Please fill out and submit the TIS checklist to ensure that all applicable report requirements are addressed.

Barbarick Waste Transfer Station

El Paso County, Colorado

```
Add "PCD File No. AL2310"
```

Prepared for:

Graham Construction Management

Kimley»"Horn

$$
\begin{array}{lllllllllllllll}
T & A & F & F & \text { I } & \text { M P A C T } & \text { S T U } \\
\hline
\end{array}
$$

Traffic Engineer's Statement
The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.
feffrey R. Planck
Jeffrey R. Planck, P.E., PE \#53006

September 15, 2022
Date

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.
\checkmark
Provide signature and date Date

Mr. Richard Graham, Jr. Graham Construction Management 4615 Northpark Drive
Colorado Springs, CO 80918

Barbarick Waste Transfer Station

El Paso County, Colorado
Prepared for Graham Construction Management 4615 Northpark Drive Colorado Springs, CO 80918
Prepared by
Kimley-Horn and Associates, Inc. 2 North Nevada Avenue
Suite 300
Colorado Springs, Colorado 80903
(719) 453-0180

September 2022

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of
and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION. 1
3.0 EXISTING AND FUTURE CONDITIONS 3
3.1 Existing Study Area 3
3.2 Existing Roadway Network 3
3.3 Existing Traffic Volumes 6
3.4 Unspecified Development Traffic Growth 6
4.0 PROJECT TRAFFIC CHARACTERISTICS 10
4.1 Trip Generation 10
4.2 Trip Distribution 11
4.3 Traffic Assignment 11
4.4 Total (Background Plus Project) Traffic. 11
5.0 TRAFFIC OPERATIONS ANALYSIS 16
5.1 Analysis Methodology 16
5.2 Key Intersection Operational Analysis 17
5.3 El Paso County Turn Lane Requirement Analysis 19
5.4 Vehicle Queuing Analysis 20
5.5 Sight Distance Evaluation 20
5.6 Bicycle and Pedestrian Access 21
5.7 Road Impact Fees 21
5.8 Heavy Vehicle Assessment 22
6.0 CONCLUSIONS AND RECOMMENDATIONS 23

APPENDICES

Appendix A - Intersection Count Sheets
Appendix B - Future Traffic Projections
Appendix C - Intersection Analysis WorksheetsAppendix D - Conceptual Site Plan
LIST OF TABLES
Table 1 - Barbarick Waste Transfer Station Traffic Generation. 11
Table 2 - Level of Service Definitions 16
Table 3 - Lochwinnoch Lane \& Vollmer Road LOS Results 18
Table 4 - Turn Lane Queuing Analysis Results 20
Table 5 - Road Impact Fees 21
LIST OF FIGURES
Figure 1 - Vicinity Map. 2
Figure 2 - Existing Geometry and Control 5
Figure 3-2022 Existing Traffic Volumes 7
Figure 4-2025 Background Traffic Volumes. 8
Figure 5-2045 Background Traffic Volumes. 9
Figure 6 - Project Trip Distribution 12
Figure 7 - Project Traffic Assignment 13
Figure 8-2025 Total Traffic Volumes 14
Figure 9-2045 Total Traffic Volumes 15

This report has been prepared to document the results of a Traffic Impact Study for the Barbarick Waste Transfer Station project proposed at 8812 Cliff Allen Point in El Paso County, Colorado. Specifically, the project is located near the southeast corner of the Lochwinnoch Lane, and Vollmer Road intersection. For the purposes of this study, Barbarick Waste Transfer Station is anticipated to include an intermediate transfer facility. It is expected that Barbarick Waste Trantsfer Station will be completed in the next several years; therefore, analysis was conducted for the 2025 shortterm buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics oo determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The intersection of Vollmer Road and Lochwinnoch Lanerwas incorporated into this traffic study in accordance with El Paso County standards and requirements.

Regional access to Barbarick Waste Transfer Station will be provided by SH-21
and US-24. Primary access will be provided by Vollmer Road. Direct access will be provided by the existing east leg at the intersection of Lochwinno\&h Lane and Vollmer Road.

Barbarick Waste Transfer Station is expected togenerate approximately 280 weekday daily trips, with 36 of these trips occurring during both the morning and afternoon peak hours. Of the 280 weekday daily trips, 10 are anticipated to be heavy vehicle trips with two (2) heavy vehicle trips during both peak hours.

