FINAL DRAINAGE REPORT

for

ARACO ENTERPRISES LLC - BUILDING ADDITION 7470 SOUTHMOOR DRIVE, FOUNTAIN, CO

Prepared for:
Araco Enterprises LLC
7470 Southmoor Drive
Fountain, CO 80817

October 24, 2019
Revised July 22, 2020
Revised January 25, 2021
Revised June 10, 2022

Prepared by:

ENGINEERING

19 E. Willamette Ave.
Colorado Springs, CO 80903
(719)-477-9429
www.jpsengr.com

ARACO ENTERPRISES LLC - BUILDING ADDITION 7470 SOUTHMOOR DRIVE, FOUNTAIN, CO DRAINAGE REPORT STATEMENTS

1. Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according tatuducterny established by the County for drainage reports and said report is in confor 1 and for liability causan what report:

John: P:

2. Developer

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

By:

Printed Name: Arturo Acosta
Title: Manager

3. E1 Pase County Statement:

Filed in accordance with the requirements of the EI Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

	APPROVED Engineering Department	
Joshua Palmer, PE	01/05/2003 9:47:45 AM dsdnijkamp	
County Engineer / ECM Administrator	\cdots	EPC Planning \& Community Development Department

Conditions:

I. INTRODUCTION

A. Property Location and Description

Araco Enterprises LLC is planning to construct an addition on the east side of their existing contractor's office building at 7470 Southmoor Drive in Fountain, Colorado. The project site (El Paso County Assessor's No. 65244-00-085) is an unplatted 4.2-acre developed parcel described as a tract in the Southeast Quarter of Section 24, Township 15 South, Rage 66 West of the $6^{\text {th }}$ P.M. The property is located along the southwest side of Southmoor Drive. The property is zoned M (Industrial).

Southmoor Drive is a paved public street adjoining the northeast boundary of the property, and the southwest boundary of the site adjoins the Mesa Ridge Parkway (State Highway 16) right-of-way. The Crews Gulch drainage channel flows westerly across the north end of the site, and the northern boundary of the property adjoins an 11-acre park tract owned by El Paso County.

The site development plan consists of proposed 6,000 square-foot building addition on the east side of the existing contractor's office building, with associated parking and site improvements impacting a total disturbed area of approximately 2 -acres. Access will be provided by private driveway connections to Southmoor Drive along the northeast boundary of the site as designated on the approved site development plan. The project will include internal driveway and employee parking improvements along with an asphalt-paved RV/Vehicle storage area at the northwest end of the site. The proposed employee parking area at the southeast end of the site will be asphalt paved.

B. Scope

This Drainage Report has been prepared in support of the Site Development Plan submittal for this project, in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development, including analysis of upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

II. EXISTING / PROPOSED DRAINAGE CONDITIONS

According to the Natural Resources Conservation Services (NRCS) web soil survey, the majority of on-site soils are comprised of "Ellicott loamy coarse sand" and "SchamberRazor complex," with a small area comprised of "Manzanola silty clay loam" soils along the southeast corner of the site. The majority of on-site soils are classified as hydrologic soils group A. The existing site topography slopes downward to the southwest with grades of approximately 1-3 percent.

Existing Conditions

The existing drainage patterns are depicted on the enclosed Historic Drainage Plan (Figure EX1, Appendix D). The majority of the site has been delineated as Basin A, which sheet flows southwesterly across the property towards an existing stormwater detention basin within the Mesa Ridge Parkway right-of-way. The existing detention basin appears to have been constructed to mitigate developed drainage impacts from a previous CDOT highway improvement project.

Basin A sheet flows southwesterly to Design Point \#1, with historic peak flows calculated as $\mathrm{Q}_{5}=1.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=5.6 \mathrm{cfs}$.

Basin B has been delineated as the small area at the north end of the property which sheet flows into the Crews Gulch drainage channel, flowing westerly across the property. Drainage from Basin B flows to Design Point \#2 (see Sh. EX1), with historic peak flows calculated as $\mathrm{Q}_{5}=0.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=1.2 \mathrm{cfs}$.

