February 15, 2024

DHN Development 2335 Coralbell Grove, Unit 101 Colorado Springs, Colorado 80910

Attn: Bryan Kniep

Re: Geologic Hazard Waiver Request Southmoor Ridge Parcel Nos. 65133-14-015, 65133-00-021, 65242-00-052, and 65242-00-053 Southmoor Drive and Fontaine Boulevard Fountain, Colorado Entech Job No. 240217

Dear Mr. Kniep:

This letter is to request a waiver from the Geologic Hazard Study for the above referenced project. The project is to consist of single family (townhomes) and multi-family residential development. The site is currently zoned as PUD (Planned Unit Development) according to City of Fountain Planning and Zoning (Reference 1).

The site is located in a portion of the SW¼ of Section 13 the NW¼ of Section 24, Township 15 South, Range 66 West, in the northwestern portion of Fountain, Colorado. The location of the site is shown on the Vicinity Map, Figure 1, and the USGS Topography Map, Figure 2. The proposed Development Plan is shown on Figure 3. The geology of the site was evaluated using the following investigations completed by Entech Engineering, Inc. (Entech) *Preliminary Subsurface Soil Investigation* (Reference 2, Appendix B) and *Infiltration Rates* (*Percolation Testing Method*) (Reference 3, Appendix C), the *Geologic Map of the Fountain Quadrangle* completed by Colorado Geological Survey 2017 (Reference 4, Figure 4). Site photographs taken February 13, 2024, are included in Appendix A.

In our opinion, the site is suitable for a Geologic Hazard Waiver as it does not exhibit any of the following characteristics:

- Slopes (existing or proposed) exceeding 33% or which are unstable or potentially unstable.
- History of underground mining or subsidence activity.
- History of a landfill, uncontrolled or undocumented fill activity.

The conditions on the site were investigated by Entech *Preliminary Subsurface Soil Investigation*, (Reference 2, Appendix B), and *Infiltration Rates (Percolation Testing Method)* (Reference 3, Appendix C). These investigations consisted of drilling fourteen shallow test borings on the site. The test borings were drilled to depths of 10 to 20 feet below the existing surface grade. Soils encountered in the test borings consisted of very clayey sand (SC), gravelly clean to silty sand (SW, SM-SW), sandy silt (ML), and sandy clay (CL) overlying weathered claystone and shale bedrock (CL, ML). Bedrock was encountered in four of the borings a depths ranging from 13 to 19 feet below the existing surface grade. Groundwater was encountered in one test boring TB-2 at a depth of 15.5 feet, the remaining borings were dry.

DHN Development Geologic Hazard Waiver Request Southmoor Ridge Parcel Nos. 65133-14-015, 65133-00-021, 65242-00-052, and 65242-00-053 Southmoor Drive and Fontaine Boulevard Fountain Colorado, Colorado Page 2

The site soils are associated with the Alluvial gravel five (Qag₅) of lower Pleistocene Age (Reference 4, Figure 4). Overlying the Alluvial gravel five are areas of fill associated with past stockpiling and dumping on the property. Bedrock underlying the site consists of the Pierre Shale Formation of Upper Cretaceous Age. The claystone and shale associated with the Pierre Shale Formation are typically expansive. Additional geotechnical investigation of the site will be required once development plans are finalized to provide foundation recommendations.

No areas of unstable or potentially unstable slopes were observed on the site. The site slopes are gradually sloping to the southeast. The site is not located in any area of past underground mining or subsidence activity (References 5 and 6).

The site does lie within a 500-year floodplain zone according to the FEMA Map No. 08041CO951G (Reference 7). Groundwater was encountered in one test boring TB-2 at a depth of 15.5 feet (Reference 2, Appendix B). Any grading modifications should direct surface flows around the structures. Drainage studies are beyond the scope of this report.

We trust that this has provided you with the information required regarding a Geologic Hazard Waiver, a copy of Geologic Hazard Waiver form is attached with this letter. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford, P.G. Sr. Geologist

Digitally signed by oseph C Joseph C Goode Jr. Date: 2024.02.15 Goode Jr. ONAL 09:50:28 -07'00' Joseph C. Goode, Jr. P.E. President

Reviewed by:

Encl.

LLL

F:\AA Projects\2024\240217-DHN Dev-Southmoor Ridge-Gehoaz\09-Reports\240217 geo waiver.docx

DHN Development Geologic Hazard Waiver Request Southmoor Ridge Parcel Nos. 65133-14-015, 65133-00-021, 65242-00-052, and 65242-00-053 Southmoor Drive and Fontaine Boulevard Fountain Colorado, Colorado Page 3

REFERENCES

- 1. City of Fountain, Colorado, updated April 2023. *Fountain Planning & Map.* <u>https://fountainco.maps.arcgis.com/apps/webappviewer/index.html?id=16d6981f04904c</u> <u>b3b48b24e7f90f9c6b</u>
- 2. Entech Engineering, Inc., dated June 29, 2022. *Preliminary Subsurface Soil Investigation, Southmoor Properties, Fountain, Colorado*. Entech Job No. 221305.
- 3. Entech Engineering, Inc., dated October 26, 2022. *Infiltration Rates (Percolation Test Method), Southmoor Drive, Parcel Nos.* 6513314015, 6513300021, 6524200052, and 6524200053, Fountain, Colorado. Entech Job No. 222077.
- White, Jonathan L., Lindsey, Kassandra O., Morgan, Matthew L., and Mahan, Shannon A., 2017. *Geologic Map of the Fountain Quadrangle, El Paso County, Colorado*. Colorado Geological Survey. Open-File Report 17-05.
- 5. Amuedo and Ivey. *Inactive Mine Reclamation Program, Extent of Mining Map.* Colorado Department of Natural Resources.
- 6. Dames and Moore. 1985. *Colorado Springs Subsidence Investigation.* State of Colorado, Division of Mined Land Reclamation.
- 7. Federal Emergency Management Agency. December 7, 2018. *Flood Insurance Rate Maps for the City of Colorado Springs, Colorado.* Map Number 08041CO951G.

FIGURES

APPENDIX A: Site Photographs

Job No. 240217

Job No. 240217

APPENDIX B: EEI, Preliminary Subsurface Soil Investigation, Job No. 221305

June 29, 2022

ENTECH

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

Front Row Properties 1378 Promontory Bluff View Colorado Springs, CO 80921

- Attn: Ron Waldthausen
- Re: Preliminary Subsurface Soil Investigation Southmoor Properties Fountain, Colorado

Dear Mr. Waldthausen:

As requested, personnel of Entech Engineering, Inc. have drilled twelve test borings to evaluate the site soil conditions for the anticipated development. This letter presents the results of our soils investigation, laboratory testing, and preliminary foundation recommendations.

SITE CONDITIONS:

The site development has not been determined and will likely consist of commercial and/or residential development with associated site improvements. Adjacent properties consist of commercial shopping center to the north and east, and a mix of rural residential and commercial properties to the west. The location of the site is shown in the vicinity map, Figure, 1. The site is gradually sloping to the southeast. At the time of our site investigation stables and out buildings were located in the southern portion of the site, and the remaining portion of the site was undeveloped. Vegetation consists of field grasses and weeds, with scattered trees in portions of the site, and fill piles were observed in the western portion of the site.

