripe -	2.15	10/1	radians	
Spillway Invert Stage 8.17 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.97 feet Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = 4.00 H:V Basin Area at Top of Freeboard = 0.98 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). CUHP Runoff Volume (acreft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONEL Override Predevelopment Peak 0 (cfs) = N/A N/A 0.6 0.16 0.26 0.47 0.60 0.79 1.1140 Predevelopment P	User Input: Emergency Spillwav (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillwav		
Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = 40.00 H:V feet Stage at Top of Freeboard = Basin Area at Top of Freeboard = Basin Volume at Top of Freeboard = Design Storm Return Period One-Hour Rainfall Depth (n) CHP Rundft Volume (arer-ft) = UHP Rundft Volume (arer-ft) = CHP Redevelopment Peak O(ts) = N/A The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). WOCV EURV 2 Year 5 Year 10 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (n) One-Hour Rainfall Depth (n) CHP Rundft Volume (arer-ft) = CHP Redevelopment Peak O(ts) = N/A N/A N/A 1.820 4.208 6.619 11.003 13.954 18.242 26.002 OPTIONLL Override Predevelopment Peak O(ts) = Predevelopment Peak O(ts) = N/A N/A N/A 0.6 0.16 0.26 0.47 0.60 0.79 1.11 Peak Inflow O(ts) = Predevelopment Peak O(ts) = Max Velocity through Grate 1 (ps) = Max Velocity through Grat	Spillway Invert Stage=	8.17	ft (relative to basi	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=				
Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 5.26 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). WOCV EURV 2 Year 500 Year 100 Year 500 Year One-Hour Rainfall Depth (no (CUHP Runoff Volume (acre-ft) N/A											

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

						-		loped in a separa		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.03	0.06
	0:20:00	0.00	0.00	0.10	0.26	0.46	0.12	0.14	0.15	0.46
	0:25:00	0.00	0.00	0.94	3.05	5.62	0.92	1.20	1.80	5.54
	0:30:00	0.00	0.00	3.72	10.36	17.07	10.39	13.54	16.89	29.55
	0:35:00	0.00	0.00	7.59	19.09	29.24	29.39	37.71	46.58	70.85
	0:40:00	0.00	0.00	10.73	25.49	37.80	49.01	61.97	76.82	111.15
	0:45:00	0.00	0.00	12.45	28.65	42.04	63.58	79.64	99.34	140.41
	0:50:00	0.00	0.00	12.98	29.57	43.63	71.76	89.43	112.54	157.71
	0:55:00	0.00	0.00	12.98	29.52	43.83	75.98	94.59	120.02	167.64
	1:00:00	0.00	0.00	12.70	28.82	43.09	77.23	96.30	123.75	172.65
	1:05:00	0.00	0.00	12.21 11.51	27.59 25.90	41.61 39.54	76.46 73.83	95.60 92.62	124.79 122.63	174.04 171.24
	1:10:00 1:15:00	0.00	0.00	10.73	24.34	37.95	69.64	87.71	117.10	164.61
	1:20:00	0.00	0.00	10.73	24.34	36.64	65.88	83.36	111.31	157.38
	1:25:00	0.00	0.00	9.57	23.14	35.11	62.22	78.96	105.27	149.40
	1:30:00	0.00	0.00	9.03	20.79	33.35	58.67	74.57	99.17	149.40
	1:35:00	0.00	0.00	8.48	19.60	31.46	55.08	70.08	93.07	132.52
	1:40:00	0.00	0.00	7.94	18.39	29.53	51.58	65.67	87.03	124.03
	1:45:00	0.00	0.00	7.45	17.31	27.88	48.11	61.30	81.12	115.87
	1:50:00	0.00	0.00	7.06	16.41	26.47	45.22	57.69	76.19	108.99
	1:55:00	0.00	0.00	6.72	15.58	25.16	42.74	54.57	72.01	103.05
	2:00:00	0.00	0.00	6.39	14.78	23.86	40.46	51.69	68.11	97.51
	2:05:00	0.00	0.00	6.06	13.98	22.59	38.28	48.92	64.40	92.23
	2:10:00	0.00	0.00	5.72	13.18	21.30	36.16	46.22	60.78	87.05
	2:15:00	0.00	0.00	5.38	12.38	20.01	34.07	43.55	57.24	81.95
	2:20:00	0.00	0.00	5.04	11.59	18.72	32.01	40.90	53.77	76.95
	2:25:00	0.00	0.00	4.70	10.80	17.45	29.96	38.29	50.39	72.08
	2:30:00	0.00	0.00	4.36	10.01	16.19	27.93	35.70	47.02	67.24
	2:35:00	0.00	0.00	4.03	9.23	14.95	25.90	33.12	43.66	62.43
	2:40:00	0.00	0.00	3.69	8.45	13.73	23.88	30.54	40.31	57.63
	2:45:00	0.00	0.00	3.36	7.69	12.54	21.87	27.98	36.97	52.89
	2:50:00	0.00	0.00	3.08	7.11	11.67	19.93	25.53	33.80	48.55
	2:55:00 3:00:00	0.00	0.00	2.91 2.76	6.73 6.41	11.03 10.46	18.56 17.47	23.81 22.42	31.47 29.58	45.27 42.56
	3:05:00	0.00	0.00	2.76	6.10	9.92	17.47	22.42	29.56	42.56
	3:10:00	0.00	0.00	2.64	5.80	9.42	15.69	20.10	26.42	37.96
	3:15:00	0.00	0.00	2.39	5.51	8.92	14.92	19.10	25.03	35.94
	3:20:00	0.00	0.00	2.27	5.23	8.44	14.18	18.13	23.74	34.04
	3:25:00	0.00	0.00	2.15	4.95	7.98	13.46	17.20	22.52	32.27
	3:30:00	0.00	0.00	2.03	4.68	7.53	12.77	16.30	21.38	30.60
	3:35:00	0.00	0.00	1.92	4.41	7.09	12.08	15.42	20.25	28.96
	3:40:00	0.00	0.00	1.81	4.14	6.67	11.40	14.55	19.13	27.35
	3:45:00	0.00	0.00	1.69	3.88	6.25	10.72	13.69	18.01	25.73
	3:50:00	0.00	0.00	1.58	3.62	5.84	10.04	12.82	16.88	24.13
	3:55:00	0.00	0.00	1.47	3.36	5.42	9.37	11.96	15.76	22.52
	4:00:00	0.00	0.00	1.35	3.10	5.01	8.69	11.11	14.64	20.92
	4:05:00	0.00	0.00	1.24	2.84	4.61	8.02	10.25	13.52	19.31
	4:10:00 4:15:00	0.00	0.00	1.13	2.58	4.20	7.35	9.39 8.54	12.41 11.29	17.72 16.12
	4:20:00	0.00	0.00	0.91	2.07	3.39	6.00	7.69	10.18	14.53
	4:25:00	0.00	0.00	0.80	1.82	2.99	5.33	6.84	9.07	12.94
	4:30:00	0.00	0.00	0.69	1.56	2.59	4.66	5.98	7.95	11.36
	4:35:00 4:40:00	0.00	0.00	0.58	1.30	2.18	3.99 3.32	5.13 4.28	6.84 5.73	9.77 8.18
	4:45:00	0.00	0.00	0.36	0.79	1.38	2.65	3.43	4.61	6.59
	4:50:00	0.00	0.00	0.25	0.54	0.98	1.98	2.58	3.50	5.01
	4:55:00 5:00:00	0.00	0.00	0.15	0.32	0.65	1.33 0.80	1.75 1.09	2.42 1.55	3.51 2.36
	5:00:00	0.00	0.00	0.08	0.19	0.46	0.80	0.72	1.03	1.63
	5:10:00	0.00	0.00	0.04	0.11	0.28	0.32	0.49	0.69	1.14
	5:15:00	0.00	0.00	0.03	0.09	0.23	0.21 0.13	0.33	0.45	0.78 0.51
	5:20:00 5:25:00	0.00	0.00	0.03	0.07	0.18	0.13	0.22	0.28	0.51
	5:30:00	0.00	0.00	0.02	0.04	0.10	0.05	0.10	0.08	0.19
	5:35:00	0.00	0.00	0.01	0.03	0.07	0.04	0.07	0.05	0.12
	5:40:00 5:45:00	0.00	0.00	0.01	0.02	0.05	0.03	0.05	0.04	0.08
	5:50:00	0.00	0.00	0.01	0.02	0.03	0.02	0.04	0.03	0.05
	5:55:00	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.02	0.04

0.00

5:55:00

0.00

0.01

0.00

0.02

0.01

0.01

0.01

0.02

0.02

0.02

0.01

0.00

0.00

0.04

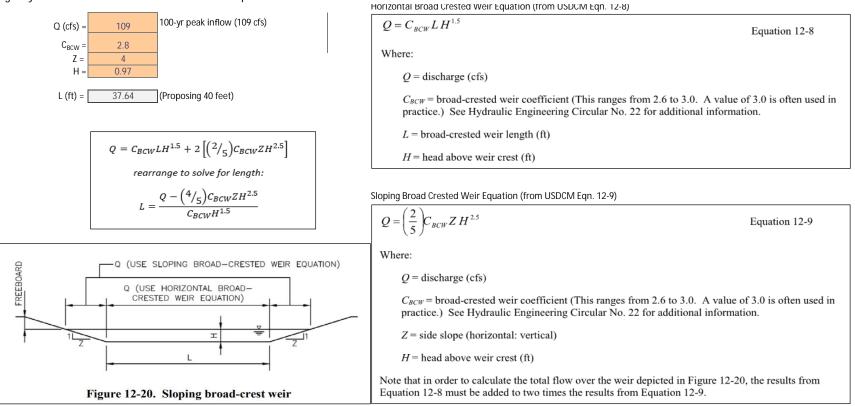
0.03

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
7230.83	0.00	162	0.004	0	0.000	0.00	For best results, include the
7231	1.17	1,148	0.026	704	0.016	0.06	stages of all grade slope
7232	2.17	8,283	0.190	5,419	0.124	0.14	changes (e.g. ISV and Floor) from the S-A-V table on
7233	3.17	18,607	0.427	18,864	0.433	0.24	Sheet 'Basin'.
7234	4.17	21,993	0.505	39,164	0.899	0.61	
7235	5.17	22,691	0.521	61,506	1.412	7.88	Also include the inverts of all
7236	6.17	28,920	0.664	87,311	2.004	52.70	outlets (e.g. vertical orifice,
7237	7.17	32,308	0.742	117,925	2.707	95.56	overflow grate, and spillway,
7238	8.17	35,680	0.819	151,919	3.488	103.01	where applicable).
7239	9.17	39,108	0.898	189,313	4.346	239.56	
7240	10.17	42,799	0.983	230,267	5.286	510.21	
							1
]


IMPERVIOUS FACTOR CALCULATION TABLE - PROPOSED CONDITIONS

		Imp %	2%	11%	90%	100%	80%	80%	
	Basin	Area (Acre)	Open Space (2%)	2.5 Acre Lot (100%)	Buildings (100%)	Paved Roadway (100%)	Gravel Roadway (80%)	Total % Check	Weighted Impervious
Pond 3	PB8A	7.60	0%	98%	0%	3%	0%	100%	13%
FUIU 3	OB5	143.82	94%	0%	2%	1%	3%	100%	7%
Total		151.42							7.0%

Kimley »Horn

Project: Eagleview Date: 4/15/2024

Emergency Overflow Weir Calculation - Onsite Full Spectrum Pond 3

Kimley **»Horn**

2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903

Project:	Eagleview	Prepared By:	BH
Project Number:	196288000	Checked By:	BH
Date:	4/16/2024		

Water Quality Capture Volume

Water Quality Pond 1

Water Quality Capture Volume		
	UDFCD V3 Equation 3-1	WQ Watershed Inches = $a^{(0.91i^{3}-1.19i^{2}+.78i)}$
		a ₁₂ = 0.8 (12-Hr Drain Time)
		a ₂₄ = 0.9 (24-Hr Drain Time)
		a ₄₀ = 1.0 (40-Hr Drain Time)
	UDFCD V3 Equation 3-3	WQCV = (WQCV/12)*(Area)
WQCV Impervious (Site) =	100.0%	
a =	1.0	
WQ Watershed Inches (Site) =	0.60	
Area (Site) =	2.67	AC
WQ Capture Volume (Site) =	0.134	AC-FT
	5,815	FT ³

WQP1 Imperviousness

IMPERVIOUS FACTOR CALCULATION TABLE - PROPOSED CONDITIONS

		Imp %	2%	11%	90%	100%	80%		
	<u>Basin</u>	Area (Acre)	Open Space (2%)	2.5 Acre Lot (100%)	Buildings (100%)	Paved Roadway (100%)	Gravel Roadway (80%)	Total % Check	Weighted Impervious
	PB3	1.38	0%	85%	0%	15%	0%	100%	24%
	PB4	10.54	0%	97%	0%	3%	0%	100%	14%
	PB5	6.18	0%	97%	0%	3%	0%	100%	13%
WQF1	PB6	11.09	0%	95%	0%	5%	0%	100%	5%
	PB7	3.46	0%	91%	0%	9%	0%	100%	9%
	PB15*	5.58	0%	88%	0%	12%	0%	100%	12%
	OB2	28.06	90%	0%	3%	3%	5%	100%	11%
	OB3	43.44	92%	0%	2%	2%	4%	100%	9%
	OB4	10.50	87%	0%	4%	5%	4%	100%	13%
Total		120.24							10.3%

*Total area reduced based on portion tributary to WQP1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Eagleview
Basin ID: Water Quality Pond 1
ZONE 2 ZONE 1 ZONE 1 ZONE 1 ADD 2 ZONE 1 ADD 2 ORIFICE ORIFICE

Depth Increment = 1.00 Stage - Storage Description Example Zone Configuration (Retention Pond)

0.134 acre-feet

0.134

user A 3

user

user

user

user

user н·v user

acre-feet

acre-feet

acre-feet

Watershed Information

PERMA

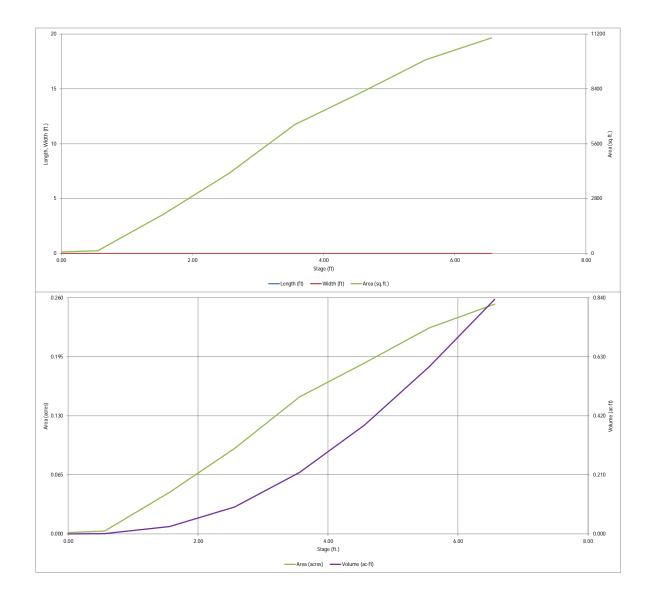
Selected BMP Type =	EDB	
Watershed Area =	120.24	acres
Watershed Length =	4,200	ft
Watershed Length to Centroid =	1,900	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	10.30%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

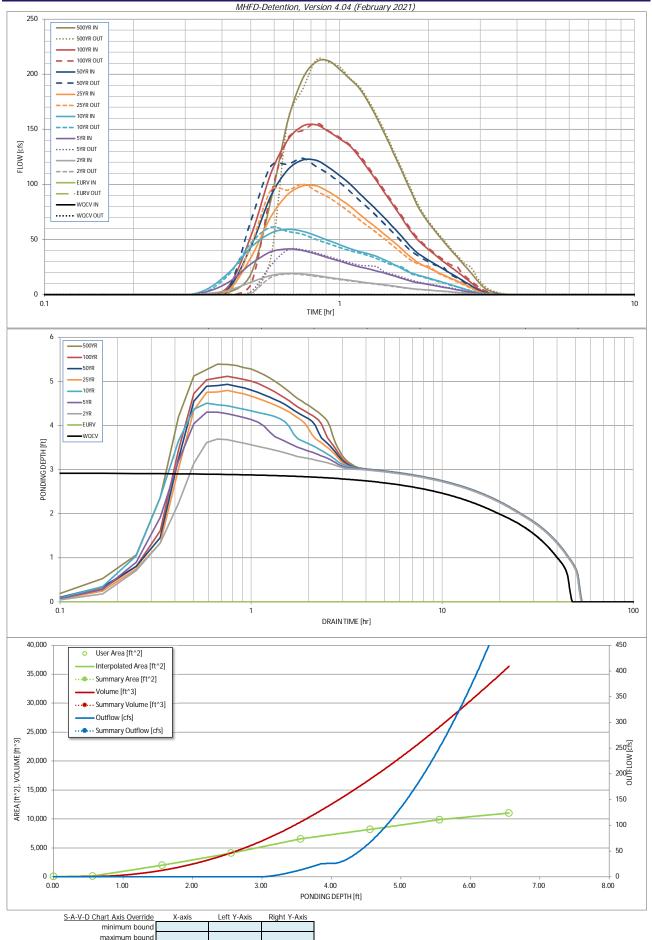
the embedded oblorddo orban nyard	gruphinocouu	
Water Quality Capture Volume (WQCV) =	0.134	acre-feet
Excess Urban Runoff Volume (EURV) =	1.167	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.636	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.586	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	5.529	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	8.980	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	11.339	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	14.730	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	20.917	acre-feet
Approximate 2-yr Detention Volume =	0.747	acre-feet
Approximate 5-yr Detention Volume =	1.169	acre-feet
Approximate 10-yr Detention Volume =	2.396	acre-feet
Approximate 25-yr Detention Volume =	3.330	acre-feet
Approximate 50-yr Detention Volume =	3.486	acre-feet
Approximate 100-yr Detention Volume =	4.498	acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) = Select Zone 2 Storage Volume (Optional) = Select Zone 3 Storage Volume (Optional) = Total Detention Basin Volume -Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) = Total Available Detention Depth (H_{total}) Depth of Trickle Channel (Hrc) = Slope of Trickle Channel (STC) = Slopes of Main Basin Sides (S_{main}) = Basin Length-to-Width Ratio (R_{L/W}) =


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =		ft ²
Volume of Basin Floor (V_{FLODR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

ICE	Depth Increment =	1.00	ft							
			Optional				Optional			
ntion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
,	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				68	0.002		
	-									
	7193		0.56				129	0.003	55	0.001
	7194		1.56				1,995	0.046	1,117	0.026
	7195		2.56				4,092	0.094	4,161	0.096
	7196						6,566			
			3.56					0.151	9,490	0.218
	7197		4.56				8,197	0.188	16,872	0.387
	7198		5.56				9,882	0.227	25,911	0.595
	7199		6.56				11,014	0.253	36,359	0.835
Optional User Overrides										
0.134 acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches									1	
2.25 inches										
	-									
2.52 inches										
inches										
									-	
									1	
			-				-		l	
									1 -	
									1	
Total datastics										
Total detention										
volume is less than										
100-year volume.										
									1	
			-				-		l	
									<u> </u>	
								-		
									L	
									L	
									<u> </u>	
									<u> </u>	
				-						
			-				-		l	
			-				-		-	
									l	
	-									
	-									
	-		-				-		l	
	-									
			-				-		l	
			-				-		l	
	L									
			1				1		1	


+

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

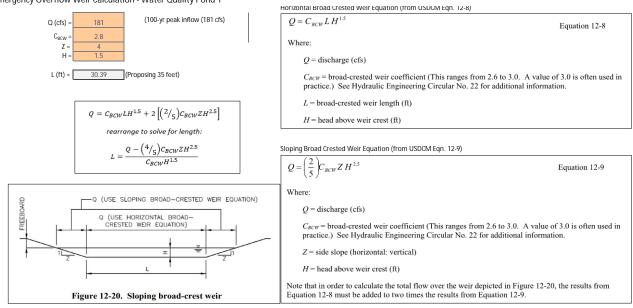
MHFD-Detention, Version 4.04 (February 2021)									
Project: Eagleview Basin ID: Water Quality Pond 1									
Basin ID: ZONE 3	water Quality Pon	id 1							
ZONE 2 ZONE 2 ZONE 1	\frown			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	•		
			Zone 1 (WQCV)	2.93	0.134	Orifice Plate			
	100-YEAR ORIFICE		Zone 2			Weir&Pipe (Circular)			
PERMANENT ORIFICES	GAINGE		Zone 3						
POOL Example Zone	Configuration (Ret	ention Pond)		Total (all zones)	0.134		•		
User Input: Orifice at Underdrain Outlet (typically u	used to drain WQCV	in a Filtration BMP)				1	Calculated Paramet	ters for Underdrain	
Underdrain Orifice Invert Depth =			he filtration media s	urface)	Under	drain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrai	n Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orifices	or Elliptical Slot We	eir (typically used to	drain WQCV and/or	EURV in a sediment	tation BMP)		Calculated Paramet	ters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage = 0) ft)	WQ Orif	fice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.93	ft (relative to basin	bottom at Stage = 0) ft)	EII	iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				tical Slot Centroid =		feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			E	Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice I									1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	4
Stage of Orifice Centroid (ft)	0.00	0.98	1.96						-
Orifice Area (sq. inches)	0.40	0.40	0.60						J
	David (11 1	David Cold Star	Dev. 11 (Dev. 10 (David 10 (11 1	David 1 ()	Den 15 (Devisit ()	1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									1
User Input: Vertical Orifice (Circular or Rectangula	ar)						Calculated Paramet	ters for Vertical Orifi	re
osor input. Voltion of moo (or ould of Reotaingut	Not Selected	Not Selected					Not Selected	Not Selected]
Invert of Vertical Orifice =	Hot bolootou	Hot bolootou	ft (relative to basin	bottom at Stage = ()ft) Ve	rtical Orifice Area =	Hot bolootod	Hot bolootou	ft ²
Depth at top of Zone using Vertical Orifice =				bottom at Stage = (al Orifice Centroid =			feet
Vertical Orifice Diameter =			inches	5	,				1
User Input: Overflow Weir (Dropbox with Flat or S	Sloped Grate and Ou	utlet Pipe OR Rectan	gular/Trapezoidal W	eir (and No Outlet F	Pipe)		Calculated Paramet	ters for Overflow We	ir
	Zone 2 Weir	Not Selected					Zone 2 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	3.00		ft (relative to basin b	ottom at Stage = 0 ft)	Height of Grat	te Upper Edge, $H_t =$	3.00		feet
Overflow Weir Front Edge Length =	5.00		feet		Overflow V	Veir Slope Length =	5.00		feet
Overflow Weir Grate Slope =	0.00		H:V	(Grate Open Area / 10	00-yr Orifice Area =	5.54		
Horiz. Length of Weir Sides =	5.00		feet	(Overflow Grate Oper	Area w/o Debris =	17.40		ft ²
Overflow Grate Type =	Type C Grate				Overflow Grate Ope	en Area w/ Debris =	8.70		ft ²
Debris Clogging % =	50%		%						
User Input: Outlet Pipe w/ Flow Restriction Plate (angular Orifice)		<u>C</u>	alculated Parameter		Flow Restriction Pla	<u>te</u>
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	- 2
Depth to Invert of Outlet Pipe =	0.00			sin bottom at Stage =		Outlet Orifice Area =	3.14		ft ²
Circular Orifice Diameter =	24.00		inches			et Orifice Centroid =	1.00	N1 / A	reet
				Hair-Cei	ntral Angle of Restric	ctor Plate on Pipe =	N/A	N/A	radians
User Input: Emergency Spillway (Rectangular or T	ranezoidal)						Calculated Paramet	ters for Spillway	
Spillway Invert Stage=	4.06	ft (relative to basin	bottom at Stage = 0) ft)	Spillway [Design Flow Depth=	r	feet	
Spillway Crest Length =	35.00	feet	bottom at stage - t	, , , , , , , , , , , , , , , , , , , ,	1 2	Top of Freeboard =		feet	
Spillway End Slopes =	4.00	H:V			•	Top of Freeboard =		acres	
Freeboard above Max Water Surface =	1.00	feet				Top of Freeboard =		acre-ft	
	1100	1001			Busin Volumo ut	rop of frooboard	0.70	doro it	
Routed Hydrograph Results		ide the default CUHP							
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	N/A 0.134	N/A 1.167	1.19 1.636	1.50 3.586	1.75 5.529	2.00 8.980	2.25 11.339	2.52 14.730	3.14 20.917
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.636	3.586	5.529	8.980	11.339	14.730	20.917
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	11.7	32.9	50.2	91.3	114.6	146.5	204.3
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A	0.10 19.3	0.27	0.42	0.76 98.7	0.95	1.22	1.70
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	0.1	N/A 185.2	19.3	41.5 40.8	59.1 61.1	98.7	122.2 123.8	154.2 155.9	212.3 213.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.2	1.2	1.1	1.1	1.1	1.0
Structure Controlling Flow =	Plate	Plate	Overflow Weir 1	Spillway	Spillway	Spillway	Spillway	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	1.08	1.6	1.6	1.7	1.7	1.8	1.8
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 43	N/A >120	N/A 26	N/A 11	N/A 3	N/A 2	N/A 2	N/A 1	N/A 1
Time to Drain 97% of Inflow Volume (nours) =	43	>120	40	31	24	15	10	4	3
Maximum Ponding Depth (ft) =	2.93	0.00	3.70	4.31	4.51	4.80	4.94	5.12	5.39
Area at Maximum Ponding Depth (acres) =	0.11	0.00	0.16	0.18	0.19	0.20	0.20	0.21	0.22
Maximum Volume Stored (acre-ft) =	0.134	0.000	0.238	0.340	0.376	0.432	0.462	0.497	0.557