Proposed Conditions

As shown on the enclosed Developed Drainage Plan (Figure D1, Appendix D), the developed area of the site has been delineated as two on-site drainage basins (A1-A2). Developed flows have been calculated based on the impervious areas associated with the existing and proposed development.

The asphalt parking and storage area within the fence at the north end of the site has been delineated as developed Basin A1, which sheet flows northwesterly to the proposed Detention Basin A1 near the northwest corner of the parking area. Developed peak flows at Design Point \#A1 are calculated as $\mathrm{Q}_{5}=5.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=10.3 \mathrm{cfs}$. Detention Basin A1 will mitigate developed flow impacts from this part of the site, and the 12 " Discharge Pipe from Basin A1 will extend northwesterly to the toe of the adjoining embankment, flowing into the Crews Gulch Channel.

The balance of the developed site has been delineated as Basin A2, which sheet flows southeasterly to Detention Basin A2 near the southeast corner of the property. The employee parking area at the southeast corner of the site will sheet flow to private Storm Inlet A2 (Type 16), and Private Storm Drain SD-A2 (12" HDPE) will convey this flow directly into Detention Basin A2.

The proposed building addition will be graded with protective slopes to provide positive drainage away from the building. Curb and gutter, concrete crosspans, and drainage swales within the on-site parking and driveway areas will convey developed flows to Detention Basin A2 along the southwest property boundary.

Developed peak flows at Design Point \#A2 are calculated as $\mathrm{Q}_{5}=4.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=8.7$ cfs. Developed flows from Basins A1 and A2 combine at Design Point \#1, with peak flows calculated as $\mathrm{Q}_{5}=9.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=17.2 \mathrm{cfs}$.

Recognizing that current County drainage criteria require stormwater detention and permanent stormwater quality best management practices for disturbed areas greater than one acre in size, the proposed Detention Basins A1 and A2 have been designed to mitigate developed drainage impacts and meet the current County stormwater requirements. As detailed in Appendix A, detained peak flows at Design Point \#1 are calculated as $\mathrm{Q}_{5}=0.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=0.8 \mathrm{cfs}$, which are well below the calculated historic flows.

Basin B at the north end of the site will remain undisturbed and will continue to sheet flows into the Crews Gulch drainage channel. Developed peak flows at Design Point \#2 are calculated as $\mathrm{Q}_{5}=0.2 \mathrm{cfs}$ and $\mathrm{Q}_{100}=1.2 \mathrm{cfs}$, matching existing conditions.

There are no significant off-site drainage flows impacting the developed area of the property.

Hydrologic calculations for the parcel are detailed in the attached spreadsheet tables (Appendix A), and peak flows are identified on Figures EX1 and D1. The contractor will need to implement standard best management practices for erosion control during construction.

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- The proposed employee parking and RV/Vehicle Storage parking areas will be asphalt paved as required by the site development plan. The remaining internal site parking and storage areas will utilize gravel and/or asphalt millings to minimize new impervious areas and encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- The Crews Gulch channel flowing across the north end of the site has been stabilized with existing riprap bank protection along the bank of the channel within this property.
- Routing flows through the on-site Detention Basins will minimize impacts to existing downstream drainageways.

Step 3: Provide Water Quality Capture Volume (WQCV)

- Site drainage from the building addition area and developed parts of the site will be routed through proposed Extended Detention Basins (EDB), which will capture and slowly release the WQCV over a 40-hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- On-site drainage will be routed through the private Extended Detention Basins (EDB) to minimize introduction of contaminants to the downstream public drainage system.
- The Owner will be responsible to implement and maintain a stormwater management plan (SWMP), which will include proper housekeeping practices for this commercial property.

IV. STORMWATER DETENTION \& WATER QUALITY

The proposed drainage and grading plan for this site includes two private Extended Detention Basins (EDB) along the southwest boundary of the property. The proposed Full-Spectrum Detention Basins will provide the required stormwater detention and water quality mitigation for the site in accordance with current El Paso County drainage criteria.

