Please refer to comments provided with PPR 1827

FINAL DRAINAGE REPORT FOR YODER ELECTRIC SUBSTATION EL PASO COUNTY, COLORADO

FEBRUARY 2016

Prepared For:

MOUNTAIN VIEW ELECTRIC ASSOCIATION

David Waldner

11140 E Woodmen Rd, Peyton, CO 80831

odmen Rd, Peyton, CO 808. (719) 495-2283

Prepared By:

TERRA NOVA ENGINEERING, INC.

721 S 23rd Street Colorado Springs, CO 80904 (719) 635-6422

Job No. 1802.00

FINAL DRAINAGE REPORT FOR YODER ELECTRIC SUBSTATION

TABLE OF CONTENTS

ngineer's Statement	Page 3
urpose	Page 4
eneral Description	Page 4
oodplain Statement	Page 4
xisting Drainage Conditions	Page 5
roposed Drainage Conditions	Page 6
ydrologic Calculations I	Page 7
ydraulic Calculations I	Page 8
rosion Control	Page 8
Taintenance I	Page 8
onstruction Cost Opinion	Page 8
rainage Fees	Page 9
ummary	Page 9
ibliography	Page 10

REQUIRED MAPS AND DRAWINGS

VICINITY MAP
S.C.S. SOILS MAP
FEMA FIRM MAP
HYDROLOGIC CALCULATIONS
HYDRAULIC CALCULATIONS
DETENTION CALCULATIONS
DRAINAGE PLAN

CERTIFICATION STATEMENT:

Engineers Statement

This attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Quentin Armijo, P.E. 37170 Seal
<u>Developers Statements</u> I, Mountain View Electric Association, the developer have read and will comply with all of the requirements specified in this drainage report and plan.
Mountain View Electric Association Business Name
By:
El Paso County Approval:
Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.
Jennifer Irvine, County Engineer / ECM Administrator
Conditions:

FINAL DRAINAGE REPORT FOR YODER ELECTRIC SUBSTATION

PURPOSE

The purpose of this Final Drainage Report is to identify and analyze the proposed drainage patterns, determine proposed runoff quantities, size drainage structures for conveyance of developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development.

GENERAL DESCRIPTION

This Final Drainage Report (FDR) is an analysis of approximately 5.0 acres of undeveloped land located just east of the residential house at 1625 N. Yoder Road. This site is being developed by our client to include an electric substation. The development will also include improving the dirt access road to gravel. The site is located in the southwest quarter of Section 3, Township 14 South, Range 61West of the 6th Principal Meridian currently within El Paso County, Colorado. The site is bounded to the north, west, & south by a 5 acres single family lots, and to the east by undeveloped open space. The site is contained within the Upper Pond Creek Basin.

Soils for this project are delineated by the map in the appendix as Bresser sandy loam (11) 0 to 3 percent slopes and Truckton sandy loam (97), 3 to 9 percent slopes. Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group B and A respectively.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain, as determined by Flood Insurance Rate Map No. 08041C0875 F, dated March 17, 1997 (see appendix).

EXISTING DRAINAGE CONDITIONS

The site has not been previously developed and is currently part of a 40 acre single family parcel. The site consists mostly of natural vegetative grass and weeds, with some areas of bare ground. There is a natural ridge that runs north south through the site and splits it. The site has been broken down into two existing design points 1 & 2, two existing onsite basins EXA & EXB and two existing offsite basins OS-1 & OS-2 in order to show the historic drainage flows. Below is a description of them. See appendix for calculations.

Offsite Basin OS-1 (11.85 acres; Q_5 =2.7 cfs and Q_{100} =17.4 cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from north to south and drains onto Basin EXA.

Basin EXA (3.83 acres; Q_5 =1.1 cfs and Q_{100} =7.4 cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from north to south. The combined flow (Q_5 =3.5 cfs and Q_{100} =23.0 cfs) of Basin OS-1 and EXA sheet flows south in an existing broad swale and then to a low point at the south boundary (Design Point 1) where it ponds and then overtops offsite.

Offsite Basin OS-2 (0.33 acres; Q_5 =0.1 cfs and Q_{100} =0.7 cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from northwest to southeast and partially drains onto Basin EXB.

Basin EXB (1.17 acres; Q_5 =0.4 cfs and Q_{100} =2.7 cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from northwest to southeast. The combined flow (Q_5 =0.5 cfs and Q_{100} =3.4 cfs) of Basin OS-2 and EXB sheet flows southeast into an existing offsite natural channel (Design Point 2).

PROPOSED DRAINAGE CONDITIONS

Runoff in the developed conditions will closely flow the historic drainage patterns with the exception of adding an Extended Detention Basin to capture and treat the runoff form the developed substation yard. For analysis the site has been broken down into three design points 1, 2, & 1A, four onsite basins A, A1 & A2, and the same two existing offsite basins OS-1 & OS-2. Below is a description of the runoff in the developed conditions and how it will be safely routed and treated. See appendix for calculations.

Offsite Basin OS-1 (11.85 acres; $Q_5=2.7$ cfs and $Q_{100}=17.4$ cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from north to south and drains onto Basin A1.

Basin A1 (1.70 acres; Q_5 =0.5 cfs and Q_{100} =3.4 cfs) consist of undeveloped open space prairie that will be inside the site boundary but will not have any improvements other than placing a 2' high berm on the north side of the yard to direct runoff to a broad swale, so the offsite flow can be routed around the substation yard. Drainage in this basin sheet flows to the broad swale (Design Point 1A). The combined flow (Q_5 =3.1 cfs and Q_{100} =19.9 cfs) of Basin OS-1 and A1 is directed south in the broad swale and then to a low point at the south boundary (Design Point 1).

