FINAL DRAINAGE PLAN SF 231

HILLSIDE AT LORSON RANCH FIL. NO. 1

DECEMBER, 2022 REV MAY, 2023

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.065

TABLE OF CONTENTS

ENGINEER'S STATEMENT1
OWNER'S STATEMENT
FLOODPLAIN STATEMENT
1.0 LOCATION and DESCRIPTION
2.0 DRAINAGE CRITERIA
3.0 EXISTING HYDROLOGICAL CONDITIONS
4.0 DEVELOPED HYDROLOGICAL CONDITIONS
5.0 HYDRAULIC SUMMARY
6.0 DETENTION and WATER QUALITY PONDS
7.0 DRAINAGE and BRIDGE FEES
8.0 FOUR STEP PROCESS
9.0 CONCLUSIONS
10.0 REFERENCES

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report? NE

C

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

6/29/23

Date

Ву	
Jeff Mark	
Title	
Manager	
Address	
212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 809	03

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is not located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 0804100957G and 08041C0976G, dated December 7, 2018. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

÷	Approved	
County Engine	By: Gilbert LaForce, P.E.	
Conditions:	Engineering Manager Date: 08/29/2023 10:45:06 AM	
	El Paso County Department of Public Works	

1.0 LOCATION and DESCRIPTION

Hillside at Lorson Ranch is located east of the East Tributary of Jimmy Camp Creek. The site is located on approximately 128.328 acres of vacant land. This project will develop this site into single-family residential developments. The land for the residential lots is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the North ½ of Section 23 and 24, Township 15 South and Range 65 West of the 6th Principal Meridian. The site is bounded on the west by Lorson Ranch East Filing No. 4, on the north by The Hills at Lorson Ranch and The Ridge at Lorson Ranch, on the east by unplatted lands, and the south by Peaceful Valley Lake Estates 1st Filing. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 and in 2018 the East Tributary was reconstructed from downstream of Lorson Boulevard north to the northern property line of Lorson Ranch in accordance with the 1987 study. The last section of the East Tributary (to the south property line of Lorson Ranch) has been designed by Kiowa Engineering and will be completed in 2020. There are no further improvements to be made on the East Tributary. On March 9, 2015, a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development.

A portion of the site is located in the Upper Williams Drainage Basin which is an unstudied basin. Lorson Ranch has provided detention and water quality ponds for Hillside at Lorson Ranch runoff within this basin and the existing/proposed flows are the same at the south property line of Lorson Ranch.

Conformance with Lorson East MDDP by Core Engineering Group

Core Engineering Group has an approved MDDP for Lorson East, which covers this study area. This PDR conforms to the MDDP for Lorson East and is referenced in this report. The major infrastructure to be constructed in conjunction with this site includes offsite Detention/WQ Ponds C1 and D2 and onsite Ponds E1, G and H. Offsite Pond C1 was completed with The Hills at Lorson Ranch Filing No. 1. Offsite Pond D2 was completed with Lorson Ranch East Filing No. 1. On-site Pond E1 was graded in the Early Grading Plans for Lorson Ranch East under PUDSP-16-003 but will be increased in size to accommodate this project. On-site Ponds G and H will be constructed with this project. There are also two bridges over the East Tributary that were built in 2018 to provide access to this development across the East Tributary. The bridges are located at Fontaine Boulevard and Lorson Boulevard.

Hillside at Lorson Ranch is located within the *"Jimmy Camp Creek Drainage Basin"*, which is a fee basin in El Paso County and Upper Williams Creek which is not a fee basin.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development.

3.0 EXISTING HYDROLOGICAL CONDITIONS

This site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek and a small portion southerly in the Upper Williams Creek Drainage Basin.

The Soil Conservation Service (SCS) classifies the soils within the Hillside at Lorson Ranch property as Nelson-Tassel fine Sandy loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). Weathered bedrock may be encountered beneath some of the site but it can be excavated using conventional techniques.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

Table 3.1: SCS Soils Survey

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" are provided in *Appendix A* for further reference.

For preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, with existing transmission towers, is located west side of this site and will be set aside as open space. It is the intent to utilize some of the open space under the towers for detention of storm flow.

This site is not located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C10957 G and 08041C10976 G, effective December 7, 2018.

Basin C1.1-ex

This existing basin consists of existing flow from undeveloped areas north of the PUD boundary. Runoff flows overland northwesterly and drains into Existing Pond C1 excavated as part of Lorson Ranch East Filing No. 4 grading. The existing runoff is 2.9cfs and 19.5cfs for the 5-year and 100-year events.

<u>Basin D1-ex</u>

This existing basin consists of existing flow within the northerly area of the PUD site. Runoff flows overland westerly to Lorson Boulevard constructed as part of Lorson Ranch East Filing No. 1. The existing runoff is 2.6cfs and 17.6cfs for the 5-year and 100-year events.

Offsite Basin OS-E1.1

This existing offsite basin consists of existing flow from the Peaceful Valley Lake Estates subdivision located to the south of the PUD site. Runoff is directed overland northwesterly through basin EX-E1.2 to existing pond E1. The existing runoff is 2.0cfs and 13.4cfs for the 5-year and 100-year events.

Basin EX-E1.2

This existing basin consists of existing flow within the southerly area of the PUD site. Runoff flows overland westerly to existing pond E1. The existing runoff is 12.1cfs and 81.5cfs for the 5-year and 100-year events.

Offsite Basin OS-E2.1

This existing offsite basin consists of existing flow from the Peaceful Valley Lake Estates subdivision located to the south of the PUD site. Runoff is routed northwesterly via overland and swale to Lorson Ranch East Filing No. 4. The existing runoff is 4.5cfs and 30.2cfs for the 5-year and 100-year events.

Basin EX-F2

This existing basin consists of existing flow within the easterly area of the PUD site. Runoff is routed east toward the future Meridian Road. The existing runoff is 3.0cfs and 19.9cfs for the 5-year and 100-year events respectively.

Basin EX-G

This existing basin consists of existing flow within the easterly area of the PUD site. Runoff is routed southerly to the Peaceful Valley Lake Estates subdivision in the Upper Williams Creek Drainage Basin. The existing flows are 3.1cfs and 20.2cfs_for the 5-yeqr and 100-year storm events respectively.

Basin EX-H

This existing basin consists of existing flow within the center area of the PUD site. Runoff is routed southerly to the Peaceful Valley Lake Estates subdivision in the Upper Williams Creek Drainage Basin. The existing runoff is 5.5cfs and 31.8cfs for the 5-year and 100-year events respectively

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for **Hillside at Lorson Ranch** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type B has been assumed for the developed hydrologic conditions. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from Table 6-6 dated May, 2014 from the updated City of Colorado Springs/El Paso County Drainage Criteria Manual. See Appendix B.

Drainage concepts for each of the basins are briefly discussed as follow:

<u>Basin B1</u>

This basin consists of runoff from residential development, Tin Mountain Trail and Wahluke Drive. Runoff will be directed west to Tin Mountain Trail and south to Wahluke Drive, flow is then routed south and west via curb/gutter to Design Point 2 where it will be collected by a Type R inlet. The developed flow from this basin is 5.4cfs and 11.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin B2

This basin consists of runoff from residential development, Tin Mountain Trail and Wahluke Drive. Runoff will be directed south to Wahluke Drive, flow is then routed west in Wahluke Drive via curb/gutter to Design Point 2 where it will be collected by a Type R inlet. The developed flow from this basin is 5.5cfs and 12.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin B3

This basin consists of runoff from residential development, Hackberry Hill Street and Wahluke Drive. Runoff will be directed northerly to Hackberry Hill Street then routed west to Wahluke Drive via curb/gutter then south in Wahluke Drive to Design Point 2 where it will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 3.0cfs and 6.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin B4</u>

This basin consists of runoff from residential development, Wahluke Drive and Pond "H". Runoff will be directed to Wahluke Drive, flow is then routed west and south in Wahluke Drive via curb/gutter to Design Point 4 where it will be collected by a Type R inlet. The developed flow from this basin is 4.3cfs and 9.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin B</u>

This total basin consists of peak flow from residential development. Runoff will be directed to the interior streets and routed via curb/gutter to Design Points 2 and 4 where it will be collected by Type R inlets; flow is then directed through a storm pipe to Pond "H". The peak developed flow from this basin is 15.2cfs and 33.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1

This basin consists of runoff from residential development and Hackberry Hill Street. Runoff will be directed southerly to Hackberry Hill Street then routed northwesterly via curb/gutter in Hackberry Hill Street through basin C2 to Design Point 6 where it will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 3.1cfs and 6.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C2

This basin consists of runoff from residential development and Hackberry Hill Street. Runoff will be directed southwesterly to Hackberry Hill Street then routed northwesterly via curb/gutter in Hackberry Hill Street to Design Point 6 where it will be collected by a Type R inlet. Flowby continues northwesterly then northerly to Salt Spring Way. For more detailed information, see the design point discussions. The developed flow from this basin is 3.9cfs and 8.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3

This basin consists of runoff from residential development, Whiskey Hill Lane, Shuksan Lane and Salt Spring Way. Runoff will be directed to the previously mentioned streets, and then routed northwesterly via curb/gutter in Salt Spring Way to Design Point 7 where it will be collected by a Type R inlet. For

more detailed information, see the design point discussions. The developed flow from this basin is 7.2cfs and 15.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4

This basin consists of runoff from residential development and Salt Spring Way. Runoff will be directed southwesterly to Salt Spring Way then routed northwesterly via curb/gutter in Salt Spring Way, then northerly to Design Point 10 in Elk Hills Drive where it will be collected by a sump Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 4.8cfs and 10.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5

This basin consists of runoff from residential development and Lorson Boulevard. Runoff will be directed northwesterly to Lorson Boulevard, then westerly in Lorson Boulevard in curb/gutter where it will be collected by an existing 10' Type R inlet near Walleye Dr. For more detailed information, see the design point discussions. The developed flow from this basin is 3.2cfs and 7.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C6

This basin consists of runoff from residential development and Lorson Boulevard. Runoff will be directed northwesterly to Lorson Boulevard, then westerly in Lorson Boulevard to Elk Hills Drive, then south to Design Point 10 in curb/gutter where it will be collected by a Type R sump inlet. Runoff from this inlet is routed via the storm drain system to the existing pond C1 in The Hills at Lorson Ranch. For more detailed information, see the design point discussions. The developed flow from this basin is 5.3cfs and 11.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.1

This basin consists of runoff from residential development and Crafton Court. Runoff will be directed to Crafton Court, then routed north via curb/gutter in Crafton Court to Design Point 13 and will be collected by a Type R sump inlet. Runoff from this inlet is routed via the storm drain system to the existing pond D2 in Lorson Ranch East Filing No. 1. For more detailed information, see the design point discussions. The developed flow from this basin is 3.8cfs and 8.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.2

This basin consists of runoff from residential development and Keynot Court. Runoff will be directed to Keynot Court, then routed north via curb/gutter in Keynot Court to Design Point 14 and will be collected by a Type R sump inlet. Runoff from this inlet is routed via the storm drain system to the existing pond D2 in Lorson Ranch East Filing No. 1. For more detailed information, see the design point discussions. The developed flow from this basin is 6.2cfs and 13.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.3

This basin consists of runoff from a small portion of residential development, a portion of the westerly side of Elks Hills Drive, and the south side of Lorson Boulevard. Runoff will be directed northerly, then westerly via curb/gutter in Elks Hills Drive and Lorson Boulevard towards Design Point 47c and will be collected by an existing 10' Type R inlet. Runoff from this inlet is routed via the storm drain system to the existing pond D2 in Lorson Ranch East Filing No. 1. For more detailed information, see the design point discussions. The developed flow from this 0.88 acre basin is 3.2cfs and 5.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.4

This offsite is included for information only and consists of runoff from the north side of Lorson Blvd, backyard runoff from The Hills at Lorson Ranch, and open space runoff. Runoff will be directed southerly, then westerly via curb/gutter in Lorson Boulevard towards Design Point 47d and will be

collected by an existing 10' Type R inlet. Runoff from this inlet is routed via the storm drain system to the existing pond D2 in Lorson Ranch East Filing No. 1. The developed flow from this 1.92 acre basin is 3.5cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin D1.5

This basin consists of runoff from the south side of Lorson Blvd, backyard runoff, and open space runoff under the electric transmission line. Runoff will be directed northerly, then westerly via curb/gutter in Lorson Boulevard towards Design Point 12 and will be collected by an existing 10' Type R inlet in Lorson Boulevard. Runoff from this inlet is routed via the storm drain system to the existing pond D2 in Lorson Ranch East Filing No. 1. The developed flow from this basin is 2.6cfs and 9.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-E1.1

This existing offsite basin consists of existing flow from the Peaceful Valley Lake Estates subdivision located to the south of the Hillside at Lorson Ranch site. Runoff is directed overland northwesterly, flow then continues through basin E1.3 to Sawtooth Ridge Way. Flow is routed west via curb/gutter in Sawtooth Ridge Way to Design Point 16 and will be collected by a Type R at-grade inlet. For more detailed information, see the design point discussions. The developed flow from this offsite basin is 2.0cfs and 13.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.2

This basin consists of runoff from residential development, Hackberry Hill Street, Yamsay Way, and Sawtooth Ridge Way. Runoff will be directed to the interior streets southerly, then westerly via curb/gutter to Design Point 15 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 4.7cfs and 10.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.3

This basin consists of runoff from large lot residential lots and Sawtooth Ridge Way. Runoff will be directed northwesterly to Sawtooth Ridge Way, then westerly via curb/gutter to Design Point 16 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this 6.39 acre basin is 3.1cfs and 14.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E1.4

This basin consists of runoff from residential development and Sawtooth Ridge Way. Runoff will be directed to Sawtooth Ridge Way, then westerly via curb/gutter in Sawtooth Ridge Way to Design Point 17 and will be collected by a Type R sump inlet. Runoff from this inlet is routed via the storm drain system to existing pond E1. For more detailed information, see the design point discussions. The developed flow from this basin is 1.1cfs and 5.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-E2.1

This existing offsite basin consists of existing flow from the Peaceful Valley Lake Estates subdivision located to the south of the Hillside at Lorson Ranch site. Runoff is routed northwesterly via overland and swale flow through basin E2.2 to design point 18. For more detailed information, see the design point discussions. The flow from this 21.39 offsite acre basin is 13.0cfs and 46.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E2.2

This basin consists of runoff from large lot residential lots located to the south and west of Sawtooth Ridge Way. Runoff is routed northwesterly via overland flow to design point 18, then continues to an existing double type D inlet in Lorson Ranch East Filing 4, adjacent to Trappe Drive. For more detailed information, see the design point discussions. The developed flow from this basin is 4.2cfs and 15.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin E3</u>

This basin consists of runoff from residential development, Yamsay Way, Hocking Trail and Sawtooth Ridge Way. Runoff will be directed to the interior streets easterly, westerly, and southerly, then flow continues westerly in Sawtooth Ridge Way via curb/gutter through basin E4 to Design Point 19 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 6.9cfs and 15.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E4

This basin consists of runoff from residential development, Salt Springs Way and Sawtooth Ridge Way. Runoff will be directed to the interior streets easterly, westerly, and southerly, then flow continues westerly in Sawtooth Ridge Way via curb/gutter to Design Point 19 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 3.0cfs and 6.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E5

This basin consists of runoff from residential development, Whiskey Hill Lane, Shuksan Lane and Sawtooth Ridge Way. Runoff will be directed to the interior streets easterly, westerly, and southerly, then flow continues westerly in Sawtooth Ridge Way via curb/gutter to Design Point 20 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 12.0cfs and 26.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin E6</u>

This basin consists of runoff from residential development, Sawtooth Ridge Way and Beacon Butte Place. Runoff will be directed to the interior streets, westerly and southerly, then flow continues westerly in Sawtooth Ridge Way, then northerly in Beacon Butte Place via curb/gutter to Design Point 23 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 2.8cfs and 6.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E7

This basin consists of runoff from residential development, Sperry Terrace and Trappe Drive. Runoff will be directed to the interior streets southwesterly, and northwesterly, then flow continues southerly in Sperry Terrace, then westerly in Trappe Drive via curb/gutter to Design Point 25 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 9.1cfs and 20.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E8

This basin consists of runoff from residential development, Sperry Terrace, Elk Hills Drive and Trappe Drive. Runoff will be directed to the interior streets southwesterly, and southeasterly, then flow continues southerly in Sperry Terrace and Elk Hills Drive, then westerly in Trappe Drive via curb/gutter to Design Point 26 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 8.1cfs and 17.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E9

This basin consists of runoff from residential development and Trappe Drive. Runoff will be directed northwesterly to Trappe Drive, then westerly in Trappe Drive via curb/gutter to Design Point 28 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 2.5cfs and 5.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin E10</u>

This basin consists of runoff from residential development Crafton Court and Trappe Drive. Runoff will be directed to the interior streets southwesterly, and southeasterly, then flow continues southerly in Crafton Court, then westerly in Trappe Drive via curb/gutter to Design Point 29 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 7.2cfs and 16.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin E11</u>

This basin consists of runoff from residential development, Beacon Butte Terrace and Trappe Drive. Runoff will be directed to Beacon Butte Terrace and northwesterly to Trappe Drive, then routed westerly in Trappe Drive via curb/gutter to Design Point 32 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 5.2cfs and 11.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E12

This basin consists of runoff from residential development, Keynot Court and Trappe Drive. Runoff will be directed to the interior streets then flow continues southerly in Keynot Court, then westerly in Trappe Drive via curb/gutter to Design Point 34 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 7.3cfs and 16.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E13

This basin consists of runoff from residential development and Trappe Drive. Runoff will be directed northwesterly to Trappe Drive, then routed southwesterly in Trappe Drive via curb/gutter to Design Point 36 and will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 1.4cfs and 3.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E14

This basin consists of runoff from residential development, Keynot Court and Long Ridge Court. Runoff will be directed southeasterly to Keynot Court, southwesterly and northwesterly to Longridge Court, flows are routed southerly in Keynot Court and westerly in Long Ridge Court via curb/gutter to Design Point 39 and will be collected by a Type R sump inlet. Runoff from this inlet is routed via the storm drain system to existing pond E1. For more detailed information, see the design point discussions. The developed flow from this basin is 4.7cfs and 10.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin E15

This basin consists of runoff from a small portion of residential development, open space and pond E1. Runoff is routed overland via sheet flow to pond E1. For more detailed information, see the design point discussions. The developed flow from this basin is 3.9cfs and 16.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin E16</u>

This basin consists of runoff from Trappe Drive. Runoff is routed southerly and westerly in Trappe Drive via curb/gutter to Basin E1.4 (Lorson Ranch East Fil. 4) and collected by an existing 15' type R inlet in Lorson Ranch East Filing No 4. This runoff flows to existing full spectrum/WQ Pond E2 constructed as part of Lorson Ranch East Filing No. 4. The developed flow from this basin is 3.5cfs and 6.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin F</u>

This basin consists of runoff from a small portion of residential development and runoff reduction area open space, and a ROW tract for future Meridian Road. Runoff is routed easterly and southerly

overland via sheet flow to the east boundary line of Lorson Ranch. For more detailed information, see the design point discussions. The developed flow from this basin is 8.0cfs and 15.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. The future Meridian Road drains east to Upper Williams Creek and water quality for the future road will be determined by that project.

<u>Basin G1</u>

This basin consists of runoff from residential development, Lorson Boulevard, Hackberry Hill Street and Tin Mountain Trail. Runoff will be directed to the interior streets, then routed westerly in Lorson Boulevard and Hackberry Hill Street, and southerly in Tin Mountain Trail via curb/gutter to Design Point 41 where it will be collected by a Type R inlet. For more detailed information, see the design point discussions. The developed flow from this basin is 7.9cfs and 17.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin G2

This basin consists of runoff from large residential lots. Runoff will be directed southerly overland via sheet flow across a runoff reduction area before sheet flowing into Peaceful Valley Lake Estates subdivision as in existing conditions. For more detailed information, see the design point discussions. The developed flow from this basin is 2.4cfs and 11.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

<u>Basin H1</u>

This basin consists of runoff from large residential lots. Runoff will be directed southerly overland via sheet flow to an existing drainage swale located in Peaceful Valley Estates subdivision. Runoff from Pond H will be outletted via storm drain system to a proposed concrete spreader channel, these flows will then continue to the previously mentioned existing drainage swale. For more detailed information, see the design point discussions. The developed flow from this basin is 4.0cfs and 18.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	Residential Local		Residential Collector		Principal Arterial	
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6

Table 1: Street Capacities (100-year capacity is only ½ of street)

1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	39.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Note: all flows are in cfs (cubic feet per second)

Design Point 1

Design Point 1 is located in the NE corner of a knuckle in Wahluke Dr and it the total street flow from the east from Basins B1 and B2. The total street flow is 8.9cfs/19.5cfs in the 5/100-year storm events for this basin.

Design Point 2

Design Point 2 is located at the NE corner of a knuckle in Wahluke Drive and accepts flows from Basins B1-B3 and bypass flow from Design Point 41.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	B1+B2+B3 0.1cfs from Des. Pt 41	Inlet/MH Number: Inlet DP2 Total Street Flow: 11.3cfs	
Flow Intercepted: 1 Inlet Size: 20' type F		Flow Bypassed: 0	
Street Capacity: St	reet slope = 1.8%, capacity =	12.0cfs, okay	
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	B1+B2+B3 4.3cfs from Des. Pt 41	Inlet/MH Number: Inlet DP2 Total Street Flow: 29.0cfs	
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 3.6cfs to Des.Pt 4	
Street Capacity: Street slope = 1.8%, capacity = 45.4cfs (half street) is okay			

Design Point 3

Design Point 3 is the storm sewer pipe flow in Wahluke Drive. The total pipe flow is 11.3cfs/25.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 4 is located at the SE corner of a knuckle in Wahluke Drive and accepts flows from Basin B4 and bypass flow from Design Point 2.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	B4 0	Inlet/MH Number: Inlet DP2 Total Street Flow: 4.3cfs		
Flow Intercepted: 4 Inlet Size: 10' type F		Flow Bypassed: 0		
Street Capacity: St	reet slope = 1.8%, capacity =	12.0cfs, okay		
<u>(100-γear storm)</u> Tributary Basins: Upstream flowby:	B4 3.6cfs from Des. Pt 2	Inlet/MH Number: Inlet DP2 Total Street Flow: 13.1cfs		
Flow Intercepted:13.1cfsFlow Bypassed:0Inlet Size:10' type R, sump				
Street Capacity: Street slope = 1.8%, capacity = 45.4cfs (half street) is okay				

Design Point 5

Design Point 5 is the storm sewer pipe flow to Pond H. The total pipe flow is 15.6cfs/38.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 5a

Design Point 5a is the total developed outflow from Pond H calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 1.5cfs/13.1cfs in the 5/100-year storm events in the 18" storm sewer pipe. Equation GB-1 from the Grass Buffer worksheet determines the length of the spreader (W=Q/.05) required to convert point discharges into sheet flow to reduce the erosion potential. For a flow of 13.1cfs, the length of the spreader from the storm sewer outfall is required to be 262' long with 1.5" wide openings every 2' along the curb spreader. The curb spreader will be 4' wide with 8" tall curbs. In addition to the curb spreader, the flows will drain and additional 25' overland before exiting the Lorson Ranch property. Also included is a Type 1 distribution MH located in the middle of the spreader channel which is designed to distribute the flows evenly to both sides of the spreader channel. The Type 1 distribution MH has two 6" high x 36" wide openings on the sides that discharge 13.1cfs into the 4' wide concrete spreader channel. Because the pond is located upstream of residential lots to the south, we have included a Type R emergency overflow structure connected to a 24" storm sewer designed to capture the incoming 100-yr developed pond flows (22.5cfs from xcel spreadsheet pond inflow) before flowing over the emergency overflow weir. Even though the 100-year pond inflow from Design Point 5 (38.5cfs) and from the xcel full spectrum spreadsheets (22.5cfs) differ, the Type R overflow weir is able to accommodate either flow. The Type R emergency overflow structure is 10' wide with a 14" high throat opening. The Type R throat opening elevation is above the 100-yr WSEL of the pond of 5810.35 and will flow at a depth of 0.77' deep for 22.5cfs and 1.10' deep for 38.5cfs. The Distribution MH is capable of discharging 22.5cfs through the side openings at a depth of 2.65' inside the manhole. The pond emergency overflow is a standard trapezoid weir with an invert elevation of 5811.90.

Design Point 5b

Design Point 5b is the total developed sheet flow from Pond H and Basin H1 that exits Lorson Ranch on the south property line. The total outflow is (1.5+4.0) = 5.5cfs in the 5-year storm event and

(13.1+18.7) = 31.8cfs in the 100-year storm event flowing offsite to the south. The developed flow matches the existing flow (Ex. Basin H) of 5.5cfs/31.8cfs in the 5/100-year storm events. By using the spreader channel the runoff exiting Lorson Ranch mimics existing conditions.

Design Point 6

Design Point 6 is located on the north side of Hackberry Hill Street east of Salt Spring Way

(<u>5-year storm)</u> Tributary Basins: C1,C2 Upstream flowby:	Inlet/MH Number: Inlet DP6 Total Street Flow: 5.9cfs		
Flow Intercepted: 5.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:		
Street Capacity: Street slope = 1%, capacity	city = 9.0cfs, okay		
<u>(100-year storm)</u> Tributary Basins: C1,C2 Upstream flowby:	Inlet/MH Number: Inlet DP6 Total Street Flow: 12.9cfs		
Flow Intercepted: 10.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 2.0cfs to Inlet DP10		
Street Capacity: Street slope = 1%, capacity = 37.3cfs (half street) is okay			

<u>Design Point 6a</u>

Design Point 6a is the pipe flow into the existing 24" storm sewer stub from Lorson Blvd constructed as part of The Ridge at Lorson Ranch . The total storm sewer flow is 5.9cfs in the 5-year storm event and 10.9cfs in the 100-year storm event flowing from the south. The allowable flow in the existing 24" storm sewer is 12.8cfs/28.3cfs in the 5/100-year storm events.

Design Point 7

Design Point 7 is located on the south side of Salt Spring Way west of Sperry Terrace

(5-year storm) Tributary Basins: C3 Upstream flowby:	Inlet/MH Number: Inlet DP7 Total Street Flow: 7.2cfs	
Flow Intercepted: 7.2cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 3.6%, capacity = 16.7cfs, okay		
<u>(100-year storm)</u> Tributary Basins: C3 Upstream flowby:	Inlet/MH Number: Inlet DP7 Total Street Flow: 15.9cfs	
Flow Intercepted: 12.5cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 3.4cfs to Des. Pt. 8	
Street Capacity: Street slope = 3.6%, capacity = 37.2cfs (half street) is okay		

Design Point 8 is the total developed flow on the east side of Elk Hills Drive from the south. Flow is from Basin C4 and flowby from Design Point 6 and 7. The total flow from the south is (0+0+4.8) = 4.8cfs in the 5-year storm event and (2+3.4+10.5) = 15.9cfs in the 100-year storm event flowing from the south. The street capacity at 1% is okay for minor and major storm events.

(<u>5-year storm)</u> Tributary Basins: C4 Upstream flowby:	Inlet/MH Number: Inlet DP8 Total Street Flow: 4.8cfs			
Flow Intercepted: 2.8cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 2.0cfs to Des.Pt.10			
Street Capacity: Street slope = 1.%, capacity =	9.0cfs, okay			
(100-year storm) Tributary Basins: C4 Upstream flowby: 5.4cfs from Des. Pt 6/7	Inlet/MH Number: Inlet DP8 Total Street Flow: 15.9cfs			
Flow Intercepted:4.7cfsFlow Bypassed:11.2cfs to Des.Pt 10Inlet Size:5' type R, on-grade				
Street Capacity: Street slope = 1.%, capacity = 37.3cfs (half street) is okay				

Design Point 9

Design Point 9 is the total developed flow on the east side of Elk Hills Drive from Lorson Blvd. Flow is from Basin C6 and flowby from Design Point 9a. The total flow from Lorson Blvd is (0+5.3) = 5.3cfs in the 5-year storm event and (1.1+11.6) = 12.7cfs in the 100-year storm event flowing from Lorson Blvd. The street capacity at 1% is okay for minor and major storm events.

Design Point 9a (existing inlet)

Design Point 9a is located in the SE corner of Lorson Blvd and Walleye Drive at an existing 10' type R inlet

(<u>5-year storm)</u> Tributary Basins: C5 Upstream flowby:	Inlet/MH Number: existing 10' inlet Total Street Flow: 3.2cfs		
Flow Intercepted: 3.2cfs Inlet Size: 10' type R, on-grade	Flow Bypassed:		
Street Capacity: Street slope = 1%, capacity = 9.0cfs, okay			
<u>(100-year storm)</u> Tributary Basins: C5 Upstream flowby:	Inlet/MH Number: existing 10' inlet Total Street Flow: 7.0cfs		
Flow Intercepted:5.9cfsFlow Bypassed:1.1cfs to Des. Pt 9Inlet Size:10' type R, on-grade			
Street Capacity: Street slope = 1%, capacity = 37.3cfs (half street) is okay			

Design Point 10 is located at the SE corner of Salt Spring Way and Lorson Blvd and accepts flows from Design Point 8 and 9.

(5-year storm) Tributary Basins: Upstream flowby: 2.0cfs from des.pt.8	Inlet/MH Number: Inlet DP10 Total Street Flow: 7.3cfs	
Flow Intercepted: 7.3cfs Inlet Size: 30' type R, sump	Flow Bypassed: 0	
(100-year storm) Tributary Basins: Upstream flowby: 11.2cfs from des.pt.8	Inlet/MH Number: Inlet DP10 Total Street Flow: 23.9cfs	
Flow Intercepted: 23.9cfs Inlet Size: 30' type R, sump	Flow Bypassed: 0	
Notes: Should this inlet become plugged, runoff will flow west in Lorson Boulevard.		

Design Point 10 (pipe flow)

Design Point 10 (pipe flow) is the total flow from Inlet DP8 and DP10 since they are connected by an 18" storm sewer. The total pipe flow is (2.8+7.3) 10.1cfs in the 5-yr storm event and (4.7+23.9) 28.6cfs in the 100-yr storm event.

Design Point 11

Design Point 11 is the pipe flowing into the existing 30" storm sewer stub from Lorson Blvd constructed as part of The Hills at Lorson Ranch. Flow is from Basins C3, C4, C6 from the xcel spreadsheet and runby from Design Point 6 and Design Point 9a. The total storm sewer flow is (0+0+15.7) = 15.7cfs in the 5-year storm event and (2+1.1+34.5) = 37.6cfs in the 100-year storm event flowing from the south. The allowable flow in the existing 30" storm sewer is 14.3cfs/38.0cfs in the 5/100-year storm events. The 5-year storm is slightly above allowable but the HGL is still below the top of pipe and will not adversely affect downstream pipe flow.

Design Point 12

Design Point 12 is located on Lorson Blvd at an existing 10' Type R inlet constructed as part of The Hills at Lorson Ranch. The inlet was sized to accept 2.6cfs/9.0cfs in the 5/100-year storm events from upstream overland flow and Lorson Blvd. The flow at this design point is from Basin D1.5 and is 2.6cfs/9.9cfs in the 5/100-year storm events. The existing inlet has capacity for this basin.

Design Point 13 is located at the north end of Crafton Court in a cul-de-sac. The inlet connects to an existing 18" storm sewer with a capacity of 4.6cfs/10.1cfs in the 5/100-year storm events per The Hills fdr.

(<u>5-year storm)</u> Tributary Basins: D1.1 Upstream flowby: 0	Inlet/MH Number: Inlet DP13 Total Street Flow: 3.8cfs	
Flow Intercepted: 3.8cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1%, capacity = 9	9.0cfs (half street) is okay	
(100-year storm) Tributary Basins: D1.1 Upstream flowby:	Inlet/MH Number: Inlet DP13 Total Street Flow: 8.4cfs	
Flow Intercepted: 8.4cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1%, capacity = 37.3cfs (half street) is okay The emergency overflow for this inlet is overland to the northwest to Lorson Boulevard		

<u>Design Point 14</u>

Design Point 14 is located at the north end of Keynot Court in a cul-de-sac. The inlet connects to an existing 18" storm sewer with a capacity of 5.9cfs/13.0cfs in the 5/100-year storm events per The Hills fdr. The 5-yr HGL of the storm sewer is 6" below top of pipe and the 100-yr HGL is 3' below finished grade and the pipe has excess capacity for the additional flow.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	D1.2 0	Inlet/MH Number: Inlet DP14 Total Street Flow: 6.2cfs
Flow Intercepted: 6 Inlet Size: 10' type F		Flow Bypassed: 0
Street Capacity: Street slope = 1%, capacity = 9.0cfs (half street) is okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	D1.2	Inlet/MH Number: Inlet DP14 Total Street Flow: 13.8cfs
Flow Intercepted: Inlet Size: 10' type		Flow Bypassed: 0
Street Capacity: Street slope = 1%, capacity = 37.3cfs (half street) is okay The emergency overflow for this inlet is overland to the northwest to Lorson Boulevard		

Design Point 15 Design Point 15 is located on the south side of Sawtooth Ridge Way at Shuksan Lane.

(5-year storm)Tributary Basins:E1.2Upstream flowby:0	Inlet/MH Number: Inlet DP15 Total Street Flow: 4.7cfs	
Flow Intercepted: 2.8cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 1.9cfs to Des. Pt 16	
Street Capacity: Street slope = 1.9%, capacit	ty = 12.0cfs (half street) is okay	
(100-year storm) Tributary Basins: E1.2 Upstream flowby:	Inlet/MH Number: Inlet DP15 Total Street Flow: 10.4cfs	
Flow Intercepted: 4.0cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 6.4cfs to Des. Pt 16	
Street Capacity: Street slope = 1.9%, capacity = 45.4cfs (half street) is okay		

Design Point 16 Design Point 16 is located on the south side of Sawtooth Ridge Way at Beacon Butte Place.

(<u>5-year storm)</u> Tributary Basins: E1.3 + OS-E1.1 Upstream flowby: 1.9cfs from Des.Pt.15	Inlet/MH Number: Inlet DP16 Total Street Flow: 7.0cfs	
Flow Intercepted: 7.0cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 0	
Street Capacity: Street slope = 1.3%, capacity = 10.4cfs (half street) is okay		
(100-year storm)Tributary Basins:E1.3 + OS-E1.1Upstream flowby:6.4cfs from Des.Pt.15	Inlet/MH Number: Inlet DP16 Total Street Flow: 34.0cfs	
Flow Intercepted: 26.7cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 7.3cfs to Des. Pt 17	
Street Capacity: Street slope = 1.3%, capacity = 44.0cfs (half street) is okay		

<u>Design Point 17</u> Design Point 17 is located on the west end of Sawtooth Ridge Way at a cul-de-sac.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP17 Total Street Flow: 1.1cfs
Flow Intercepted: 1 Inlet Size: 10' type F		Flow Bypassed: 0
Street Capacity: St	reet slope = 1.3%, capacity =	10.4cfs (half street) is okay
	E1.4 7.3cfs from Des.Pt.16	Inlet/MH Number: Inlet DP17 Total Street Flow: 12.4cfs
Flow Intercepted: Inlet Size: 10' type		Flow Bypassed: 0
Street Capacity: Street slope = 1.3%, capacity = 44.0cfs (half street) is okay The emergency overflow for this inlet is overland to the west to Des. Pt. 18		

Design Point 18

Design Point 18 is located southeast of Trappe Drive and Horton Drive. An existing double Type D inlet and swale captures overland runoff from Basin E2.2 and Basin OS-E2.1. The total overland flow at this design point is 21.9cfs/ 77.7cfs in the 5/100-year storm events. The existing inlet and swale was designed with a capacity of 26cfs/91cfs in the 5/100-year storm events per Lorson Ranch East Filing 4 fdr. The reason the flow has decreased from the Lorson Ranch East Filing No. 4 fdr is that Sawtooth Ridge Way diverts a portion of the offsite flow into Pond E1. Water quality for Basin E2.2 is provided in Pond E2 in Creekside South at Lorson Ranch.

<u>Design Point 19</u> Design Point 19 is located on the north side of Sawtooth Ridge Way at Whiskey Hill Lane.

(<u>5-year storm)</u> Tributary Basins: E3 + E4 Upstream flowby:	Inlet/MH Number: Inlet DP19 Total Street Flow: 9.1cfs	
Flow Intercepted: 8.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.4cfs to Des. Pt 20	
Street Capacity: Street slope = 2.7%, capacity = 14.4cfs (half street) is okay		
<u>(100-year storm)</u> Tributary Basins: E3 + E4 Upstream flowby:	Inlet/MH Number: Inlet DP19 Total Street Flow: 20.0cfs	
Flow Intercepted: 14.1cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 5.9cfs to Des. Pt 20	
Street Capacity: Street slope = 2.7%, capacity = 40.7cfs (half street) is okay		

Design Point 20 is located on the north side of Sawtooth Ridge Way at Shuksan Lane.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	E5 0.4cfs from Des.Pt.19	Inlet/MH Number: Inlet DP20 Total Street Flow: 12.4cfs
Flow Intercepted: 8 Inlet Size: 10' type F		Flow Bypassed: 4.4cfs to Des. Pt 23
Street Capacity: Str	eet slope = 1.9%, capacity =	12.5cfs (half street) is okay
	E5 5.9cfs from Des.Pt.19	Inlet/MH Number: Inlet DP20 Total Street Flow: 32.4cfs
Flow Intercepted: Inlet Size: 10' type I	12.4cfs R, on-grade	Flow Bypassed: 20.0cfs to Des. Pt 23
Street Capacity: Street slope = 1.9%, capacity = 45.5cfs (half street) is okay		

Design Point 21

Design Point 21 is the storm sewer pipe flow from Design Points 15, 19, and 20 in Sawtooth Ridge Way at Shuksan Lane. The total pipe flow is 19.5cfs/30.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 22

Design Point 22 is the storm sewer pipe flow from Design Points 16 and 21 in Sawtooth Ridge Way at Beacon Butte Place. The total pipe flow is 26.5cfs/57.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 23

Design Point 23 is located on the east side of Beacon Butte Place SE of Trappe Drive

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	E6 4.4cfs from Des.Pt.20	Inlet/MH Number: Inlet DP23 Total Street Flow: 7.2cfs
Flow Intercepted: 7 Inlet Size: 15' type		Flow Bypassed:
Street Capacity: Street slope = 1.6%, capacity = 11.0cfs (half street) is okay		
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	E6 20.0cfs from Des.Pt.20	Inlet/MH Number: Inlet DP23 Total Street Flow: 26.1cfs
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 10.0cfs to Des. Pt 32
Street Capacity: Street slope = 1.6%, capacity = 44.3cfs (half street) is okay		

Design Point 24 is the storm sewer pipe flow from Design Points 22 and 23 in Beacon Butte Place at Trappe Drive. The total pipe flow is 33.7cfs/73.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 25 Design Point 25 is located on the south side of Trappe Drive at Elk Hills Drive

<u>(5-year storm)</u> Tributary Basins: E7 Upstream flowby:	Inlet/MH Number: Inlet DP25 Total Street Flow: 9.1cfs	
Flow Intercepted: 6.9 cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.2cfs to Des. Pt 28	
Street Capacity: Street slope = 4.3%, capacity = 18.0cfs (half street) is okay		
(100-year storm) Tributary Basins: E7 Upstream flowby:	Inlet/MH Number: Inlet DP25 Total Street Flow: 20.1cfs	
Flow Intercepted: 10.2cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 9.9cfs to Des. Pt 28	
Street Capacity: Street slope = 4.3%, capacity = 35.0cfs (half street) is okay		

Design Point 26 Design Point 26 is located on the north side of Trappe Drive at Elk Hills Drive

<u>(5-year storm)</u> Tributary Basins: E8 Upstream flowby:	Inlet/MH Number: Inlet DP26 Total Street Flow: 8.1cfs	
Flow Intercepted: 8.0cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.1cfs to Des. Pt 29	
Street Capacity: Street slope = 4.3%, capacity = 18.0cfs (half street) is okay		
(100-year storm) Tributary Basins: E8 Upstream flowby:	Inlet/MH Number: Inlet DP26 Total Street Flow: 17.8cfs	
Flow Intercepted: 13.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 4.5cfs to Des. Pt 29	
Street Capacity: Street slope = 4.3%, capacity = 35.0cfs (half street) is okay		

Design Point 27 is the storm sewer pipe flow from Design Points 25 and 26 in Trappe Drive at Elk Hills Drive. The total pipe flow is 14.9cfs/23.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 28

Design Point 28 is located on the south side of Trappe Drive at Keynot Court.