Based on the analysis presented in this report, Kimley-Horn belfeves Barbarick Waste Transfer Station will be successfully incorporated into the existing and future readway network with the existing geometry and control. The intersection of Vollmer Road and fochwinnoch Lane is anticipated to operate acceptably throughout 2045 and all vehicle queues ake anticipated to be maintained within the existing storage lengths. The road impact fee associated with the project is expected to be $\$ 22,380$.

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study for the Barbarick Waste Transfer Station project proposed at 8812 Cliff Allen Point in El Paso County, Colorado. Specifically, the project is located near the southeast corner of the Lochwinnoch Lane and Vollmer Road intersection. A vicinity map illustrating the Barbarick Waste Transfer Station development location is shown in Figure 1. For the purposes of this study, Barbarick Waste Transfer Station is anticipated to include an intermediate transfer facility. A conceptual site plan is attached in Appendix D. It is expected that Barbarick Waste Transfer Station will be completed in the next couple years; therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The intersection of Vollmer Road and Lochwinnoch Lane was incorporated into this traffic study in accordance with El Paso County standards and requirements.

Regional access to Barbarick Waste Transfer Station will be provided by SH-21 and US-24. Primary access will be provided by Vollmer Road. Direct access will be provided by the existing east leg at the intersection of Lochwinnoch Lane and Vollmer Road.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of a diesel engine repair service. West of the site are single family homes. East of the site is vacant land that is currently being developed. Vacant land, industrial uses, and single-family homes are located to the south. An RV and boat storage facility is located to the north of the site. $\begin{aligned} & \text { Discuss how the site is currently } \\ & \text { accessed. }\end{aligned}$

3.2 Existing Roadway Network

Vollmer Road provides twathrough lanes of travel in each direction, northeastbound and southwestbound, with a 45 mile per hour speed limit through the study area. Lochwinnoch Lane consists of one through lane in each direction extending primarily eastbound and westbound af the study area key intersection.
one at Lochwinnoch/Carah Dawn View?
separate

The unsignalized intersection of Lochwinnoch Lane and Vollmer Road operates with stop-control on the eastbound Lochwinnoch Lane and westbound Carah Dawn View approaches. For the purposes of this analysis, Volmer Road is considered a north/south roadway while Lochwinnoch Lane is considered an east/westyoadway. The northbound and westbound approaches provide a shared left turn/through lane and $\begin{aligned} & \text { dright turn lane. The southbound and eastbound approaches }\end{aligned}$ provide one shared lane for all movements. An aerial photo of the existing intersection configuration is below (north is up - typical).

Lochwinnoch Lane \& Vollmer Road

The intersection lane configuration and control for the study area intersection are shown in Figure 2.

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO
EXISTING GEOMETRY AND CONTROL

3.3 Existing Traffic Volumes

Existing turning movement counts were conducted at the study intersection on Thursday, August 25,2022 , during the morning and afternoon peak hours. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in Figure 3 with count sheets provided in Appendix A.

3.4 Unspecified Development Traffic Growth

According to the 2040 traffic projections from the El Paso County Major Transportation Corridor Plan (MTCP) traffic model compared to the existing traffic volumes, the area surrounding the site is expected to have an average 18-year growth factor of 1.43 . This growth factor equates to an annual growth rate of 1.99 percent. Future traffic volume projections and growth rate calculations are provided in Appendix B. Therefore, a 1.99 percent annual growth rate was used to calculate future traffic volumes at the study area intersection. This annual growth rate was used to estimate short-term 2025 and long-term 2045 traffic volume projections at the key intersection. The calculated background traffic volumes for 2025 and 2045 are shown in Figure 4 and Figure 5, respectively.