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	The user can ov									011110
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
	0:15:00 0:20:00	0.00	0.00	0.10	0.17	0.21	0.14	0.19	0.17	0.29
	0:25:00	0.00	0.00	0.46	1.09	1.86 18.83	0.49	0.59	0.63	1.83 18.55
	0:30:00	0.00	0.00	11.33	27.76	42.86	33.70	43.64	53.11	84.74
	0:35:00	0.00	0.00	17.34	38.78	55.90	70.39	89.16	109.51	157.30
	0:40:00	0.00	0.00	19.27	41.48	59.12	90.92	113.26	140.23	196.11
	0:45:00	0.00	0.00	18.90	40.09	57.61	98.66	122.18	152.97	211.55
	0:50:00	0.00	0.00	17.34	36.80	53.36	98.63	121.86	154.15	212.29
	0:55:00	0.00	0.00	15.64	33.45	49.11	93.40	115.58	148.12	204.53
	1:00:00 1:05:00	0.00	0.00	14.28 13.01	30.51 27.68	45.42 41.87	86.89 80.43	108.09 100.61	141.52 135.04	195.94 187.43
	1:10:00	0.00	0.00	11.81	25.34	39.20	73.19	92.07	124.98	174.79
	1:15:00	0.00	0.00	10.78	23.44	37.15	66.61	84.36	113.96	160.96
	1:20:00	0.00	0.00	9.83	21.54	34.70	60.65	77.09	103.35	146.83
	1:25:00	0.00	0.00	8.90	19.62	31.69	54.96	69.92	92.98	132.34
	1:30:00	0.00	0.00	8.00	17.69	28.48	49.39	62.87	83.22	118.53
	1:35:00	0.00	0.00	7.10	15.78	25.26	44.01	56.07	74.08	105.48
	1:40:00 1:45:00	0.00	0.00	6.23	13.83	22.15	38.71	49.37	65.19	92.88
	1:45:00	0.00	0.00	5.47 4.96	12.16 10.98	19.75 18.03	33.61 29.71	42.96 38.14	56.79 50.36	81.33 72.47
	1:55:00	0.00	0.00	4.98	10.98	16.03	26.75	34.44	45.35	65.44
	2:00:00	0.00	0.00	4.21	9.22	15.16	24.30	31.35	41.06	59.38
	2:05:00	0.00	0.00	3.84	8.39	13.77	22.05	28.46	37.14	53.74
	2:10:00	0.00	0.00	3.47	7.56	12.38	19.96	25.74	33.47	48.38
	2:15:00	0.00	0.00	3.11	6.76	11.03	17.97	23.14	30.03	43.32
	2:20:00	0.00	0.00	2.75	5.97	9.73	16.05	20.65	26.79	38.58
	2:25:00	0.00	0.00	2.41	5.21	8.48	14.21	18.27	23.79	34.18
	2:30:00 2:35:00	0.00	0.00	2.07	4.47	7.29 6.14	12.41 10.62	15.95 13.68	20.85 17.95	29.92 25.73
	2:40:00	0.00	0.00	1.74	3.01	5.03	8.85	11.43	15.05	21.58
	2:45:00	0.00	0.00	1.09	2.30	3.92	7.10	9.20	12.17	17.46
	2:50:00	0.00	0.00	0.77	1.60	2.84	5.35	6.98	9.30	13.36
	2:55:00	0.00	0.00	0.48	0.99	1.92	3.64	4.80	6.49	9.46
	3:00:00	0.00	0.00	0.28	0.63	1.38	2.23	3.04	4.20	6.38
	3:05:00 3:10:00	0.00	0.00	0.20	0.47	1.08	1.42	2.04	2.81	4.45
	3:10:00	0.00	0.00	0.15	0.37	0.86	0.93	1.40 0.97	1.90 1.25	3.12 2.15
	3:20:00	0.00	0.00	0.12	0.23	0.54	0.41	0.97	0.80	1.45
	3:25:00	0.00	0.00	0.08	0.18	0.41	0.28	0.47	0.48	0.94
	3:30:00	0.00	0.00	0.06	0.14	0.31	0.19	0.32	0.26	0.58
	3:35:00	0.00	0.00	0.05	0.11	0.22	0.13	0.22	0.16	0.37
	3:40:00	0.00	0.00	0.04	0.08	0.16	0.09	0.16	0.12	0.27
	3:45:00	0.00	0.00	0.03	0.06	0.11	0.07	0.12	0.09	0.21
	3:50:00 3:55:00	0.00	0.00	0.02	0.04	0.08	0.05	0.09	0.07	0.16
	4:00:00	0.00	0.00	0.02	0.03	0.06	0.04	0.07	0.06	0.13
	4:05:00	0.00	0.00	0.01	0.02	0.04	0.02	0.03	0.04	0.07
	4:10:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.04
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)


Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of al
							outlets (e.g. vertical orifice,
							outlets (e.g. vertical orifice, overflow grate, and spillway where applicable).
							where applicable).
							1
]
							1
		<u> </u>			<u> </u>		4
							1
]
							4
							1

Kimley »Horn

Project: Eagleview Date: 4/15/2024

Emergency Overflow Weir Calculation - Water Quality Pond 1

Kimley **»Horn**

2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903

Project:	Eagleview	Prepared By:	BH
Project Number:	196288000	Checked By:	BH
Date:	4/16/2024		

Water Quality Capture Volume

Water Quality Pond 2

Water Quality Capture Volume		
	UDFCD V3 Equation 3-1	WQ Watershed Inches = $a^{*}(0.91i^{3}-1.19i^{2}+.78i)$
		a ₁₂ = 0.8 (12-Hr Drain Time)
		a ₂₄ = 0.9 (24-Hr Drain Time)
		a ₄₀ = 1.0 (40-Hr Drain Time)
	UDFCD V3 Equation 3-3	WQCV = (WQCV/12)*(Area)
WQCV Impervious (Site) =	100.0%	
a =	1.0	
WQ Watershed Inches (Site) =	0.60	
Area (Site) =	1.03	AC
WQ Capture Volume (Site) =	0.052	AC-FT
	2,243	FT ³

IMPERVIOUS FACTOR CALCULATION TABLE - PROPOSED CONDITIONS

		Imp %	2%	11%	90%	100%	80%		
	<u>Basin</u>	Area (Acre)	Open Space (2%)	2.5 Acre Lot (100%)	Buildings (100%)	Paved Roadway (100%)	Gravel Roadway (80%)	Total % Check	Weighted Impervious
	PB11	21.08	0%	96%	0%	4%	0%	100%	14%
WQF2	PB14*	3.38	0%	92%	0%	8%	0%	100%	18%
	OB8	33.08	93%	0%	2%	1%	5%	100%	8%
Total		57.54							10.9%

*Total area reduced based on portion tributary to WQP2

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment = 1.00 Stage - Storage Description Stage (ft) Example Zone Configuration (Retention Pond)

0.052 acre-feet

0.052

user ft ³

user

user

user

user

acre-feet

acre-feet

acre-feet

н·v

Watershed Information

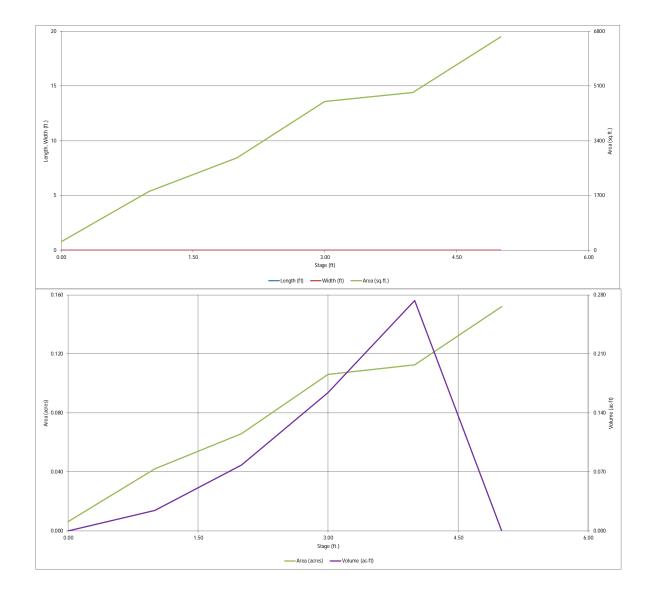
PERMANENT-

ersneu mitormation		
Selected BMP Type =	EDB	
Watershed Area =	57.54	acres
Watershed Length =	3,600	ft
Watershed Length to Centroid =	2,000	ft
Watershed Slope =	0.039	ft/ft
Watershed Imperviousness =	10.90%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orbannyare	gruphinocouu	
Water Quality Capture Volume (WQCV) =	0.052	acre-feet
Excess Urban Runoff Volume (EURV) =	0.594	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.812	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.753	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	2.687	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	4.336	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	5.467	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	7.089	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	10.053	acre-feet
Approximate 2-yr Detention Volume =	0.382	acre-feet
Approximate 5-yr Detention Volume =	0.595	acre-feet
Approximate 10-yr Detention Volume =	1.191	acre-feet
Approximate 25-yr Detention Volume =	1.640	acre-feet
Approximate 50-yr Detention Volume =	1.720	acre-feet
Approximate 100-yr Detention Volume =	2.211	acre-feet

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) = Select Zone 2 Storage Volume (Optional) = Select Zone 3 Storage Volume (Optional) = Total Detention Basin Volume = Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) = Total Available Detention Depth (H_{total}) Depth of Trickle Channel (Hrc) = Slope of Trickle Channel (STC) = $\label{eq:slopes} \begin{array}{l} \text{Slopes of Main Basin Sides (S}_{main}) = & \\ \text{Basin Length-to-Width Ratio (R}_{L/W}) = & \\ \end{array}$

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (WISV) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

CE	Depth Increment =	1.00	ft							
	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
ntion Pond)	Description	(ft)	Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft 2)	Area (acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				270	0.006		(=3 11)
	7199								1.017	0.001
			1.00				1,824	0.042	1,047	0.024
	7200		2.00				2,873	0.066	3,395	0.078
	7201		3.00				4,622	0.106	7,143	0.164
	7202		4.00				4,897	0.112	11,902	0.273
	7203		5.00				6,627	0.152		
	7200		0.00				0,027	0.102	-	-
										<u> </u>
Online of the operation										
Optional User Overrides										
0.052 acre-feet										I
acre-feet										
1.19 inches										
1.50 inches										1
1.75 inches										ĺ
2.00 inches										[
2.25 inches									1	
2.52 inches									+	
2.52 inches							-		+	
inches									+	I
	-							<u> </u>		
									1	
									1	
										1
									1	
									1	
							-		+	
Total detention										I
volume is less than										
100-year volume.										ĺ
										ĺ
									-	-
										<u> </u>
										I
										ĺ
									-	-
										[
									1	
									+	
								L		
									1	
							1		1	
								<u> </u>		
									+	
									+	
									1	
									+	
									+	
									+	
										-
									+	
									1	(
										<u> </u>
									1	
									1	
							1		1	
									+	
									1	[
							1	1	1	()

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

MHFD-Detention, Version 4.04 (February 2021) Project: Eagleview Basin ID: Water Quality Pond 2 Estimated Estimated Volume (ac-ft) Outlet Type Stage (ft) URV Zone 1 (WQCV) 1.58 0.052 Orifice Plate Weir&Pipe (Circular) Zone 2 100-YEAR ZONE 1 AND 2 Zone 3 **Example Zone Configuration (Retention Pond)** 0.052 Total (all zones) in a Filtration BMP) User Input: Orifice at Underdrain Outlet (typically used to drain WOCV Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth : N/A N/A ft² Underdrain Orifice Diameter N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row N/A 0.00 ft Depth at top of Zone using Orifice Plate 1 58 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing N/A inches Elliptical Slot Centroid N/A feet ft² Orifice Plate: Orifice Area per Row = N/A inches Elliptical Slot Area N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 3 (optional) Row 5 (optional) Row 1 (required) Row 2 (optional) Row 4 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.53 1.06 Orifice Area (sq. inches) 0.30 0.30 0.30 Row 11 (optional) Row 15 (optional) Row 1<u>0 (optional)</u> Row 1<u>3 (optional)</u> Row 9 (optional) Row 12 (optional) Row 14 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area Depth at top of Zone using Vertical Orifice Vertical Orifice Centroid = ft (relative to basin bottom at Stage = 0 ft) feet Vertical Orifice Diameter = inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 2 Weir Not Selected Zone 2 Weir Not Selected Overflow Weir Front Edge Height, Ho = 1.70 Height of Grate Upper Edge, Ht = 1.70 ft (relative to basin bottom at Stage = 0 ft) feet Overflow Weir Front Edge Length 3 4 3 Overflow Weir Slope Length 2.79 feet feet Overflow Weir Grate Slope 0.00 H:V Grate Open Area / 100-yr Orifice Area = 3.77 Horiz, Length of Weir Sides = 2 7 9 feet Overflow Grate Open Area w/o Debris = 6 66 ft Overflow Grate Type Type C Grate Overflow Grate Open Area w/ Debris = 3.33 ft² Debris Clogging % = 50% 26 User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 2 Circular Not Selected Zone 2 Circular Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 1.77 0.00 ft² ft (distance below basin bottom at Stage = 0 ft) Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid 0.75 feet Half-Central Angle of Restrictor Plate on Pipe = radians N/A N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 2 75 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth-0.75 feet Stage at Top of Freeboard = Spillway Crest Length : 25.00 feet 4.50 feet 4.00 H:V 0.00 Spillway End Slopes Basin Area at Top of Freeboard acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = #VALUE! 1.00 feet acre-ft Routed Hydrograph Results The user can override the default CUHP bydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF FUR\ 10 Yea 500 Year Design Storm Return Period WOC Yea Yea 25 Ye 50 Yea 100 Yea One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 CUHP Runoff Volume (acre-ft) 1.753 7.089 0.594 0.812 4.336 10.053 2.687 5.467 Inflow Hydrograph Volume (acre-ft) 1.753 4.336 0.812 5.467 7.089 N/A N/A 2.687 10.053 CUHP Predevelopment Peak Q (cfs) 12.5 19.4 80.1 N/A 4.4 35.5 44.6 57.2 N/A OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) 0.62 N/A N/A 0.08 0.22 0.34 0.78 0.99 1.39 Peak Inflow Q (cfs) 48.5 84.7 N/A N/A 7.6 16.1 23.0 39.3 61.3 Peak Outflow Q (cfs) 0.0 100.9 7.6 16.4 24.3 39.8 49.4 84.4 62.2 Ratio Peak Outflow to Predevelopment Q = N/A N/A NI/A 11 11 1 1 Structure Controlling Flow Plate Spillway Overflow Weir 1 Spillway Spillway Spillway Spillway Spillway Spillway Max Velocity through Grate 1 (fps) N/A 1.13 1.9 1.9 2.0 2.0 2.1 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 42 0 21 7 3 2 2 1 1 Time to Drain 99% of Inflow Volume (hours) 46 0 36 27 20 11 7 4 3 3.33 3.45 Maximum Ponding Depth (ft) 1.58 4.01 2.22 2.89 3.03 3.23 3.64 Area at Maximum Ponding Depth (acres) 0.06 0.00 0.07 0.10 0.11 0.11 0.11 0.11 0.11

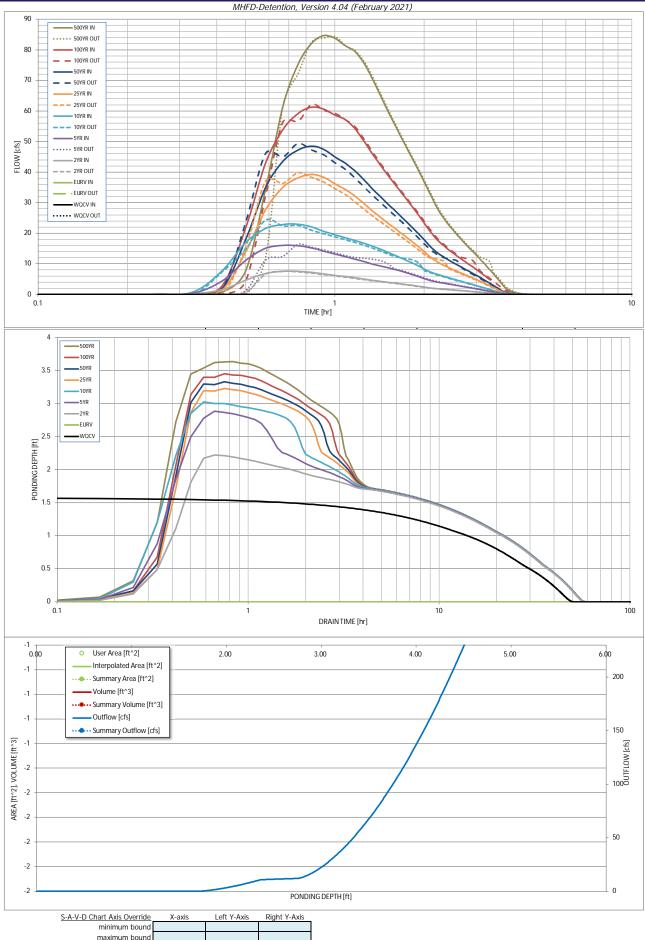
#VALUF

0.093

0 152

0.166

0 187


0 199

0 212

0.052

Maximum Volume Stored (acre-ft) =

0 232

Outflow Hydrograph Workbook Filename:

	Inflow Hydrog									
								a separate progra		011115
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:20:00	0.00	0.00	0.03	0.50	0.83	0.22	0.09	0.30	0.13
	0:25:00	0.00	0.00	1.61	4.47	7.82	1.56	2.01	2.86	7.72
	0:30:00	0.00	0.00	4.67	11.14	16.97	13.89	17.94	21.74	34.21
	0:35:00	0.00	0.00	6.87	15.06	21.56	27.62	34.89	42.85	61.24
	0:40:00	0.00	0.00	7.57 7.58	16.08 15.96	22.90 22.99	34.97 38.17	43.49 47.26	53.81 59.16	75.28 82.10
	0:50:00	0.00	0.00	7.23	15.26	22.10	39.26	48.54	61.28	84.68
	0:55:00	0.00	0.00	6.74	14.22	20.71	38.34	47.46	60.60	83.72
	1:00:00	0.00	0.00	6.26	13.21	19.56	36.19	44.97	58.67	81.35
	1:05:00	0.00	0.00	5.88 E 49	12.39	18.60	34.35	42.91	57.17	79.48
	1:15:00	0.00	0.00	5.48 5.05	11.60 10.78	17.68 16.77	32.22 29.85	40.44 37.64	54.29 50.32	75.84 70.83
	1:20:00	0.00	0.00	4.65	10.02	15.85	27.43	34.70	46.21	65.43
	1:25:00	0.00	0.00	4.32	9.38	14.88	25.37	32.13	42.55	60.40
	1:30:00	0.00	0.00	4.03	8.80	13.90	23.51	29.80	39.28	55.84
	1:35:00	0.00	0.00	3.76	8.24	12.94	21.77	27.62	36.30	51.63
	1:40:00	0.00	0.00	3.50 3.23	7.65	11.99 11.06	20.13 18.55	25.56 23.57	33.54 30.88	47.71 43.93
	1:50:00	0.00	0.00	2.97	6.41	10.16	18.55	23.57	28.29	43.93
	1:55:00	0.00	0.00	2.70	5.80	9.25	15.48	19.71	25.77	36.71
	2:00:00	0.00	0.00	2.43	5.20	8.32	13.98	17.83	23.31	33.25
	2:05:00	0.00	0.00	2.17	4.65	7.49	12.49	15.95	20.88	29.87
	2:10:00 2:15:00	0.00	0.00	1.97 1.83	4.25	6.88 6.37	11.21 10.26	14.35 13.15	18.80 17.20	27.00 24.73
	2:20:00	0.00	0.00	1.83	3.68	5.92	9.47	12.14	15.84	22.78
	2:25:00	0.00	0.00	1.59	3.42	5.49	8.78	11.24	14.64	21.03
	2:30:00	0.00	0.00	1.47	3.17	5.08	8.15	10.42	13.54	19.43
	2:35:00	0.00	0.00	1.36	2.94	4.68	7.56	9.66	12.52	17.94
	2:40:00 2:45:00	0.00	0.00	1.26	2.70	4.30 3.93	6.99 6.45	8.93	11.56 10.67	16.55 15.24
	2:50:00	0.00	0.00	1.05	2.25	3.58	5.92	7.54	9.81	14.00
	2:55:00	0.00	0.00	0.95	2.04	3.24	5.39	6.88	8.96	12.77
	3:00:00	0.00	0.00	0.86	1.82	2.90	4.87	6.22	8.11	11.56
	3:05:00	0.00	0.00	0.76	1.61	2.58	4.36	5.56	7.27	10.35
	3:10:00 3:15:00	0.00	0.00	0.66	1.40 1.19	2.25	3.84	4.91	6.42 5.58	9.15 7.95
	3:20:00	0.00	0.00	0.46	0.98	1.60	2.82	3.60	4.74	6.75
	3:25:00	0.00	0.00	0.37	0.77	1.28	2.30	2.96	3.90	5.55
	3:30:00	0.00	0.00	0.27	0.57	0.97	1.79	2.31	3.07	4.36
	3:35:00 3:40:00	0.00	0.00	0.18	0.37	0.66	1.29	1.67	2.23	3.19
	3:45:00	0.00	0.00	0.11	0.23	0.47	0.80	1.06 0.70	1.45 0.97	2.13
	3:50:00	0.00	0.00	0.05	0.13	0.29	0.34	0.48	0.66	1.45
	3:55:00	0.00	0.00	0.04	0.10	0.23	0.23	0.34	0.44	0.74
	4:00:00	0.00	0.00	0.04	0.08	0.19	0.15	0.24	0.29	0.50
	4:05:00 4:10:00	0.00	0.00	0.03	0.07	0.14 0.11	0.10	0.17 0.12	0.18	0.33
	4:15:00	0.00	0.00	0.02	0.04	0.08	0.05	0.08	0.06	0.13
	4:20:00	0.00	0.00	0.01	0.03	0.06	0.04	0.06	0.04	0.10
	4:25:00 4:30:00	0.00	0.00	0.01	0.02	0.04	0.03	0.04	0.03	0.07
	4:35:00	0.00	0.00	0.01	0.01	0.02	0.01	0.03	0.02	0.04
	4:40:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.03
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01 0.01	0.01 0.01	0.02
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

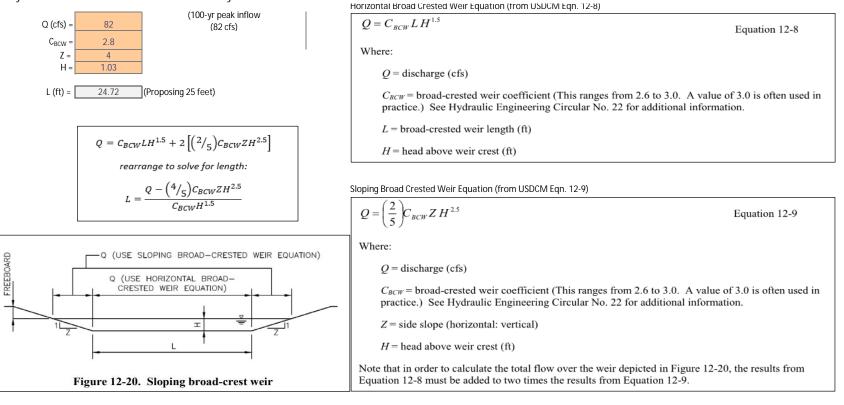

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Image: Stages of all grade slope Image: Stages of	Sta	age - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]		
Also include the inverts of al									For best results, include the	
Also include the inverts of al									stages of all grade slope	
Also include the inverts of al									from the S-A-V table on	
outlets (e.g. vertical orifice									Sheet 'Basin'.	
outlets (e.g. vertical orifice									Also include the inverts of a	
									outlets (e.g. vertical orifice	
Image: set of the									overflow grate, and spillway,	
Image: sector										
Image: section of the section of t										
Image: sector of the sector										
Image: state of the state of										
Image: sector of the sector										
Image: set of the										
Image: set of the										
Image: section of the section of th										
Image: section of the section of th										
Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Image: section of the section of th										
Image: section of the section of th										
Image: section of the section of th										
Image: set of the										
Image: set of the										
Image: set of the										
Image: section of the section of th										
Image: section of the section of th										
Image: set of the										
Image: section of the section of th										
Image: section of the section of th										
Image: sector										
Image: sector										
Image: state stat										
				ļ			ļ			
									1	

Kimley »Horn

Project: Eagleview Date: 4/19/2024

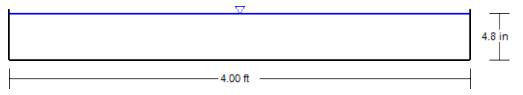
Emergency Overflow Weir Calculation - Water Quality Pond 2

Kimley »	Horn								
Extended Deten	tion Basin (EDB)	Calculations							
Project Date Prepared By Checked By	Eagleview - Water C 6/26/2024 DCM BAH	Quality Pond 1, Forebay	A Manual Input Multipliers						
Release Factor:	0.02								
Forebay Release	_	/notch or berm/pipe co	etained 100-year peak d onfiguration	ischarge by way of a					
Forebay	Incoming Pipe Diameter (in)	Undetained 100- year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)					
A	N/A	131.95	2.64	8.8					
					1				
		Maximum Forebay D	Jepth						
Forebay	Impervious Area in Watershed (ac)	Maximum Forebay Depth (in)	Design Forebay Depth (in)	Design Forebay Depth (ft)	Note: a forebay depth of 30" requires handrails by most City Standards				
A	10.60	18	18	1.5					
								0.02	
		Minimum	Forebay Volume Requir	red: 3% WQCV			Volume Factor:	0.03	
Forebay	WQCV (ac-ft)	Required Volume (ac- ft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Design Volume (cf)			
Α	0.115	0.003	150	22	20	660			