Basin A (1.38 acres; $Q_5=1.2$ cfs and $Q_{100}=3.8$ cfs) will consist of the proposed substation yard and is comprised of loose gravel. Drainage in this basin sheet flows south to the proposed Extended Detention Basin (EDB). At the 0.221 acre EDB the inflow point consists of concrete rundown into concrete lined forebay, with a 1' high wall. A 2" slit in the wall routes the minor flow to 2' concrete trickle channels then the runoff is routed to the 2.5' deep micropool which has a 0.004 ac-ft Initial Surcharge Volume. The 1.38 acres tributary to EDB are 40.74% impervious. Based upon this we need a WQCV of 0.021 ac-ft, an ERUV volume of 0.004 ac-ft and 100-year volume of 0.045 ac-ft for a total volume needed of 0.105 ac-ft. An outlet structure will release the flows. The Micropool bottom elevation is 6203.00, the top is at 6205.50 while the ISV elevation is at 6205.83. The WQCV orifice starts at 6205.50 with 3-5/8-inch diameter holes spaced 3.16" inches

apart. The 2'x2' outlet structure grate is set at 6206.29, which corresponds to the EURV elevation. The 100-year elevation tops out at 6206.66. No restrictor plate is needed for the 12" outlet pipe, which releases Q₅=0.0 cfs and Q₁₀₀=0.8 cfs. Pipe Run 1 a 12" storm drain routes the discharge to the south boundary where the historic drainage flowed (Design Point 1). A 10' long emergency spillway set at 6207.16 will safely pass the 100' developed storm in case of failure in the outlet structure.

Basin A2 (0.75 acres; Q_5 =0.4 cfs and Q_{100} =1.8 cfs) will consist undeveloped land with some gravel drive in the area just south of the proposed EDB. Drainage in this basin sheet flows south to Design Point 1. The combined flow of Basins OS-1, A, A1, & A2 at Design Point 1 is Q_5 =3.3 cfs and Q_{100} =21.9 cfs

As in the historic condition Offsite Basin OS-2 (0.33 acres; Q_5 =0.1 cfs and Q_{100} =0.7 cfs) consist of undeveloped open space prairie. Drainage in this basin sheet flows from northwest to southeast and partially drains onto Basin EXB.

Basin B (1.17 acres; Q_5 =0.4 cfs and Q_{100} =2.7 cfs) consist of undeveloped open space prairie inside the property, but is not being improved. Drainage in this basin sheet flows from northwest to southeast. The combined flow (Q_5 =0.5 cfs and Q_{100} =3.4 cfs) of Basin OS-2 and EXB sheet flows southeast into an existing offsite natural channel (Design Point 2).

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria Manual – Volumes 1 & 2, latest editions. The pertinent data sheets are included in the appendix of this report.

EROSION CONTROL

An erosion control plan is included with this drainage report. Vehicle Tracking Control (VTC) will be placed at any entrance to the site. A Concrete Washout (CW) will be placed on site, as well as a Materials Staging Area (SSA) and a Dirt Stockpile (SP) location. Silt Fence (SF) will be placed around the SP and Sediment Control Logs (SCL) are to be placed at the southern border of the site to keep runoff in place.

MAINTENANCE

The Extended Detention Basins and the storm drain systems are private and therefore must be maintained by the owner. These should be cleaned and checked after any significant precipitation event and at least once every three months. The proposed erosion control measures will be repaired and maintained by the property owner or owner's representative as required.

CONSTRUCTION COST OPINION

Public Non Reimbursable

NOT APPLICABLE

Private Non Reimbursable

1. 12" HDPE	95 LF	\$ 35	\$ 3,325
2. EDB	1 EA	\$ 10,000	\$ 10,000
3. Concrete channel	65 LF	\$ 25	\$ 1,625
4. 2'x2' Dual Outlet	1 EA	\$ 2,500	\$ 2,500

Total \$ 17,450

DRAINAGE FEES

The existing site is in the Upper Pond Creek Basin. It appears this is an unstudied basin

and therefore no basin fees are due at the time of final plat.

SUMMARY

Development of this site will not adversely affect the surrounding development.

Proposed flows, as detailed in this report, will follow the drainage patterns outlined in

this report showing how runoff will be safely routed downstream. The Extended

Detention Basins will control developed flow to historic levels and provide water quality

for this site. These water features will need to be periodically maintained by the owner in

order to maintain their effectiveness in cleaning the discharge form the site.

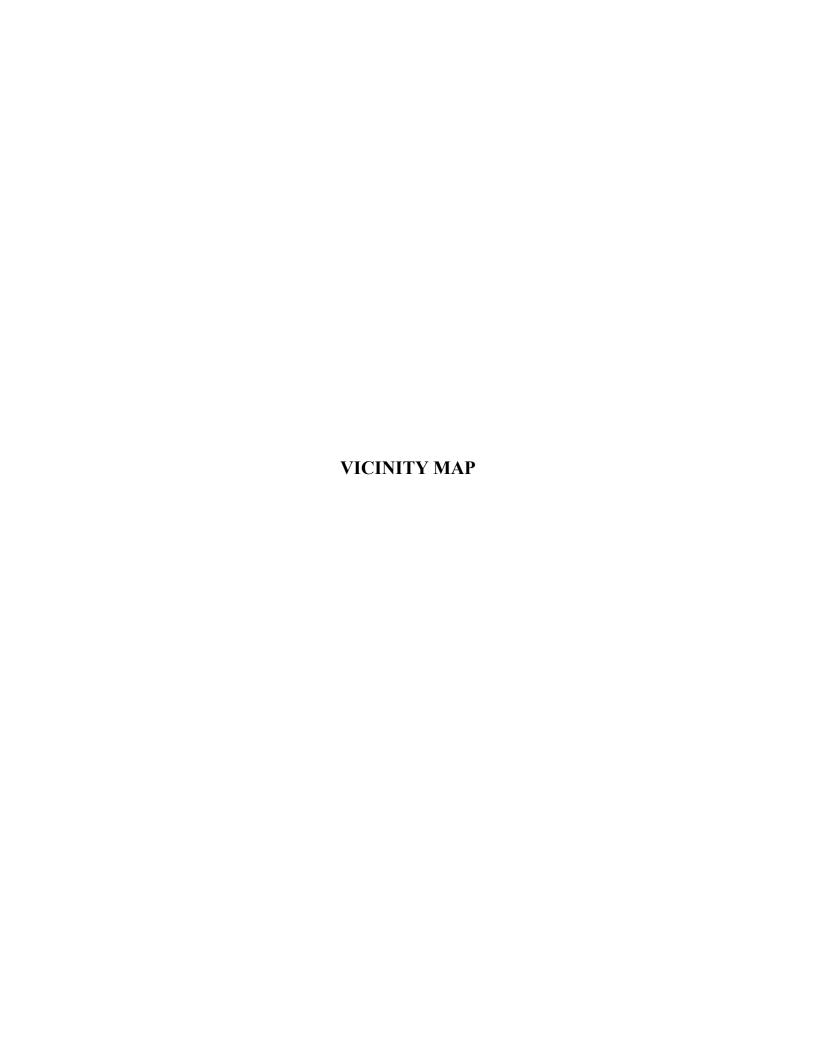
PREPARED BY:

TERRA NOVA ENGINEERING, INC.

Quentin Armijo, P.E.

Senior Project Manager

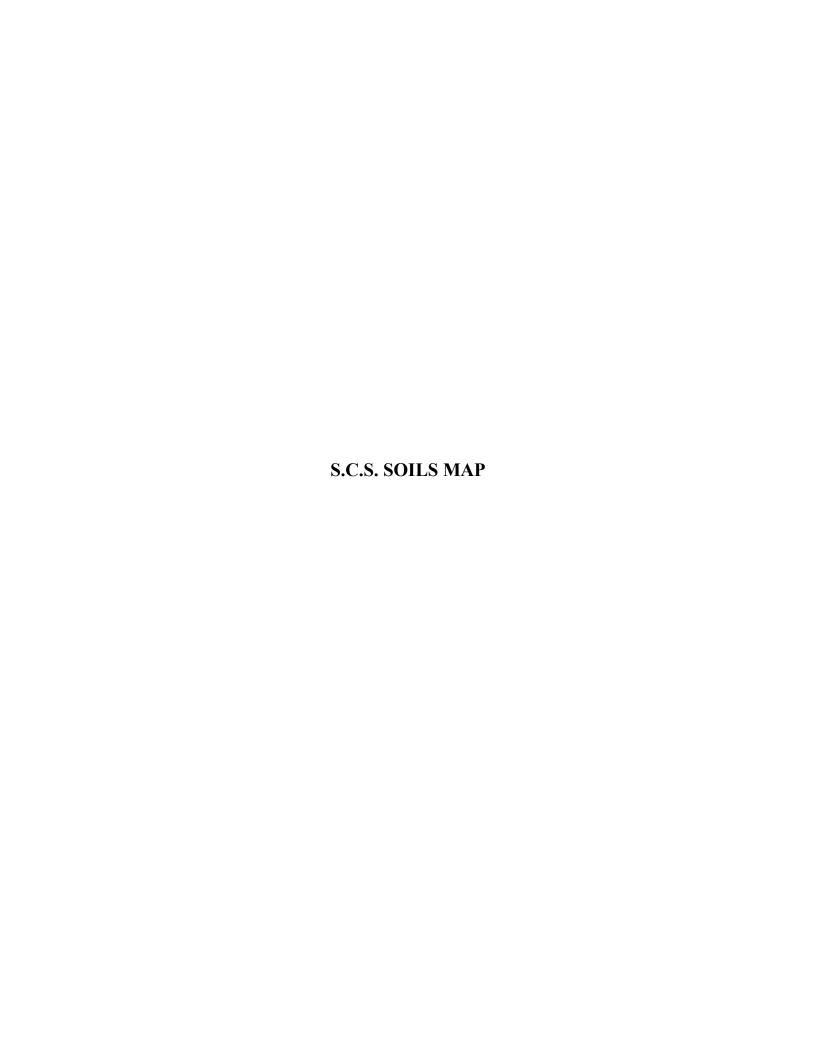
Jobs/1802.00/drainage/180200 - FDR.doc


9

REFERENCE

"El Paso County Drainage Criteria Manual-Volumes 1 & 2, latest edition"

SCS Soils Map for El Paso County


Federal Emergency Management Agency (FEMA) flood maps

			BIG SPRINGS RD		
CALHAN HWY	N. LAUPPE RD.	CHAMBERS RD AODER RD.	SITE	SENGBEIL RD.	

VICINITY MAP N.T.S.

N

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Water Features **Fransportation** Background W 8 ŧ Soil Map Unit Polygons Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features **Gravelly Spot Borrow Pit** Clay Spot Lava Flow **Gravel Pit** Area of Interest (AOI) Blowout Landfill Soils

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map

measurements.

Source of Map: Natural Resources Conservation Service

Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL:

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

El Paso County Area, Colorado Soil Survey Area:

Survey Area Data: Version 15, Oct 10, 2017

Soil map units are labeled (as space allows) for map scales

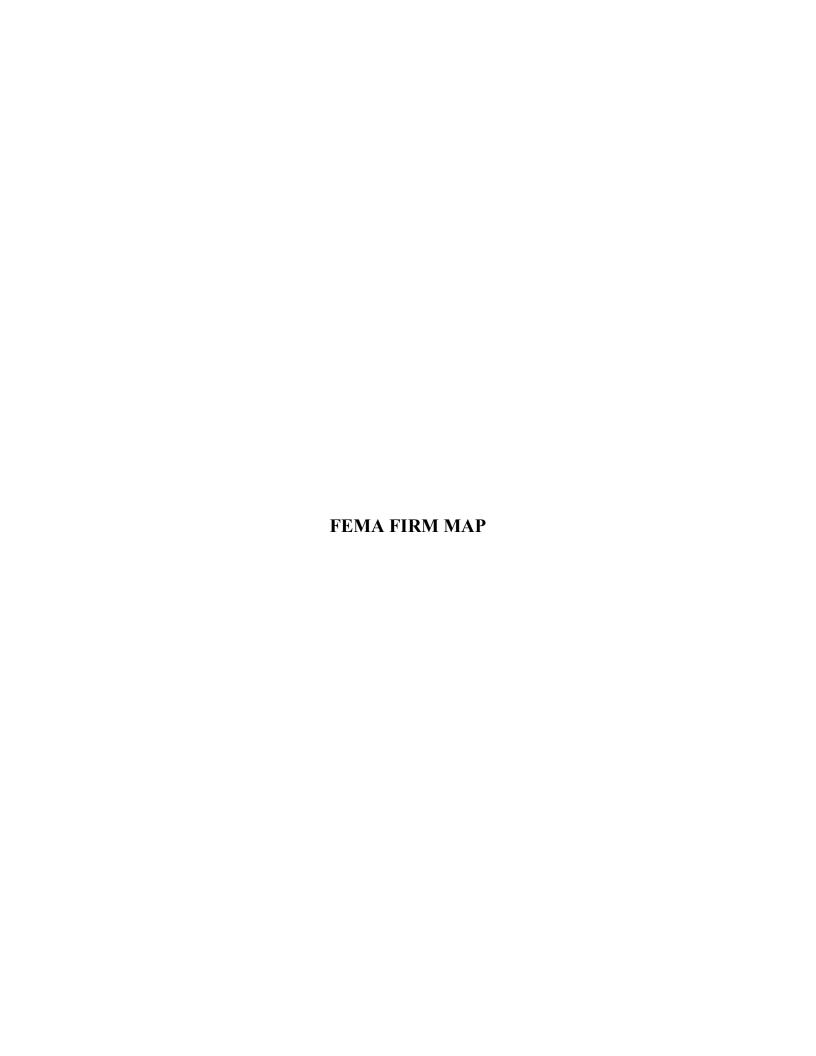
1:50,000 or larger.

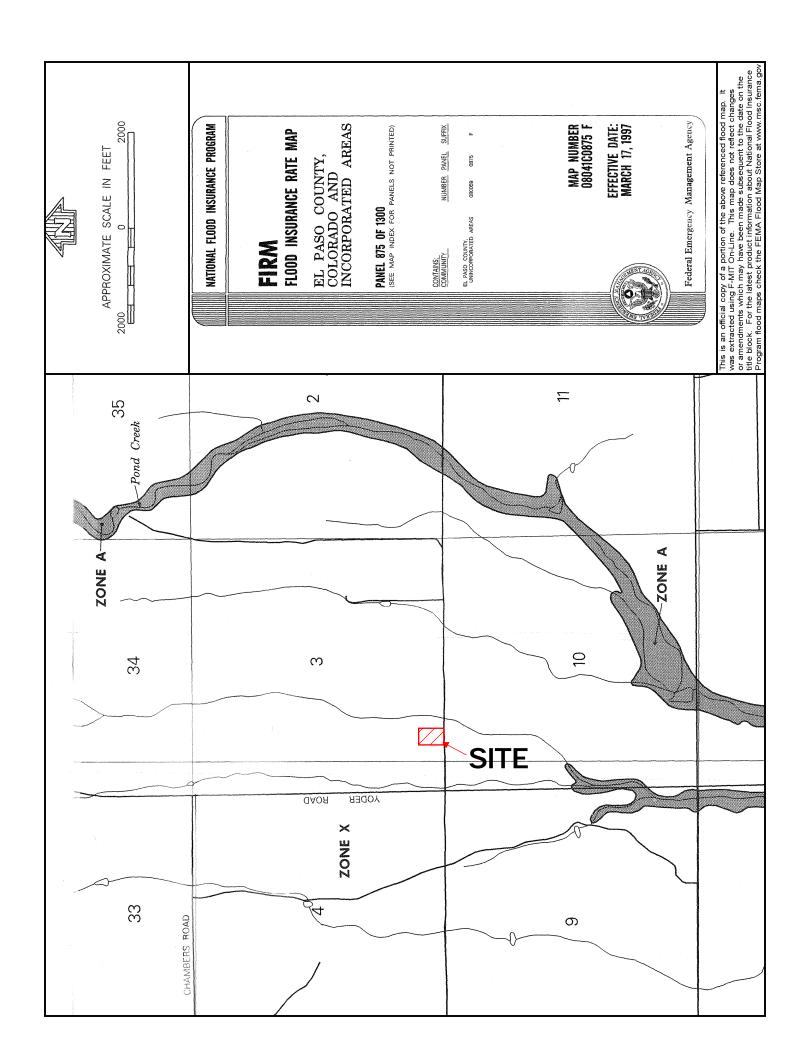
Date(s) aerial images were photographed: May 22, 2016—Mar

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot

Slide or Slip Sodic Spot


Sinkhole


Sandy Spot Saline Spot

Rock Outcrop

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
11	Bresser sandy loam, cool, 0 to 3 percent slopes	1.2	24.5%
97	Truckton sandy loam, 3 to 9 percent slopes	3.8	75.5%
Totals for Area of Interest		5.0	100.0%

MVEA YODER SUBSTAITON (Area Runoff Coefficient Summary)

HISTORIC

		T	DEVELOPED	•	VA	UNDEVELOPED	d:	WEIGHTED	HTED
	TOTAL								
BASIN	AREA	AREA	౮	C_{100}	AREA	౮	C_{100}	င်	C_{100}
	(Acres)	(Acres)			(Acres)				
OS-1	11.85	0.00	0.30	0.50	11.85	60.0	0.36	60.0	0.36
OS-2	0.33	0.00	0.30	0.50	0.33	0.09	0.36	0.09	0.36
EXA	3.83	0.00	0.30	0.50	3.83	60.0	0.36	60.0	98.0
EXB	1.17	0.00	0.30	0.50	1.17	60.0	0.36	60.0	0.36

QNA
Date: 2/16/2018
Checked by:

DEVELOPED

		I	DEVELOPED	•	Ω	UNDEVELOPED	a_5	WEIG	WEIGHTED
	TOTAL								
BASIN	AREA	AREA	౮	C_{100}	AREA	ర	C_{100}	ర్	C_{100}
	(Acres)	(Acres)			(Acres)				
OS-1	11.85	00.00	0.30	05.0	11.85	60.0	0.36	60.0	0.36
OS-2	0.33	00.00	0.30	05.0	0.33	60.0	0.36	60.0	0.36
A	1.38	1.02	0.30	05.0	0.36	60.0	0.36	0.25	0.46
A1	1.70	90.0	0.30	05.0	1.65	60.0	0.36	0.10	0.36
A2	0.75	0.16	0.30	05.0	0.59	60.0	0.36	0.14	0.39
В	1.17	00.00	0.30	05.0	1.17	60.0	0.36	60.0	0.36

QNA
Date: 2/16/2018
Checked by:

MVEA YODER SUBSTATION AREA DRAINAGE SUMMARY

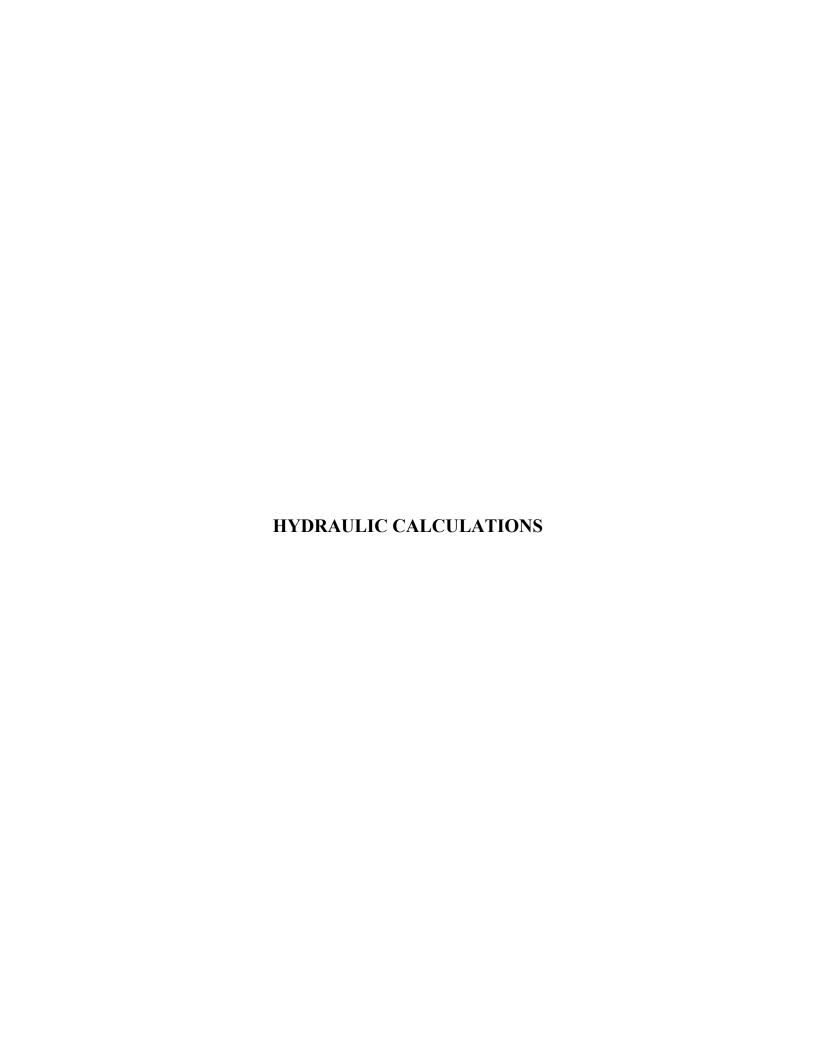
HISTORIC

		WEIGHTED	нтер		OVERLAND	LAND		STRE	STREET / CHANNEL FLOW	ANNEL F	том	T_t	INTENSITY	\SILX	TOTAL FLOWS	SMOT
BASIN	AREA TOTAL	C_{5}	C_{100}	C_{s}	Length	Height	\mathbf{T}_{C}	Length	Slope	Velocity	T_{t}	TOTAL	Is	I_{100}	Q_{5}	Q_{100}
	(Acres)	* For Calcs See Runoff Summary	Runoff Summary		(tt)	(ft)	(min)	(tt)	(%)	(tbs)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
I-SO	11.85	60.0	98.0	60.0	100	1.2	17.8	1565	2.8%	2.2	11.9	29.6	2.5	4.1	2.7	17.4
OS-2	0.33	60.0	98.0	60.0	100	5.0	11.1	205	1.7%	2.1	1.6	12.7	3.7	6.4	0.1	0.7
EXA	3.83	60.0	98.0	60.0	98	1.9	13.5	531	1.3%	2.0	4.4	17.9	3.2	5.4	1.1	7.4
EXB	1.17	0.09	0.36	60.0	100	5.0	11.1	170	2.4%	2.6	1.1	12.2	3.8	6.5	0.4	2.7

Calculated by: ONA
Date: 2/16/2018
Checked by:

DEVELOPED

		азінызм	азин		OVERLAND	LAND		STRE	ET / CH	STREET / CHANNEL FLOW	моз	I_t	INTENSITY	XLIS.	TOTAL FLOWS	SMOT
BASIN	AREA TOTAL	C_{s}	C_{100}	Cs	Length	Height	$T_{\rm C}$	Length	Slope	Velocity	$T_{\rm t}$	TOTAL	Is	I_{100}	Qs	Q_{100}
	(Acres)	* For Calcs See Runoff Summary	Runoff Summary		(tt)	(tt)	(min)	(ft)	(%)	(tbs)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
I-SO	11.85	60'0	98.0	60.0	100	1.2	17.8	1565	2.8%	2.2	11.9	29.6	2.5	4.1	2.7	17.4
OS-2	0.33	60.0	0.36	60.0	100	5.0	11.1	205	1.7%	2.0	1.7	12.8	3.7	6.3	0.1	0.7
V	1.38	0.25	0.46	0.30	100	1.3	13.7	125	1.0%	2.0	1.0	14.8	3.5	5.9	1.2	3.8
IV	1.70	0.10	0.36	60.0	100	5.0	11.1	950	%6.0	1.5	6.1	17.2	3.3	5.5	0.5	3.4
42	0.75	0.14	0.39	0.09	68	2.0	13.6	89	1.5%	2.1	0.5	14.2	3.6	6.1	0.4	1.8
В	1.17	0.09	0.36	0.09	100	3.0	13.1	63	5.4%	3.7	0.3	13.4	3.6	6.2	0.4	2.6


