

CHEROKEE METROPOLITAN DISTRICT

6250 Palmer Park Blvd., Colorado Springs, CO 80915-2842 Telephone: (719) 597-5080 Fax: (719) 597-5145

Irrigation is

	ningation is
\sim	mentioned in
)	summary but is not
	mentioned in this
	document. Please
	clarify

Water Provider's Report for proposed Electronic Drive Self Storage at Mountain States Pipe and Supply

October 23rd, 2020

Commitment 2020-02

This document has been prepared to satisfy the requirements of El Paso County for a Water Provider's Report in support of **Electronic Drive Self Storage** at **7765 Electronic Drive** being undertaken by the current landowner, **Mountain States Pipe and Supply**.

Introduction

Cherokee Metropolitan District (CMD) is a Title 32 special District which provides water and wastewater to an 800-acre enclave of unincorporated of Colorado Springs. Currently CMD serves approximate the commercial taps in addition to bulk users in eastern El Processor and several small developments located alor

CMD water is sourced entirely from groundwate recovered from the alluvial Upper Black Squirrel (VBS) through 20 wells. The remainder is sourced from two we northern part of the county on the "Sundance Ranch" prin the eastern part of the county can only be used to serv main service area of CMD comes only from the remaini wells in Black Forest.

ed by the City Include square nd 600 footage of structures riever Air for calculation of water demand. Per LDC Section 8.4.7, rity is presumptive values o County for rs in the commercial/industrial of the 20 wells uses are calculated Water for the

with the two

on a gallon/square

foot/day value

Calculation of Anticipated water Demand

The development is expected to be an enclosed self-storage center which is not plumbed for water consumption through the vast majority of its floor area. There are currently three self-storage centers in the District and over the past three years the average annual consumption for each was 0.12 Acre-Feet per Year (AFY) including separately metered outdoor sprinkler systems. This is about half of the average single family home demand in the District. CMD assigns a higher value water use value of 0.31 AFY per single family equivalent (SFE) during water demand planning to account for high irrigation years and system losses. To be conservative, the District committed one SFE or 0.31 AFY to this development.

Water Supplies

Cherokee has eight wells that are restricted to serving a maximum of 653 AFY to specified in-basin customers. Excess allocation for these wells is unavailable for new developments, even if they are inside the Basin, so this water is tracked separately from CMD's general supply portfolio. CMD's other alluvial wells are available for export outside the UBS basin. The total annual volume available to CMD from these exportable supplies is 3,985 AFY (Table 1). The physical yield of these wells is significantly higher than their annual appropriation, allowing flexibility in satisfying summer peak demand.

Table 1: Water rights and tributary status of Exportable Wells

Well Number	Water Right (AFY)	2019 Use (AFY)	Permit Number	Aquifer	Aquifer Status
Well 9	176	132	14145-FP-R	UBS Alluvium	Tributary
Well 10	176	108	14146-FP-R	UBS Alluvium	Tributary
Well 11	244	161	6821-FP-R	UBS Alluvium	Tributary
Well 12	244	149	11198-FP	UBS Alluvium	Tributary
Well 13	1268	975	49988-F	UBS Alluvium	Tributary
Well 14	0	0	52429-F	UBS Alluvium	Tributary
Well 15*	281	145	54070-F	UBS Alluvium	Tributary
Well 16*	219	123	54069-F	UBS Alluvium	Tributary
Well 17*	175	151	63094-F	UBS Alluvium	Tributary
Well 18	225	138	16253-RFP-R	UBS Alluvium	Tributary
Well 19	95	79	20567-RFP-R	UBS Alluvium	Tributary
Well 20	400	38	4332-RFP	UBS Alluvium	Tributary
Well 21	290	0	81782-F	UBS Alluvium	Tributary
DN-4**	110	110	78315-F	Denver Aquifer	Non-Tributary
AR-1***	147.7	155	75881-F	Arapahoe Aquifer	Non-Tributary
Total	3984.7	2464			

^{*}Wells 15-17 can produce a total of 609 AFY instead of their nominal total of 675 AFY. This limitation is reflected in the 3984.7 AFY total available production

CMD is developing owned water supplies to increase available water and improve flexibility in provision of summer peak flows. By the end of 2020, these new wells will contribute 458 AFY of capacity to the CMD system (Table 2) for a total of 4,443.0 AFY. Since 2011, actual demand from CMD customers has fallen 30-35% below commitments, partially due to some currently committed developments being incomplete but largely due to water saving measures undertaken by CMD customers.