Kimley »	Horn								
Extended Deten	tion Basin (EDB)	Calculations							
Project Date Prepared By Checked By	Eagleview - Water C 6/26/2024 DCM BAH	uality Pond 1, Forebay	r B Manual Input Multipliers						
Release Factor:	0.02								
Forebay Releas	-	Release 2% of the unde notch or berm/pipe co		ischarge by way of a					
Forebay Releas Forebay	wall, Incoming Pipe	notch or berm/pipe co Undetained 100- year Peak Discharge	onfiguration	Forebay Notch Width					
	wall,	notch or berm/pipe cc Undetained 100-							
Forebay	wall, Incoming Pipe Diameter (in)	<mark>notch or berm/pipe cc Undetained 100- year Peak Discharge (cfs) 22.25</mark>	Release Rate (cfs)	Forebay Notch Width (in)					
Forebay	wall, Incoming Pipe Diameter (in)	notch or berm/pipe co Undetained 100- year Peak Discharge (cfs) 22.25 Maximum Forebay D	Release Rate (cfs)	Forebay Notch Width (in) 4.5	Note: a forebay depth of 30" requires handrails by most City Standards				
Forebay B	wall, Incoming Pipe Diameter (in) N/A Impervious Area in	notch or berm/pipe co Undetained 100- year Peak Discharge (cfs) 22.25 Maximum Forebay D Maximum Forebay	Release Rate (cfs) 0.45 Depth Design Forebay Depth	Forebay Notch Width (in) 4.5 Design Forebay Depth					
Forebay B Forebay	wall, Incoming Pipe Diameter (in) N/A Impervious Area in Watershed (ac)	<pre>/notch or berm/pipe cc Undetained 100- year Peak Discharge (cfs) 22.25 Maximum Forebay D Maximum Forebay Depth (in) 12</pre>	Release Rate (cfs) 0.45 Depth Design Forebay Depth (in) 18	Forebay Notch Width (in) 4.5 Design Forebay Depth (ft) 1.5	30" requires handrails by				
Forebay B Forebay	wall, Incoming Pipe Diameter (in) N/A Impervious Area in Watershed (ac)	<pre>/notch or berm/pipe cc Undetained 100- year Peak Discharge (cfs) 22.25 Maximum Forebay D Maximum Forebay Depth (in) 12</pre>	Release Rate (cfs) 0.45 Depth Design Forebay Depth (in)	Forebay Notch Width (in) 4.5 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volume Factor:	0.03	
Forebay B Forebay	wall, Incoming Pipe Diameter (in) N/A Impervious Area in Watershed (ac) 1.79	<pre>/notch or berm/pipe cc Undetained 100- year Peak Discharge (cfs) 22.25 Maximum Forebay D Maximum Forebay Depth (in) 12</pre>	Release Rate (cfs) 0.45 Depth Design Forebay Depth (in) 18 Forebay Volume Requir	Forebay Notch Width (in) 4.5 Design Forebay Depth (ft) 1.5	30" requires handrails by	Design Volume (cf)	Volume Factor:	0.03	

roject Date Prepared By Checked By	Eagleview - Water C 6/26/2024 DCM BAH	uality Pond 2, Forebay	A Manual Input Multipliers					
Release Factor:	0.02							
Forebay Releas		notch or berm/pipe co	etained 100-year peak d onfiguration	ischarge by way of a				
Forebay	Incoming Pipe	Undetained 100-						
	Diameter (in)	year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)				
Α		-	Release Rate (cfs) 1.23	-				
Α	Diameter (in)	(cfs) 61.30	1.23	(in)]			
A	Diameter (in)	(cfs)	1.23	(in)]			
A	Diameter (in)	(cfs) 61.30 Maximum Forebay D	1.23	(in) 6.0	Note: a forebay depth of 30" requires handrails by most City Standards			
	Diameter (in) N/A	(cfs) 61.30 Maximum Forebay D Maximum Forebay	1.23 Depth Design Forebay Depth	(in) 6.0 Design Forebay Depth	30" requires handrails by			
Forebay	Diameter (in) N/A Impervious Area in Watershed (ac)	(cfs) 61.30 Maximum Forebay D Maximum Forebay Depth (in) 18	1.23 Depth Design Forebay Depth (in) 18	(in) 6.0 Design Forebay Depth (ft) 1.5	30" requires handrails by			
Forebay	Diameter (in) N/A Impervious Area in Watershed (ac)	(cfs) 61.30 Maximum Forebay D Maximum Forebay Depth (in) 18	1.23 Depth Design Forebay Depth (in)	(in) 6.0 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volume Factor:	0.03
Forebay	Diameter (in) N/A Impervious Area in Watershed (ac) 6.27	(cfs) 61.30 Maximum Forebay D Maximum Forebay Depth (in) 18	1.23 Depth Design Forebay Depth (in) 18 Forebay Volume Requir	(in) 6.0 Design Forebay Depth (ft) 1.5 ed: 3% WQCV	30" requires handrails by	Design Volume (cf)	Volume Factor:	0.03

Kimley »	Horn								
Extended Detent	tion Basin (EDB)	Calculations							
Project Date Prepared By Checked By	Eagleview - Full Spec 6/26/2024 DCM BAH	ctrum Pond 3, Forebay	A Manual Input Multipliers						
Release Factor:	0.02								
Forebay Release	-	/notch or berm/pipe co	etained 100-year peak d onfiguration	ischarge by way of a					
Forebay	Incoming Pipe Diameter (in)	Undetained 100- year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)					
Α	N/A	120.02	2.40	7.9					
			V I .		1				
		Maximum Forebay D	Jepth						
Forebay	Impervious Area in Watershed (ac)	Maximum Forebay Depth (in)	Design Forebay Depth (in)	Design Forebay Depth (ft)	Note: a forebay depth of 30" requires handrails by most City Standards				
A	10.19	18	24	2					
								0.00	
		Minimum	Forebay Volume Requir	ed: 3% WQCV			Volume Factor:	0.03	
Forebay	WQCV (ac-ft)	Required Volume (ac- ft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Design Volume (cf)			
А	0.6856921	0.021	896	24	36	1728			
							-		


oject ate	6/26/2024	ctrum Pond 3, Forebay	Manual Input						
epared By necked By	DCM BAH		Multipliers						
Release Factor:	0.02								
]			1				
Forebay Relea	_	/notch or berm/pipe co	etained 100-year peak di onfiguration	ischarge by way of a					
_ .		Undetained 100-							
Forebay	Incoming Pipe	year Peak Discharge	Rolozso Rato (cfs)	Forebay Notch Width (in)					
Forebay B	Incoming Pipe Diameter (in) N/A	year Peak Discharge (cfs) 4.78	Release Rate (cfs) 0.10	Forebay Notch Width (in) 3.8					
-	Diameter (in)	(cfs) 4.78	0.10	(in)					
-	Diameter (in)	(cfs)	0.10	(in)					
-	Diameter (in)	(cfs) 4.78 Maximum Forebay D	0.10	(in) 3.8	Note: a forebay depth of 30" requires handrails by most City Standards				
В	Diameter (in) N/A	(cfs) 4.78 Maximum Forebay D Maximum Forebay	0.10 Depth Design Forebay Depth	(in) 3.8 Design Forebay Depth	30" requires handrails by				
B	Diameter (in) N/A Impervious Area in Watershed (ac)	(cfs) 4.78 Maximum Forebay D Maximum Forebay Depth (in) NO REQ	0.10 Depth Design Forebay Depth (in) 18	(in) 3.8 Design Forebay Depth (ft) 1.5	30" requires handrails by			0.02	
B	Diameter (in) N/A Impervious Area in Watershed (ac)	(cfs) 4.78 Maximum Forebay D Maximum Forebay Depth (in) NO REQ	0.10 Depth Design Forebay Depth (in)	(in) 3.8 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volume Factor:	0.03	
B	Diameter (in) N/A Impervious Area in Watershed (ac) 0.41	(cfs) 4.78 Maximum Forebay D Maximum Forebay Depth (in) NO REQ	0.10 Depth Design Forebay Depth (in) 18	(in) 3.8 Design Forebay Depth (ft) 1.5	30" requires handrails by	Design Volume (cf)	Volume Factor:	0.03	

Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	Note: Total release rate from both Pond 1 forebays is 3.09 cfs. T
Bottom Width	4.00 ft	trickle channel has been sized for twice that flow rate, or 6.2 cfs.
Discharge	6.20 cfs	
Results		
Normal Depth	4.8 in	
Flow Area	1.6 ft ²	
Wetted Perimeter	4.8 ft	
Hydraulic Radius	4.0 in	
Top Width	4.00 ft	
Critical Depth	5.1 in	
Critical Slope	0.004 ft/ft	
Velocity	3.88 ft/s	
Velocity Head	0.23 ft	
Specific Energy	0.63 ft	
Froude Number	1.083	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.8 in	
Critical Depth	5.1 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	

Worksheet for WQP1

Cross Section for WQP1

Friction Method	Manning Formula	
Solve For	Normal Depth	
put Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Normal Depth	4.8 in	
Bottom Width	4.00 ft	
Discharge	6.20 cfs	

V:1 L H:1

TrickleChannels.fm8 6/26/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

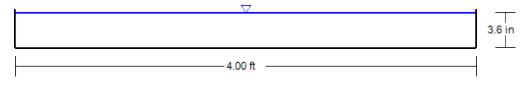
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.008 ft/ft	Note: Total release rate from the Pond 2 forebay is 1.23 cfs. Th
Bottom Width	4.00 ft	trickle channel has been sized for twice that flow rate, or 2.46 cf
Discharge	2.46 cfs	
Results		
Normal Depth	2.3 in	
Flow Area	0.8 ft ²	
Wetted Perimeter	4.4 ft	
Hydraulic Radius	2.1 in	
Top Width	4.00 ft	
Critical Depth	2.7 in	
Critical Slope	0.005 ft/ft	
Velocity	3.20 ft/s	
Velocity Head	0.16 ft	
Specific Energy	0.35 ft	
Froude Number	1.288	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.3 in	
Critical Depth	2.7 in	
Channel Slope	0.008 ft/ft	
Critical Slope	0.005 ft/ft	

Worksheet for WQP2

Cross Section for WQP2

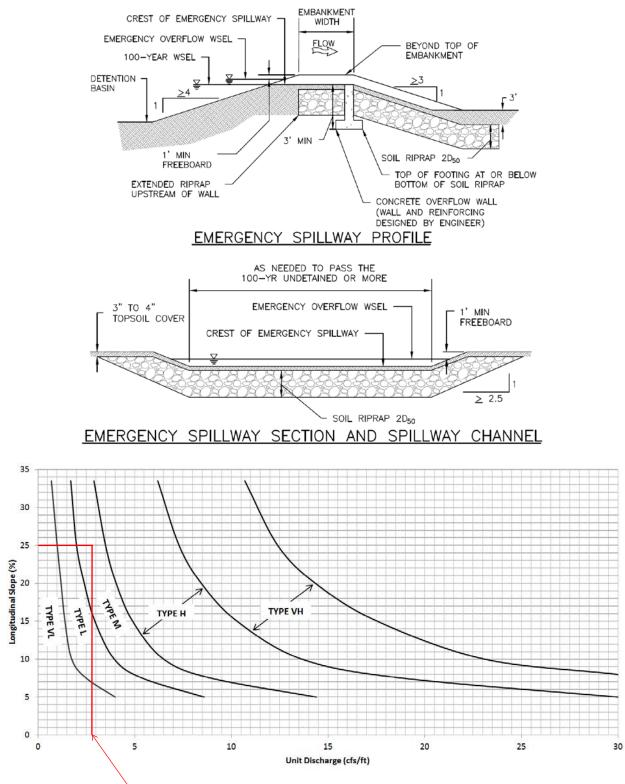
Friction Method	Manning Formula	
Solve For	Normal Depth	
nput Data		
Roughness Coefficient	0.013	
Channel Slope	0.008 ft/ft	
Normal Depth	2.3 in	
Bottom Width	4.00 ft	
Discharge	2.46 cfs	

— 4.00 ft —


TrickleChannels.fm8 6/26/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.008 ft/ft	Note: Total release rate from both Pond 3 forebays is 2.5 cfs. Th
Bottom Width	4.00 ft	trickle channel has been sized for twice that flow rate, or 5.0 cfs.
Discharge	5.00 cfs	
Results		
Normal Depth	3.6 in	
Flow Area	1.2 ft ²	
Wetted Perimeter	4.6 ft	
Hydraulic Radius	3.1 in	
Top Width	4.00 ft	
Critical Depth	4.4 in	
Critical Slope	0.004 ft/ft	
Velocity	4.17 ft/s	
Velocity Head	0.27 ft	
Specific Energy	0.57 ft	
Froude Number	1.345	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.6 in	
Critical Depth	4.4 in	
Channel Slope	0.008 ft/ft	
Critical Slope	0.004 ft/ft	

Worksheet for Pond3


Cross Section for Pond3

Friction Method	Manning Formula	
Solve For	Normal Depth	
put Data		
Roughness Coefficient	0.013	
Channel Slope	0.008 ft/ft	
Normal Depth	3.6 in	
Bottom Width	4.00 ft	
Discharge	5.00 cfs	

V: 1 L H: 1

TrickleChannels.fm8 6/26/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 109 cfs/40 ft = 2.73

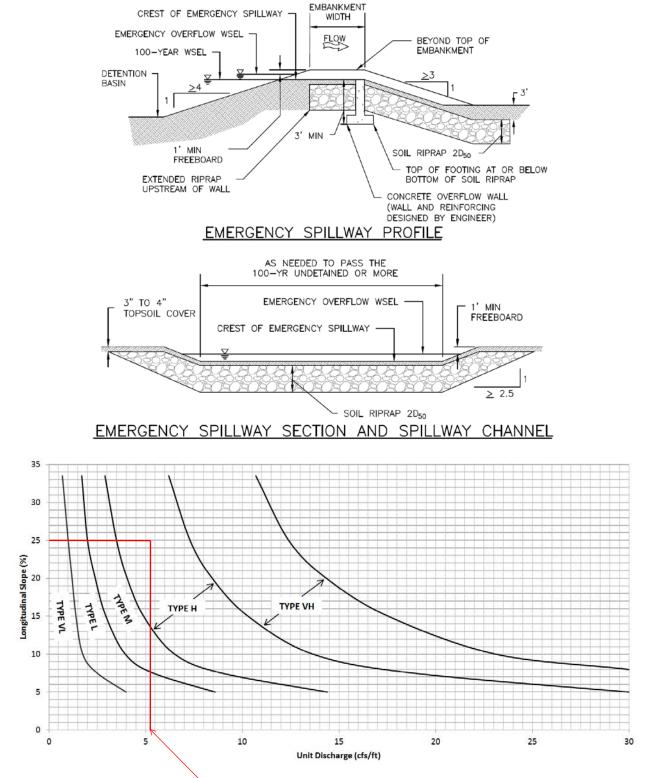
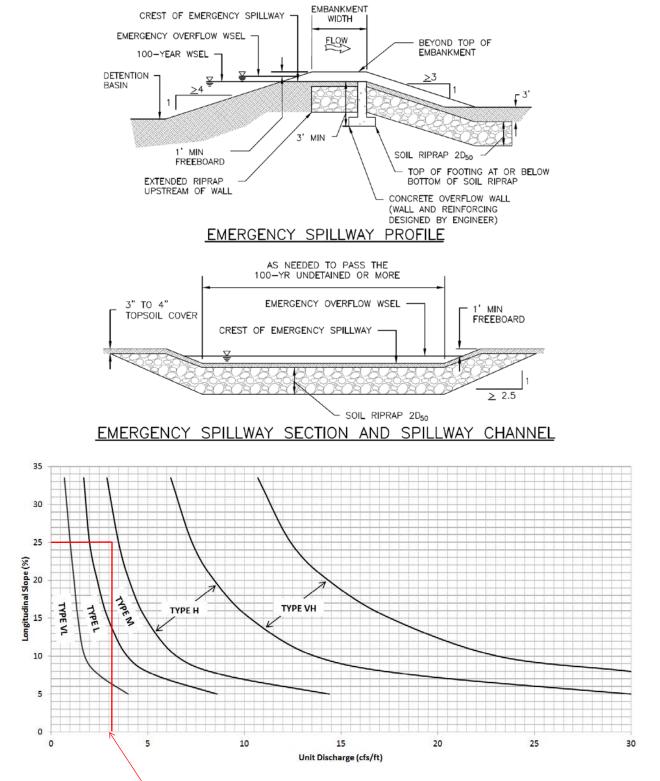
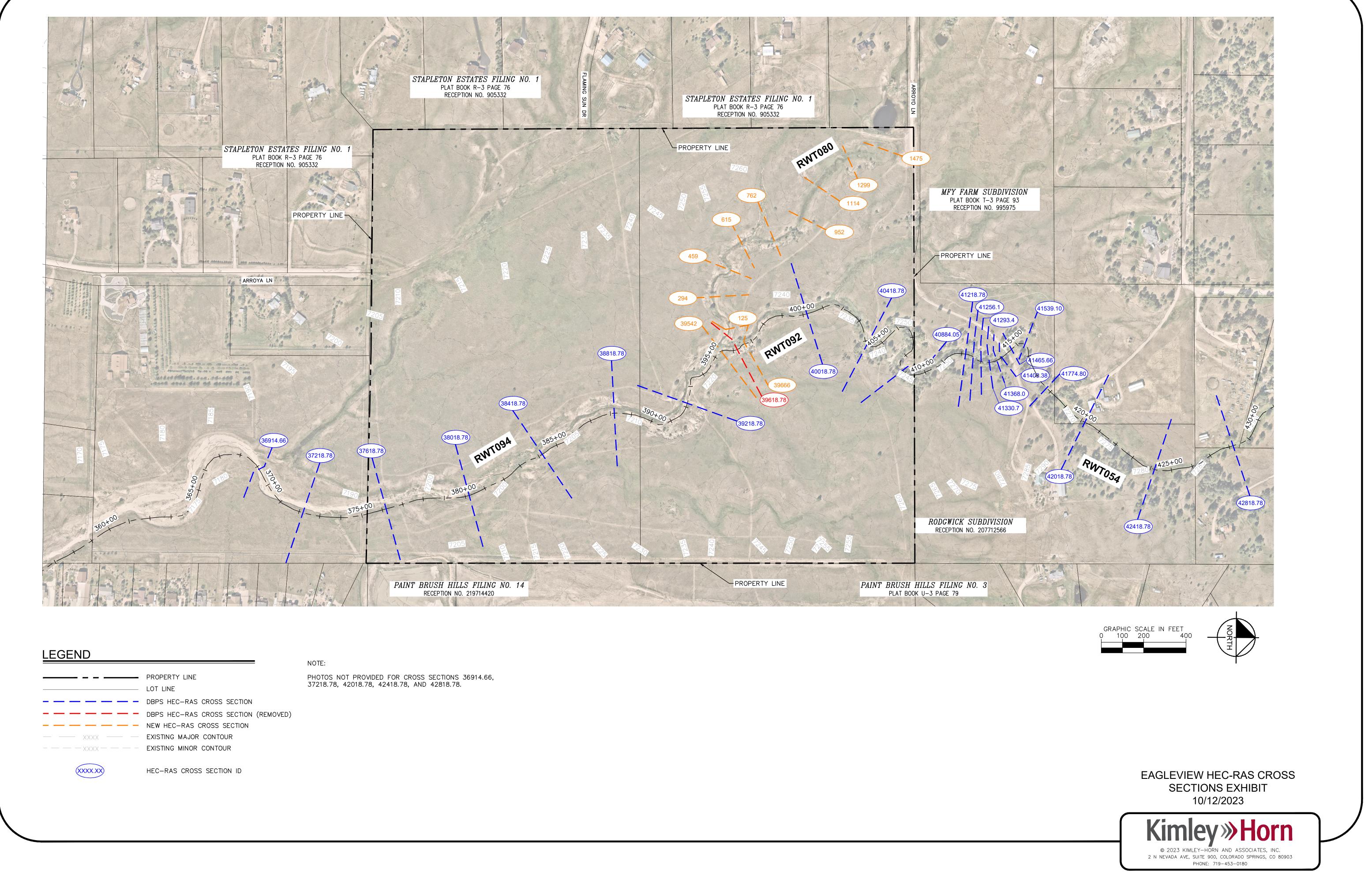
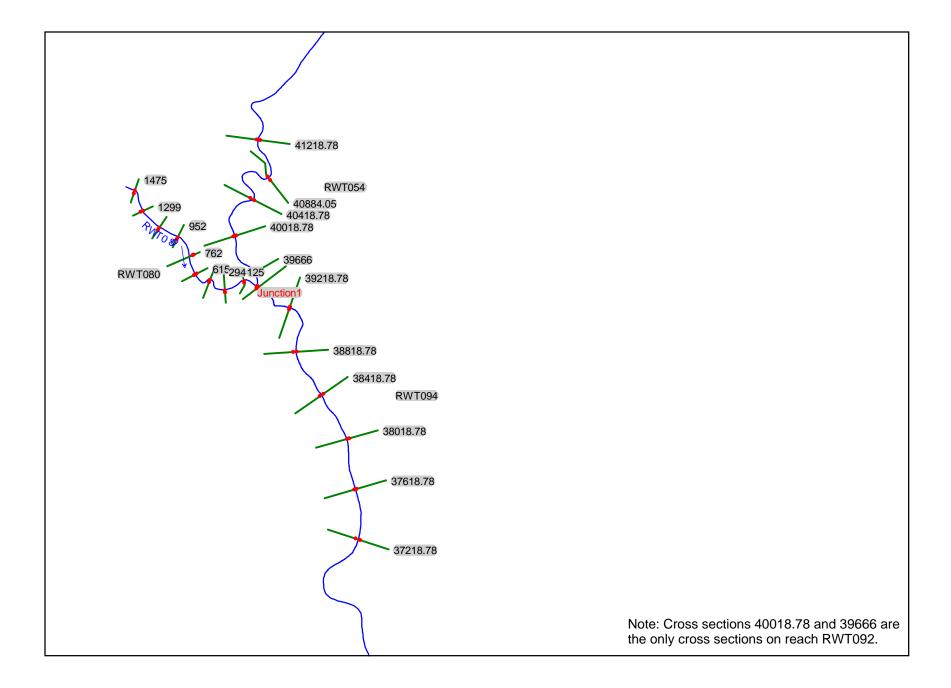
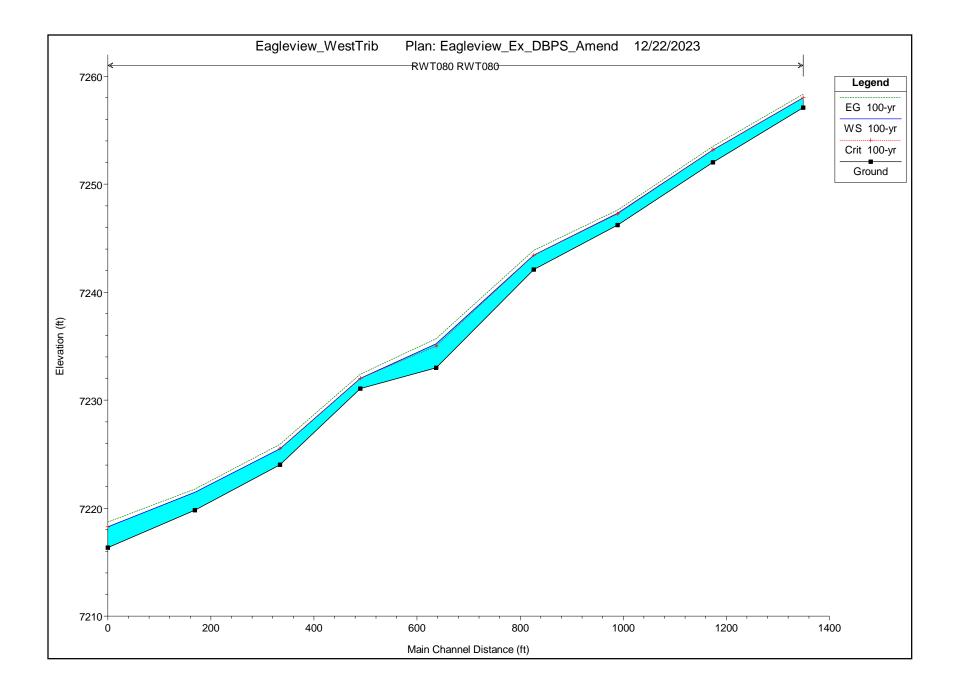
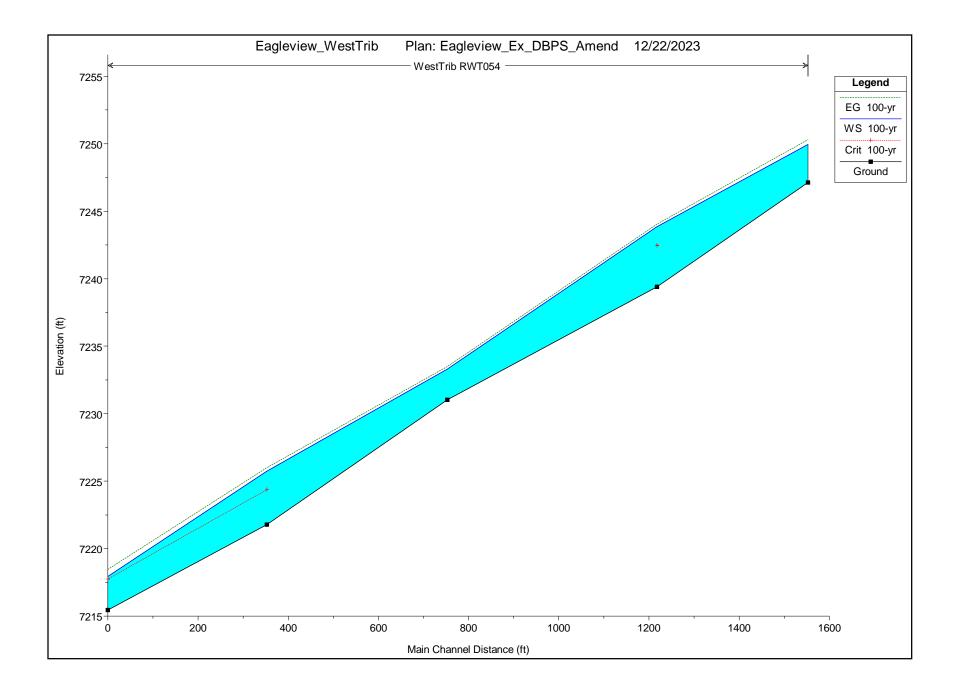
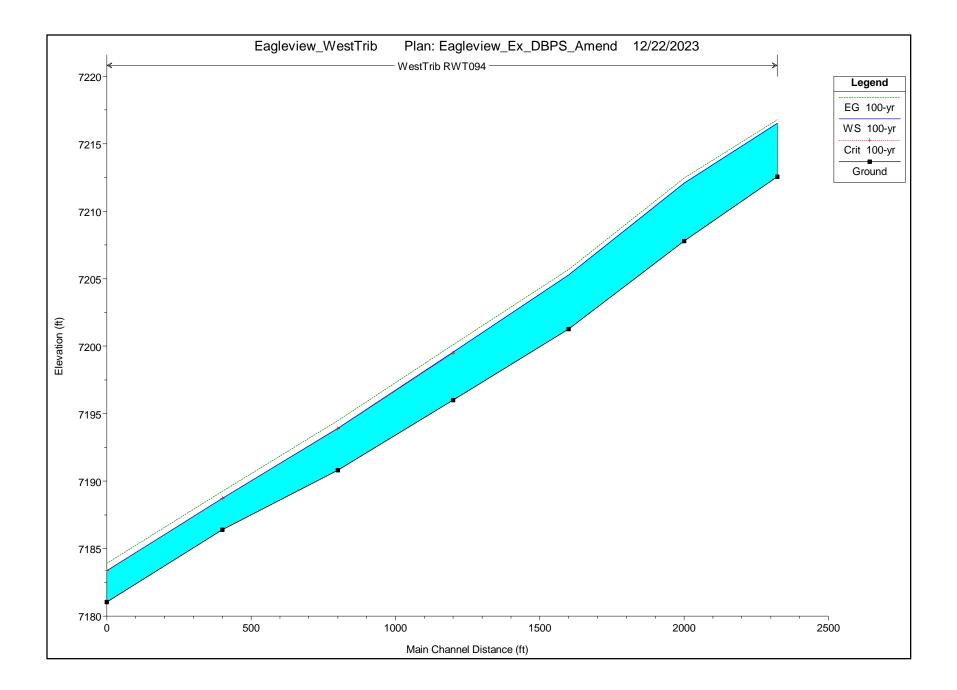