Calculated by: ONA
Date: 2/16/2018
Checked by:

MVEA YODER SUBSTATION SURFACE ROUTING SUMMARY

			HISTORIC						
					16	Intensity	ısity	Flow	W
Design Point(s)	Contributing Basins	Area (Acres)	$Equivalent \ CA_5$	Equivalent CA 100	T_C	I_{5}	I_{100}	$oldsymbol{0}{0}$	Q 100
1	OS-1 & EXA	15.69	1.41	5.65	29.6	29.6 2.5 4.1 3.5	4.1	3.5	23.0
2	OS-2, & EXB	1.49	0.13	0.54	12.7	3.7	6.4	6.4 0.5 3.4	3.4

		D	DEVELOPED	(
					11	Intensity	ısity	Flow	W
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA ₅	Equivalent CA 100	T_C	I_5	I_{100}	Q_s	001 7
1A	OS-1 & A1	13.55	1.23	4.89	29.6	2.5	4.1	3.1	19.9
1	OS-1, A1, & A2 EDB Release	15.69	1.34	5.38	29.6	2.5	4.1	3.3	21.9
2	OS-1, & B	1.49	0.13	0.54	12.8	3.7	6.3	0.5	3.4

Date: <u>2/16/2018</u> Checked by:

Free Online Manning Pipe Flow Calculator

>> Nationalism not welcome here. <<

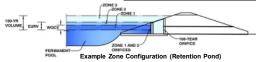
Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate, program, or host these calculators? (../contact.php) [Hide this request]

Check out our newest spreadsheet update: Download Spreadsheet (spreadsheet/Manning-Pipe-Flow.xlsx) Open Google Sheets version (spreadsheet/Manning-Pipe-Flow.php) View All Spreadsheets (http://www.hawsedc.com/engcalcs/SpreadsheetLibrary.php)

--CAUTION: If you have downloaded the spreadsheet prior to September 24, you may have received incorrect results!--

Pipe Run 1					
12" Pond outlet					
		_	Results		
			Flow, Q	0.8104 cfs	cfs ▼
Set units: m mm ft in			Velocity, v	2.8575	ft/sec ▼
Pipe diameter, d ₀	12 in	•	Velocity head, h _v	0.1269	# #
? (http://www.engineeringtoolbox.com/mannings-	.013	•	Flow area	0.2836 ft^2	ft^2 ▼
rougnness-a_/ as.nrmi)			Wetted perimeter	1.3490	▶
Pressure slope (possibly ? (/pressureslope.php) equal to pipe slope), S_0	5		Hydraulic radius	0.2102 ft	*
	% rise/run •		Top width, T	0.9755	₽
Percent of (or ratio to) full depth (100% or 1 if flowing full)	*		Froude number, F	0.93	
			Shear stress (tractive force), tau	0.1218	_ bst _▲



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Gold Hill Mesa MDDP Amendment

Basin ID: Pond 1 100-year Detention for Future Development

Required Volume Calculation

lired Volume Calculation		_
Selected BMP Type =	EDB	
Watershed Area =	1.38	acres
Watershed Length =	300	ft
Watershed Slope =	0.010	ft/ft
Watershed Imperviousness =	40.74%	percent
Percentage Hydrologic Soil Group A =	75.5%	percent
Percentage Hydrologic Soil Group B =	24.5%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Landing for A to Delafall Double	Haran Inner	

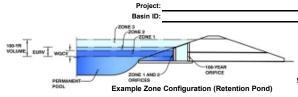
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.021	acre-feet
Excess Urban Runoff Volume (EURV) =	0.061	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.043	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.057	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.074	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.099	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.126	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.159	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	0.224	acre-feet
Approximate 2-yr Detention Volume =	0.040	acre-feet
Approximate 5-yr Detention Volume =	0.054	acre-feet
Approximate 10-yr Detention Volume =	0.068	acre-feet
Approximate 25-yr Detention Volume =	0.082	acre-feet
Approximate 50-yr Detention Volume =	0.091	acre-feet
Approximate 100-yr Detention Volume =	0.105	acre-feet

Optional User Override

1-hr Precipitation					
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.00	inches				

Stage-Storage Calculation

		igo otorago oaroaration
acre-fee	0.021	Zone 1 Volume (WQCV) =
acre-fee	0.040	Zone 2 Volume (EURV - Zone 1) =
acre-fee	0.045	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fee	0.105	Total Detention Basin Volume =
ft^3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S_{TC}) =
H:V	user	Slopes of Main Basin Sides (S _{main}) =
Ī	user	Basin Length-to-Width Ratio (R _{L/W}) =
-		


Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (LISV) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fe

		1.							
Depth Increment =	0.25	Optional	1	145 40-		Optional		Malana	V-1
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool	-	0.00	-			124	0.003		
	-	0.25	-			2,437 4,750	0.056 0.109	296 1,171	0.007
	-	0.50	-	-		5,049	0.109	2,393	0.027
	-	1.00	-			5,348	0.123	3,690	0.085
	-	1.25	-			5,647	0.130	5,061	0.116
	-	1.50 1.75	-			5,946 6,264	0.137 0.144	6,507	0.149 0.184
	-	2.00	-			6,582	0.144	8,030 9,633	0.164
	-		-						
	-		-		-				
	-		-		-				
			-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-		-				
	-		-		-				
	-		-		-				
	-		-						
	-		-						
	_		-		_				
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
			-		-				
	-		-		-				
	-		-		-				
	-				-				
	-		-		-				
	-		-		-				
	-		-		-				
	-		-		-				
	-		-	-	-				
	-		-		-				
	-		-						
			-		-				
	-		-		-				
	-		-		-				
	-		-		-				
	-		-		-				
	-		-		-				
	-		-						
			-		-				
	-		-		-				
	-		1 1		-				
	-				-				
	-		1 1	-	-				
	-		-		-				
			-						
	-		-		-				
	-		1 1		-				