FIELD INVESTIGATION AND LABORATORY TESTING PROGRAM:

Subsurface conditions on the site were explored by drilling twelve test borings across the site. The test borings were drilled at the approximate locations shown on the Site Map/Test Boring Location Map, Figure 2. The borings were drilled to approximately 20 feet below the existing ground surface (bgs). The drilling was performed using a truck-mounted, continuous flight auger-drilling rig supplied and operated by Entech. Boring logs descriptive of the subsurface conditions encountered during drilling are presented in Appendix A. At the conclusion of drilling, observations for groundwater levels were made in the open boreholes.

Soil samples were obtained from the borings utilizing the Standard Penetration Test (ASTM D-1586) using 2-inch O.D. split-barrel and California samplers. Results of the Standard Penetration Test (SPT) are included on the boring logs in terms of N-values expressed in blows per foot (bpf). Soil samples recovered from the borings were visually classified and recorded on the boring logs. The soil classifications were later verified utilizing laboratory testing and grouped by soil type. The soil type numbers are included on the boring logs and in the provided chart. It should be understood that the soil descriptions shown on the boring logs may vary between boring location and sample depth. It should also be noted that the lines of stratigraphic separation shown on the boring logs represent approximate boundaries between soil types and the actual stratigraphic transitions may be more gradual and vary with location.

Moisture content testing (ASTM D-2216) was performed on the samples recovered from the borings, and the results are shown on the boring logs. Grain-Size Analysis Testing (ASTM D-422) was performed on selected samples to assist in classifying the materials encountered in the borings. Volume change testing was performed on selected samples using Swell/Consolidation (ASTM D-4546) tests in order to evaluate potential expansion/compression characteristics of the soil. Sulfate testing was performed on selected samples to evaluate potential for below grade concrete degradation due to sulfate attack. The Laboratory Testing Results are summarized on Table 1 and are presented in Appendix B.

SUBSURFACE CONDITIONS:

Three soil and rock types were encountered during drilling. The soils consisted of Type 1: very clayey sand, clean sand, and silty to slightly silty sand (SC, SW, SM, SM-SW), Type 2: sandy silt and sandy clay (ML, CL). The soils were classified using the Unified Soil Classification System (USCS).

<u>Soil Type 1</u> classified as very clayey sand, clean sand, and silty to slightly silty sand (SC, SW, SM, SM-SW). The sand was encountered in all test borings from the existing ground surface to depths of 13 to 18 feet bgs, and to the termination of Test Boring Nos. 6, and 8 - 10 (20 feet). Standard Penetration Testing resulted in SPT N-values of 2 to 41 bpf, indicating very loose to dense states. The majority of the sands were encountered at medium dense states. Moisture contents of 1 to 9 percent were measured, indicating dry to moist conditions. Grain size testing resulted in 5 to 49 percent of the soil passing the No. 200 sieve. Atterberg Limits Testing on a sample of the very clayey sand resulted in a liquid limit of 26 and plastic index of 10. Sulfate testing on a sample of very clayey sand resulted in less than 0.1 percent sulfate by weight, indicating a low potential for below grade concrete degradation.

<u>Soil Type 2</u> is classified as sandy silt and sandy clay (ML, CL). The silt and clay were encountered in five the test borings at depths of 13 to 19 feet bgs, extending to depths ranging from 17 to 19 feet, and the termination of Test Boring Nos. 4, 5, and 12 (20 feet bgs). Standard Penetration Testing resulted in an SPT N-value of 19 to 45 bpf, indicating stiff to very stiff consistencies. Moisture contents of 11 to 22 percent were measured, indicating moist conditions. Grain size testing resulted in 70 to 99 percent of the soil passing the No. 200 sieve. Atterberg Limits Testing resulted in a liquid limit of 49 and a plastic index of 21. Swell/Consolidation Testing resulted in volume changes of 0.7 to 1.7 percent, indicating a low to moderate expansion potential. Sulfate testing on the clay resulted in less than 0.1 percent sulfate by weight, indicating a low potential for below grade concrete degradation.

<u>Soil Type 3</u> is classified as claystone and shale (CL, ML). The claystone and shale were encountered in four the test borings at depths of 13 to 19 feet bgs, extending to the termination of the test borings (20 feet bgs). Standard Penetration Testing resulted in an SPT N-value of 28 to greater than 50 bpf, indicating stiff to hard consistencies. Moisture contents of 13 to 17 percent were measured, indicating moist conditions. Grain size testing resulted in 88 to 97 percent of the soil passing the No. 200 sieve. Atterberg Limits Testing on the shale resulted in liquid limits of 40 and 44 and plastic indexes of 14 to 16. Swell/Consolidation Testing resulted in a volume change of 0.8 percent, indicating a low expansion potential. Sulfate testing on the shale resulted in 0.00 to 0.02 percent sulfate by weight, indicating a low potential for below grade concrete degradation.

Depth to groundwater was measured in each of the borings at the conclusion and subsequent to drilling. Groundwater was encountered in Test Boring No. 2 at 15.5 feet, groundwater was not

encountered in the remaining test borings were which drilled to depths of 20 feet bgs. It is anticipated groundwater will not affect construction on the site. Development of this site and adjacent properties, as well as seasonal precipitation changes, and changes in runoff may affect groundwater elevations.

GEOTECHNICAL EVALUATION AND RECOMMENDATIONS:

The following discussion is based on the subsurface conditions encountered in the borings drilled for the planned development. If subsurface conditions different from those described herein are encountered during construction or if the project elements change from those described, Entech Engineering, Inc. should be notified so that the evaluation and recommendations presented can be reviewed and revised if necessary.

The site is to be developed with commercial and/or residential structures and associated site improvements. Very loose to loose soils were encountered in several of the borings in the upper profile. Fill piles were observed on the site, however, fill was not encountered in the testing borings. If uncontrolled fill is encountered beneath foundations mitigation will be required. Loose soils or uncontrolled fill encountered within the building areas must be completely removed and recompacted. To provide a uniform bearing pad, at a minimum, it is recommended that the loose soils be penetrated or moisture-conditioned, and recompacted below the building(s). Prior to placing the structural fill, the subgrade should be scarified, moisture-conditioned, and compacted. Fill placed in building areas should be compacted according to the "Structural Fill" paragraph. Preliminary design considerations are discussed in the following sections. Additional subsurface soil investigation is recommended once development plans are prepared. The extent of overexcavation/recompaction will be determined at the time of the open excavation observations.

Expansive soils were encountered in the borings, however, are sporadic. Should expansive soils be encountered beneath the foundations, mitigation will be necessary. Mitigation of expansive soils will require overexcavation and replacement with non-expansive soils at 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 is a suitable mitigation which is common in the area. Floor slabs on expansive soils should be expected to experience movement. Overexcavation and replacement has been successful in minimizing slab movements. Final recommendations should be determined after additional investigation of each building site.

PRELIMINARY FOUNDATION RECOMMENDATIONS:

Shallow spread footing/stemwall foundation systems in conjunction with overexcavation/fill mitigation is anticipated for any structures to be built on this site. An allowable bearing pressure of 2000 pounds per square foot (psf) are anticipated for the site soils. Exterior footings should extend to a minimum of 30 inches for frost protection. Recommendations should be made after additional investigation and completion of the grading plans. Density testing of the reconditioned soil or structural fill placed on this site should be performed by a qualified individual.

Foundation walls retaining soils should be designed to resist lateral pressures generated by the soils. An equivalent hydrostatic fluid pressure (in the active state) of 45 pcf is recommended for the site soils. It should be noted that this value applies to level backfill conditions. Pressures may increase depending on the conditions adjacent to the walls. Surcharge loading if any, should be considered in wall designs. Equivalent fluid pressures for sloping conditions should be determined on an individual basis.