The Detention Basin outlet structures will provide multiple outlet orifices to regulate discharge flows and spillways discharging to the southwest property boundary. Both ponds will have concrete trickle channels and grass-lined pond bottoms to encourage stormwater infiltration.

Detention Basin A1

As detailed in the enclosed detention pond calculations (Appendix C), the total area draining to Detention Basin A1 is 1.46 -acres, and the site impervious area to be treated at Extended Detention Basin A1 ("EDB-A1") has been calculated as 88.6 percent. According to the enclosed "UD_Detention" calculations, the minimum required 100-year Full-Spectrum Detention (FSD) Volume for EDB-A1 has been calculated as 0.25 acrefeet. The proposed Detention Basin A1 has been designed to provide a volume of 0.28 acre-feet, which is sufficient to provide the required 100-year Detention and WQCV.

The discharge pipe from Basin A1 will extend northwesterly to daylight at the toe of the adjoining embankment, flowing into the Crews Gulch Channel, and the spillway of Basin A1 will direct overflows into the existing grass-lined detention area within the Mesa Ridge Parkway right-of-way.

Detention Basin A2

The developed area draining to Detention Basin A2 is 2.3-acres, and the site impervious area to be treated at Extended Detention Basin A2 ("EDB-A2") has been calculated as 51.9 percent. According to the enclosed "UD_Detention" calculations, the minimum C:\Users\Owner\Dropbox\jpsprojects\111705.aracoladmin\Drainage\Drg-Rpt-Araco-0121.docx
required 100-year Full-Spectrum Detention (FSD) Volume for EDB-A2 has been calculated as 0.22 acre-feet. The proposed Detention Basin A2 has been designed to provide a volume of 0.28 acre-feet, which is sufficient to provide the required 100-year Detention and WQCV.

Both the discharge pipe and spillway from Basin A2 will extend southwesterly into the adjoining grass-lined detention area within the Mesa Ridge Parkway right-of-way. Recognizing that the existing detention area has historically received flow from the adjoining Araco property, the existing detention facility provides an adequate outfall for detained flows from this site.

The proposed stormwater detention facilities will be privately owned and maintained by the property owner, and maintenance access is readily available from the adjoining parking areas.

V. FLOODPLAIN IMPACTS

The northwest part of the site is impacted by FEMA 100-year floodplain boundaries along the Crews Gulch channel according to the FEMA floodplain map for this area, FIRM Panel No. 08041C0951G dated December 7, 2018 (see Appendix D). The proposed Building Addition is located beyond 100-year floodplain limits.

VI. DRAINAGE BASIN FEES

This site is located within the Crews Gulch Drainage Basin. No public drainage improvements are required for development of this site. No subdivision platting is proposed at this time, and there are no applicable drainage fees required with the Site Development Plan.

VII. SUMMARY

The developed drainage patterns associated with the proposed Araco Enterprises Building Addition project will remain consistent with historic conditions. The proposed Extended Detention Basins along the southwest boundary of the site will provide stormwater detention and water quality mitigation as required for the new site improvements. Proper construction and maintenance of the proposed on-site drainage facilities, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS

$38^{\circ} 43^{\prime} 24^{\prime \prime} \mathrm{N}$

Hydrologic Soil Group-EI Paso County Area, Colorado

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	3.8	57.1%
82	Schamber-Razor complex, 8 to 50 percent slopes	A	2.2	32.5%
MzA	Manzanola silty clay loam, saline, 0 to 2 percent slopes	C	0.7	10.4%
Totals for Area of Interest	$\mathbf{6 . 7}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 6-3. Recommended percentage imperviousness values

Land Use or Surface Characteristics	Percentage Imperviousness (\%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential lots (lot area only):	
Single-family	
2.5 acres or larger	12
0.75-2.5 acres	20
0.25-0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