(5-year storm) Tributary Basins: E9 Upstream flowby: 2.2cfs from Des.Pt.25	Inlet/MH Number: Inlet DP28 Total Street Flow: 4.7cfs	
Flow Intercepted: 4.5cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.2cfs to Des. Pt 32	
Street Capacity: Street slope = 4.3%, capacity = 18.0cfs (half street) is okay		
(100-year storm) Tributary Basins: E9 Upstream flowby: 9.9cfs from Des.Pt.25	Inlet/MH Number: Inlet DP28 Total Street Flow: 15.4cfs	
Flow Intercepted: 9.0cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 6.4cfs to Des. Pt 32	
Street Capacity: Street slope = 4.3%, capacity = 35.0cfs (half street) is okay		

Design Point 29

Design Point 29 is located on the north side of Trappe Drive at Keynot Court.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP29 Total Street Flow: 7.3cfs			
	Flow Intercepted:7.3cfsFlow Bypassed:0cfs to Des. Pt 34Inlet Size:15' type R, on-grade				
Street Capacity: St	Street Capacity: Street slope = 3.8%, capacity = 16.7cfs (half street) is okay				
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	E10 4.5cfs from Des.Pt.26	Inlet/MH Number: Inlet DP29 Total Street Flow: 20.5cfs			
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 6.1cfs to Des. Pt 34			
Street Capacity: Street slope = 3.8%, capacity = 37.2cfs (half street) is okay					

Design Point 30

Design Point 30 is the storm sewer pipe flow from Design Points 27, 28, and 29 in Trappe Drive at Keynot Court. The total pipe flow is 26.7cfs/46.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 31 is the storm sewer pipe flow from Design Points 24 and 30 in Trappe Drive at Beacon Butte Place. The total pipe flow is 60.4cfs/120.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 32

Design Point 32 is located on the south side of Trappe Drive at the electric powerlines

(5-year storm) Tributary Basins: E11 Upstream flowby: 0.2cfs from Des.Pt.23 & 28	Inlet/MH Number: Inlet DP32 Total Street Flow: 5.4cfs			
Flow Intercepted: 5.4cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 0			
Street Capacity: Street slope = 1.5%, capacity =	10.6cfs (half street) is okay			
(100-year storm) Tributary Basins: E11 Upstream flowby: 16.4cfs from Des.Pt.23 & 28	Inlet/MH Number: Inlet DP32 Total Street Flow: 27.9cfs			
Flow Intercepted: 23.9cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 4.0cfs to Des.Pt.36			
Street Capacity: Street slope = 1.5%, capacity = 44.2cfs (half street) is okay				

Design Point 33

Design Point 33 is the storm sewer pipe flow from Design Points 31 and 32 in Trappe Drive at the electric lines. The total pipe flow is 65.8cfs/144.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 34

Design Point 34 is located on the north side of Trappe Drive west of Beacon Butte Place.

(<u>5-year storm)</u> Tributary Basins: E12 Upstream flowby: 0	Inlet/MH Number: Inlet DP34 Total Street Flow: 7.3cfs			
Flow Intercepted: 7.3cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 0			
Street Capacity: Street slope = 1.5%, capacity =	10.6cfs (half street) is okay			
(100-year storm) Tributary Basins: E12 Upstream flowby: 6.1cfs from Des. Pt. 29	Inlet/MH Number: Inlet DP34 Total Street Flow: 22.2cfs			
Flow Intercepted: 20.6cfs Inlet Size: 25' type R, on-grade	Flow Bypassed: 1.6cfs to LRE4 in Trappe			
Street Capacity: Street slope = 1.5%, capacity = 44.2cfs (half street) is okay				

Design Point 35 is the storm sewer pipe flow from Design Point 33 and 34. The 100-year flow has been adjusted for time of concentration. See xcel spreadsheet for design point. The total pipe flow is 73.1cfs/157.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 36

Design Point 36 is located on the south side of Trappe Drive at the electric powerlines

(<u>5-year storm)</u> Tributary Basins: E13 Upstream flowby: 0	Inlet/MH Number: Inlet DP36 Total Street Flow: 1.4cfs			
Flow Intercepted: 1.4cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0			
Street Capacity: Street slope = 4.3%, capacity =	18.0cfs (half street) is okay			
(100-year storm) Tributary Basins: E13 Upstream flowby: 4.0cfs from Des.Pt.32	Inlet/MH Number: Inlet DP36 Total Street Flow: 7.2cfs			
Flow Intercepted: 6.0cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.2cfs to LRE4 in Trappe			
Street Capacity: Street slope = 4.3%, capacity = 35.0cfs (half street) is okay				

Design Point 37

Design Point 37 is the storm sewer pipe flow from Design Points 17 and 36 in Trappe Drive at the electric lines. The total pipe flow is 2.5cfs/18.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 38

Design Point 38 is the storm sewer pipe flow into Pond E1 (from the south) from Basins OS-E1.1, E1.2-E1.4, E3–E13 taken from the xcel spreadsheet which accounts for the time of concentrations. The total pipe flow is 75.6cfs/164.2cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 39</u> Design Point 39 is located at the west end of Long Ridge Court in a cul-de-sac.

(<u>5-year storm)</u> Tributary Basins: E14 Upstream flowby: 0	Inlet/MH Number: Inlet DP39 Total Street Flow: 4.7cfs			
Flow Intercepted: 4.7cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0			
Street Capacity: Street slope = 1%, capacity = 9.0cfs (half street) is okay				
(100-year storm) Tributary Basins: E14 Upstream flowby:	Inlet/MH Number: Inlet DP39 Total Street Flow: 10.3cfs			
Flow Intercepted: 10.3cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0			
Street Capacity: Street slope = 1%, capacity = 37.3cfs (half street) is okay				

Design Point 40

Design Point 40 is pond outflow for Pond E1 calculated at 9.6cfs/36.3cfs in the 5/100-year storm events by the xcel spreadsheet for extended detention basins including water quality. The pond outlet structure connects to an existing 24" storm sewer constructed as part of Lorson Ranch East Filing No. 4 and the allowable storm sewer capacity is 12.8cfs/36.3cfs in the 5/100-year storm events

Design Point 40a

Design Point 40a is the runoff in Trappe Drive and is 3.5cfs/6.3cfs in the 5/100-year storm events. This basin area was included in the final drainage report for Lorson Ranch East Filing No. 4 and the detention/WQ was included in Pond E2 constructed as part of Lorson Ranch East Filing No. 4.

Design Point 41

Design Point 41 is located on the east side of Tin Mountain Trail north of Wahluke Drive.

<u>(5-year storm)</u> Tributary Basins: G1 Upstream flowby:	Inlet/MH Number: Inlet DP41 Total Street Flow: 7.9cfs			
Flow Intercepted: 7.8cfs to Pond G Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.1cfs to Des. Pt. 2			
Street Capacity: Street slope = 2.0%, capacity = 12.5cfs (half street) is okay				
<u>(100-year storm)</u> Tributary Basins: G1 Upstream flowby:	Inlet/MH Number: Inlet DP41 Total Street Flow: 17.3cfs			
Flow Intercepted: 13.0cfs to Pond G Inlet Size: 15' type R, on-grade	Flow Bypassed: 4.3cfs to Des. Pt. 2			
Street Capacity: Street slope = 2.0%, capacity = 45.5cfs (half street) is okay				

Design Point 42 is the total developed outflow from Pond G calculated using the Full Spectrum EDB Xcel design spreadsheet. The total outflow is 0.7cfs/8.7cfs in the 5/100-year storm events in the 18" storm sewer pipe. Equation GB-1 from the Grass Buffer worksheet determines the length of the spreader (W=Q/.05) required to convert point discharges into sheet flow to reduce the erosion potential. For a flow of 8.7cfs, the length of the spreader from the storm sewer outfall is required to be 175' long with 1.5" wide openings every 2' along the curb spreader. The curb spreader will be 4' wide with 8" tall curbs. The pond emergency overflow is a standard trapezoid weir.

Design Point 43

Design Point 43 is the total developed sheet flow from Pond G and Basin G2 that exits Lorson Ranch on the south property line. The total outflow is (0.7+2.4) = 3.1cfs in the 5-year storm event and (8.7+11.5) = 20.2cfs in the 100-year storm event flowing offsite to the south. The developed flow matches the existing flow (Ex. Basin G) of 3.1cfs/20.2cfs in the 5/100-year storm events. By using the spreader channel the runoff exiting Lorson Ranch mimics existing conditions.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for Hillside at Lorson Ranch is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention per the Denver Urban Drainage Districts specifications. Offsite Ponds C1 and D2 which have been previously constructed will be utilized to treat/detain storm runoff for small portions of this site. The three proposed on-site permanent full spectrum ponds will incorporate storm water quality features and comply with the Lorson Ranch East MDDP. The three proposed ponds will treat runoff from the majority of this site and have been sized and include access roads, outlet pipes, overflow structures, and low flow channels. This drainage report provides design information on the outlet structure, trickle channel, and the forebays.

Full Spectrum Pond Construction Requirements

Pond E1 which has been previously graded will be increased in size and the remaining two ponds will be graded with this development (Pond G, Pond H). Each pond will be discussed in this section including what type of structure is proposed. Structures built under the first plat in Hillside will occur in 2022-2023.

Design calculations for all proposed full spectrum ponds are included in this report. Grading of the ponds is shown on the Early Grading plans for Hillside at Lorson Ranch at this time in the Preliminary Plan submittal. The final design of the full spectrum ponds will consist of an outlet structure, storm sewer outfall, concrete low flow channels, sediment forebays, and overflow weirs. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the Hillside at Lorson Ranch prepared by RMG.

Detention Pond E1

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to a storm sewer system in Trappe Drive. Pond E1 was graded in 2020 as part of Lorson Ranch East and will be made larger with this grading plan. The outlet Structure, low flow channel, forebays, and overflow wall will be built as part of the early grading plan. Pond E1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure. The full spectrum print outs are in the appendix of this report. See Design Point 40 for discussion on outflow comparisons between the Lorson Ranch East Filing No. 4 and this final design. See map in appendix for watershed areas.

- Watershed Area: 69.2 acres
- Watershed Imperviousness: 52%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.226ac-ft, WSEL: 5731.75
- Zone 2 EURV: 3.873ac-ft, WSEL: 5733.72, Top outlet structure set at 5733.72, 6'x6' outlet structure with type C grate
- (5-yr): 4.249ac-ft, WSEL: 5733.96, 9.6cfs
- Zone 3 (100-yr): 8.297ac-ft, WSEL: 5736.21, 36.3cfs
- Pipe Outlet: 24" RCP at 1.0%
- Overflow Spillway: 100' wide bottom, elevation=5736.80
- Micropool Elevation: 5728.10

Detention Pond G

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to the south property line of Lorson Ranch. Pond G will be constructed with this grading plan. Pond G is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 43 for discussion on outflow comparisons between the Lorson Ranch East MDDP, existing flows, and this final design. See map in appendix for watershed areas.

- Watershed Area: 4.76 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 0.087ac-ft, WSEL: 5838.01
- Zone 2 EURV: 0.283ac-ft, WSEL: 5839.41, Top outlet structure set at 5839.40, 6'x3' outlet structure with type C grate
- (5-yr): 0.286ac-ft, WSEL: 5839.43, 0.7cfs
- Zone 3 (100-yr): 0.354ac-ft, WSEL: 5839.83, 8.7cfs
- Pipe Outlet: 18" RCP at 1.0%
- Overflow Spillway: 10' wide bottom, elevation=5840.00, 4:1 side slopes, flow depth=0.5' 0.5' freeboard
- Micropool Elevation: 5835.77

Detention Pond H

This is an on-site permanent full spectrum detention pond that includes water quality and discharges downstream to the south property line of Lorson Ranch. Pond H will be constructed with this grading plan. Pond H is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See Design Point 5b for discussion on outflow comparisons between the Lorson Ranch East MDDP, existing flows, and this final design. See map in appendix for watershed areas.

- Watershed Area: 10.41 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 0.191ac-ft, WSEL: 5807.35

- Zone 2 EURV: 0.619ac-ft, WSEL: 5809.24, Top outlet structure set at 5809.82, 6'x3' outlet structure with type C grate
- (5-yr): 0.619ac-ft, WSEL: 5809.24, 1.5cfs
- Zone 3 (100-yr): 0.969ac-ft, WSEL: 5810.35, 13.1cfs
- Pipe Outlet: 18" RCP at 1.0%
- Overflow Spillway: 15' wide bottom, elevation=5811.90, 4:1 side slopes, flow depth=0.58' 0.72' freeboard
- Micropool Elevation: 5804.40

Water Quality Design

Water quality will be provided by three offsite existing detention basins and three on-site permanent extended detention basins for the almost all of the PUD area with the exception of Basin H1/Basin G2 which flow south offsite of Lorson Ranch and Basin F which flows east offsite of Lorson Ranch. The "C" basins flow to existing Pond C1 located in The Hills at Lorson Ranch Filing No. 1, the "D" basins flow to existing Pond D2 located in Lorson Ranch East Filing No. 1, and a portion of the "E" basins flow to existing Pond E2 located in Lorson Ranch East Filing No. 4. On-site proposed Ponds E1, H, and G provide on-site detention and WQ for the majority of the proposed areas within this development. See map in appendix for pond areas.

Water Quality for Basin H1 and G2 draining south offsite

Developed runoff from these basins flows south offsite (shallow sheet flow) and does not include a water quality pond. Runoff from these basins is from 2.5-acre lots that are 195' deep. The building envelope is 95' deep and the southern 100 feet of the lot adjacent to Peaceful Valley Lake Estates is in a building setback zone. The Runoff Reduction Method procedure from the Mile High Flood Control District spreadsheet (UD-BMP-V3.07) calculations have been applied to a 100' wide section of each to address water quality provisions for development in these basins (see appendix). The UIA area is 9500sf (100'x95') and the RPA area is 5000sf (100'x50') for a 100' wide section which can then be applied to the remaining lots within the basin. The 50' deep "no-build" area adjacent to Peaceful Valley Lake Estates provides a 100% reduction in the water quality requirements for this basin. Grading within this basin should not channelize flow from backyards and flow should be allowed to pass under any backyard fencing without obstructing or channelizing the overland flow.

Water Quality for Basin F draining east offsite

Developed runoff from this basin flows east offsite (shallow sheet flow) and does not include a water quality pond. Runoff from this basin is from a standard 50'x110' lot with the back 90 feet of the residential lots which flows overland east across a wide open space tract prior to discharging to the east. The Runoff Reduction Method procedure from the Mile High Flood Control District spreadsheet (UD-BMP-V3.07) calculations have been applied to a standard 50' wide lot to address water quality provisions for development in this basin (see appendix). The UIA area is 4500sf (50'x90') and the RPA area is 6250sf (50'x125') per lot which can then be applied to the remaining lots within the basin. The large open space tract provides a 100% reduction in the water quality requirements for this basin. Grading within this basin should not channelize flow from backyards and flow should be allowed to pass under any backyard fencing without obstructing or channelizing the overland flow.

7.0 DRAINAGE AND BRIDGE FEES

Hillside at Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County and Upper Williams Creek which is an unstudied basin. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

Hillside at Lorson Ranch Filing No. 1 contains 128.328 acres which 85.1acres is in the JCC drainage basin and 43.228 acres is in the Upper Williams Creek Drainage Basin. 2023 drainage fees are \$23,078, bridge fees are \$1,079 per impervious acre per Resolution 22-442 and 23-35 and the Upper Williams Creek Drainage Basin does not have fees. The drainage and bridge fees are calculated when the final plat is submitted and are due at plat recordation. Lorson Ranch intends to use the Bridge Fee credits for the bridge fees and pay drainage fees unless the Jimmy Camp Creek DBPS drainage fee structure is updated by El Paso County. The following table details the drainage fees for this filing:

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	
Residential Area	54.437	51%	\$640,711	\$29,956	
Large Lots	9.478	11%	\$24,060	\$1,124	
Open Space, Landscape Tracts, (Tracts A-J)	21.185	2%	\$9,778	\$457	
Upper Williams	43.228		0	0	
		Total	\$674,549	\$31,537	

Table 7.1: 2023 Drainage/Bridge Fees	(85.100ac in JCC, 43.228ac in Upper Williams)
--------------------------------------	---

Table 7.2: Public Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Rip Rap	150	CY	\$50/CY	\$7,500
Inlets/Manholes	42	EA	\$3000/EA	\$126,000
18" Storm	1108	LF	\$35	\$38,780
24" Storm	2275	LF	\$40	\$91,000
30" Storm	345	LF	\$45	\$106,525
36" Storm	185	LF	\$55	\$10,175
42" Storm	462	LF	\$65	\$30,030
48" Storm	117	LF	\$85	\$9,945
54" Storm	171	LF	\$100	\$17,100
			Subtotal	\$346,055
	•	·	Eng/Cont (10%)	\$34,605
			Total Est. Cost	\$380,660

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Ponds and Outlet	3	EA	\$50,000	\$150,000
			Subtotal	\$150,000
			Eng/Cont (15%)	\$22,500
			Total Est. Cost	\$172,500

 Table 7.3: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

Hillside at Lorson Ranch has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- There are large open space buffers under the 325' wide electric transmission easement and a "no-build" setback on the south side.
- Construct outlet structures for three Full Spectrum Detention Ponds. The full spectrum detention mimics existing storm discharges and includes water quality.

Step 2: Stabilize Drainageways

East Tributary of Jimmy Camp Creek is a major drainageway located west of this site. In 2014 and in 2018 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a natural sand bottom and armored sides.

Step 3: Provide Water Quality Capture Volume

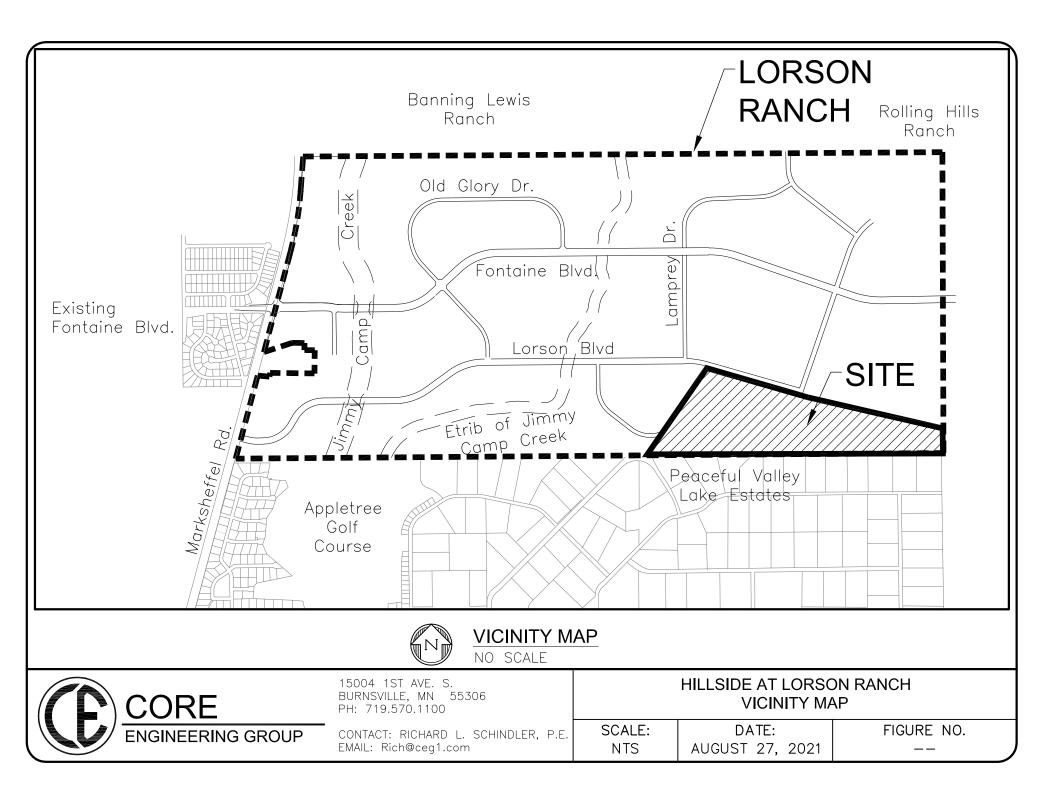
Treatment of the water quality capture volume (WQCV) is required for all new developments Hillside at Lorson Ranch will construct three full spectrum stormwater extended detention basins which include Water Quality Volumes and WQ outlet structures.

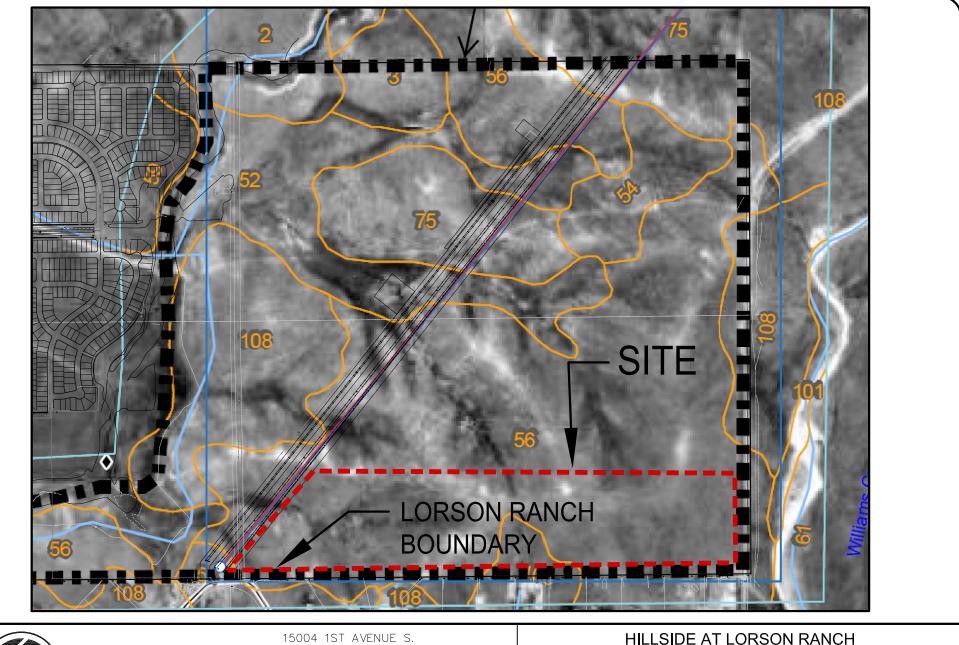
Step 4: Consider Need for Industrial and Commercial BMP's

There are no commercial or industrial areas within this site.

9.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:


- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed west of this study area
- Bridges over the East Tributary at Lorson Boulevard and Fontaine Boulevard and have been constructed providing access to this site.


- Detention and water quality for this site area will be provided in permanent ponds
- Existing runoff rates into the Upper Williams Creek Drainage basin have been maintained

10.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 7. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017
- 8. Final Drainage Report for The Hills at Lorson Ranch Filing No. 1 prepared by Core Engineering Group, Reference CDR 20-007, approved November 25, 2020
- 9. Final Drainage Report for Lorson Ranch East Filing No. 4 prepared by Core Engineering Group, Reference SF19-008, approved September 12, 2019.
- 10. Preliminary Drainage Report for The Ridge at Lorson Ranch prepared by Core Engineering Group, Reference PUD/SP 21-006, approved January 11, 2022

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP

BURNSVILLE, MN 55306 PH: 719.570.1100	
CONTACT: RICHARD L. SCHINDLER, P.E. EMAIL: Rich@ceg1.com	

HILLSIDE AT LORSON RANCH SOILS MAP				
SCALE: DATE: FIGURE NO.				
NTS JANUARY, 2022				

ġ.

El Paso County Area, Colorado

56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes

Map Unit Setting

National map unit symbol: 3690 Elevation: 5,600 to 6,400 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Nelson and similar soils: 55 percent Tassel and similar soils: 40 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nelson

Setting

Landform: Hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous residuum weathered from interbedded sedimentary rock

Typical profile

A - 0 to 5 inches: fine sandy loam Ck - 5 to 23 inches: fine sandy loam Cr - 23 to 27 inches: weathered bedrock

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

USDA

Hydrologic Soil Group: B *Ecological site:* R067BY045CO - Shaly Plains *Other vegetative classification:* SHALY PLAINS (069AY046CO) *Hydric soil rating:* No

Description of Tassel

Setting

Landform: Hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous slope alluvium over residuum weathered from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam C - 4 to 10 inches: fine sandy loam Cr - 10 to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: R067BY045CO - Shaly Plains Other vegetative classification: SHALY PLAINS (069AY046CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions

JSDA

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

El Paso County Area, Colorado

108—Wiley silt loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367b Elevation: 5,200 to 6,200 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Wiley and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wiley

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous silty eolian deposits

Typical profile

A - 0 to 4 inches: silt loam Bt - 4 to 16 inches: silt loam Bk - 16 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R067BY002CO - Loamy Plains

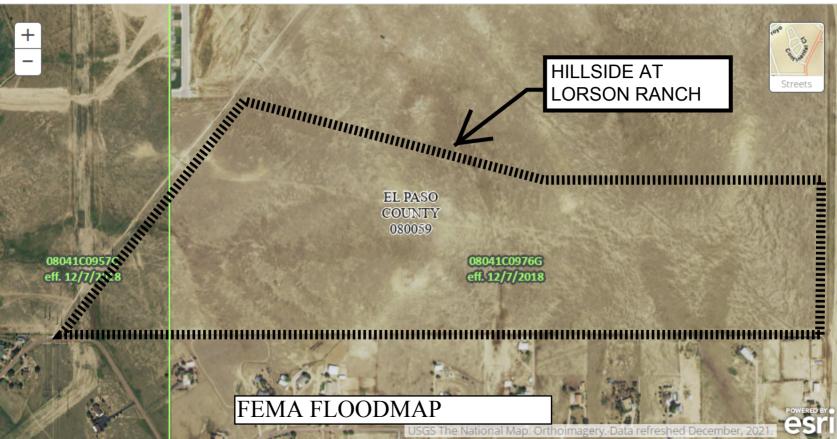
USDA

Other vegetative classification: LOAMY PLAINS (069AY006CO) *Hydric soil rating:* No

Minor Components

Other soils

Percent of map unit: 4 percent *Hydric soil rating:* No


Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

ENG:	INEERI	NG GROU		Date: <u>N</u> Checke	<u>lov. 22,</u> ed By: <u>L</u>	<u>2021</u> eonard	<u>d Beasl</u> Beasley						Project	o: <u>100.06</u> t: Hillside i Storm:	e at Lor						
	t				ect Run	off				Total	Runoff		Sti	reet		Pipe		Tr	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	. tc	CA		a	. tc	Σ (CA)		Ø	Slope	Street	Design Flow	Slope	Pipe Size	ه Length	Velocity	. tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C1.1-ex			12.46	0.09	27.8	1.12	2.60	2.9													
D1-ex			16.44	0.09	48.0	1.48	1.78	2.6													
OS-E1.1			9.96	0.09	35.4	0.90	2.23	2.0													
EX-E1.2			62.57	0.09	37.3	5.63	2.16	12.1													
OS-E2.1			21.39	0.09	33.1	1.93	2.33	4.5													
(E-ex)	1E	93.92							44.9	8.45	1.88	15.9									
EX-F2			16.64	0.09	41.8	1.56	1.98	3.1													
EX-G			13.27	0.09	29.5	1.19	2.51	3.0													
EX-H			28.00	0.09	42.8	2.66	2.06	5.5													
									1				I		1						

CORE
ENGINEERING GROUP

	INEERI	NG GRO	JP																		
\bigcirc						Leonar	d Beasl	<u>ey</u>						o: <u>100.0</u> 0							
				Date: N										t: <u>Hillsid</u>							
				Checke	ed By: <u>L</u>	eonard	Beasley	4		Ŧ ()	— "		Design	Storm:	<u>100-Ye</u>		nt (Curi	<u>rent)</u>			
	nt				ect Run	Off				Iotal	Runoff	1	St	reet		Pipe			ravel Tin	ne	
Street or Basin	Design Point	Area Design	ອດ (A)	Runoff Coeff. (C)	우 min.	CA	 in/hr	O cfs	਼ੁ min	Σ (CA)	 in/hr	O cfs	% Slope	Street Flow	besign Flow	Slope %	 Fipe Size 	t Length	Velocity t/sec	rt min	Remarks
<u></u>												0.0	/0	0.0	0.0	70			10000		
C1.1-ex			12.46	0.36	27.8	4.49	4.36	19.5													
D1-ex			16.44	0.36	48.0	5.92	2.98	17.6													
OS-E1.1			9.96	0.36	35.4	3.59	3.75	13.4													
EX-E1.2			62.57	0.36	37.3	22.53	3.62	81.5													
OS-E2.1			21.39	0.36	33.1	7.70	3.92	30.2													
(E-ex)	1E	93.92							44.9	33.81	3.15	106.5									
EX-F2			16.64	0.37	41.8	6.07	3.33	20.2													
EX-G			13.27	0.36	29.5	4.78	4.21	20.1													
EX-H			28.00	0.35	42.9	9.74	3.26	31.8													
													-								
													-								
																		1			

ENG	INEERI		UP	Date: N	lov. 23,	2021	<u>rd Beasl</u> Beasley						Project		<u>65</u> e at Lor 5 - Yea			osed)			
	Lt I				rect Rur	noff				Total	Runoff		Str	reet		Pipe		Т	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	ţ	CA		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	<u> </u>
B1			3.33	0.45	14.4	1.50	3.59	5.4													
B2			2.55	0.45	6.5	1.15	4.77	5.5													
B1-B2	1	5.88							16.8	2.65	3.35	8.9									
В3			1.55	0.45	9.2	0.70	4.25	3.0													
B1-B3	2 (I-2)	7.43							16.8	3.34	3.35	11.2									
B4	4 (I-4)		2.96	0.45	18.0	1.33	3.24	4.3													
B1-B4	5	10.39							18.0	4.68	3.24	15.2									
C1			1.56	0.45	8.2	0.70	4.44	3.1													
C2			1.89	0.45	7.7	0.85	4.53	3.9													
C1-C2	6 (I-6)	3.45							12.6	1.55	3.78	5.9									-
C3	7 (I-7)		4.44	0.45	14.0	2.00	3.62	7.2													
C4	(1-7)		3.35	0.45	19.1	1.51	3.16	4.8													
C1-C4	8	11.24							19.9	3.51	3.10	10.9									
C5	(I-10)		1.68	0.45	9.6	0.76	4.19	3.2													
C6	(l-10)	6.80	3.45	0.45	16.4	1.55	3.39	5.3	19.1	3.06	3.16	9.7									
C5-C6	9 (I-10)	5.13							19.1	2.31	3.16	7.3									
C3, C4, C6	(I-TO) 11								19.9	5.06	3.10	15.7									

	INEERI	NG GRO		Date: <u>N</u> Checke	ated By: lov. 23, ed By: <u>L</u>	<u>2021</u> eonard							Project Desigr	o: <u>100.00</u> t: Hillside n Storm:	e at Lors	r Event		osed)			
	۲.				ect Run	off				Total	Runoff		St	reet		Pipe		T	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	to	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
D1.1	13		1.98	0.45	9.1	0.89	4.27	3.8													
D1.2	14		3.53	0.45	11.4	1.59	3.93	6.2													
D1.3			0.88	0.75	6.5	0.66	4.78	3.2													
D1.4			1.92	0.45	10.8	0.86	4.02	3.5													
D1-D4	47 (I-47)	8.31							11.5	4.00	3.92	15.7									
D1.5			3.37	0.20	10.7	0.66	4.02	2.6													
OS-E1.1			9.96	0.09	35.4	0.90	2.23	2.0													
E1.2	15 (I-15)		3.07	0.45	16.2	1.38	3.41	4.7													
E1.3	16 (I-16)		6.39	0.15	18.3	0.96	3.22	3.1													
OS-E1.1,E1.3	16 (I-16)	16.35							25.4	1.85	2.73	5.1									
E1.4	17 (I-17)		2.07	0.15	14.4	0.31	3.59	1.1													
OS-E1.1-E1.4		21.49							18.3	3.55	3.22	11.4									
OS-E2.1			21.39	0.26	33.1	5.56	2.33	13.0													
E2.2			4.71	0.26	15.5	1.22	3.47	4.2													
OS-E2.1-E2.2	18	26.10							18.3	6.79	3.22	21.9									
E3			3.89	0.45	11.2	1.75	3.96	6.9													
E4			1.59	0.45	9.2	0.72	4.25	3.0													

ENG	INEERI	NG GROU	JP	Date: <u>N</u> Checke	ated By: <u>lov. 23,</u> ed By: <u>L</u>	<u>2021</u> eonard							Project Design	o: <u>100.00</u> t: Hillsid n Storm:	e at Lors	r Event					
	Ħ				ect Run	off				Total I	Runoff		St	reet		Pipe	1	T	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	10	∢	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
E3-E4	19 (I-19)	5.48							13.4	2.47	3.69	9.1									
E5	I-20		7.27	0.45	13.5	3.27	3.68	12.0													
E3-E5	20 (I-20)	12.75							15.4	5.74	3.48	20.0									
E1.2, E3 - E5	21	15.82							16.2	9.28	3.41	31.7									
E6	23 (I-23)		1.73	0.45	14.7	0.78	3.55	2.8													
OS-E1.1-E1.4, E3 - E6		35.97							17.9	10.06	3.26	32.8									
E7	25 (I-25)		5.48	0.45	13.3	2.47	3.70	9.1													
E8	26 (I-26)		4.70	0.45	12.2	2.12	3.83	8.1													
E7-E8	27	10.18							9.5	4.58	4.20	19.3									
E9	28 (I-28)		1.37	0.45	10.3	0.62	4.09	2.5													
E10	29 (I-29)		4.33	0.45	13.1	1.95	3.72	7.2													
E7-E10	30	15.88							10.1	7.15	4.12	29.5									
OS-E1.1-E1.3, E3 - E10		49.78							18.2	13.97	3.23	45.1									
E11	32 (I-32)		2.97	0.45	11.5	1.34	3.93	5.2													
OS-E1.1, E1.2, E3 - E11		52.75							20.0	15.31	3.09	47.3									
E12	34 (I-34)		4.76	0.45	16.0	2.14	3.42	7.3													
OS-E1.1, E1.2, E3 - E12	35	57.51							20.1	20.38	3.08	62.9									

		NG GROI	UP	Date: N	ated By: lov. 23,	<u>Leonar</u> 2021	<mark>m SF-2.</mark> d Beasl Beasley	<u>ey</u>	Draina	i <u>ge Sys</u> t	em De	sign (Ra	Job No Project	Methoo b: <u>100.00</u> t: Hillsid b Storm:	<u>65</u> e at Lor	son Rai		osed)			
	<u>ب</u>				ect Rur					Total	Runoff			reet		Pipe	•		avel Tin	ne	1
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	ţc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	<u> </u>
E13	36 (I-36)		0.72	0.45	8.1	0.32	4.44	1.4													
OS-E1.1- E1.4, E3 - E13	38	60.30							20.1	21.01	3.08	64.7									
E14	39 (I-39)		2.58	0.45	10.7	1.16	4.03	4.7													
E15			7.06	0.16	16.1	1.13	3.42	3.9													
OS-E1.1-E1.4, E3-E15		69.20							20.6	21.01	3.05	64.0									
E16			0.76	0.90	5.0	0.68	5.17	3.5													
F			4.46	0.45	10.8	2.01	4.01	8.0													
G1	41 (I-41)		4.76	0.45	13.5	2.14	3.68	7.9													
G2			4.10	0.15	11.3	0.62	3.95	2.4													
H1			7.44	0.15	13.4	1.09	3.70	4.0													

	ORE				<u>Standa</u>	ard For	m SF-2.	Storm	Draina	ge Sys	tem De	sign (R	ational	Metho	d Proce	dure)					
	INEERI	NG GROU	JP	Date: <u>N</u> Checke	<u>lov. 23,</u> ed By: <u>L</u>	<u>2021</u> eonard	<u>d Beasl</u> Beasley	-					Projec Desigr	o: <u>100.0</u> t: Hillsid n Storm:	e at Lor	ear Eve		oposed	<u>)</u>		
	Ħ				rect Rur	noff				Total	Runoff		St	reet		Pipe		T	ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
B1			3.33	0.59	14.4	1.96	6.02	11.8													
B2			2.55	0.59	6.5	1.50	8.01	12.0													
B1-B2	1	5.88							16.8	3.47	5.62	19.5									
B3			1.55	0.59	9.2	0.91	7.14	6.5													
B1-B3	2 (I-2)	7.43							16.8	4.38	5.62	24.7									
B4	4 (I-4)		2.96	0.59	18.0	1.75	5.45	9.5					- 								
B1-B4	5	10.39							18.0	6.13	5.45	33.4									
C1			1.56	0.59	8.2	0.92	7.45	6.9													
C2			1.89	0.59	7.7	1.12	7.60	8.5													
C1-C2	6 (I-6)	3.45							12.6	2.04	6.34	12.9									
C3	7 (I-7)		4.44	0.59	14.0	2.62	6.08	15.9													
C4			3.35	0.59	19.1	1.98	5.30	10.5					 								
C1-C4	8 (I-10)	11.24							19.9	4.60	5.20	23.9	 								
C5			1.68	0.59	9.6	0.99	7.04	7.0													
C6	(I-10)	6.80	3.45	0.59	16.4	2.04	5.69	11.6	19.1	4.01	5.30	21.3	 								
C5-C6	9 (I-10)	5.13							19.1	3.03	5.30	16.0									

		NG GRO			<u>Standa</u>	ard Form	<u>n SF-2.</u>	. Storm	Draina	ge Sys	tem De	sign (R	ational	l Metho	d Proce	dure)					
			UP	Date: <u>N</u> Checke	<u>lov. 23,</u> ed By: <u>L</u>	eonard		-					Projec Desigr	o: <u>100.0</u> t: Hillsid n Storm:	e at Lor	ear Ev		oposed	<u>)</u>		
	ц				ect Rur	noff		1		Total	Runoff	1	St	reet		Pipe	1	T	ravel Tir	ne	ĺ
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc.	CA		σ	tc.	Σ (CA)		a	Slope	Street Flow		Slope	Pipe Size	Length	Velocity	tt	Remarks
		A	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C3, C4, C6	11								19.9	6.63	5.20	34.5	-								
D1.1	13		1.98	0.59	9.1	1.17	7.16	8.4													
D1.2	14		3.53	0.59	11.4	2.08	6.60	13.8													
D1.3			0.88	0.84	6.5	0.74	8.02	5.9					-								
D1.4			1.92	0.59	10.8	1.13	6.74	7.6													
D1-D4	47 (I-47)	8.31							11.5	5.12	6.58	33.7									
D1.5			3.37	0.44	10.7	1.47	6.76	9.9													
OS-E1.1			9.96	0.36	35.4	3.59	3.75	13.4													
E1.2	15 (I-15)		3.07	0.59	16.2	1.81	5.72	10.4					-								
E1.3	(1.10)		6.39	0.41	18.3	2.62	5.41	14.2													
OS-E1.1-E1.3	16 (l-16)	16.35							25.4	6.21	4.44	27.6	-								
E1.4	(I-10) 17 (I-17)		2.07	0.41	14.4	0.85	6.02	5.1													
OS-E1.1-E1.4	(1 17)	21.49	21.49			8.87			18.3	8.87	5.41	48.0									
OS-E2.1			21.39	0.55	33.1	11.76	3.92	46.1					 								
E2.2			4.71	0.55	15.5	2.59	5.82	15.1													
OS-E2.1-E2.2	18	26.10							18.3	14.36	5.41	77.7									

CORE
ENGINEERING GROUP

	INEERI	NG GROU	JP																		
						Leonar	d Beas	ley						o: <u>100.0</u>							
					lov. 23,									t: Hillsid							
	1	1		Checke	ed By: <u>L</u>	eonard	Beasle	Y	1					Storm:	<u> 100 - Y</u>		ent (Pro	posed)		
	Ħ				ect Rur	noff				Total	Runoff		St	reet		Pipe	1	Т	ravel Tir	ne	
Street or Basin	Design Point	Area Design	p Area (A)	Runoff Coeff. (C)	우 min.	CA	 in/hr	O cfs	ي min	Σ (CA)	 in/hr	O cfs	% Slope	Street Flow	Design Flow	% Slope	a. Pipe Size	t Length	Velocity t/sec	ب ت min	Remarks
		ব							111111		111/111	015	70	015	015	70	111	11	II/SEC		
E3			3.89	0.59	11.2	2.30	6.64	15.3													
E4			1.59	0.59	9.2	0.94	7.13	6.7													
E3-E4	19 (I-19)	5.48							13.4	3.23	6.19	20.0									
E5	I-20		7.27	0.59	13.5	4.29	6.17	26.5													
E3-E5	20 (I-20)	12.75							15.4	7.52	5.84	44.0									
E1.2, E3 - E5	21	15.82							16.2	16.39	5.72	93.8									
E6	23 (I-23)		1.73	0.59	14.7	1.02	5.96	6.1													
OS-E1.1-E1.4, E3 - E6		35.97							17.9	17.41	5.47	95.2									
E7	25 (I-25)		5.48	0.59	13.3	3.23	6.21	20.1													
E8	26 (I-26)		4.70	0.59	12.2	2.77	6.43	17.8													
E7-E8	27	10.18							9.5	6.01	7.06	42.4									
E9	28 (I-28)		1.37	0.59	10.3	0.81	6.87	5.5													
E10	29 (I-29)		4.33	0.59	13.1	2.55	6.25	16.0													
E7-E10	30	15.88							10.1	9.37	6.92	64.8									
OS-E1.1, E1.2, E3 - E6		49.78							18.2	24.12	5.42	130.8									
E11	32 (I-32)		2.97	0.59	11.5	1.75	6.59	11.5												L	