UD-Detention_v3.07.xlsm, Basin 2/16/2018, 4:23 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.44	0.021	Orifice Plate
Zone 2 (EURV)	0.79	0.040	Orifice Plate
?one 3 (100-year)	1.16	0.045	Weir&Pipe (Restrict)
•		0.105	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Un	ideraraii
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	0.79	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	3.16	inches
Orifice Plate: Orifice Area per Row =	0.30	sq. inches (diameter = 5/8 inch)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	2.083E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.30	0.60					
Orifice Area (sq. inches)	0.30	0.30	0.30					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated	Parameters for Vert	ical Orifice	
	Not Selected	Not Selected	
Vertical Orifice Area =	N/A	N/A	ft ²
Vertical Orifice Centroid =	N/A	N/A	feet

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

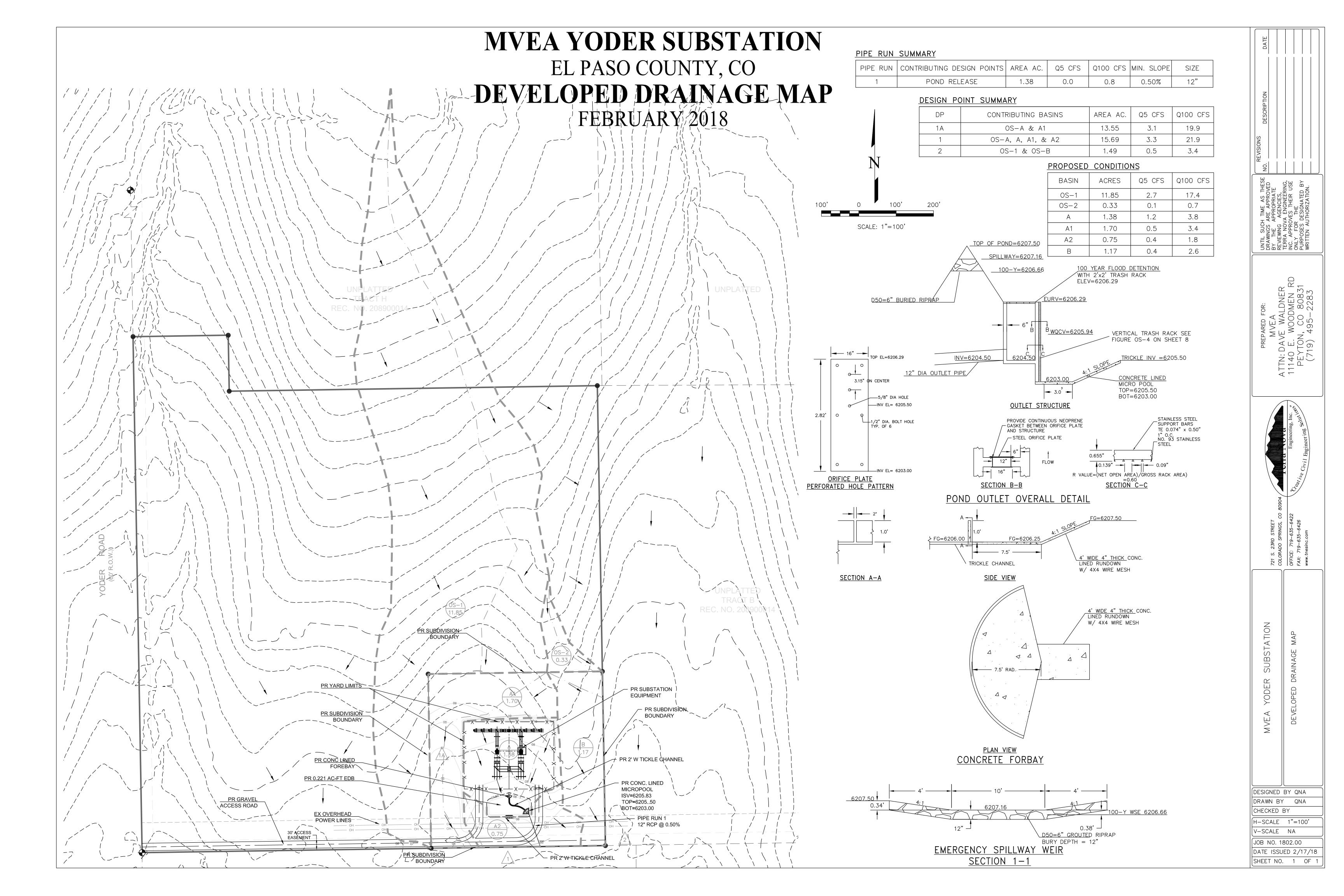
Depth

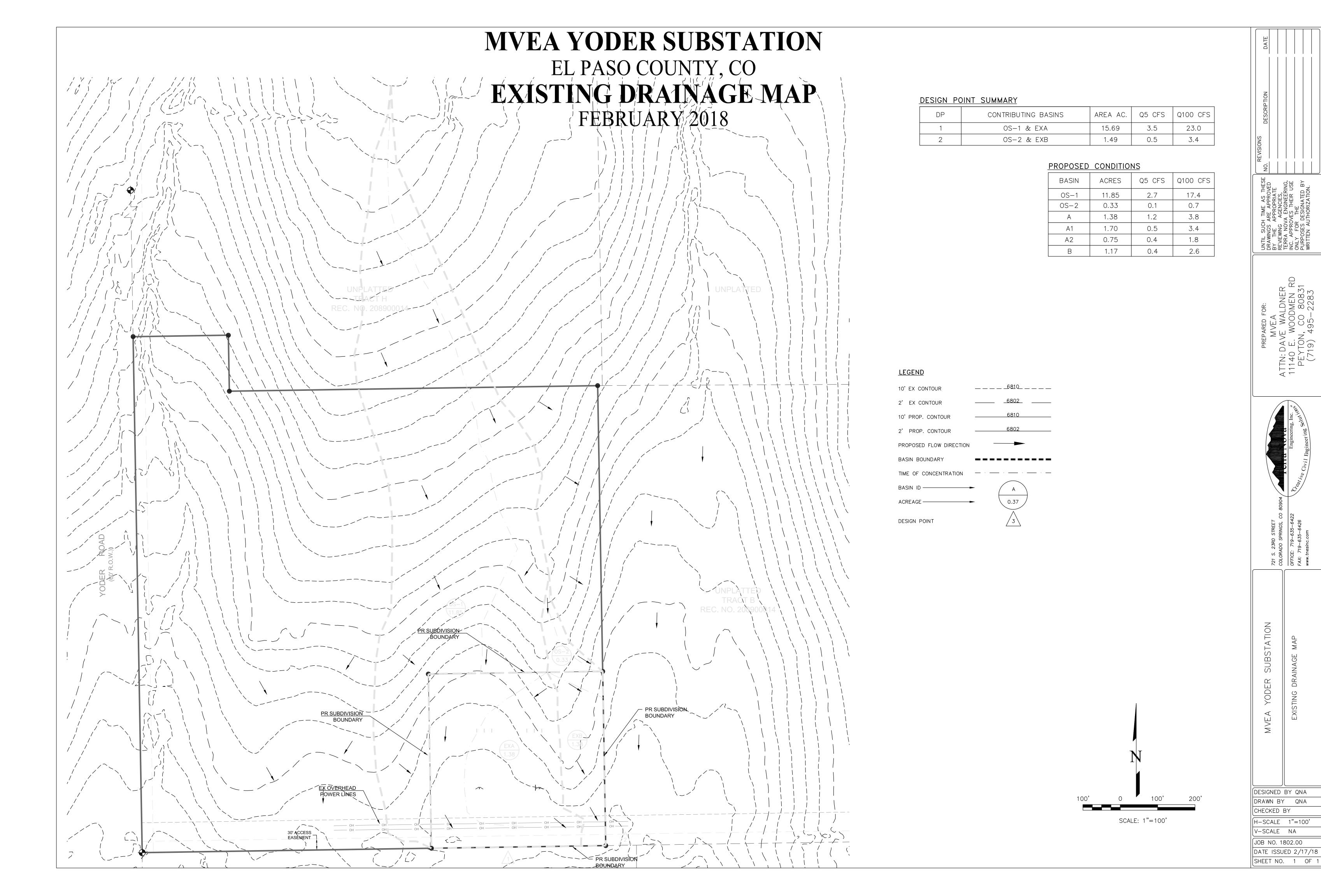
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	1.16	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	2.00	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	2.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated	Parameters for Ove	meters for Overflow Weir				
	Zone 3 Weir	Not Selected				
Height of Grate Upper Edge, H _t =	1.16	N/A	feet			
Over Flow Weir Slope Length =	2.00	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	3.57	N/A	should be ≥ 4			
Overflow Grate Open Area w/o Debris =	2.80	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	1.40	N/A	ft ²			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

let ripe w/ riow kestriction riate (ci	iculai Office, Restric	tor riate, or nectaing	diai Office) Calculated Farameter	3 IOI Outlet Fipe W/ I	now itestriction riati	_
	Zone 3 Restrictor	Not Selected		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.52	N/A	ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area =	0.79	N/A	ft ²