ARACO CONCRETE
RATIONAL METHOD
HISTORIC FLOWS
DEVELOPED FLOWS

1) OVERLAND FLOW Tco $=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT })^{*}\left(\operatorname{OVERLAND~FLOW~LENGTH}^{\wedge}(0.5) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)\right.\right.$
) SCS VELOCITY = C " (SLOPE(FTR HE.5) MEADOW
$=2.5$ FOR HEAVF/MEADO
$\mathrm{C}=7$ FOR SHORT PASTURE AND
$\mathrm{C}=10$ FOR NEARLY BARE GROUND
$\mathrm{C}=15$ FOR GRASSED WATERWAY
C $=20$ FOR PAVED AREAS AND SHALLOW PAVED SWALES
2) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)
3) $\mathrm{Tc}=\mathrm{TcO}+\mathrm{Tt}$
*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
4) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL
$\mathrm{I}_{5}=-1.5^{*} \ln (\mathrm{Tc})+7.583$
5) $\mathrm{Q}=$| $\mathrm{I}_{100}=-2.52 * \ln (\mathrm{Tc})+12.735$ |
| :---: |

APPENDIX B

HYDRAULIC CALCULATIONS

```
ARACO CONCRETE - 7470 SOUTHMOOR DRIVE STORM INLET SIZING SUMMARY
```

	BASIN FLOW			INLET FLOW			$\begin{gathered} \hline \text { INLET } \\ \text { CONDITION / } \\ \text { TYPE } \\ \hline \end{gathered}$	$\begin{aligned} & \text { INLET } \\ & \text { SIZE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { INLET } \\ & \text { CAPACITY } \\ & \text { (CFS) } \\ & \hline \end{aligned}$
INLET	DP	$\begin{aligned} & \text { Q5 } \\ & \text { FLOW } \\ & \text { (CFS) } \end{aligned}$	$\begin{aligned} & \hline \text { Q100 } \\ & \text { FLOW } \\ & \text { (CFS) } \end{aligned}$	INLET FLOW \% OF BASIN	$\begin{gathered} \hline \text { Q5 } \\ \text { FLOW } \\ \text { (CFS) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Q100 } \\ & \text { FLOW } \\ & \text { (CFS) } \\ & \hline \end{aligned}$			
A2	A2	4.7	8.7	35	1.6	3.0	SUMP TYPE 16	SINGLE	3.9

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

		MINOR MAJOR			
Type of Inlet Type = Denver No. 16 Combination					
Local Depression (additional to continuous gutter depression 'a' from above)		$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches	
Grate Information		MINOR	MAJOR	- Override Depths	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00		
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	feet feet	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.31	0.31		
	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50		
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	3.60	3.60		
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60		
Curb Opening Information		MINOR	MAJOR	feet inches inches degrees feet	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	3.00	3.00		
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.50	6.50		
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	5.25	5.25		
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	0.00	0.00		
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00		
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10		
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.70	3.70		
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.66	0.66		
Low Head Performance Reduction (Calculated)		MINOR	MAJOR		
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	0.523	ft	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.33	ft	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.94	0.94		
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	1.00	1.00		
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	0.94		
		MINOR	MAJOR		
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	3.9	3.9	cfs	
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak required }}=$	1.6	3.1	cfs	

ARACO CONCRETE - 7470 SOUTHMOOR DRIVE
STORM SEWER SIZING SUMMARY

	PIPE FLOW			PIPE CAPACITY		
PIPE	BASINS		Q100 FLOW (CFS)	$\begin{gathered} \text { PIPE } \\ \text { SIZE (IN) } \\ \hline \end{gathered}$	MIN. PIPE SLOPE	FULL PIPE CAPACITY (CFS)
A2	A2	1.6	3.0	12	1.00\%	3.6

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

Hydraulic Analysis Report

Project Data

Project Title: Project - Araco
Designer: JPS
Project Date: Wednesday, October 23, 2019
Project Units: U.S. Customary Units
Notes:

Channel Analysis: SD-A2

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.0000 ft

Result Parameters

Flow: 3.5628 cfs
Area of Flow: $0.7854 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 3.1416 ft
Hydraulic Radius: 0.2500 ft
Average Velocity: $4.5363 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 0.8057 ft
Critical Velocity: $5.2542 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0103 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.79 ft
Calculated Max Shear Stress: $0.6240 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.1560 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

APPENDIX C

STORMWATER DETENTION CALCULATIONS

RATL.ARACO-0121

 Afer depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.
Water Quality Capture Volume (WQCV) $=0.047$ Excess Urban Runoff Volume (EURV) $=0.175$ acre-fe 2-yr Runoff Volume (P1 = 1.19 in .) $=$
$5-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ 10-yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$)

$$
25-\text { yr Runoff Volume (P1 = } 2 \text { in.) }=
$$ $50-\mathrm{yr}$ Runoff Volume (P1 = 2.25 in .) $=$ 100-yr Runoff Volume (P1 = 2.52 in .) = $500-\mathrm{yr}$ Runoff Volume (P1 = 3.14 in .) Approximate 2-yr Detention Volume $=$ Approximate 5-yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate $25-\mathrm{yr}$ Detention Volume $=$

Approximate $50-\mathrm{yr}$ Detention Volume $=$
Approximate $100-\mathrm{yr}$ Detention Volume $=$
Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.047	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.128	acre-feet
olume (100-year - Zones 1 \& 2)	0.070	
Total Detention Basin Volume	0.245	acre-feet

Depth Increment $=$		ft							
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area $\left(\mathrm{ft}^{2}\right)$	Optional Override Area (ft^{2})	Area (acre)	Volume (ft ${ }^{3}$)	Volume (ac-ft)
Top of Micropool	--	0.00	--	--	--	10	0.000		
Outlet Structure	--	0.90	--	--	--	10	0.000	9	0.000
Bot EL=5634.0	--	1.00	--	--	--	2,610	0.060	139	0.003
	--	3.00	--	--	--	2,958	0.068	5,707	0.131
Spillway=5638.0	--	5.00	--	--	--	3,308	0.076	11,973	0.275
Top EL=5640.0	--	7.00	--	--	--	3,660	0.084	18,941	0.435
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)				Calculated Parameters for Overflow Weir	
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	3.80	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	3.80	N/A
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	2.50	N/A
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	222.64	N/A
Horiz. Length of Weir Sides $=$	2.50	N/A	feet Overflow Grate Open Area w/o Debris =	6.96	N/A
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.48	N/A
Debris Clogging \% =	50\%	N/A	\%		

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)							
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter $=$	$\begin{array}{\|c\|} \hline \hline \text { Zone 3 Restrictor } \\ \hline 1.50 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Not Selected } \\ \hline \mathrm{N} / \mathrm{A} \\ \hline \end{gathered}$	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area = Outlet Orifice Centroid = of Restrictor Plate on Pipe =	$\begin{array}{\|c\|} \hline \text { Zone } 3 \text { Restrictor } \\ \hline 0.03 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Not Selected } \\ \hline \mathrm{N} / \mathrm{A} \\ \hline \end{gathered}$	
	12.00	N/A			0.05	N/A	
Restrictor Plate Height Above Pipe Invert =	1.00				0.59	N/A	
User Input: Emergency Spillway (Rectangular or	Trapezoidal)				Calculated Parame	ters for Spillway	
Spillway Invert Stage=	5.00	ft (relative to bas	bottom at Stage $=0 \mathrm{ft}$)	Spillway Design Flow Depth=	0.91	feet	
Spillway Crest Length =	2.00	feet		Stage at Top of Freeboard =	6.91	feet	
Spillway End Slopes =	0.00	$\mathrm{H}: \mathrm{V}$		in Area at Top of Freeboard $=$	0.08	acres	
Freeboard above Max Water Surface $=$	1.00	feet	Basin	Volume at Top of Freeboard $=$	0.43	acre-ft	