Provide list of recent traffic studies. Sterling Ranch is one: https://epcdevplanreview.com/Public/ProjectDetails/180813

Thursday, August 25, 2022
7:00 to 8:00AM (4:15 to 5:15PM)

LEGEND

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO FIGURE 5 2045 BACKGROUND TRAFFIC VOLUMES

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual' published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. However, for this study, KimleyHorn used user-specific trip generation based on trips at a similar Peak Disposal and Recycling facility located at 856 Washington Street in Monument, Colorado, for traffic associated with the development. Further, steel recycling collection data from Colorado Industrial Recycling located at 2730 E. Las Vegas Street in Colorado Springs as well as data from the Green for Life trash collection facility were used for site generated traffic. Trips at the existing site were collected daily from August 2018 to July 2022. To be conservative, the month with highest number of trips, June 2022, was used for the trip generation. Of note, operations significantly decrease during the winter season and colder months. The operations primarily consist of personal vehicles utilizing the site to unload waste or recycle steel materials while trucks with 40-yard dumpster containers will haul out recycled steel and waste. The peak month for waste trucks occurred in June 2022 with 73 trucks collecting waste from the facility and hauling off-site. Likewise, the peak month for steel recycling trucks occurred in June 2022 with 7 trucks collecting recycled steel and hauling off-site. Further, trips generated on the existing diesel engine repair site were not subtracted from the existing counts to conservatively evaluate the key intersection.

Barbarick Waste Transfer Station is expected to generate approximately 280 weekday daily trips, with 36 of these trips occurring during both the morning and afternoon peak hours. Of the 280, weekday daily trips, 10 trips are anticipated to be heavy vehicle trips with two (2) heavy vehicle trips during both peak hours. Table 1 summarizes the estimated trip generation for the Barbarick Waste Transfer Station.

[^0]Table 1 - Barbarick Waste Transfer Station Traffic Generation

Vehicle and Trip Type	Weekday Vehicle Trips						
	Daily	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
Passenger Vehicle Trash/Recycle Drop-off	270	17	17	34	17	17	34
Truck - GFL Boxes Picked up	8	1	1	2	1	1	2
Truck - Recycled Steel Pick up	2	0	0	0	0	0	0
Total Site Generated Trips	280	18	18	36	18	18	36

4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution for the proposed development is illustrated in Figure 6.

4.3 Traffic Assignment

Barbarick Waste Transfer Station traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Traffic assignment is shown in Figure 7.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2025 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2025 and 2045 horizon years in Figures 8 and 9, respectively.

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO FIGURE 6
PROJECT TRIP DISTRIBUTION

LEGEND	
Study Area Key Intersection	
$X X X(X X X)$	Weekday AM(PM)
Peak Hour Traffic Volumes	
$X X, X 00$	Estimated Daily Traffic Volume

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO
PROJECT TRAFFIC ASSIGNMENT

FIGURE 7
Kimley») Horn

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO FIGURE 8 2025 TOTAL TRAFFIC VOLUMES

BARBARICK WASTE TRANSFER STATION EL PASO COUNTY, COLORADO FIGURE 9 2045 TOTAL TRAFFIC VOLUMES

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2025 and 2045 development horizons at the identified key intersection. The acknowledged source for determining overall capacity is the current edition of the Highway Capacity Manual (HCM)².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). Based on El Paso County standards, the threshold for acceptable LOS is not less than LOS D during peak hours. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

The study area intersection was analyzed based on average total delay analysis for unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement.

[^1]
5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersection for the study area are provided in Appendix C. The existing year analysis is based on the lane geometry and intersection control shown in Figure 2. Existing peak hour factors were used for all horizons. Additionally, truck percentages were used for all horizons. Synchro traffic analysis software was used to analyze the unsignalized key intersection for HCM level of service.

Lochwinnoch Lane \& Vollmer Road

The unsignalized intersection of Lochwinnoch Lane and Vollmer Road operates with stop-control on the eastbound and westbound Vollmer Road approaches. The intersection movements operate acceptably at LOS C or better during both peak hours under existing conditions. With project traffic, all movements are anticipated to continue operating at an acceptable level of service throughout the 2045 horizon. Therefore, no improvements or modifications are anticipated to be needed at this intersection based on the addition of project traffic and this operational level of service analysis. Table 3 provides the results of the LOS analysis conducted at this intersection.