	DRE				<u>Standa</u>	ard For	m SF-2.	. Storm	Draina	ige Syst	em De	sign (Ra	ational	Metho	d Proce	edure)					
ENG:	INEERI	NG GROU	JP	Date: N	ated By: <u>lov. 23,</u> ed By: <u>L</u>	2021							Projec		e at Lor	son Rar ′ ear Eve		oposed)		
	±				rect Rur					Total F	Runoff			reet		Pipe			ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-E1.1, E1.2, E3 - E11		52.75							20.0	25.87	5.19	134.2									
E12	34 (I-34)		4.76	0.59	16.0	2.81	5.74	16.1													
OS-E1.1, E1.2, E3 - E12	35	57.51							20.1	30.49	5.18	157.9									
E13	36 (I-36)		0.72	0.59	8.1	0.42	7.46	3.2													
OS-E1.1, E1.2, E3 - E13	38	60.30							20.1	31.76	5.17	164.2									
E14	39 (I-39)		2.58	0.59	10.7	1.52	6.77	10.3													
E15			7.06	0.41	16.1	2.89	5.74	16.6													
OS-E1.1-E1.4, E3-E15		69.20							20.6	36.18	5.11	185.0									
E16			0.76	0.96	5.0	0.73	8.68	6.3													
F			4.46	0.53	10.8	2.36	6.73	15.9													
G1	41 (I-41)		4.76	0.59	13.5	2.81	6.17	17.3													
G2			4.10	0.42	11.3	1.73	6.64	11.5													
H1			7.44	0.41	13.4	3.01	6.20	18.7													

15004 1st Avenue South Burnsville, MN 55306

PROJECT NAME: Hillside at Lorson Ranch PROJECT NUMBER: 100.065 ENGINEER: LAB DATE: Nov. 22, 2021

Preliminary Drainage Plan CURRENT CONDITIONS COEFFICIENT "C" CALCULATIONS

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C2.1-ex	56	В	20.95	78.82%	0.09	0.07	0.36	0.28	100%	Undeveloped
	52/54	С	5.63	21.18%	0.16	0.03	0.51	0.11	80%	Undeveloped
			26.58	100.00%		0.10		0.39		
C2.2-ex	56	В	58.51	97.06%	0.09	0.09	0.36	0.35	10%	Undeveloped
	52	С	1.77	2.94%	0.16	0.00	0.51	0.01	10%	Undeveloped
			60.28	100.00%		0.09		0.36		
C3.1-ex	56	В	4.95	59.21%	0.09	0.05	0.36	0.21	10%	Undeveloped
	54	D	3.41	40.79%	0.16	0.07	0.51	0.21	10%	Undeveloped
			8.36	100.00%		0.12		0.42		
C4.1-ex	56	В	3.54	80.64%	0.09	0.07	0.36	0.29	10%	Undeveloped
	75	D	0.85	19.36%	0.16	0.03	0.51	0.10	10%	Undeveloped
			4.39	100.00%		0.10		0.39		
C4.2-ex	56/108	В	21.23	44.29%	0.09	0.04	0.36	0.16	10%	Undeveloped
	52/54/75	D	26.70	55.71%	0.16	0.09	0.51	0.28	10%	Undeveloped
			47.93	100.00%		0.13		0.44		
EX-F1	56/108	В	8.74	39.09%	0.08	0.03	0.35	0.14	10%	Undeveloped
	52	С	13.62	60.91%	0.15	0.09	0.50	0.30	10%	Undeveloped
			22.36	100.00%		0.12		0.44		
EX-F2	56/108	В	0.23	1.32%	0.08	0.00	0.35	0.00	10%	Undeveloped
	52	С	17.26	98.68%	0.15	0.15	0.50	0.49	10%	Undeveloped
			17.49	100.00%		0.15		0.50		
	T									

CORE
ENGINEERING GROUP

Standard Form SF-1. Time of Concentration-Current

Calculated By: <u>Leonard Beasley</u> Date: <u>Nov. 22, 2021</u> Checked By: <u>Leonard Beasley</u> Job No: <u>100.065</u> Project: <u>Hillside at Lorson Ranch</u>

	Sub-Ba	asin Data		Ir	nitial Overla	nd Time (ti)			Т	ravel Time (t	t)		Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
C1.1-ex	0.09	12.46	5.0	300.00	5.20%	0.27	18.33	498.00	4.95%	1.11	7.46		
			15.0					227.00	1.60%	1.90	1.99	27.79	27.79
D1-ex	0.09	16.44	5.0	300.00	2.24%	0.21	24.30	1209.00	3.99%	1.00	20.18		
			15.0					555.00	3.07%	2.63	3.52	47.99	47.99
OS-E1.1	0.09	9.96	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56	35.38	35.38
EX-E1.2	0.09	62.57	7.0	300.00	3.42%	0.24	21.12	1050.00	4.97%	1.56	11.21		
			15.0					840.00	3.57%	2.83	4.94	37.27	37.27
OS-E2.1	0.09	21.39	7.0	300.00	4.82%	0.27	18.85	795.00	2.11%	1.02	13.03		
			15.0					160.00	2.11%	2.18	1.22	33.11	33.11
DP-1E	0.09	93.92	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56		
			7.0					860.00	4.65%	1.51	9.50	44.88	44.88
EX-F2	0.09	17.49	5.0	300.00	3.00%	0.23	21.98	1065.00	3.20%	0.89	19.85	41.83	41.83
EX-G	0.09	13.65	5.0	300.00	4.40%	0.26	19.37	650.00	4.60%	1.07	10.10	29.47	29.47
EX-H	0.09	27.9	5.0	300.00	3.20%	0.23	21.62	1275.00	4.00%	1.00	21.25	42.87	42.87
OS-E1.1	0.09	9.96	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56	35.38	35.38

	CO	RE			Standard F	Form SF-1.	Time of Co	oncentration	Current				
	ENG	NEERIN	IG GROL	IP	Calculated	By: Leonard	d Beasley			Job No: <u>100.</u>	<u>065</u>		
					Date: Nov.	<u>22, 2021</u>				Project: <u>Hillsi</u>	de at Lorson	<u>Ranch</u>	
					Checked B	y: <u>Leonard I</u>	<u>Beasley</u>						
	Sub-Ba	asin Data		li	nitial Overla	nd Time (ti))		٦	Travel Time (t	t)		Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
(C4-ex) 4X	0.13	52.32	7.0	300.00	4.50%	0.27	18.52	143.00	4.60%	1.50	1.59		
			7.0					500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	34.06	34.06
EX-F1	0.12	22.36	7.0	300.00	3.30%	0.24	20.67	390.00	3.30%	1.27	5.11	25.78	25.78
EX-F2	0.15	17.49	15.0	221.00	6.80%	0.27	13.55	406.00	5.90%	3.64	1.86	15.40	15.40
(EX-F) 2X	0.13	39.85	7.0	300.00	3.30%	0.24	20.46	390.00	3.30%	1.27	5.11	25.57	25.57
EX-E1	0.09	62.57	7.0	300.00	3.42%	0.24	21.12	1050.00	4.97%	1.56	11.21		
			15.0					840.00	3.57%	2.83	4.94	37.27	37.27
OS-E2.1	0.09	21.39	7.0	300.00	4.82%	0.27	18.85	795.00	2.11%	1.02	13.03		
			15.0					160.00	2.11%	2.18	1.22	33.11	33.11

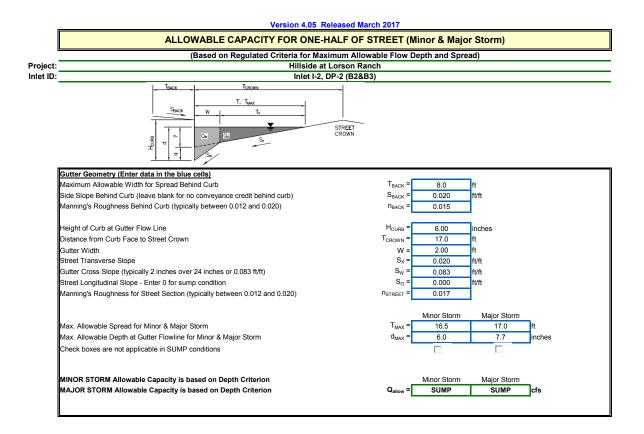
8	5	6.57	6.57	7.57	7.57	7	7	7.57	7.57	7.57	7.57	7.57	10	11	10
		DRE			<u>Standard</u>	Form SF	-1. Time o	of Concen	tration-Cเ	<u>urrent</u>					
C			ING GR	OUP	Calculate Date: <u>Nov</u> Checked	<u>v. 22, 202</u> 1	<u>l</u>	-			Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
	Sub-Ba	sin Data		Ini	tial Overla			<u>*</u>	Tra	avel Time ((t t)			(urbanized	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tc Minutes	TOTAL LENGTH (L) feet	sins) Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C1.1-ex	0.09	12.46	5.0	300.00	5.20%	0.27	18.33	498.00	4.95%	1.11	7.46				
			15.0					227.00	1.60%	1.90	1.99	27.79	1025.00	15.69	15.69
D1-ex	0.09	16.44	5.0	300.00	2.24%	0.21	24.30	1209.00	3.99%	1.00	20.18				
			15.0					555.00	3.07%	2.63	3.52	47.99	555.00	13.08	13.08
OS-E1.1	0.09	9.96	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56	35.38	1050.00	15.83	35.38
EX-E1.2	0.09	62.57	7.0	300.00	3.42%	0.24	21.12	1050.00	4.97%	1.56	11.21				
			15.0					840.00	3.57%	2.83	4.94	37.27	840.00	14.67	14.67
OS-E2.1	0.09	21.39	7.0	300.00	4.82%	0.27	18.85	795.00	2.11%	1.02	13.03				
			15.0					160.00	2.11%	2.18	1.22	33.11	1255.00	16.97	33.11
DP-1E	0.09	93.92	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56				
			7.0					860.00	4.65%	1.51	9.50	44.88	860.00	14.78	14.78
EX-F2	0.09	17.49	5.0	300.00	3.00%	0.23	21.98	1065.00	3.20%	0.89	19.85	41.83	1925.00	20.69	41.83
EX-G	0.09	13.65	5.0	300.00	4.40%	0.26	19.37	650.00	4.60%	1.07	10.10	29.47	950.00	15.28	29.47
EX-H	0.09	28.13	5.0	300.00	4.90%	0.27	18.75	550.00	6.42%	1.27	7.24				
	0.09	28.13	5.0	300.00	4.50%	0.26	19.29	1245.00	5.08%	1.13	18.41	37.70	1545.00	18.58	37.70

Œ		DRE							tration-Pr	<u>oposed</u>	Joh No: 1	00.065			
	ENG	INEER	ING GRO	JUP	Calculated Date: Nov	-		iey			Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
					Checked I		_	У							
	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tra	avel Time ((tt)			(urbanized usins)	Final t _c
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	T t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
B1	0.45	3.33	15.0	86.00	4.02%	0.21	6.90	83.00	2.41%	2.33	0.59				
			20.0					825.00	1.00%	2.00	6.88	14.37	994.00	15.52	14.37
B2	0.45	2.55	15.0	22.00	3.20%	0.10	3.76	134.00	3.28%	2.72	0.82				
			20.0					490.00	4.41%	4.20	1.94	6.53	646.00	13.59	6.53
(B1-B2) DP-1	0.45	5.88	15.0	86.00	4.02%	0.21	6.90	83.00	2.41%	2.33	0.59				
			20.0					825.00	1.00%	2.00	6.88				
			20.0					85.00	2.06%	2.87	0.49				
			20.0					490.00	4.41%	4.20	1.94	16.81	1569.00	18.72	16.81
B3	0.45	1.55	15.0	20.00	3.00%	0.09	3.67	28.00	1.40%	1.77	0.26				
			20.0					580.00	1.39%	2.36	4.10				
			20.0					330.00	5.25%	4.58	1.20	9.23	958.00	15.32	9.23
(B4) DP-4	0.45	2.96	20.0	35.00	2.00%	0.11	5.55	1422.00	1.32%	2.30	10.31				
			20.0					518.00	4.23%	4.11	2.10				
			18" RCP					100.00	13.00%	11.89	0.08	18.04	2075.00	21.53	18.04
C1	0.45	1.56	15.0	57.00	5.26%	0.18	5.14	90.00	2.22%	2.23	0.67				
			20.0					447.00	2.53%	3.18	2.34	8.15	594.00	13.30	8.15
C2	0.45	1.89	7.0	27.00	25.00%	0.21	2.11	58.00	3.45%	1.30	0.74				

		DRE			<u>Standard</u>	Form SF	-1. Time o	of Concen	tration-Pr	oposed					
E			ING GR	OUP	Calculate Date: <u>Nov</u> Checked	<u>. 23, 202</u> 1	<u>1</u>	-			Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)	_	Tra	avel Time ((tt)			(urbanized	Final t _c
BASIN or DESIGN	C 5	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
			15.0					55.00	2.58%	2.41	0.38				
			20.0					752.00	2.00%	2.83	4.43	7.67	892.00	14.96	7.67
(C1-C2) DP-6	0.45	3.45	15.0	57.00	5.26%	0.18	5.14	90.00	2.22%	2.23	0.67				
			20.0					447.00	2.53%	3.18	2.34				
			20.0					760.00	2.00%	2.83	4.48	12.63	1354.00	17.52	12.63
(C3) DP-7	0.45	3.22	15.0	77.00	2.00%	0.16	8.22	54.00							
			20.0					874.00	1.83%	2.71	5.38	14.03	1005.00	15.58	14.03
C4	0.45	4.57	20.0	100.00	2.00%	0.18	9.37	1540.00	1.71%	2.62	9.81	19.19	1640.00	19.11	19.11
(C1-C4) DP-8	0.45	11.24	15.0	57.00	5.26%	0.18	5.14	90.00	2.22%	2.23	0.67				
			20.0					447.00	2.53%	3.18	2.34				
			20.0					760.00	2.00%	2.83	4.48				
			20.0					1208.00	1.93%	2.78	7.25	19.88	2562.00	24.23	19.88
C5	0.45	1.68	20.0	20.00	2.00%	0.08	4.19	1220.00	3.55%	3.77	5.40	9.59	1240.00	16.89	9.59
C6	0.45	3.45	7.0	50.00	2.00%	0.13	6.63	28.00	25.00%	3.50	0.13				
			7.0					110.00	4.45%	1.48	1.24				
			20.0					1050.00	1.10%	2.10	8.34	16.35	1238.00	16.88	16.35
(C5-C6) DP-9	0.45	5.13	20.0	100.00	2.00%	0.18	9.37	1540.00	1.71%	2.62	9.81	19.19	1640.00	19.11	19.11
(C1-C6) DP-10	0.45	16.37	15.0	57.00	5.26%	0.18	5.14	90.00	2.22%	2.23	0.67				

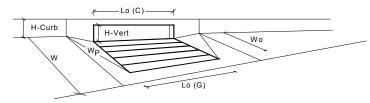
()			ING GR	OUP	Standard Calculated Date: <u>Nov</u> Checked	d By: <u>Leor</u> 2. 23, 2021	<u>nard Beas</u>	-	tration-Pr	<u>oposed</u>	Job No: <u>1</u> Project: <u>H</u>		orson Ranch			
	Sub-Ba	sin Data		Ini	tial Overla			<u>y</u>	Tra	avel Time ((t t)			(urbanized	Final tc	
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)	
			20.0					447.00	2.53%	3.18	2.34					
			20.0					760.00	2.00%	2.83	4.48					
			20.0					1208.00	1.93%	2.78	7.25	19.88	2562.00	24.23	19.88	
(D1) DP-13	0.45	1.98	15.0	99.00	9.09%	0.29	5.65	91.00	2.20%	2.22	0.68					
			20.0					340.00	1.03%	2.03	2.79	9.12	530.00	12.94	9.12	
(D2) DP-14	0.45	3.53	20.0	54.00	3.28%	0.15	5.85	823.00								
D1.3	0.75	0.88	20.0	33.00	2.00%	0.19	2.90	828.00	3.68%	3.84	3.60	6.50	861.00	14.78	6.50	
D1.4	0.45	1.92	20.0	50.00	2.00%	0.13	6.63	887.00	3.17%	3.56	4.15	10.78	937.00	15.21	10.78	
(D1-D4) DP-47	0.45	8.31	20.0	54.00	3.28%	0.15	5.85	823.00	1.53%	2.47	5.54					
			18" RCP					55.00	1.00%	7.20	0.13	11.52	932.00	15.18	11.52	
D1.5	0.21	3.37	20.0	96.00	6.25%	0.19	8.62	505.00	4.02%	4.01	2.10	10.72	601.00	13.34	10.72	
	0.21	3.37	20.0	96.00	6.25%	0.19	8.62	505.00	4.02%	4.01	2.10	10.72	601.00	13.34	10.72	
OS-E1.1	0.09	9.96	7.0	300.00	2.10%	0.20	24.82	750.00	2.86%	1.18	10.56	35.38	1050.00	15.83	35.38	
E1.2 (DP-15)	0.45	3.07	20.0	38.00	2.00%	0.11	5.78	398.00	3.52%	3.75	1.77					
			20.0					810.00	1.25%	2.24	6.04					
			20.0					508.00	2.72%	3.30	2.57	16.15	1754.00	19.74	16.15	

Œ			ING GR	OUP	Calculate	d By: <u>Leor</u>	nard Beas		tration-Pr	<u>oposed</u>	Job No: <u>1</u>		un an Dan ak		
						<u>/. 23, 2021</u> By: <u>Leona</u>	_				Project: <u>H</u>	lliside at Lo	orson Ranch		
	Sub-Ba	sin Data		Ini		nd Time (<u>y</u>	Tra	avel Time ((t t)			(urbanized	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
E1.3 (DP-16)	0.15	6.39	7.0	100.00	2.35%	0.13	12.99	780.00	3.87%	1.38	9.44				
			20.0					611.00	2.86%	3.38	3.01	25.44	1491.00	18.28	18.28
E1.4 (DP-17)	0.15	2.07	7.0	100.00	3.17%	0.14	11.76	127.00	3.52%	1.31	1.61				
			7.0					30.00	12.47%	2.47	0.20				
			20.0					527.00	2.74%	3.31	2.65	16.23	784.00	14.36	14.36
OS-E2.1	0.09	21.39	7.0	300.00	4.82%	0.27	18.85	795.00	2.11%	1.02	13.03				
			15.0					160.00	2.11%	2.18	1.22	33.11	1255.00	16.97	33.11
E2.2	0.15	3.80	7.0	100.00	2.70%	0.13	12.40	653.00	4.74%	1.52	7.14				
			15.0					245.00	2.45%	2.35	1.74	21.28	998.00	15.54	15.54
OS-E1.1-E1.2 DP-18	0.11	25.19	7.0	100.00	2.35%	0.12	13.49	780.00	3.87%	1.38	9.44				
			20.0					611.00	2.86%	3.38	3.01	25.94	1491.00	18.28	18.28
E3	0.45	3.89	20.0	55.00	2.42%	0.14	6.53	767.00	1.86%	2.73	4.69	11.21	822.00	14.57	11.21
E4	0.45	1.59	15.0	37.00	2.00%	0.11	5.70	45.00	2.20%	2.22	0.34				
			20.0					632.00	2.71%	3.29	3.20	9.24	714.00	13.97	9.24
(E3-E4) DP-19	0.45	5.48	20.0	55.00	2.42%	0.14	6.53	767.00	1.86%	2.73	4.69				
			20.0					265.00	1.00%	2.00	2.21	13.42	1087.00	16.04	13.42
(E5) DP-20	0.45	7.27	15.0	110.00	2.10%	0.19	9.67	30.00	2.12%	2.18	0.23				
			20.0					753.00	3.00%	3.46	3.62	13.52	893.00	14.96	13.52

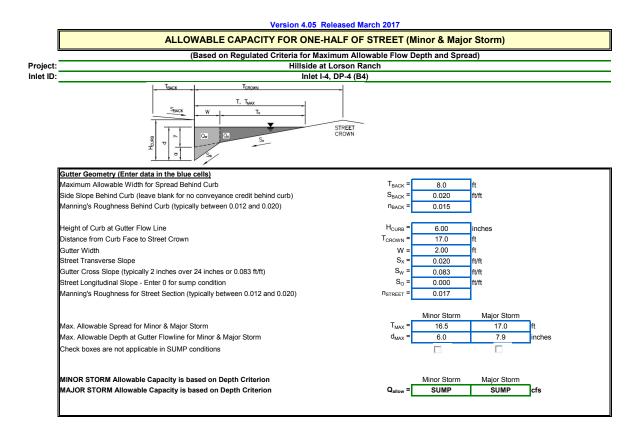

Œ) CC ENG		ING GRO	DUP	Calculate	l Form SF d By: <u>Leor</u> /. 23, 202 ²	nard Beas	of Concent ley	ration-Pr		Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
	Sub-Ba	sin Data		Ini		By: <u>Leona</u> Ind Time (<u>y</u>	Tra	avel Time ((tt)			(urbanized	Final tc
BASIN or DESIGN	C ₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tc Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
(E3-E5) DP-20	0.45	12.75	20.0	55.00	2.42%	0.14	6.53	1028.00	1.86%	2.73	6.28				
			20.0					390.00	2.77%	3.33	1.95				
			18" RCP					400.00	3.00%	10.30	0.65	15.41	1873.00	20.41	15.41
E1.2,E3-E5 DP-21	0.45	15.82	20.0	38.00	2.00%	0.11	5.78	398.00	3.52%	3.75	1.77				
			20.0					810.00	1.25%	2.24	6.04				
			20.0					508.00	2.72%	3.30	2.57	16.15	1754.00	19.74	16.15
(E6) DP-23	0.45	1.73	15.0	91.00	2.86%	0.19	7.94	55.00	2.00%	2.12	0.43				
			20.0					1276.00	2.82%	3.36	6.33	14.71	1422.00	17.90	14.71
OS-E1.1-E1.4, E3 - E6	0.45	35.97	20.0	38.00	2.00%	0.11	5.78	398.00	3.52%	3.75	1.77				
			20.0					810.00	1.25%	2.24	6.04				
			20.0					508.00	2.72%	3.30	2.57				
			24" RCP					1228.00	2.72%	11.88	1.72	17.87	2982.00	26.57	17.87
(E7)	0.45	5.48	15.0	80.00	2.10%	0.16	8.25	160.00	3.70%	2.89	0.92				
DP-25			20.0					886.00	3.14%	3.54	4.17	13.34	1126.00	16.26	13.34
(E8) DP-26	0.45	4.70	20.0	80.00	2.00%	0.16	8.38	850.00	3.46%	3.72	3.81	12.19	930.00	15.17	12.19
(E7-E8) DP-27	0.45	10.18	20.0	35.00	2.00%	0.11	5.55	885.00	3.46%	3.72	3.96	9.51	920.00	15.11	9.51
(E9) DP-28	0.45	1.37	15.0	80.00	2.10%	0.16	8.25	140.00	3.69%	2.88	0.81				

Œ	CC ENG	DRE	ING GR	OUP	Standard Calculated Date: <u>Nov</u> Checked	d By: <u>Leor</u> 7. 23, 202 <i>1</i>	<u>nard Beas</u> 1	-	tration-Pr		Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
	Sub-Ba	sin Data		Ini	tial Overla			<u>,</u>	Tr	avel Time ((t t)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
			20.0					260.00	3.21%	3.58	1.21	10.27	480.00	12.67	10.27
(E10) DP-29	0.45	4.33	15.0	70.00	2.10%	0.15	7.72	90.00	3.29%	2.72	0.55				
			20.0					910.00	2.43%	3.12	4.86	13.13	1070.00	15.94	13.13
(E7-E10) DP-30	0.45	15.88	15.0	80.00	2.10%	0.16	8.25	140.00	3.29%	2.72	0.86				
			20.0					910.00	2.43%	3.12	4.86	13.97	1130.00	16.28	13.97
OS-E1.1-E1.3, E3-E10	0.45	49.78	20.0	38.00	2.00%	0.11	5.78	398.00	3.52%	3.75	1.77				
			20.0					810.00	1.25%	2.24	6.04				
			20.0					508.00	2.72%	3.30	2.57				
			24" RCP					1228.00	2.72%	11.88	1.72				
			36" RCP					252.00	3.20%	12.47	0.34	18.21	3234.00	27.97	18.21
(E11) DP32	0.45	2.97	15.0	80.00	3.88%	0.20	6.73	125.00	2.64%	2.44	0.85				
			20.0					693.00	2.24%	2.99	3.86	11.45	898.00	14.99	11.45
OS-E1.1, E1.2, E3-E11	0.45	52.75	20.0	38.00	2.60%	0.12	5.30	321.00	3.54%	3.76	1.42				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81				
			20.0					1225.00	2.61%	3.23	6.32				
			24" RCP					246.00	3.00%	12.47	0.33				
			36" RCP					400.00	1.68%	12.23	0.55	20.00	3369.00	28.72	20.00

Œ			ING GRO	DUP	<u>Standard</u> Calculated Date: <u>Nov</u> Checked	d By: <u>Leor</u> 7. 23, 2021	<u>nard Beas</u> 1	-	tration-Pr		Job No: <u>1</u> Project: <u>H</u>		orson Ranch		
ç	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tra	avel Time ((t t)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
(E12) DP34	0.45	4.76	15.0	80.00	2.20%	0.16	8.12	80.00	2.00%	2.12	0.63				
			20.0					1330.00	2.32%	3.05	7.28	16.03	1490.00	18.28	16.03
OS-E1.1, E1.2, E3-E12	0.45	57.51	20.0	38.00	2.60%	0.12	5.30	321.00	3.54%	3.76	1.42				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81				
			20.0					1225.00	2.61%	3.23	6.32				
			24" RCP					246.00	3.00%	12.47	0.33				
			36" RCP					450.00	1.68%	12.23	0.61	20.06	3419.00	28.99	20.06
(E13) DP36	0.45	0.72	7.0	68.00	5.15%	0.20	5.65	120.00	2.83%	1.18	1.70				
			20.0					150.00	2.73%	3.30	0.76	8.11	338.00	11.88	8.11
OS-E1.1, E1.2, E3-E13	0.45	58.23	20.0	38.00	2.60%	0.12	5.30	321.00	3.54%	3.76	1.42				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81				
			20.0					1225.00	2.61%	3.23	6.32				
			24" RCP					246.00	3.00%	12.47	0.33				
			36" RCP					450.00	1.68%	12.23	0.61				
			48" RCP					72.00	2.00%	16.17	0.07	20.14	3491.00	29.39	20.14

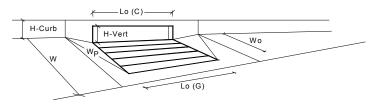

) <u>CC</u> ENG		ING GR	OUP	Standard Form SF-1. Time of Concentration-ProposedCalculated By: Leonard BeasleyJob No: 100.065Date: Nov. 23, 2021Project: Hillside at Lorson RanchChecked By: Leonard BeasleyFroject: Hillside at Lorson Ranch										
Sub-Basin Data In				tial Overla	nd Time (ti)	Travel Time (tt)					tc Check	Final t _c		
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
(E14) DP39	0.45	2.58	20.0	90.00	3.56%	0.20	7.35	715.00	3.23%	3.59	3.32	10.66	805.00	14.47	10.66
E15	0.16	7.06	7.0	100.00	2.00%	0.12	13.55	598.00	5.35%	1.62	6.16				
			7.0					43.00	33.33%	4.04	0.18				
			7.0					140.00	3.57%	1.32	1.76				
			20.0					208.00	0.50%	1.41	2.45	24.10	1089.00	16.05	16.05
E16	0.90	0.76	20.0	18.00	2.00%	0.25	1.22	431.00	4.52%	4.25	1.69	2.91	449.00	12.49	2.91
OS-E1.1- E16	0.42	69.94	20.0	38.00	2.60%	0.11	5.52	321.00	3.54%	3.76	1.42				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81				
			20.0					1225.00	2.61%	3.23	6.32				
			24" RCP					246.00	3.00%	12.47	0.33				
			36" RCP					450.00	1.68%	12.23	0.61				
			48" RCP					72.00	2.00%	16.17	0.07				
			54"RCP					181.00	1.12%	13.09	0.23	20.59	3672.00	30.40	20.59

		DRE			Standard	Form SF	-1. Time o	of Concen	tration-Pr	oposed					
	ENG	INEER	ING GR		Calculated By: <u>Leonard Beasley</u> Date: <u>Nov. 23, 2021</u> Checked By: Leonard Beasley						Job No: <u>100.065</u> Project: <u>Hillside at Lorson Ranch</u>				
	Sub-Ba	sin Data				nd Time (†		Travel Time (tt)				tc Check (urbanized Basins)		Final tc	
BASIN or DESIGN	or C_5 (A) Convey.			LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tc Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
F	0.45	4.46	7.0	50.00	7.00%	0.19	4.38	83.00	1.20%	0.77	1.80				
			5.0					93.00	1.08%	0.52	2.98				
			5.0					155.00	9.68%	1.56	1.66	10.83	381.00	12.12	10.83
(G1) DP-41	0.45	4.76	15.0	85.00	4.12%	0.21	6.80	82.00	2.44%	2.34	0.58				
			20.0					736.00	1.00%	2.00	6.13	13.52	903.00	15.02	13.52
G2	0.15	4.10	7.0	65.00	2.00%	0.10	11.04	48.00	2.08%	1.01	0.79				
			5.0					22.00	9.09%	1.51	0.24				
			5.0					90.00	11.11%	1.67	0.90	12.98	225.00	11.25	11.25
H1	0.16	7.44	7.0	100.00	4.40%	0.16	10.44	236.00	5.34%	1.62	2.43				
			7.0					22.00	22.73%	3.34	0.11				
			5.0					245.00	7.06%	1.33	3.07	16.06	603.00	13.35	13.35

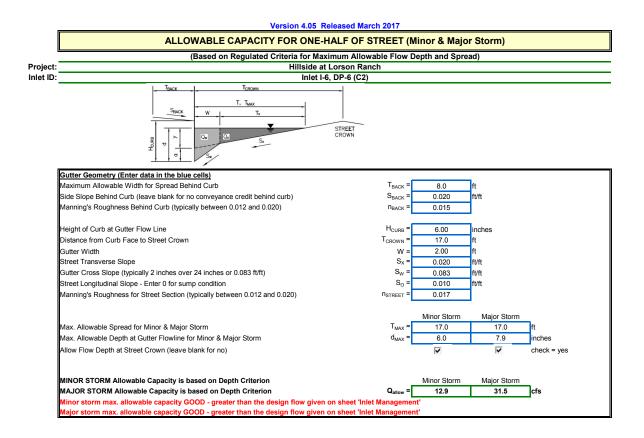


INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

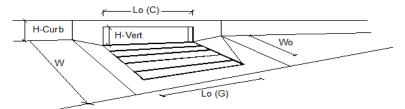


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.8	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.78	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.4	25.4	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	11.3	29.0	cfs

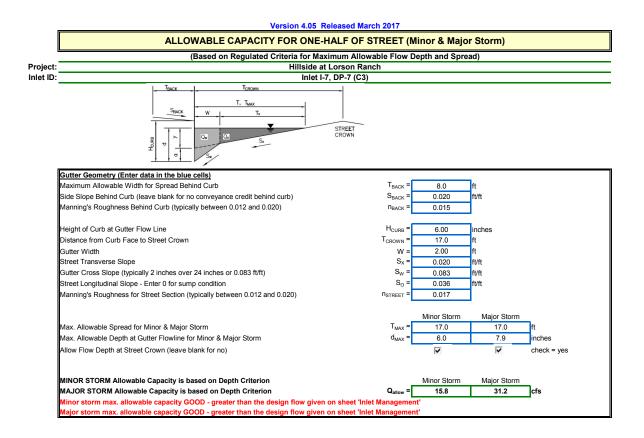


INLET IN A SUMP OR SAG LOCATION

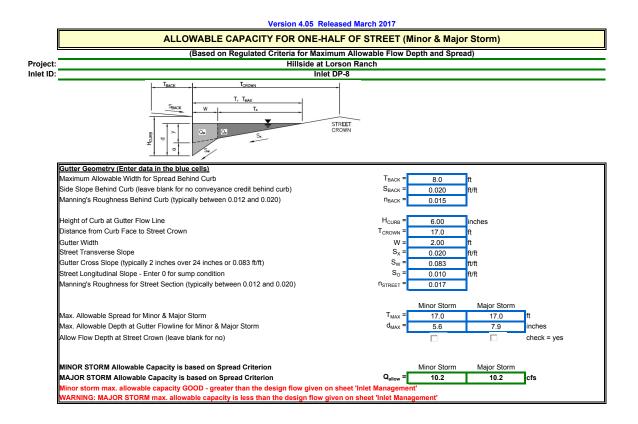
Version 4.05 Released March 2017

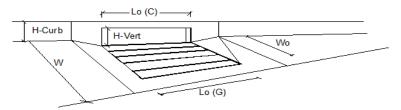


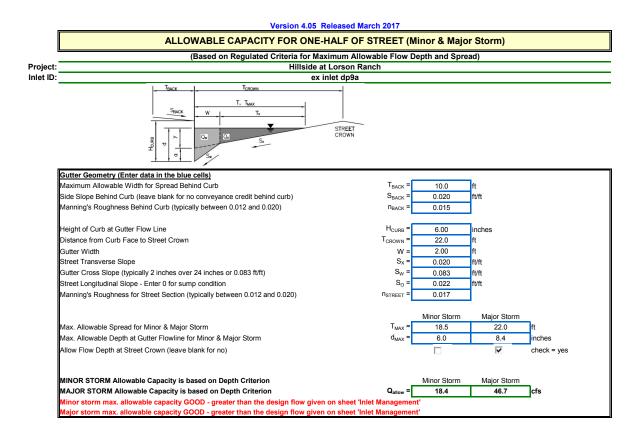
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	7.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.23	0.43	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.68	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.85	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.3	13.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.3	13.1	cfs

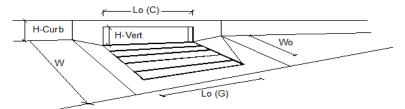


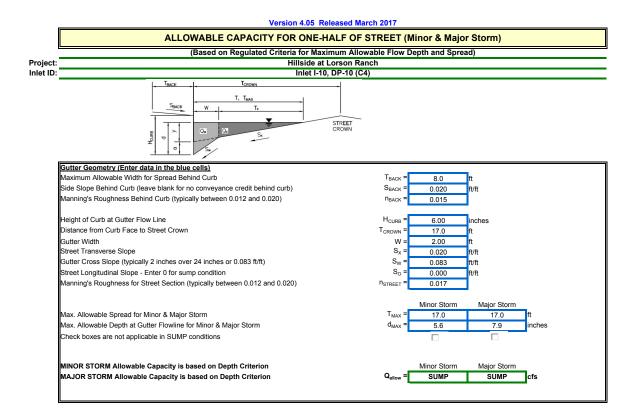
INLET ON A CONTINUOUS GRADE

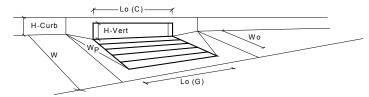

Design Information (Input)	ì	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.9	10.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%

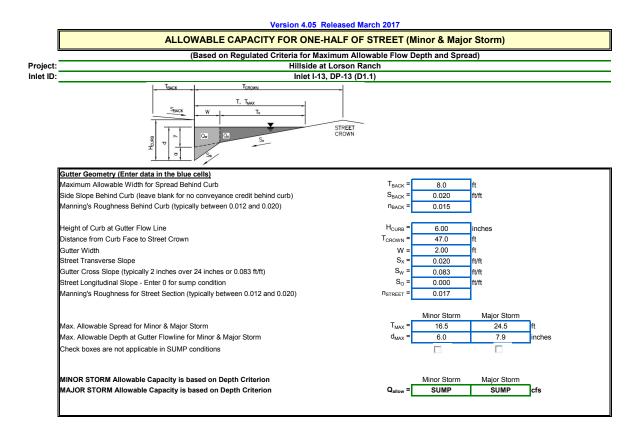


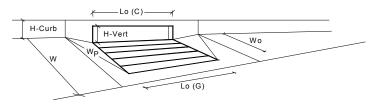

Design Information (Input)	Ĩ	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.2	12.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

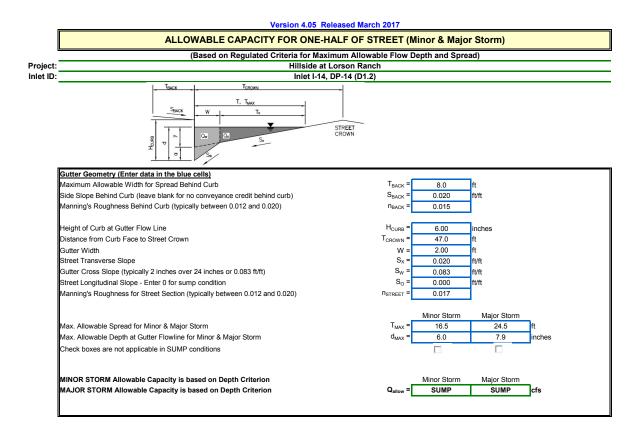

Version 4.05 Released March 2017

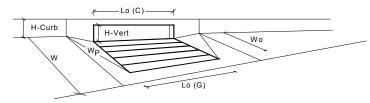

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.8	4.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.0	11.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	58	29	%

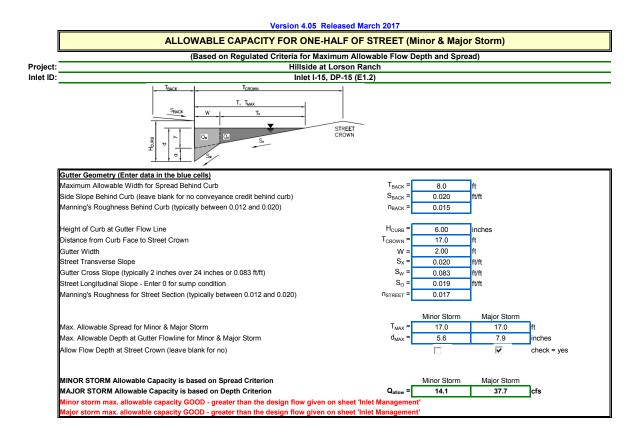




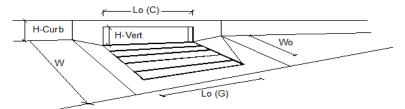

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.2	5.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	84	%

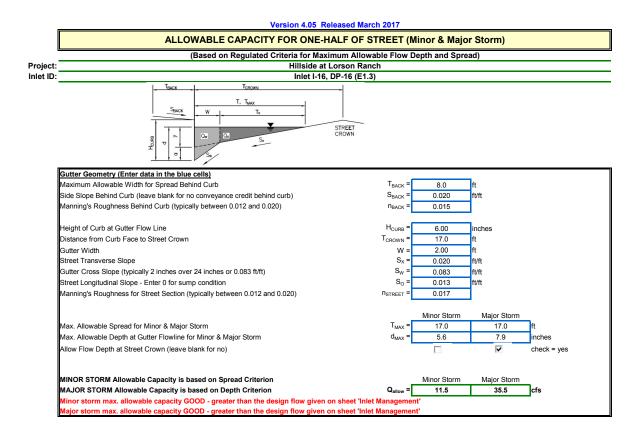


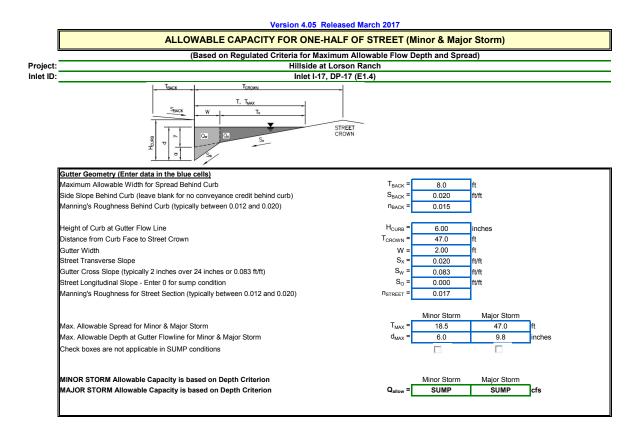

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	6.70	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	30.00	30.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.39	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.52	0.63	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.83	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.8	24.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.3	23.9	cfs

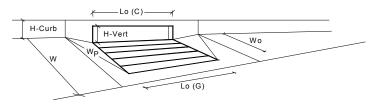


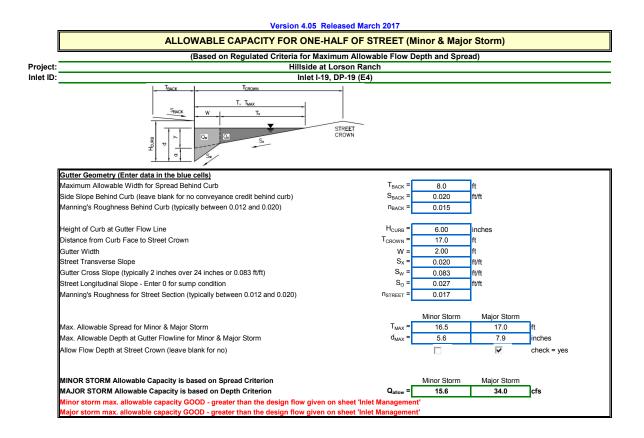
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.2	7.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.27	0.45	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.66	0.95	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.8	8.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.8	8.4	cfs



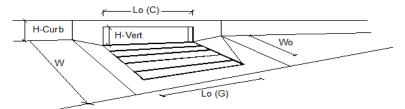

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.4	7.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.45	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.51	0.70	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.90	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	13.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.2	13.8	cfs