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.047	0.175	0.116	0.150	0.177	0.207	0.236	0.269	0.343
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.116	0.150	0.177	0.207	0.236	0.269	0.343
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.0	0.3	0.6	1.0	1.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.20	0.40	0.66	1.17
Peak Inflow Q (cfs) $=$	N/A	N/A	2.3	2.8	3.4	4.0	4.6	5.2	6.6
Peak Outflow Q (cfs) $=$	0.0	0.3	0.1	0.2	0.2	0.3	0.3	0.4	0.6
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	7.7	6.8	0.9	0.6	0.4	0.4
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.0	0.0	0.0
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	63	63	64	64	64	64	64	63
Time to Drain 99\% of Inflow Volume (hours) =	39	67	66	67	68	69	69	70	71
Maximum Ponding Depth (ft) $=$	1.72	3.64	2.64	3.00	3.31	3.67	3.95	4.35	5.12
Area at Maximum Ponding Depth (acres) $=$	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.08
Maximum Volume Stored (acre-ft)	0.047	0.175	0.106	0.131	0.152	0.177	0.197	0.226	0.284

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.12
	0:15:00	0.00	0.00	0.35	0.56	0.69	0.46	0.57	0.56	0.78
	0:20:00	0.00	0.00	1.14	1.47	1.72	1.07	1.24	1.34	1.72
	0:25:00	0.00	0.00	2.20	2.85	3.36	2.16	2.48	2.64	3.37
	0:30:00	0.00	0.00	2.27	2.83	3.24	4.03	4.61	5.10	6.51
	0:35:00	0.00	0.00	1.84	2.26	2.59	3.87	4.42	5.21	6.62
	0:40:00	0.00	0.00	1.47	1.78	2.03	3.34	3.81	4.45	5.65
	0:45:00	0.00	0.00	1.13	1.41	1.64	2.64	3.01	3.67	4.65
	0:50:00	0.00	0.00	0.89	1.16	1.31	2.19	2.50	2.99	3.80
	0:55:00	0.00	0.00	0.71	0.91	1.05	1.70	1.93	2.41	3.06
	1:00:00	0.00	0.00	0.57	0.73	0.86	1.34	1.52	1.97	2.50
	1:05:00	0.00	0.00	0.50	0.64	0.78	1.08	1.22	1.65	2.09
	1:10:00	0.00	0.00	0.42	0.61	0.75	0.86	0.98	1.22	1.55
	1:15:00	0.00	0.00	0.38	0.56	0.74	0.75	0.85	0.98	1.25
	1:20:00	0.00	0.00	0.35	0.51	0.68	0.64	0.72	0.74	0.94
	1:25:00	0.00	0.00	0.33	0.48	0.59	0.57	0.64	0.60	0.75
	1:30:00	0.00	0.00	0.32	0.46	0.53	0.49	0.55	0.51	0.64
	1:35:00	0.00	0.00	0.32	0.45	0.49	0.44	0.49	0.45	0.57
	1:40:00	0.00	0.00	0.31	0.39	0.47	0.40	0.45	0.42	0.52
	1:45:00	0.00	0.00	0.31	0.35	0.45	0.39	0.43	0.40	0.50
	1:50:00	0.00	0.00	0.31	0.33	0.44	0.38	0.42	0.40	0.50
	1:55:00	0.00	0.00	0.25	0.31	0.42	0.37	0.42	0.40	0.49
	2:00:00	0.00	0.00	0.22	0.29	0.37	0.37	0.41	0.40	0.49
	2:05:00	0.00	0.00	0.14	0.18	0.24	0.23	0.26	0.25	0.31
	2:10:00	0.00	0.00	0.08	0.11	0.15	0.14	0.16	0.16	0.19
	2:15:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.12
	2:20:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.05	0.07
	2:25:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.04
	2:30:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.
 Excess Urban Runoff Volume (EURV) $=0.134$ 2-yr Runoff Volume (P1 = 1.19 in .) $=$
$5-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ 10 -yr Runoff Volume ($\mathrm{P} 1=1.75$ in)

$$
25-\text { yr Runoff Volume (P1 = } 2 \text { in.) }=
$$ $50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ $100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ $500-\mathrm{yr}$ Runoff Volume (P1 = 3.14 in .) Approximate 2-yr Detention Volume Approximate 5 -yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate $25-\mathrm{yr}$ Detention Volume $=$