FOUNDATION EXCAVATION OBSERVATION:

The open foundation excavations should be observed by a representative of Entech Engineering, Inc. prior to construction of the foundation in order to verify that no anomalies are present, materials at the proper design bearing capacity have been encountered, and no soft or loose areas or debris are present in the excavation. Loose areas that require removal and or recompaction should be identified during site observations.

CONCRETE:

Type II cement is recommended for all concrete on this site. Concrete should not be placed on frozen or wet ground. Care should be taken to prevent the accumulation and ponding of water in the footing excavation prior to the placement of concrete. If standing water is present in the excavation, it should be removed from the excavation by pumping it away from the building area. Concrete placed during cold temperatures must be kept from freezing, which may require covering the concrete with insulated blankets and heating it.

FLOOR SLABS:

Floor slabs placed on loose soils should be expected to experience movement. The uncontrolled fill must be mitigated below slabs. Floor slabs on grade, if any should be separated from structural portions of the building, unless they are designed as part of the foundation system. Backfill placed below floor slabs should be compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557.

SITE SEISMIC CLASSIFICATION

Based on the subsurface conditions encountered at the site and in accordance with Section 1613 of the 2015 International Building Code (IBC), the site meets the conditions of a Site Class E.

SURFACE AND SUBSURFACE DRAINAGE:

Positive surface drainage must be maintained around the structure to minimize infiltration of surface water. A minimum gradient of 5 percent in the first 10 feet adjacent to foundations is recommended. A minimum gradient of 2 percent is recommended for paved areas. All grades should be directed away from the structure. All downspouts should be extended to discharge well beyond the backfill zone of the structure.

A subsurface drain is recommended around portions of the structure which will have useable space located below the finished ground surface. A perimeter drain will not be required for slab on grade construction is the slab if above exterior grade. Typical drain details are included with this letter.

STRUCTURAL FILL:

Areas to receive structural fill should have all topsoil, organic material or debris removed. Fill must be properly benched. Prior to placing new fill, the surface should be scarified and moisture conditioned to within <u>+</u>2 percent of its optimum moisture content and compacted to 95 percent of its maximum Modified Proctor Dry Density (ASTM D-1557) or to 95 percent of the soils maximum Standard Proctor Dry Density, ASTM D-698 at or above optimum moisture content. New fill should be placed in lifts not to exceed 6 inches after compaction while maintaining the above noted compaction requirements. Fill should be placed at a moisture

content conducive to compaction. The placement and compaction of fill should be observed and tested by Entech. Any imported soils should be approved by Entech prior to being hauled to the site. The on-site soils may be used as structural fill pending approval by Entech.

UTILITIES:

Backfill placed in utility trenches should be compacted to a minimum of 95 percent of its maximum Modified Proctor Dry Density (ASTM D-1557). Utility backfill should be placed in lifts having a compacted thickness of six inches or less and a moisture content conducive to adequate compaction, usually ±2 percent of its optimum Proctor moisture content. Mechanical methods should be used in placement of backfill; however, heavy equipment should be kept away from foundation walls. No water flooding techniques of any type should be used in compaction of backfill on the site.

Trench backfilling should be performed in accordance with City of Fountain specifications. Excavating should be performed in accordance with OSHA guidelines.

CLOSING:

The test borings were located to provide preliminary geotechnical information; variations in subsurface conditions may be encountered. In the event that the project scope changes, the conclusions and recommendations in this report should not be considered valid unless the changes are reviewed and the conclusions of this report are verified in writing or, if necessary, modified. Additional investigation will be required on the site as development/grading plans are prepared.

This report has been prepared for Front Row Properties for application to the proposed project in accordance with generally accepted soil and foundation engineering practices. No other warranty expressed or implied is made.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford, P.G. Geologist LLL

Encl.

Entech Job No. 221305 AA projects\2022\221305-pssi

Reviewed by:

Joséph C. Goode, Jr., P.E. President

TABLE

Τ.
ш
B
4

SUMMARY OF LABORATORY TEST RESULTS

FRONT ROW PROPERTIES	SOUTHMOOR DRIVE	221305
CLIENT	PROJECT	<u>JOB NO.</u>

		_				_		_	_			_	_
	SOIL DESCRIPTION	SAND, VEHY CLAYEY	SAND	SAND, SLIGHTLY SILTY	SAND, SLIGHTLY SILTY	SAND, VERY CLAYEY	SAND, SILTY	SAND,S ILTY	SILT, SANDY	CLAY, SANDY	CLAY, SANDY	SHALE	SHALE
UNIFIED	CLASSIFICATION	sc	SW	SM-SW	SM-SW	sc	SM	SM	ML	СГ	CL	ML	ML
SWELL/	(%)								1.7	6.1	0.7	8.0	
FHA	(PSF)											:	
SULFATE	(WT %)	<0.01							<0.01			00.0	0.02
PLASTIC	(%)	10							21			16	14
LIQUID	(%)	26							49			4	40
PASSING NO. 200 SIEVE	(%)	43.9	4.7	5.1	10.2	49.1	24.2	22.4	97.4	38.5	2'02	0'26	88.2
DENSITY	(PCF)		:						100.0	97.7	89.5	97.5	
WATER	(%)								14.9	21.9	23.4	15.1	
DEPTH	(FT)	2.3	5	5	2-3	2-3	5	10	15	15	20	15	20
TEST BORING	NO.	۰	4	6	8	6	10	11	5	7	12	2	3
SOIL	түре	-	-	1	-	+	-	-	2	2	2	9	3

FIGURES

NOTES:

-GRAVEL SIZE IS RELATED TO DIAMETER OF PIPE PERFORATIONS-85% GRAVEL GREATER THAN 2x PERFORATION DIAMETER.

-PIPE DIAMETER DEPENDS UPON EXPECTED SEEPAGE. 4-INCH DIAMETER IS MOST OFTEN USED.

-ALL PIPE SHALL BE PERFORATED PLASTIC. THE DISCHARGE PORTION OF THE PIPE SHOULD BE NON-PERFORATED PIPE.

-FLEXIBLE PIPE MAY BE USED UP TO 8 FEET IN DEPTH, IF SUCH PIPE IS DESIGNED TO WITHSTAND THE PRESSURES. RIGID PLASTIC PIPE WOULD OTHERWISE BE REQUIRED.

-MINIMUM GRADE FOR DRAIN PIPE TO BE 1% OR 3 INCHES OF FALL IN 25 FEET.

-DRAIN TO BE PROVIDED WITH A FREE GRAVITY OUTFALL, IF POSSIBLE. A SUMP AND PUMP MAY BE USED IF GRAVITY OUT FALL IS NOT AVAILABLE.