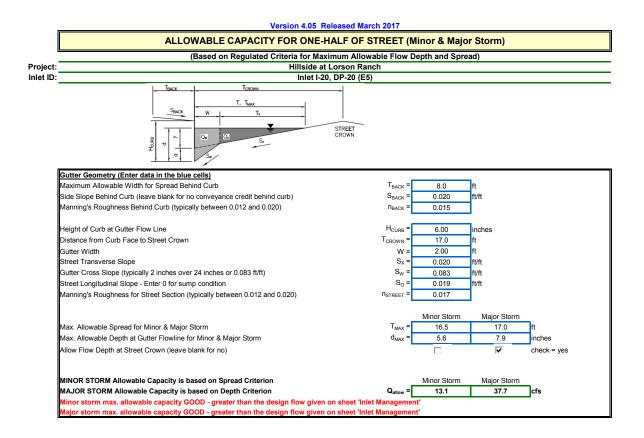

Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.8	4.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.9	6.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	60	38	%

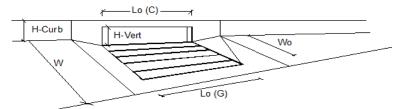


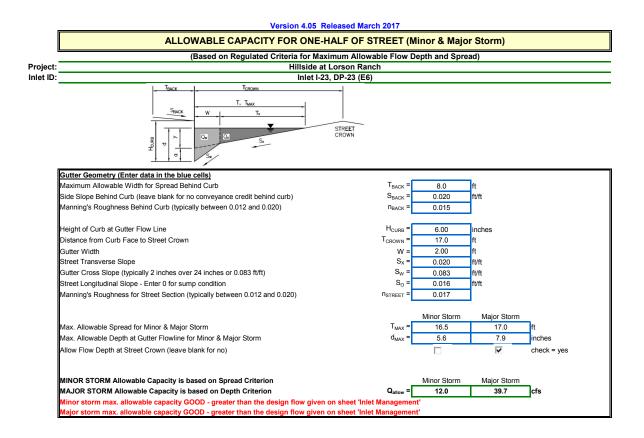


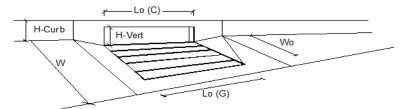
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	25.00	25.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	7.0	26.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	78	%

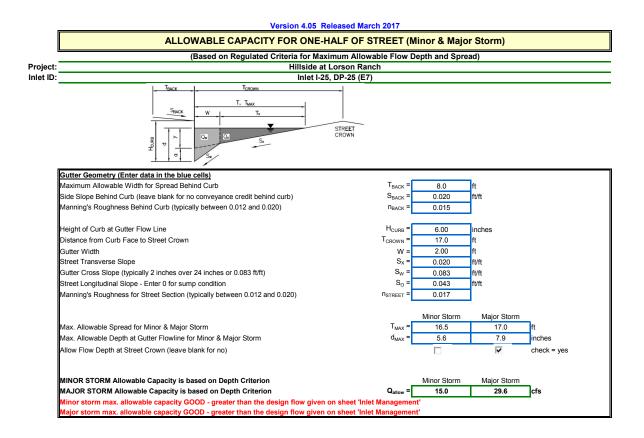


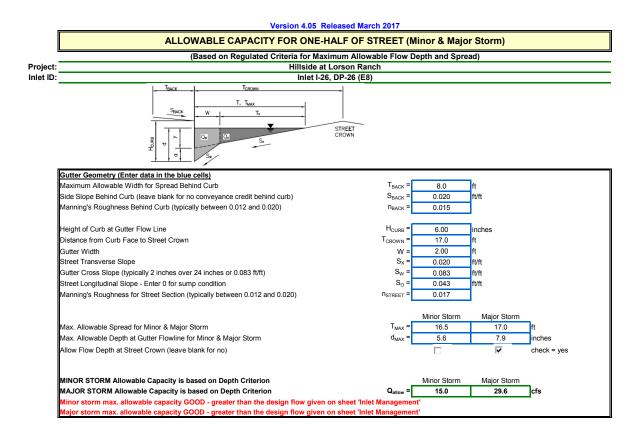

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.3	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.10	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.31	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.71	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	1.1	15.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.1	12.4	cfs

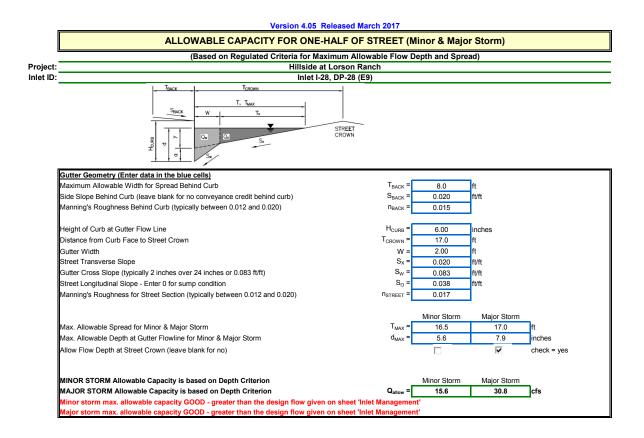


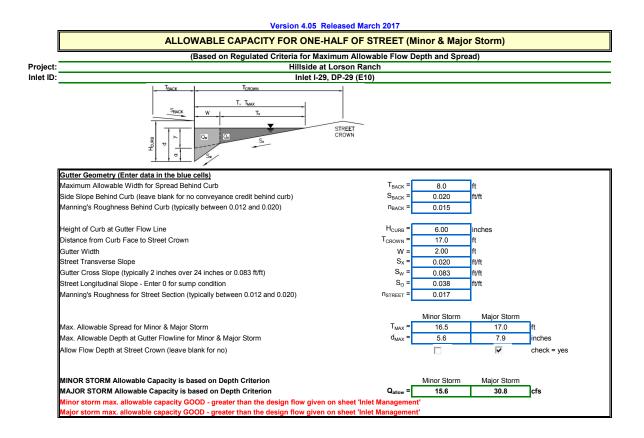

Design Information (Input)	ī	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.7	14.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.4	5.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	96	71	%

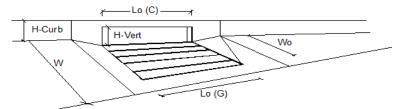


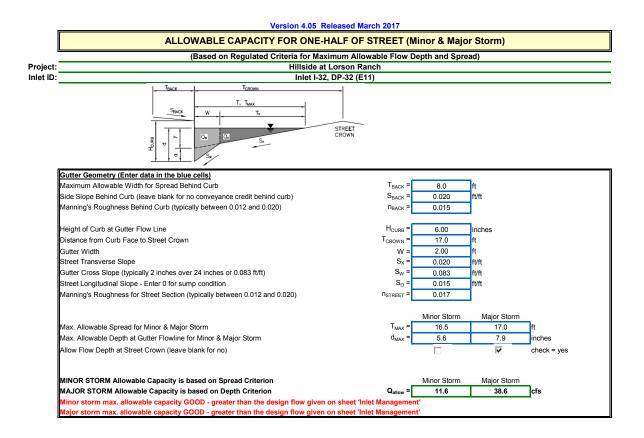

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	12.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	4.4	20.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	65	38	%


Design Information (Input)			MINOR	MAJOR	
Type of Inlet		Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression	on 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)		L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter W	idth)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value	= 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical mi	n. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	7.2	16.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		Q _b =	0.0	10.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	62	%

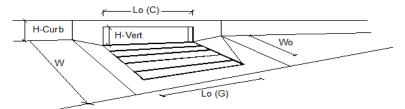

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.9	10.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.2	9.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	76	51	%

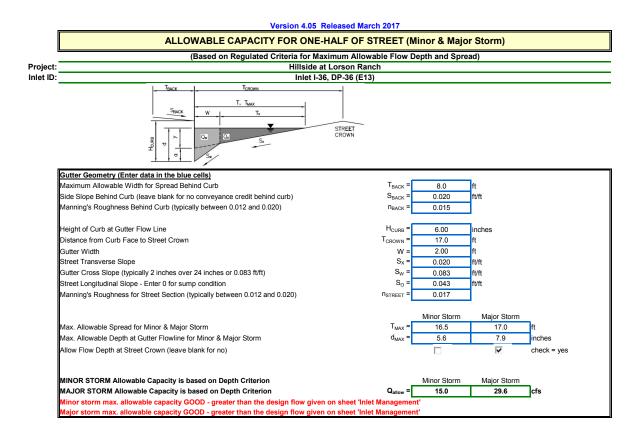

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	13.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	75	%

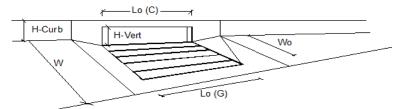



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.5	9.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	6.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	58	%

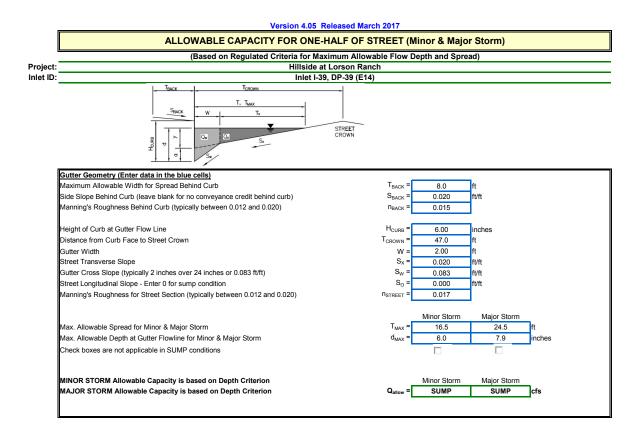
Design Information (Input)	Ĩ	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.3	14.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	70	%



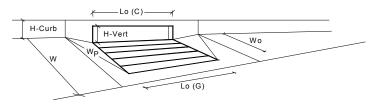

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	25.00	25.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.4	23.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	86	%



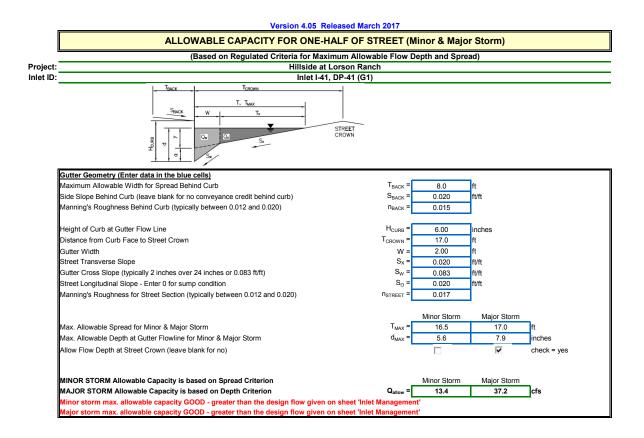
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	25.00	25.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.3	20.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	93	%



INLET ON A CONTINUOUS GRADE



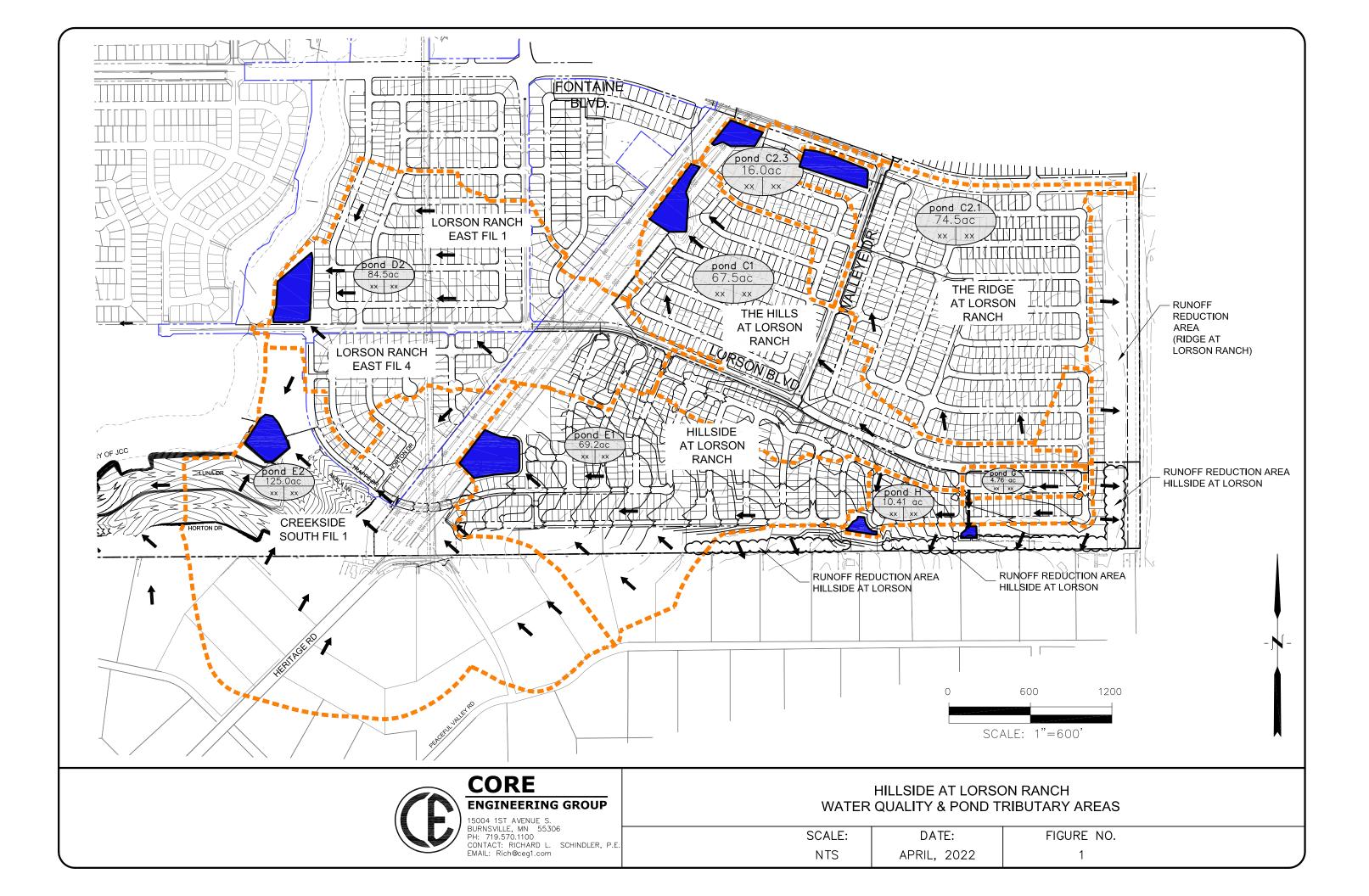
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.4	6.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	84	%

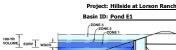


INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.9	6.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.24	0.38	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.46	0.62	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.86	0.96	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.7	10.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.7	10.3	cfs


INLET ON A CONTINUOUS GRADE


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.8	13.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	4.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	75	%

APPENDIX D – POND AND ROUTING CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

-100-YEAR ORIFICE

ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

Watershed Information

atersneu information		
Selected BMP Type =	EDB	
Watershed Area =	69.20	acres
Watershed Length =	3,000	ft
Watershed Length to Centroid =	1,200	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	52.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graphi Floceuc	ie.
Water Quality Capture Volume (WQCV) =	1.221	acre-feet
Excess Urban Runoff Volume (EURV) =	3.859	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.655	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	5.184	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	6.521	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	8.294	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	9.743	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	11.572	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	15.305	acre-feet
Approximate 2-yr Detention Volume =	2.923	acre-feet
Approximate 5-yr Detention Volume =	3.994	acre-feet
Approximate 10-yr Detention Volume =	5.258	acre-feet
Approximate 25-yr Detention Volume =	5.738	acre-feet
Approximate 50-yr Detention Volume =	5.995	acre-feet
Approximate 100-yr Detention Volume =	6.660	acre-feet

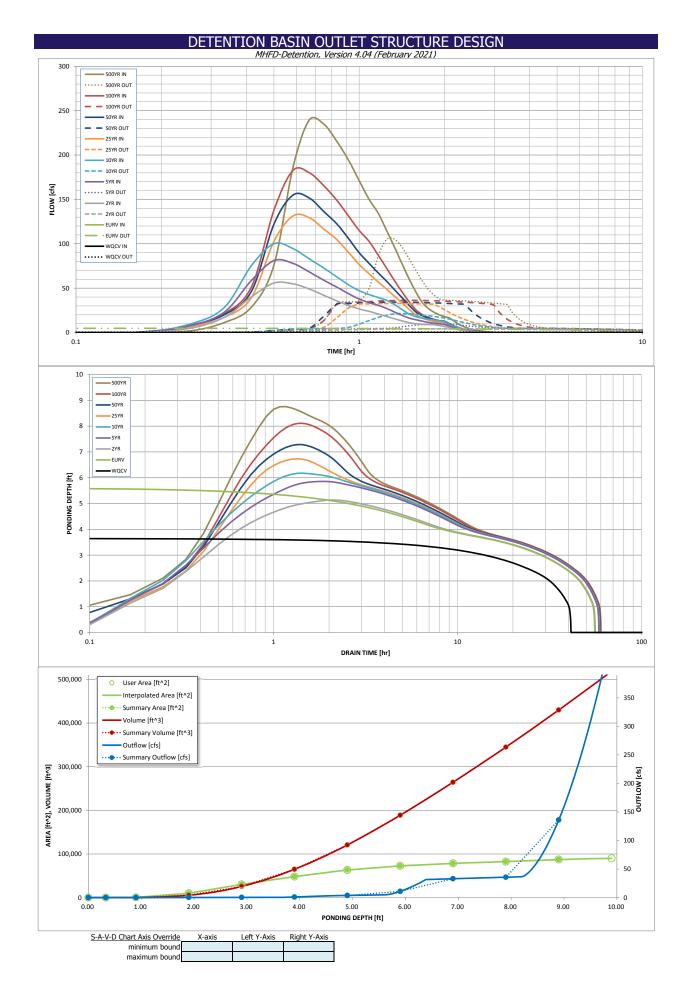
Define Zones a	and Basin	Geometry
Dennie Lones e		ocomeay.

Denne Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.221	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.638	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.412	acre-feet
Total Detention Basin Volume =	7.271	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft 2
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$		ft
Area of Basin Floor (A _{FLOOR}) =		ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin $(W_{MAIN}) =$		ft
Area of Main Basin $(A_{MAIN}) =$	user	ft 2
Volume of Main Basin (V _{MAIN}) =	user	ft 3

Calculated Total Basin Volume (V_{total}) = user acre-feet

3		Depth Increment =	0.20	ft							
				Optional				Optional		101	
tion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
		Top of Micropool		0.00				48	0.001	(10)	(ac it)
		5728.43		0.33				48	0.001	16	0.000
		5729		0.90	-			679	0.016	223	0.005
		5730		1.90	-			9,926	0.228	5,525	0.127
		5731		2.90	-		-	30,276	0.695	25,626	0.588
		5732	-	3.90	-		-	48,238	1.107	64,883	1.490
		5733		4.90	-		-	63,363	1.455	120,684	2.771
		5734		5.90			-	72,715	1.669	188,723	4.332
		5735		6.90	-			78,459	1.801	264,310	6.068
		5736		7.90	-		-	82,532	1.895	344,805	7.916
		5737		8.90			-	87,374	2.006	429,758	9.866
		5738		9.90				90,000	2.066	518,445	11.902
					-		-				
Optional Use	er Overrides				-		-				
	acre-feet										
	acre-feet				-		-				
1.19	inches						-				
1.50	inches										
1.75	inches				-						
2.00	inches										
2.25	inches										
2.52	inches										
	inches				-						
	-				-		-			1	
										1	
					-		-				
					-		-				
					-						
					-						
							-				
					-		-				
					-		-				┝───┤
					-		-				
					-		-				
					-		-				
					-		-				
					-						
					-						
					-		-				
					-						
					-						
			-		-		-				
					-						
					-		-				
					-		-				
			-		-		-				
					-		-				
					-		-				
											┝───┤
					-		-				
					-		-				
					-		-				
					1 1		1 1				
					-		-				
					-		-				
							-				
					-						
					1 1		1 1				
					-		-				
										-	
					-		-				
					1 1		1 1				
					-		-				
					-		-				
					-		-				
					-		-				



micropool=5728.10

Depth Increment = 0.20 ft

DETENTION BASIN OUTLET STRUCTURE DESIGN HFD-Detention, Version 4.04 (February 2021 Project: Hillside at Lorson Ranch Basin ID: Pond E1 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Orifice Plate Zone 1 (WQCV) 3.65 1.221 Zone 2 (FURV) 2.638 Rectangular Orifice 5.62 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 7.56 3.412 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 7.271 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 2.375E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width N/A feet 3.65 Orifice Plate: Orifice Vertical Spacing 14.60 inches Elliptical Slot Centroid N/A feet ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 3.42 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.22 2.43 Orifice Area (sq. inches) 3.42 3.42 3.42 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.65 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.65 N/A Depth at top of Zone using Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid 5.62 N/A 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 15.67 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.62 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 5.62 Overflow Weir Slope Length Overflow Weir Front Edge Length 6.00 N/A feet 6.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 8.92 N/A Horiz. Length of Weir Sides N/A feet Overflow Grate Open Area w/o Debris 25.06 N/A 6.00 Overflow Grate Type : Type C Grate N/A Overflow Grate Open Area w/ Debris = 12.53 N/A N/A Debris Clogging % 50% % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area 2.81 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 24.00 N/A inches Outlet Orifice Centroid 0.90 N/A Restrictor Plate Height Above Pipe Invert = 20.10 inches Half-Central Angle of Restrictor Plate on Pipe = 2.31 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 8.20 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.02 feet Spillway Crest Length = 50.00 feet Stage at Top of Freeboard = 9.72 feet H:V Basin Area at Top of Freeboard Spillway End Slopes 10.00 2.05 acres Freeboard above Max Water Surface = 0.50 Basin Volume at Top of Freeboard = 11.51 feet acre-ft micropool=5728.10=stage 0 Routed Hydrograph Results in the Inflow Hyp ns table (Columns W through AF erride the c ault CLIHP hu nhs and i na new values ff volumes hv 100 Year Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 9.743 CUHP Runoff Volume (acre-ft) 1.221 3.859 3.655 5.184 6.521 8.294 11.572 6.521 Inflow Hydrograph Volume (acre-ft) 9.743 N/A N/A 3.655 5.184 8.294 11.572 CUHP Predevelopment Peak Q (cfs) N/A N/A 20.1 30.5 54.6 68.6 87.1 7.2 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.44 0.99 Predevelopment Unit Peak Flow, g (cfs/acre) 0.10 0.29 0.79 1.26 N/A N/A Peak Inflow Q (cfs) N/A N/A 55.7 81.0 100.0 131.3 154.8 182.6 4.8 4.2 32.7 Peak Outflow Q (cfs) 0.5 9.6 21.4 34.2 36.3 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.5 0.7 0.6 0.5 0.4 Structure Controlling Flow Vertical Orifice 1 rflow Weir Vertical Orifice erflow Weir erflow Weir 1 Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.2 0.6 1.1 1.1 1.2 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 44 Time to Drain 97% of Inflow Volume (hours) 48 48 49 47 45 42 Time to Drain 99% of Inflow Volume (hours) 40 52 53 54 54 53 53 52 Maximum Ponding Depth (ft) 3.65 5.62 5.13 5.86 6.17 6.73 7.28 8.11 Area at Maximum Ponding Depth (acres) 1.00 1.70 1.78 1.84 <u>1.61</u> 3.873 1.50 3.111 1.66 <u>1.92</u> 8.297

Maximum Volume Stored (acre-ft)

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
5728.1	0.00	48	0.001	0	0.000	0.00	For best results, include the
5728.43	0.33	48	0.001	16	0.000	0.07	stages of all grade slope
5729	0.90	679	0.016	223	0.005	0.11	changes (e.g. ISV and Floor
5730	1.90	9,926	0.228	5,525	0.127	0.25	from the S-A-V table on Sheet 'Basin'.
5731	2.90	30,276	0.695	25,626	0.588	0.42	Sneet Basin'.
5732	3.90	48,238	1.107	64,883	1.490	1.00	Also include the inverts of a
5733	4.90	63,363	1.455	120,684	2.771	3.80	outlets (e.g. vertical orifice,
5734	5.90	72,715	1.669	188,723	4.332	10.91	overflow grate, and spillway
5735	6.90	78,459	1.801	264,310	6.068	33.13	where applicable).
5736	7.90	82,532	1.895	344,805	7.916	35.78	
5737	8.90	87,374	2.006	429,758	9.866	135.94	
						-	1
			-				1
							1
							1
							-
	-						
							-
			-				
							-
							-
							-
							-
	-						
	-						
	-						
	-						
	-						
	-						
	-						
							-
	1						
	-						
	-						
]
							-
							4
							4
							4
							1
			-				1
			-	1			1
							1

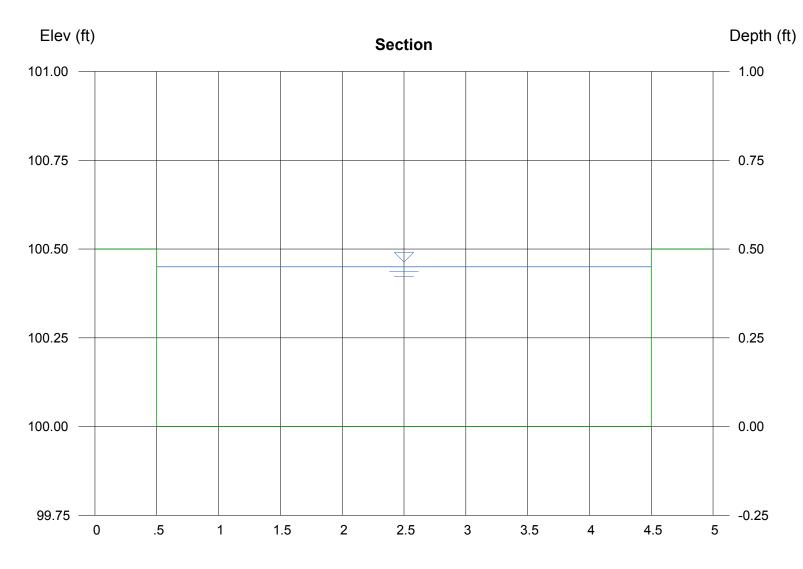
	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	R. Schindler	
Company: Date:	Core Engineering Group April 14, 2022	
Project:	Hillside at Lorson Ranch	
Location:	Pond E1 - WQ pond	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = 52.0 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.520
	Watershed Area	Area = 69.200 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
E) Design Con		Choose One Water Quality Capture Volume (WQCV)
(Select EUR	V when also designing for flood control)	Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
G) For Watersh	neds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft
	ty Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 1.220 ac-ft
	logic Soil Groups of Tributary Watershed	
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	HSG _B = %
iii) Percent	age of Watershed consisting of Type C/D Soils	HSG _{CID} =%
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * 1^{128} : EURV _B = 1.36 * 1^{108}	EURV _{DESIGN} =ac-f t
	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	es	
A) Basin Maxin	num Side Slopes	Z = 3.00 ft / ft
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
A) Describe me inflow location	eans of providing energy dissipation at concentrated ons:	
5. Forebay		
	ala Malazz	V
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = 0.037 ac-ft
B) Actual Foret	bay Volume	V _F = 0.038 ac-ft
C) Forebay Dep (D _F		$D_{\rm F} = 30.0$ in
D) Forebay Disc		
		0 - 193.60
	ed 100-year Peak Discharge	Q ₁₀₀ = 182.60 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	$Q_F = 3.65$ cfs
E) Forebay Disc	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 9.3 in

Pond E1-UD-BMP_v3.07, EDB

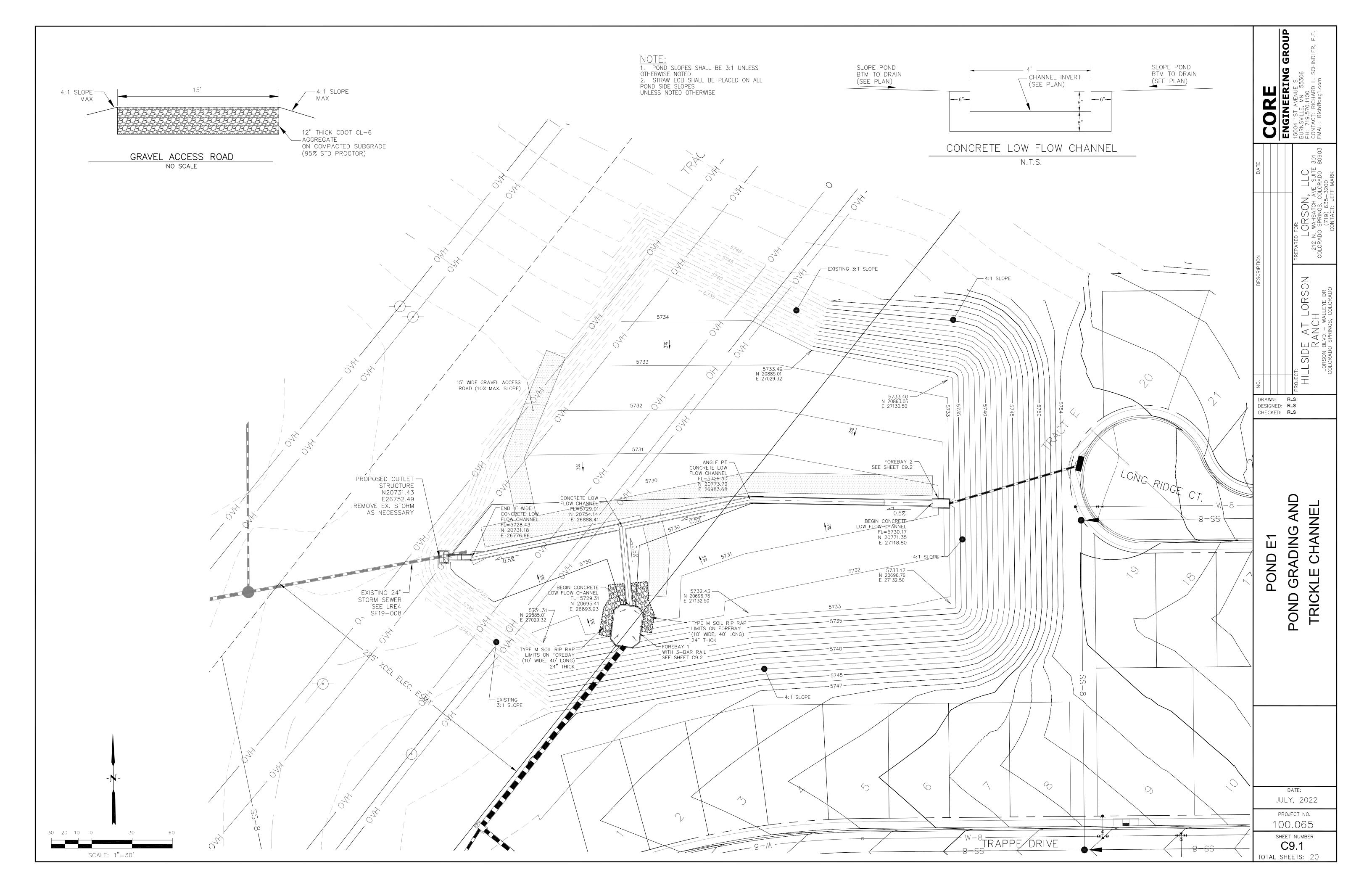
	Design Procedure Form:	Extended Detention Basin (EDB)
Designer	R. Schindler	Sheet 2 of 3
Designer: Company:	Core Engineering Group	
Date:	January 11, 2022	
Project:	Hillside at Lorson Ranch	
Location:	Pond E1 - WQ pond	
		Choose One
6. Trickle Channe		Concrete
 A) Type of Tric 	ckle Channel	O Soft Bottom
F) Slope of Trie	ckle Channel	S = 0.0050 ft / ft
7. Micropool and	Outlet Structure	
A) Depth of Mi	icropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
	ea of Micropool (10 ft ² minimum)	A _M = 48 sq ft
C) Outlet Type		
C) Outlet Type		Choose One
		Orifice Plate Other (Describe):
D) Smallest Di (Use UD-Deter	mension of Orifice Opening Based on Hydrograph Routing	D _{orffice} = 1.84 inches
E) Total Outlet	Area	A _{ct} = <u>10.26</u> square inches
8. Initial Surcharg	e Volume	
A) Depth of Ini	tial Surcharge Volume	$D_{IS} = 4$ in
(Minimum re	ecommended depth is 4 inches)	
	tial Surcharge Volume	V _{is} = 159 cu ft
(Minimum vo	olume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	V _s =16.0cu ft
9. Trash Rack		
A) Water Qual	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = 332 square inches
B) Type of Scre	een (If specifying an alternative to the materials recommended	Other (Please describe below)
	indicate "other" and enter the ratio of the total open are to the e for the material specified.)	
	Other (Y/N): Y	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water	Quality Screen Area (based on screen type)	A _{total} = 553 sq. in. Based on type 'Other' screen ratio
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 3.65 feet
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 71.8 inches
	ater Quality Screen Opening (W _{opening}) 2 inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

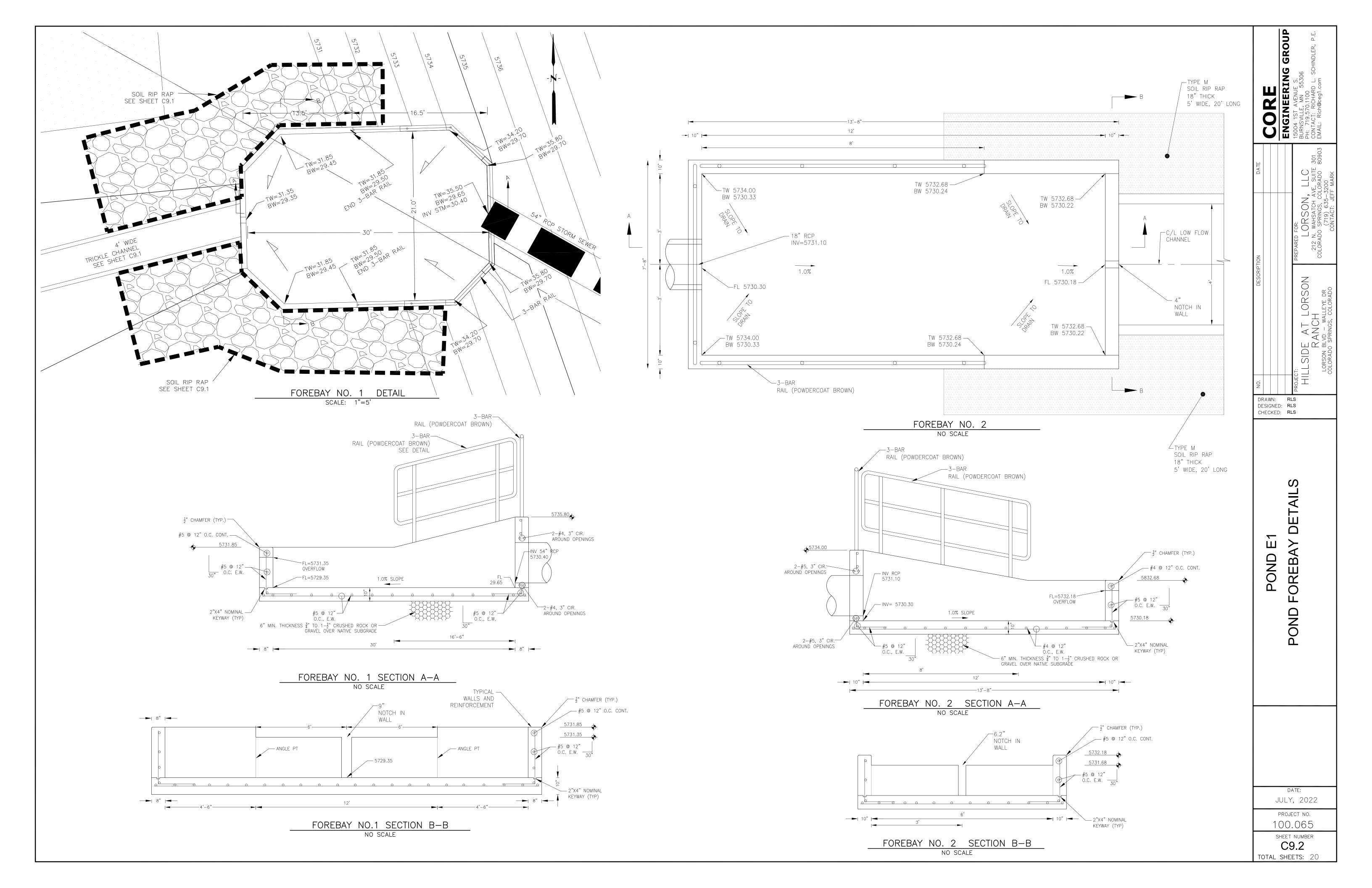
	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	R. Schindler Core Engineering Group January 11, 2022 Hillside at Lorson Ranch Pond E1 - WQ pond	Sheet 3 of 3
B) Slope of O	ankment imbankment protection for 100-year and greater overtopping: verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)	TRM added to emergency overflow. All of 100-year flows will enter outlet structure before entering emergency overflow. Ze = 4.00 ft / ft
11. Vegetation		Choose One O Irrigated Not Irrigated
12. Access A) Describe S	Sediment Removal Procedures	
Notes:		

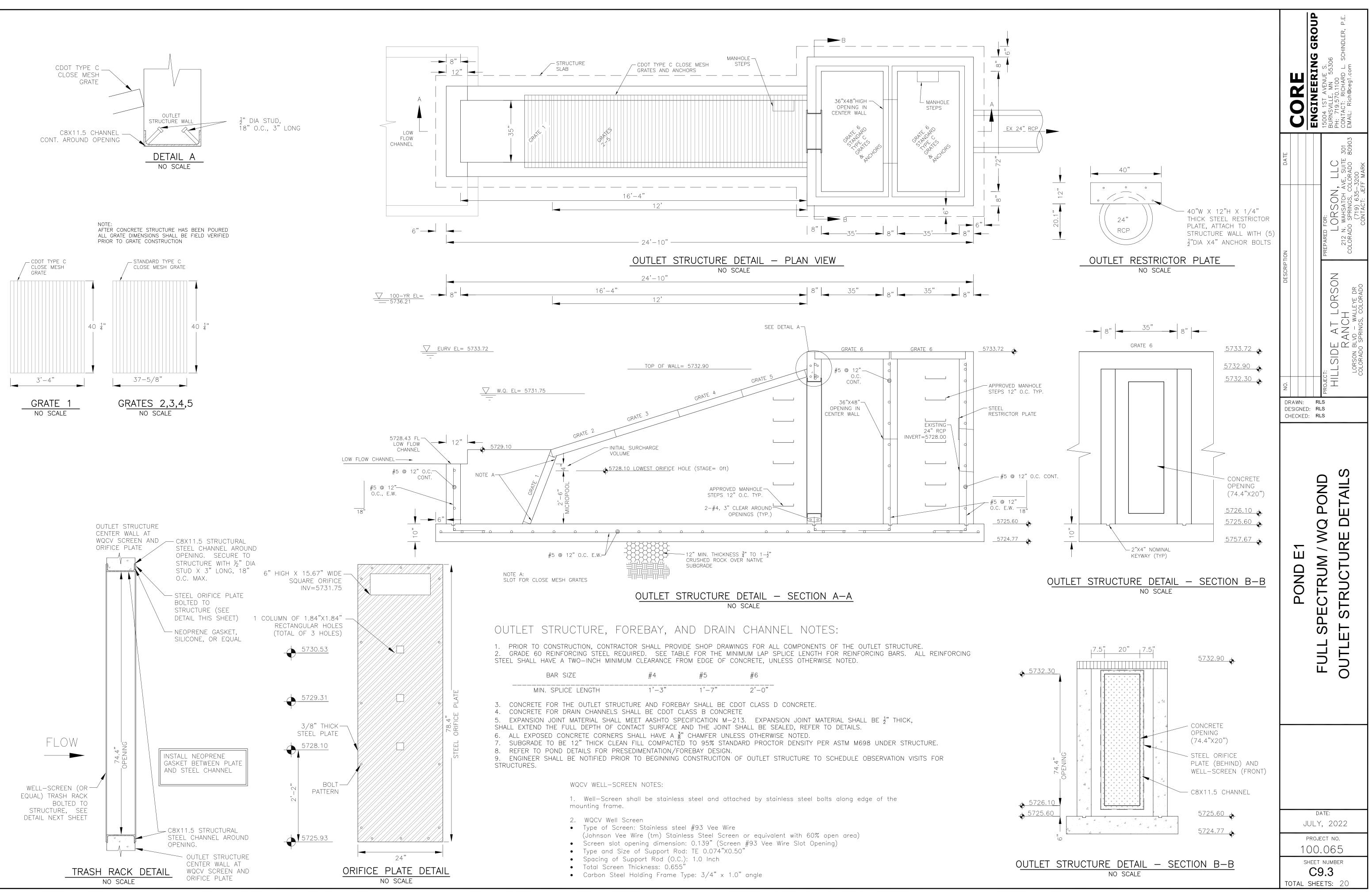
	Design Procedure Form:	Extended Detention Basin (EDB)	
L	UD-BMP	(Version 3.07, March 2018)	Sheet 1 of 3
Designer:	R. Schindler		
Company: Date:	Core Engineering Group April 14, 2022		
Project:	Hillside at Lorson Ranch		
Location:	Pond E1 - WQ pond		
1. Basin Storage	Volume		
A) Effective Im	perviousness of Tributary Area, I _a	l _a = <u>52.0</u> %	
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i = 0.520	
C) Contributing	g Watershed Area	Area = 69.200 ac	
D) For Waters	heds Outside of the Denver Region, Depth of Average	d _e = in	
	ducing Storm		
E) Design Cor		Choose One Water Quality Capture Volume (WQCV)	
(Select EUF	RV when also designing for flood control)	Excess Urban Runoff Volume (EURV)	
F) Design Volu	ume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft	
(V _{DESIGN} = ((1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)		
	heds Outside of the Denver Region, lity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft	
	$R_{R} = (d_6^*(V_{\text{DESIGN}}/0.43))$		
	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = 1.220 ac-ft	
(Only if a di	ifferent WQCV Design Volume is desired)		_
	THESE CALCUI	ATIONS ONLY FOR	
	I IILSE CALCUL	ATIONS ONLY TOK	
	TANCIII AD NOT		
KEU	CTANGULAR NOT	CH IN FUREBAY	
FOF	R 54" RCP OUTLET		
_			
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1	
(A basin length	to would ratio of at least 2.1 will improve 100 reduction.		
3. Basin Side Slo	pes		
A) Basin Maxir	mum Side Slopes	Z = 3.00 ft / ft	
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE	
4. Inlet			
 A) Describe m inflow locat 	eans of providing energy dissipation at concentrated		
	NII5.		
5. Forebay			
A) Minimum Fe	prebay Volume	V _{EMIN} = 0.037 ac-ft	
	v = <u>3%</u> of the WQCV)		
B) Actual Fore	bay Volume	V _F = 0.033 ac-ft VF < MINIMUM VF	
C) Forebay De	pth		
(D _F	•	D _F = <u>30.0</u> in	
D) Forebay Dis	scharge		
i) Undetain	ned 100-year Peak Discharge	Q ₁₀₀ = 164.20 cfs	
(Q _F = 0.0	Discharge Design Flow $22 * Q_{100}$	Q _F = 3.28 cfs	
E) Forebay Dis	charge Design	Choose One	
, , , , , , , , , , , , , , , , , , , ,		O Berm With Pipe	
		Wall with Rect. Notch	
		O Wall with V-Notch Weir	
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P = in	
G) Rectangular	r Notch Width	Calculated $W_N = 9.0$ in	