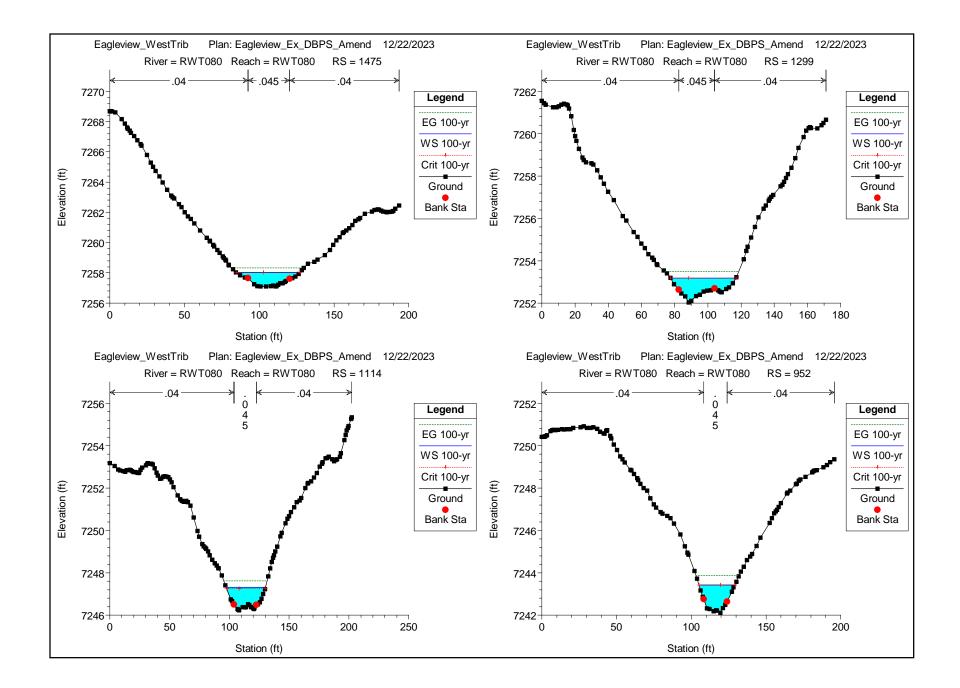
Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 181 cfs/35 ft = 5.17

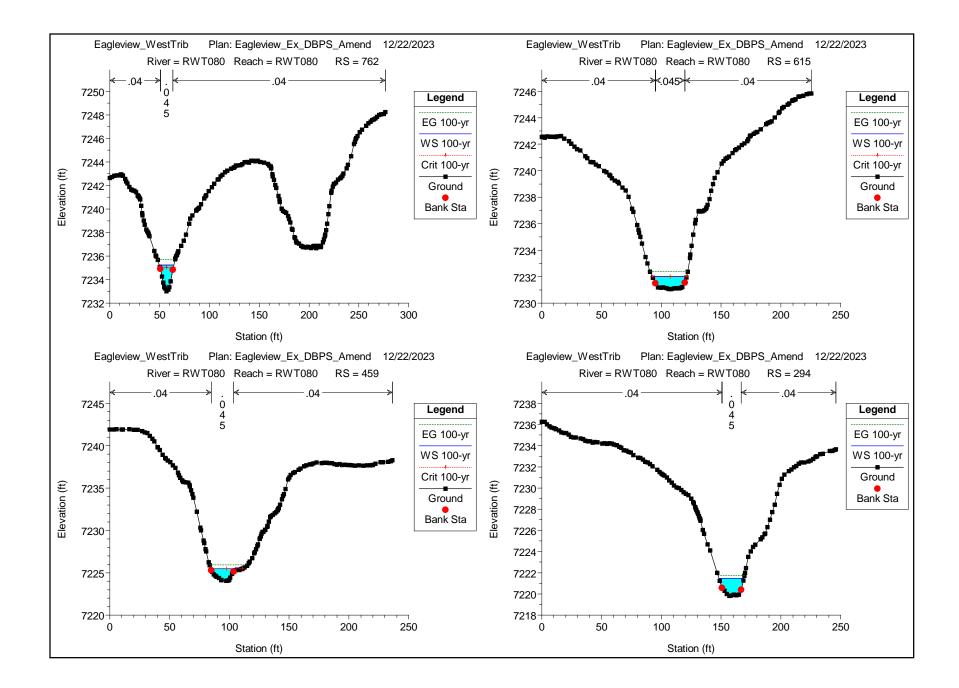





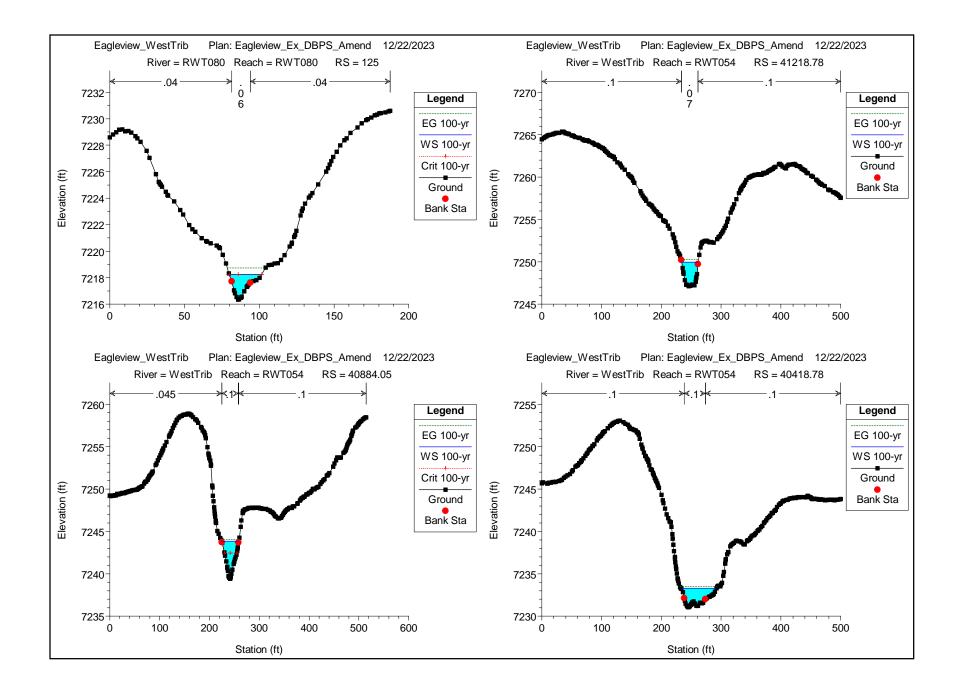

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 82 cfs/25 ft = 3.28

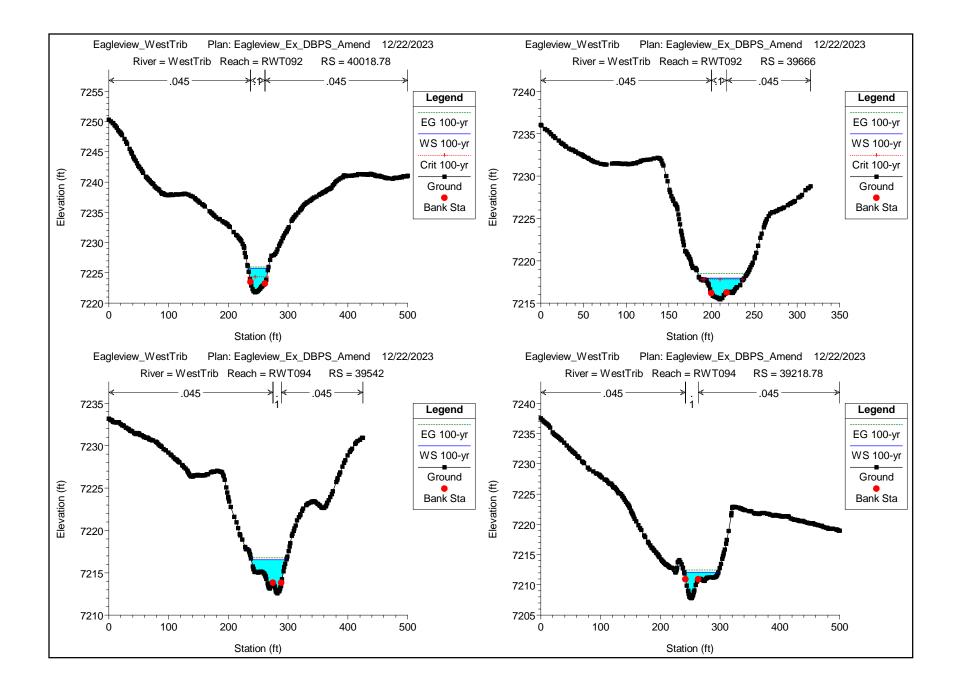


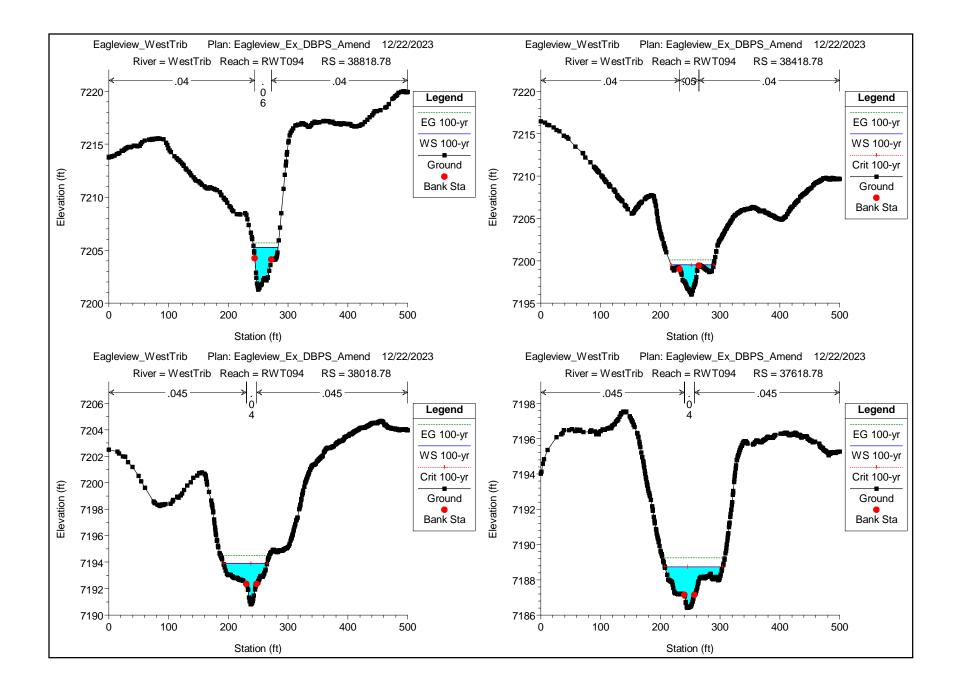
EXISTING CONDITIONS HEC-RAS RESULTS

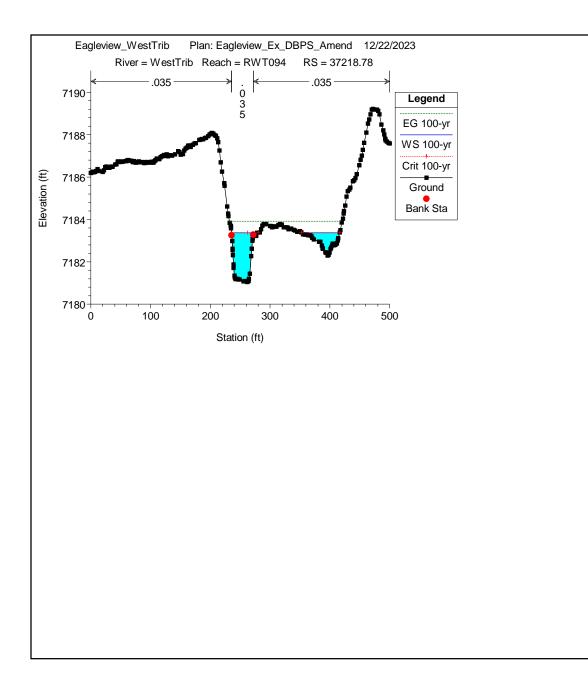


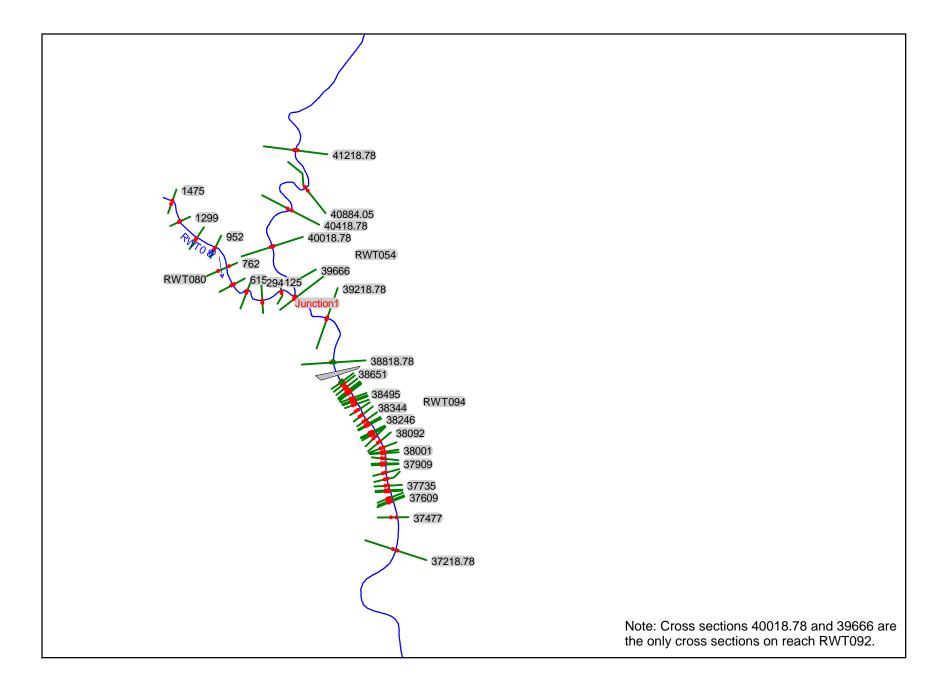

Cross section outside project area

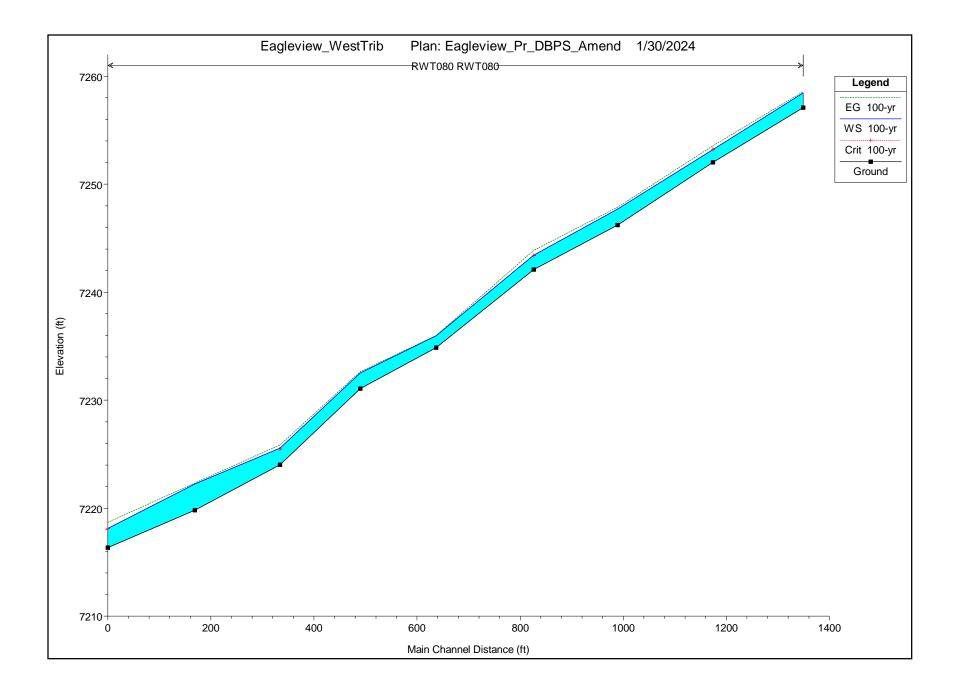

HEC-RAS Plan: Ex_DBPS_Amend Profile: 100-yr

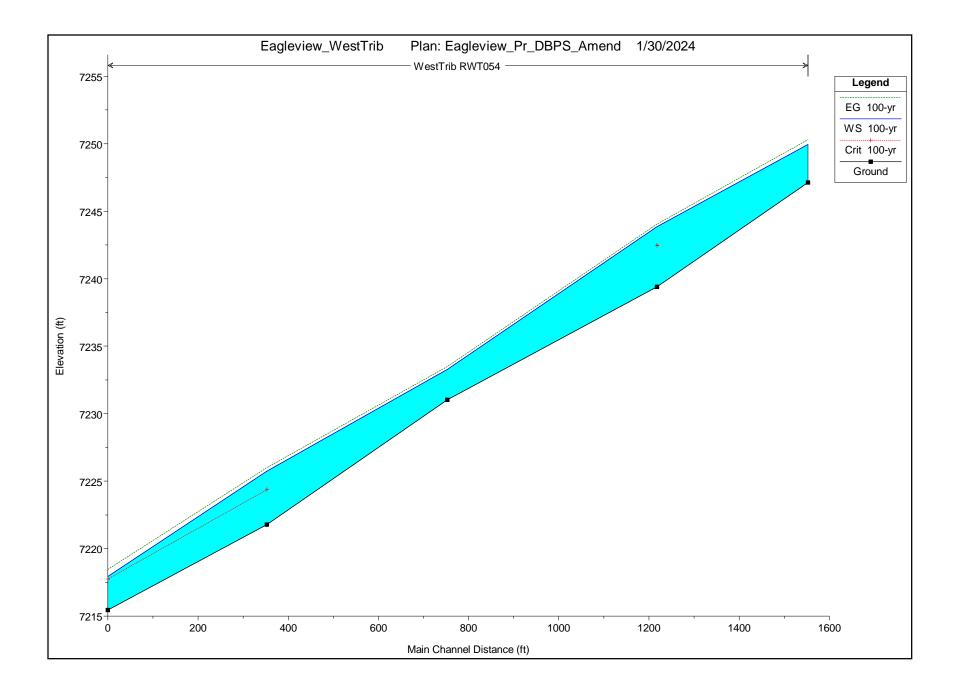

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Shear Total
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(lb/sq ft)
WestTrib	RWT054	41218.78	100-yr	285.00	7247.13	7249.95		7250.31	0.018854	4.76	59.87	28.01	0.57	2.42
WestTrib	RWT054	40884.05	100-yr	285.00	7239.41	7243.85	7242.45	7244.04	0.018267	3.53	80.86	34.51	0.40	2.58
WestTrib	RWT054	40418.78	100-yr	285.00	7231.04	7233.30		7233.50	0.028680	3.77	83.64	59.72	0.49	2.49
WestTrib	RWT092	40018.78	100-yr	375.00	7221.79	7225.74	7224.36	7225.99	0.014303	3.94	93.70	33.92	0.38	2.36
WestTrib	RWT092	39666	100-yr	375.00	7215.46	7217.95	7217.76	7218.46	0.035530	4.70	69.87	52.16	0.56	2.94
WestTrib	RWT094	39542	100-yr	478.00	7212.56	7216.52		7216.77	0.008165	3.03	125.66	58.70	0.29	1.07
WestTrib	RWT094	39218.78	100-yr	478.00	7207.80	7212.07		7212.47	0.027829	4.90	95.16	57.21	0.51	2.82
WestTrib	RWT094	38818.78	100-yr	478.00	7201.28	7205.27		7205.69	0.011630	5.31	93.31	40.73	0.55	1.60
WestTrib	RWT094	38418.78	100-yr	478.00	7196.01	7199.55	7199.49	7200.10	0.016669	6.25	86.43	71.63	0.75	1.24
WestTrib	RWT094	38018.78	100-yr	502.00	7190.82	7193.92	7193.89	7194.49	0.012139	7.22	97.33	73.20	0.82	1.00
WestTrib	RWT094	37618.78	100-yr	502.00	7186.41	7188.73	7188.73	7189.24	0.014100	7.17	103.73	96.78	0.87	0.94
WestTrib	RWT094	37218.78	100-yr	502.00	7181.04	7183.38	7183.38	7183.92	0.009919	6.32	97.73	108.66	0.82	0.55
RWT080	RWT080	1475	100-yr	107.00	7257.10	7258.03	7258.03	7258.33	0.026387	4.53	25.34	42.71	0.91	0.98
RWT080	RWT080	1299	100-yr	107.00	7252.03	7253.19	7253.19	7253.50	0.029085	4.77	24.27	39.39	0.95	1.12
RWT080	RWT080	1114	100-yr	107.00	7246.23	7247.32	7247.26	7247.62	0.021513	4.67	24.82	33.00	0.85	1.01
RWT080	RWT080	952	100-yr	107.00	7242.11	7243.43	7243.43	7243.88	0.024629	5.56	20.70	24.06	0.93	1.31
RWT080	RWT080	762	100-yr	107.00	7233.00	7235.23	7235.02	7235.71	0.017553	5.57	19.47	14.63	0.80	1.38
RWT080	RWT080	615	100-yr	107.00	7231.06	7232.01	7232.01	7232.40	0.029365	5.04	21.79	28.83	0.97	1.38
RWT080	RWT080	459	100-yr	107.00	7224.03	7225.49	7225.49	7225.93	0.025019	5.34	20.86	26.59	0.92	1.21
RWT080	RWT080	294	100-yr	107.00	7219.80	7221.48		7221.76	0.010406	4.31	25.99	21.05	0.63	0.78
RWT080	RWT080	125	100-yr	107.00	7216.33	7218.26	7218.26	7218.72	0.037599	5.67	20.02	21.68	0.87	2.12