PERIMETER DRAIN DETAIL

DESIGNED:

CHECKED:

DATE:

JOB NO.: 22\305 FIC NO.: 3

DRAWN:

APPENDIX A: Test Boring Logs

TEST BORING NO. 1 DATE DRILLED 6/7/2022 Job # 221305							TEST BORING NO. 2 DATE DRILLED 6/7/2022 CLIENT FRONT LOCATION SOUTH	ROW	PRC	PE	RTI	ËS	
REMARKS DRY TO 18.5', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS WATER @ 15.5', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
SAND, VERY CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST SAND, GRAVELLY, SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE TO DENSE, MOIST TO DRY	5	<u>\. \. \. @</u>		24 15	3.8 3.1	1	SAND, GRAVELLY, SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE TO LOOSE, MOIST	5			25 8	5.0 2.3	1
	10			33	1.3	1		10			11	1.6	1
GRAY, HARD, MOIST	15			<u>50</u> 10"	12.9	3	SHALE, GRAY BROWN, VERY STIFF TO HARD, MOIST	15			44	14.0	3
	2° -			5"	10.4			-			9"	10.0	Ŭ
ENTECH ENGINEERING, 505 ELKTON DRIVE	INC	•	07		DRAV	VN:		DG	ATE:]	JC 22 FI	B NO. 21305 G NO. A-1

TEST BORING NO. DATE DRILLED 6/7/202 Job # 22130	3 2 5	1				1	TEST BORING NO. DATE DRILLED 6/7/2022 CLIENT FRONT LOCATION SOUTH	1 2 RÓW MOOR	PRO DRI		RTH	ĒS	r
DRY TO 18.5', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 19', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
SAND, GRAVELLT, SILTT, FINE TO COARSE GRAINED, BROWN TO TAN, MEDIUM DENSE TO DENSE, DRY	5			13 41	0.9 0.8	1	SAND, GRAVELLY, CLEAN TO SILTY, FINE TO COARSE GRAINED, TAN, DENSE TO MEDIUM DENSE, DRY TO MOIST	5			32 27	1.7 2.3	1
	10			14	2.4	1			0.0		15	2.7	1
CLAY, SANDY, GRAY BROWN, STIFF, MOIST WEATHERED SHALE, GRAY BROWN, STIFF, MOIST	15 20			20	10.7	3	CLAY, SANDY, GRAY BROWN, VERY STIFF. MOIST	15 20			19 33	3.2	2
ENTECH ENGINEERING, 505 ELKTON DRIVE	INC.	I			DRAW	N:		DG	-E-			ј0 22 FIC	B NO. 130 3 NO. A-

TEST BORING NO. 5 DATE DRILLED 6/7/2022 Job # 221305	5		·				TEST BORING NO. DATE DRILLED CLIENT LOCATION	6 6/7/2022 FRONT I SOUTHN		PROF	'ERTI	ES	
DRY TO 19', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 18', 6/9/22		Depth (ft)	Symbol	Samples Blows per foot	Watercontent %	Soil Type
SAND, GRAVELLY, SILTY, FINE TO COARSE GRAINED, TAN, LOOSE TO DENSE, DRY	5			7 8	1.0 1.5	1	SAND, GRAVELLY, SLIG SILTY, FINE TO COARSE TAN, LOOSE TO MEDIUN DRY TO MOIST	E GRAINED, 1 DENSE,	1111 15		4	1.2 1.2	1
SILT, SANDY, DARK GRAY,	10			33	1.7	1			10 -		2	7.3	1
VERY STIFF TO STIFF, MOIST	15 20			45 23	13.8	2			15 - - 20 -	0	26	3.0	1
	I	I		1			I			I	I	I	
				1	_							7	10
	INC						TEST BO	DRING LO	G			22	213

NEWATING Image: Second state sta	TEST BORING NO. DATE DRILLED 6/7/202 lob # 22130	7 22 05				1		TEST BORING NO. DATE DRILLED 6/7/2023 CLIENT FRONT LOCATION SOUTH	3 POW MOOF			RTIE	ES	-
AAND, GKAVELLT, SLIGHTLY SAND, GKAVELLT, SLIGHTLY 0 COARSE GRAINED, TAN, 23 0.9 1 0.9 1 TAN, MEDIUM DENSE, GRAINED, 15 6.0 0.9 1 TAN, MEDIUM DENSE, MOIST 14 5.6 10 22 1.9 1 10 20 3.1 10 22 1.9 1 10 20 3.1 10 22 1.9 1 10 20 3.1 10 28 22.1 2 15 28 2.1 2 10 20 50 17.3 3 20 20 12 8.5	DRY TO 18.5', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 15.5', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Cail Tung
10 22 1.9 1 10 20 3.1 10 28 22.1 2 28 21 2 15 28 22.1 2 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 23 28 24 28 28 23 28 29 3.1 29 28 24 3 20 28 4.3 20 28 4.3 20 28 4.3 20 29 31 20	DAND, GRAVELLY, SILTY, FINE O COARSE GRAINED, TAN, OOSE TO DENSE, DRY	5			23 24	0.9 1.5	1 1	SAND, GRAVELLY, SLIGHTLY SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE, MOIST	5 - -			15 14	6.0 5.6	-
15 28 22.1 2 15 28 4.3 LAYSTONE, SANDY, GRAY ROWN, HARD, MOIST 20 50 17.3 3 20 12 8.5	LAY SANDY, TAN STIFF.	10			22	1.9	1		10			20	3.1	1
 	LAYSTONE, SANDY, GRAY SROWN, HARD, MOIST	15 20			28 <u>50</u>	22.1 17.3	2		15 - - 20			28	4.3 8.5	
		-	T		8"				-			ľ		

TEST BORING NO. 9 DATE DRILLED 6/8/2022 Job # 221305							TEST BORIN DATE DRILL CLIENT LOCATION	IG NO. ED	10 6/8/2022 FRONT F SOUTHM		PRO	PE	RTII	ES	
REMARKS DRY TO 20', 6/9/22	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS	6/8/22		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
SAND, VERY CLAYEY, FINE GRAINED, BROWN, MEDIUM DENSE, MOIST	5	$\langle \cdot \rangle \langle \cdot $		17 19	5.8 6.1	1	SAND, GRAVE TO COARSE G MEDIUM DENS MOIST TO DRY	LLY, SILT RAINED, E E TO DEN	Y, FINE BROWN, ISE,	5			24 17	8.7 2.8	1
SAND, GRAVELLY, SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, DRY TO MOIST	10 - -	0 0 0 0 0 0		14	1.6	1				10 - 			32	2.1	1
	15 20			27 28	4.1	1				15 - - 20 -	0		35 36	7.3 6.3	1
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS. COL	INC.	0 8090	7		DRAW	'N:	DATE:	rest Bo		G DA	TE:	7		JO 22 FI	в NO. 1305 3 NO. A- 5

\bigcirc	ENT ENGINE 505 ELKTON I COLORADO S	ECH ERING, I DRIVE SPRINGS, COL	INC.	J 809(77		DRAW	IN:		D,	T ATE:	EST			LOC	G G	TE:	22		J0 22 ₽	3 NO A- (
					_																B NO.
			20			13	1.9	1	CLA MOI	NY, SA IST	NDY,	BROW	'N, S'	TIFF,		20			19	12.0	2
			15			30	2.4	1								15			27	2.1	1
			10			29	1.8	1								10			32	3.4	1
Z ASITIA SILTY, FIN TAN, DENS DRY	E TO COARSE	E GRAINED, 1 DENSE,	5	0.0.0.0		30 28	1.2 1.1	1	TO MEI MOI	COAR: DIUM (IST TC	SE GR DENSE DRY	AINEI E TO D	d, Br Dens	OWN,		5			10 21	1.3 1.4	1
	20', 6/8/22		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DR		20', I	6/8/22	2	EINE		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
TEST BO DATE DI Job #	ORING NO. RILLED	11 6/8/2022 221305	1					T	TE DA CL LO	ST B TE D IENT CATI	ORIN RILLI ON	ig NC ED	D.	6/8/20 FRON SOUT	12)22 NT F THM	IOW OOF	PR(7 DR		RTI	ES	