Outlet Pipe Diameter =	12.00	N/A	inches Outlet Orifice Centroid =	0.50	N/A	feet
ctor Plate Height Above Pipe Invert =	12.00		inches Half-Central Angle of Restrictor Plate on Pipe =	3.14	N/A	radians
· · · · · · · · · · · · · · · · · · ·						


User Input: Emergency Spillway (Rectangular or Trapezoidal)


	,,	
Spillway Invert Stage=	1.66	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	10.00	feet
Spillway End Slopes =	4.00	H:V
reeboard above Max Water Surface =	0.15	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.19	feet
Stage at Top of Freeboard =	2.00	feet
asin Area at Top of Freeboard =	0.15	acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.00
Calculated Runoff Volume (acre-ft) =	0.021	0.061	0.043	0.057	0.074	0.099	0.126	0.159	0.224
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.020	0.060	0.042	0.057	0.073	0.099	0.125	0.159	0.224
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.01	0.06	0.18	0.37	0.65	1.19
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.9	1.6
Peak Inflow Q (cfs) =	0.4	1.0	0.7	1.0	1.2	1.7	2.1	2.6	3.7
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.8	1.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.5	0.3	0.1	0.4	0.9	1.1
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.0	0.3	0.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	43	72	62	70	78	88	91	89	84
Time to Drain 99% of Inflow Volume (hours) =	45	77	65	75	83	95	99	98	96
Maximum Ponding Depth (ft) =	0.41	0.76	0.61	0.73	0.87	1.07	1.21	1.29	1.39
Area at Maximum Ponding Depth (acres) =	0.09	0.12	0.11	0.12	0.12	0.12	0.13	0.13	0.13
Maximum Volume Stored (acre-ft) =	0.019	0.056	0.039	0.054	0.069	0.095	0.111	0.121	0.135

Markup Summary

Locked (1)

Please refer to comments provided with PPR 1827 FINAL DRAINAGE REPORT FOR VODER ELECTRIC SUBSTATION EL PASO COUNTY, COLORADO Subject: Engineer Page Label: 1 Lock: Locked Author: dsdgrimm

Date: 7/13/2018 10:19:00 AM

Color:

Please refer to comments provided with PPR 1827