Table 3 - Lochwinnoch Lane \& Vollmer Road LOS Results

	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
Northbound Left	8.2	A	7.9	A
Eastbound Approach	12.6	B	13.3	B
Westbound Through/Left	16.1	C	15.5	C
Westbound Right	9.5	A	10.0	B
Southbound Left	7.8	A	8.0	A
2025 Background				
Northbound Left	8.3	A	7.9	A
Eastbound Approach	12.9	B	13.7	B
Westbound Through/Left	16.8	C	16.2	C
Westbound Right	9.6	A	10.2	B
Southbound Left	7.8	A	8.0	A
2025 Background Plus Project	8.3			
Northbound Left	A	7.9	A	
Eastbound Approach	13.1	B	14.0	B
Westbound Through/Left	17.8	C	16.9	C
Westbound Right	9.6	A	10.2	B
Southbound Left	7.9	A	8.1	A
2045 Background	8.9			
Northbound Left	A	8.3	A	
Eastbound Approach	16.7	C	18.6	C
Westbound Through/Left	24.5	C	13.3	C
Westbound Right	10.3	B	11.4	B
Southbound Left	8.1	A	8.5	A
2045 Background Plus Project	8.9			
Northbound Left	A	8.3	A	
Eastbound Approach	Cestbound Through/Left	17.0	C	19.0
Westbound Right	27.1	D	25.4	C
Southbound Left	10.3	B	11.4	B

5.3 El Paso County Turn Lane Requirement Analysis

The El Paso County Engineering Criteria Manual (ECM) was used to determine if left and right turn lanes are warranted along Vollmer Road. El Paso County classifies Vollmer Road as a Minor Arterial roadway. According to El Paso County ECM guidelines for Minor Arterials, a left turn lane is required for any access with a projected peak hour left turning volume of 25 vehicles per hour or greater, a right turn lane is required for any access with a projected peak hour right turning volume of 50 vehicles per hour or greater, and a right turn acceleration lane is generally not required.

Based on Vollmer Road providing a posted speed limit of 45 miles per hour, the turn lane requirements that the project traffic contributes to are as follows:

Lochwinnoch Lane and Vollmer Road:

- A southbound left turn lane is not warranted at this intersection based on projected 2045 total traffic volumes being eight (8) southbound left turns during the peak hour and the threshold being 25 vehicles per hour.
- A northbound right turn lane exists but is not warranted at this intersection based on projected 2045 total traffic volumes being 28 northbound right turns during the peak hour and the threshold being 50 vehicles per hour.

5.4 Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for the study area intersection. The queuing analysis was performed using Synchro presenting the results of the $95^{\text {th }}$ percentile queue lengths. Results are shown in the following Table 4 with calculations provided within the level of service operational sheets of Appendix C.

Table 4 - Turn Lane Queuing Analysis Results

Intersection Turn Lane	Existing Turn Lane Length (feet)	2025 Calculated Queue (feet)	Recommended Length (feet)	2045 Calculated Queue (feet)	Recommended Length (feet)
Lochwinnoch Ln \& Vollmer Rd Northbound Right Westbound Left/Through Westbound Right	$\begin{gathered} 350^{\prime} \\ 100^{\prime} \\ C \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} 350 \\ 100^{\prime} \\ C \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} 350^{\prime} \\ 100^{\prime} \\ C \end{gathered}$

C = Continuous Lane
As shown in the table above, vehicle queues are all anticipated to remain within the existing turn lane lengths through 2045.

5.5 Sight Distance Evaluation

It is recommended that sight triangles be provided at all site access points to give drivers exiting the site a clear view of oncoming traffic. Landscaping and objects within sight triangles must not obstruct drivers' views of the adjacent travel lanes. ECM design sight distances for left turn from stop from public street intersections (Table 2-21) was evaluated at the intersection of Vollmer Road and Lochwinnoch Lane. ECM does not provide sight distances for right-turning vehicles from stop for public street intersections; therefore, AASHTO standards were used for right-turn from stop distances at the intersection of Vollmer Road and Lochwinnoch Lane.

According to Table 2-21 from ECM and a roadway design speed of 45 miles per hour along Vollmer Road, the intersection sight distance for a vehicle turning left from stop is 500 feet for a two-lane roadway. With AASHTO standards, the sight distance for a vehicle turning right from stop is 430 feet. Therefore, all obstructions for left turning vehicles from stop should be clear to the right within the triangle created with a vertex point located 10 feet from the edge of the major road traveled way (typical position of the minor road driver's eye when stopped) and a line-ofsight distance of 500 feet located in the middle of the nearest southbound through lane along

Vollmer Road. Likewise, all obstructions for right turning vehicles from stop should be clear to the left within the triangle created with a vertex point located 10 feet from the edge of the major road traveled way and a line-of-sight distance of 430 feet located in the middle of the nearest northbound through lane along Vollmer Road. It is believed that the intersection of Vollmer Road and Lochwinnoch Lane is appropriately located to provide necessary sight distances.