APPENDIX B: Laboratory Test Results

IFIED CLASSIFICAT IL TYPE # ST BORING # PTH (FT)	<u>FION</u> SC 1 1 2-3	<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPERTIES SOUTHMOOR DRIVE 221305 BL
		Sieve Analysis Grain Size Distribution	
90%	5/8 [*]	#4	
80%	<u> / / / / / / / / / / / / / / / / /</u>		
70% ++++++++++++++++++++++++++++++++++++			<u> </u>
60% ++++++++++++++++++++++++++++++++++++	· · · · · · · · · · · · · · · · · · ·		#100
50%		┥┨╴┨╴┊╢┿┼╏┊┨╼┪	+200
40%			
30%			
20%	━━╋╸┅ <u></u> ┤┤┤╎┆╵┼┉╸		
10%	<u> </u>		
0% 	10	**************************************	0,1 0.0
		Grain size (mm)	

U.S.	Percent	Atterberg
<u>Sieve #</u>	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit 16
1 1/2"		Liquid Limit 26
3/4"		Plastic Index 10
1/2"		
3/8"	100.0%	
4	98.3%	<u>Swell</u>
10	89.6%	Moisture at start
20	78.7%	Moisture at finish
40	71.6%	Moisture increase
100	57.2%	Initial dry density (pcf)
200	43.9%	Swell (psf)

	LABOR RESUL	ATORY TEST		JOB NO.: 221305 FIG NO.:
DRAWN	DATE:		DATE:	B-1

U	.S. Perce	nt Atterberg
Sie	ve # Fine	<u>Limits</u>
3	3"	Plastic Limit
11	1/2"	Liquid Limit
3/	/4"	Plastic Index
1,	/2 [°] 100.0	70
3/	/8" 72.85	6
	4 62.69	b <u>Swell</u>
1	0 41.89	6 Moisture at start
2	20 24.89	6 Moisture at finish
4	10 15.64	6 Moisture increase
1	00 6.79	Initial dry density (pof
2	00 4.79	Swell (psf)

ENTECH ENGINEERING, INC.		LABOR RESUL	ATORY TEST	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE: 6/27/22

JOB NO. 221305 FIG NO. 3 - Z

	SM-SW		FRONT ROW PROPERTIES
<u>SOIL TYPE #</u> TEST BORING #	1 8	<u>PROJECT</u> JOB NO.	221305
DEPTH (FT)	2-3	TEST BY	BL

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
1/2" 3/8" 4	100.0% 95.5% 88.8%	<u>Swell</u> Moisture at start
20 40	64.3% 42.2% 29.7%	Moisture at start Moisture at finish Moisture increase
100 200	15.3% 10.2%	Initial dry density (pcf) Swell (psf)

ENTECH

ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF RESUL	ATORY TEST		ĺ	์ 22 F
DRAWN:	DATE:		DATE 6/27/22	J	1

JOB NO.: 221305 FIG NO.: /3 - 3

UNIFIED CLASSIFICATIO SOIL TYPE # TEST BORING # DEPTH (FT)	<u>N</u> SM-SW 1 6 5	<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPI SOUTHMOOR DRIV 221305 BL	ERTIES /E
	G	Sieve Analysis rain Size Distribution		
100%]
90%	3/8			
		#10		
		#20		
₫ 20%		#40		
10%				
			#1414 #200	
100	10	1	0.1	0.01
		Grain size (mm)		

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
1/2" 3/8"	100.0% 87.7% 71.8%	Swall
4 10	48.6%	Moisture at start
20 40	34.2% 24.1%	Moisture at finish Moisture increase
100 200	7.7% 5.1%	Initial dry density (pcf) Swell (psf)

ENTECH

ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

r		ATORY TEST		JOB NO.: 221305
	RESUL	.15		FIG NO.:
DRAWN:	DATE:		DATE 6/27/22	B-4

305 NO.: -4

UNIFIED CLASSIFICATION SOIL TYPE # TEST BORING # DEPTH (FT)	L SC 1 9 2-3	<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPERTIES SOUTHMOOR DRIVE 221305 BL
		Sieve Analysis Grain Size Distribution	
	-3/8/ - --# 4-		
90%		#40	
97.70%			
			#100
8 40%			
a 30%			
10%			
100	10	1	0.1 0.01

Grain size (mm)

U.S. <u>Sieve #</u> 3" 1 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit
3/4"		Plastic Index
1/2"	100.00	
3/8"	100.0%	
4	96.4%	Swell
10	93.2%	Moisture at start
20	88.5%	Moisture at finish
40	83.1%	Moisture increase
100	64.2%	Initial dry density (pcf)
200	49.1%	Swell (psf)

E

>	ENTECH ENGINEERING, INC.		LABOR	ATORY TEST		JI 22 F
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE:	

VIFIED CLASSIFICATION DIL TYPE # ST BORING # EPTH (FT)	SM 1 10 5	18	<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPE SOUTHMOOR DRIVE 221305 BL	RTIES
		Sieve Anal Grain Size Dist	ysis ribution		
100% 90%					
80%		#10	#20		
60%			#40		
50%		<u>┿</u> · <mark>}</mark> //			
40%				₩100	
20%				#200	
10%	── <u><u></u><u></u><u></u><u></u></u>				
100	10	1		0.1	0.01
		Grain size (r	nm)		
U.S. Percent			Atterberg		
Sieve # Finer			Limits Plastic Limit		
1 1/2"			Liquid Limit		
3/4"			Plastic Index		
1/2"					

<u>Swell</u> Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

\diamond	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE
	COLORADO SPRINGS, COLORADO 80907

45

4

10

20

40

100

200

96.0%

82.8%

71.4%

58.6%

36.5%

24.2%

	LABOR RESUL	ATORY TEST	
DRAWN:	DATE:		DATE:

JOB NO.: 221305 FIG NO.: **B-4**

UNIFIED CLASSIFICATION SOIL TYPE # TEST BORING # DEPTH (FT)	SM 1 11 10	<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPERTIES SOUTHMOOR DRIVE 221305 BL
	Gra	Sieve Analysis in Size Distribution	
100%	<u>- β/β"</u>		
90% ++++++++++++++++++++++++++++++++++++		× #10	
80%			
⁸ / ₂ 60% 			
0 50%			
j 5 40% +	━╌┼┼┼┊╎┊┊	<u> </u>	
5 30% 1 1 1 1 1 1 1	╺╍┄╴┨┇┥┧┨┞┊┥╴┨╴╴	┤──┤┤┤┤╎┼┼╌┝──┝┑	
20%			#200
100	10	1	0.1 0.01
		Grain size (mm)	

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
4	98.7%	<u>Swell</u>
10	83.0%	Moisture at start
20	58.2%	Moisture at finish
40	41.9%	Moisture increase
100	27.8%	Initial dry density (pcf)
200	22.4%	Swell (psf)

ENTECH

ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF RESUL	ATORY TEST		ſ
DRAWN:	DATE:	CHECKED:	DATE	
		LLL	6/27/22	- L