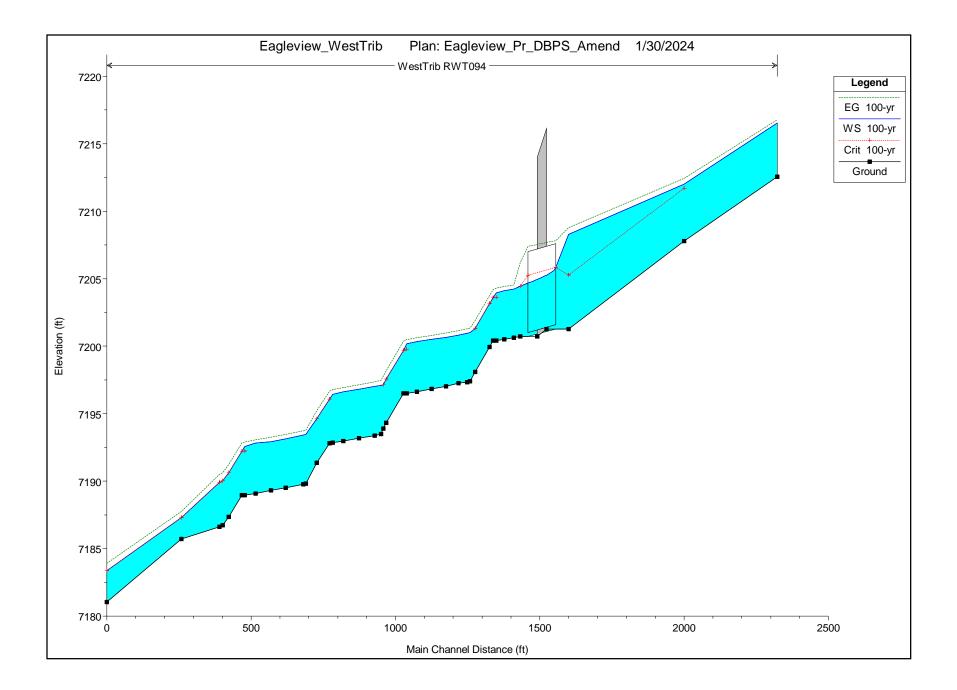

Cross section outside project area



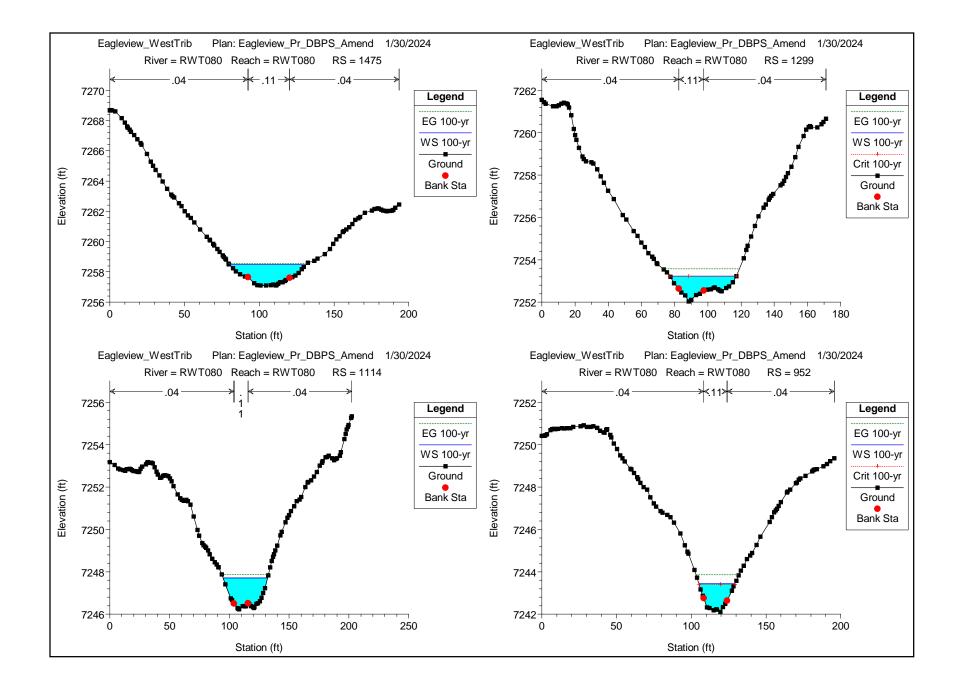


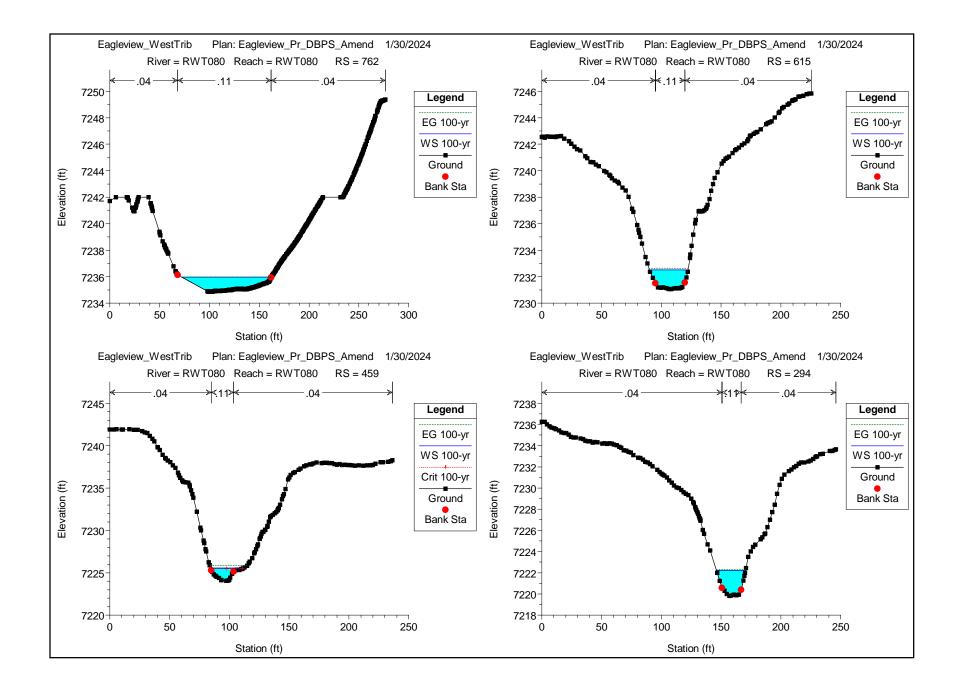


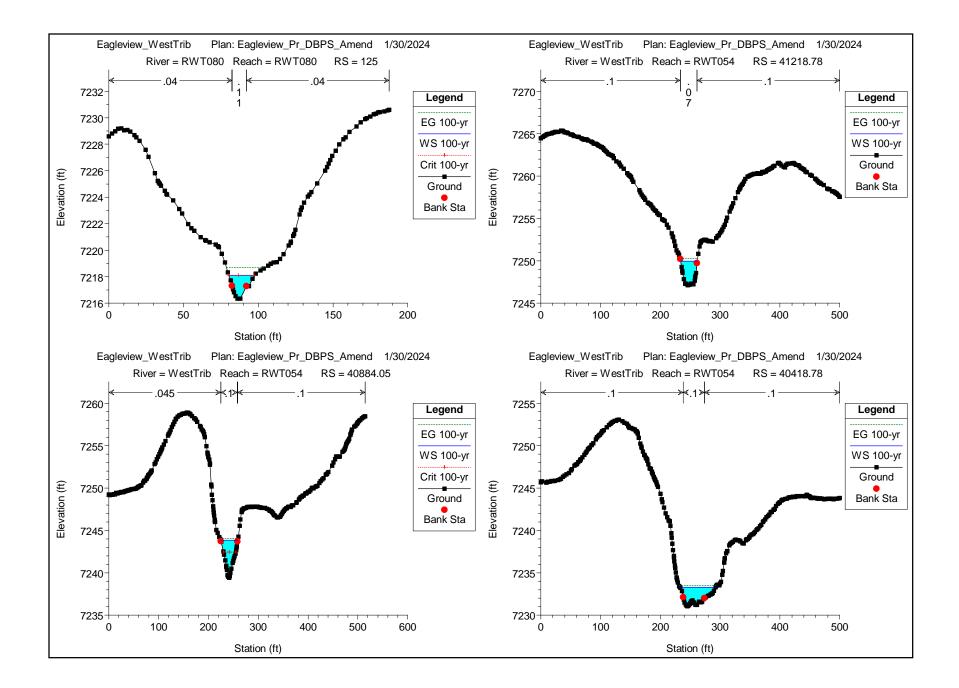


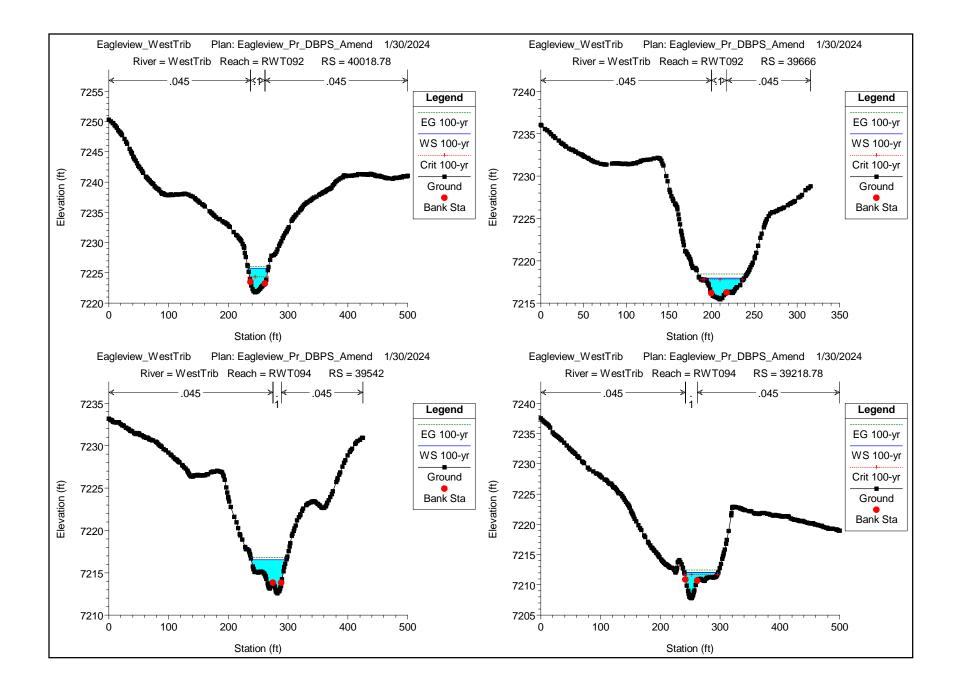


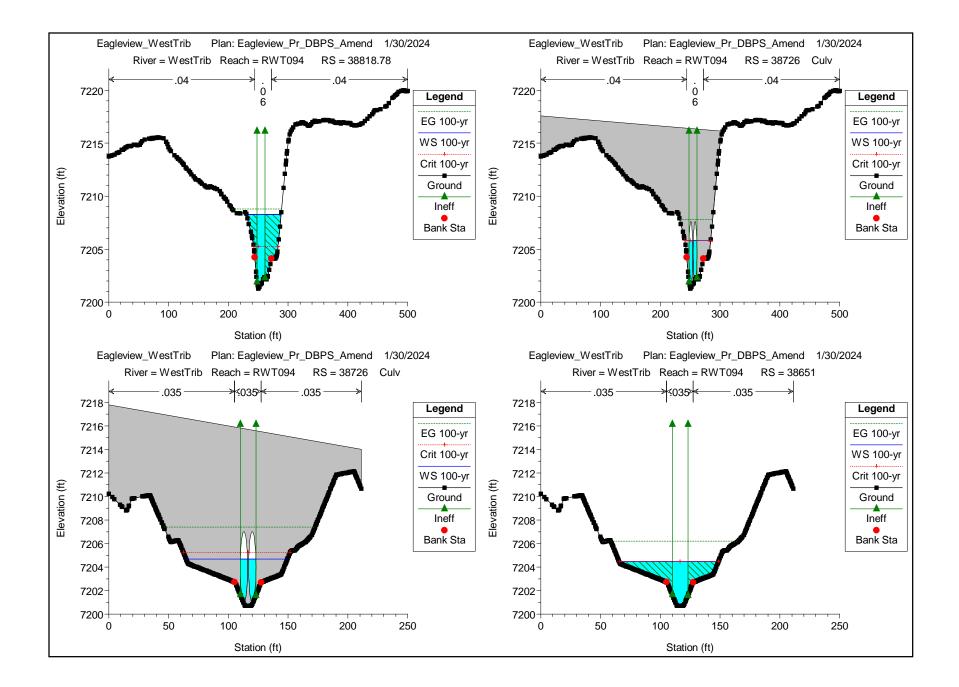
PROPOSED CONDITIONS HEC-RAS RESULTS

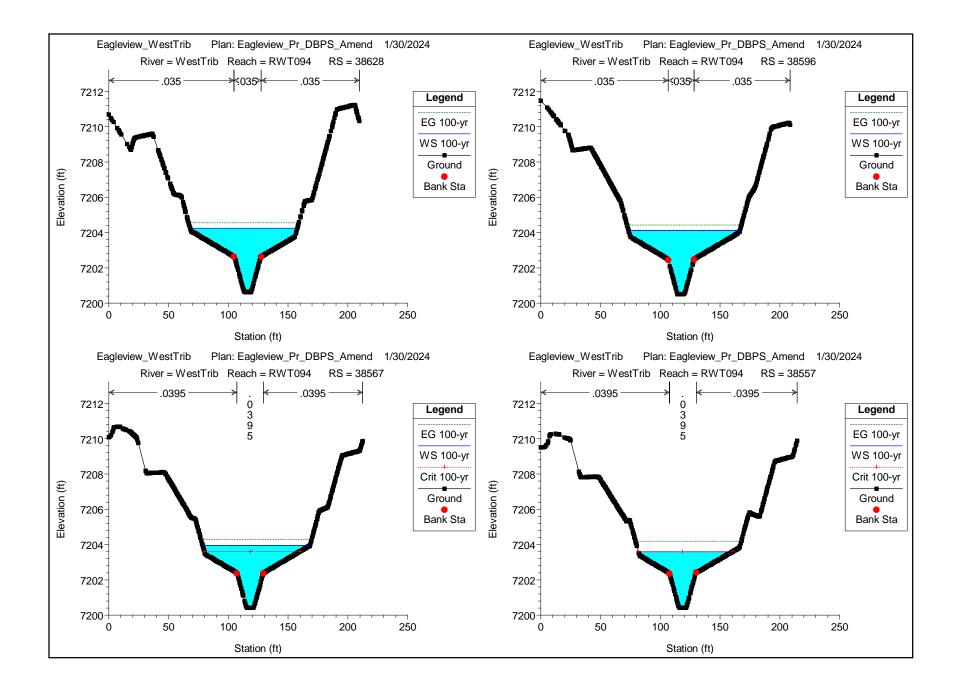

Cross section outside project area

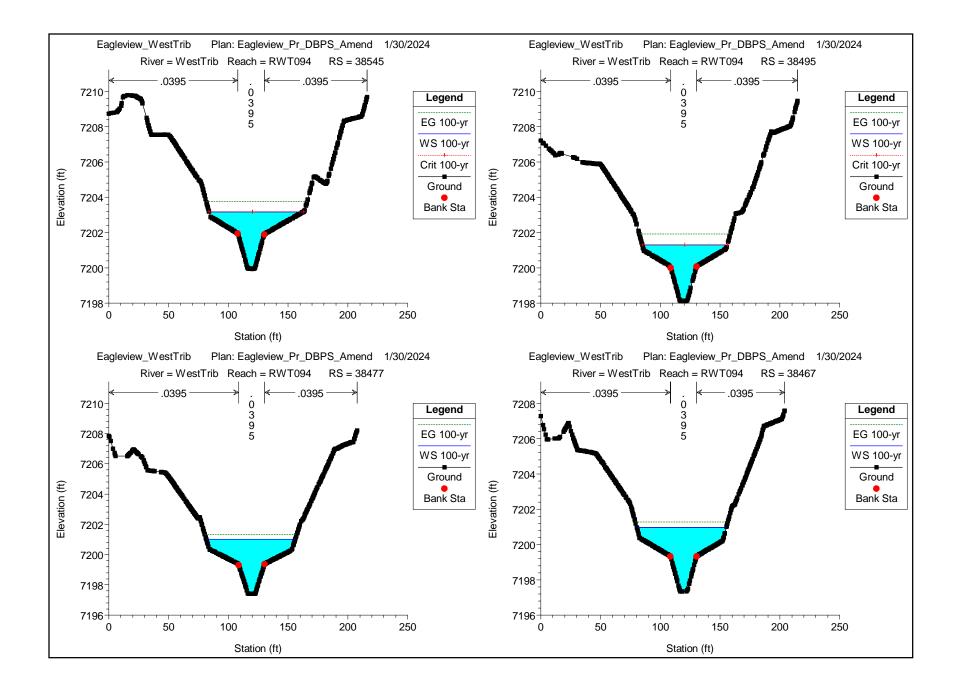

HEC-RAS Plan: Pr_DBPS_Amend Profile: 100-yr

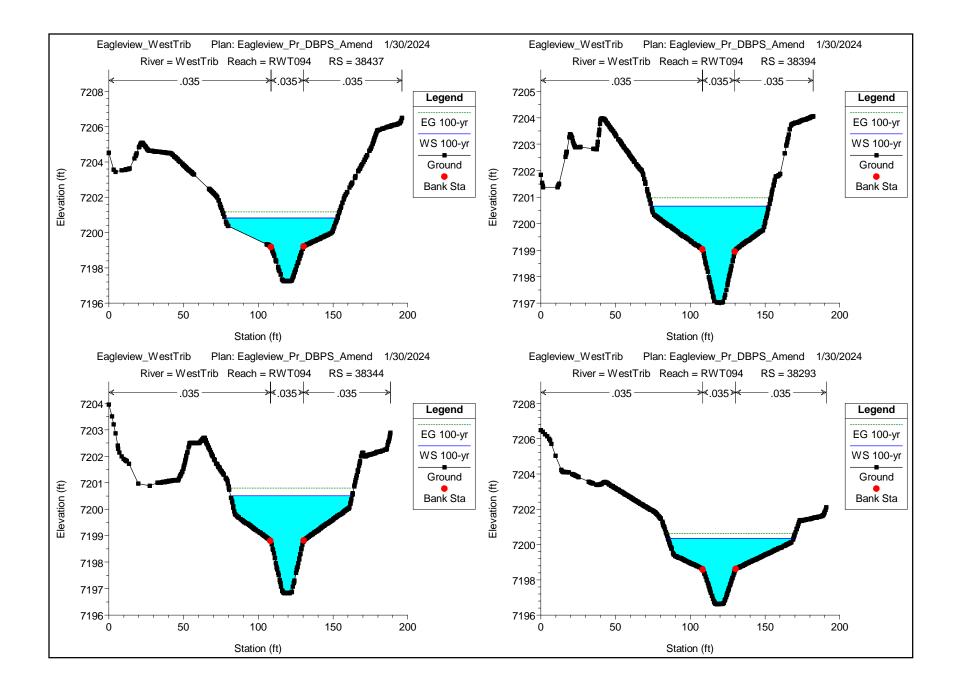

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Shear Total
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(lb/sq ft)
WestTrib	RWT054	41218.78	100-yr	285.00	7247.13	7249.95		7250.30	0.018985	4.77	59.73	27.99	0.57	2.43
WestTrib	RWT054	40884.05	100-yr	285.00	7239.41	7243.85	7242.45	7244.05	0.018095	3.52	81.09	34.57	0.40	2.56
WestTrib	RWT054	40418.78	100-yr	285.00	7231.04	7233.29		7233.49	0.029142	3.79	83.18	59.58	0.49	2.52
WestTrib	RWT092	40018.78	100-yr	375.00	7221.79	7225.75	7224.36	7226.00	0.014143	3.92	94.03	33.96	0.38	2.34
WestTrib	RWT092	39666	100-yr	375.00	7215.46	7217.94	7217.76	7218.46	0.036273	4.73	69.39	52.02	0.57	2.99
WestTrib	RWT094	39542	100-yr	478.00	7212.56	7216.54		7216.78	0.007978	3.00	126.58	58.82	0.28	1.05
WestTrib	RWT094	39218.78	100-yr	478.00	7207.80	7212.02	7211.70	7212.44	0.029777	5.13	92.09	56.58	0.52	2.95
WestTrib	RWT094	38818.78	100-yr	480.00	7201.28	7208.28	7205.27	7208.78	0.004427	5.69	84.40	57.62	0.39	1.77
WestTrib	RWT094	38726		Culvert										
WestTrib	RWT094	38651	100-yr	480.00	7200.72	7204.46	7204.46	7206.19	0.012010	10.58	45.36	82.88	1.00	2.57
WestTrib	RWT094	38628	100-yr	480.00	7200.62	7204.23		7204.54	0.003752	5.14	125.43	89.65	0.54	0.33
WestTrib	RWT094	38596	100-yr	480.00	7200.50	7204.11		7204.42	0.003748	5.19	126.68	93.03	0.54	0.32
WestTrib	RWT094	38567	100-yr	480.00	7200.41	7203.95	7203.61	7204.29	0.005231	5.35	121.13	89.62	0.56	0.44
WestTrib	RWT094	38557	100-yr	480.00	7200.41	7203.59	7203.59	7204.20	0.010483	6.87	90.84	78.96	0.78	0.75
WestTrib	RWT094	38545	100-yr	480.00	7199.94	7203.17	7203.17	7203.75	0.009839	6.76	92.87	78.99	0.76	0.72
WestTrib	RWT094	38495	100-yr	480.00	7198.10	7201.31	7201.31	7201.91	0.010311	6.92	89.32	71.16	0.77	0.80
WestTrib	RWT094	38477	100-yr	480.00	7197.41	7201.01		7201.33	0.004722	5.19	119.77	74.49	0.54	0.47
WestTrib	RWT094	38467	100-yr	480.00	7197.34	7200.96		7201.28	0.004782	5.20	119.36	74.88	0.54	0.47
WestTrib	RWT094	38437	100-yr	480.00	7197.25	7200.82		7201.16	0.004035	5.33	116.60	75.41	0.56	0.39
WestTrib	RWT094	38394	100-yr	480.00	7197.03	7200.66		7200.98	0.003736	5.21	120.89	78.68	0.54	0.36
WestTrib	RWT094	38344	100-yr	480.00	7196.84	7200.51		7200.79	0.003332	4.95	127.51	81.24	0.51	0.32
WestTrib	RWT094	38293	100-yr	480.00	7196.62	7200.34		7200.63	0.003218	4.92	129.53	83.97	0.50	0.31
WestTrib	RWT094	38257	100-yr	502.00	7196.50	7200.18	7199.77	7200.49	0.004615	5.18	131.76	92.22	0.53	0.41
WestTrib	RWT094	38246	100-yr	502.00	7196.50	7199.68	7199.68	7200.37	0.011966	7.39	89.74	81.66	0.83	0.81
WestTrib	RWT094	38186	100-yr	502.00	7194.32	7197.58	7197.58	7198.18	0.010192	6.95	95.31	80.68	0.77	0.75
WestTrib	RWT094	38176	100-yr	502.00	7193.90	7197.15	7197.15	7197.78	0.010546	7.00	93.46	78.16	0.78	0.78
WestTrib	RWT094	38169	100-yr	502.00	7193.50	7197.11		7197.47	0.005551	5.54	120.58	86.18	0.58	0.48
WestTrib	RWT094	38146	100-yr	502.00	7193.38	7197.02		7197.35	0.003922	5.35	126.30	88.52	0.55	0.35
WestTrib	RWT094	38092	100-yr	502.00	7193.18	7196.82		7197.14	0.003729	5.23	128.16	85.21	0.54	0.35
WestTrib	RWT094	38038	100-yr	502.00	7192.97	7196.63		7196.94	0.003694	5.21	130.14	89.33	0.54	0.33
WestTrib	RWT094	38001	100-yr	502.00	7192.84	7196.43		7196.78	0.005331	5.49	125.19	92.62	0.57	0.45
WestTrib	RWT094	37990	100-yr	502.00	7192.81	7196.06	7196.06	7196.67	0.010335	6.93	95.15	81.54	0.77	0.75
WestTrib	RWT094	37946	100-yr	502.00	7191.35	7194.63	7194.63	7195.22	0.009868	6.88	97.36	84.27	0.76	0.71
WestTrib	RWT094	37909	100-yr	502.00	7189.81	7193.46		7193.77	0.004712	5.17	131.16	91.54	0.54	0.42
WestTrib	RWT094	37900	100-yr	502.00	7189.78	7193.42		7193.73	0.004722	5.20	130.51	90.17	0.54	0.42
WestTrib	RWT094	37838	100-yr	502.00	7189.50	7193.14		7193.46	0.003848	5.30	130.81	96.05	0.55	0.32
WestTrib	RWT094	37787	100-yr	502.00	7189.31	7192.93		7193.27	0.003980	5.37	130.55	100.92	0.56	0.32
WestTrib	RWT094	37735	100-yr	502.00	7189.09	7192.83		7193.06	0.002753	4.58	153.86	106.97	0.46	0.25
WestTrib	RWT094	37696	100-yr	502.00	7188.97	7192.57	7192.23	7192.91	0.005231	5.43	127.19	95.14	0.56	0.43
WestTrib	RWT094	37687	100-yr	502.00	7188.97	7192.22	7192.22	7192.82	0.010177	6.88	96.67	85.74	0.77	0.71
WestTrib	RWT094	37641	100-yr	502.00	7187.36	7190.62	7190.62	7191.24	0.010587	7.00	94.92	84.61	0.78	0.74
WestTrib	RWT094	37620	100-yr	502.00	7186.74	7190.03	7190.02	7190.62	0.009805	6.88	98.21	87.54	0.76	0.68
WestTrib	RWT094	37609	100-yr	502.00	7186.62	7189.90	7189.90	7190.50	0.010047	6.93	97.03	86.07	0.77	0.70
WestTrib	RWT094	37477	100-yr	502.00	7185.72	7187.30	7187.30	7187.75	0.012728	6.05	102.10	114.12	0.90	0.71
WestTrib	RWT094	37218.78	100-yr	502.00	7181.04	7183.38	7183.38	7183.92	0.009919	6.32	97.73	108.66	0.82	0.55
RWT080	RWT080	1475	100-yr	107.00	7257.10	7258.47		7258.56	0.017587	2.04	45.85	51.04	0.33	0.98