Pond E1-UD-BMP_v3.07, EDB

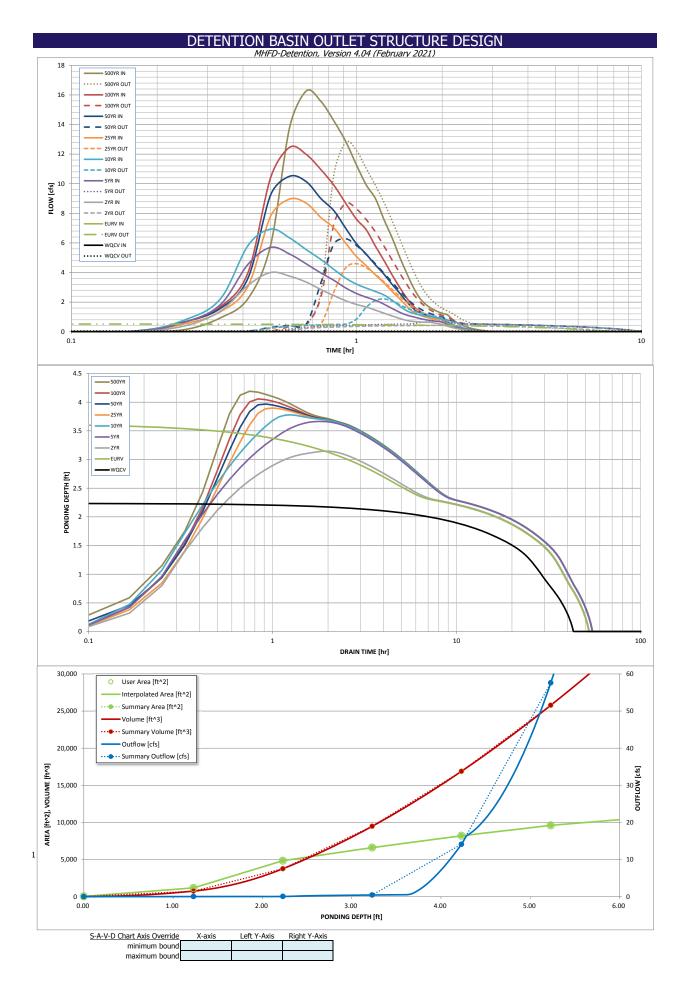
	Design Procedure Form:	Extended Detention Basin (EDB)	
		(Version 3.07, March 2018)	Sheet 1 of 3
Designer: Company:	R. Schindler Core Engineering Group		
Date:	April 14, 2022		
Project:	Hillside at Lorson Ranch		
Location:	Pond E1 - WQ pond		
1. Basin Storage	Volume		
-	perviousness of Tributary Area, I _a	l _a = 52.0 %	
	ea's Imperviousness Ratio (i = $l_a / 100$)	i = 0.520	
, ,	g Watershed Area	Area = 69.200 ac	
,	sheds Outside of the Denver Region, Depth of Average		
	ducing Storm		
E) Design Cor (Select EUF	ncept RV when also designing for flood control)	Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)	
	ume (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft	
Water Qua	sheds Outside of the Denver Region, lity Capture Volume (WQCV) Design Volume $_{\rm ER} = (d_{\theta}^*(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume ifferent WQCV Design Volume is desired)	V _{DESIGN USER} = 1.220 ac-ft	
REC	CTANGULAR NOT R 18" RCP OUTLET		
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1	
3. Basin Side Slo	pes		
,	mum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE	
4. Inlet			
A) Describe m inflow locat	eans of providing energy dissipation at concentrated ions:		
5. Forebay			
A) Minimum Fo	orebay Volume _v = <u>3%</u> of the WQCV)	V _{FMIN} = 0.037 ac-ft	
B) Actual Fore	bay Volume	V _F = 0.004 ac-ft VF < MINIMUM VF	
C) Forebay De (D _f	•	D _F = <u>30.0</u> in	
D) Forebay Dis	scharge		
i) Undetain	ned 100-year Peak Discharge	Q ₁₀₀ = 10.30 cfs	
ii) Forebay (Q _F = 0.0	/ Discharge Design Flow 22 * Q ₁₀₀)	Q _F = 0.21 cfs	
E) Forebay Dis	scharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P =in	
G) Rectangular	r Notch Width	Calculated W _N = 6.2 in	


Hydraflow Express by Intelisolve


LOW FLOW CHANNEL (2 x forebay=7.3cfs)


	Highlighted	
= 4.00	Depth (ft)	= 0.45
= 0.50	Q (cfs)	= 7.300
	Area (sqft)	= 1.80
= 100.00	Velocity (ft/s)	= 4.06
= 0.50	Wetted Perim (ft)	= 4.90
= 0.013	Crit Depth, Yc (ft)	= 0.47
	Top Width (ft)	= 4.00
	EGL (ft)	= 0.71
Known Q		
= 7.30		
	= 0.50 = 100.00 = 0.50 = 0.013 Known Q	= 4.00 Depth (ft) = 0.50 Q (cfs) = 100.00 Velocity (ft/s) = 0.50 Wetted Perim (ft) = 0.013 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

Reach (ft)



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project:	Hillside at L	orson Rand	:h	MHFD-L	Detention, Version	4.04 (Feb.	ruary 2021,)						
Basin ID: ZONE 3									ton mi	ool=5835.	77			
	2 ONE 1								top microp	001=5835.	<i>77</i>			
		<u> </u>												
	1 AND 2	100-YEA	AR E		Depth Increment =	0.20	ft Optional				Optional			
POOL Example Zone	e Configura	tion (Reten	tion Pond))	Stage - Storage Description	Stage	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information					Top of Micropool	(ft) 	0.00				30	0.001	(10)	(de it)
Selected BMP Type =	EDB				5837		1.23	-			1,180	0.027	744	0.017
Watershed Area =	4.76	acres			5838		2.23	-			4,840	0.111	3,754	0.086
Watershed Length = Watershed Length to Centroid =	840 400	ft ft			5839 5840		3.23 4.23				6,608 8,201	0.152	9,478 16,883	0.218 0.388
Watershed Slope =	0.030	ft/ft			5841		5.23	-			9,600	0.220	25,783	0.592
Watershed Imperviousness =	55.00%	percent			5842		6.23	1 1			10,600	0.243	35,883	0.824
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths = After providing required inputs above inc		minfall												
depths, click 'Run CUHP' to generate run	off hydrograph	ns using												
the embedded Colorado Urban Hydro		-	Optional Us	er Overrides				-						
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.087	acre-feet acre-feet		acre-feet acre-feet				-						
2-yr Runoff Volume (P1 = 1.19 in.) =	0.257	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	0.361 0.451	acre-feet acre-feet	1.50 1.75	inches inches										
25-yr Runoff Volume (P1 = 1.75 In.) =	0.451	acre-feet	2.00	inches				-						
50-yr Runoff Volume (P1 = 2.25 in.) =	0.666	acre-feet	2.25	inches				-						
100-yr Runoff Volume (P1 = 2.52 in.) =	0.788	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) = Approximate 2-yr Detention Volume =	1.037 0.215	acre-feet acre-feet		inches										
Approximate 5-yr Detention Volume =	0.292	acre-feet												
Approximate 10-yr Detention Volume =	0.381	acre-feet						-						
Approximate 25-yr Detention Volume = Approximate 50-yr Detention Volume =	0.415	acre-feet acre-feet						-						
Approximate 100-yr Detention Volume =	0.478	acre-feet												
Define Zenes and Rasin Coomstru								-						
Define Zones and Basin Geometry Zone 1 Volume (WQCV) =	0.087	acre-feet						-						
Zone 2 Volume (EURV - Zone 1) =	0.195	acre-feet												
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) = Total Detention Basin Volume =	0.239	acre-feet acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³						-						
Initial Surcharge Depth (ISD) =	user	ft						-						
Total Available Detention Depth $(H_{total}) =$ Depth of Trickle Channel $(H_{TC}) =$	user	ft ft						-						
Slope of Trickle Channel (STC) =	user	ft/ft												
Slopes of Main Basin Sides (S_{main}) =	user	H:V						-						
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	_						-						
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²												
Surcharge Volume Length (L _{ISV}) =	user	ft												
Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) =	user	ft ft						-						
Length of Basin Floor $(L_{FLOOR}) =$	user	ft						-						
Width of Basin Floor (W_{FLOOR}) =	user	ft						-						
Area of Basin Floor $(A_{FLOOR}) =$ Volume of Basin Floor $(V_{FLOOR}) =$	user	ft² ft³						-						
Depth of Main Basin $(H_{MAIN}) =$	user	ft						-						
Length of Main Basin (L _{MAIN}) =	user	ft										-		
Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) =	user	ft ft²			-			-						
Volume of Main Basin (V_{MAIN}) =	user	ft ³						-						
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
								-						
								-						
								-						
								1 1						
					-			1 1				-		
								-						
								-						
								-						
								-						
								1 1						
					-			1 1				-		
					-			-						
								-						
					1								1	

	Dt	ETENTION	BASIN OUT	ILET STRU	CIURE DES	SIGN		
Project:	Hillside at Lorson	MHI	FD-Detention, Vers					
Basin ID:								
	_			Estimated	Estimated			
100-YB				Stage (ft)	Volume (ac-ft)	Outlet Type	•	
			Zone 1 (WQCV)	2.25	0.087	Orifice Plate	_	
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	3.64	0.195	Rectangular Orifice	-	
PERMANENT ORIFICES	Configuration (De		'3 (100+1/2WQCV)		0.239	Weir&Pipe (Restrict)	J	
	Configuration (Re			Total (all zones)	0.521			
User Input: Orifice at Underdrain Outlet (typically					Undow	drain Orifice Area =	Calculated Parame	ters for Underdrai ft ²
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	the filtration media	surrace)		n Orifice Centroid =	N/A N/A	feet
	N/A	inches			onderuran		IN/A	leet
User Input: Orifice Plate with one or more orifice	es or Elliptical Slot V	Veir (typically used	to drain WQCV and	or EURV in a sedim	nentation BMP)		Calculated Parame	ters for Plate
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	ice Area per Row =	2.569E-03	ft²
Depth at top of Zone using Orifice Plate =	2.25		bottom at Stage =	0 ft)		iptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	9.00	inches				ical Slot Centroid =		feet
Orifice Plate: Orifice Area per Row =	0.37	sq. inches (diamete	er = 11/16 inch)		E	Elliptical Slot Area =	N/A	ft²
User Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to highes	<u>st)</u>					
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60					
Orifice Area (sq. inches)	0.37	0.37	0.37					
	Row 9 (optional)	Pow 10 (antional)	Row 11 (optional)	Pow 12 (antional)	Pow 12 (optional)	Pow 14 (optional)	Pow 15 (optional)	Pow 16 (ontion-1
Stage of Orifice Centroid (ft)	KUW 9 (optional)	Row 10 (optional)	ROW 11 (Optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional
Orifice Area (sq. inches)								
		•		•	•			•
User Input: Vertical Orifice (Circular or Rectangu		1	1				Calculated Parame	
	Zone 2 Rectangula						Zone 2 Rectangular	Not Selected
Invert of Vertical Orifice =	2.27 3.64	N/A	ft (relative to basin	-		rtical Orifice Area =	0.08	N/A N/A
Depth at top of Zone using Vertical Orifice = Vertical Orifice Height =	1.00	N/A N/A	ft (relative to basin inches	Dollom at Stage =	veruca	I Orifice Centroid =	0.04	IN/A
Vertical Orifice Width =	12.00	19/6	inches					
		4						
User Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	Outlet Pipe OR Rect	angular/Trapezoidal	Weir (and No Out)	et Pine)		Calaulata d Davana d	
				tren (ana no oad	<u>ctripej</u>		Calculated Parame	ters for Overflow
	Zone 3 Weir	Not Selected]				Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, Ho =	3.63	N/A	ft (relative to basin b		t) Height of Grat	e Upper Edge, H _t =	Zone 3 Weir 3.63	Not Selected N/A
Overflow Weir Front Edge Length =	3.63 6.00	N/A N/A	ft (relative to basin b feet	oottom at Stage = 0 f	t) Height of Grat Overflow V	/eir Slope Length =	Zone 3 Weir 3.63 3.00	Not Selected N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	3.63 6.00 0.00	N/A N/A N/A	ft (relative to basin b feet H:V	oottom at Stage = 0 f G	t) Height of Grat Overflow V irate Open Area / 10	/eir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 3.63 3.00 7.09	Not Selected N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	3.63 6.00 0.00 3.00	N/A N/A N/A N/A	ft (relative to basin b feet	oottom at Stage = 0 f G C	t) Height of Grat Overflow V rate Open Area / 10 Iverflow Grate Open	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.63 3.00 7.09 12.53	Not Selected N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	3.63 6.00 0.00	N/A N/A N/A	ft (relative to basin b feet H:V	oottom at Stage = 0 f G C	t) Height of Grat Overflow V irate Open Area / 10	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.63 3.00 7.09 12.53	Not Selected N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	3.63 6.00 0.00 3.00 Type C Grate	N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	oottom at Stage = 0 f G C	t) Height of Grat Overflow V rate Open Area / 10 Iverflow Grate Open	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.63 3.00 7.09 12.53	Not Selected N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	3.63 6.00 0.00 3.00 Type C Grate 50%	N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %	oottom at Stage = 0 f G C	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 3.63 3.00 7.09 12.53	Not Selected N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	3.63 6.00 0.00 3.00 Type C Grate 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	ft (relative to basin b feet H:V feet % cctangular Orifice)	bottom at Stage = 0 f G C	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Ope	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 's for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction F Not Selected
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	3.63 6.00 0.00 3.00 Type C Grate 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba	bottom at Stage = 0 f G C	t) Height of Grat Overflow V irate Open Area / 11 Iverflow Grate Open Overflow Grate Open <u>Cr</u> = 0 ft) O	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	3.63 6.00 0.00 3.00 Type C Grate 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 f G C asin bottom at Stage	t) Height of Grat Overflow V irate Open Area / 1(iverflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) 0 Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	Not Selected N/A N/A N/A N/A N/A Flow Restriction F Not Selected N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	3.63 6.00 0.00 3.00 Type C Grate 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba	oottom at Stage = 0 f G C asin bottom at Stage	t) Height of Grat Overflow V irate Open Area / 11 Iverflow Grate Open Overflow Grate Open <u>Cr</u> = 0 ft) O	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 f G C asin bottom at Stage	t) Height of Grat Overflow V irate Open Area / 1(iverflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) 0 Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 f G C esin bottom at Stage Half-Cer	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outle tral Angle of Restrict	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f G C esin bottom at Stage Half-Cer	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Cerflow Grate Ope (Certification Content Certification Content (Certification Content) (Certification Conten	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A Flow Restriction 1 Not Selected N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 18.00 4.23 10.00 4.00	N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f G C esin bottom at Stage Half-Cer	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Car E o ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.50 5.23 0.22	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f G C esin bottom at Stage Half-Cer	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Car E o ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.50 5.23 0.22	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 18.00 4.23 10.00 4.00	N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f G C Asin bottom at Stage Half-Cen 0 ft)	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Car E o ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.50 5.23 0.22	Not Selected N/A N/A N/A N/A N/A Flow Restriction I Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50 The user can over	N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 583; IP hydrographs and	oottom at Stage = 0 f G C asin bottom at Stage Half-Cen 0 ft) 5.77 = stage 0 runoff volumes by	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydri	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19.00 19.00 10.00 19.00 10	N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 5833 <i>IP hydrographs and</i> 2 Year	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <u>runoff volumes by</u> 5 Year	t) Height of Grat Overflow V irate Open Area / 11 iverflow Grate Open Overflow Grate Open Overflow Grate Open Ci E = 0 ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value. 10 Year	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = S in the Inflow Hyddi 25 Year	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 's for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramet 0.50 5.23 0.22 0.59 cographs table (Colu 50 Year	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50 The user can overn WQCV N/A	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 583: <u>1P hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <u>runoff volumes by</u> 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open (2) = 0 ft) 0 Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at (1) Year (1.75)	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydri 25 Year 2.00	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Hydrograph Results Design Storm Return Period =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A fet H:V feet H:V feet H:V feet H:V feet N/A O.282 N/A	ft (relative to basin b feet H:V feet % cctangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 5833 <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257	oottom at Stage = 0 f G C asin bottom at Stage Half-Cen 0 ft) 5.77 = stage 0 runoff volumes by 5 Year 1.50 0.361 0.361	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Car = 0 ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at <u>entering new value</u> : 1.75 0.451 0.451	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydr 25 Year 2.00 0.569 0.569	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.282 N/A N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = top micropool = 583: <i>IP hydrographs and</i> 2 Year 1.19 0.257	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <u>runoff volumes by</u> 1.50 0.361	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Carlow Gra	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydr 25 Year 2.00 0.569	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 cographs table (Colu 50 Year 2.25 0.666	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <u>runoff volumes by</u> 5 Year 1.50 0.361 0.361 1.3	t) Height of Grat Overflow V irate Open Area / 10 irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75 0.451 0.451 2.0	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 5 <i>in the Inflow Hydr</i> 25 Year 2.00 0.569 0.569 3.6	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Columnic Columnic Col	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.282 N/A N/A N/A	ft (relative to basin b feet H:V feet % cctangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 5833 <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257	oottom at Stage = 0 f G C asin bottom at Stage Half-Cen 0 ft) 5.77 = stage 0 runoff volumes by 5 Year 1.50 0.361 0.361	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Car = 0 ft) O Uttle tral Angle of Restrict Spillway E Stage at Basin Volume at Basin Volume at <u>entering new value</u> : 1.75 0.451 0.451	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydr 25 Year 2.00 0.569 0.569	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19.00 19.00 19.00 19.00 19.00 19.00 10	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: 1/P hydrographs and 2 Year 1.19 0.257 0.55 0.5 0.10 4.0 0.4	oottom at Stage = 0 f G G Asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <i>runoff volumes by</i> 5.77 = stage 0 <i>runoff volumes by</i> 5.77 = 1.50 0.361 1.3 0.361 1.3 0.28 5.7 0.7	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Carlow Grate Open Carlow Grate Open (Carlow Grate	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 5 <i>in the Inflow Hydri</i> 25 Year 2.00 0.569 0.569 3.6 	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666 4.5 0.94 10.5 6.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Nolume (acreft) = CUHP Runoff Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow V (cfs) = Ratio Peak Outflow to Predevelopment Q = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Inflow Q	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV R/A 0.282 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257 0.5 0.10 4.0 0.4 N/A	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <u>runoff volumes by</u> 5.77 = stage 0 <u>runoff volumes by</u> 5.77 = stage 0 <u>runoff volumes by</u> 0.361 0.361 0.361 0.361 0.361 0.361 0.7 0.7 0.7	t) Height of Grat Overflow V irate Open Area / 10 irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at ' Basin Area at ' Basin Volume at ' entering new value: 10 Year 1.75 0.451 0.451 0.451 0.42 6.9 0.42 6.9 2.2 1.1	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 5 <i>in the Inflow Hydr</i> 2.00 0.569 0.569 0.569 3.6 0.75 9.0 4.6 1.3	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 50 Year 2.25 0.666 0.666 0.666 4.5 0.94 10.5 6.3 1.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19.00 19.00 19.00 19.00 19.00 19.00 10	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: 1/P hydrographs and 2 Year 1.19 0.257 0.55 0.5 0.10 4.0 0.4	oottom at Stage = 0 f G G Asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 <i>runoff volumes by</i> 5.77 = stage 0 <i>runoff volumes by</i> 5.77 = 1.50 0.361 1.3 0.361 1.3 0.28 5.7 0.7	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Carlow Grate Open Carlow Grate Open (Carlow Grate	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 5 <i>in the Inflow Hydri</i> 25 Year 2.00 0.569 0.569 3.6 	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666 4.5 0.94 10.5 6.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A	ft (relative to basin to feet H:V feet % * ctangular Orifice) ft (distance below basin inches top micropool = 583: ft (distance below basin top micropool = 583: ft	oottom at Stage = 0 f G G Stasin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 runoff volumes by 5.77 = stage 0 runoff volumes by 5.	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Carl = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at <u>entering new value</u> <u>10 Year</u> 1.75 0.451 0.451 2.0 0.42 6.9 2.2 1.1 Overflow Weir 1 0.1 N/A	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freeboard	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 50 Year 2.25 0.666 0.666 0.666 0.666 0.666 0.666 0.59 1.05 6.3 1.4 Overflow Weir 1 0.5 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Deak Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257 0.257 0.257 0.5 0.10 4.0 0.4 N/A Vertical Orifice 1 N/A V/A	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 runoff volumes by 5 Year 1.50 0.361 1.3 0.361 1.3 0.28 5.77 0.7 0.7 0.7 0.5 Overflow Weir 1 0.0 N/A 41	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new values 10 Year 1.75 0.451 0.451 2.0 0.451 0.451 2.0 0.42 6.9 2.2 1.1 Overflow Weir 1 0.1 N/A 39	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 5 <i>in the Inflow Hydr</i> 25 Year 2.00 0.569 0.569 3.6 0.75 9.0 4.6 1.3 Overflow Weir 1 0.3 N/A 37	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666 4.5 0.666 4.5 0.94 10.5 6.3 1.4 Overflow Weir 1 0.5 N/A 36	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Runoff Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow 4/drograph Volume (acreft) = CUHP Reavel flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow C Predevelopment Q = Max Velocity through Grate 1 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583; fb hydrographs and 2 Year 1.19 0.257 0.257 0.257 0.257 0.5 0.10 4.0 0.4 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 41 41	oottom at Stage = 0 f G C asin bottom at Stage Half-Cen 0 ft) 5.77 = stage 0 runoff volumes by 5 Year 1.50 0.361 0.361 1.3 0.361 1.3 0.361 1.3 0.28 5.7 0.7 0.5 Overflow Weir 1 0.0 N/A 41 41 48	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Uttle tral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Entering new value: 10 Year 1.75 0.451 0.451 2.0 0.451 0.451 2.0 0.42 6.9 2.2 1.1 Overflow Weir 1 0.1 N/A 39 47	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Paramet 0.50 5.23 0.22 0.59 Ographs table (Colu 50 Year 2.25 0.666 0.666 0.666 0.50 10.5 N/A 10.5 N/A 36 45	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Deak Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	3.63 6.00 0.00 3.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18	N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 583: <i>IP hydrographs and</i> 2 Year 1.19 0.257 0.257 0.257 0.257 0.5 0.10 4.0 0.4 N/A Vertical Orifice 1 N/A V/A	oottom at Stage = 0 f G C asin bottom at Stage Half-Cer 0 ft) 5.77 = stage 0 runoff volumes by 5 Year 1.50 0.361 1.3 0.361 1.3 0.28 5.77 0.7 0.7 0.7 0.5 Overflow Weir 1 0.0 N/A 41	t) Height of Grat Overflow V irate Open Area / 10 iverflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new values 10 Year 1.75 0.451 0.451 2.0 0.451 0.451 2.0 0.42 6.9 2.2 1.1 Overflow Weir 1 0.1 N/A 39	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 5 <i>in the Inflow Hydr</i> 25 Year 2.00 0.569 0.569 3.6 0.75 9.0 4.6 1.3 Overflow Weir 1 0.3 N/A 37	Zone 3 Weir 3.63 3.00 7.09 12.53 6.26 5 for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 5.23 0.22 0.59 Cographs table (Colu 50 Year 2.25 0.666 0.666 4.5 0.666 4.5 0.94 10.5 6.3 1.4 Overflow Weir 1 0.5 N/A 36	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

SEE DESIGN POINT 43 FOR DISCUSSION OF OFFSITE FLOWS MEETING EXISTING CONDITIONS

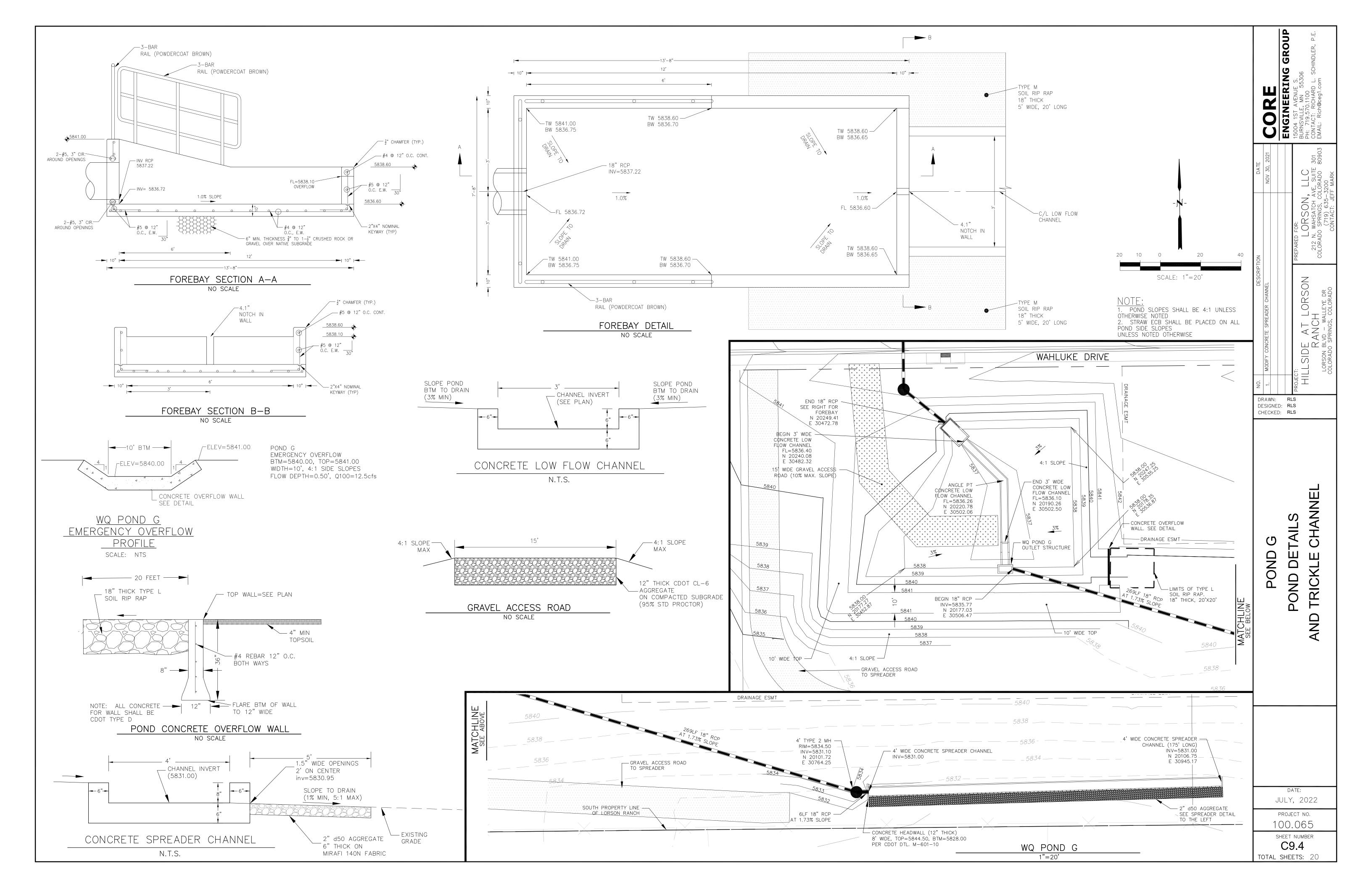
Outflow Hydrograph Workbook Filename:

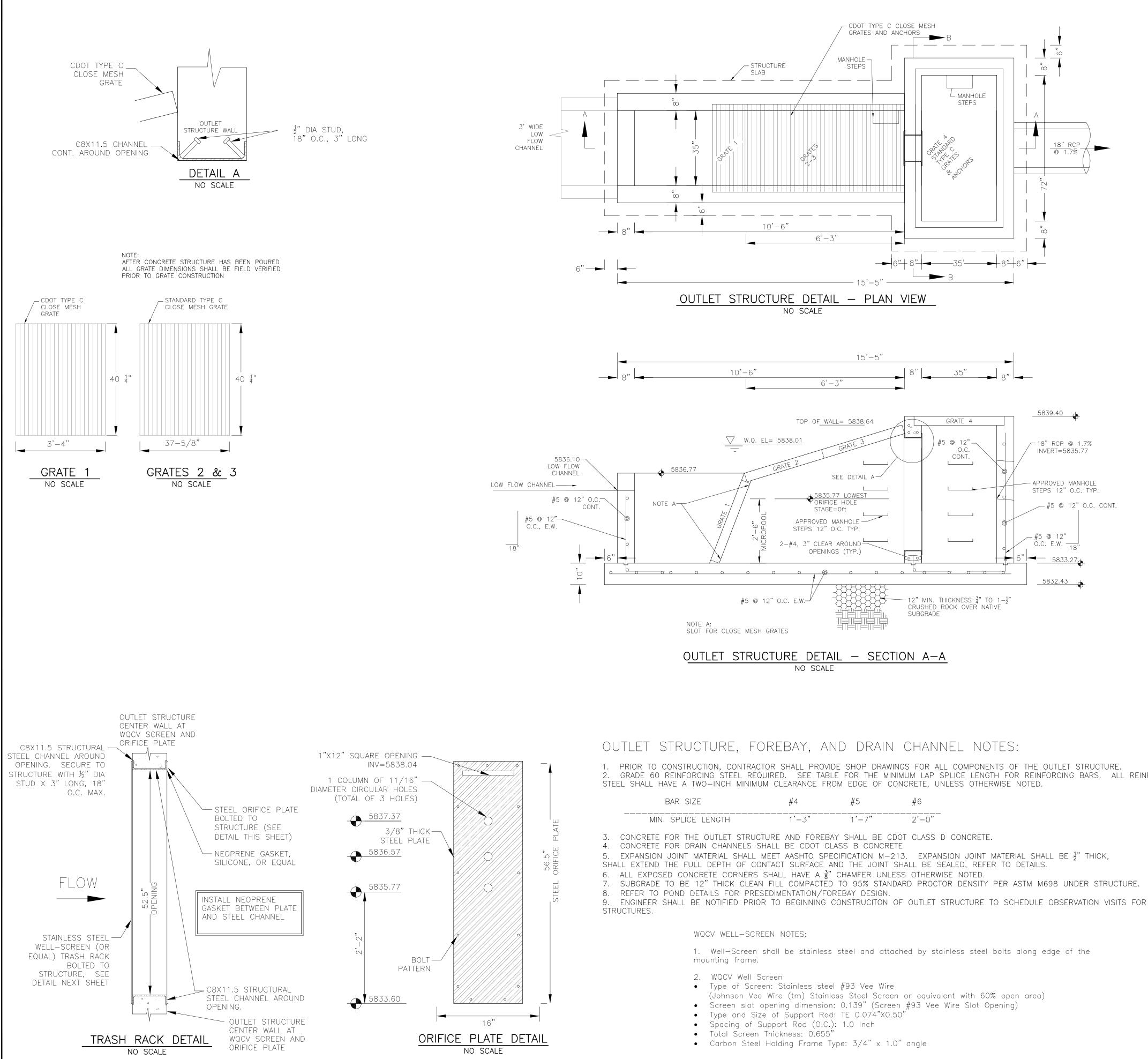
Inflow Hydrographs

	The user can or		lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.39	0.64	0.80	0.54	0.67	0.65	0.93
	0:20:00	0.00	0.00	1.39	1.82	2.21	1.35	1.57	1.68	2.24
	0:25:00	0.00	0.00	3.13	4.56	5.82	3.08	3.62	4.00	5.85
	0:30:00	0.00	0.00	4.00	5.69	6.93	7.80	9.23	10.41	13.81
	0:35:00	0.00	0.00	3.75	5.24	6.33	8.96	10.50	12.46	16.26
	0:40:00	0.00	0.00	3.35	4.58	5.55	8.69	10.14	11.98	15.57
	0:45:00	0.00	0.00	2.85	3.97	4.88	7.72	9.01	10.96	14.25
	0:50:00 0:55:00	0.00	0.00	2.44 2.09	3.47	4.21 3.62	7.01 5.98	8.18 6.99	9.90 8.68	12.87 11.28
	1:00:00	0.00	0.00	1.84	2.96 2.58	3.02	5.08	5.95	7.61	9.91
	1:05:00	0.00	0.00	1.67	2.33	2.95	4.46	5.23	6.88	8.99
	1:10:00	0.00	0.00	1.45	2.12	2.71	3.83	4.50	5.77	7.58
	1:15:00	0.00	0.00	1.25	1.86	2.48	3.30	3.88	4.82	6.36
	1:20:00	0.00	0.00	1.07	1.57	2.13	2.73	3.21	3.85	5.08
	1:25:00	0.00	0.00	0.90	1.32	1.74	2.23	2.62	3.02	3.97
	1:30:00	0.00	0.00	0.76	1.12	1.42	1.74	2.03	2.29	3.01
	1:35:00	0.00	0.00	0.69	1.01	1.24	1.35	1.57	1.72	2.28
	1:40:00	0.00	0.00	0.66	0.90	1.13	1.12	1.30	1.39	1.85
	1:45:00	0.00	0.00	0.64	0.81	1.05	0.98	1.14	1.18	1.57
	1:50:00 1:55:00	0.00	0.00	0.63	0.75	1.00 0.94	0.89 0.83	0.94	1.04 0.93	1.38
	2:00:00	0.00	0.00	0.55	0.70	0.94	0.83	0.94	0.93	1.24
	2:05:00	0.00	0.00	0.38	0.50	0.65	0.60	0.68	0.64	0.85
	2:10:00	0.00	0.00	0.28	0.37	0.48	0.45	0.50	0.47	0.62
	2:15:00	0.00	0.00	0.21	0.28	0.36	0.33	0.37	0.35	0.46
	2:20:00	0.00	0.00	0.16	0.21	0.26	0.25	0.28	0.26	0.34
	2:25:00	0.00	0.00	0.12	0.15	0.19	0.18	0.20	0.19	0.25
	2:30:00	0.00	0.00	0.09	0.11	0.14	0.13	0.15	0.14	0.18
	2:35:00	0.00	0.00	0.06	0.08	0.10	0.10	0.11	0.10	0.13
	2:40:00	0.00	0.00	0.04	0.05	0.07	0.07	0.08	0.07	0.09
	2:45:00 2:50:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.06
	2:55:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.04
	3:00:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00									
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00							

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

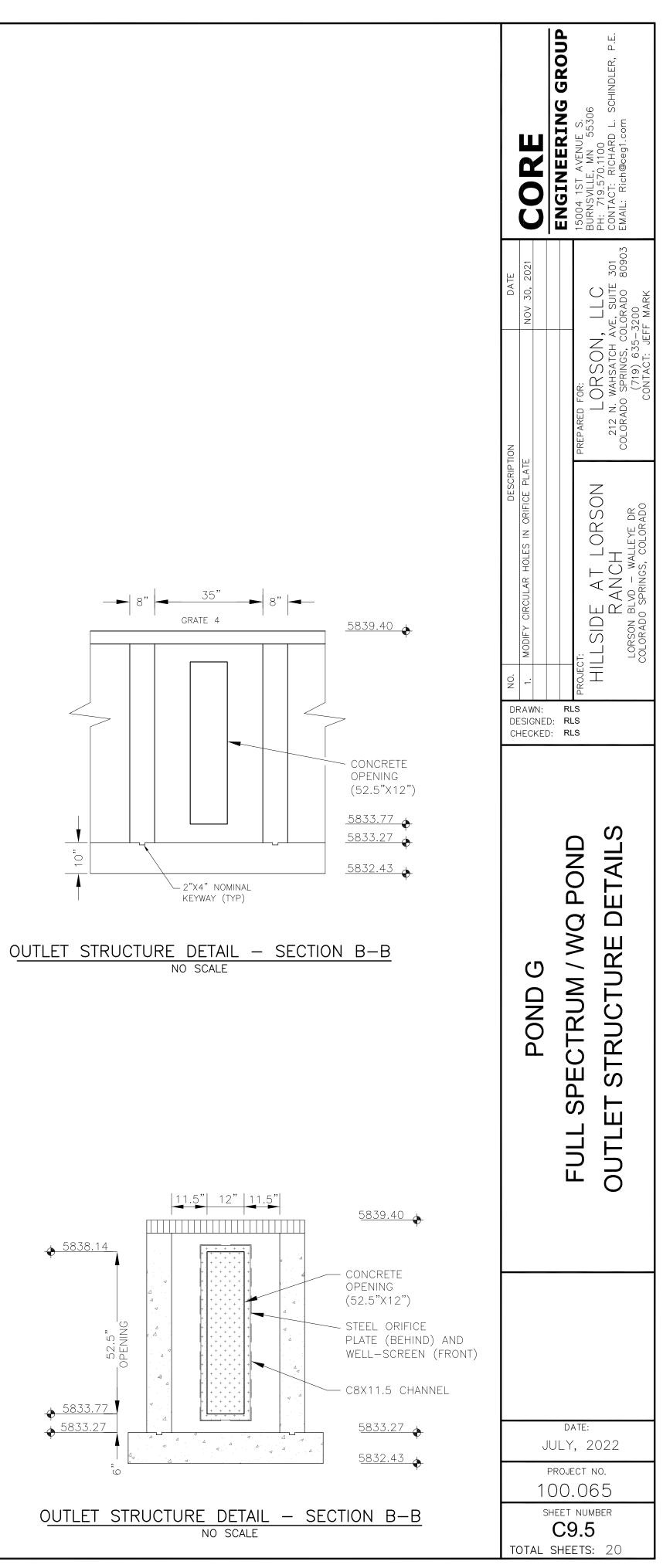

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
	0.00	30	0.001	0	0.000	0.00	For best results, include the
	1.23	1,180	0.027	744	0.017	0.02	stages of all grade slope
	2.23	4,840	0.111	3,754	0.086	0.04	changes (e.g. ISV and Floor
	3.23	6,608	0.152	9,478	0.218	0.44	from the S-A-V table on Sheet 'Basin'.
	4.23	8,201	0.188	16,883	0.388	14.10	Sheet Dashi.
	5.23	9,600	0.220	25,783	0.592	57.61	Also include the inverts of a
							outlets (e.g. vertical orifice,
							overflow grate, and spillway
							where applicable).
							_
	1						-
							_
							-
							_
	-						_
		-					_
							-
							-
							_
	-						_
							_
							-
							_
	1						-
							_
							_
	-						_
	-						_
							-
							1
							4
							-
							1
							1