Approximate $50-\mathrm{yr}$ Detention Volume $=$
Approximate $100-\mathrm{yr}$ Detention Volume $=$
Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.041	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.093	acre-feet
ume (100-year - Zones 1 \& 2)	0.084	
Total Detention Basin Volume	0.218	acre-feet

Depth Increment $=$		ft							
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area $\left(\mathrm{ft}^{2}\right)$		Area (acre)	Volume $\left(\mathrm{ft}^{3}\right)$	Volume (ac-ft)
Top of Micropool	--	0.00	--	--	--	10	0.000		
Outlet Structure	--	0.40	--	--	--	10	0.000	4	0.000
Bot EL=5633.0	--	0.50	--	--	--	3,869	0.089	197	0.005
	--	1.50	--	--	--	3,974	0.091	4,119	0.095
Spillway=5636.0	--	3.50	--	--	--	4,149	0.095	12,242	0.281
Top EL=5638.0	--	5.50	--	--	--	4,300	0.099	20,691	0.475
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN									
Project: ARACO CONCRETE MHFD-Detention, Version 4.04 (February 2021)									
Basin ID: A2									
			Estimated	Estimated	Outlet Type				
			Stage (ft)	Volume (ac-ft)					
		Zone 1 (WQCV)	0.91	0.041	Orifice Plate				
-		Zone 2 (EURV)	1.93	0.093	Orifice Plate				
PERMANENT- OROLICLS		Zone 3 (100-year)	2.84	0.084	Weir\&Pipe (Restrict)				
Example Zone	urati	tention Pond)	otal (all zones)	0.218					
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)						Calculated Parameters for Under			
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches		Underdrain Orifice Area = Underdrain Orifice Centroid =		N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$		
	N/A			N/A					
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate									
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches inches				WQ Orifice Area per Row = Elliptical Half-Width =		N/A	$\mathrm{ft}^{\text {feet }}$
	1.93			N/A					
	7.70			Elliptical Slot Centroid = Elliptical Slot Area =		N/A	feet		
	N/A			N/A	ft^{2}				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Ple

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.041	0.134	0.105	0.138	0.170	0.222	0.264	0.320	0.435
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.105	0.138	0.170	0.222	0.264	0.320	0.435
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.2	0.7	1.0	1.5	2.4
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.07	0.30	0.43	0.64	1.05
Peak Inflow Q (cfs) $=$	N/A	N/A	1.3	1.7	2.1	2.9	3.5	4.2	5.8
Peak Outflow Q (cfs) $=$	0.0	0.1	0.1	0.1	0.2	0.4	0.6	0.7	2.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	3.9	0.9	0.6	0.6	0.5	0.8
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.0	0.1	0.1	0.1
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	63	62	64	65	66	64	63	59
Time to Drain 99\% of Inflow Volume (hours) $=$	41	66	65	68	70	72	71	71	70
Maximum Ponding Depth (ft) =	0.91	1.94	1.50	1.80	2.09	2.54	2.74	3.19	3.75
Area at Maximum Ponding Depth (acres) $=$	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10
Maximum Volume Stored (acre-ft) =	0.041	0.135	0.094	0.122	0.149	0.191	0.208	0.251	0.304