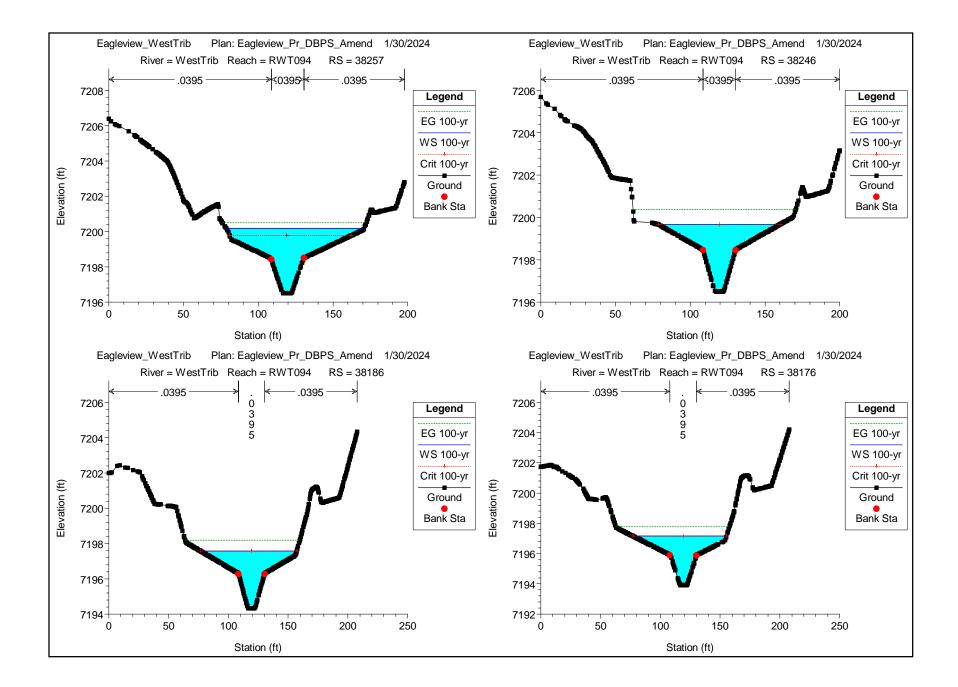

HEC-RAS Plan: Pr DBPS Amend Profile: 100-yr (Conti	inuea)
--	--------

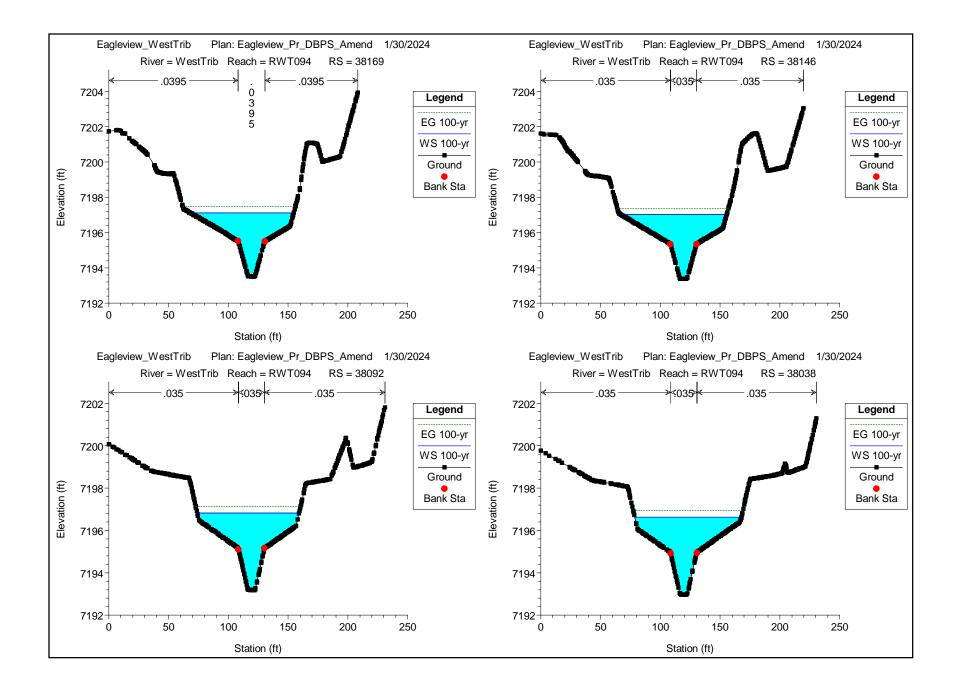

River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Shear Total
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(lb/sq ft)
RWT080	RWT080	1299	100-yr	107.00	7252.03	7253.22	7253.22	7253.58	0.054712	2.95	25.83	40.07	0.55	2.19
RWT080	RWT080	1114	100-yr	107.00	7246.23	7247.71		7247.87	0.010471	1.69	38.50	37.23	0.26	0.67
RWT080	RWT080	952	100-yr	107.00	7242.11	7243.44	7243.41	7243.86	0.109855	4.83	20.95	24.18	0.80	5.89
RWT080	RWT080	762	100-yr	107.00	7234.88	7235.95		7235.99	0.021254	1.61	66.34	89.57	0.33	0.98
RWT080	RWT080	615	100-yr	101.00	7231.06	7232.52		7232.64	0.024496	2.58	37.32	32.37	0.39	1.75
RWT080	RWT080	459	100-yr	101.00	7224.03	7225.56	7225.47	7225.87	0.096854	4.48	22.72	27.53	0.75	4.93
RWT080	RWT080	294	100-yr	101.00	7219.80	7222.24		7222.33	0.009024	2.17	43.13	24.39	0.26	0.96
RWT080	RWT080	125	100-yr	101.00	7216.33	7218.11	7218.11	7218.67	0.101209	5.36	17.41	17.26	0.79	6.20

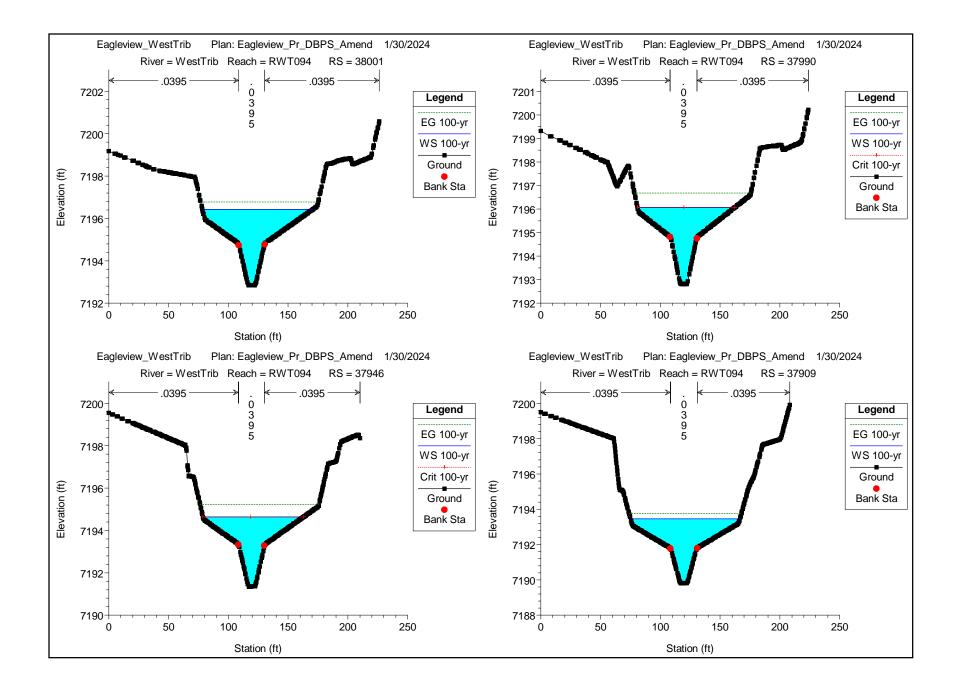


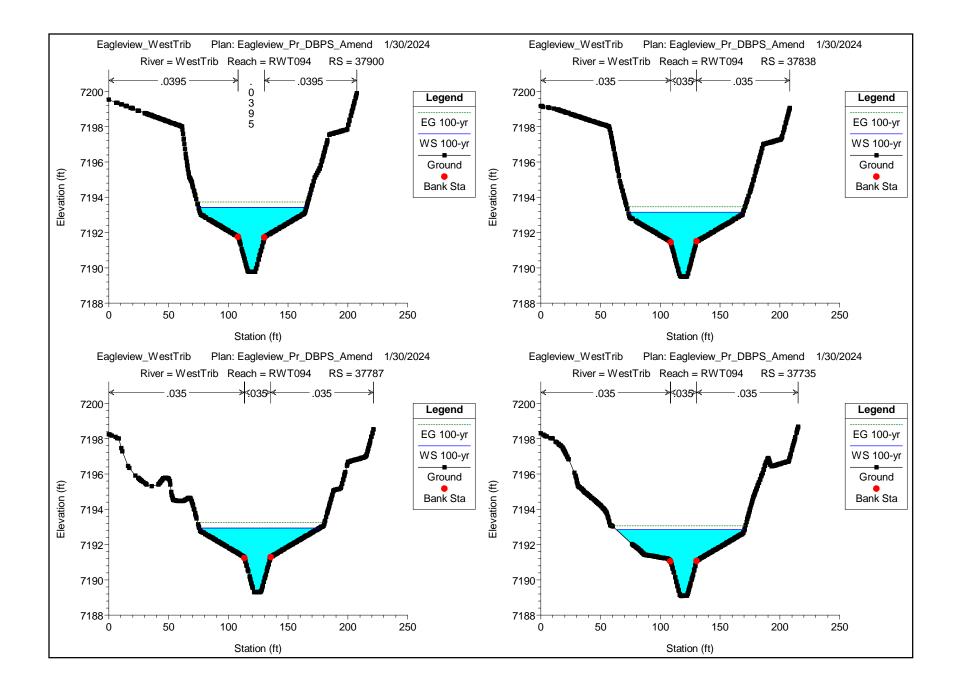


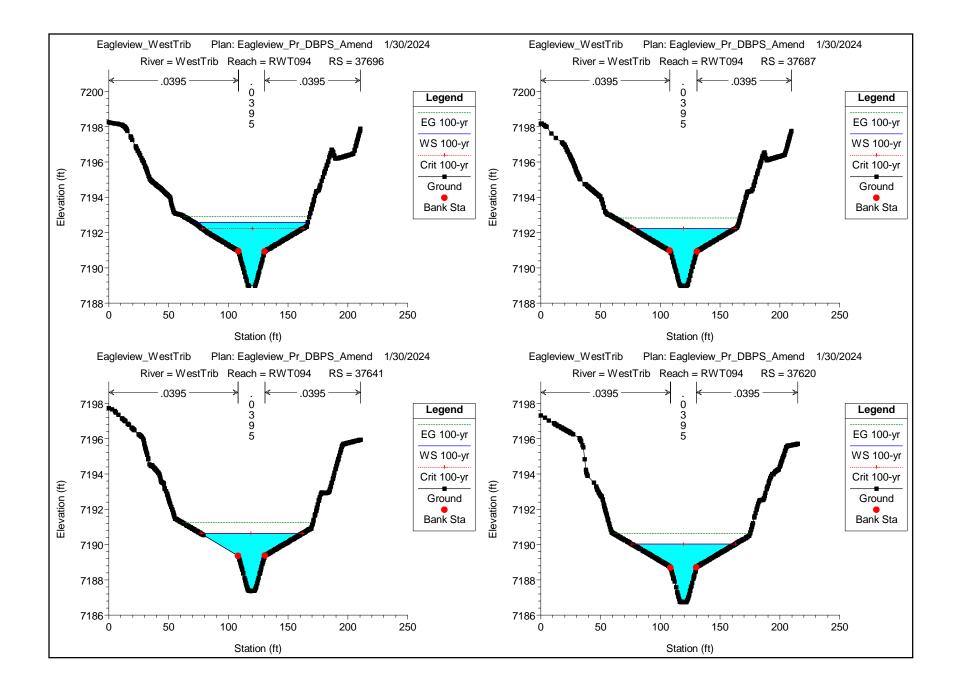


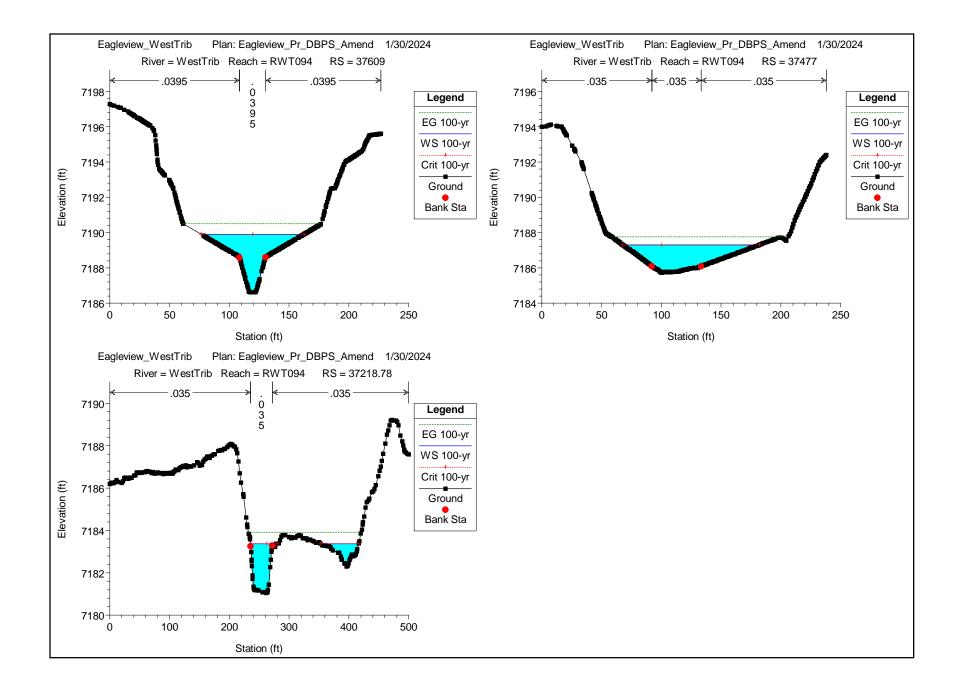












APPENDIX D: REFERENCES

I.7. - POST-CONSTRUCTION STORMWATER MANAGEMENT

I.7.1. Post-Construction Stormwater Management Planning

[Replaces DCM2 Section 4.1, pages 4-1 through "Other BMPs" continued on 4-5]

A. **Overview.** This chapter contains requirements and procedures for the selection, installation, implementation and maintenance of permanent stormwater quality control measures that will remain in operation after construction for new development and significant redevelopment. All applicable development sites must have operational permanent stormwater quality control measures at the completion of the site, unless excluded from the requirements of an applicable development site as described in Section I.7.1.C. All permanent control measures for applicable development sites shall meet one of the "base design standards" described in Section 1.71.D.

In the case where permanent water quality control measures are part of future phasing, the permittee must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the "base design standards" described in Section I.7.1.D.

A procedure is provided within the context of a flow chart and a four-step process that shall be followed for all applicable development sites. Detailed descriptions, sizing and design criteria, and design procedures for control measures are provided in the New Development BMP Factsheets found in Section 4.2 of the DCMV2.

It is recommended that discussions and collaboration regarding proposed BMPs occur early in each project between the developer's planner and engineer, County Stormwater and County Planning and Community Development staff.

The analysis of the requirements, exclusions and base design standards presented in this Section I.7 shall be incorporated into existing ECM Administrator submittals for review and acceptance including Preliminary/Final Drainage Reports and construction plans, or as otherwise specified by the ECM Administrator.

- B. **Applicable Development Sites: Excluded Sites.** The following types of sites and associated land disturbances are excluded from the requirements of this Section 1.7. Although a site may qualify for an exclusion to Section 1.7 below, the site may still be considered an applicable construction activity subject to the requirements of an ESQCP or BESQCP.
 - Pavement Management Sites. Sites, or portions of sites, for the rehabilitation, maintenance, and
 reconstruction of roadway pavement, which includes roadway resurfacing, mill and overlay, white
 topping, black topping, curb and gutter replacement, concrete panel replacement, and pothole repair.
 The purpose of the site must be to provide additional years of service life and optimize service and safety.
 The site also must be limited to the repair and replacement of pavement in a manner that does not result
 in an increased impervious area, and the infrastructure must not substantially change. The types of sites
 covered under this exclusion include day-to-day maintenance activities, rehabilitation, and reconstruction
 of pavement. "Roadways" include roads and bridges that are improved, designed or ordinarily used for
 vehicular travel and contiguous areas or that are improved, designed or ordinarily used for
 parking or access to parking are not roadways.

- 2. Excluded Roadway Redevelopment. Redevelopment sites for existing roadways, when 1 of the following cri
 - 1) The site adds less than 1 acre of paved area per mile of roadway to an existing roadway, or
 - 2) The site does not add more than 8.25 feet of paved width at any location to the existing roadway.
- 3. Excluded Existing Roadway Areas. For redevelopment sites for existing roadways, only the area of the existing roadway is excluded from the requirements of an applicable development site when the site does not increase the width by 2 times or more, on average, of the original roadway area. The entire site is not excluded from being considered an applicable development site for this exclusion. The area of the site that is part of the added new roadway area is still an applicable development site.
- 4. Aboveground and Underground Utilities. Activities for installation or maintenance of underground utilities or infrastructure that does not permanently alter the terrain, ground cover, or drainage patterns from those present prior to the construction activity. This exclusion includes, but is not limited to, activities to install, replace, or maintain utilities under roadways or other paved areas that return the surface to the same condition.
- 5. Large Lot Single Family Sites. A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent. A total lot imperviousness greater than 10 percent is allowed when a study specific to the watershed and/or MS4 shows that expected soil and vegetation conditions are suitable for infiltration/filtration of the WQCV for a typical site, and the permittee accepts such study as applicable within its MS4 boundaries. The maximum total lot impervious covered under this exclusion shall be 20 percent.
- 6. Non-Residential and Non-Commercial Infiltration Conditions. This exclusion does not apply to residential or commercial sites for buildings. This exclusion applies to applicable development sites for which post-development surface conditions do not result in concentrated stormwater flow during the 80th percentile stormwater runoff event. In addition, post-development surface conditions must not be projected to result in a surface water discharge from the 80th percentile stormwater runoff events. Specifically, the 80th percentile event must be infiltrated and not discharged as concentrated flow. For this exclusion to apply, a study specific to the site, watershed and/or MS4 must be conducted. The study must show rainfall and soil conditions present within the project area, must include allowable slopes, surface conditions, and ratios of impervious area to pervious area, and the County must accept such study as applicable within its MS4 boundaries.
- 7. **Sites with Land Disturbance to Undeveloped Land that will Remain Undeveloped.** Sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site. Typical examples of this type of site are trails, parks and open space without structures.
- 8. Stream Stabilization Sites. Construction activity that is solely for the purpose of stream stabilization.
- 9. **Trails.** Bike and pedestrian trails. Bike lanes for roadways are not included in this exclusion, unless attached to a roadway that qualifies under another exclusion in this section.
- 10. **Oil and Gas Exploration.** Facilities associated with oil and gas exploration, production, processing, or treatment operations, or transmission facilities, including activities necessary to prepare a site for drilling and for the movement and placement of drilling equipment, whether or not such field activities or operations may be considered to be an applicable construction activity.
- 11. **County Growth Areas.** The County may exclude the following when they occur within the county growth areas:

- a. Agricultural facilities and structures on agricultural zoned lands (e.g., barn, stables).
- b. Residential development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres and have a proposed density of less than 1,000 people per square mile.
- c. Commercial or industrial development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres.
- C. **Base Design Standard Requirements.** The "base design standard" is the minimum design standard for new and redevelopment before applying any exclusions or alternative standards. The control measures for applicable development sites shall meet one of the following base design standards:
 - 1. **Water Quality Capture Volume (WQCV) Standard.** The control measures is designed to provide treatment and/or infiltration of the WQCV and:
 - a. 100% of the applicable development site is captured, except the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).
 - b. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented. Consideration of drain time shall include maintaining vegetation necessary for operation of the control measure (e.g., wetland vegetation).
 - 2. **Pollutant Removal Standard.** The control measures is designed to treat at a minimum the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of 30 mg/L or less.

100% of the applicable development site must be captured, except the County may exclude up to 20 percent not to exceed 1 acre of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).

- 3. Runoff Reduction Standard. The control measures is designed to infiltrate into the ground where site geology permits, evaporate, or evapotranspire a quantity of water equal to 60% of what the calculated WQCV would be if all impervious area for the applicable development site discharged without infiltration. This base design standard can be met through practices such as green infrastructure. "Green infrastructure" generally refers to control measures that use vegetation, soils, and natural processes or mimic natural processes to manage stormwater. Green infrastructure can be used in place of or in addition to low impact development principles.
- 4. Applicable Development Site Draining to a Regional WQCV Control Measure. The regional WQCV control measure must be designed to accept the drainage from the applicable development site. Stormwater from the site must not discharge to a water of the state before being discharged to the regional WQCV control measure. The regional WQCV control measure must meet the requirements of the WQCV in Part I.7.C.1.
- 5. Applicable Development Site Draining to a Regional WQCV Facility. The regional WQCV facility is

designed to accept drainage from the applicable development site. Stormwater from the site may discharge to a water of the state before being discharged to the regional WQCV facility. Before discharging to a water of the state, at least 20 percent of the upstream imperviousness of the applicable development site must be disconnected from the storm drainage system and drain through a receiving pervious area control measure comprising a footprint of at least 10 percent of the upstream disconnected impervious area of the applicable development site. The control measure must be designed in accordance with a design manual identified by the permittee. In addition, the stream channel between the discharge point of the applicable development site and the regional WQCV facility must be stabilized. The regional WQCV facility must meet the following requirements:

- a. The regional WQCV facility must be implemented, functional, and maintained following good engineering, hydrologic and pollution control practices.
- b. The regional WQCV facility must be designed and maintained for 100% WQCV for its entire drainage area.
- c. The regional WQCV facility must have capacity to accommodate the drainage from the applicable development site.
- d. The regional WQCV facility must be designed and built to comply with all assumptions for the development activities planned by the County within its drainage area, including the imperviousness of its drainage area and the applicable development site.
- e. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the facility. Consideration of drain time shall include maintaining vegetation necessary for operation of the facility (e.g., wetland vegetation).
- f. The County shall require site plans and perform a site plan review consistent with the requirements of this ECM to ensure the regional WQCV facility and control measures for the applicable development site plans include:
 - i. Design details for all structural control measures implemented to meet the requirements of Part I.E.4.
 - ii. A narrative reference for all non-structural control measures for the site, if applicable. "Nonstructural control measures" are control measures that are not structural control measures and include, but are not limited to, control measures that prevent or reduce pollutants being introduced to water or that prevent or reduce the generation of runoff or illicit discharges.
 - iii. Documentation of operation and maintenance procedures to ensure the long term observation, maintenance, and operation of the control measures. The documentation shall include frequencies for routine inspections and maintenance activities.
 - iv. Documentation regarding easements or other legal means for access of the control measure sites for operation, maintenance, and inspection of control measures.
 - v. Confirmation that control measures meet the requirements of section I.7.C
 - vi. Confirmation that site plans meet the requirements of County's site plan review and approval requirements
- g. The regional WQCV facility must be subject to the County's authority consistent with requirements and actions for a Control Measure in accordance with a base design standard.
- h. Regional Facilities must be designed and implemented with flood control or water quality as the primary use. Recreational ponds and reservoirs may not be considered Regional Facilities. Water

bodies listed by name in surface water quality classifications and standards regulations (5 CCR 1002-32 through 5 CCR 1002-38) may not be considered regional facilities.

- 6. **Constrained Redevelopment Sites Design Standard.** The constrained redevelopment sites standard applies to redevelopment sites meeting the following criteria:
 - (a) The applicable redevelopment site is for a site that has greater than 75% impervious area, and
 - (b) The County must determine that it is not practicable to meet any of the base design standards in section I.7.1.C (1), (2), or (3). The County's determination shall include an evaluation of the applicable redevelopment site's ability to install a control measure without reducing surface area covered with the structures.

The control measures is designed to meet one of the following:

- (a) Provide treatment of the WQCV for the area captured. The captured area shall be 50% or more of the impervious area of the applicable redevelopment site. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented,
- (b) The control measures is designed to provide for treatment of the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of 30 mg/L or less. A minimum of 50% of the applicable development area including 50% or more of the impervious area of the applicable development area shall drain to the control measures. This standard does not require that 100% of the applicable redevelopment site area be directed to a control measures as long as the overall removal goal is met or exceeded (e.g., providing increased removal for a smaller area), or
- (c) Infiltrate, evaporate, or evapotranspirate, through practices such as green infrastructure, a quantity of water equal to 30% of what the calculated WQCV would be if all impervious area for the applicable redevelopment site discharged without infiltration.

I.7.2. BMP Selection

The selection of appropriate BMPs is based on the characteristics of the site and potential pollutants. The Four-Step Process provides a method of going through the selection process. Figure I.1 and Figure I.2 with annotations covers site-specific issues to be considered in selecting an effective BMP for each site.

A. **Four-Step Process.** The following four-step process is recommended for selecting structural BMPs in newly developing and redeveloping urban areas:

Step 1: Employ Runoff Reduction Practices

To reduce runoff peaks and volumes from urbanizing areas, employ a practice generally termed "minimizing directly connected impervious areas" (MDCIA). The principal behind MDCIA is twofold — to reduce impervious areas and to route runoff from impervious surfaces over grassy areas to slow down runoff and promote infiltration. The benefits are less runoff, less stormwater pollution, and less cost for drainage infrastructure. There are several approaches to reduce the effective imperviousness of a development site:

Reduced Pavement Area

Sometimes, creative site layout can reduce the extent of paved areas including parking, thereby saving on initial capital cost of pavement and then saving on pavement maintenance, repair, and replacement over time.

Porous Pavement

The use of modular block porous pavement or reinforced turf in low-traffic zones such as parking areas and low use service drives such as fire lanes can significantly reduce site imperviousness. This practice may reduce the extent and size of the downstream storm sewers and detention.

Grass Buffers

Draining impervious areas over grass buffers slows down runoff and encourages infiltration, in effect reducing the impact of the impervious area.

Grass Swales

The use of grass swales instead of storm sewers slows down runoff, promotes infiltration, and also reducing effective imperviousness. It also may reduce the size and cost of downstream storm sewers and detention.

Implementing these approaches on a new development site is discussed further in the DCM2 section titled Employing Runoff Reduction Techniques. This section provides a procedure for estimating a reduced imperviousness based on the use of grass buffers and swales. The latter three of the approaches for reducing imperviousness are structural BMPs and are described in detail in Section 4.2 of DCM2 (New Development BMP Factsheets):

- Grass Buffer.
- Grass Swale.
- Modular Block Porous Pavement (or Stabilized-Grass Porous Pavement).

Step 2: Stabilize Drainageways

Drainageway, natural and manmade, erosion can be a major source of sediment and associated constituents, such as phosphorus. Natural drainageways are often subject to bed and bank erosion when urbanizing areas increase the frequency, rate, and volume of runoff. Therefore, drainageways are required to be stabilized. One of three basic methods of stabilization may be selected.