	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	R. Schindler	
Company: Date:	Core Engineering Group April 14, 2022	
Project:	Hillside at Lorson Ranch	
Location:	Pond G - WQ pond	
1. Basin Storage \	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.550
	Watershed Area	Area = 4.760 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
E) Design Con	rent	Choose One
	V when also designing for flood control)	Water Quality Capture Volume (WQCV)
		O Excess Urban Runoff Volume (EURV)
F) Design Volu	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = ac-ft
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft
	ty Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))	
		V _{DESIGN USER} 0.120 ac-ft
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.120 ac-ft
I) NRCS Hvdro	logic Soil Groups of Tributary Watershed	
i) Percenta	ge of Watershed consisting of Type A Soils	HSG _A = %
	age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _B = 2000 %
J) Excess Urba	an Runoff Volume (EURV) Design Volume	
For HSG A	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	$(D: EURV_B = 1.36^{-1} \text{ m}^{-1.08})$	
K) User Input o	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} ac-f t
	ferent EURV Design Volume is desired)	
2. Basin Shape: L	ength to Width Ratio	L : W = 2.0 : 1
(A basin length	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	les	
		7- 400 8/8
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	$Z = \frac{4.00}{\text{ft}/\text{ft}}$
4. Inlet		Concentrated inflows into Pond G are from a storm sewer which is dissipated in a concrete forebay structure.
	eans of providing energy dissipation at concentrated	
inflow location	ons:	
5. Forebay		
-	robay Volumo	V - 0.002 co #
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>2%</u> of the WQCV)	V _{FMIN} = 0.002 ac-ft
 B) Actual Forel 	bay Volume	V _F = 0.003 ac-ft
C) Forebay Dep		
(D _F		D _F = 18.0 in
D) Forebay Dise	charge	
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 12.50 cfs
(Q _F = 0.0	Discharge Design Flow $2 * Q_{100}$	$Q_F = 0.25$ cfs
E) Forebay Disc	charge Design	Choose One
, ,		Bern With Pipe Flow too small for bern w/ pipe
		Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated $W_N = 4.1$ in

Pond G-UD-BMP_v3.07, EDB

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	R. Schindler	Sheet 2 of 3
Company:	Core Engineering Group	
Date:	January 6, 2022	
Project:	Hillside at Lorson Ranch	
Location:	Pond G - WQ pond	
6. Trickle Channel		Choose One
		Ocncrete
 A) Type of Tric 	Skie Channel	O Soft Bottom
F) Slope of Tric	ckle Channel	S =ft / ft
7. Micropool and 0	Outlet Structure	
A) Depth of Mi	icropool (2.5-feet minimum)	D _M = <u>2.5</u> ft
B) Surface Are	ea of Micropool (10 ft ² minimum)	A _M = 13 sq ft
C) Outlet Type		
of outer type		
		Orifice Plate Other (Describe):
 D) Smallest Dir (Use UD-Deten 	mension of Orifice Opening Based on Hydrograph Routing ntion)	D _{orffice} = 0.68 inches
E) Total Outlet		A _{ct} = 1.11 square inches
	, i cu	
8. Initial Surcharge	e Volume	
	tial Surcharge Volume	D _{IS} = 4 in
(Minimum re	ecommended depth is 4 inches)	
	tial Surcharge Volume plume of 0.3% of the WQCV)	V _{IS} = cu ft
C) Initial Surcha	arge Provided Above Micropool	V _s = <u>4.2</u> cu ft
9. Trash Rack		
A) Water Quali	ity Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = square inches
B) Type of Scre	een (If specifying an alternative to the materials recommended	Other (Please describe below)
	indicate "other" and enter the ratio of the total open are to the of the material specified.)	<u>_</u>
total screen are		
	Other (Y/N): Y	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =sq. in. Based on type 'Other' screen ratio
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 2.25 feet
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 55 inches
	ater Quality Screen Opening (W _{opening}) 2 inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

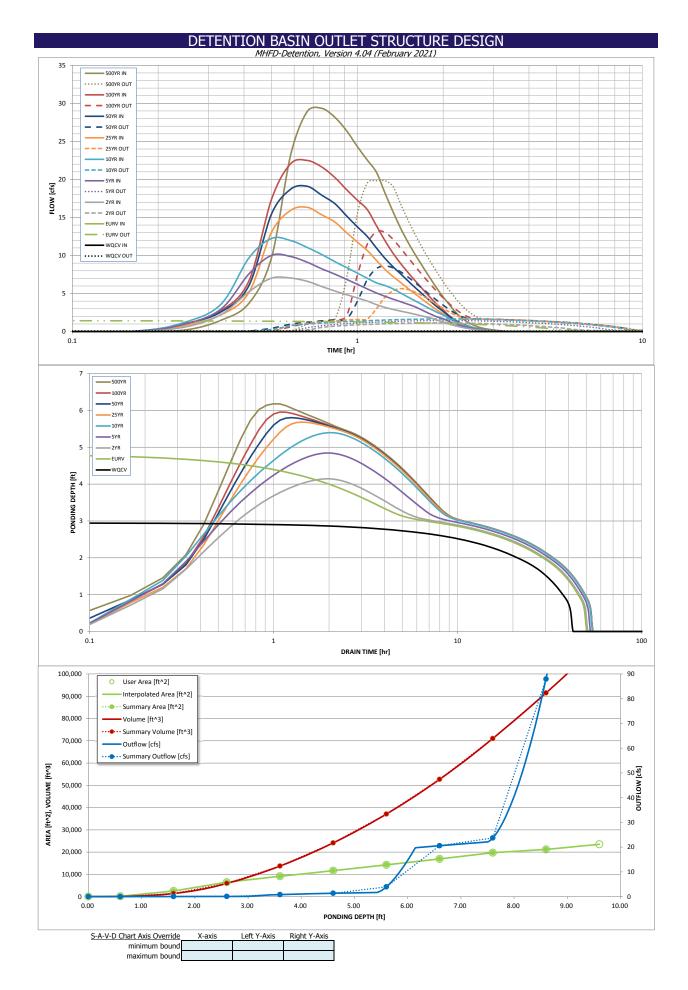
	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	R. Schindler Core Engineering Group January 6, 2022 Hillside at Lorson Ranch Pond G - WQ pond	Sheet 3 of 3
B) Slope of O	ankment mbankment protection for 100-year and greater overtopping: verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)	TRM added to emergency overflow. All of 100-year flows will enter outlet structure before entering emergency overflow. Ze =ft / ft
11. Vegetation		Choose One O Irrigated Not Irrigated
12. Access A) Describe S	Sediment Removal Procedures	
Notes:		



2. GRADE 60 REINFORCING STEEL REQUIRED. SEE TABLE FOR THE MINIMUM LAP SPLICE LENGTH FOR REINFORCING BARS. ALL REINFORCING

BAR SIZE	#4	#5	#6

MIN. SPLICE LENGTH	1'-3"	1'-7"	2'-0"	


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

			ENTIO		N STAGE-S Detention, Version			
	Hillside at L	orson Rand	h		,			
Basin ID: ZONE 3								
	2 ONE 1						micropool=	=5804.4
VOLUME EURV WOCV								
	1.440.0	100-YEA ORIFIC	R		Depth Increment =	0.20	ft	
PERMANENT ORIFIC	1 AND 2 CES	tion (Reter	tion Pond)		Stage - Storage	Stage	Optional Override	Length
Example Lon	e oomigure	ition (recen	uonn onu)		Description	(ft)	Stage (ft)	(ft)
atershed Information		-			Top of Micropool		0.00	-
Selected BMP Type =	EDB	_			5805		0.60	
Watershed Area =	10.41	acres			5806		1.60	-
Watershed Length = Watershed Length to Centroid =	1,700 800	ft ft			5807 5808		2.60 3.60	-
Watershed Length to Centrold = Watershed Slope =	0.030	ft/ft			5809		4.60	
Watershed Imperviousness =	55.00%	percent			5810		5.60	
Percentage Hydrologic Soil Group A =	0.0%	percent			5811	-	6.60	
Percentage Hydrologic Soil Group B =	100.0%	percent			5812		7.60	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			5813		8.60	
Target WQCV Drain Time =	40.0	hours			5814		9.60	
Location for 1-hr Rainfall Depths =								-
After providing required inputs above inc depths, click 'Run CUHP' to generate run	uding 1-hour off hydrograp	rainfall hs using						
the embedded Colorado Urban Hydro			Optional Use	r Overrides				
Water Quality Capture Volume (WQCV) =	0.191	acre-feet		acre-feet				
Excess Urban Runoff Volume (EURV) =	0.617	acre-feet		acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	0.578	acre-feet	1.19	inches				
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	0.811 1.014	acre-feet acre-feet	1.50 1.75	inches inches				
25-yr Runoff Volume (P1 = 2 in.) =	1.014	acre-feet	2.00	inches				
50-yr Runoff Volume (P1 = 2.25 in.) =	1.496	acre-feet	2.25	inches				
100-yr Runoff Volume (P1 = 2.52 in.) =	1.769	acre-feet	2.52	inches				
500-yr Runoff Volume (P1 = 3.14 in.) =	2.330	acre-feet		inches				
Approximate 2-yr Detention Volume =	0.470	acre-feet						
Approximate 5-yr Detention Volume =	0.639	acre-feet						
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	0.834	acre-feet acre-feet						-
Approximate 50-yr Detention Volume =	0.947	acre-feet						
Approximate 100-yr Detention Volume =	1.044	acre-feet						
		-				-		
fine Zones and Basin Geometry		-						
Zone 1 Volume (WQCV) =	0.191	acre-feet						
Zone 2 Volume (EURV - Zone 1) = ne 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.426	acre-feet acre-feet						
Total Detention Basin Volume =	1.140	acre-feet						
Initial Surcharge Volume (ISV) =	user	ft ³						
Initial Surcharge Depth (ISD) =	user	ft						-
Total Available Detention Depth $(H_{total}) =$	user	ft						
Depth of Trickle Channel $(H_{TC}) =$	user	ft						
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user	ft/ft H:V						-
Slopes of Main Basin Sides $(S_{main}) =$ Basin Length-to-Width Ratio $(R_{L/W}) =$	user	11. V						-
		4						
Initial Surcharge Area $(A_{1SV}) =$	user	ft ²						-
Surcharge Volume Length $(L_{ISV}) =$	user	ft						
Surcharge Volume Width (W _{ISV}) =	user	ft						
Depth of Basin Floor (H _{FLOOR}) =	user	ft						
Length of Basin Floor $(L_{FLOOR}) =$ Width of Basin Floor $(W_{FLOOR}) =$	user	ft ft						
Area of Basin Floor (MFLOOR) =	user	ft ²						-
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³						
Depth of Main Basin (H _{MAIN}) =	user	ft						
Length of Main Basin (L_{MAIN}) =	user	ft						
Width of Main Basin $(W_{MAIN}) =$	user	ft						
Area of Main Basin (A _{MAIN}) =	user	ft 2						
Volume of Main Basin (V _{MAIN}) = Calculated Total Basin Volume (V _{total}) =	user user	ft ³						
calculated rotal basin volume (Vtotal) =	usei	acre-feet						
								-
								-
								-
								-

Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
op of Micropool		0.00				30	0.001		
5805		0.60				160	0.004	57	0.001
5806		1.60	-			2,527	0.058	1,400	0.032
5807		2.60				6,488	0.149	5,908	0.136
5808		3.60	-		-	9,136	0.210	13,720	0.315
5809		4.60				11,649	0.267	24,112	0.554
5810		5.60				14,272	0.328	37,073	0.851
5811		6.60				16,928	0.389	52,673	1.209
5812		7.60	-			19,738	0.453	71,006	1.630
		8.60	-		-				
5813					-	21,198	0.487	91,474 113,823	2.100
5814		9.60				23,500	0.539	113,823	2.613
					-				
					-				
			-					1	
			-					+	
						-		-	
		-							
					-				
								1	
			-						
			-					1	
								1	
								1	
								1	
								1	
					-			1	
			-		-				
			-						
					-				
			-		-				
			-		-				
			-						
			-						
			-		-				
			-					1	
			-						
			-						
			-						
								1	
								1	
			-					1	
			_		-			1	
								1	
			-		-				
			1		-				
			-					1	
			-						
		-	-		-				
								1	
		-	-						
		-							
			-		-			1	
			-		-				
								1	
								I	
								1	
			1 1						
			1111						
	 		1 1 1 1						
	 		1 1 1 1 1						

DETENTION BASIN OUTLET STRUCTURE DESIGN HFD-Detention, Version 4.04 (February 2021 Project: Hillside at Lorson Ranch Basin ID: Pond H Estimated Estimated ZONE 1 Stage (ft) Volume (ac-ft) Outlet Type EURV WQCV Zone 1 (WQCV) Orifice Plate 2.95 0.191 Zone 2 (EURV) 0.426 Rectangular Orifice 4.84 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 6.42 0.523 Weir&Pipe (Restrict) PERMAN POOL Example Zone Configuration (Retention Pond) Total (all zones) 1.140 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth N/A ft (distance below the filtration media surface) Underdrain Orifice Area N/A ft² Underdrain Orifice Diameter = N/A Underdrain Orifice Centroid = N/A feet inches User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice 0.00 ft (relative to basin bottom at Stage = 0 ft) 4.375E-03 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width N/A feet 2.95 Orifice Plate: Orifice Vertical Spacing 11.80 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 0.63 sq. inches (diameter = 7/8 inch) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.98 1.97 Orifice Area (sq. inches) 0.63 0.63 0.63 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 2.95 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.21 N/A Depth at top of Zone using Vertical Orifice 4.84 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid 0.13 N/A Vertical Orifice Height 3.00 N/A inches Vertical Orifice Width = 10.00 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.42 N/A Height of Grate Upper Edge, H_t N/A t (relative to basin bottom at Stage = 0 ft) 5.42 Overflow Weir Front Edge Length 6.00 N/A feet Overflow Weir Slope Length 3.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 7.09 N/A N/A 12.53 N/A Horiz. Length of Weir Sides 3.00 feet Overflow Grate Open Area w/o Debris Type C Grate Overflow Grate Type : N/A Overflow Grate Open Area w/ Debris = 6.26 N/A N/A Debris Clogging % 50% % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 1.77 Outlet Pipe Diameter 18.00 N/A Outlet Orifice Centroid N/A inches 0.75 Restrictor Plate Height Above Pipe Invert = 18.00 Half-Central Angle of Restrictor Plate on Pipe = 3.14 inches N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage: 7.50 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.58 feet Spillway Crest Length = 15.00 feet Stage at Top of Freeboard = 8.58 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 0.49 acres Freeboard above Max Water Surface = 0.50 Basin Volume at Top of Freeboard = 2.09 feet acre-ft micropool=5804.40=stage 0 Routed Hydrograph Results mns W through AF ault CLIHP hu na new values in the Inflow Hv is table (Co de the c nhs and i 100 Year Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 CUHP Runoff Volume (acre-ft) 0.191 0.617 0.578 0.811 1.014 1.278 1.496 1.769 Inflow Hydrograph Volume (acre-ft) N/A N/A 0.578 0.811 1.014 1.278 1.496 1.769 CUHP Predevelopment Peak Q (cfs) N/A N/A 0.8 6.2 7.8 9.9 2.2 3.3 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.21 0.96 0.07 0.32 0.59 0.75 Predevelopment Unit Peak Flow, g (cfs/acre) N/A N/A Peak Inflow Q (cfs) N/A N/A 7.0 10.0 12.2 19.1 22.5 16.3 Peak Outflow Q (cfs) 0.1 1.4 1.1 1.5 1.7 5.6 8.6 13.1 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.7 0.5 0.9 Structure Controlling Flow Vertical Orifice 1 Vertical Orifice tical Orifice Vertical Orifice Vertical Orifice Overflow Weir Overflow Weir 1 Overflow Weir 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A N/A 0.3 0.5 0.9 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 42 Time to Drain 97% of Inflow Volume (hours) 38 41 42 41 39 37 35 47 Time to Drain 99% of Inflow Volume (hours) 41 46 47 48 47 46 45 Maximum Ponding Depth (ft) 2.95 4.84 4.14 4.84 5.39 5.68 5.80 5.95 Area at Maximum Ponding Depth (acres) 0.17 0.31 0.28 0.28 0.33 0.34 0.35 Maximum Volume Stored (acre-ft)

SEE DESIGN POINT 5b FOR DISCUSSION OF OFFSITE FLOWS MEETING EXISTING CONDITIONS

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	lated inflow hyd	rographs from t	nis workbook wi	th inflow hydrog	raphs developed	l in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.23
	0:15:00 0:20:00	0.00	0.00	0.63	1.02 3.00	1.27 3.65	0.85	1.07 2.61	1.04 2.78	1.51 3.73
	0:25:00	0.00	0.00	5.24	7.60	9.69	5.17	6.09	6.69	9.77
	0:30:00	0.00	0.00	7.03	10.02	12.24	13.07	15.48	17.41	23.21
	0:35:00	0.00	0.00	7.04	9.87	11.96	15.94	18.71	22.06	28.92
	0:40:00	0.00	0.00	6.61	9.12	11.06	16.33	19.10	22.49	29.34
	0:45:00	0.00	0.00	5.92	8.25	10.13	15.34	17.92	21.63	28.17
	0:50:00 0:55:00	0.00	0.00	5.33 4.85	7.55 6.86	9.19 8.41	14.40 12.99	16.82 15.19	20.26 18.64	26.38 24.31
	1:00:00	0.00	0.00	4.42	6.21	7.69	11.76	13.77	17.27	22.55
	1:05:00	0.00	0.00	4.01	5.61	7.01	10.66	12.50	16.03	20.93
	1:10:00	0.00	0.00	3.53	5.08	6.41	9.35	10.98	13.90	18.21
	1:15:00	0.00	0.00	3.18	4.64	6.06	8.18	9.63	11.96	15.77
	1:20:00	0.00	0.00	2.92	4.27	5.62	7.24	8.52	10.31	13.62
	1:25:00 1:30:00	0.00	0.00	2.70	3.93 3.61	5.08 4.57	6.47 5.72	7.60 6.71	8.98 7.84	11.85
	1:35:00	0.00	0.00	2.30	3.31	4.10	5.04	5.89	6.82	8.98
	1:40:00	0.00	0.00	2.10	2.92	3.66	4.41	5.14	5.89	7.73
	1:45:00	0.00	0.00	1.91	2.54	3.24	3.82	4.43	5.00	6.57
	1:50:00	0.00	0.00	1.72	2.19	2.85	3.26	3.77	4.19	5.49
	1:55:00	0.00	0.00	1.46	1.89	2.48	2.75	3.17	3.46	4.54
	2:00:00 2:05:00	0.00	0.00	1.27	1.69	2.20 1.81	2.32	2.66	2.84 2.20	3.75 2.92
	2:10:00	0.00	0.00	0.84	1.30	1.61	1.62	1.64	1.71	2.92
	2:15:00	0.00	0.00	0.68	0.90	1.19	1.13	1.29	1.32	1.75
	2:20:00	0.00	0.00	0.55	0.73	0.96	0.89	1.02	1.01	1.34
	2:25:00	0.00	0.00	0.44	0.59	0.77	0.70	0.80	0.77	1.03
	2:30:00	0.00	0.00	0.35	0.47	0.61	0.55	0.63	0.59	0.78
	2:35:00 2:40:00	0.00	0.00	0.28	0.37	0.47	0.43	0.48	0.44	0.59
	2:45:00	0.00	0.00	0.22	0.20	0.30	0.35	0.29	0.27	0.35
	2:50:00	0.00	0.00	0.14	0.17	0.22	0.20	0.23	0.21	0.28
	2:55:00	0.00	0.00	0.11	0.13	0.17	0.16	0.17	0.17	0.22
	3:00:00	0.00	0.00	0.08	0.09	0.12	0.12	0.13	0.12	0.16
	3:05:00	0.00	0.00	0.05	0.07	0.09	0.08	0.09	0.09	0.12
	3:10:00 3:15:00	0.00	0.00	0.03	0.04	0.06	0.06	0.06	0.06	0.08
	3:20:00	0.00	0.00	0.02	0.01	0.03	0.03	0.04	0.04	0.02
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

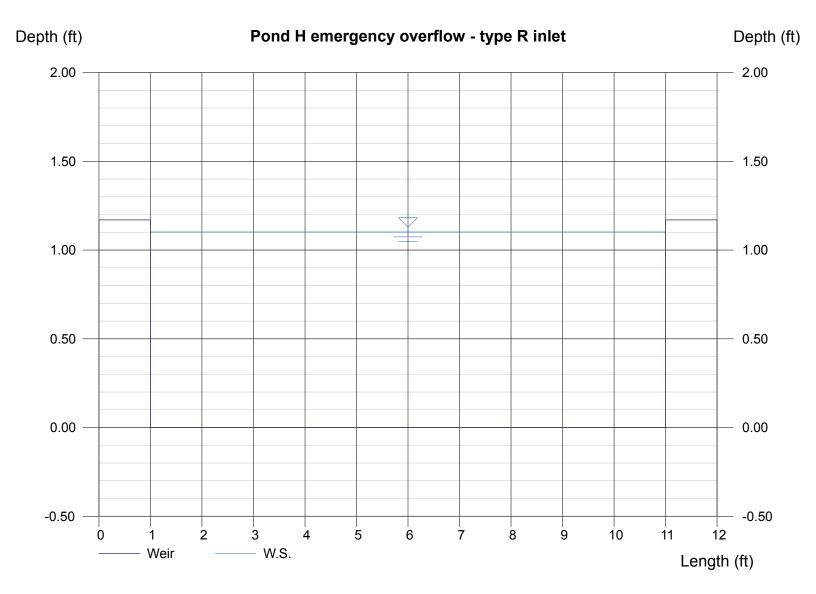
MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
top of micropool	0.00	30	0.001	0	0.000	0.00	For best results, include the
5805	0.60	160	0.004	57	0.001	0.02	stages of all grade slope
5806	1.60	2,527	0.058	1,400	0.032	0.04	changes (e.g. ISV and Floor)
5807	2.60	6,488	0.149	5,908	0.136	0.08	from the S-A-V table on Sheet 'Basin'.
5808	3.60	9,136	0.210	13,720	0.315	0.83	Sheet Dasin.
5809	4.60	11,649	0.267	24,112	0.554	1.36	Also include the inverts of a
5810	5.60	14,272	0.328	37,073	0.851	3.94	outlets (e.g. vertical orifice,
5811	6.60	16,928	0.389	52,673	1.209	20.58	overflow grate, and spillway
5812	7.60	19,738	0.453	71,006	1.630	23.72	where applicable).
5813	8.60	21,198	0.487	91,474	2.100	87.94	
							-
							-
							-
							-
							-
							-
							-
							4
							1
							1
]
							-

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	R. Schindler	
Company: Date:	Core Engineering Group April 13, 2022	
Project:	Hillside at Lorson Ranch	
Location:	Pond H - WQ pond	
1. Basin Storage \	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = <u>55.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 10.410 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod	ucing Storm	Choose One
E) Design Con (Select ELIP)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
(Delect LOIT		O Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.191 ac-ft
	neds Outside of the Denver Region,	V _{DESIGN OTHER} ac-ft
Water Quali	ty Capture Volume (WQCV) Design Volume	
	$R = (d_6^*(V_{\text{DESIGN}}/0.43))$	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
	logic Soil Groups of Tributary Watershed	
i) Percenta	ge of Watershed consisting of Type A Soils	HSG _A = %
	age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _B =% HSG _{CD} =%
J) Excess Urba	n Runoff Volume (EURV) Design Volume	
For HSG A	$: EURV_{A} = 1.68 * i^{1.28}$ $: EURV_{B} = 1.36 * i^{1.06}$	EURV _{DESIGN} = ac-f t
	$D_{C/D} = 1.30 \text{ f}^{-1.08}$	
	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} =ac-f t
(Only if a dif	ferent EURV Design Volume is desired)	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop		
 A) Basin Maxin (Horizontal of the second seco	Jum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
4. Inlet		energy dissipation from storm sewer flow dissipated via a concrete block attenuator located in the forebay.
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated	´
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.006 ac-ft
(V _{FMIN}	= <u>3%</u> of the WQCV)	
B) Actual Foreit	bay Volume	V _F = 0.006 ac-ft
C) Forebay Dep		D _F = 18.0 in
(D _F		D _F = <u>18.0</u> in
D) Forebay Disc	-	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 22.50 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = 0.45 cfs
E) Forebay Disc	sharge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch
		Wall with Ket. Notch
F) Discharge Di	pe Size (minimum 8-inches)	
G) Rectangular	NOIGH WIDTH	Calculated $W_N = 4.5$ in

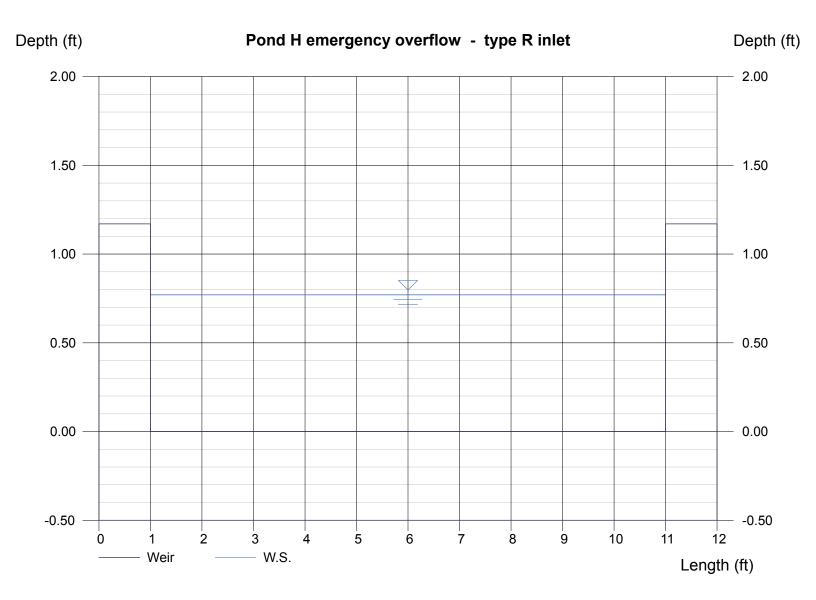
Pond H-UD-BMP_v3.07, EDB


Shee 2 of 3 Designer: R. Schindler Company: Company: Jussey 7, 302 Image: Status of 1, 2000 Project: Manager, 1, 2000 Project: Think the Status of Rank Jussey 7, 1002 Status of 1, 2000 A: Triple Triple Status of Chandi Image: Status of Chandi Project: Status of Chandi Jussey 1, 1002 Status of Chandia of C		Design Procedure Form:	Extended Detention Basin (EDB)
company: Core Engineering Broup: bets: Final Lorson Rench castion: Pand H 4 Wap point c. Tristic Charmal Image: Core Engineering Broup: A) Type of Tristic Charmal A) Type of Tristic Charmal B) Starting Charmal C) Codes Type Diversion Mitterpool (Diff Finithrum) Codes Charmal C) Codes Type Distarting Starting Sta	Designs	P. Schindler	Sheet 2 of 3
base::::::::::::::::::::::::::::::::::::			
Location: Pand H - WQ pand 9. Trickle Channel Correction:			
6. Trickle Channel 000000 (lie A) Type of Trickle Channel 0 - 00000 (lie F) Stope of Trickle Channel 0 - 00000 (lie F) Stope of Trickle Channel 0 - 00000 (lie 7. Managed and Outlet Structure 0 - 00000 (lie A) Dype of Microsol (2.5-field minimum) 0 - 00000 (lie C) Outlet Structure 0 - 00000 (lie A) Dype of Microsol (10 th minimum) 0 - 00000 (lie C) Outlet Type 0 - 00000 (lie B) Surface Area of Microsol (10 th minimum) 0 - 00000 (lie C) Outlet Dimension of Ortifics Opening Bseed on Hydrograph Routing (Lies UD-Deemistro) 0 - 00000 (lie E) Total Duries deminimum visua 0 - 00000 (lie B) Minimum visua or 0.375 (visua 0 - 00000 (lie A) Uppe of Screen Open Area: A = A, * 38.5° (lie 0 - 00000 (lie D) Dist of Minis Surcharge Volume (Minimum visua or 0.375 (visua watchere bit and one to the total open are to the tostal screen are for the native to the and the total open are to the total screen are for the matarial positions (lie) open (lie)	Project:	Hillside at Lorson Ranch	
B. Tretel Channel	Location:	Pond H - WQ pond	
A) Type of Tickle Channel \bigcirc Control F) Stope of Tickle Channel S = 0.00000 7. Micropool and Outle Structure A A) Depth of Micropool (2-5-feet minimum) $a_u = -\frac{2.5}{4.0} = 1$ B) Surface Area of Micropool (10 ff' minimum) $a_u = -\frac{2.5}{4.0} = 1$ C) Outle Type $a_u = -\frac{2.5}{4.0} = 1$ D) Structure Trans $a_u = -\frac{2.5}{4.0} = 0$ D) Micropool Trans Transfer $a_u = -\frac{2.5}{4.0} = 0$ D) Micropool Transfer Transfer $a_u = -\frac{2.5}{4.0} = 0$ D) Micropool Transfer Transfer $a_u = -\frac{2.5}{4.0} = 0$ D) Micropool Transfer Transfer $a_u = -\frac{2.5}{4.0} = 0$			Choose One
r) Sigge of Trickle Channel S = 0.0550 ft / ft 7. Micropool and Outlet Structure A) Depth of Micropool (2-feet minimum) 8) Surface Area of Micropool (10 ff minimum) $D_{a} + \frac{25}{40}$ ft C) Outlet Type $D_{a} + \frac{25}{40}$ ft (b) Outlet Type $D_{a} + \frac{25}{100}$ ft (b) Outlet Area $D_{a} + \frac{25}{100}$ cu ft (b) Outlet Area $D_{a} + \frac{25}{100}$ cu ft (b) Outlet Area $D_{a} + \frac{25}{100}$ cu ft (b) Northon Initial Surcharge Volume $U_{a} + \frac{25}{100}$ cu ft (b) Northon Initial Surcharge Volume $U_{a} + \frac{27}{100}$ cu ft (b) Northon Initial Surcharge Volume (the material-se commended in the UBDEX (the first and action of the material-se commended in the UBDEX (the first and action of the material-se commended in the UBDEX (the first and action of the material-se commended in the UBDEX (the first and action of	 Trickle Channe 	1	Concrete
7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft ² minimum) C) Outlet Type D) Smallest Dimension of Onfice Opening Based on Hydrograph Routing (Ves UD-Detention) D) Smallest Dimension of Onfice Opening Based on Hydrograph Routing (Ves UD-Detention) E) Total Outlet Area D. begin of Micropool (2.5-feet minimum) O) Smallest Dimension of Onfice Opening Based on Hydrograph Routing (Ves UD-Detention) E) Total Outlet Area A. =	 A) Type of Tric 	kle Channel	O Soft Bottom
A) Depth of Micropol (2.5-feet minimum) $D_u = \underbrace{2.5}_{t} t$ B) Surface Area of Micropol (10 ft ⁿ minimum) $U_u = \underbrace{2.5}_{t} t$ C) Outlet Type $\bigcup_{t=1}^{0000} Other Pate D) Smallest Dimension of Orifice Opening Based on Hydrograph Rouling (Use UD-Deterritor) \bigcup_{t=1}^{0000} Other Pate D) Smallest Dimension of Orifice Opening Based on Hydrograph Rouling (Use UD-Deterritor) D_{ontot} = 0.88 meches E) Total Outlet Area D_{ontot} = 0.88 meches A = \boxed{1.88} meches D_{ontot} = \frac{0.88}{1.88} meches B) Minimum initial Surcharge Volume (Minimum recommended depth is 4 inches) D_{ontot} = \frac{0.88}{1.88} meches B) Minimum initial Surcharge Volume (Minimum recommended depth is 4 inches) D_{ontot} = \frac{1.5}{1.88} equare inches B) Tash Rack A_i = \underbrace{6.7}{0.33} out ft A) Water Outlaity Stream Open Area: A_i = A_i^* 38.5% e^{-0.000} A_i = \underbrace{6.8}{0.0000} D) Total Vater Outlaity Stream Open Area: A_i = A_i^* 38.5% e^{-0.000} A_i = \underbrace{6.8}{0.0000} D) Total Vater Quality Stream Open Area: A_i = A_i^* 38.5% e^{-0.000} A_{int} = \underbrace{6.8}{0.0000000000000000000000000000000000$	F) Slope of Trie	ckle Channel	S = 0.0050 ft / ft
B) Surface Area of Micropool (10 ff minimum) A _u = 40 sq ft C) Outlet Type Discontrol (10 ff minimum) D) Smallest Dimension of Orfice Opening Based on Hydrograph Routing (Use UD-Detention) Discontrol (10 ff minimum) E) Total Outlet Area Discontrol (10 ff minimum) B) Minimum Area Discontrol (10 ff minimum) E) Total Outlet Area Discontrol (10 ff minimum) 8. Initial Surcharge Volume (Minimum recommended depth is 4 inches) Discontrol (10 ff minimum) B) Minimum Minibi Surcharge Volume (Minimum recommended depth is 4 inches) Discontrol (10 ff minibi Surcharge Volume) 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 25 ou ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 00 ff square inches 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 00 ff square inches C) Initial Surcharge Provided Above Micropool Vie = 00 ff square inches 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the total open area to the in the USDChinet area for the material specified.) A = 07 square inches Other (YR): V User Rate = 0.4 A = 0.7 0. Total Water Quality Screen Area (based on screen type) Lise Rate = 0.4 A = 2.35 feet 112 sq. in. Bas	7. Micropool and	Outlet Structure	
B) Surface Area of Micropool (10 ff minimum) A _u = 40 sq ft C) Outlet Type Discontrol (10 ff minimum) D) Smallest Dimension of Orfice Opening Based on Hydrograph Routing (Use UD-Detention) Discontrol (10 ff minimum) E) Total Outlet Area Discontrol (10 ff minimum) B) Minimum Area Discontrol (10 ff minimum) E) Total Outlet Area Discontrol (10 ff minimum) 8. Initial Surcharge Volume (Minimum recommended depth is 4 inches) Discontrol (10 ff minimum) B) Minimum Minibi Surcharge Volume (Minimum recommended depth is 4 inches) Discontrol (10 ff minibi Surcharge Volume) 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 25 ou ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 00 ff square inches 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vie = 00 ff square inches C) Initial Surcharge Provided Above Micropool Vie = 00 ff square inches 9. Minimum Minibi Surcharge Volume (Minimum volume of 0.3% of the total open area to the in the USDChinet area for the material specified.) A = 07 square inches Other (YR): V User Rate = 0.4 A = 0.7 0. Total Water Quality Screen Area (based on screen type) Lise Rate = 0.4 A = 2.35 feet 112 sq. in. Bas	A) Depth of Mi	cropool (2.5-feet minimum)	D _M = 2.5 ft
C) Outlet Type			
Discrete Ride Discrete Ride Other (Place/line): Discrete Ride Discrete Ride Discrete Ride Discrete Ride Discrete Ride Discrete Ride Discrete Ride Bis India Surcharge Volume (Minimum recommended depth is 4 inches) Discrete Ride Bis Minimum Nitial Surcharge Volume (Minimum recommended depth is 4 inches) Discrete Ride Bis Minimum Nitial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vi= 25 ou ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vi= 13.3 ou ft 9. Trash Rack A = 67 sequare inches A) Water Quality Screen Open Area: A = Ag* 38.5*(e ^{d.conth}) A = 67 sequare inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM indiaes "other" and erriter hard to the total apen are to the total screen are for the material specified. A = 67 sequare inches D) Total Water Quality Screen Area (based on screen type) User Rabo = 0.6 Auge = 112 sq. in. Based on type "Other" screen ratio H = 295 feet H = 295 feet H = 295 feet H = 295 feet (B) Other Quality Screen Opening (W _{genren}) H = 0.34 inches Viguer = 120 inches VIGUE LESS THAN RECOMMENDED MIN. VDTH.			י אי איז איז
D) Smallest Dimension of Orfice Opening Based on Hydrograph Routing (Use UD-Detertion) Dome = 0.88 = nches B) Stallest Dimension of Orfice Opening Based on Hydrograph Routing (Use UD-Detertion) Dome = 0.88 = nches B) Total Outlet Area A _e = 1.89 = square inches A Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) D _{in} = 4 in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) V _{is} = 25 ou ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) V _{is} = 07 square inches Dype of Screen (FiguerAring an alternative to the materials recommended in the UBOCM indiced Yorker and enter the ratio of the total open are to the total screen are for the materials recommended in the UBOCM indiced Yorker and enter the ratio of the total open are to the total screen are for the material specified.) A = 67 square inches D) Total Water Quality Screen Area (cased on screen type) User Ratio = 0.65 H= 2.95 seet. A _{max} = 112 sq. in. Based on type 'Other' screen ratio H= 2.95 seet. C) Ratio of Total Open Area to Total Area (only for type 'Other) H _{max} = 63.4 nches H= 2.95 seet. H _{max} = 63.4 nches H= 2.95 seet. Dipti of Design Yolume (EURY or WQCV) (Based on design concept chosen under 1(F) F) Height of Water Quality Screen (H _m) H _{max} = 63.4 nches H _{max} = 0.20 inches H _{max} = 0.20 inches O Wath of Water Quality Screen Open (M _{max}) H _{max} = 0.20 inches Nutlet ESS TMAN RECOMMENDED MIN WE	C) Outlet Type		
D) Smallest Dimension of Onfice Opening Based on Hydrograph Routing (Use UD-Deternion) D _{ottor} =			
(Use UD-Detention) Durter = 0.88 Inches E) Total Outlet Area Ar = 1.89 square inches 8. Initial Surcharge Volume (Minimum recommended depth is 4 inches) Dus = 4 in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Provided Above Micropool Vis = 26 9. Trash Rack A) Water Quality Screen Open Area: A ₁ = A ₄ * 38.5'(e ^{0.000D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicet's often and ent'ne the rate of the total open are to the total screen are for the material specified.) A ₁ = 67 Other (YNI): Y User Ratio = 0.6 C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) H= 2.95 E) Depth of Design Volume (EURV or WQCV) (Based on design roomet chosen under 1E) H ₁₁₂ F) Height of Water Quality Screen (H ₁₀₀) H ₁₁₂ inches G) Width of Water Quality Screen Opening (W _{queenee}) H ₁₁₂ inche			O Other (Describe):
(Use UD-Detention) Durter = 0.88 Inches E) Total Outlet Area Ar = 1.89 square inches 8. Initial Surcharge Volume (Minimum recommended depth is 4 inches) Dus = 4 in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Provided Above Micropool Vis = 26 9. Trash Rack A) Water Quality Screen Open Area: A ₁ = A ₄ * 38.5'(e ^{0.000D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicet's often and ent'ne the rate of the total open are to the total screen are for the material specified.) A ₁ = 67 Other (YNI): Y User Ratio = 0.6 C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) H= 2.95 E) Depth of Design Volume (EURV or WQCV) (Based on design roomet chosen under 1E) H ₁₁₂ F) Height of Water Quality Screen (H ₁₀₀) H ₁₁₂ inches G) Width of Water Quality Screen Opening (W _{queenee}) H ₁₁₂ inche			
(Use UD-Detention) Durter = 0.88 Inches E) Total Outlet Area Ar = 1.89 square inches 8. Initial Surcharge Volume (Minimum recommended depth is 4 inches) Dus = 4 in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 26 C) Initial Surcharge Provided Above Micropool Vis = 26 9. Trash Rack A) Water Quality Screen Open Area: A ₁ = A ₄ * 38.5'(e ^{0.000D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicet's often and ent'ne the rate of the total open are to the total screen are for the material specified.) A ₁ = 67 Other (YNI): Y User Ratio = 0.6 C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) H= 2.95 E) Depth of Design Volume (EURV or WQCV) (Based on design roomet chosen under 1E) H ₁₁₂ F) Height of Water Quality Screen (H ₁₀₀) H ₁₁₂ inches G) Width of Water Quality Screen Opening (W _{queenee}) H ₁₁₂ inche			
8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool Vs = 25 cu ft Vs = 13.3 cu ft 9. Trash Rack A) Water Quality Screen Open Area: A ₁ + A ₄ * 38.5°(e ^{-0.060}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (VN): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H ₁) F) Height of Water Quality Screen (H ₁) G) Width of Water Quality Screen Opening (W _{qeeneg})			D _{orifice} =inches
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) $D_{15} = 4$ in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{15} = 25$ ou ft C) Initial Surcharge Provided Above Micropool $V_{12} = 13.3$ ou ft 9. Trash Rack $V_{12} = 67$ square inches A) Water Quality Screen Open Area: $A_1 = A_n^* 38.5^* (e^{-0.050})$ $A_1 = 67$ square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified) $A_2 = 67$ square inches C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) $A_{cost} = 112$ sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) $H_{Ta} = 63.4$ inches F) Height of Water Quality Screen Opening (W _{spentre}) $H_{Ta} = 63.4$ inches	E) Total Outlet	Area	A _{ct} = 1.89 square inches
(Minimum recommended depth is 4 inches) Vis = 25 cu ft B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Provided Above Micropool Vis = 13.3 cu ft 9. Trash Rack A = 67 square inches A) Water Quality Screen Open Area: A = A _{in} * 38.5*(e ^{-0.06D}) A = 67 square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and erther the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{instef} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H _{instef} = 63.4 inches F) Height of Water Quality Screen Opening (W _{querney}) W _{querneg} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.	8. Initial Surcharg	e Volume	
(Minimum recommended depth is 4 inches) Vis = 25 cu ft B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis = 25 cu ft C) Initial Surcharge Provided Above Micropool Vis = 13.3 cu ft 9. Trash Rack A = 67 square inches A) Water Quality Screen Open Area: A = A _{in} * 38.5*(e ^{-0.06D}) A = 67 square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and erther the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{instef} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H _{instef} = 63.4 inches F) Height of Water Quality Screen Opening (W _{querney}) W _{querneg} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.	A) Depth of Ini	tial Surcharge Volume	$D_{1S} = 4$ in
(Minimum volume of 0.3% of the WQCV) Vs= 13.3 cu ft C) Initial Surcharge Provided Above Micropool Vs= 13.3 cu ft 9. Trash Rack A; = 67 square inches A) Water Quality Screen Open Area: A; = A _{vs} * 38.5*(e ^{-0.096D}) A; = 67 square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, include: "other" and ret the ratio of the total open are to the total screen are for the material specified.) Other (Please describe below) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{cotal} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H _{TR} = 63.4 inches F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches G) Width of Water Quality Screen Opening (W _{openno}) W _{openno} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.			
C) Initial Surcharge Provided Above Micropool V_s= 13.3 cu ft 9. Trash Rack A, and the second se			V _{IS} = 25 cu ft
9. Trash Rack A) Water Quality Screen Open Area: A ₁ = A _x * 38.5*(e ^{-0.0950}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen Opening (W _{opening})	(Minimum vo	olume of 0.3% of the WQCV)	
A) Water Quality Screen Open Area: $A_t = A_{xt} * 38.5^{*}(e^{-0.095D})$ $A_t = 67$ square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) $A_t = 67$ square inches $Other (Please describe below)$ $Other (Please describe below)$ $Other (Please describe below)$ $Other (Y/N)$: Y Y C) Ratio of Total Open Area to Total Area (only for type 'Other') $User Ratio = 0.6$ D) Total Water Quality Screen Area (based on screen type) $A_{total} = 112$ sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) $H_{TR} = 63.4$ inches F) Height of Water Quality Screen (H_{TR}) $H_{TR} = 63.4$ inches G) Width of Water Quality Screen Opening ($W_{opening}$) $W_{opening} = 12.0$ inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.	C) Initial Surcha	arge Provided Above Micropool	V _s = 13.3 cu ft
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Please describe below) C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) User Ratio = 112 E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H _{1R} = 63.4 F) Height of Water Quality Screen (H _{TR}) W _{opening} = 12.0	9. Trash Rack		
in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H _{TR}) G) Width of Water Quality Screen Opening (W _{opening}) User Ratio = 0.6 H= 2.95 feet H _{TR} = 63.4 inches Value Less THAN RECOMMENDED MIN, WIDTH.	A) Water Qual	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = 67 square inches
total screen are for the material specified.) Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{total} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.95 feet F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN, WIDTH.			Other (Please describe below)
Other (Y/N): Y C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{total} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.95 feet F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.			
C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = 0.6 D) Total Water Quality Screen Area (based on screen type) A _{total} = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.95 feet F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.			
D) Total Water Quality Screen Area (based on screen type) Atotal = 112 sq. in. Based on type 'Other' screen ratio E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.95 feet H= 2.95 feet F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches H= 2.00 inches G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.		Other (Y/N):	
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.95 feet F) Height of Water Quality Screen (H _{TR}) H _{TR} = 63.4 inches G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches	C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
(Based on design concept chosen under 1E) HTR= 63.4 F) Height of Water Quality Screen (HTR) HTR= 63.4 G) Width of Water Quality Screen Opening (W _{opening}) Wopening = 12.0	D) Total Water	Quality Screen Area (based on screen type)	A _{total} = 112 sq. in. Based on type 'Other' screen ratio
G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.			H= 2.95 feet
G) Width of Water Quality Screen Opening (W _{opening}) W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. (Minimum of 12 inches is recommended) WIDTH HAS BEEN SET TO 12 INCHES.	F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 63.4 inches
			W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	R. Schindler Core Engineering Group January 7, 2022 Hillside at Lorson Ranch Pond H - WQ pond	Sheet 3 of 3
B) Slope of O	ankment embankment protection for 100-year and greater overtopping: verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)	TRM added to emergency overflow. All of 100-year flows will enter outlet structure before entering emergency overflow. Ze = 4.00 ft / ft
11. Vegetation		Choose One O Irrigated Not Irrigated
12. Access A) Describe S	Sediment Removal Procedures	
Notes:		