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.05
	0:15:00	0.00	0.00	0.13	0.22	0.27	0.18	0.23	0.22	0.32
	0:20:00	0.00	0.00	0.48	0.63	0.74	0.47	0.55	0.59	0.77
	0:25:00	0.00	0.00	1.02	1.40	1.70	1.00	1.19	1.28	1.73
	0:30:00	0.00	0.00	1.27	1.68	2.09	2.40	2.90	3.32	4.63
	0:35:00	0.00	0.00	1.22	1.60	1.97	2.89	3.47	4.22	5.76
	0:40:00	0.00	0.00	1.14	1.47	1.80	2.90	3.47	4.21	5.73
	0:45:00	0.00	0.00	1.03	1.34	1.64	2.67	3.20	4.01	5.46
	0:50:00	0.00	0.00	0.94	1.23	1.49	2.45	2.95	3.70	5.04
	0:55:00	0.00	0.00	0.86	1.12	1.36	2.20	2.64	3.36	4.60
	1:00:00	0.00	0.00	0.78	1.02	1.23	1.97	2.36	3.07	4.22
	1:05:00	0.00	0.00	0.71	0.92	1.12	1.77	2.11	2.81	3.87
	1:10:00	0.00	0.00	0.63	0.85	1.04	1.54	1.84	2.41	3.31
	1:15:00	0.00	0.00	0.58	0.79	0.99	1.37	1.62	2.08	2.86
	1:20:00	0.00	0.00	0.53	0.73	0.92	1.22	1.44	1.80	2.47
	1:25:00	0.00	0.00	0.50	0.68	0.84	1.09	1.29	1.57	2.14
	1:30:00	0.00	0.00	0.46	0.62	0.76	0.97	1.14	1.36	1.85
	1:35:00	0.00	0.00	0.42	0.57	0.68	0.85	0.99	1.18	1.59
	1:40:00	0.00	0.00	0.38	0.50	0.61	0.74	0.86	1.00	1.34
	1:45:00	0.00	0.00	0.35	0.44	0.54	0.63	0.74	0.84	1.12
	1:50:00	0.00	0.00	0.32	0.38	0.48	0.54	0.62	0.70	0.91
	1:55:00	0.00	0.00	0.28	0.35	0.44	0.46	0.52	0.57	0.74
	2:00:00	0.00	0.00	0.24	0.32	0.40	0.41	0.46	0.49	0.63
	2:05:00	0.00	0.00	0.20	0.26	0.33	0.32	0.37	0.38	0.49
	2:10:00	0.00	0.00	0.16	0.21	0.27	0.26	0.29	0.30	0.38
	2:15:00	0.00	0.00	0.13	0.17	0.22	0.20	0.23	0.23	0.29
	2:20:00	0.00	0.00	0.11	0.14	0.17	0.16	0.18	0.18	0.23
	2:25:00	0.00	0.00	0.09	0.11	0.14	0.13	0.14	0.14	0.17
	2:30:00	0.00	0.00	0.07	0.09	0.11	0.10	0.11	0.11	0.13
	2:35:00	0.00	0.00	0.05	0.07	0.09	0.08	0.09	0.08	0.10
	2:40:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.06	0.08
	2:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.06
	2:50:00	0.00	0.00	0.03	0.03	0.04	0.04	0.04	0.04	0.05
	2:55:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:00:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:05:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.0	0.00	0	0.00	0	0.00	0.00	0.00	0.00

APPENDIX D

FIGURES

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

	Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR	
SPECIAL FLOOD	Regulatory Floodway HAZARD AREAS$\quad \square$	

0.2\% Annual Chance Flood Hazard, Areas
of 1\% annual chance flood with average
depth less than one foot or with drainage
areas of less than one square mile Zone X
Future Conditions 1\% Annual
Chance Flood Hazard Zone X

NO SCREEN Area of Minimal Flood Hazard Zone X OTHER AREAS S \square Effective LOMRs

GENERAL \qquad STRUCTURES \qquad Levee, Dike, or Floodwall

B- 20.2 Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation (8)- - - Coastal Transect mismin Base Flood Elevation Line (BFE) Limit of Study
Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

Digital Data Available
No Digital Data Available

MAP PANELS Unmapped an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/23/2019 at 3:55:48 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images fo unmapped and unmodernized areas cannot be used for regulatory purposes.