Constructed Grass, Riprap, or Concrete-Lined Channel

These methods of channel stabilization have been in practice for some time. The water quality benefit associated with these channels is the reduction of severe bed and bank erosion that can occur in the absence of a stabilized channel. On the other hand, the hard-lined low flow channels that are often used do not offer much in the way of water quality enhancement or wetland habitat. The use of riprap or concrete lined flood conveyance channels is not recommended, unless hydraulic or physical conditions require such an alternative. Rock lined low-flow channels in many cases may be a better alternative.

Stabilized Natural Channel

In practice, many natural drainageways in and adjacent to new developments are frequently left in an undisturbed condition. While this may be positive in terms of retaining desirable riparian vegetation and habitat, urban development may cause the channel to become destabilized. When degradation occurs in these drainageways, significant erosion, loss of riparian and aquatic habitat, and elevated levels of sediment and associated pollutants can result. Therefore, it is recommended that some level of stream stabilization always be considered. Small grade control structures sized for a 5-year or larger runoff event are often an effective means of establishing a mild slope for the baseflow channel and arresting stream degradation. Severe bends or cut banks may also need to be stabilized. Such efforts to stabilize a natural waterway also preserve and promote natural riparian vegetation which can provide paybacks in terms of enhanced aesthetics, habitat, and water quality.

One additional method of drainageway stabilization gives special attention to stormwater quality and is described in Section 4.2 (New Development BMP Factsheets):

• Constructed Wetland Channel.

Step 3: Provide Water Quality Capture Volume (WQCV)

All applicable development sites must have operational permanent stormwater quality control measures at the completion of construction. Designing structures that provide the WQCV is a common preferred approach in El Paso County. Other base design standards discussed earlier may be used if applicable, however. One or more of six types of water quality basins, each draining slowly to provide for long-term settling of sediment particles, may be selected. Information on selecting and configuring for a site one or more of the WQCV facilities listed below is provided in the Section 4.2 of the DCMV2. These six BMPs are also described in detail in the New Development BMP Factsheets found in the DCMV2 Section 4.2.

- Porous Pavement Detention.
- Porous Landscape Detention.
- Extended Detention Basin.
- Sand Filter Extended Detention Basin.
- Constructed Wetland Basin.
- Retention Pond.

Full Spectrum Detention is a newer approach to providing the WQCV. Details on the use, sizing, configuration and maintenance of Full Spectrum Detention structures are located in the DCMV1 update of 2014, sections of which are incorporated by reference into this ECM.

Step 4: Consider Need for Industrial and Commercial BMPs

If a new development or significant redevelopment activity is planned for an industrial or commercial site, the need for specialized BMPs must be considered. Two approaches are described in the New Development BMP Factsheets:

- Covering of Storage/Handling Areas
- Spill Containment and Control

Other Specialized BMPs may also be required

B. Other Specialized BMPs. The Technical Advisory Committee (TAC) selected the above structural BMPs after a comprehensive screening of known structural BMPs. The members of TAC included representatives from many County agencies and individuals from the development community. Final selection by TAC was based on the rev documentation on potential effectiveness in a semiarid climate, local applicability, maintenance considerations, Development and evaluation of permanent BMPs are continuing processes. Better designs of the BMPs included in DCM2 and designs of new BMPs, including manufactured (proprietary) BMPs, will be developed and tested. To allow for this progress, additional BMPs will be considered on a case-by-case basis by County Stormwater Staff. Design and sizing details and results of independent testing of the BMP in conditions similar to those at the site will be submitted demonstrating that the BMP will meet or exceed the performance of approved BMPs for the site.

To promote improvement in stormwater protection, County Stormwater Staff may approve promising BMPs on an experimental basis. A performance monitoring program to be pre-approved by County Stormwater Staff and an agreement to replace the Experimental System with an approved system should it not function to the required level of performance, both at the owner's expense, will be required. A request to use an "experimental system" must be submitted to El Paso County in the form of a Request for a Deviation from these standards, submitted consistent with the criteria and process described Chapters 1 and 5, respectively. Design of any "experimental system" shall not commence until a Request for Deviation is submitted to and approved by the County.

C. Guidance for Selecting and Locating WQCV Facilities.

[The following section replaces DCM2 Section 4.1 pages 4-19 through 4-23]

Laying out WQCV facilities within a development site and watershed requires thought and planning. This planning and decision-making should occur during a master drainage planning process (Drainage Basin Planning Study or Master Development Drainage Plan) undertaken by local jurisdictions or a developer's engineer. Such plans, studies or other reports may depict a recommended approach for implementing WQCV on a watershed basis. Such reports may call for a few large regional WQCV facilities, smaller sub-regional facilities, or alternatively an onsite approach. It is always a good idea to find out if a master planning study has been completed that addresses water quality and to attempt to follow the Plan's recommendations.

If the master drainage planning process addresses water quality, the following provides supplemental information on the BMPs. If the existing master drainage planning process has not addressed water quality, or if a new master drainage process is underway, this will direct the water quality evaluation.

D. **Post-Construction Stormwater Quality Control Measure Selection Process.** The BMP selection process is illustrated in Figure I-1 and Figure I-2. These two figures shall be used for all projects except those that are strictly highway/roadway projects; that is, projects with no plans for building pad sites. Projects that are strictly highway/roadway projects are discussed in a separate section below.

The following process references the use of the permanent control measures (BMPs) and other practices outlined in DCM2 and this Appendix. The use of DCM2 BMPs will promote consistency between the City and County. These BMPs are commonly found in manuals and other literature from municipalities across the country, and they are the accepted best industry practices in stormwater quality control.

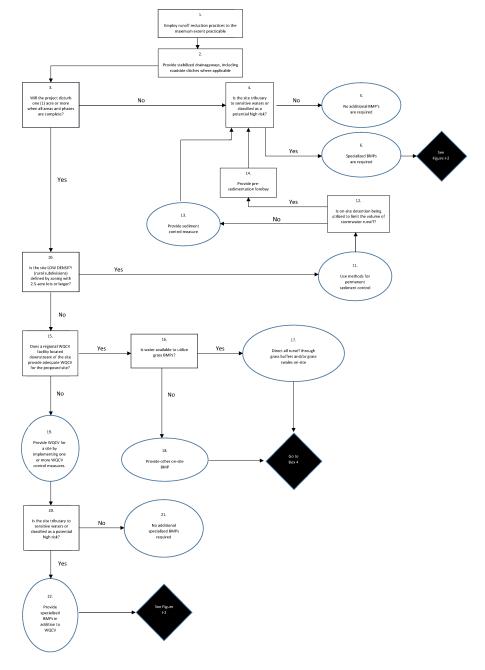
As described below, other control measures (which may be relatively new to the field of stormwater management) are acceptable if they can be shown to meet performance criteria provided in this Section 1.7. A Request for a Deviation from these standards submitted consistent with the criteria and process described

Chapters 1 and 5, respectively, must be submitted and approved by the County prior to the use of an permanent control measure not included in this ECM, DCMV1, DCMV2 and the DCMV1 Update of 2014.

The following items explain the decision points (i.e., the Boxes) in Figure I-1 and Figure I-2:

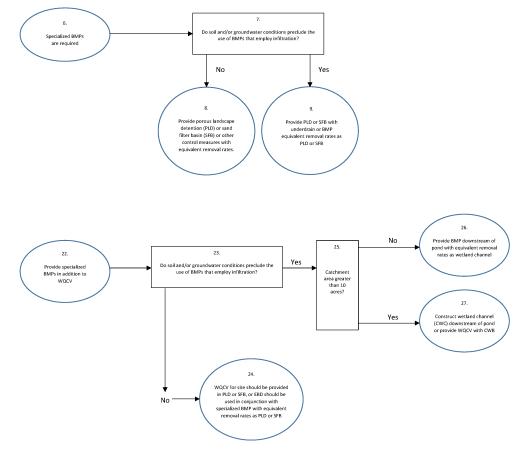
Box 1: For all sites, the possibility of incorporating runoff reduction practices must be investigated. Impervious area should be reduced to the maximum extent practicable, per DCM2. DCM2 also provides guidance for MDCIA by routing runoff to pervious areas. This is Step 1 in the Four-Step Process.

Box 2: All drainageways, ditches, and channels shall be stabilized with one of three methods included in Step 2, which include the use of appropriate methods for the type of drainageway as described in the DCM1. Drainageways include:


- Tributaries to creeks that have been left in a relatively natural state,
- Tributaries, channels, and drainageways that are graded or regraded and may include drop or check structures, side slope stabilization, and low-flow channels.
- Roadside ditches that are completely man-made and should only be used to convey runoff from roads and roadway right-of-ways (ROWs).

Box 3: It must be determined if the development and/or redevelopment disturbs an area of land that is 1 acre or larger (or planned to be 1 acre or larger) when all phases are complete.

Box 4: Sites tributary to sensitive waters should consider specialized BMPs to address the parameter of concern as shown in Table I-5. At this time, no special BMPs are required until the County develops an overall strategy to address the parameters of concern, probably if and when a Total Maximum Daily Load (TMDL) is determined.


Figure I-1. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting Post-

Construction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Figure I-2. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting Post-

Construction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Table I-4. Best Management Practices Abbreviations

Abbreviation	Best Management Practice
СШВ	Constructed Wetlands Basin
сwс	Constructed Wetlands Channel - Sedimentation Facility
EDB	Extended Detention Basin - Sedimentation Facility
PLD	Porous Landscape Detention
RP	Retention Pond - Sedimentation Facility
SFB	Sand Filter Extended Detention Basin
WQCV	Water Quality Capture Volume
GB	Grass Buffer
GS	Grass Swale

MBP	Modular Block Porous Pavement
PPD	Porous Pavement Detention

Table I-5. El Paso County Sensitive¹Waters

Stream and Segment	Parameter of Concern	Specialized BMPs Required
Fountain Creek and tributaries above Monument Creek	E. coli and Se	None at this time
Fountain Creek from Monument Creek to Highway 47	E. coli	None at this time
Monument Creek from National Forest to Fountain Creek	Se	None at this time
Willow Springs Pond #1 and #2	PCE	None at this time

¹ CDPHE 2006 303(d) list. Standard agreement forms for Private Detention Basins are in Appendix G. [This list may change in the future. The 303(d) list or equivalent in effect at the time of permitting will apply.]

Potential high-risk sites must also incorporate specialized BMPs. High-risk sites are defined by two factors:

- Sites with land uses involving the potential for significant deposition of pollutants.
- Sites without practices to eliminate exposure of pollutants to stormwater.

Land uses involving the potential for significant deposition of pollutants include, but are not limited to:

- Vehicle maintenance facilities,
- Gas stations,
- Automobile salvage yards and junk yards,
- Commercial sites with high levels of "in and out" traffic such as fast-food restaurants and convenience stores.

Many industrial facilities are required to obtain coverage under an industrial stormwater permit; these facilities include automobile salvage yards. Practices to eliminate exposure of pollutants to stormwater may or may not be part of an industrial stormwater permit. These practices include coverage of material storage

areas, berms around tanks, spill control plans, and other "good housekeeping" measures. For industrial sites where stormwater is not exposed to pollutants, structural BMPs, including detention ponds for water quality and other BMPs discussed below, may not be required.

Because stormwater pollutants are often transported with sediment, erosion protection and sediment control are necessary for stormwater quality protection. This is very important in the County because of the sandy soils in the region. In particular, discharges that may impact sensitive waters or that come from potentially high-risk sites should have a high level of sediment protection. Thus, in addition to the specialized BMPs, sediment control practices such as revegetation, grading to prevent steep side slopes, check dams, slope drains, and sediment basins should be employed where practical.

Box 5: No BMPs are required other than stabilized drainageways and possibly MDCIA.

Box 6: Specialized BMPs are required and therefore proceed to Box 7 on Table I-1.

Box 7: BMPs that employ infiltration include porous landscape detention and sand filter basins without underdrains. Certain conditions preclude the use of these types of BMPs, including close proximity of groundwater or relatively impervious soils to the bottom of the facility. Groundwater levels should be characterized during the season with the highest levels (often late Spring or early Summer). Impervious soils include bedrock as well as soil types C and D. The term "close proximity" means 5 feet or less. If there is less than 5 feet, a study of the hydraulic conductivity of the soils must be conducted to show that excessive groundwater mounding or direct groundwater contamination will not result from the use of BMPs that employ infiltration.

Box 8: If groundwater or relatively impervious soils are not within 5 feet of the surface, implement porous landscape detention (PLD) or a sand filter basin (SFB) from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 9: Implement PLDs or SFBs with underdrains, or implement a BMP with removal rates equivalent to PLDs or SFBs, including qualifying manufactured BMPs. Qualifying manufactured BMPs are those that have undergone independent tests to verify that the installation, flow volumes, and removal rates will work for the site under consideration.

Box 10: If the site disturbance is larger than one acre and is low density residential, then no WQCV may be required provided the site meets criteria presented in Section I.7.1. If WQCV is not required, the need for a permanent sediment control measure must still be evaluated. If the site is located near and will discharge to a sensitive water, then a "jump" to Box 4 is required for continued evaluation.

Box 11: Sediment is best controlled at the source. That is, rather than using structures to collect soil after it is suspended in stormwater, it is preferable to stabilize soil to prevent suspension from occurring. Sediment source controls must be implemented for all low-density developments and include (but are not limited to):

- · Adequately established vegetation per DCM1 criteria,
- Side slopes that are 3 horizontal to 1 vertical or flatter or the use of benched side slopes when slopes are steeper than 3 horizontal to 1 vertical,
- The use of erosion control blankets to aid establishment of vegetation,
- Check dams,

• Slope drains.

Temporary irrigation and maintenance of vegetation until adequately established may be required.

Box 12: In low density (rural) subdivisions, a method for permanent sediment control must be provided. If a detention pond is used, the forebay is to be sized according to the criteria for Extended Detention Basins. If a detention pond/Extended Detention Pond is not required, a sediment basin as described in DCM2, page 3-32 may be used. It should be sized to collect 1,800 cubic feet per acre of disturbed area. Drainage area above a sediment basin can be reduced by use of vegetated swales, buffers, or contour berms.

Box 13: If there are no detention ponds, separate sediment control measure must be located to catch all runoff leaving the disturbed area of the site.

Box 14: In cases where a detention pond is already required for controlling the volume of runoff, a sediment basin can take the form of a forebay to this pond.

Box 15: Regional WQCV facilities may only be used if they meet the requirements of Section I.7.1.C.

Box 16: The site is required to direct all runoff through grass buffers and/or grass swales or provide a similar BMP. (Note that this is required in accordance with the CDPHE guidance manual to afford some protection to state waters in between the site and the downstream WQCV BMP.)

Box 17: Grass buffers require irrigation in almost all cases in the County; swales sometimes require irrigation.

Box 18: "Dry" alternatives may be used if they are shown to have equivalent removal rates as buffers and swales. All of the structural treatment BMPs in DCM2 (Section 4.2) have equivalent removal rates and may be used. The covering of storage/handling areas and spill containment and control are not structural treatment BMPs, and thus are not substitutes for grass buffers and swales.

Box 19: If there is no regional WQCV facility downstream with adequate capacity to provide the WQCV for the proposed site, then a WQCV control measure must be provided for the site. Examples of potentially acceptable control measures include Extended Detention Basin, Full Spectrum Detention Basin, Sand Filter Basin, Constructed Wetland Basin, or a Retention Pond. For all ponds, issues related to dam construction and potential groundwater infiltration must be considered. Retention Ponds must be considered in the context of additional issues including safety and health (e.g., drowning and mosquito/West Nile virus) and water rights. For all structures that may hold water for more than 72 hours with an exposed water surface, water storage rights must be obtained before a structure (e.g. retention pond) can be proposed for a site. See Sections 3.2.5.F and 3.3.7 of this ECM for additional information regarding water right and permanent stormwater quality control measures.

Box 20: Sites tributary to sensitive waters must meet the requirements as outlined in Table I-5, and potential high-risk sites must have specialized BMPs.

Box 21: No additional BMPs are required other than WQCV-based BMPs. Also, as always, drainageways must be stabilized and runoff should be reduced as much as possible (Boxes 1 and 2).

Box 22: When specialized BMPs are required, proceed to Box 23 on Figure I-2.

Box 23: Two situations apply, one where conditions preclude the installation of BMPS that employ infiltration, and one where they do not. (See Box 7.) If conditions preclude the installation of BMPS that employ infiltration then proceed to Box 25; otherwise proceed to Box 24.

Box 24: Where soil and groundwater conditions are not prohibitive (that is, groundwater or relatively impervious soils are not within 5 feet of the surface), implement PLD or SFB from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 25: Constructed wetlands (either channels or basins) are an effective BMP for sites with drainage areas greater than 10 acres.

Box 26: Provide a BMP downstream of the pond with equivalent removal rates as a wetland channel; this could be a qualifying manufactured BMP or other BMP that meets the criteria below.

Box 27: If the catchment area is greater than 10 acres, provide a constructed wetland channel (CWC) downstream of pond or provide WQCV with CWB.

- E. **Projects that are Strictly Roadway Construction.** For projects that entail highway or other roadway construction, there are three basic questions for the applicant:
 - Is the road urban or rural?
 - That is, does the road have curb and gutter or does it utilize roadside ditches?
 - For rural roads, do the ditches require "water turnouts"?
 - Is the road a "hot spot" or does it discharge to sensitive waters?

For road construction projects, the applicant must determine if the roadway project is an applicable development site as defined in Section I.7.1.B. Excluded sites do not need to comply with the requirements of this Section I.7. If a roadway construction project is an applicable development site, then the owner must determine which base design standard is appropriate for the project and must design and implement water quality improvement with the project. Requirements for roadway projects included in the DCMV1 may be used provided they do not conflict with other provisions of this Section I.7.

Rural roads, i.e. those roads which utilize roadside ditches for conveyance of runoff from the roadway, do not have sufficient capacity in the roadside ditches to convey much more runoff than that which runs off the road itself. Rural roads (which by definition have roadside ditches) must be stabilized with one of three methods included in DCM2 on pages 4-3 and 4-4. These methods are described in DCMV1. "Water turnouts," which function as spillways which direct flow out of the ditches onto property adjacent to the ROW, are frequently required as a result. Design for the "water turnout" should ensure the turnout discharges into a "suitable outfall" as described in DCM1 along the roadway such as a natural swale. A drainage easement for this runoff must be acquired at these locations. A possible consequence of "water turnouts" is the loading of sediment onto private property. If "water turnouts" will be utilized for the ditches, sediment basins shall be used at these locations. However, there must be sufficient space in the ROW for both the structure itself and for maintenance access, or a specific drainage easement must be provided for the feature and access. Sediment basins can be designed in accordance with the guidelines in DCM2 in the section for construction BMPs. The basin shall be sized to collect 1,800 cubic feet of sediment per acre of drainage area of the roadway.

The term "high risk site" can be defined by traffic volume for a section of roadway. If the road will experience traffic volume of 30,000 average daily traffic (ADT) or more it is likely to contribute high levels of pollutants. For these situations, additional BMPs are required and selection must follow Boxes 6, 7, 8, and 9 in Figure 1b. Additional BMPs may also be required for discharge to sensitive waters. As described above for the general developments (with building pads), these additional requirements will depend on the TMDL process.

F. Additional Guidelines for BMP Selection. Additional Guidelines for selecting among the appropriate BMPs dete from Figure I-1 and Figure I-2. Figure I-3 (Figure ND-7 in DCM2) depicts a decision tree for selecting one of the si: BMPs based on drainage catchment area and whether water is available to satisfy evapotranspiration requirem Porous pavement and porous landscape detention are generally suited for small drainage areas (i.e. much less t acres); however, larger subwatersheds can be subdivided into individual drainage sub-catchment areas meeting criteria shown in Figure I-3 for these BMPs.

WQCV control measures and Regional WQCV control measures shall be located prior to the stormwater runoff being discharged to State Waters. When using a Regional WQCV facility for a site, the site may discharge to a water of the state before being discharged to the Regional WQCV facility; however, the conditions in Section I.7.1.C.5 shall be met.

Figure I-4 (Figure ND-8 in DCM2) provides an illustration of selection and location options for WQCV facilities based on the principles discussed above.

Figure I-6 (Table ND-1 in DCM2) indicates the BMP options for the four watershed areas shown in Figure I-4.

I.7.3. Incorporating WQCV into Stormwater Detention Structures

Wherever possible, it is recommended that WQCV facilities be incorporated into stormwater quantity detention facilities. This is relatively straightforward for an extended detention basin, constructed wetland basin, and a retention pond. When combined, the 2, 5, 10, and 100-year detention levels are provided above the WQCV and the outlet structure is designed to control two or three different releases. Stormwater quantity detention could be provided above the WQCV for porous pavement and landscape detention provided the drain times for the larger events are kept short.

The following approaches are to be implemented when incorporating WQCV into stormwater quantity detention facilities:

- 1. **Water Quality.** The full WQCV is to be provided according to the design procedures documented in the New Development BMP Factsheets.
- 2. Minor Storm. The full WQCV plus the full minor storm quantity detention volume is to be provided.
- 3. 100-Year Storm. One-half the WQCV plus the full 100-year detention volume is to be provided.

For linear projects and projects with limited space available for permanent water quality control measures, WQCV may be included in the design of underground detention structures such as sand filter basins (SFB) and proprietary underground detention structures. These systems rely on appropriate soil conditions to infiltrate or evapotranspire the WQCV.

It is extremely important that high sediment loading and compaction of underlying soils in the area to be used for infiltration be controlled to the maximum extent practicable. These structures are best suited to being brought on line at the end of the construction phase where disturbed ground has been stabilized with pavement or vegetation.

Any underground detention facilities proposed for use in the County must meet the good engineering, hydrologic and pollution control practices as defined in this Section I.7. The design of underground detention that incorporates WQCV shall not commence until a Request for Deviation is submitted for review and approved by the ECM Administrator. In addition to the approval criteria for a deviation request provide in Chapters 1 and 5 of this ECM, the owner or authorized agent must provide a structure-specific Operation and Maintenance (O&M)

Manual and maintenance agreement for the structures. The Operation and Maintenance Manual shall include specific procedures and equipment that will be used by the owner or authorized representative to operate and maintain the structures. A specification sheet or generic O&M manual provided by the vendor will not satisfy the O&M Manual requirement.

I.7.4. Separate Presedimentation Facilities

The design criteria shown in the New Development BMP Factsheets section shows presedimentation forebays at the upstream end of the extended detention basin, constructed wetland basin, and retention pond. The purpose of the forebay is to settle out coarse sediment and skim off floatables prior to the main body of the facility. An option to this approach is to install a separate facility upstream from the main WQCV facility. If this option is selected, the recommended size is at least 20 percent of the WQCV and the recommended drain time is 1 hour for the presedimentation forebay volume only. Using this approach, any requirement for sediment storage in the main facility may be reduced consistent with the storage capacity of the separated presedimentation forebay, and the forebay within the main facility may be eliminated.

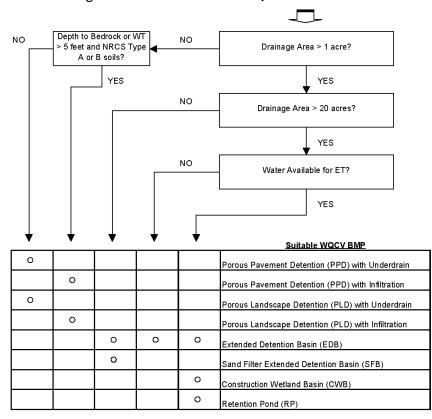
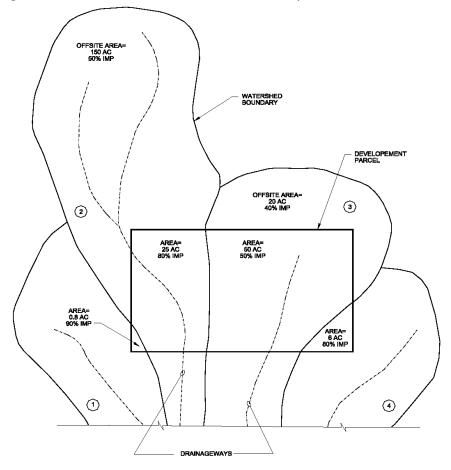



Figure I-3. Decision Tree for WQCV BMP Selection

Note: Large drainage areas may be subdivided into areas < 20 acres for use of SFB or < 1 acre for use of PPD or PLD.

Figure I-4. Illustration of Selection and Location Options for WQCV Facilities

Note: For this example, sufficient make-up water exists for constructed wetlands and retention pond for the watershed areas > 50 acres through irrigation return flows.

Table I-7. Illustration of Selection and Location Options for WQCV Facilities
for the Development Parcel on Figure I.4

Watershed Number	Onstream or Offstream	BMP Options	Minimum Number of BMP Installations	Average Drainage Area for Sizing each BMP, acre
1	Offstream	Porous Pavement Detention Porous Landscape Detention	1	0.8 0.8
2	Offstream	Porous Pavement Detention Porous Landscape Detention Extended Detention Basin Sand Filter Extended Detention Basin	24 24 2 2	1 1 12 12

3	Offstream	Porous Pavement Detention	49	1
		Porous Landscape Detention	49	1
		Extended Detention Basin	2	24
		Sand Filter Extended	3	16
		Detention Basin		
	Onstream	Extended Detention Basin	1	70
		Constructed Wetland Basin	1	70
		Retention Pond	1	70
4	Offstream	Porous Pavement Detention	6	1
		Porous Landscape Detention	6	1
		Extended Detention Basin	1	6
		Sand Filter Extended	1	6
		Detention Basin		

I.7.5. Structural BMP Effectiveness

Table I-7 (Table ND-2 in DCM2) indicates ranges of removal efficiencies reported in literature for a number of structural BMPs. Although combinations of nonstructural/structural BMPs can improve the overall water quality of the runoff, the effectiveness of several BMPs in their ability to reduce influent pollutant concentrations as a group are not directly additive. Table I-7 also shows a most probable range of removal efficiencies for structural BMPs.