Hydraflow Express by Intelisolve

Pond H emergency overflow - type R inlet


Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.10
Bottom Length (ft)	= 10.00	Q (cfs)	= 38.50
Total Depth (ft)	= 1.17	Area (sqft)	= 11.02
		Velocity (ft/s)	= 3.49
Calculations		Top Width (ft)	= 10.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 38.50		

Hydraflow Express by Intelisolve

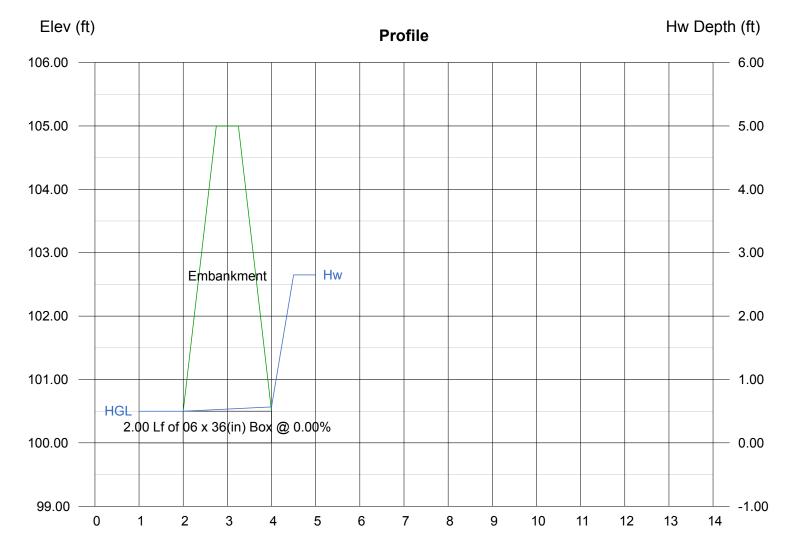
Pond H emergency overflow - type R inlet

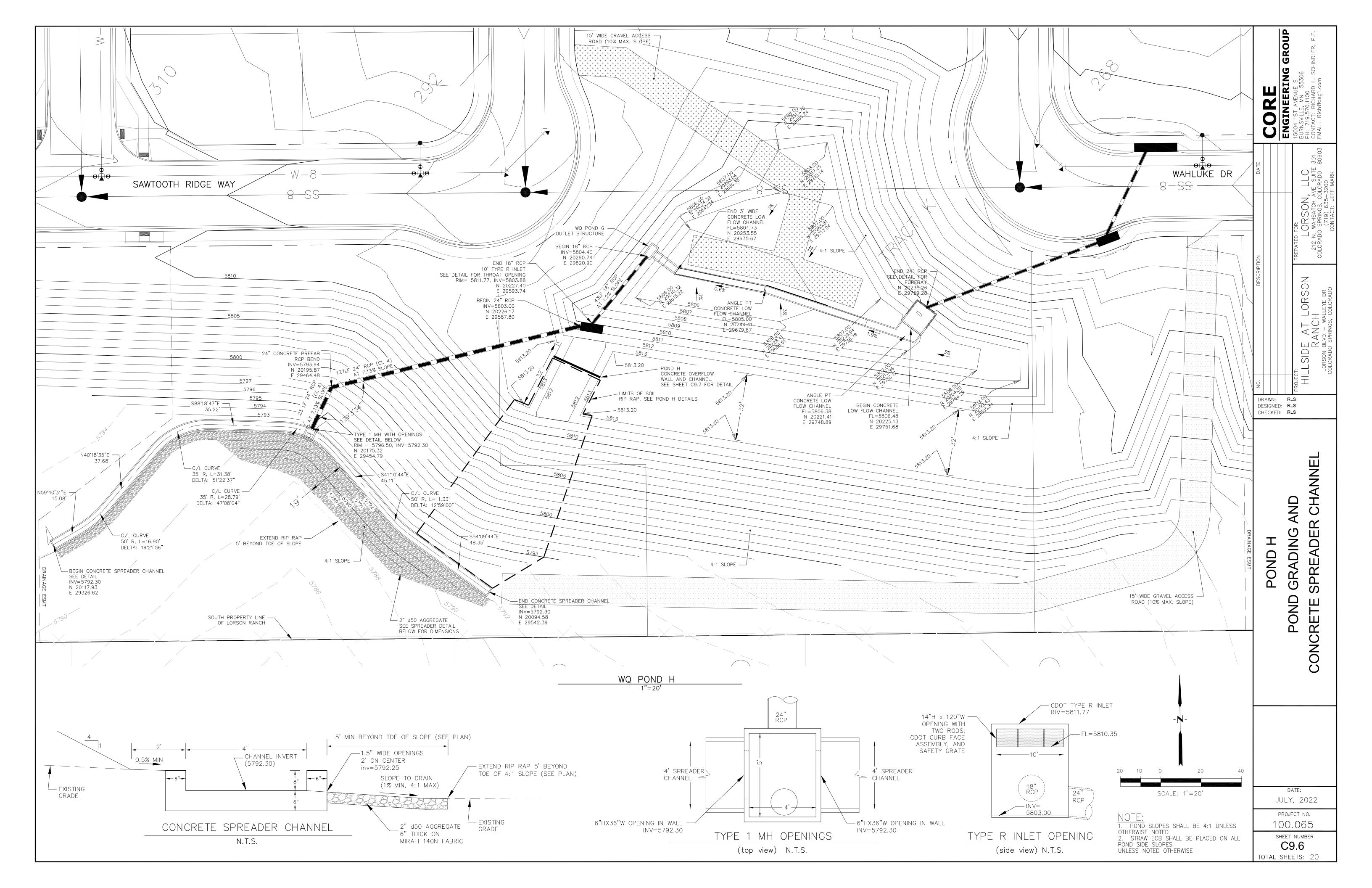
Rectangular Weir	,	Highlighted
Crest	= Sharp	Depth (ft) = 0.77
Bottom Length (ft)	= 10.00	Q (cfs) = 22.50
Total Depth (ft)	= 1.17	Area (sqft) = 7.70
		Velocity (ft/s) = 2.92
Calculations		Top Width (ft) = 10.00
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 22.50	

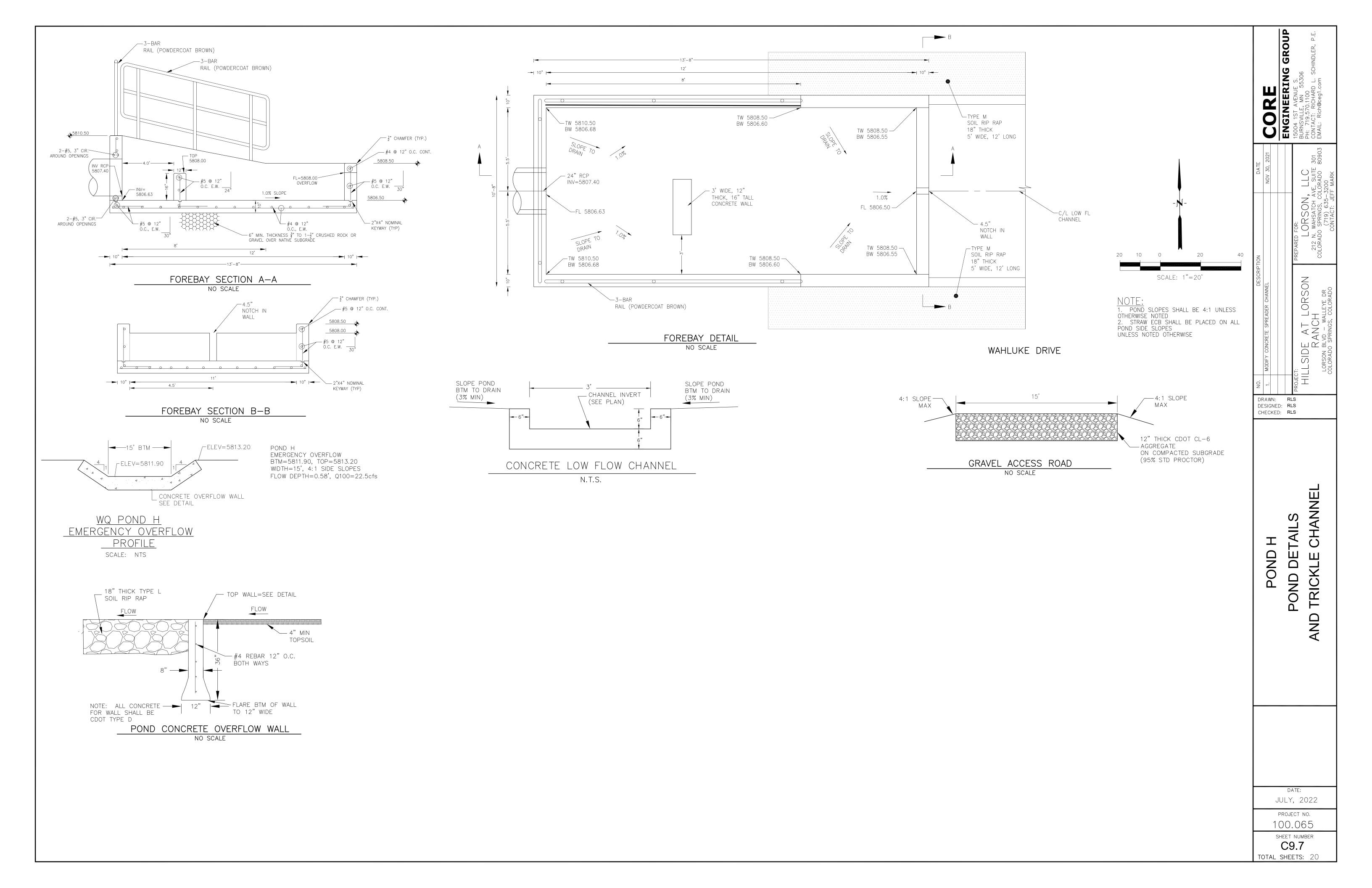
Hydraflow Express by Intelisolve

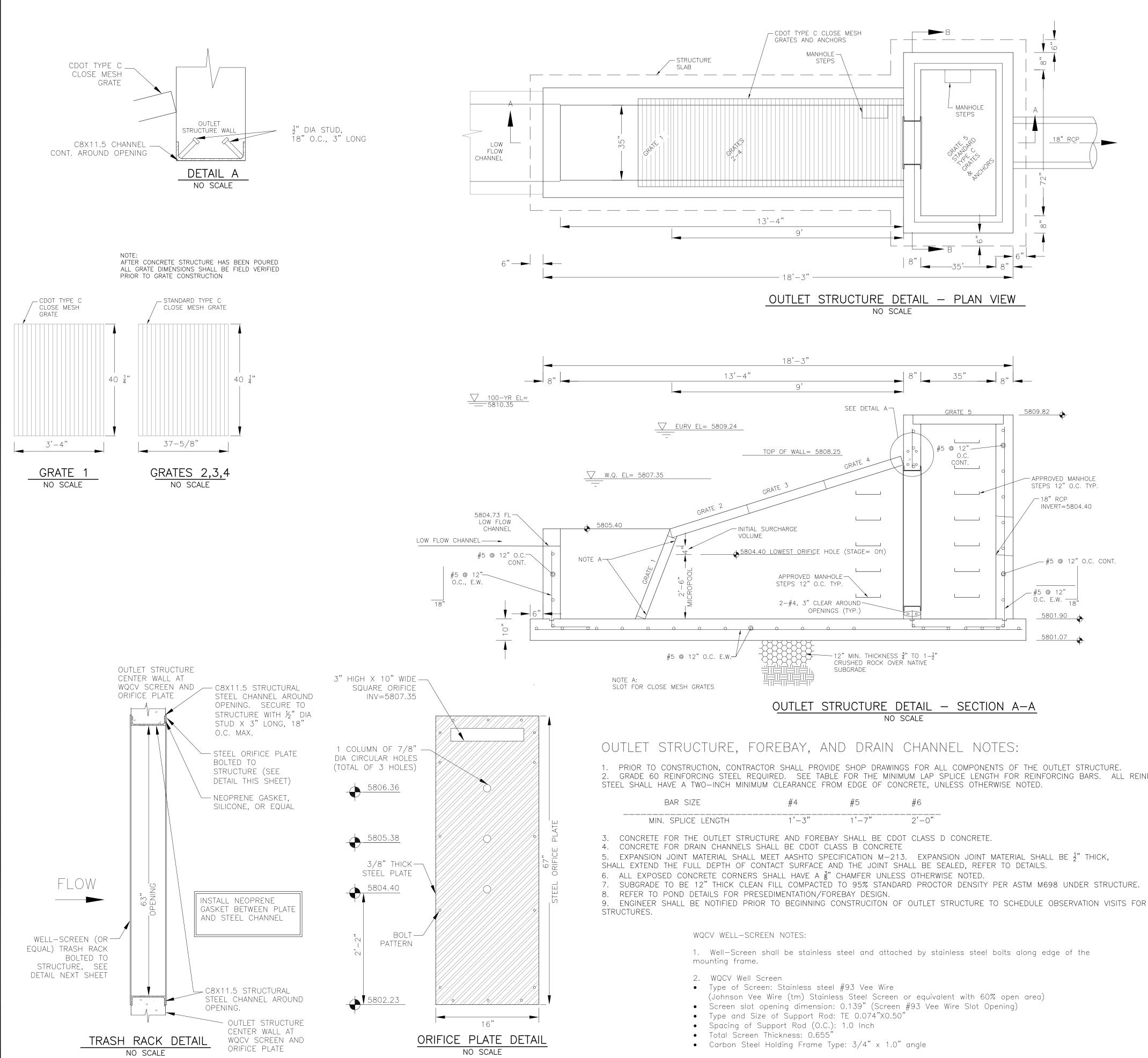
Type I spreader Manhole (2 - 6x36 openings)

Invert Elev Dn (ft)	=	100.00	С
Pipe Length (ft)	=	2.00	Q
Slope (%)	=	0.00	Q
Invert Elev Up (ft)	=	100.00	Та
Rise (in)	=	6.0	
Shape	=	Box	Н
Span (in)	=	36.0	Q
No. Barrels	=	2	Q
n-Value	=	0.013	Q
0		Sq Edge	V
Coeff. K,M,c,Y,k	=	0.061, 0.75, 0.04, 0.8, 0.5	V
			ப

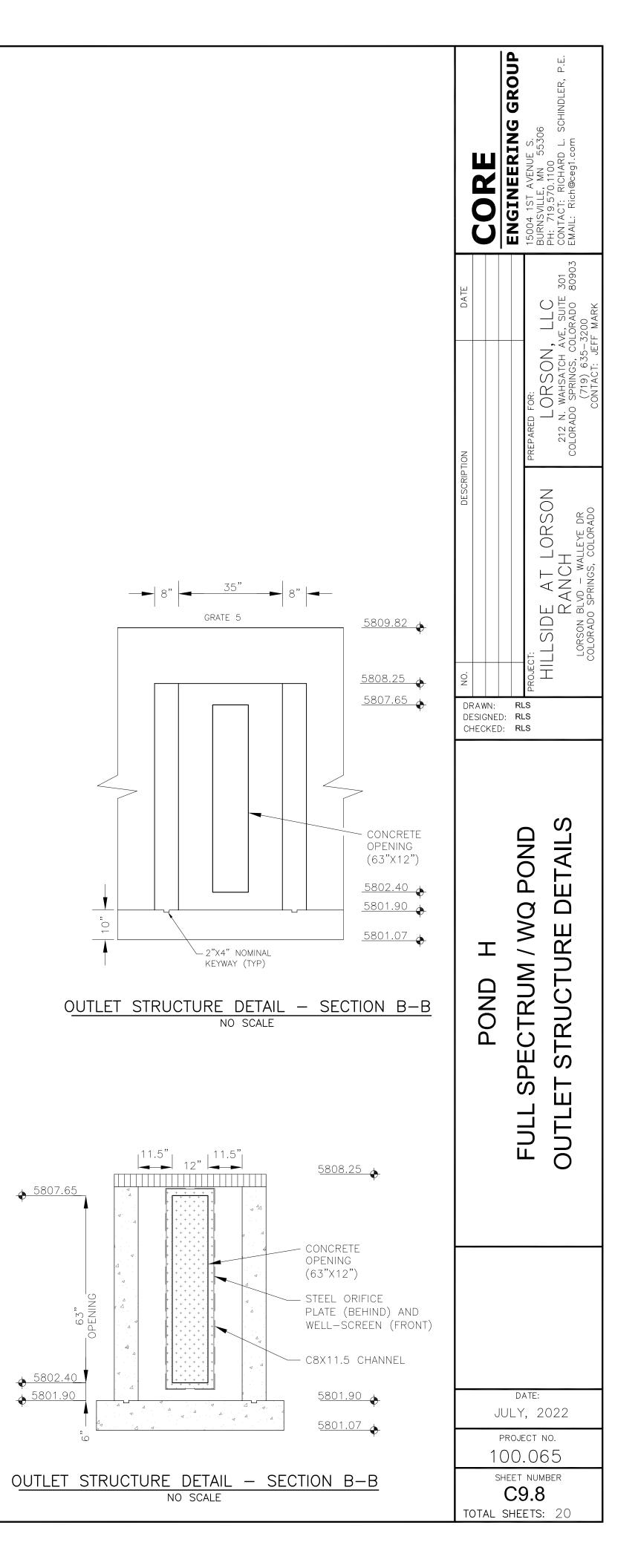

Embankment


Top Elevation (ft)	=
Top Width (ft)	=
Crest Width (ft)	=


=	105.00
=	0.50
=	20.00

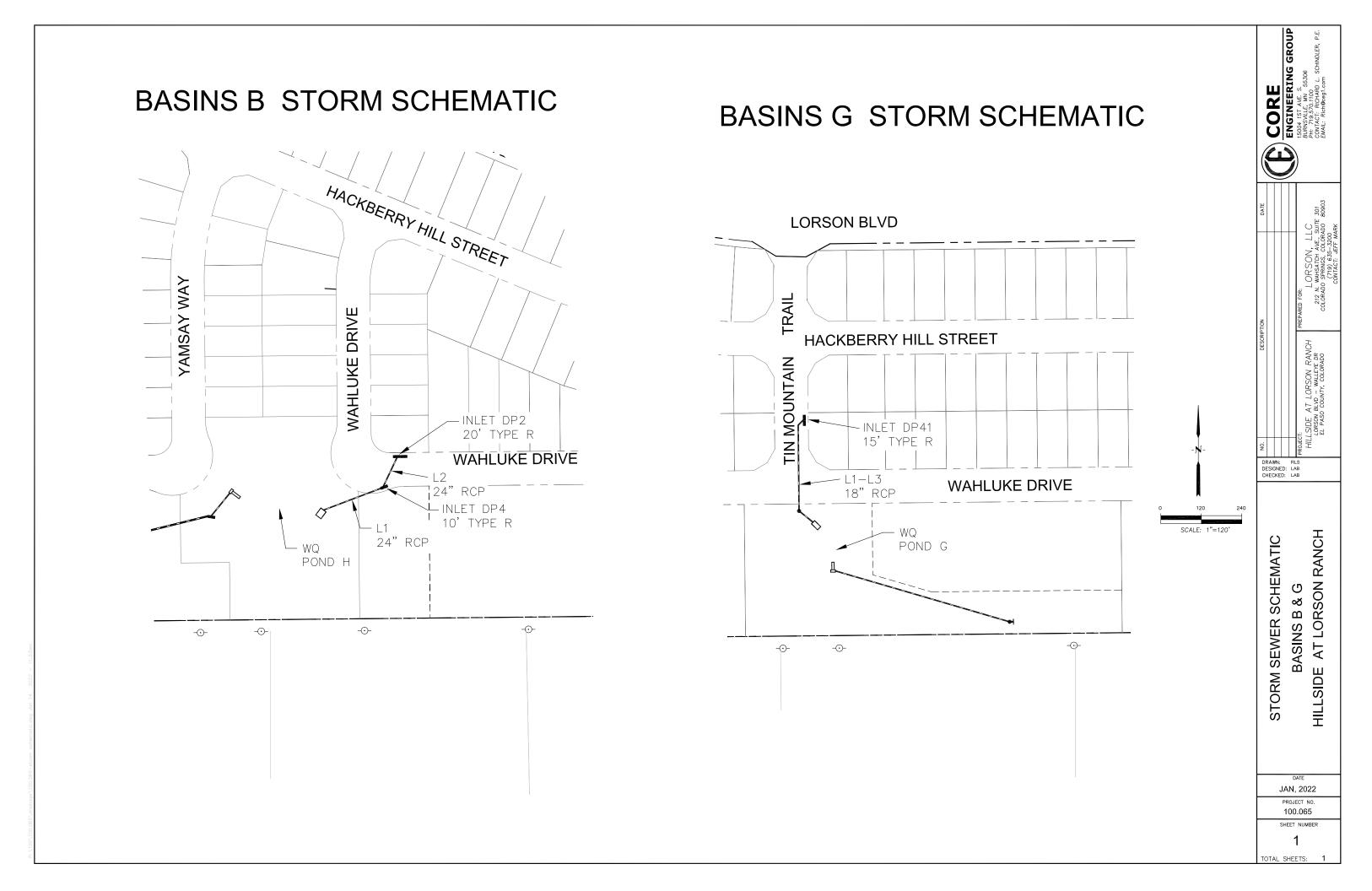

Calculations

Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 13.00 = 23.00 = (dc+D)/2
Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft)	= 22.50 = 22.50 = 0.00 = 7.67 = 7.67 = 100.50 = 100.57 = 102.65 = 5.30
Flow Regime	= Inlet Control



2. GRADE 60 REINFORCING STEEL REQUIRED. SEE TABLE FOR THE MINIMUM LAP SPLICE LENGTH FOR REINFORCING BARS. ALL REINFORCING

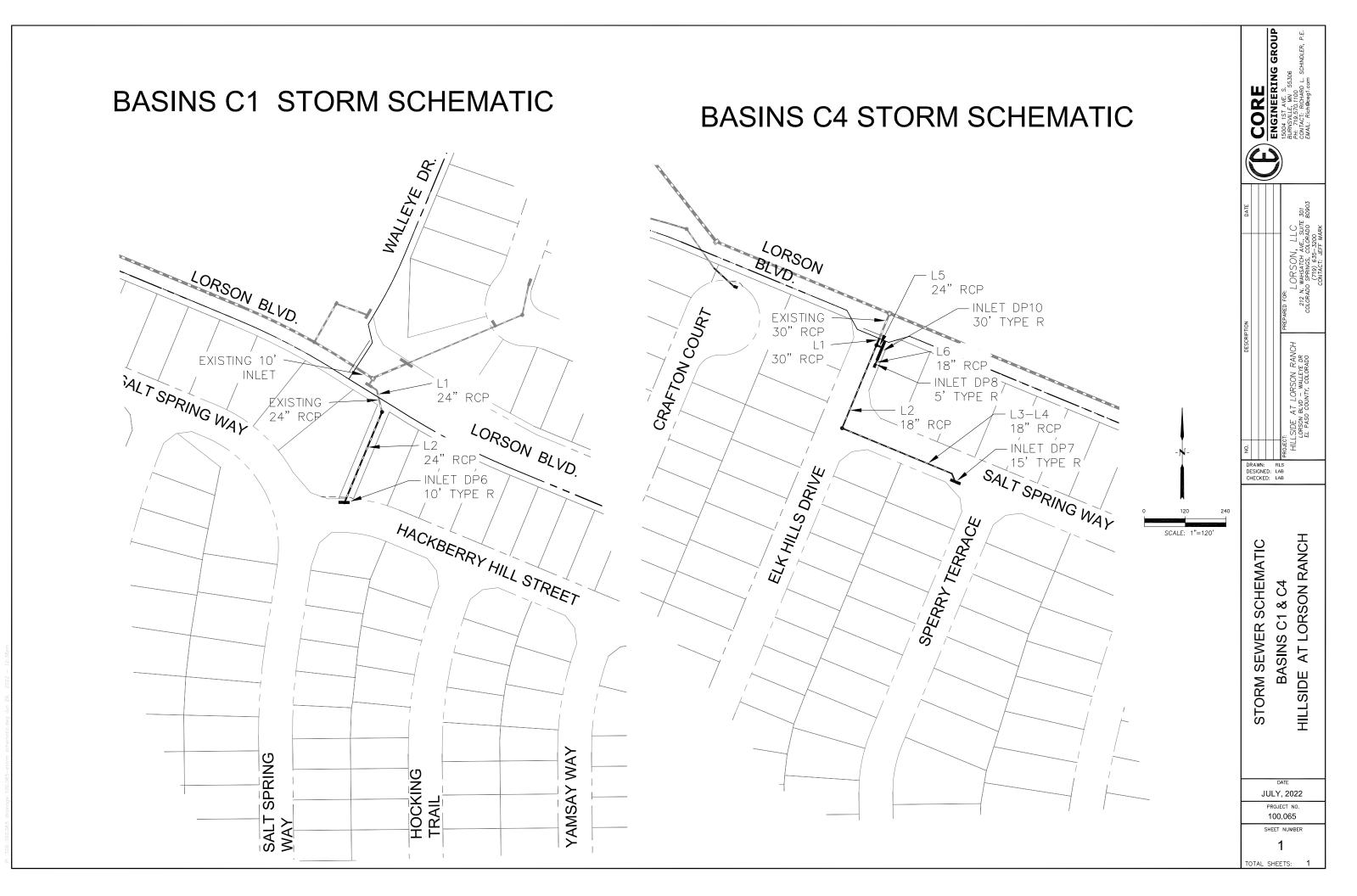
BAR SIZE	#4	#5	#6


7. SUBGRADE TO BE 12" THICK CLEAN FILL COMPACTED TO 95% STANDARD PROCTOR DENSITY PER ASTM M698 UNDER STRUCTURE.

Design Procedure Form: Runoff Reduction												
				UD-BMP (V	ersion 3.07, Ma	rch 2018)						Sheet 1 of 1
Designer:	Richard Schindler									_		
Company:	Core Enginee	ore Engineering Group										
Date:	January 12, 2	022									-	
Project:	Hillside at Lo	rson Ranch									_	
Location:	Runoff South	to Peaceful Va	alley Estates ((50' deep RPA))						-	
SITE INFORMATION (Use		Rainfall Depth	0.60	inches								
Depth of Average Ru			0.60		Vatorshods ()	itside of the D	enver Pegior	Eigure 3-1 i	n USDCM Vo	3)		
Departor / Weitage / ta		g otorni, a ₆	0.45		valeraneua Ol		Jenver Regior	i, rigure 5-ri		. 5)		
Area Type	UIA:RPA											
Area ID	res. Lot											
Downstream Design Point ID	1											
Downstream BMP Type	None											
DCIA (ft ²)												
UIA (ft ²)	9,500											
RPA (ft ²)	5,000				ļ							
SPA (ft ²)					ļ							┝────┤ ┃
HSG A (%)	0%			ł								┝───┤┃
HSG B (%) HSG C/D (%)	100% 0%											<u> </u>
Average Slope of RPA (ft/ft)	0%				<u> </u>							┝───┤┃
UIA:RPA Interface Width (ft)	100.00											
	100.00											
CALCULATED RUNOFF	RESULTS											
Area ID	res. Lot											
UIA:RPA Area (ft ²)	14,500											
L / W Ratio	1.45											
UIA / Area	0.6552											
Runoff (in)	0.00											
Runoff (ft ³)	0											
Runoff Reduction (ft ³)	396											
CALCULATED WQCV RE	ени те											
Area ID												
WQCV (ft ³)	396											
WQCV Reduction (ft ³)	396											
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)	0											
CALCULATED DESIGN F		LTS (sums re	sults from a	II columns w	vith the same	Downstream	Design Poir	nt ID)				
Downstream Design Point ID				ļ	ļ							
DCIA (ft ²)	0											
UIA (ft ²)	9,500			ł								┝───┤┃
RPA (ft ²)	5,000 0											<u> </u>
SPA (ft ²) Total Area (ft ²)	0 14,500				<u> </u>							┝───┤┃
Total Area (ft ⁻) Total Impervious Area (ft ²)	9,500											
WQCV (ft ³)	396											
WQCV (it) WQCV Reduction (ft ³)	396				l							
WQCV Reduction (%)	100%	-		1	1	1	1	1	1			
Untreated WQCV (ft ³)					İ							
		-		•						-		I
CALCULATED SITE RES	ULTS (sums	results from	all columns	in workshee	et)							
Total Area (ft ²)	14,500											
Total Impervious Area (ft ²)	9,500											
WQCV (ft ³)	396											
WQCV Reduction (ft ³)												
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)	0	l										

Design Procedure Form: Runoff Reduction												
				UD-BMP (Ve	ersion 3.07, Ma	rch 2018)						Sheet 1 of 1
Designer:	Richard Schir	Richard Schindler										
Company:	Core Enginee	ore Engineering Group										
Date:	April 13, 2022											
Project:	Hillside at Lor	rson Ranch										
Location:	Basin F											
										•		
	SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth 0.60 inches Depth of Average Runoff Producing Storm, d ₆ = 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3)											
								, ,		- /		
Area Type	UIA:RPA											
Area ID	res. Lot											
Downstream Design Point ID	1											
Downstream BMP Type												
DCIA (ft ²)												
UIA (ft ²)	4,500											
RPA (ft ²)	7,250											
SPA (ft ²)												┝───┤┃
HSG A (%) HSG B (%)	0% 100%											┝───┤┃
HSG B (%) HSG C/D (%)	0%											├───┤┃
Average Slope of RPA (ft/ft)	0%											┝───┤┃
UIA:RPA Interface Width (ft)	125.00											
	120.00								I			
CALCULATED RUNOFF				r	1		r	1	1			
Area ID	res. Lot											
UIA:RPA Area (ft ²)	11,750											
L / W Ratio	0.75											
UIA / Area	0.3830											
Runoff (in)	0.00											
Runoff (ft ³)	0											
Runoff Reduction (ft ³)	188											
CALCULATED WQCV RE	SULTS											
Area ID												
WQCV (ft ³)	188											
WQCV Reduction (ft ³)	188											
WQCV Reduction (%)	100%											
Untreated WQCV (ft3)	0											
CALCULATED DESIGN F Downstream Design Point ID		LTS (sums re	sults from a	ll columns w	ith the same	Downstream	n Design Poir	nt ID)				
DOWNSTEAM Design Form D	0					-					-	┝───┤┃
UIA (ft ²)	4,500											
RPA (ft ²)	7,250											
SPA (ft ²)	0											
Total Area (ft ²)	11,750											
Total Impervious Area (ft ²)	4,500											
WQCV (ft ³)	188											
WQCV Reduction (ft ³)	188											
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)	0											
CALCULATED SITE RES Total Area (ft ²)	ULTS (sums 11,750	results from	all columns	in workshee	et)							
Total Impervious Area (ft ²)	4,500											
WQCV (ft ³)	188											
WQCV Reduction (ft ³)												
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)												

APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS



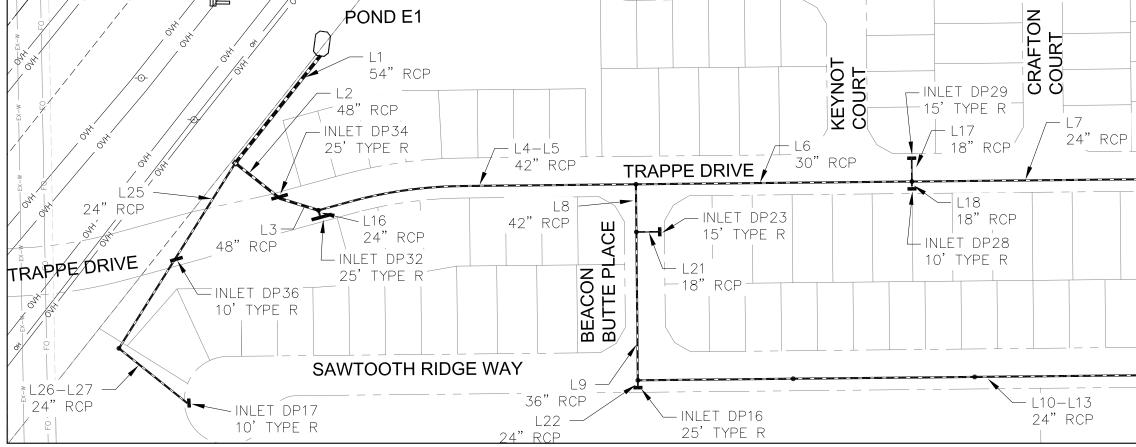
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	15.70	24 c	93.6	5807.40	5812.83	5.804	5808.80	5814.23	n/a	5814.23	End
	1 2	(cfs)	(in)	(ft)	(ft)	(ft) 5812.83	(%)	(ft)		(ft)	(ft)	No.
hilloid	e B basins -5yr							nber of line			Date: 01-14	

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	38.50	24 c	93.6	5807.40	5812.83	5.804	5809.35	5814.78	n/a	5814.78 j	End
1 2	1 2	38.50	24 c 24 c	93.6	5807.40		5.804	5809.35		n/a 1.02	5814.78 j 5817.76	End 1
hillsid	e B basins -100yr						Nur	nber of line	s: 2	Run	Date: 01-14	-2022

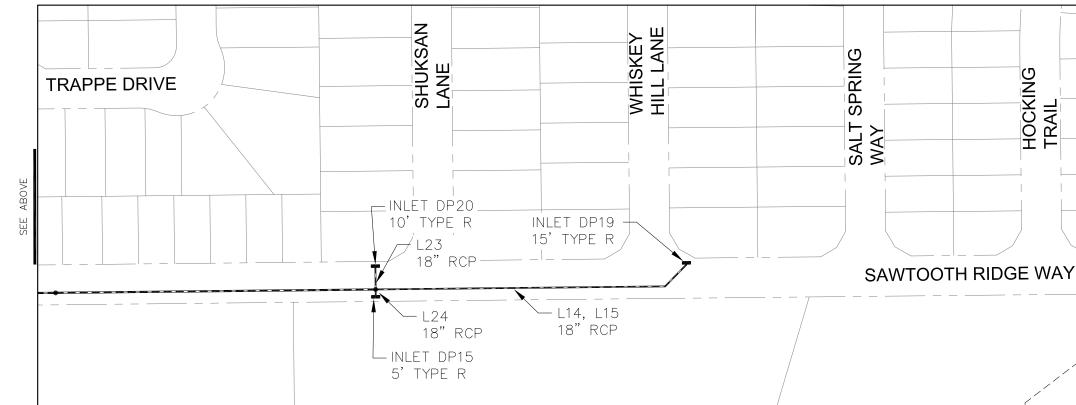
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		7.80	18 c	25.0	5837.50	5837.75	1.000	5838.57	5838.82	n/a	5838.82	End
2	(2)	7.80	18 c	128.0	5837.75	5839.03	1.000	5839.04	5840.10	n/a	5840.10 j	1
3	3	7.80	18 c	11.7	5839.03		1.024	5840.32	5840.30	0.45	5840.75	2
	e G basins -5yr											

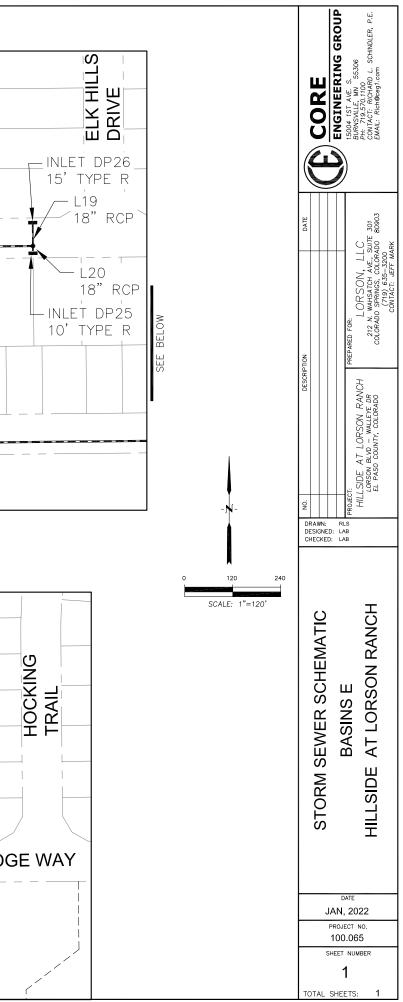
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	13.00	18 c	25.0	5837.50	5837.75	1.000	5838.85	5839.24	0.71	5839.95	End
2	2	13.00	18 c	128.0	5837.75	5839.03	1.000	5839.95*	5841.91*	0.64	5842.55	1
3	2 3	13.00	18 c 18 c	128.0	5837.75		1.000	5839.95*	5841.91* 5842.73*	0.64	5842.55	1 2

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	5.90	24 c	42.0	5800.16	5800.58	1.000	5801.02	5801.44	0.30	5801.44	End
1 2	1 2	5.90	24 c 24 c	42.0	5800.16		1.000 8.233	5801.02	5801.44	0.30	5801.44 5813.68	End 1