5.6 Bicycle and Pedestrian Access

Sidewalks are not present on either side of the Vollmer Road and Lochwinnoch Lane intersection. Sidewalks and bicycle lanes are not provided along Vollmer Road or Lochwinnoch Road.

5.7 Road Impact Fees

Road impact fees were evaluated based on the El Paso County Road Impact Fee Schedule. Based on these fee schedule guidelines, the fee per 1,000 square feet of Warehouse is $\$ 1,865$. Therefore, the road impact fee for the proposed 12,000 square foot building is expected to be $\$ 22,380$. Road impact fee calculations are shown in Table 5.

Table 5 - Road Impact Fees

Use	Units	Fee / Unit	Total Fee
Warehouse	12.00 KSF	$\$ 1,865$	$\$ 22,380$

During the final plat process, the project team will determine if the impact fees are paid up front or if the property will be included in one of the available public improvement districts with reduced upfront costs. The project team will determine payment methods with the final plat.

The land use the road impact fee shall be based on is industrial. Please revise road impact fee calculations.

5.8 Heavy Vehicle Assessment

The heavy vehicle percentage adjacent to the intersection of Lochwinnoch Lane and Vollmer Road is currently 6.2 percent during the morning peak hour and 4.4 percent during the afternoon peak hour. An industry standard 10 percent K-factor was utilized to estimate an average daily traffic volume of 6,100 vehicles per day along Vollmer Road. The afternoon heavy vehicle percentage of 4.4 percent was utilized to estimate a daily heavy vehicle estimate of 268 trucks $(6,100 \times 0.044)$. The project is anticipated to add 10 daily truck trips during the peak day of the peak month. This equates to a 3.7 percent (10/268) increase in the overall number of daily trucks along Vollmer Road. However, the heavy vehicle usage of 4.4 percent along Vollmer Road remains the same due to the small number of trucks added daily by this project. This is due to passenger vehicles generated by the project being added to Vollmer Road as well as trucks and the overall truck percentage along Vollmer Road remaining the same (268 existing trucks +10 project trucks) / (6,100 existing vehicles +280 project vehicles)). It should also be noted that this is calculated with the highest project generated volume day in the entire calendar year and the not the average project generation. Therefore, an approximate total of five heavy vehicles (10 trips) are expected to be added to the roadway network on a peak day, and this is expected to have a negligible impact to the surrounding roadway.

Address the ownership and condition of Carah Dawn View and Cliff Allen Point to the site, width, shoulders, pavement condition and thickness, etc. access and sight distance requirements at the site. Does it meet minimum ECM requirements for the volume and type of traffic proposed? If maintenance or improvements need to be done on the road, who will do it?

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes Barbarick Waste Transfer Station will be successfully incorporated into the existing and future roadway network with the existing geometry and control. The intersection of Vollmer Road and Lochwinnoch Lane is anticipated to operate acceptably throughout 2045 and all vehicle queues are anticipated to be maintained within the existing storage lengths. The road impact fee associated with the project is expected to be $\$ 22,380$.