I.7.6. Separation Distances

To reduce potential for surface and ground water contamination, permanent water quality BMPs will be located away from wells and Individual Sewage Disposal Systems (ISDS). Rules for separation distances and grouting depths for wells and BMPs will be based on distances between wells and "sources of contamination" in Colorado's Rules and Regulations for Water Well Construction, Pump Installation, and Monitoring and Observation Hole/Well Construction. Permanent BMPs and ISDS will be separated by the same distances specified between the components of the ISDS and "waterways" in the El Paso County ISDS regulations. Additional separation distance may be required when a permanent stormwater quality control measure is located near a water of the state and relies on a vegetated buffer strip as part of the strategy to address WQCV prior to discharge to waters of the state.

Table I-8. BMP Pollutant Removal Ranges for Stormwater Runoff and Most Probable Range for BMPs

Type of BMP	(1)	TSS	ТР	TN	TZ	TPb	BOD	Bacteria	
-------------	-----	-----	----	----	----	-----	-----	----------	--

			-	,,	J -			
Grass Buffer	LRR: EPR	10-50 10-20	0-30 0-10	0-10 0-10	0-10 0-10	N/A N/A	N/A N/A	N/A N/A
Grass Swale	LRR: EPR	20-60 20-40	0-40 0-15	0-30 0-15	0-40 0-20	N/A N/A	N/A N/A	N/A N/A
Modular Block Porous Pavement	LRR: EPR	80-95 70-90	65 40-55	75-85 10-20	98 40-80	80 60-70	80 N/A	N/A N/A
Porous Pavement Detention	LRR: EPR	8-96 70-90	5-92 40-55	-130- 85 10-20	10-98 40-80	60-80 60-70	60-80 N/A	N/A N/A
Porous Landscape Detention	LRR: EPR	8-96 70-90	5-92 40-55	-100- 85 20-55	10-98 50-80	60-90 60-80	60-80 N/A	N/A N/A
Extended Detention Basin	LRR: EPR	50-70 55-75	10-20 45-55	10-20 10-20	30-60 30-60	75-90 55-80	N/A N/A	50-90 N/A
Constructed Wetland Basin	LRR: EPR	40-94 50-60	-4-90 40-80	21 20-50	-29-82 30-80	27-94 40-80	18 N/A	N/A N/A
Retention Pond	LRR: EPR	70-91 80-90	0-79 45-70	0-80 20-60	0-71 20-60	9-95 60-80	0-69 N/A	N/A N/A
Sand Filter Extended Detention	LRR: EPR	8-96 80-90	5-92 45-55	-129- 84 35-55	10-98 50-80	60-80 60-80	60-80 60-80	N/A N/A
Constructed Wetland Channel*	LRR: EPR	20-60 30-50	0-40 20-40	0-30 10-30	0-40 20-40	N/A 20-40	N/A N/A	N/A N/A
	1	1		1			1	

Ref: Bell et al. (1996), Colorado (1990), Harper & Herr (1992), Lakatos & McNemer (1987), Schueler (1987), Southwest (1995), Strecker et al. (1990), USGS (1986), US EPA (1983), Veenhuis et al. (1989), Whipple and Hunter (1981), Urbonas (1997.

(1) LRR Literature reported range, EPR—expected probable range of annual performance by DCM2 BMPs.

N/A Insufficient data to make an assessment.

^{*} The EPR rates for a Constructed Wetland Channel assume the wetland surface area is equal or greater than 0.5% of the tributary total impervious area.

I.7.7. Operation and Maintenance of Best Management Practices

A. Long-term Operation and Maintenance of Post-Construction Stormwater Management Structures. The El Paso County Phase II MS4 Permit requires the County to ensure the long-term operation and maintenance of all post-construction stormwater management control measures constructed by an applicable development site. Part I E.4.a.vi of MS4 permit states:

"vi. Construction Inspection and Acceptance: The County must implement inspection and acceptance procedures to ensure that control measures are installed and implemented in accordance with the site plan and include the following:

- (A) Confirmation that the completed control measure operates in accordance with the approved site plan.
- (B) All applicable development sites must have operational permanent water quality control measures at the completion of the site. In the case where permanent water quality control measures are part of future phasing, the County must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the design standards in Part I.E.4.a.iv.

For the purpose of this section, completion of a site or phase shall be determined by the issuance of a certificate of occupancy, use of the completed site area according to the site plan, payment marking the completion of a site control measure, the nature of the selected control measure or equivalent determination of completion as appropriate to the nature of the site."

For all structures approved by El Paso County which are not public improvements, the property owner or authorized agent shall be responsible for the operation and maintenance of all permanent stormwater quality control measures. All temporary control measures required during construction shall be removed after construction activity on the site has been completed and final stabilization of the site is achieved.

Prior to approval of a subdivision, issuance of a Certificate of Occupancy, or closure of the ESQCP for sites that did not go through the subdivision review process that have permanent post-construction stormwater quality control measures, a signed private maintenance agreement for permanent BMPs must be submitted to and recorded by the County. El Paso County uses these agreements as the primary mechanism to ensure the long-term operation and maintenance of post construction stormwater quality control measures. Agreement templates are found in Appendix G.

During construction a County Stormwater Inspector will inspect structures for conformance with approved construction plans and the SWMP. Once the structure has been accepted into the County Permanent Stormwater Quality Control Measure Inventory consistent with Chapter 5, control measures will be inspected at minimum once every five (5) years. All inspections will be conducted as described in Section I.5.

Confirmation that post-construction stormwater quality control measures operate according to approved plans occurs through the use of an inflow hydrograph routed through a basin model. This analysis and the resulting hydrograph shall be performed by the Engineer of Record for the owner or authorized agent of the applicable development site and provided with Final Drainage Report included in the development plan submitted to the County. If the ECM Administrator determines that significant changes to the approved plans are identified in the "as-built" drawings provided in conformance with Section 5.10.6, an additional inflow hydrograph based on the "as-built" changes shall be provided to the County to confirm that the changes made during construction did not negatively alter the effective operation of the control measure.

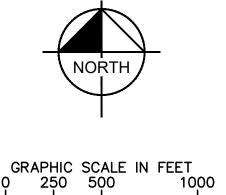
If during an inspection of a post-construction stormwater quality control structure it is determined and documented by a County Stormwater Inspector that any owner or authorized agent failed to adequately operate and maintain a permanent stormwater quality control measures or remove the temporary control measures, an enforcement action described in Section I.6 shall be pursued.

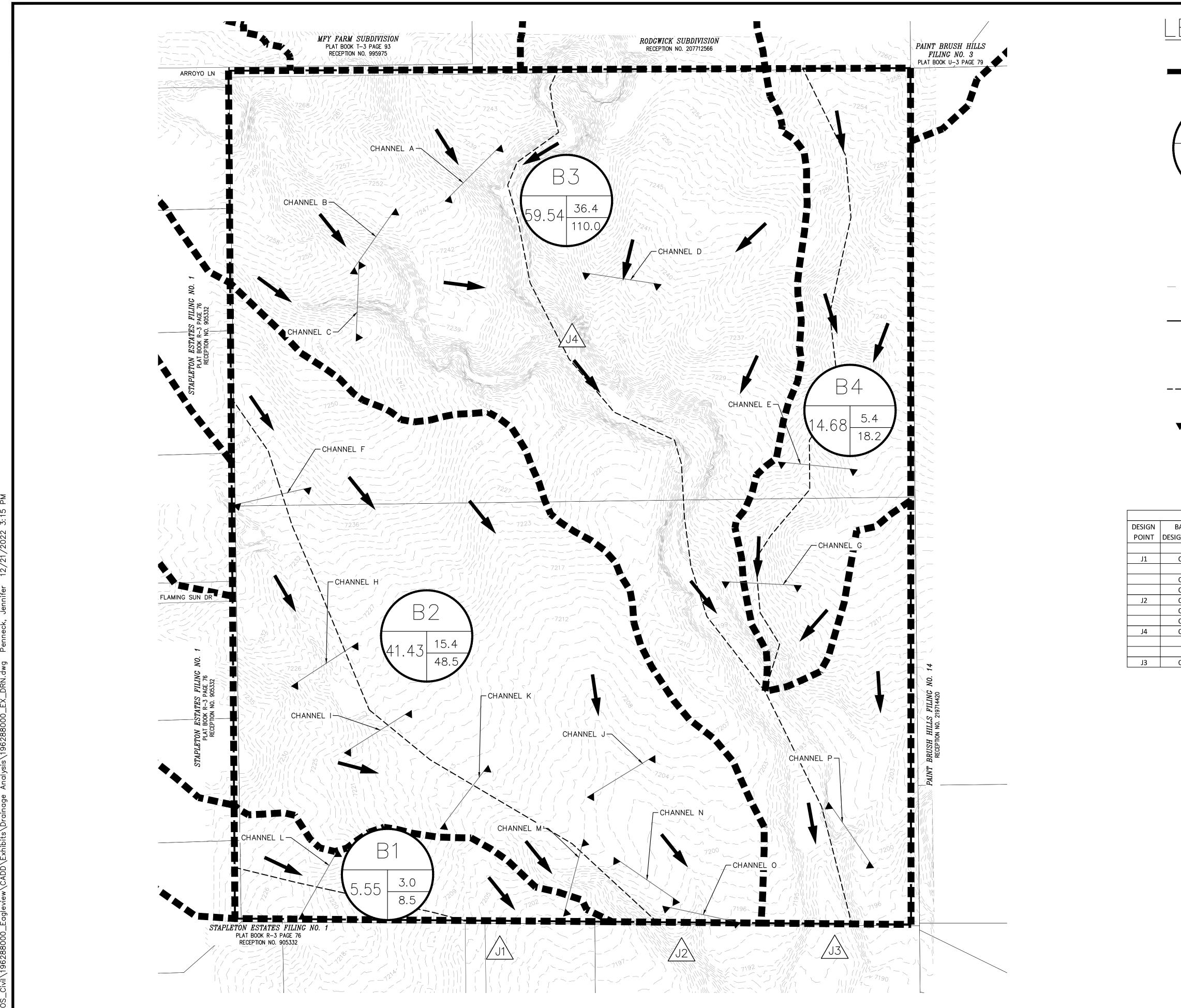
B. **Operation and Maintenance Manual.** A detailed Operation and Maintenance Manual covering inspections, operation and maintenance of permanent BMPs will be provided to the party who holds the Private Maintenance Agreement for Permanent BMPs. The Operation and Maintenance Manual will include specifics on frequency of inspections and maintenance; standards for vegetation or structures, such as species of vegetation, mowing height, revegetation of worn or eroded areas, cleaning methods; depth of sediment requiring removal; replacement frequencies; and other relevant topics.

(Res. No. 19-245, 7-2-19)

APPENDIX E: DRAINAGE MAPS

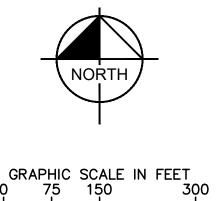
Kimley **»Horn**




05_civil\196288000_Eagleview\CADD\Exhibits\Drainage Analysis\196288000_EX_DRN.dwg Penneck, Jennifer 12/21/2022 2:56

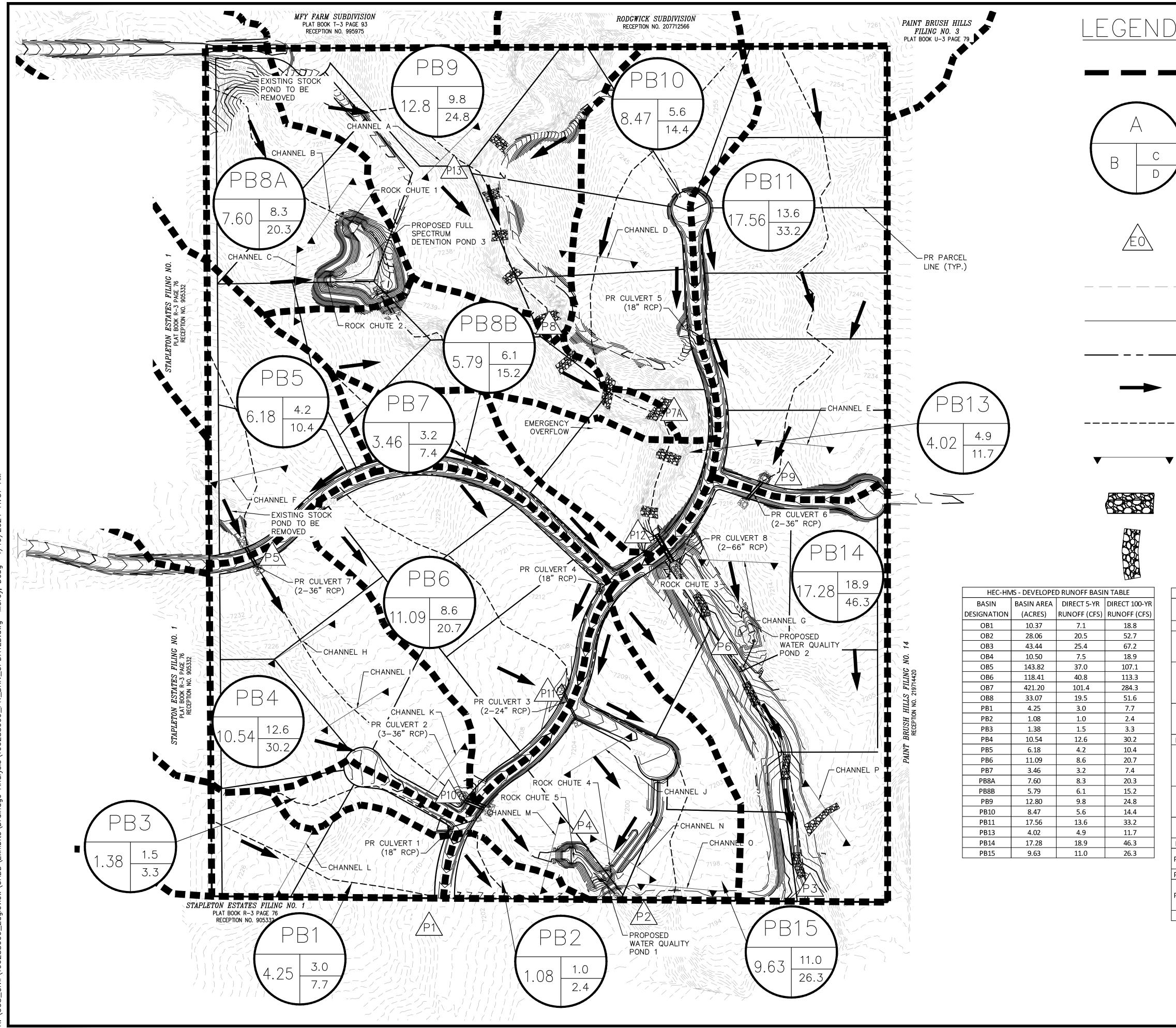
FGEND			APPR.
			DATE
	DRAINAGE BASIN AREAS		B
A B C D	A – HEC-HMS BASINS B – BASIN ACREAGE C – 5-YR RUNOFF D – 100-YR RUNOFF		REVISION
ÉÓ	DESIGN POINT		NO.
	EXISTING CONTOURS		-0180
	PROPERTY BOUNDARY		ES, INC. (719) 453 [.]
	FLOW ARROW	H≪)CIAT 300 903
	FLOW PATH		ο ^Ο Ϸ
	PARCEL LINE	(imle	22 KIMLEY—HORN AND North Nevada Avenue Iorado Springs, Colora

	HEC-HMS - EXISTING RUNOFF TABLE							
BASIN	BASIN AREA	DIRECT 5-YR	DIRECT 100-YR	CUMULATIVE DIRECT	CUMULATIVE DIRECT			
IGNATION	(ACRES)	RUNOFF (CFS)	RUNOFF (CFS)	5-YR RUNOFF (CFS)	100-YR RUNOFF (CFS)			
B1	5.55	3.0	8.5	-	-			
OB1	10.37	7.1	18.8	10.1	27.3			
B2	41.43	15.4	48.5	-	-			
OB2	28.06	20.6	52.7	-	-			
OB3	43.44	25.3	67.1	-	-			
OB4	10.50	7.5	18.9	67.5	183.8			
OB5	143.82	36.8	106.9	-	-			
OB6	118.40	40.8	113.2	-	-			
OB7	421.43	101.4	284.2	169.2	478.0			
B3	59.54	36.4	110.0	-	-			
B4	14.68	5.4	18.2	-	-			
OB8	33.07	19.5	51.6	183.1	515.5			


					REVISION
					NO.
DRA CHE		B Y: Bì	r:	к К	天
EAGLEVIEW	EL PASO COUNTY, COLORADO	PRE DEVELOPMENT DRAINAGE MAP			
FOF CO Kim Kimley	ROJE SHI			NL ON DI es, In	Y N N

FGEND			APPR.
			DATE
	DRAINAGE BASIN AREAS		B
A B C D	A — HEC—HMS BASINS B — BASIN ACREAGE C — 5—YR RUNOFF D — 100—YR RUNOFF		REVISION
EO	DESIGN POINT		NO.
	EXISTING CONTOURS		-0180
	PROPERTY BOUNDARY		ES, INC. (719) 453
\rightarrow	FLOW ARROW		0CIAT 300 903
	FLOW PATH		Su Su
▼ ▼	EXISTING CHANNEL CROSS SECTIONS	Kimle	2022 KIMLEY-HORN ANI 2 North Nevada Avenue Colorado Springs, Colorc
		DESIGNED DRAWN BY CHECKED	r: RS
	IMS - EXISTING RUNOFF TABLE ECT 5-YR DIRECT 100-YR CUMULATIVE DIRECT CUMULATIVE DIRECT	DATE: 12/	

HEC-HMS - EXISTING RUNOFF TABLE								
BASIN	BASIN AREA	DIRECT 5-YR	DIRECT 100-YR	CUMULATIVE DIRECT	CUMULATIVE DIRECT			
IGNATION	(ACRES)	RUNOFF (CFS)	RUNOFF (CFS)	5-YR RUNOFF (CFS)	100-YR RUNOFF (CFS)			
B1	5.55	3.0	8.5	-	-			
OB1	10.37	7.1	18.8	10.1	27.3			
B2	41.43	15.4	48.5	-	-			
OB2	28.06	20.6	52.7	-	-			
OB3	43.44	25.3	67.1	-	-			
OB4	10.50	7.5	18.9	67.5	183.8			
OB5	143.82	36.8	106.9	-	-			
OB6	118.40	40.8	113.2	-	-			
OB7	421.43	101.4	284.2	169.2	478.0			
B3	59.54	36.4	110.0	-	-			
B4	14.68	5.4	18.2	-	-			
OB8	33.07	19.5	51.6	183.1	515.5			



MAP

Kimley»Horn Kimley-Horn and Associates, Inc. PROJECT NO. 196288000

SHEET

2

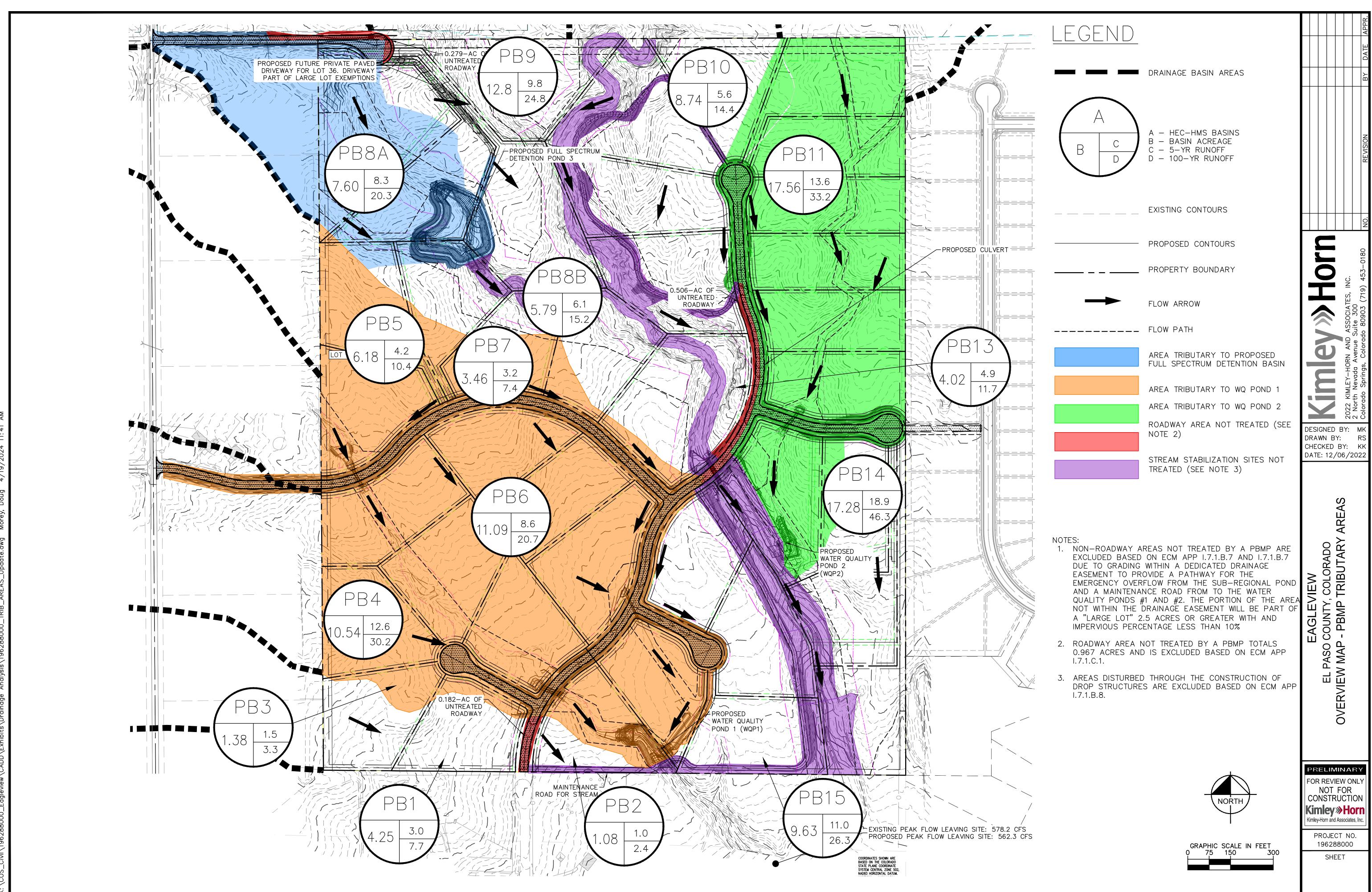
_)							
_	<u> </u>							
	DRA	AINAGE E	BASIN A	AREAS		à		
	- B - C -	- HEC-+ - BASIN - 5-YR - 100-Y	ACREA RUNOF	.GE F				
	DES	SIGN POI	νT					
-	– EXIS	- EXISTING CONTOURS						
- PROPOSED CONTOURS						ES, INC.		
	— PR(SSOCIATES te 300						
	FLC	AND AS						
	FLC	MLEY-HORN Nevada Ave						
	PR(SEC	2022 KIMLE 2 North Ne						
	CON	DESIGNED BY: MH DRAWN BY: RS CHECKED BY: KH DATE: 12/06/2022						
	RIF	FLE DROI	⊃ STRL	ICTURE (5)			
		HEC-HMS - DE	/ELOPED RUNOF	F DESIGN POINT TABLE		IAP		
	DESIGN POINT	TRIBUTARY BASINS	TRIBUTARY AREA (ACRES)	CUMULATIVE 5-YR FLOW (CFS)	CUMULATIVE 100-YR FLOW (CFS)			
	P1 P2	OB1, PB1 OB2, OB3, OB4, PB3, PB4, PB5, PB6, PB7, PB15	14.62 124.29	<u>10.1</u> 72.7	26.4 185.4	VIEW , colorado - DRAINAGE M		
	P3	OB5, OB6, OB7, OB8, PB8, PB9, PB10, PB11, PB12, PB13, PB14	790.02	179.0	505.2	EAGLEVIEW COUNTY, COLO		
	P4	OB2, OB3, OB4, PB3, PB4, PB5,	114.66	70.8	180.8	EAGLE PASO COUNTY EVELOPMENT		
	P5 (CULVERT 7)	PB6, PB7 OB3, OB4, PB5	60.12	36.9	96.1			
	P6	OB5, OB6, OB7, OB8, PB8A, PB8B, PB9, PB10, PB11, PB13	772.73	177.3	500.7	EAGLEV EL PASO COUNTY DEVELOPMENT		

P1	OB1, PB1	14.62	10.1	26.4	
	OB2, OB3, OB4,		72.7	185.4	
P2	PB3, PB4, PB5,	124.29			
	PB6, PB7, PB15				
	OB5, OB6, OB7,		179.0	505.2	
P3	OB8, PB8, PB9,	790.02			
РЭ	PB10, PB11, PB12,				
	PB13, PB14				
	OB2, OB3, OB4,				
P4	PB3, PB4, PB5,	PB3, PB4, PB5, 114.66		180.8	
	PB6, PB7				
P5 (CULVERT 7)	OB3, OB4, PB5	60.12	36.9	96.1	
	OB5, OB6, OB7,				
P6	OB8, PB8A, PB8B,		177.0	F00 7	
20	PB9, PB10, PB11,	772.73	177.3	500.7	
	PB13				
	OB5, OB6, OB7,		168.5	475.7	
P7A	PB8A, PB8B, PB9,	718.08			
	PB10				
P8	OB5, OB6, OB7,	700.61	167.3	472.4	
Po	PB8, PB9, PB10 709.61		107.5	472.4	
P9 (CULVERT 6)	OB8, PB11	50.63	31.8	82.3	
	OB2, OB3, OB4,	98.72	58.0	150.2	
P10 (CULVERT 2)	PB4, PB5	90.72			
P11 (CULVERT 3)	PB6, PB7	14.55	11.7	28	
	OB5, OB6, OB7,		168.9	476.7	
P12 (CULVERT 8)	PB8, PB9, PB10,	722.10			
	PB13				
P13	PB9, OB6, OB7	552.40	133.8	375.0	

PRELIMINARY FOR REVIEW ONLY NOT FOR CONSTRUCTION **Kimley**»Horn Kimley-Horn and Associates, Inc

NORTH

GRAPHIC SCALE IN FEET 0 75 150 30


300

PROJECT NO. 196288000

POST

SHEET

3