^{**}CMD holds additional water rights in the Denver Aquifer associated with the Sundance Ranch property but this particular well has a maximum annual recorded yield of 110 AFY

^{***}As of December 2019 AR-1 has 2040 AF of banked water which allows actual pumping to exceed allocation on a limited basis

Table 2: New water supplies slated for completion in 2020

Well Number	Water Right	Permit	Aquifer	Aquifer Status
	(AFY)	Number		
Albrecht Well	153.5	27571-FP	UBS Alluvium	Tributary
DA-1	40.3	83604-F	Dawson	Not Non-Tributary
DA-4	64.5	83603-F	Dawson	Not Non-Tributary
AR-1 Expansion	200	75881-F	Arapahoe	Non-Tributary
Total	458.3			

By the end of 2020, CMD will have at total of 4,443 AFY of exportable water supplies sourced from alluvial and deep bedrock aquifers. Further development in the Denver Basin is not planned at this time and instead CMD is focusing on acquiring new renewable supplies proximate to existing infrastructure.

Water Commitments

CMD's water commitments stand at 4,033 AFY before the addition of the proposed development. These commitments are broken down below in Table 3. The Tipton and Kane commitments are related to an arrangement from the mid-2000's where developers reserved commitments on two new wells. The water from these wells is considered fully committed to these developers even if they have not yet begun the projects associated with the reserved commitments. Due to a complex legal history, the "Kane" water right was not tied to a specific physical water well but instead operates as a commitment served from CMD's general supply portfolio. The "Tipton" water right corresponds to CMD's Well 18.

Table 3: CMD Commitments before addition of new development

Commitments	AFY
In-District (2015)	2693
Committed Since 2015	328
Schriever Air Force Base	537
Kane	200
Tipton	225
Construction	25
Parks	25
Total	4033

Water Balance

With 4,443.0 AFY of exportable supply and 4,033 AFY of commitments, CMD has a water balance of 410.0 AFY before the subject development. After commitment of 0.31 AFY to this development, the District will have 410.7 AFY remaining for additional commitments.

Table 4: Water balance with new development

Water Balance Before New Commitment	410.0 AFY
New Commitment: Electronic Dr. Self Storage	0.31
Water Balance Remaining	409.7 AFY

Wastewater Treatment

Onsite Septic System

Cherokee Metropolitan District normally does not allow septic systems within the District but the location of this property would make connection to existing sewer infrastructure unreasonable for a usage this low. Many of the lots in this area of the District use onsite septic systems and are generally light industrial businesses with low wastewater flows. If a residential subdivision or higher intensity industrial user builds in this area, a sewer line extension will be required at which point all businesses currently on septic will have the option to connect to the central wastewater system.

Other Relevant District Information

Recent Water Acquisitions/Losses

CMD has not acquired any new water rights since 2015 but has been developing owned water rights into production wells. CMD has not engaged in any water trades nor lost any water rights in the last year. The District is not currently under contract to purchase new water rights although CMD is investigating purchases of renewable water rights proximate to its existing infrastructure on an ongoing basis.

New Augmentation Plans

CMD is currently pursuing a replacement plan in partnership with Meridian Service Metropolitan District (MSMD) in order to maximize the efficiency of its water supplies.

Major Water System Capital Improvements

CMD has been actualizing owned water by drilling wells and beginning production on several well sites. In February of 2020 CMD brought the Sweetwater 5 well (81782-F) online after a year of planning and construction. In the next 6 months it is expected that the "Albrecht Well" (27554-FP) will be brought online providing an additional 153.5 AFY of water.

CMD is currently preparing to increase pump capacity in well AR-1 (75881-F), its only well in the Arapahoe aquifer, and to install pumps in two existing wells in the Dawson Aquifer (83603-F & 83604-F). Beyond these projects, additional well construction in the Denver Basin is not anticipated at this time, although CMD has a substantial amount of undeveloped water rights in the Denver Basin Aquifers.

Existing CMD wells have had a series of upgrades to improve quality and efficiency within in the last year. The screen and pump on Well 11 (6821-FP-R) were replaced to improve water flow and several in-district potable water tanks have been cleaned and rehabilitated. More incremental improvements in the distribution system to improve reliability and resiliency include deeper computer integration, upgrades to treatment systems, and emergency generator refurbishment.