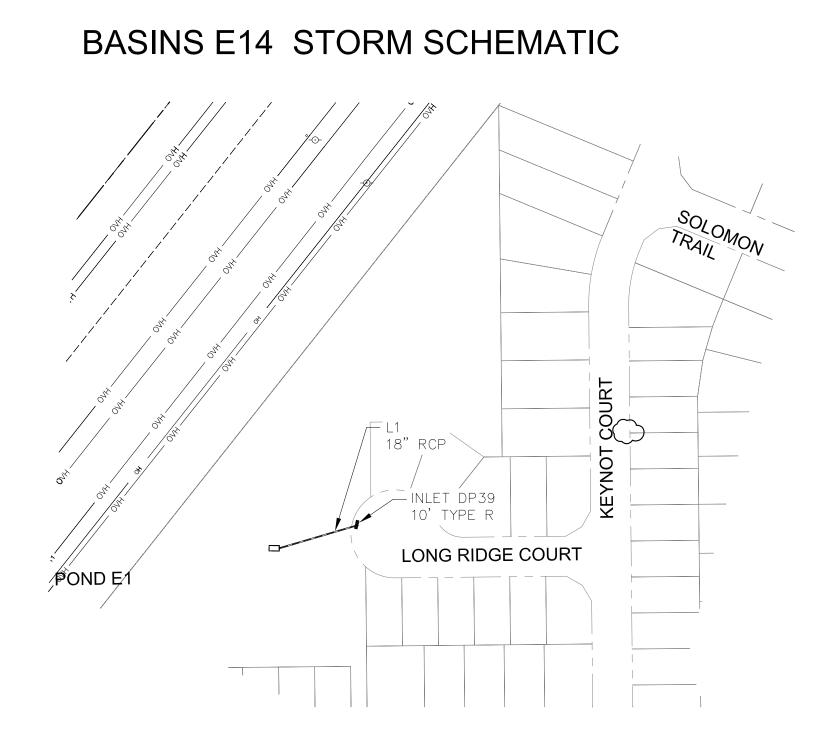

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	10.90	24 c	42.0	5800.16	5800.58	1.000	5801.33	5801.75	0.47	5801.75	End
1 2	1 2	10.90	24 c 24 c	42.0	5800.16		1.000 8.233	5801.33 5802.07	5801.75	0.47	5801.75	End 1
hillsid	e C1 basins -100yr						Nur	nber of line		Bus	Date: 01-14	2022

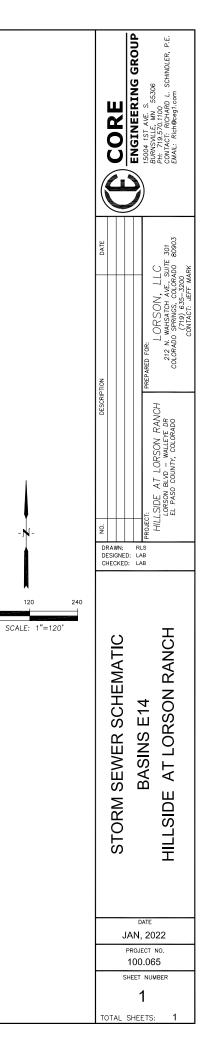
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1	1	15.70	30 c	10.9	5788.53	5788.62	0.832	5789.92	5789.95	0.54	5790.49	End
2	2	7.20	18 c	130.3	5789.60	5790.77	0.898	5790.78	5791.79	n/a	5791.79 j	1
3		7.20	18 c	175.0	5790.87	5795.51	2.651	5792.02	5796.53	n/a	5796.53 j	2
4	4	7.20	18 c	10.2	5795.51	5795.78	2.639	5796.76	5796.80	0.49	5796.80	3
5	5	10.10	24 c	7.5	5789.10	5789.17	0.933	5790.82	5790.82	0.31	5791.13	1
6		2.80	18 c	5.0	5789.88	5789.93	0.996	5791.28	5791.28	0.04	5791.33	5


_ine No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1	1	37.60	30 c	10.9	5788.53	5788.62	0.832	5790.58	5790.70	0.92	5791.62	End
2	2	12.50	18 c	130.3	5789.60	5790.77	0.898	5792.00*	5793.84*	0.39	5794.23	1
		12.50	18 c	175.0	5790.87	5795.51	2.651	5794.23	5796.85	n/a	5796.85 j	2
	4	12.50	18 c	10.2	5795.51	5795.78	2.639	5796.95	5797.12	n/a	5797.12 j	3
	5	28.60	24 c	7.5	5789.11	5789.18	0.933	5791.62*	5791.74*	0.64	5792.39	1
		4.70	18 c	5.0	5789.88	5789.93	1.006	5793.57*	5793.58*	0.05	5793.63	5
llsid	e c4 basins -100yr						Nun	nber of line	s: 6	Run	Date: 06-29	9-202


NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Π

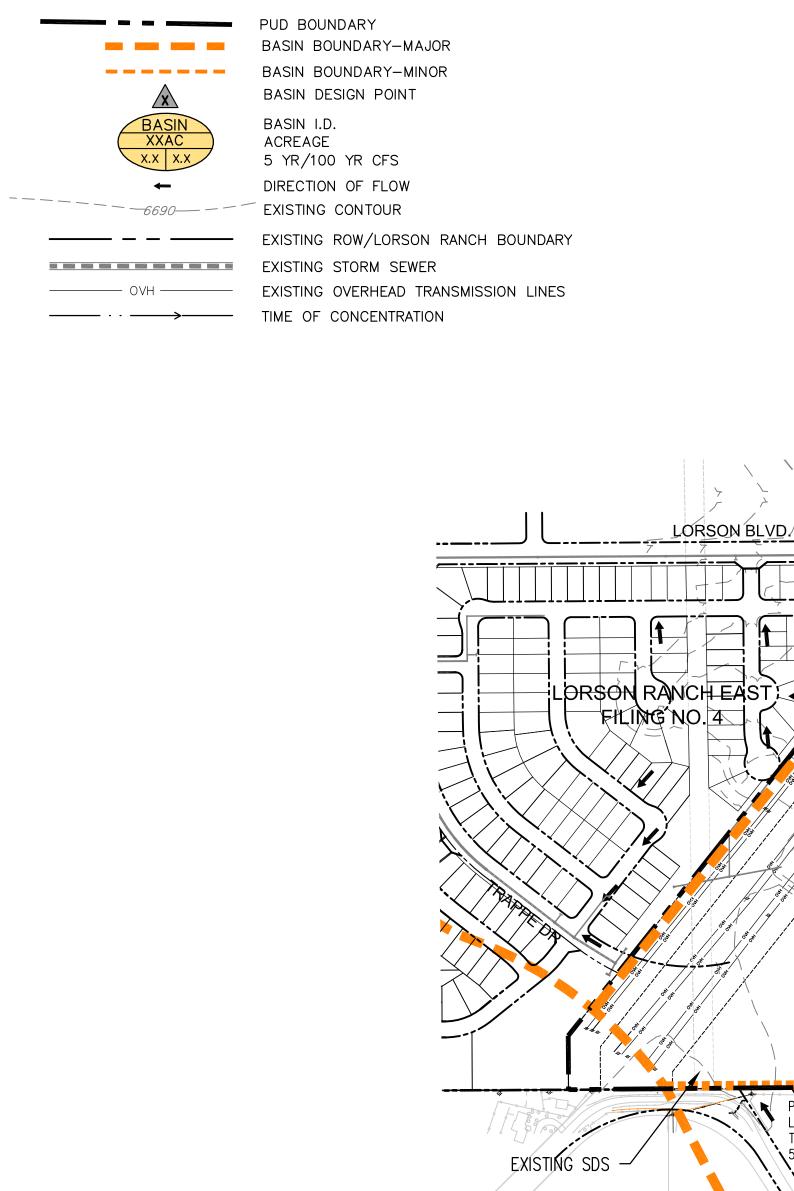


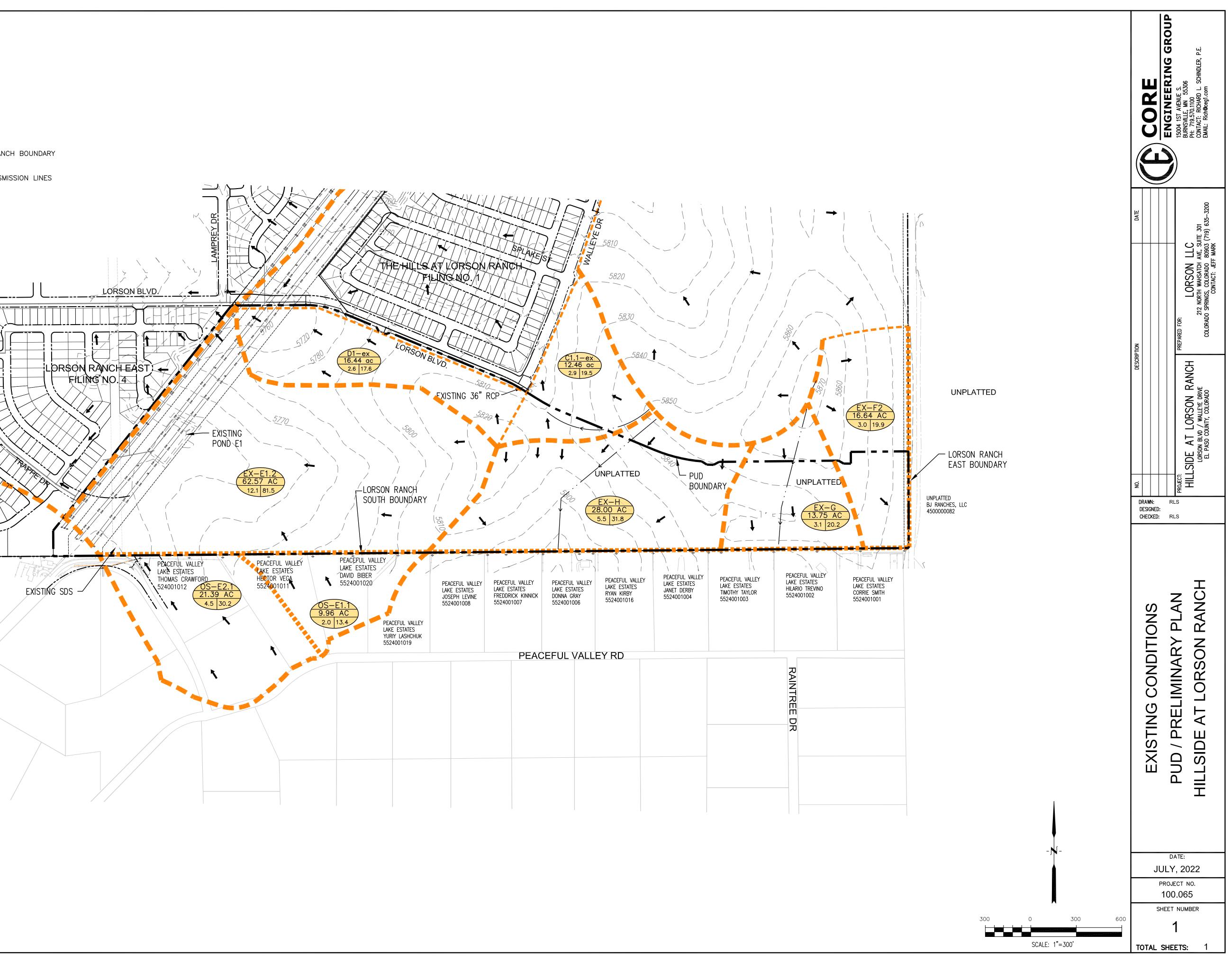

75.60 73.10 65.80 60.40 26.70 14.90 33.70 26.50 19.50 19.50	54 c 48 c 42 c 42 c 30 c 24 c 36 c 24 c 24 c 24 c	171.9 69.6 48.1 150.3 250.7 345.0 319.5 61.2 184.7 194.1 226.2	5730.40 5731.92 5737.50 5739.01 5741.51 5746.68 5757.98 5745.78 5746.77 5753.48	5731.43 5736.80 5738.46 5741.51 5745.67 5757.48 5769.00 5746.27 5752.47	0.599 7.007 1.998 1.663 1.659 3.131 3.449 0.803 3.085	5732.89 5734.48 5740.09 5741.33 5744.45 5748.76 5759.70 5748.93 5749.28	5733.92 5739.33 5740.86 5743.89 5748.05 5759.21 5770.37 5748.92 5754.11	1.09 0.73 0.95 0.28 1.17 n/a n/a 0.29	5733.92 5739.33 5740.86 5743.89 5748.05 5759.21 j 5770.37 j 5749.21	En 1 2 3 4 5 6 5
65.80 60.40 26.70 14.90 33.70 26.50 19.50 19.50	 48 c 42 c 42 c 30 c 24 c 36 c 24 c 24 c 24 c 	48.1 150.3 250.7 345.0 319.5 61.2 184.7 194.1	5737.50 5739.01 5741.51 5746.68 5757.98 5745.78 5746.77	5738.46 5741.51 5745.67 5757.48 5769.00 5746.27 5752.47	1.998 1.663 1.659 3.131 3.449 0.803	5740.09 5741.33 5744.45 5748.76 5759.70 5748.93	5740.86 5743.89 5748.05 5759.21 5770.37 5748.92	0.95 0.28 1.17 n/a n/a 0.29	5740.86 5743.89 5748.05 5759.21 j 5770.37 j 5749.21	2 3 4 5 6
60.40 60.40 26.70 14.90 33.70 26.50 19.50 19.50	 42 c 42 c 30 c 24 c 42 c 36 c 24 c 24 c 24 c 	150.3 250.7 345.0 319.5 61.2 184.7 194.1	5739.01 5741.51 5746.68 5757.98 5745.78 5746.77	5741.51 5745.67 5757.48 5769.00 5746.27 5752.47	1.663 1.659 3.131 3.449 0.803	5741.33 5744.45 5748.76 5759.70 5748.93	5743.89 5748.05 5759.21 5770.37 5748.92	0.28 1.17 n/a n/a 0.29	5743.89 5748.05 5759.21 j 5770.37 j 5749.21	3 4 5 6
60.40 26.70 14.90 33.70 26.50 19.50 19.50 19.50	42 c 30 c 24 c 42 c 36 c 24 c 24 c	250.7 345.0 319.5 61.2 184.7 194.1	5741.51 5746.68 5757.98 5745.78 5746.77	5745.67 5757.48 5769.00 5746.27 5752.47	1.659 3.131 3.449 0.803	5744.45 5748.76 5759.70 5748.93	5748.05 5759.21 5770.37 5748.92	1.17 n/a n/a 0.29	5748.05 5759.21 j 5770.37 j 5749.21	4 5 6
26.70 14.90 33.70 26.50 19.50 19.50 19.50	30 c 24 c 42 c 36 c 24 c 24 c	345.0 319.5 61.2 184.7 194.1	5746.68 5757.98 5745.78 5746.77	5757.48 5769.00 5746.27 5752.47	3.131 3.449 0.803	5748.76 5759.70 5748.93	5759.21 5770.37 5748.92	n/a n/a 0.29	5759.21 j 5770.37 j 5749.21	5 6
14.90 33.70 26.50 19.50 19.50 19.50	24 c 42 c 36 c 24 c 24 c	319.5 61.2 184.7 194.1	5757.98 5745.78 5746.77	5769.00 5746.27 5752.47	3.449 0.803	5759.70 5748.93	5770.37 5748.92	n/a 0.29	5770.37 j 5749.21	6
33.70 26.50 19.50 19.50 19.50	42 c 36 c 24 c 24 c	61.2 184.7 194.1	5745.78 5746.77	5746.27 5752.47	0.803	5748.93	5748.92	0.29	5749.21	
26.50 19.50 19.50 19.50	36 c 24 c 24 c	184.7 194.1	5746.77	5752.47						5
19.50 19.50 19.50	24 c 24 c	194.1			3.085	5749.28	5754.11			
19.50 19.50	24 c		5753.48	F7F7 00				n/a	5754.11 j	8
19.50		226.2		5757.00	1.813	5754.64	5758.56	n/a	5758.56	9
			5757.20	5763.74	2.892	5758.82	5765.30	n/a	5765.30 j	10
	24 c	400.3	5763.95	5778.16	3.550	5765.56	5779.72	n/a	5779.72 j	11
19.50	24 c	400.4	5778.36	5785.89	1.880	5779.98	5787.45	n/a	5787.45 j	12
8.70	18 c	360.2	5786.40	5796.99	2.940	5787.93	5798.12	n/a	5798.12 j	13
8.70	18 c	38.5	5796.99	5798.12	2.938	5798.32	5799.25	n/a	5799.25 j	14
5.40	24 c	10.2	5740.51	5741.22	6.995	5741.90	5742.04	n/a	5742.04 j	3
7.30	18 c	26.0	5758.48	5758.74	1.001	5759.79	5759.78	0.49	5760.27	6
4.50	18 c	7.3	5758.48	5758.77	3.981	5759.89	5759.84	0.17	5760.01	6
8.00	18 c	27.6	5769.75	5770.03	1.015	5770.73	5771.11	0.53	5771.65	7
6.90	18 c	8.2	5769.75	5770.02	3.278	5770.79	5771.02	n/a	5771.02	7
7.20	18 c	27.2	5748.77	5749.35	2.134	5749.49	5750.68	0.29	5750.98	8
7.00	24 c	8.2	5753.49	5754.15	8.020	5754.73	5755.09	n/a	5755.09 j	9
8.00	18 c	25.8	5786.90	5787.12	0.854	5787.99	5788.20	0.53	5788.74	13
2.80	18 c	11.3	5786.90	5787.08	1.597	5788.24	5788.23	0.06	5788.29	13
2.50	24 c	134.7	5733.92	5735.67	1.300	5735.00	5736.23	n/a	5736.23 j	1
1.10	24 c	137.1	5735.84	5737.49	1.204	5736.42	5737.86	n/a	5737.86 j	25
1.10	24 c	108.5	5737.62	5739.36	1.604	5737.98	5739.73	0.12	5739.73	26
	7.30 4.50 8.00 6.90 7.20 7.00 8.00 2.80 2.50 1.10	7.3018 c4.5018 c8.0018 c6.9018 c7.2018 c7.0024 c8.0018 c2.8018 c2.5024 c1.1024 c	7.3018 c26.04.5018 c7.38.0018 c27.66.9018 c8.27.2018 c27.27.0024 c8.28.0018 c25.82.8018 c11.32.5024 c134.71.1024 c137.1	7.3018 c26.05758.484.5018 c7.35758.488.0018 c27.65769.756.9018 c8.25769.757.2018 c27.25748.777.0024 c8.25753.498.0018 c25.85786.902.8018 c11.35786.902.5024 c134.75733.921.1024 c137.15735.84	7.3018 c26.05758.485758.744.5018 c7.35758.485758.778.0018 c27.65769.755770.036.9018 c8.25769.755770.027.2018 c27.25748.775749.357.0024 c8.25753.495754.158.0018 c25.85786.905787.122.8018 c11.35786.905787.082.5024 c134.75733.925735.671.1024 c137.15735.845737.49	7.3018 c26.05758.485758.741.0014.5018 c7.35758.485758.773.9818.0018 c27.65769.755770.031.0156.9018 c8.25769.755770.023.2787.2018 c27.25748.775749.352.1347.0024 c8.25753.495754.158.0208.0018 c25.85786.905787.120.8542.8018 c11.35786.905787.081.5972.5024 c134.75733.925735.671.3001.1024 c137.15735.845737.491.204	7.3018 c26.05758.485758.741.0015759.794.5018 c7.35758.485758.773.9815759.898.0018 c27.65769.755770.031.0155770.736.9018 c8.25769.755770.023.2785770.797.2018 c27.25748.775749.352.1345749.497.0024 c8.25753.495754.158.0205754.738.0018 c25.85786.905787.120.8545787.992.8018 c11.35786.905787.081.5975788.242.5024 c134.75733.925735.671.3005735.001.1024 c137.15735.845737.491.2045736.42	7.3018 c26.05758.485758.741.0015759.795759.784.5018 c7.35758.485758.773.9815759.895759.848.0018 c27.65769.755770.031.0155770.735771.116.9018 c8.25769.755770.023.2785770.795771.027.2018 c27.25748.775749.352.1345749.495750.687.0024 c8.25753.495754.158.0205754.735750.998.0018 c25.85786.905787.120.8545787.995788.202.8018 c11.35786.905787.081.5975788.245786.232.5024 c134.75733.925735.671.3005735.005737.861.1024 c137.15735.845737.491.2045736.425737.86	7.3018 c26.05758.485758.741.0015759.795759.780.494.5018 c7.35758.485758.773.9815759.895759.840.178.0018 c27.65769.755770.031.0155770.735771.110.536.9018 c8.25769.755770.023.2785770.795771.02n/a7.2018 c27.25748.775749.352.1345749.495750.680.297.0024 c8.25753.495751.158.0205754.735755.09n/a8.0018 c25.85786.905787.120.8545787.995788.200.532.8018 c11.35786.905787.881.5975788.245788.230.062.8018 c134.75733.925735.671.3005735.095736.23n/a1.1024 c137.15735.845737.491.2045736.425737.86n/a	7.3018 c26.05758.485758.741.0015759.795759.780.495760.274.5018 c7.35758.485758.773.9815759.895759.840.175760.018.0018 c27.65769.755770.031.0155770.735771.110.535771.656.9018 c8.25769.755770.023.2785770.795771.02n/a5750.987.2018 c27.25748.775749.352.1345749.495750.680.295750.987.0024 c8.25753.495751.158.0205754.735750.99n/a5750.998.0018 c25.85786.905787.120.8545787.995788.200.535788.742.8018 c11.35786.905787.081.5975788.245788.230.065788.292.5024 c134.75733.92573.691.3005736.42573.86n/a5736.231.1024 c137.15735.845737.491.2045736.425737.86n/a5737.86

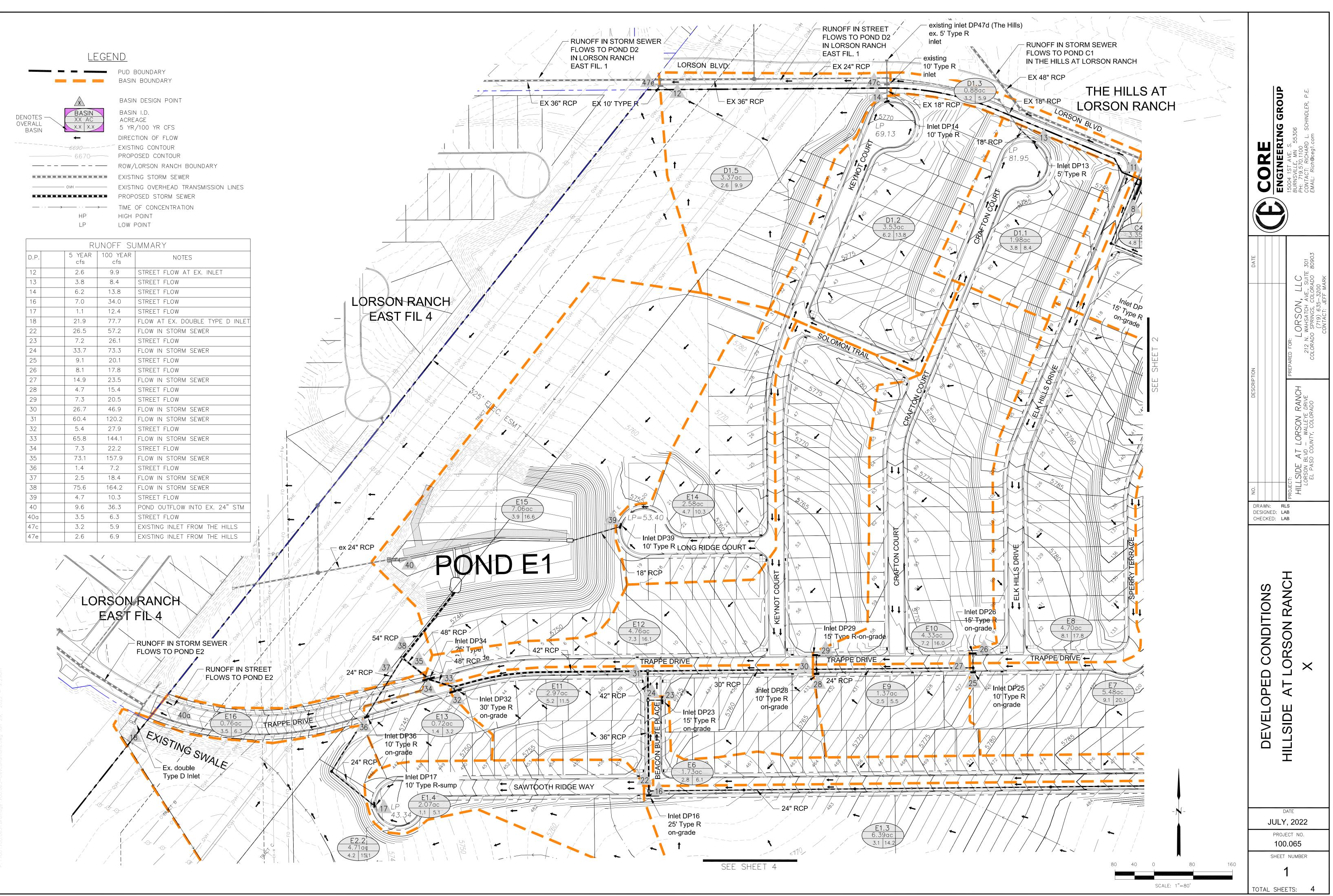
NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

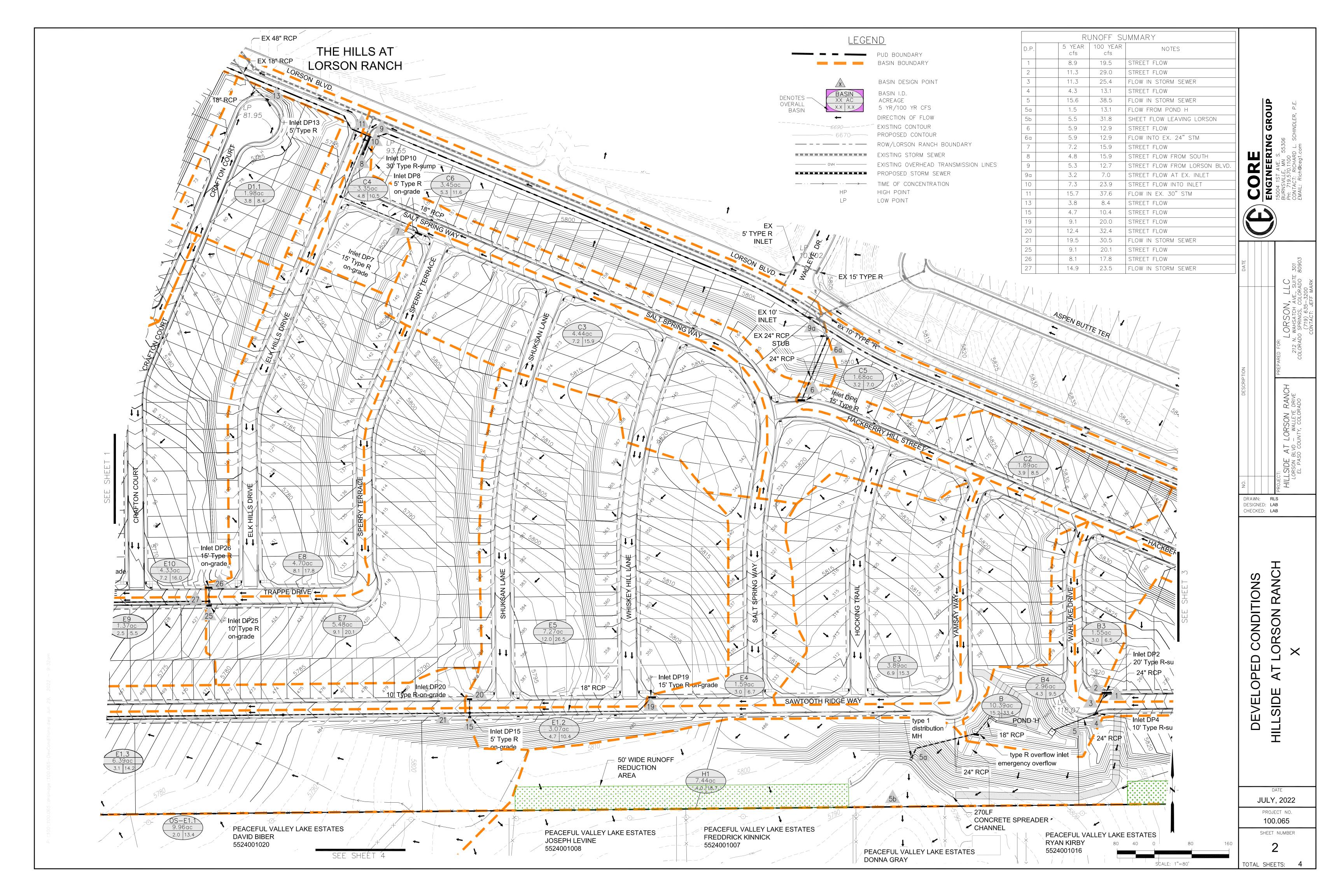
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dn: line No
1	1	164.2	54 c	171.9	5730.40	5731.43	0.599	5734.37	5735.51	1.83	5737.33	End
2	2	157.9	48 c	69.6	5731.92	5736.80	7.007	5737.33	5740.46	1.65	5740.46	1
3	3	144.1	48 c	48.1	5737.50	5738.46	1.998	5741.08	5742.01	2.02	5742.01	2
4	4	120.2	42 c	150.3	5739.01	5741.51	1.663	5742.01	5744.76	n/a	5744.76	3
5	5	120.2	42 c	250.7	5741.51	5745.67	1.659	5744.92	5748.92	n/a	5748.92	4
6	6	46.90	30 c	345.0	5746.68	5757.48	3.131	5750.09	5759.74	n/a	5759.74	5
7	7	23.50	24 c	319.5	5757.98	5769.00	3.449	5760.44	5770.72	n/a	5770.72 j	6
8	8	73.30	42 c	61.2	5745.78	5746.29	0.834	5750.61*	5750.93*	0.90	5751.83	5
9	9	57.20	36 c	184.7	5746.87	5752.47	3.032	5751.83	5754.88	n/a	5754.88	8
10	10	30.50	24 c	194.1	5753.49	5757.00	1.808	5755.14	5758.99	0.22	5759.21	9
11	11	30.50	24 c	226.2	5757.20	5763.74	2.892	5759.21	5765.61	n/a	5765.61 j	10
12	12	30.50	24 c	400.3	5763.95	5778.16	3.550	5765.69	5780.03	0.23	5780.03	11
13	13	30.50	24 c	400.4	5778.36	5785.89	1.880	5780.11	5787.76	1.55	5787.76	12
14	14	14.10	18 c	360.0	5786.40	5796.99	2.942	5788.32	5798.38	n/a	5798.38 j	13
15	15	14.10	18 c	38.5	5796.99	5798.12	2.938	5798.45	5799.51	n/a	5799.51 j	14
16	16	23.90	24 c	10.2	5740.51	5741.22	6.995	5743.43*	5743.55*	0.90	5744.45	3
17	17	14.40	18 c	26.0	5758.48	5758.74	1.001	5760.28*	5760.77*	1.03	5761.80	6
18	18	9.00	18 c	7.3	5758.48	5758.77	3.981	5760.91*	5760.96*	0.40	5761.36	6
19	19	13.30	18 c	27.6	5769.75	5770.03	1.015	5771.25*	5771.69*	0.88	5772.57	7
20	20	10.20	18 c	8.2	5769.75	5770.02	3.278	5771.24	5771.24	0.68	5771.24	7
21	21	16.10	18 c	27.2	5748.27	5748.85	2.134	5751.83*	5752.47*	1.29	5753.76	8
22	22	26.70	24 c	8.2	5753.48	5754.14	8.037	5755.13	5755.94	1.25	5755.94	9
23	23	12.40	18 c	25.8	5786.90	5787.12	0.854	5788.54*	5788.90*	0.77	5789.67	13
24	24	4.00	18 c	11.3	5786.90	5787.08	1.597	5789.23*	5789.25*	0.08	5789.33	13
25	25	18.40	24 c	134.7	5733.92	5735.67	1.300	5738.63*	5739.52*	0.27	5739.79	1
26	26	12.40	24 c	137.1	5735.84	5737.49	1.204	5740.08*	5740.49*	0.24	5740.73	25
27	27	12.40	24 c	108.5	5737.62	5739.36	1.604	5740.73	5740.98	0.32	5741.30	26
25 26 27	26	12	2.40	2.40 24 c	2.40 24 c 137.1	2.40 24 c 137.1 5735.84	2.40 24 c 137.1 5735.84 5737.49	2.40 24 c 137.1 5735.84 5737.49 1.204	2.40 24 c 137.1 5735.84 5737.49 1.204 5740.08*	2.40 24 c 137.1 5735.84 5737.49 1.204 5740.08* 5740.49*	2.40 24 c 137.1 5735.84 5737.49 1.204 5740.08* 5740.49* 0.24	2.40 24 c 137.1 5735.84 5737.49 1.204 5740.08* 5740.49* 0.24 5740.73
	e E basins -100yr			1	I	I	Nun	nber of line:	s [.] 27	Run	Date: 04-13	-202

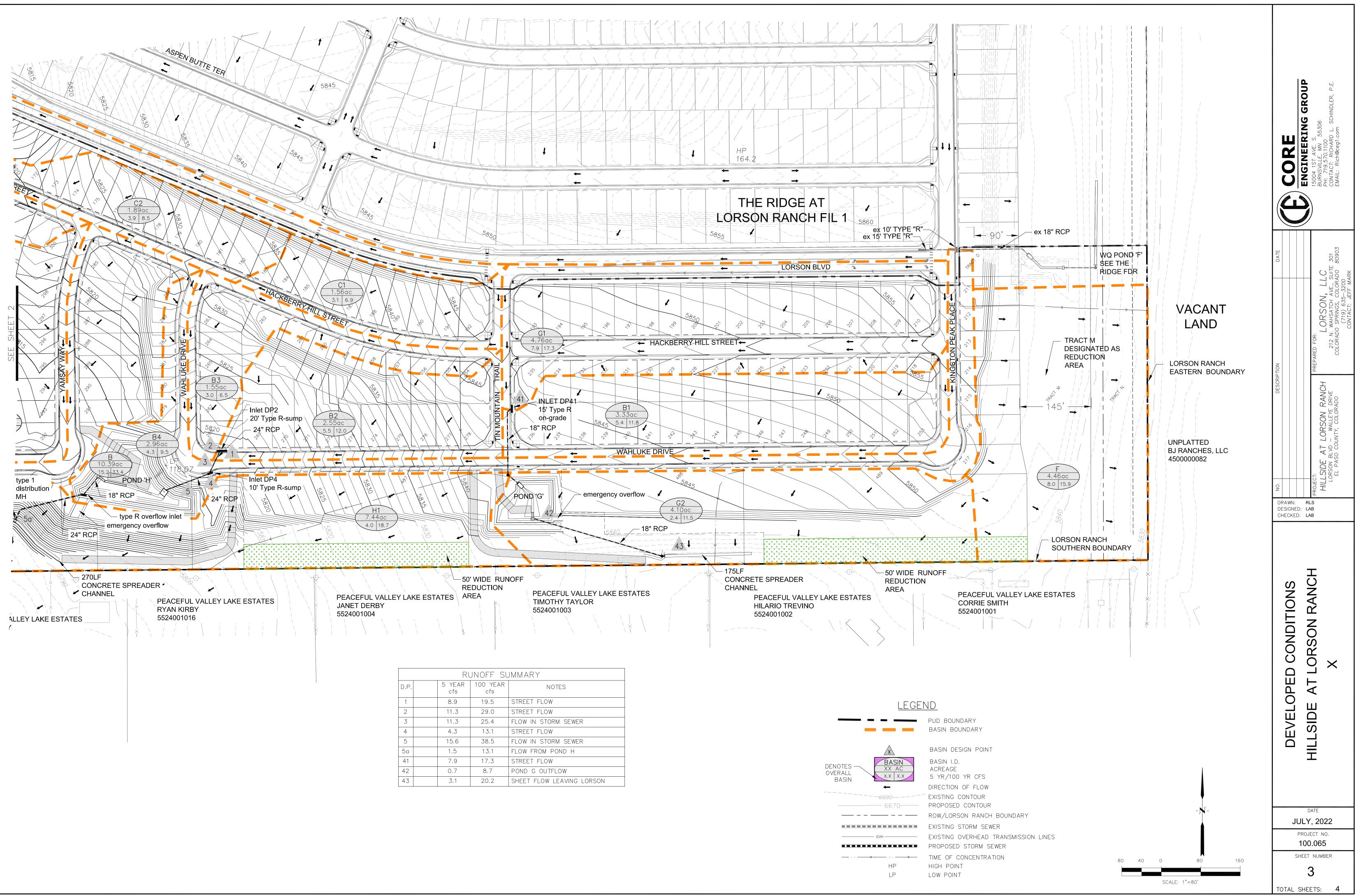
NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

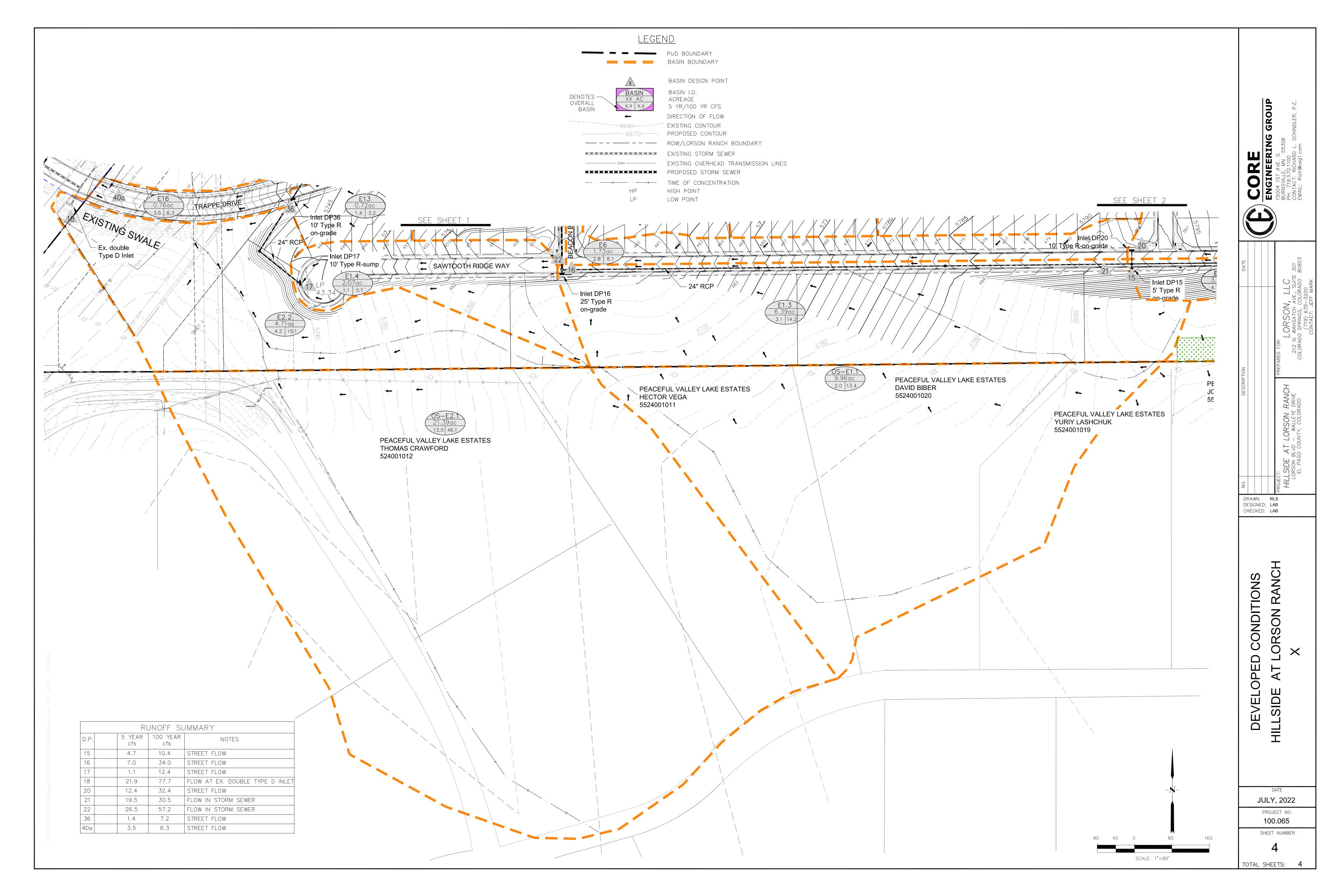

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	4.70	18 c	102.6	5731.10	5747.51	15.995	5731.93	5748.34	n/a	5748.34 j	End
hillsid	e e14 basins -5yr						Nium	nber of line		Bund	Date: 01-14	0000


Hydraflow Storm Sewers 2005


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	10.30	18 c	102.6	5731.10	5747.51	15.995	5732.33	5748.74	n/a	5748.74 j	End
nillsid	e e14 basins -100yr						Nun	nber of line	e: 1	Run	Date: 01-14	1-2022


MAP POCKET


<u>LEGEND</u>



RUNOFF SUMMARY		
EAR fs	100 YEAR cfs	NOTES
9	19.5	STREET FLOW
.3	29.0	STREET FLOW
.3	25.4	FLOW IN STORM SEWER
3	13.1	STREET FLOW
.6	38.5	FLOW IN STORM SEWER
5	13.1	FLOW FROM POND H
9	17.3	STREET FLOW
7	8.7	POND G OUTFLOW
.1	20.2	SHEET FLOW LEAVING LORSON