APPENDICES

APPENDIX A

Intersection Count Sheets

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Lochwinnoch Ln				Project Access				Vollmer Rd					Vollmer Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT		TH	RT		
7:00 AM	0	0	0	0	0	0	0	0	0	0		5	0	0		0	1	6	0
7:15 AM		1	0	0			0	0	0	0		8	0	0		1	0	11	0
7:30 AM	0	0	0	0	0	1	0	0	0	2	-	4	1	0	0	2	0	10	0
7:45 AM	0	0	0	0	0	2	0	0	0	0		4	1	0	0	1	0	8	35
8:00 AM			0	0			0	0	0	0		6	1	0		1	0	9	38
8:15 AM		0	0	1	0		0	0	0	0	4	4	1	0		1	0	8	35
8:30 AM	0	0	0	0	0		0	1	0	0		3	0	0		1	0	7	32
8:45 AM	0	0	0	0	0	0	0	0	0	0	3	3	0	0	0	1	0	4	28
Count Total	0	1	0	1	0	6	0	1	0	2	37	37	4	0		8	1	63	0
Peak Hour	0	1	0	0	0	3	0	0	0	2	2	21	2	0		4	1	35	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Lochwinnoch Ln				Project Access				Vollmer Rd					Vollmer Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT		TH	RT	LT		TH	RT	LT		TH		RT	LT	TH		RT		
7:00 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
7:15 AM	0			0	0			0	0		0		0	0	0		0	0	0
7:30 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
7:45 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
8:00 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
8:15 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
8:30 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
8:45 AM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Count Total	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Peak Hour	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																			
Interval Start	Lochwinnoch Ln				Project Access				Vollmer Rd					Vollmer Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT		TH	RT	UT		TH	RT		
4:00 PM	0	0	0	0	0	1	0	0	0	1		0	0	0	0	6	0	8	0
4:15 PM			0	1			0	0	0	0		6	0	0		2	0	10	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	2	2	1	0	0	1	0	5	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	-	1	0	0		4	1	7	30
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	2	0	0		4	0	6	28
5:15 PM	0	0	0	0	0	0	0	0	0	0		0	0	0		2	0	2	20
5:30 PM		0	0	0	0	0	0	0	0	0		1	0	0		3	0	4	19
5:45 PM	0	0	0	0	0	0	0	0	0	0		0	0	0		3	0	3	15
Count Total	0	0	0	1	0	2	0	1	0	1	1	12	1	0		25	1	45	0
Peak Hour	0	0	0	1	0	1	0	1	0	0	1	11	1	0		11	1	28	0
Two-Hour Count Summaries - Bikes																			
Interval Start	Lochwinnoch Ln				Project Access				Vollmer Rd					Vollmer Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound					Southbound					
	LT			RT	LT		TH	RT	LT		TH		RT	LT	TH		RT		
4:00 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:15 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:30 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
4:45 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:00 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:15 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:30 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
5:45 PM	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Count Total	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Peak Hour	0		0	0	0		0	0	0		0		0	0	0		0	0	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																			

APPENDIX B

Future Traffic Projections

MTCP Growth Rate: Barbarick Waste Transfer Station

Location	2022 AADT	2040AADT	Growth Factor	Growth Rate
Vollmer Rd S/O Burgess Rd	6100	8700	1.43	1.99%

APPENDIX C

Intersection Analysis Worksheets

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			\uparrow	「		\uparrow	「		\$	
Traffic Vol, veh/h	15	1	12	13	0	7	29	289	14	2	245	6
Future Vol, veh/h	15	1	12	13	0	7	29	289	14	2	245	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	,	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	0	-	-	350	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	16	1	13	14	0	8	32	314	15	2	266	7

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「		\uparrow	「		\$	
Traffic Vol, veh/h	15	1	12	13	0	7	29	307	14	2	260	6
Future Vol, veh/h	15	1	12	13	0	7	29	307	14	2	260	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	0	-	-	350	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	16	1	13	14	0	8	32	334	15	2	283	7

Intersection												
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「		\uparrow	F		\&	
Traffic Vol, veh/h	8	0	16	9	0	2	27	280	13	4	442	26
Future Vol, veh/h	8	0	16	9	0	2	27	280	13	4	442	26
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	0	-	-	350	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	10	0	20	11	0	3	34	354	16	5	559	33

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\uparrow	「		\uparrow	F		\&	
Traffic Vol, veh/h	15	1	12	13	0	7	29	455	14	2	385	6
Future Vol, veh/h	15	1	12	13	0	7	29	455	14	2	385	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	0	-	-	350	-	-	-
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	4	4	4	4	4	4	4	4	4	4	4	4
Mvmt Flow	16	1	13	14	0	8	32	495	15	2	418	7

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\uparrow	「		\uparrow	「		4	
Traffic Vol, veh/h	8	0	16	23	0	6	27	280	27	8	442	26
Future Vol, veh/h	8	0	16	23	0	6	27	280	27	8	442	26
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	0	-	-	350	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	10	0	20	29	0	8	34	354	34	10	559	33

HCM LOS C C

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1WBLn2	SBL	SBT	SBR		
Capacity (veh/h)	1124	-	-	287	206	571	1032	-

APPENDIX D

Conceptual Site Plan

[^0]: ${ }^{1}$ Institute of Transportation Engineers, Trip Generation Manual, Eleventh Edition, Washington DC, 2021.

[^1]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