CHEROKEE MD 2020 Drinking Water Quality Report Covering Data For Calendar Year 2019

Public Water System ID: CO0121125

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact SARA HOWARD at 719-597-5080 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa.gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- **Microbial contaminants:** viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants:** salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and
 residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of
 industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and
 septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit wqcdcompliance.com/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121125, CHEROKEE MD, or by contacting SARA HOWARD at 719-597-5080. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- **Non-Health-Based** A violation that is not a MCL or TT.
- **Action Level (AL)** The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- **Maximum Residual Disinfectant Level (MRDL)** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which
 there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to
 control microbial contaminants.
- **Violation** (**No Abbreviation**) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radion 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- **Average (x-bar)** Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- **Level 1 Assessment** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

CHEROKEE MD routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2019 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

Disinfectants Sampled in the Distribution System

TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm \underline{OR} If sample size is less than 40 no more than 1 sample is below 0.2 ppm

Typical Sources: Water additive used to control microbes

Disinfectant Name	Time Period	Results	Number of Samples Below Level	Sample Size	TT Violation	MRDL
Chlorine	December, 2019	Lowest period percentage of samples meeting TT requirement: 100%	0	31	No	4.0 ppm

	Lead and Copper Sampled in the Distribution System													
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	90 th Percentile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources						
Copper	07/15/2019 to 07/19/2019	0.47	30	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits						
Lead	07/15/2019 to 07/19/2019	3	30	ppb	15	0	No	Corrosion of household plumbing systems; Erosion of natural deposits						

Disinfection Byproducts Sampled in the Distribution System													
Name	Year	Average	Range	Sample	Unit of	MCL	MCLG	MCL	Typical Sources				
			Low –	Size	Measure			Violation					
			High										
Total Haloacetic Acids (HAA5)	2019	7.58	2.3 to 13.5	16	ppb	60	N/A	No	Byproduct of drinking water disinfection				
Total Trihalomethanes(TTHM)	2019	24.03	8.4 to 46.4	16	ppb	80	N/A	No	Byproduct of drinking water disinfection				

	Radionuclides Sampled at the Entry Point to the Distribution System													
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources					
Gross Alpha	2019	7.3	2.6 to 12.0	2	pCi/L	15	0	No	Erosion of natural deposits					
Combined Radium	2019	4.7	3.4 to 6	2	pCi/L	5	0	No	Erosion of natural deposits					
Combined Uranium	2019	2.5	0 to 5	2	ppb	30	0	No	Erosion of natural deposits					
Gross Beta Particle Activity	2019	6.05	4.1 to 8	2	pCi/L*	50	0	No	Decay of natural and man-made deposits					

^{*}The MCL for Gross Beta Particle Activity is 4 mrem/year. Since there is no simple conversion between mrem/year and pCi/L EPA considers 50 pCi/L to be the level of concern for Gross Beta Particle Activity.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Arsenic	2019	0.7	0 to 2	6	ppb	10	0	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	2019	0.06	0.05 to 0.08	6	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits
Chromium	2019	3.2	0 to 8	6	ppb	100	100	No	Discharge from steel and pulp mills; erosion of natural deposit
Fluoride	2019	0.32	0.29 to 0.35	2	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factorie
Nitrate	2019	5.49	0 to 7.5	10	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrate-Nitrite	2019	0	0 to 0	2	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

	Inorganic Contaminants Sampled at the Entry Point to the Distribution System													
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources					
Selenium	2019	7.2	4 to 13	6	ppb	50	50	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines					

Nitrate: <u>Nitrate in drinking water at levels above 10 ppm</u> is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Synthetic Organic Contaminants Sampled at the Entry Point to the Distribution System									
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Di(2- ethylhexyl) phthalate	2019	0	0 to 0	1	ppb	6	0	No	Discharge from rubber and chemical factories

Secondary Contaminants**

^{**}Secondary standards are <u>non-enforceable</u> guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	Secondary Standard
Sodium	2019	47	11.1 to 71.8	6	ppm	N/A
Total Dissolved Solids	2016	131.2	62 to 180	5	ppm	500

Unregulated Contaminants***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Quinoline	2018	0.0237	<0.02 - 0.0423	6	Ppb
Germanium	2018	0.3287	<0.3 – 0.472	6	Ppb
Bromochloroacetic Acid	2018	2.548	0.847 – 3.89	8	Ppb
Bromodichloroacetic Acid	2018	1.0348	<0.5 – 1.53	8	Ppb
Chlorodibromoacetic Acid	2018	1.8965	0.332 – 3.0	8	Ppb
Dibromoacetic Acid	2018	4.252	0.517 - 6.48	8	Ppb
Dichloroacetic Acid	2018	1.092	0.636 - 2.11	8	Ppb
Monobromoacetic Acid	2018	0.7165	<0.3 – 1.11	8	Ppb
Tribromoacetic Acid	2018	3.077	<2.0 – 4.39	8	Ppb
Trichloroacetic Acid	2018	0.516	<0.5 – 0.631	8	Ppb

^{***}More information about the contaminants that were included in UCMR monitoring can be found at: drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR. Learn more about the EPA UCMR at: epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/ground-water-and-drinking-water.

Violations, Significant Deficiencies, and Formal Enforcement Actions

No Violations or Formal Enforcement Actions