JOB NO. 221305 FIG NO. **B - 7**

UNIFIED CLASSIFICATI SOIL TYPE # TEST BORING # DEPTH (FT)	ON ML 2 5 15		<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PROPERTIE SOUTHMOOR DRIVE 221305 BL	s
	Gr	Sieve Analys ain Size Distri	sis bution		
100% 90% 80% 70% 60% 50% 40% 20% 10% 100	10	1 Grain size (mm	n)	+++00 + #200	0.01
U.S. Perce <u>Sieve #</u> <u>Fine</u> 3" 1 1/2" 3/4" 1/2" 3/8" 4 10 20 40 100 100.0 200 97.49	ent <u>er</u> %		Atterberg Limits Plastic Limit Liquid Limit Plastic Index <u>Swell</u> Moisture at star Moisture at finis Moisture increa Initial dry densit Swell (psf)	28 49 21 t h se y (pcf)	
ENTE ENGINEE 505 ELKTON DF COLORADO SP	ECH RING, INC. RIVE RINGS, COLORADO 80907	DRAWN:	LABORATO RESULTS	RY TEST IECKED: DATE: LLL 6/27/22	ЈОВ NO 221305 FIG NO. В - С

INIFIED CLAS OIL TYPE # EST BORING DEPTH (FT)	SSIFICATION	L CL 2 7 15								CL PF JO TE	IEN OJI B N ST	<u>T</u> ECT IO. BY	H S 2 H	FRO SOU 2213 BL	DNT JTH 305	ſ R IM	0W 000	V PI DR I	ROP	ERTI VE	ES
			-			Gra	Sieve in Size	An: Di	aly: stri	sis buti	on										
				 +	-	1		<u> </u>		<u> </u>				+100		#2	200	1.			
90%	╺╂╶╪┈┼╴┼		┼┼╋	+	+	1		+	┼╂	+	+			+					1		
50%																					
40%			┽┽╏	\downarrow					\downarrow	\downarrow	_						\perp	<u> </u>			
30%			┽┽╿	+	_			_	╂	++					+		+	-		_	_
⁻ 20% +++++	-+ + + +			++		+			╂┼	++	+-				+		+	\vdash			
10%					_	+			╂┼	++	+				+	+	+	\vdash			
100)					1						0.1			,	·			0.01
							Crain		(m.	-											
							Grain	5120	(m												
U.S.	Percent									Att	erbe	ərg									
<u>Sieve #</u>	<u>Finer</u>									Lin	<u>nits</u>										
3"										Pla	stic	Limit									
1 1/2" מ/א"											uid		,								
1/2"										L 19	SUC	nicex									
3/8"																					
4										Sw	ell										
10										Мо	istu	re at s	start								

20Moisture at finish40Moisture increase100100.0%Initial dry density (pcf)20098.5%Swell (psf)

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF RESUL	ATORY TEST	
DRAWN:	DATE:		DATE 6/27/22

JOB NO.: 221305 FIG NO.: **/3 - 9**

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 2/9"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
3/0 4 10	99.4% 94.7%	<u>Swell</u> Moisture at start
20	89.2%	Moisture at finish
40	84.5%	Moisture increase
100	74.7%	Initial dry density (pcf)
200	70.2%	Swell (psf)

ENTECH	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 809	07

	LABORATORY TEST RESULTS			
DRAWN:	DATE:		DATE: 4/27/22	

JOB NO.: 221305 FIG NO .: B-10

10		molocato at otali
20		Moisture at finish
40		Moisture increase
100	100.0%	Initial dry density (pcf)
200	97.0%	Swell (psf)

$\mathbf{\Theta}$	ENTECH ENGINEERING, INC.		LABOR RESUL	ATORY TEST		JOB NO.: 221305 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE 6/27/22	B-11

Sieve Analysis Grain Size Distribution Office of the state of the	IFIED CLA IL TYPE # ST BORIN(PTH (FT)	<u>SSIFICATION</u>	ML 3 3 20			<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u>	FRONT ROW PR SOUTHMOOR D 221305 BL	OPERTIES RIVE
00% 9% 9% 10% 10% 10% 10% 10% 10% 10% 10				Gr	Sieve Analy ain Size Dist	/sis ribution		
U.S. Percent Atterberg 0% 0 10 1 0.1 0% 0 10 1 0.1 Grain size (mm) U.S. Percent Limits 3" Plastic Limit 26 1 1/2" Liquid Limit 40 3/4" Plastic Index 14 1/2" 3/8" 4 100.0% 4 100.0% Swell Moisture at start 20 91.4% Moisture at finish 40 88.9% Moisture increase 100 88.3% Initial dry density (pcf)	00% 90% 80%				#10	*20	● #100 ₩ #200	
10% 0% 10 1 0.1 Grain size (mm)Grain size (mm)U.S. PercentAtterberg Limits $3"$ Plastic Limit 26 $1 1/2"$ 26 Liquid Limit 40 $3/4"$ Plastic Index 14 $1/2"$ $3/8"$ Moisture at start 20 91.4% Moisture at start 40 88.9% Moisture at finish 40 88.9% Moisture increase 100 88.3% Initial dry density (pcf)	50% 40% 30%							
Grain size (mm)U.S.PercentAtterbergSieve #FinerLimits $3^{"}$ Plastic Limit261 1/2"Liquid Limit403/4"Plastic Index141/2"3/8"143/8"Swell141098.8%Moisture at start2091.4%Moisture at finish4088.9%Moisture increase10088.3%Initial dry density (pcf)	10% 0%		10		1		0.1	0.01
U.S.PercentAtterbergSieve #FinerLimits 3^{μ} Plastic Limit261 1/2"Liquid Limit403/4"Plastic Index141/2"Year Start141/2"Swell141098.8%Moisture at start2091.4%Moisture at finish4088.9%Moisture increase10088.3%Initial dry density (pcf)					Grain slze (n	וחו)		
3/8" Swell 4 100.0% Swell 10 98.8% Moisture at start 20 91.4% Moisture at finish 40 88.9% Moisture increase 100 88.3% Initial dry density (pcf)	U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	x			Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index	26 40 14	
4088.9%Moisture increase10088.3%Initial dry density (pcf)	3/8* 4 10 20	100.0% 98.8% 91.4%				<u>Swell</u> Moisture at st Moisture at fir	art nish	
200 88.2% Swell (psf)	40 100 200	88.9% 88.3% 88.2%				Moisture incre Initial dry dens Swell (psf)	ease sity (pcf)	

ENTECH ENGINEERING, INC.		LABORAT	ORY TEST			JOB NO.: 221305 FIG NO.:
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		DATE 6/27/22	l	B-12

TEST BORING #	5	DËPTH(ft)	15
DESCRIPTION	ML	SOIL TYPE	2
NATURAL UNIT DRY	100		
NATURAL MOISTURI	14.9%		
SWELL/CONSOLIDA	TION (S	%)	1.7%

<u>JOB NO.</u> 221305 <u>CLIENT</u> FRONT ROW PROPERTIES <u>PROJECT</u> SOUTHMOOR DRIVE

>	ENTECH ENGINEERING, INC.	SW	ELL CONSOL]	JOB NO.: 221305	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	DATE: (e/27/22	J	B-13	

TEST BORING #	7	DEPTH(ft)	15
DESCRIPTION	CL	SOIL TYPE	2
NATURAL UNIT DRY	' WEIGI	HT (PCF)	98
NATURAL MOISTUR	E CON	TENT	21.9%
SWELL/CONSOLIDA	TION (S	%)	1.3%

JOB NO.221305CLIENTFRONT ROW PROPERTIESPROJECTSOUTHMOOR DRIVE

ENTECH ENGINEERING, INC.	SW TE	ELL CONSO		JOB NO. 221305
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE:	DATE:	B-14

TEST BORING #	12	DEPTH(ft)	20
DESCRIPTION	CL	SOIL TYPE	2
NATURAL UNIT DRY	WEIGH	IT (PCF)	89
NATURAL MOISTUR	E CONT	TENT	23.4%
SWELL/CONSOLIDA	TION (9	6)	0.7%

JOB NO.221305CLIENTFRONT ROW PROPERTIESPROJECTSOUTHMOOR DRIVE

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

TEST BORING #	2	DEPTH(ft)	15
DESCRIPTION	ML	SOIL TYPE	3
NATURAL UNIT DRY	98		
NATURAL MOISTUR	15.1%		
SWELL/CONSOLIDA	TION (?	6)	0.8%

<u>JOB NO.</u> 221305 <u>CLIENT</u> FRONT ROW PROPERTIES <u>PROJECT</u> SOUTHMOOR DRIVE

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADD SPRINGS, COLORADD 80907

CLIENT	FRONT ROW PROPERTIES	JOB NO.	221305
PROJECT	SOUTHMOOR DRIVE	DATE	6/22/2022
LOCATION	SOUTHMOOR DRIVE	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-1	2-3	1	SC	<0.01
TB-2	15	3	ML	0.00
TB-3	20	3	ML	0.02
TB-5	15	2	ML	<0.01
				<u></u>
				i

QC BLANK PASS

	LABO SULF	RATORY TEST ATE RESULTS		JOB NO.: 221305 FIG NO.:
DRAWN:	DATE:		DATE: 4/27/22	B-17

APPENDIX C: EEI, Infiltration Rates (Percolation Test Method), Job No. 222077

October 26, 2022

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

Front Row Properties 1378 Promontory Bluff View Colorado Springs, CO 80921

Attn: Ron Waldthausen

Re: Infiltration Rates (Percolation Test Method) Southmoor Drive Parcel Nos. 6513314015, 6513300021, 6524200052, and 6524200053 Fountain, Colorado

Dear Mr. Waldthausen:

As requested, personnel of Entech Engineering, Inc. have performed percolation testing at the above referenced site to evaluate the site soils to determine the infiltration rate for the proposed detention pond.

The testing was performed on October 21, 2022. The site vicinity map is shown in Figure 1 and the test locations are shown in Figure 2. The Test Boring Logs, Percolation Test results, Infiltration Rates, and Laboratory Test results are shown in Figures 3 through 11. Soils encountered in the profile and percolation hole consisted of silty to very silty sand. Bedrock and groundwater were not encountered in the profile holes, which was drilled to 10 feet.

The percolation rates were 4 minutes/inch for P1, 3 minutes/inch for P2, and 4 minutes/inch for P3. The percolation rates correspond to adjusted average Infiltration Rate of 1.95 inches/hour for pond 1, 3.31 inches/hour for pond 2, and 2.15 inches/hour for pond 3.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford, P.G. Geologist

LLL/jr

Encl.

Entech Job No. 222077 AAprojects/2022/222077 Infiltration Rate Reviewed by:

Austin M. Nossokoff, P.E. Project Engineer

TEST BORING NO. 1 DATE DRILLED 10/19/203 Job # 222077	22					TEST BORING NO. DATE DRILLED CLIENT LOCATION	2 10/19/20 FRONT I SOUTHN	22 20W 100F	PRO		RTI	ES	
DRY TO 10', 10/19/22	Depth (ft) Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 10', 10/19/2	2	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
SAND, SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE, MOIST TO DRY * - BULK SAMPLE TAKEN	5 10 15 20		23 26 *	3.5 1.3 1.4		SAND, VERY SILTY, FINE MEDIUM GRAINED, TAN, DENSE TO DENSE, MOIS	E TO MEDIUM ST	5 10 15 20			24 12 30	6.7 4.4 4.6	
ENTECH ENGINEERING, I 505 ELKTON DRIVE	INC.			DRAW	N.	TEST BO		G	TE:			JC 22 FI	B NO.: 22077

TEST BORING NO. 3 DATE DRILLED 10/19/20 Job # 222077	22		TEST BORING NO. DATE DRILLED CLIENT	FRONT P		TES
			LOCATION	SOUTHM	OOR DRIVE	
REMARKS DRY TO 10', 10/19/22	Depth (ft) Symbol Samples Slows per foot	Natercontent % Soil Type	REMARKS		Depth (ft) Symbol Samples Blows per foot	Vatercontent % Soil Type
DRY TO 10', 10/19/22 SAND, VERY SILTY, FINE TO MEDIUM GRAINED, TAN, MEDIUM DENSE, MOIST TO DRY * - BULK SAMPLE TAKEN		5 3.0 1.9				S W
ENTECH ENGINEERING, 505 ELKTON DRIVE COLORADO SPRINGS, COL	INC.	DRAWN:	DATE: C		G DATE: 10-21-17	JOB NO.: 222077 FIG NO.:

BORING NO. PH-1 UNIFIED CLASSIFICATION DEPTH(ft) 2-3 CLIENT FRONT ROW PROPERTIES PROJECT SOUTHMOOR DRIVE

U.S. <u>Sieve #</u> 3" 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
3/8"	100.0%	
4	92.8%	Swell
10	81.3%	Moisture at start
20	70.5%	Moisture at finish
40	62.2%	Moisture increase
100 200	46.3% 36.7%	Initial dry density (pcf) Swell (psf)

ENTECH ENGINEERING, INC.		LABORATO RESULTS	ORY TEST			JOB NO.: FIG NO.:
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 10-24-22	l	5

AASHTO CLASSIFICATION

SM

TEST BY BL JOB NO. 222077

BORING NO. PH-2 UNIFIED CLASSIFICATION SM TEST BY BL JOB NO. DEPTH(ft) 2-3 AASHTO CLASSIFICATION 222077 <u>CLIENT</u> FRONT ROW PROPERTIES PROJECT SOUTHMOOR DRIVE Sieve Analysis **Grain Size Distribution** 100% 2/0 **•** #10 90% #<u>2</u>0 #4080% Bercent Passing 60% 50% 40% 30% 20% #100 #200 20% 10% 0% 10 0,1 100 1 0.01

Grain size (mm)

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index
3/8"	100.0%	
4	99.5%	<u>Sweli</u>
10	96.2%	Moisture at start
20	90.3%	Moisture at finish
40	81.9%	Moisture increase
100 200	62.7% 48.6%	Initial dry density (pcf) Swell (psf)

ENTECH ENGINEERING, INC.		LABORAT(RESULTS	ORY TEST		ſ	JOB NO.:
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE:	l	6

BORING NO. PH-3 UNIFIED CLASSIFICATION DEPTH(ft) AASHTO CLASSIFICATION 2-3 <u>CLIENT</u> FRONT ROW PROPERTIES PROJECT SOUTHMOOR DRIVE Sieve Analysis Grain Size Distribution 100% -#4_

U.S. <u>Sieve #</u> 3" 1 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit Liquid Limit
3/4" 1/2" 2/9"	100.0%	Plastic Index
3/8 4 10	97.8% 90.1%	<u>Swell</u> Moisture at start
20 40	81.3% 72.6%	Moisture at finish Moisture increase
100 200	55.5% 45.1%	Initial dry density (pcf) Swell (psf)

\diamond	ENTECH ENGINEERING, INC.		LABORAT	ORY TEST			JOB NO.; FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE: 10-21-22	J	7

SM

TEST BY BL JOB NO. 222077

Client: Test Location	Front Row on:	Properties Southmoor Drive				Job Numb	per: 222077			
PERCOI	LATION	HOLES #1								
Date Holes	Prepared:	10/19/2022				Date Hole	Completed:	10/	20/2022	
Hole No. 1 Depth: Trial 1 2 3 Perc Rate (1	59" Time <u>(min.)</u> 5 5 5 nin./in.):	Water Level <u>Change (in.)</u> 1 2 1 4 Average Pe	Hole Dept <u>Tr</u> Perc rc Rate	e No. 2 th: 6 1 2 3 Rate (m (min./ir	1" Time (<u>min.)</u> 5 5 5 sin./in.):	Water Level <u>Change (in.)</u> 2 2 2 2 2 2.5 4	Hole No. 3 Depth: Trial 1 2 3 Perc Rate (70" Time <u>(min.)</u> 5 5 5 min./in.):	Wat Lev <u>Chang</u> 1 1 1 5	er vel e (in.)
PROFIL Depth 0-10'	E HOLE	Visual Classification Sand, silty, fine to co	arse gra	ined, tai	n	Date Profile Ho	ole Completed: <u>Remarks</u> No Bedroc No Ground	10/. k water	19/2022	
26 Remarks:	Blows / ft.	@ 4'								
GPS Coor Observer:	dinates: N. Schletzi	38° 73.74694' : baum	N, -10	04° 73 B	.4822 ' y:	W				
	ENTE ENGINEE 05 ELKTON DR GLORADO SPR	ECH RING, INC. IVE RINGS, COLORADO 80907		DRA	WN:	PERCOLATIO				JOB NO.: 222077 FIG NO.:

Client: Test Location	Front Row on:	Properties Southmoor Drive			Job Numb	er: 222077		
PERCOI	LATION	HOLES #2						
Date Holes	Prepared:	10/19/2022			Date Hole (Completed:	10/2	20/2022
Hole No. 4 Depth: <u>Trial</u> 1 2 3 Perc Rate (r	Time (<u>min.)</u> 5 5 5 nin./in.):	Water Level <u>Change (in.)</u> 1 1/2 1/2 1 <u>3 1/2</u> Average P	Hole No. 5 Depth: <u>Trial</u> 1 2 3 Perc Rate (r erc Rate (min./i	Time (<u>min.)</u> 5 5 5 nin./in.):	Water Level <u>Change (in.)</u> 0 0 1 2 <u>2</u> 3	Hole No. 6 Depth: Trial 1 2 3 Perc Rate (Time (<u>(min.)</u> 5 5 5 (min./in.):	Water Level <u>Change (in.)</u> 3 2 2 2
PROFILI	E HOLE				Date Profile Hol	le Completed:	10/1	9/2022
Depth)-10' 24 12 30	Blows / ft. Blows / ft. Blows / ft.	Visual Classification Sand, very silty, fine @ 2' @ 4' @ 9'	to coarse grain	ed, tan		<u>Remarks</u> No Bedroc No Ground	k Iwater	
Remarks:								
PS Coor	dinates:	38° 73.76873'	N, -104° 73	3.3695'	W			
)bserver:	N. Schletzb	aum	E	By:				
	ENTE	СН			PERCOLATIO	N TEST RES	UI TS	JOB NO.:
	NGINEEF	KING, INC.			. Liteorniq		0210	

Client: Test Locatio	Front Row on:	v Properties Southmoor Drive			Job Numbe	er: 222077		
PERCOL	ATION	HOLES #3						
Date Holes I	Prepared:	10/19/2022			Date Hole (Completed:	10/2	20/2022
Hole No. 7 Depth: <u>Trial</u> 1 2 3 Perc Rate (n	Time <u>(min.)</u> 5 5 5 nin./in.):	Water Level <u>Change (in.)</u> 1 1 1 5	Hole No. 8 Depth: <u>Trial</u> 1 2 3 Perc Rate (Time (min.) 5 5 5 (min./in.):	Water Level <u>Change (in.)</u> 2 1 1 1	Hole No. 9 Depth: <u>Trial</u> 1 2 3 Perc Rate (Time (<u>min.)</u> 5 5 5 min./in.):	Water Level <u>Change (in.)</u> 2 1 2 3
		Avelage 1	erc Rate (mm.)	/m.)	4			
<u>Depth</u> 0-10' 20 15	Blows / ft. Blows / ft.	<u>Visual Classification</u> Sand, very silty, fine @ 2' @ 4'	! to coarse grain	ned, tan		<u>Remarks</u> No Bedrocl No Ground	k water	
Remarks:								
3PS Coord	dinates:	: 38° 73.59461'	N, -104°'	73.2943	' W			
Observer:	N. Schletzt	baum		By:				
	ENTE	ICH			PERCOLATION TEST RESULTS			
	NUMBE	KING, ING.						FIG NO.:

Infiltration Rate (I) = Percolation Rate (P)/ Reduction Factor(RF) I=P/RF							<u>CLIENT</u> <u>PROJECT</u> JOB NO.	CLIENT FRONT ROW PROPERTIE PROJECT SOUTHMOOR DRIVE JOB NO 222077			
R _f ≕ [(2d ₁ - <i>l</i>	4) / dia] + 1									
d ₁ = initial w	/ater dep	oth (in.)									
∆d = final w	ater leve	el drop (in.)									
dia = diame	ter of th	e percolation ho	le (in.)								
<u>Test No. P</u> Perc Rate= dia =	<u>1 (PH-1)</u> 15 8	in/hr	<u>Test </u> Perc dia =	No. P2 Rate=	2 (PH-1) 24 8	in/hr	<u>Test No. P3</u> Perc Rate= dia =	12 8	in/hr		
<u>P1</u>	26.0		<u>P2</u>		06.0		<u>P3</u>				
$\Delta d =$	1.0		$\Delta d =$		20.0		01 = Ad -	43.0 1 0			
R _f =	9.9		R _t ≃		7.3		R _t ≃	11.6			
1 =	1.519	in/hr		l =	3.310	in/hr	1 =	1.032	in/hr		
(PH·	·1) AVG	= 1.954 in/hr									
Test No. P1	(PH-2)	in/br	Test N	<u>No. P2</u>	(PH-2)	· //- ··	Test No. P3	<u>(PH-2)</u>			
dia =	8	H M H	dia =	fale=	30.00 8	in/nr	Perc Hate= dia =	30 8	m/hr		
<u>P1</u> d. =	32.0		<u>P2</u>		10.0		<u>P3</u>	40.0			
∆d =	1.0		$\Delta d =$		0.0		$d_1 \sim \Delta d =$	40.0 2 B			
$R_f =$	8.9		$R_{f} =$		5.8		$R_{f} =$	10.8			
1 =	1.932	in/hr		i =	5.217	in/hr	1 =	2.791	in/hr		
(PH-	2) AVG	= 3.313 in/hr									
Test No. P1	<u>(PH-3)</u>		<u>Test N</u>	<u>lo. P2</u>	<u>(PH-3)</u>		Test No. P3	<u>(PH-3)</u>			
Perc Rate= dia =	12.00 8	in/hr	Perc F dia =	łate≠	15.00 8	in/hr	Perc Rate= dia =	20 8	in/hr		
<u>P1</u> d ₁ =	21.0		<u>P2</u> d₁ =		39 A		<u>P3</u> d. =	22.0			
Δd =	1.0		Δd =		1.0		Δd =	2.0			
$R_f =$	6.1		R _f =		10.6		$R_{f} =$	6.5			
l =	1.959	in/hr		=	1.412	in/hr	I =	3.077	in/hr		

ENTECH ENGINEERING, INC.		INFILTRAT	ION TEST RES	SULTS	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE:	J

JOB NO.:

FIG NO.: