FINAL DRAINAGE REPORT

for

ARACO ENTERPRISES LLC - BUILDING ADDITION 7470 SOUTHMOOR DRIVE, FOUNTAIN, CO

Prepared for:

Araco Enterprises LLC 7470 Southmoor Drive Fountain, CO 80817

October 24, 2019 Revised July 22, 2020 Revised January 25, 2021 Revised June 10, 2022

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 111705 PPR-1950

ARACO ENTERPRISES LLC - BUILDING ADDITION 7470 SOUTHMOOR DRIVE, FOUNTAIN, CO DRAINAGE REPORT STATEMENTS

1. **Engineer's Statement:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformation will the master plan for the drainage basin. I accept responsibility for liability caused by the drainage basin. I accept responsibility errors or omissions on my part in preparing this

report: John P ю. 29891 2. Developer

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

By:

Title: Manager

Printed Name: Arturo Acosta

10/05/2022

3. **El Paso County Statement:**

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, PE County Engineer / ECM Administrator

Conditions:

APPROVED Engineering Department

01/05/2023 9:47:45 AM dsdnijkamp **EPC Planning & Community Development Department**

I. INTRODUCTION

A. Property Location and Description

Araco Enterprises LLC is planning to construct an addition on the east side of their existing contractor's office building at 7470 Southmoor Drive in Fountain, Colorado. The project site (El Paso County Assessor's No. 65244-00-085) is an unplatted 4.2-acre developed parcel described as a tract in the Southeast Quarter of Section 24, Township 15 South, Rage 66 West of the 6th P.M. The property is located along the southwest side of Southmoor Drive. The property is zoned M (Industrial).

Southmoor Drive is a paved public street adjoining the northeast boundary of the property, and the southwest boundary of the site adjoins the Mesa Ridge Parkway (State Highway 16) right-of-way. The Crews Gulch drainage channel flows westerly across the north end of the site, and the northern boundary of the property adjoins an 11-acre park tract owned by El Paso County.

The site development plan consists of proposed 6,000 square-foot building addition on the east side of the existing contractor's office building, with associated parking and site improvements impacting a total disturbed area of approximately 2-acres. Access will be provided by private driveway connections to Southmoor Drive along the northeast boundary of the site as designated on the approved site development plan. The project will include internal driveway and employee parking improvements along with an asphalt-paved RV/Vehicle storage area at the northwest end of the site. The proposed employee parking area at the southeast end of the site will be asphalt paved.

B. Scope

This Drainage Report has been prepared in support of the Site Development Plan submittal for this project, in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development, including analysis of upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

II. EXISTING / PROPOSED DRAINAGE CONDITIONS

According to the Natural Resources Conservation Services (NRCS) web soil survey, the majority of on-site soils are comprised of "Ellicott loamy coarse sand" and "Schamber-Razor complex," with a small area comprised of "Manzanola silty clay loam" soils along the southeast corner of the site. The majority of on-site soils are classified as hydrologic soils group A. The existing site topography slopes downward to the southwest with grades of approximately 1-3 percent.

Existing Conditions

The existing drainage patterns are depicted on the enclosed Historic Drainage Plan (Figure EX1, Appendix D). The majority of the site has been delineated as Basin A, which sheet flows southwesterly across the property towards an existing stormwater detention basin within the Mesa Ridge Parkway right-of-way. The existing detention basin appears to have been constructed to mitigate developed drainage impacts from a previous CDOT highway improvement project.

Basin A sheet flows southwesterly to Design Point #1, with historic peak flows calculated as $Q_5 = 1.0$ cfs and $Q_{100} = 5.6$ cfs.

Basin B has been delineated as the small area at the north end of the property which sheet flows into the Crews Gulch drainage channel, flowing westerly across the property. Drainage from Basin B flows to Design Point #2 (see Sh. EX1), with historic peak flows calculated as $Q_5 = 0.2$ cfs and $Q_{100} = 1.2$ cfs.

Proposed Conditions

As shown on the enclosed Developed Drainage Plan (Figure D1, Appendix D), the developed area of the site has been delineated as two on-site drainage basins (A1-A2). Developed flows have been calculated based on the impervious areas associated with the existing and proposed development.

The asphalt parking and storage area within the fence at the north end of the site has been delineated as developed Basin A1, which sheet flows northwesterly to the proposed Detention Basin A1 near the northwest corner of the parking area. Developed peak flows at Design Point #A1 are calculated as $Q_5 = 5.6$ cfs and $Q_{100} = 10.3$ cfs. Detention Basin A1 will mitigate developed flow impacts from this part of the site, and the 12" Discharge Pipe from Basin A1 will extend northwesterly to the toe of the adjoining embankment, flowing into the Crews Gulch Channel.

The balance of the developed site has been delineated as Basin A2, which sheet flows southeasterly to Detention Basin A2 near the southeast corner of the property. The employee parking area at the southeast corner of the site will sheet flow to private Storm Inlet A2 (Type 16), and Private Storm Drain SD-A2 (12" HDPE) will convey this flow directly into Detention Basin A2.

The proposed building addition will be graded with protective slopes to provide positive drainage away from the building. Curb and gutter, concrete crosspans, and drainage swales within the on-site parking and driveway areas will convey developed flows to Detention Basin A2 along the southwest property boundary.

Developed peak flows at Design Point #A2 are calculated as $Q_5 = 4.7$ cfs and $Q_{100} = 8.7$ cfs. Developed flows from Basins A1 and A2 combine at Design Point #1, with peak flows calculated as $Q_5 = 9.3$ cfs and $Q_{100} = 17.2$ cfs.

C:\Users\Owner\Dropbox\jpsprojects\111705.araco\admin\Drainage\Drg-Rpt-Araco-0121.docx

Recognizing that current County drainage criteria require stormwater detention and permanent stormwater quality best management practices for disturbed areas greater than one acre in size, the proposed Detention Basins A1 and A2 have been designed to mitigate developed drainage impacts and meet the current County stormwater requirements. As detailed in Appendix A, detained peak flows at Design Point #1 are calculated as $Q_5 = 0.1$ cfs and $Q_{100} = 0.8$ cfs, which are well below the calculated historic flows.

Basin B at the north end of the site will remain undisturbed and will continue to sheet flows into the Crews Gulch drainage channel. Developed peak flows at Design Point #2 are calculated as $Q_5 = 0.2$ cfs and $Q_{100} = 1.2$ cfs, matching existing conditions.

There are no significant off-site drainage flows impacting the developed area of the property.

Hydrologic calculations for the parcel are detailed in the attached spreadsheet tables (Appendix A), and peak flows are identified on Figures EX1 and D1. The contractor will need to implement standard best management practices for erosion control during construction.

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• The proposed employee parking and RV/Vehicle Storage parking areas will be asphalt paved as required by the site development plan. The remaining internal site parking and storage areas will utilize gravel and/or asphalt millings to minimize new impervious areas and encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- The Crews Gulch channel flowing across the north end of the site has been stabilized with existing riprap bank protection along the bank of the channel within this property.
- Routing flows through the on-site Detention Basins will minimize impacts to existing downstream drainageways.

 $C: \label{eq:c:ses} Owner \Dropbox \jpsprojects \111705.araco \admin \Drainage \Drg-Rpt-Araco-0121.docx$

Step 3: Provide Water Quality Capture Volume (WQCV)

• Site drainage from the building addition area and developed parts of the site will be routed through proposed Extended Detention Basins (EDB), which will capture and slowly release the WQCV over a 40-hour design release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- On-site drainage will be routed through the private Extended Detention Basins (EDB) to minimize introduction of contaminants to the downstream public drainage system.
- The Owner will be responsible to implement and maintain a stormwater management plan (SWMP), which will include proper housekeeping practices for this commercial property.

IV. STORMWATER DETENTION & WATER QUALITY

The proposed drainage and grading plan for this site includes two private Extended Detention Basins (EDB) along the southwest boundary of the property. The proposed Full-Spectrum Detention Basins will provide the required stormwater detention and water quality mitigation for the site in accordance with current El Paso County drainage criteria.

The Detention Basin outlet structures will provide multiple outlet orifices to regulate discharge flows and spillways discharging to the southwest property boundary. Both ponds will have concrete trickle channels and grass-lined pond bottoms to encourage stormwater infiltration.

Detention Basin A1

As detailed in the enclosed detention pond calculations (Appendix C), the total area draining to Detention Basin A1 is 1.46-acres, and the site impervious area to be treated at Extended Detention Basin A1 ("EDB-A1") has been calculated as 88.6 percent. According to the enclosed "UD_Detention" calculations, the minimum required 100-year Full-Spectrum Detention (FSD) Volume for EDB-A1 has been calculated as 0.25 acrefeet. The proposed Detention Basin A1 has been designed to provide a volume of 0.28 acrefeet, which is sufficient to provide the required 100-year Detention and WQCV.

The discharge pipe from Basin A1 will extend northwesterly to daylight at the toe of the adjoining embankment, flowing into the Crews Gulch Channel, and the spillway of Basin A1 will direct overflows into the existing grass-lined detention area within the Mesa Ridge Parkway right-of-way.

Detention Basin A2

The developed area draining to Detention Basin A2 is 2.3-acres, and the site impervious area to be treated at Extended Detention Basin A2 ("EDB-A2") has been calculated as 51.9 percent. According to the enclosed "UD_Detention" calculations, the minimum C:\Users\Owner\Dropbox\jpsprojects\111705.araco\admin\Drainage\Drg-Rpt-Araco-0121.docx

required 100-year Full-Spectrum Detention (FSD) Volume for EDB-A2 has been calculated as 0.22 acre-feet. The proposed Detention Basin A2 has been designed to provide a volume of 0.28 acre-feet, which is sufficient to provide the required 100-year Detention and WQCV.

Both the discharge pipe and spillway from Basin A2 will extend southwesterly into the adjoining grass-lined detention area within the Mesa Ridge Parkway right-of-way. Recognizing that the existing detention area has historically received flow from the adjoining Araco property, the existing detention facility provides an adequate outfall for detained flows from this site.

The proposed stormwater detention facilities will be privately owned and maintained by the property owner, and maintenance access is readily available from the adjoining parking areas.

V. FLOODPLAIN IMPACTS

The northwest part of the site is impacted by FEMA 100-year floodplain boundaries along the Crews Gulch channel according to the FEMA floodplain map for this area, FIRM Panel No. 08041C0951G dated December 7, 2018 (see Appendix D). The proposed Building Addition is located beyond 100-year floodplain limits.

VI. DRAINAGE BASIN FEES

This site is located within the Crews Gulch Drainage Basin. No public drainage improvements are required for development of this site. No subdivision platting is proposed at this time, and there are no applicable drainage fees required with the Site Development Plan.

VII. SUMMARY

The developed drainage patterns associated with the proposed Araco Enterprises Building Addition project will remain consistent with historic conditions. The proposed Extended Detention Basins along the southwest boundary of the site will provide stormwater detention and water quality mitigation as required for the new site improvements. Proper construction and maintenance of the proposed on-site drainage facilities, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS

Hydrologic Soil Group—El Paso County Area, Colorado (Araco Concrete)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	3.8	57.1%
82	Schamber-Razor complex, 8 to 50 percent slopes	A	2.2	32.5%
MzA	Manzanola silty clay loam, saline, 0 to 2 percent slopes	С	0.7	10.4%
Totals for Area of Intere	est		6.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Land Line on Conferen	Deveent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-y	ear	10-y	/ear	ץ-25	/ear	50-1	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0 30	0.40	0 34	0.46	0 39	0.52
Playgrounds	13	0.05	0.05	0.12	0.13	0.20	0.25	0.30	0.40	0.37	0.48	0.35	0.52
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis	2												
Greenbelts, Agriculture		0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when	45												
landuse is undefined)	.5	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Bayed	100	0.80	0.80	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.85	0.89	0.50	0.50	0.52	0.52	0.54	0.34	0.95	0.33	0.30	0.30
		0.57	0.00	0.55	0.05	0.05	0.00	0.00	0.70	0.00	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Land Use or	Percentage Imperviousness
Surface Characteristics	(%)
Business:	
Downtown Areas	95
Suburban Areas	75
Residential lots (lot area only):	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 – 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

Table 6-3.	Recommended	percentage	imperviousness	values
------------	-------------	------------	----------------	--------

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried) [*]	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripron select C yelue based on type of ye	gotativa aquar

Table 6-7.	Conveyance	Coefficient,	C_{v}
------------	------------	--------------	---------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

ARACO CONCRETE COMPOSITE RUNOFF COEFFICIENTS

STORIC CONDITIONS	TOTAL SUB-AREA 1	ISTORIC CONDITIC YEAR C VALUES	DNS		SUB-AREA 1	
-------------------	------------------	-----------------------------------	-----	--	------------	--

	AREA				AREA						
	ļ										
BASIN	(AC)	(AC)	COVER	U	(AC)	COVER	U	(AC)	COVER	ပ	C VALUE
A	3.76	0.15	BUILDING / PAVEMENT	0.0	3.61	MEADOW	0.08				0.113
в	0.44	0.44	MEADOW	0.08							0.080
100-YEAR C VALU	JES										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT		WEIGHTED
BASIN	(AC)	(AC)	COVER	U	(AC)	COVER	U	(AC)	COVER	U	C VALUE
A	3.76	0.15	BUILDING / PAVEMENT	0.96	3.61	MEADOW	0.35				0.374
В	0.44	0.44	MEADOW	0.35							0.350
				_			_				

S
÷
-
o
-
0
=
4
O
õ
-
Δ
ш
۵
ō
~
ш
3
Ň

-YEAR C VALUES	<i>(</i> ^										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	c	(AC)	COVER	c	C VALUE
11	1.46	1.293	ASPHALT	0.9	0.167	LANDSCAPED	0.08				0.806
12	2.30	0.973	BUILDING / ASPHALT	0.9	0.550	GRAVEL	0.59	0.78	LANDSCAPED	0.08	0.522
41,A2	3.76										0.632
00-YEAR C VALU	ES										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA	_	DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	c	(AC)	COVER	c	C VALUE

0.890 0.574 0.696

0.35

LANDSCAPED

0.78

0.35 0.7

LANDSCAPED GRAVEL

0.167 0.550

0.96 0.96

ASPHALT BUILDING / ASPHALT

1.293 0.973

1.46 2.30 3.76

A1,A2

ARACO CONCRETE RATIONAL METHOD

HISTORIC FLOWS

	FLOW	Q100 ⁽⁶⁾	(CFS)	 5.63	1.21	
	PEAK	Q5 ⁽⁶⁾	(CFS)	1.01	0.17	
	SITΥ ⁽⁵⁾	100-YR	(IN/HR)	4.01	7.89	
	INTEN	5-YR	(IN/HR)	2.39	4.70	
	TOTAL	Tc ⁽⁴⁾	(MIN)	 32.0	6.8	
	TOTAL	Tc ⁽⁴⁾	(MIN)	32.0	6.8	
		Tt ⁽³⁾	(MIN)	0.7	1.2	
	SCS ⁽²⁾	VELOCITY	(FT/S)	1.77	1.84	
innel flow		SLOPE	(FT/FT)	0.014	0.015	
Chanr	CONVEYANCE	COEFFICIENT	c	15	15	
	CHANNEL	LENGTH	(FT)	02	130	
Ŵ		Tco ⁽¹⁾	(MIN)	31.3	5.7	
verland Flo		SLOPE	(FT/FT)	0.01	0.17	
0		LENGTH	(FT)	300	60	
	υ	100-YEAR		0.374	0.350	
		5-YEAR		0.113	0.080	
		AREA	(AC)	3.76	0.44	
		DESIGN	POINT	۲	2	
		BASIN		A	B	

DEVELOPED FLOWS

					ó	verland Flov	×		Cha	annel flow								
				0				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTENS	(11 γ ⁽⁵⁾	PEAK FL	MO
BASIN	DESIGN	AREA	5-YEAR	100-YEAR	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FJ)	ပ	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
DEVELOPED FLOW:						<u> </u>												
A1	A1	1.46	0.806	0.890	100	0.01	5.4	200	20	0.015	2.45	1.4	6.7	6.7	4.72	7.93	5.55	10.30
A2	A2	2.30	0.522	0.574	100	0.03	7.3	500	20	0.01	2.00	4.2	11.5	11.5	3.92	6.58	4.70	8.69
A1,A2	1	3.76	0.632	0.696									11.5	11.5	3.92	6.58	9.31	17.22
DETAINED FLOW:																		
POND A1 DISCHARGE	A1	1.46															0.10	0.10
POND A2 DISCHARGE	A2	2.30															0.00	0.70
A1,A2	-	3.76															0.10	0.80
8	2	0.44	0.080	0.350	60	0.17	5.7	130	15	0.015	1.84	1.2	6.8	6.8	4.70	7.89	0.17	1.21
1						_								_		_		

1) OVERLAND FLOW Too = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333)) 2) SCS VELOCITY = C * ((SLOPE(FT/FT)*0.5) C = 2.5 FOR HEAVY MEADOW C = 5 FOR TILLAGE/FIELD C = 7 FOR SHORT PASTURE AND LAWNS C = 10 FOR NEARLY BARE GROUND C = 15 FOR GRASSED WATERWAY C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)
4) Tc = Tco + Tt
4) Tc = Tt
4) Tc = Tt
4) Tc = Tt
4) Tc = Tt
4) T

I₅ = -1.5 * In(Tc) + 7.583

I₁₀₀ = -2.52 * In(Tc) + 12.735

6) Q = CiA

1/22/2021

APPENDIX B

HYDRAULIC CALCULATIONS

ARACO CONCRETE - 7470 SOUTHMOOR DRIVE STORM INLET SIZING SUMMARY

	BASIN F	LOW		INLET FLC	W				
			Q100			Q100			
INLET	DP	(CFS)	(CFS)	OF BASIN	(CFS)	(CFS)	TYPE	SIZE	(CFS)
A2	A2	4.7	8.7	35	1.6	3.0	SUMP TYPE 16	SINGLE	3.9

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		7	MINOR	MAJOR	
Type of Inlet	Denver No. 16 Combination	Type =	Denver No.	16 Combination	
Local Depression (additional to co	ntinuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Cu	urb Opening)	No =	1	1	
Water Depth at Flowline (outside	of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (ty	/pical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate	e (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical val	ue 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical v	alue 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information			MINOR	MAJOR	-
Length of a Unit Curb Opening		L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in	n Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in In	ches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figu	ire ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (ty	pically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb	Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (ty	pical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient ((typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
		-			_
Low Head Performance Reduct	ion (Calculated)	-	MINOR	MAJOR	-
Depth for Grate Midwidth		d _{Grate} =	0.523	0.523	ft
Depth for Curb Opening Weir Equ	lation	d _{Curb} =	0.33	0.33	ft
Combination Inlet Performance R	eduction Factor for Long Inlets	RF _{Combination} =	0.94	0.94	_
Curb Opening Performance Redu	ction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction	on Factor for Long Inlets	RF _{Grate} =	0.94	0.94	
			MINOR	MAJOR	
Total Inlet Interception Ca	pacity (assumes clogged condition)	Q _a =	3.9	3.9	cfs
Inlet Capacity IS GOOD for Mind	or and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.6	3.1	cfs

ARACO CONCRETE - 7470 SOUTHMOOR DRIVE STORM SEWER SIZING SUMMARY

	PIPE FLOW			PIPE CAPACIT	Y	
		Q5	Q100		MIN.	FULL PIPE
		FLOW	FLOW	PIPE	PIPE	CAPACITY
PIPE	BASINS	(CFS)	(CFS)	SIZE (IN)	SLOPE	(CFS)
A2	A2	1.6	3.0	12	1.00%	3.6
				-		

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

Hydraulic Analysis Report

Project Data

Project Title:Project - AracoDesigner:JPSProject Date:Wednesday, October 23, 2019Project Units:U.S. Customary UnitsNotes:

Channel Analysis: SD-A2

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.0000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0130 Depth: 1.0000 ft

Result Parameters

Flow: 3.5628 cfs Area of Flow: 0.7854 ft² Wetted Perimeter: 3.1416 ft Hydraulic Radius: 0.2500 ft Average Velocity: 4.5363 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 0.8057 ft Critical Velocity: 5.2542 ft/s Critical Slope: 0.0103 ft/ft Critical Top Width: 0.79 ft Calculated Max Shear Stress: 0.6240 lb/ft² Calculated Avg Shear Stress: 0.1560 lb/ft² **APPENDIX C**

STORMWATER DETENTION CALCULATIONS

ARACO CONCRETE COMPOSITE RUNOFF COEFFICIENTS

IIMPERVIOUS ARE	AS - EXIST	ING CONDITIO	SNG SNG								
			SUB-AREA 1			SUB-AREA 2	DEDCENT		SUB-AREA 3		
BASIN	AREA (AC)	(AC)		IMPERVIOUS	AREA (AC)		IMPERVIOUS	(AC)		IMPERVIOUS	
A	3.76	0.15	BUILDING / PAVEMENT	100	3.61	MEADOW	C				3.989
IMPERVIOUS ARE	AS - DEVEL	LUPED CUNDI	IIONS								
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/	PERCENT	VEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
A1	1.46	1.293	ASPHALT	100	0.167	LANDSCAPED	0				88.562
A2	2.30	0.973	BUILDING / ASPHALT	100	0.550	NATIVE GRAVEL	40	0.78	LANDSCAPE	0	51.870

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	1.46	acres
Watershed Length =	300	ft
Watershed Length to Centroid =	150	ft
Watershed Slope =	0.013	ft/ft
Watershed Imperviousness =	88.56%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrog	graph Procedu	re.	Optional User	Override
Water Quality Capture Volume (WQCV) =	0.047	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.175	acre-feet		acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.116	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.150	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.177	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.207	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.236	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.269	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	0.343	acre-feet	3.14	inches
Approximate 2-yr Detention Volume =	0.115	acre-feet		
Approximate 5-yr Detention Volume =	0.150	acre-feet		
Approximate 10-yr Detention Volume =	0.178	acre-feet		
Approximate 25-yr Detention Volume =	0.210	acre-feet		
Approximate 50-yr Detention Volume =	0.228	acre-feet		
Approximate 100-yr Detention Volume =	0.245	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.047	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.128	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.070	acre-feet
Total Detention Basin Volume =	0.245	acre-feet

	Depth Increment =		ft							-
	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
	Top of Micropool		0.00				10	0.000		
	Outlet Structure		0.90				10	0.000	9	0.000
	Bot EL=5634.0		1.00				2,610	0.060	139	0.003
			3.00				2,958	0.068	5,707	0.131
	Spillway=5638.0		5.00				3,308	0.076	11,973	0.275
	Top EL=5640.0		7.00				3,660	0.084	18,941	0.435
er Overrides										
acre-feet										
acre-feet										
inches										
inches										
inches										
inches										
inches										
inches										
inches										

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention. Version 4.04 (Februarv 2021 Project: ARACO CONCRETE Basin ID: A1 Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type VOLUME EURV WQCV Zone 1 (WQCV) 0.047 1.73 Orifice Plate 100-YEAR Zone 2 (EURV) 3.64 0.128 Orifice Plate ZONE 1 AND 2 Zone 3 (100-year) 4.60 0.070 Weir&Pipe (Restrict) PERMA Example Zone Configuration (Retention Pond) Total (all zones) 0.245 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row = 0.00 N/A lft² Depth at top of Zone using Orifice Plate = 3.64 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = feet N/A Orifice Plate: Orifice Vertical Spacing = 14.60 inches Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Area per Row = N/A inches Elliptical Slot Area = ft² N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.21 2.43 Orifice Area (sq. inches) 0.31 0.31 6.00 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected ft² Invert of Vertical Orifice : N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A N/A N/A feet Vertical Orifice Diameter = N/A N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 3.80 ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = N/A 3.80 N/A feet Overflow Weir Front Edge Length = 4.00 N/A feet Overflow Weir Slope Length = 2.50 N/A feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 222.64 N/A N/A Horiz. Length of Weir Sides = Overflow Grate Open Area w/o Debris = ft² 2.50 N/A feet 6.96 N/A Overflow Grate Open Area w/ Debris = Overflow Grate Type = Type C Grate N/A 3.48 N/A fť Debris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe = Outlet Orifice Area = ft² 1.50 N/A ft (distance below basin bottom at Stage = 0 ft) 0.03 N/A Outlet Pipe Diameter = 12.00 N/A Outlet Orifice Centroid 0.05 N/A feet inches Restrictor Plate Height Above Pipe Invert = 1.00 . inches Half-Central Angle of Restrictor Plate on Pipe = 0.59 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 5.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.91 feet Spillway Crest Length = 2.00 feet Stage at Top of Freeboard = 6.91 feet Spillway End Slopes : 0.00 H:V Basin Area at Top of Freeboard 0.08 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 0.43 acre-ft Routed Hydrograph Results in the Inflow H ohs table ns W through A The user can override the o ina new v EURV Design Storm Return Period : WQCV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) : N/A 1.50 N/A 1.19 1.75 2.00 2.25 2.52 3.14 0.116 0.150 0.177 0.269 0.343 CUHP Runoff Volume (acre-ft) 0.047 0.175 0.207 0.236 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.116 0.150 0.177 0.207 0.236 0.269 0.343 CUHP Predevelopment Peak Q (cfs) = N/A N/A 0.0 0.0 0.0 0.3 0.6 1.0 1.7 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A Predevelopment Unit Peak Flow, g (cfs/acre) = N/A N/A 0.01 0.02 0.02 0.20 0.40 0.66 1.17 Peak Inflow Q (cfs) 4.6 N/A N/A 2.8 3.4 4.0 6.6 2.3 5.2 0.2 Peak Outflow Q (cfs) : 0.0 0.3 0.1 0.2 0.3 0.3 0.4 0.6 N/A Ratio Peak Outflow to Predevelopment Q = N/A N/A 0.9 0.4 0.6 0.4 Plate Structure Controlling Flow : Plate Plate Plate Plate Plate Outlet Plate Outlet Plate Spillway Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A N/A 0.0 0.0 0.0 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 64 64 64 63 63 63 Time to Drain 99% of Inflow Volume (hours) = 39 67 66 67 68 69 69 70 71 Maximum Ponding Depth (ft) : 1.72 3.64 2.64 3.00 3.31 3.67 3.95 4.35 5.12

Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) = 0.06

0.07

0 175

Note that while the indicated ratios of Peak Outflow to Predevelopment Q appear higher than the recommended range for the 5-year through 25-year storms, the MHFD-Detention_v4 04-Araco-A1, actual Peak Outflows are negligible (0.2 cfs) for these design storms.

0.07

0 106

0.07

0.07

0 152

0.07

0 177

0.07

0 197

0.07

0 226

0.08

0 284

DETENTION BASIN OUTLET STRUCTURE DESIGN

0.00

0.00

0.00

0.00

0.00

0.00

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can ov	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Timo Inton/al	TIME	WOCV [cfc]	FURV [cfc]	2 Vear [cfc]	5 Vear [cfc]	10 Vear [cfc]	25 Vear [cfc]	50 Vear [cfc]	100 Vear [cfc]	500 Vear [cfc]
Time Interval										
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.12
	0:15:00	0.00	0.00	0.35	0.56	0.69	0.46	0.57	0.56	0.78
	0:20:00	0.00	0.00	1.14	1.47	1.72	1.07	1.24	1.34	1.72
	0:25:00	0.00	0.00	2.20	2.85	3.36	2.16	2.48	2.64	3.37
	0:30:00	0.00	0.00	2.27	2.83	3.24	4.03	4.61	5.10	6.51
	0:35:00	0.00	0.00	1.84	2.26	2.59	3.87	4.42	5.21	6.62
	0:40:00	0.00	0.00	1.47	1.78	2.03	3.34	3.81	4.45	5.65
	0:45:00	0.00	0.00	1.13	1.41	1.64	2.64	3.01	3.67	4.65
	0:50:00	0.00	0.00	0.89	1.16	1.31	2.19	2.50	2.99	3.80
	0:55:00	0.00	0.00	0.71	0.91	1.05	1.70	1.93	2.41	3.06
	1:00:00	0.00	0.00	0.57	0.73	0.86	1.34	1.52	1.97	2.50
	1:05:00	0.00	0.00	0.50	0.64	0.78	1.08	1.22	1.65	2.09
	1:10:00	0.00	0.00	0.42	0.61	0.75	0.86	0.98	1.22	1.55
	1:15:00	0.00	0.00	0.38	0.56	0.74	0.75	0.85	0.98	1.25
	1:20:00	0.00	0.00	0.35	0.51	0.68	0.64	0.72	0.74	0.94
	1:25:00	0.00	0.00	0.33	0.48	0.59	0.57	0.64	0.60	0.75
	1:30:00	0.00	0.00	0.32	0.46	0.53	0.49	0.55	0.51	0.64
	1:35:00	0.00	0.00	0.32	0.45	0.49	0.44	0.49	0.45	0.57
	1:40:00	0.00	0.00	0.31	0.39	0.47	0.40	0.45	0.42	0.52
	1:45:00	0.00	0.00	0.31	0.35	0.45	0.39	0.43	0.40	0.50
	1:50:00	0.00	0.00	0.31	0.33	0.44	0.38	0.42	0.40	0.50
	2:00:00	0.00	0.00	0.25	0.31	0.42	0.37	0.42	0.40	0.49
	2:00:00	0.00	0.00	0.22	0.29	0.37	0.37	0.41	0.40	0.49
	2:05:00	0.00	0.00	0.14	0.18	0.24	0.23	0.26	0.25	0.31
	2:10:00	0.00	0.00	0.08	0.11	0.15	0.14	0.16	0.16	0.19
	2:15:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.12
	2:20:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.05	0.07
	2:23:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.04
	2:35:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5:35:00

5:40:00

5:45:00

5:50:00

5:55:00

6:00:00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

	Design Procedure Forn	n: Extended Detention Basin (EDB)
Designer: Company: Date: Project:	UD-BM	P (Version 3.06, November 2016) Sheet 1 of 4
Location:	BASIN EDB-A1	
1. Basin Storage V	Yolume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a =%
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i =0.886
C) Contributing	Watershed Area	Area = <u>1.460</u> ac
D) For Watersh Bunoff Prod	eds Outside of the Denver Region, Depth of Average	d ₆ = in
E) Design Conc (Select EUR)	cept V when also designing for flood control)	Choose One Utility Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volur (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.047 ac-ft
G) For Watersh Water Qualit (V _{WQCV OTHER}	teds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = ac-ft
H) User Input o (Only if a diff	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft
I) Predominant	Watershed NRCS Soil Group	Choose One
J) Excess Urba For HSG A: For HSG B: For HSG C/	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * i ^{1.28} EURV _B = 1.36 * i ^{1.08} D: EURV _{CD} = 1.20 * i ^{1.08}	EURV = <u>0.175</u> ac-ft
2. Basin Shape: Le (A basin length t	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = : 1
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal c	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet A) Describe me	ans of providing energy dissipation at concentrated	Concrete Apron / Connection to Concrete Trickle Channel
INTIOW IOCATIO	JIS	

	Design Procedure Form	: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS January 22, 2021 ARACO CONCRETE BASIN EDB-A1	Sheet 2 of 4
 Forebay A) Minimum Fo (V_{FMIN} B) Actual Foreb C) Forebay Dep (D_F D) Forebay Disc 	rebay Volume = <u>1%</u> of the WQCV) pay Volume th = <u>12</u> inch maximum) charge i) Undetained 100-year Peak Discharge	$V_{FMIN} = $ 0.001 ac-ft $V_F = $ 0.001 ac-ft $D_F = $ 12.0 in $Q_{100} = $ 10.30 cfs
E) Forebay Disc F) Discharge Pi G) Rectangular	ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀) charge Design pe Size (minimum 8-inches) Notch Width	$\label{eq:q_f} Q_{\rm f} = \underbrace{0.21}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \$
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One Concrete Soft Bottom S =
 Micropool and C A) Depth of Mic B) Surface Area C) Outlet Type 	Dutlet Structure cropool (2.5-feet minimum) a of Microbool (10 ft ² minimum)	$D_{M} = \underline{2.5} \text{ ft}$ $A_{M} = \underline{10} \text{ sq ft}$ $\boxed{\text{Choose One}} \text{Orifice Plate}$ $\boxed{\text{Other (Describe):}}$
D) Smallest Din (Use UD-De E) Total Outlet A	nension of Orifice Opening Based on Hydrograph Routing tention) Area	$D_{\text{orffice}} = \underline{0.63}$ inches $A_{\text{ot}} = \underline{1.22}$ square inches

Design Procedure Form	n: Extended Detention Basin (EDB)
Designer: JPS Company: JPS Date: January 22, 2021 Project: ARACO CONCRETE Location: BASIN EDB-A1	Sheet 3 of
8. Initial Surcharge Volume	
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) 	D _{is} =6 in
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)	V _{IS} = cu ft
C) Initial Surcharge Provided Above Micropool	V _s = <u>5.0</u> cu ft
9. Trash Rack	
A) Water Quality Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t =square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	S.S. Well Screen with 60% Open Area
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	A _{totai} = <u>74</u> sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	H= <u>3.64</u> feet
F) Height of Water Quality Screen ($H_{TR})$	H _{TR} = 71.68 inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches

	Design Procedure Forn	n: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS January 22, 2021 ARACO CONCRETE BASIN EDB-A1	Sheet 4 of 4
 Overflow Emba A) Describe en B) Slope of Ov (Horizontal of the state) 	inkment nbankment protection for 100-year and greater overtopping: erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway
11. Vegetation		Choose One Irrigated Not Irrigated
12. Access A) Describe Se	adiment Removal Procedures	Periodic inspection and maintenance by property owner as required Ramp provided for skid-loader access to pond bottom
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	2.30	acres
Watershed Length =	600	ft
Watershed Length to Centroid =	300	ft
Watershed Slope =	0.013	ft/ft
Watershed Imperviousness =	51.87%	percent
Percentage Hydrologic Soil Group A =	80.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	20.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	re.	Optional User	Override
Water Quality Capture Volume (WQCV) =	0.041	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.134	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.105	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.138	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.170	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.222	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.264	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.320	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	0.435	acre-feet	3.14	inches
Approximate 2-yr Detention Volume =	0.092	acre-feet		
Approximate 5-yr Detention Volume =	0.124	acre-feet		
Approximate 10-yr Detention Volume =	0.148	acre-feet		
Approximate 25-yr Detention Volume =	0.176	acre-feet		
Approximate 50-yr Detention Volume =	0.194	acre-feet		
Approximate 100-yr Detention Volume =	0.218	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.041	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.093	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.084	acre-feet
Total Detention Basin Volume =	0.218	acre-feet

	Depth Increment =		ft							
	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
	Top of Micropool		0.00				10	0.000	()	
	Outlet Structure		0.40				10	0.000	4	0.000
	Bot EL=5633.0		0.50				3,869	0.089	197	0.005
			1.50				3,974	0.091	4,119	0.095
	Spillway=5636.0		3.50		-		4,149	0.095	12,242	0.281
	Top EL=5638.0		5.50				4,300	0.099	20,691	0.475
										<u> </u>
- ···										<u> </u>
r Overrides										<u> </u>
acre-feet										
acre-reet										
inches										<u> </u>
inches										L
inches										
inches										
inches										
inches										

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	ARACO CONCRETI	MHI E	-D-Detention, Ver.	sion 4.04 (Februai	ry 2021)				
Basin ID:	A2	-							
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WQCV			Zone 1 (WOCV)	0.91	0.041	Orifice Plate	1		
			Zone 2 (FUD)()	1.02	0.011	Orifice Plate	-		
ZONE 1 AND 2	ORIFICE		ZONE Z (EURV)	1.95	0.095		-		
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	Zone 3 (100-year)	2.84	0.084	Weir&Pipe (Restrict)			
	Comgaration (re	iterition i entaj		Total (all zones)	0.218				
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WC</u>	<u>CV in a Filtration B</u>	<u>MP)</u>				Calculated Parame	ters for Underdrain	L
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underc	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	linches			Underdrair	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basir	bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	1.93	ft (relative to basir	bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	7.70	Inches			Ellipt	cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	linches			E	lliptical Slot Area =	N/A]ft *	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)		1		1	1	1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.64	1.29						-
Orifice Area (sq. inches)	0.38	0.38	4.00]
	_						1		
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)						J			
						6			
User Input: Vertical Onnice (Circular or Rectange	ular)	Net Celested	1				Calculated Parame	ters for vertical Ori	<u>nce</u>
Truest of Mattine LOVE	Not Selected	Not Selected	A (0.61)	tiant Orifing Array	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= Uft) Ver	tical Orifice Area =	N/A	N/A	ft ⁻
Depth at top of Zone using Vertical Onlice =	N/A	N/A	It (relative to basir	1 Dottom at Stage =	= 0 ft) vertica	Office Centrold =	IN/A	IN/A	freet
Vertical Orifice Diameter =	N/A	N/A	Inches						
Licer Innuts, Quarflow Wair (Dranhay with Flat a	* Clanad Crata and	Outlat Ding OD Day	tangular/Transaid	al Wair (and No O	itlat Dina)		Colouistad Davama	tore for Overflow M	loir
User Input: Overnow Weir (Dropbox with Flat o		Outlet Pipe OK Rec	langular/ mapezolu		<u>iliel Pipe)</u>			lers for Overnow w	<u>/eir</u> 1
Overflaw Wein Frank Edge Usiakt Us	Zone 3 Weir	Not Selected	A. (.)		Loight of Cust	Upper Edge H -	Zone 3 Weir	Not Selected	6
Overflow Weir Front Edge Height, Ho =	2.50	N/A	It (relative to basin i	oottom at Stage = 0 1	t) Height of Grate	e Opper Eage, $H_t =$	2.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	6	Overflow W	eir Siope Length =	2.50	N/A	reet
Overriow weir Grate Siope =	0.00	N/A		Gr	ate Open Area / 10	U-yr Unnice Area =	87.12	N/A	
Horiz. Length of Weir Sides =	2.50	N/A	reet	0	Vernow Grate Open	Area w/o Debris =	6.96	N/A	π ⁻
Overnow Grate Type =	Type C Grate	N/A		(overnow Grate Ope	n Area w/ Debris =	3.48	IN/A]ft-
Debris Clogging % =	50%	N/A	9%						
User Territi Outlet Diss (Else Destriction Dist		antointe a Dinta au D			6				
User Input: Outlet Pipe W/ Flow Restriction Plate	Circular Orifice, R	estrictor Plate, or R	<u>lectangular Orifice)</u>		<u>La</u>	iculated Parameter	S for Outlet Pipe W/	Flow Restriction Pl	<u>ate</u> 1
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	It (distance below ba	asin bottom at Stage	= 0 ft) 0	utlet Orifice Area =	0.08	N/A	ht-
Outlet Pipe Diameter =	12.00	IN/A	linches		Outle	Orifice Centrold =	0.09	N/A	reet
Restrictor Plate Height Above Pipe Invert =	1.90	1	inches	Hair-Cent	ral Angle of Restric	tor Plate on Pipe =	0.82	IN/A	Iradians
Lloor Input: Emorgonou Colliner (Destar - des -	Transzoidal						Calculated Davages	tore for Collins	
Oser Input. Emergency Spillway (Rectangular or		ft (rolative to hard	bottom at Ctar-	- 0 0)	Callura	ocian Flow Donth		foot	
Spillway Invert Stage=	2.40	foot	i bottoill at Stage =	- 01()	Spillway D	corgin Flow Depth=	E 10	foot	
Spillway Crest Lerigui =	2.00				Bacin Area at 1	op of Freeboard =	5.19	acros	
Spiliway Eliu Siopes =	1.00	In:V			Dasin Volume at 1	op of Freeboard =	0.10	acres	
Freeboard above Max water Surface =	1.00	Jieet			Dasin volume at i	op of Freeboard =	0.44	Jacre-It	
Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	v entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through A	4 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.041	0.134	0.105	0.138	0.170	0.222	0.264	0.320	0.435
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.105	0.0	0.1/0	0.222	1.0	1.520	0.435
OPTIONAL Override Predevelopment Peak Ω (cfs) =	N/A	N/A	0.0	0.0	0.2	0.7	1.0	1.5	2.7
Predevelopment Unit Peak Flow, q (cfs/acre) =	<u>N/A</u>	<u>N/A</u>	0.01	0.01	0.07	0.30	0.43	0.64	1.05
Peak Inflow Q (cfs) =	N/A	N/A	1.3	1.7	2.1	2.9	3.5	4.2	5.8
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.2	0.4	0.6	0.7	2.0
Ratio Peak Outflow to Predevelopment Q =	N/A Plata	N/A Plata	N/A Plata	3.9 Plata	U.9 Plata	U.6 Overflow Wair 1	U.6 Outlet Plate 1	U.5 Outlet Plate 1	U.8 Spillwov
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A				0.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	63	62	64	65	66	64	63	59
Time to Drain 99% of Inflow Volume (hours) =	41	66	65	68	70	72	71	71	70
Maximum Ponding Depth (ft) =	0.91	1.94	1.50	1.80	2.09	2.54	2.74	3.19	3.75
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

|--|

hs ide the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate prog The user can ov

	SOURCE	СШНР	СШНР	СПНЬ	СШНР	СШНР	СШНР	СПНЬ	СШНР	СШНР
	JOOKCL									
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.05
	0:15:00	0.00	0.00	0.13	0.22	0.27	0.18	0.23	0.22	0.32
	0:20:00	0.00	0.00	0.48	0.63	0.74	0.47	0.55	0.59	0.77
	0:25:00	0.00	0.00	1.02	1.40	1.70	1.00	1.19	1.28	1.73
	0:30:00	0.00	0.00	1.27	1.68	2.09	2.40	2.90	3.32	4.63
	0:35:00	0.00	0.00	1.22	1.60	1.97	2.89	3.47	4.22	5.76
	0:40:00	0.00	0.00	1.14	1.47	1.80	2.90	3.47	4.21	5.73
	0:45:00	0.00	0.00	1.03	1.34	1.64	2.67	3.20	4.01	5.46
	0:50:00	0.00	0.00	0.94	1.23	1.49	2.45	2.95	3.70	5.04
	0:55:00	0.00	0.00	0.86	1.12	1.36	2.20	2.64	3.36	4.60
	1:00:00	0.00	0.00	0.78	1.02	1.23	1.97	2.36	3.07	4.22
	1:05:00	0.00	0.00	0.71	0.92	1.12	1.77	2.11	2.81	3.87
	1:10:00	0.00	0.00	0.63	0.85	1.04	1.54	1.84	2.41	3.31
	1:15:00	0.00	0.00	0.58	0.79	0.99	1.37	1.62	2.08	2.86
	1:20:00	0.00	0.00	0.53	0.73	0.92	1.22	1.44	1.80	2.47
	1:25:00	0.00	0.00	0.50	0.68	0.84	1.09	1.29	1.57	2.14
	1:30:00	0.00	0.00	0.46	0.62	0.76	0.97	1.14	1.36	1.85
	1:35:00	0.00	0.00	0.42	0.57	0.68	0.85	0.99	1.18	1.59
	1.45.00	0.00	0.00	0.38	0.50	0.61	0.74	0.86	1.00	1.34
	1.50.00	0.00	0.00	0.35	0.44	0.54	0.63	0.74	0.84	0.01
	1:55:00	0.00	0.00	0.32	0.38	0.40	0.54	0.02	0.70	0.51
	2:00:00	0.00	0.00	0.20	0.35	0.44	0.40	0.52	0.57	0.74
	2:05:00	0.00	0.00	0.24	0.32	0.70	0.71	0.70	0.79	0.05
	2:10:00	0.00	0.00	0.20	0.20	0.33	0.32	0.37	0.38	0.38
	2:15:00	0.00	0.00	0.13	0.17	0.22	0.20	0.23	0.23	0.29
	2:20:00	0.00	0.00	0.11	0.14	0.17	0.16	0.18	0.18	0.23
	2:25:00	0.00	0.00	0.09	0.11	0.14	0.13	0.14	0.14	0.17
	2:30:00	0.00	0.00	0.07	0.09	0.11	0.10	0.11	0.11	0.13
	2:35:00	0.00	0.00	0.05	0.07	0.09	0.08	0.09	0.08	0.10
	2:40:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.06	0.08
	2:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.06
	2:50:00	0.00	0.00	0.03	0.03	0.04	0.04	0.04	0.04	0.05
	2:55:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:00:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:05:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-BMP (Version 3.06, November 2016) Sheet 1 of Delaging: JPS Company: JPS Date: Annuny 22, 021 Project: ARAGO COMUNETTE Location: MSIN EDB A2 1. Basin Storage Volume A Effective Imperviousness of Tibutery Area, IL, A) Effective Imperviousness of Tibutery Area, IL, IL =		Design Procedure Form	n: Extended Detention Basin (EDB)
1. Basin Storage Volume I, =	Designer: Company: Date: Project: Location:	UD-BM9 JPS January 22, 2021 ARACO CONCRETE BASIN EDB-A2	O (Version 3.06, November 2016) Sheet 1 of 4
A) Effective imperviousness of Tributary Area, I, Image: Let $a = 1, a = 1$	1. Basin Storage V	folume	
B) Tributary Area's Imperviousness Ratio (= l_v / 100) i =0519 B) For Watershed Area i =01000000000000000000000000000000	A) Effective Imp	erviousness of Tributary Area, I _a	l _a =%
C) Contributing Watershed Area $Area = _ 2.300_ac$ D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm $ac = _ in$ E) Design Concept (Select EURV when also designing for flood control) $we = _ 2.300_ac$ F) Design Volume (WQCV) Based on 40-hour Drain Time (Yotssor = 10.00 + 11.19 + 20.78 + 11/12 + 74aa) $we = _ 0.041_ac-A$ G) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (Selecte) $vecson usert= _ ac-A$ () Predominant Watershed NRCS Soll Group $Vecson usert= _ ac-A$ $vecson usert= _ ac-A$ () Predominant Watershed NRCS Soll Group $Vecson usert= _ ac-A$ $vecson usert= _ ac-A$ () Predominant Watershed NRCS Soll Group $Vecson usert= _ ac-A$ $vecson usert= _ ac-A$ () Design Volume (EURV) Design Volume (For HS CO: EURV $a= 1.20 + 1^{1.68}$ $vecson usert= _ ac-A$ $vecson usert= _ ac-A$ () Design Solpes $Vecson usert= _ ac-A$ $vecson usert= _ ac-A$ $vecson usert= _ ac-A$ () Design Solpes $Vecson usert= _ ac-A$ $vecson usert= _ ac-A$ $vecson usert= _ ac-A$	B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i =0.519
D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm d, = in E) Design Concept (Select EURV when also designing for flood control) $d_i = \in F) Design Volume (WQCV) Based on 40-hour Drain Time (Vascour, = (1,0,0) = 17^{-1}, 19^{-17} + 0.78^{-1}) (12^{-1} + 0.7$	C) Contributing	Watershed Area	Area = <u>2.300</u> ac
Rubbit Flobulary Submit E: Design Concept (Gelect EURV when also designing for flood control) F: Design Volume (WQCV) Based on 40-hour Drain Time (Vacasou = (1.0*(0.91)*i^2 - 1.9*i^2 + 0.7* 1)/12*Area) G: For Vastanded Oblight of the Deverse Region. Water Quality Capture Volume (WQCV) Design Volume (Vacasou oncest = 0.041 a c-ft Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV ₆ = 1.8*i ^{1.08} For HSG OD: EURV ₆ = 1.2*i ^{1.08} 2. Basin Shape: Length to With Ratio (A basin length to With Ratio A) Basin Maximum Side Slopes (Halsen ep runt vertical, 4:1 or flater preferred) Z = 0.00 ft/ft DUFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE	D) For Watersh	eds Outside of the Denver Region, Depth of Average	d ₆ = in
F: Design Volume (WQCV) Based on 40-hour Drain Time (VDESIGN = (1.0* (0.91*) ² - 1.19*) ² + 0.78*)/12* Area) VDESIGN = 0.041 a c-ft G: For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (VNexor Onerr = (aft (VDESIGN 044)) vDESIGN = 0.041 a c-ft H: User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume (WQCV) Design Volume For HSG A: EURV _A = 1.88*1 ¹⁷⁸ For HSG A: EURV _A = 1.38*1 ¹⁶⁴ For HSG C/D: EURV _{DOD} = 1.20*1 ¹⁰⁰ a c-ft J: Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.38*1 ¹⁶⁴ For HSG C/D: EURV _{DOD} = 1.20*1 ¹⁰⁰ EURV = 0.139 a c-ft J: Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W =	E) Design Cond (Select EUR)	cept V when also designing for flood control)	Choose One Owater Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (Wuccv ornex = (d_*(V_{DesignV}/0.43)) VDESIGN UNER =	F) Design Volur (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.041 ac-ft
H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) VDESIGN USER=ac-ft I) Predominant Watershed NRCS Soil Group I J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _a = 1.68 * 1 ^{1.20} For HSG B: EURV _a = 1.68 * 1 ^{1.20} For HSG C/D: EURV _{c0} = 1.20 * 1 ^{1.00} EURV = 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 1 3. Basin Side Slopes A) Basin Maximum Side Slopes Z =	G) For Watersh Water Qualit (Vwqcvother	teds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{\alpha} = (d_6^*(V_{\text{DESIGN}}/0.43))$	V _{DESIGN OTHER} =ac-ft
(1) Predominant Watershed NRCS Soil Group	H) User Input o (Onlv if a diff	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Desian Volume is desired)	V _{DESIGN USER} = ac-ft
J) Excess Urban Runoff Volume (EURV) Design Volume EURV = 0.139 ac-ft For HSG A: EURV _A = 1.68 * i ^{1.28} For HSG B: EURV _B = 1.36 * i ^{1.08} For HSG C/D: EURV _{COD} = 1.20 * i ^{1.08} EURV = 0.139 ac-ft 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 3.0 : 1 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) $Z = 0.00$ ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet Concrete Apron / Connection to Concrete Trickle Channel	I) Predominant	Watershed NRCS Soil Group	Choose One A B C / D
2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L: W =: 1 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z =0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE 4. Inlet A) Describe means of providing energy dissination at concentrated Concrete Apron / Connection to Concrete Trickle Channel	J) Excess Urba For HSG A: For HSG B: For HSG C/	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * i ^{1.28} EURV _B = 1.36 * i ^{1.08} D: EURV _{CD} = 1.20 * i ^{1.08}	EURV = <u>0.139</u> ac-f t
3. Basin Side Slopes Z = 0.00 ft / ft A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 0.00 ft / ft 4. Inlet Concrete Apron / Connection to Concrete Trickle Channel	2. Basin Shape: Le (A basin length t	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
A) Basin Maximum Side Slopes Z = 0.00 ft / ft (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 0.00 ft / ft 4. Inlet Concrete Apron / Connection to Concrete Trickle Channel	3. Basin Side Slop	es	
4. Inlet A) Describe means of providing energy dissipation at concentrated Concrete Apron / Connection to Concrete Trickle Channel	A) Basin Maxim (Horizontal c	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 0.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
Concrete Apron / Connection to Concrete Trickle Channel	4. Inlet		
inflow locations:	A) Describe me inflow locatio	eans of providing energy dissipation at concentrated ons:	Concrete Apron / Connection to Concrete Trickle Channel

Design Procedure Form	: Extended Detention Basin (EDB)
Designer:JPSCompany:JPSDate:January 22, 2021Project:ARACO CONCRETELocation:BASIN EDB-A2	Sheet 2 of 4
5. Forebay A) Minimum Forebay Volume	V _{FMIN} = 0.000 ac-ft
(V _{FMIN} = <u>1%</u> of the WQCV) B) Actual Forebay Volume	V _F =0.001 ac-ft
C) Forebay Depth ($D_F = 12$ inch maximum)	D _F =12.0 in
D) Forebay Discharge	Q ₁₀₀ = 8.70 cfs
ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_{\rm f} = \frac{0.17}{0.17}$ cfs
E) Forebay Discharge Design	Choose One Berm With Pipe (flow too small for berm w/ pipe) Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pipe Size (minimum 8-inches)	Calculated $D_P =$
G) Rectangular Notch Width	Calculated $W_N = 3.0$ in
6. Trickle Channel A) Type of Trickle Channel	Choose One Concrete Soft Bottom
F) Slope of Trickle Channel	S = <u>0.0050</u> ft / ft
7. Micropool and Outlet Structure	
A) Depth of Micropool (2.5-feet minimum)	$D_{M} = $ ft
B) Surface Area of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft
C) Outlet Type	Choose One Orifice Plate Other (Describe):
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) 	D _{orifice} = <u>0.28</u> inches
E) Total Outlet Area	A _{ot} =square inches

Design Procedure Form	n: Extended Detention Basin (EDB)
Designer: JPS Company: JPS Date: January 22, 2021 Project: ARACO CONCRETE Location: BASIN EDB-A2	Sheet 3 o
8. Initial Surcharge Volume	
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) 	D _{is} = in
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)	V _{tS} = cu ft
C) Initial Surcharge Provided Above Micropool	V _s =3.3cu ft
9. Trash Rack	
A) Water Quality Screen Open Area: $A_t = A_{ot} * 38.5^*(e^{-0.095D})$	A _t = <u>35</u> square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	S.S. Well Screen with 60% Open Area
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	A _{total} =58sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	H= <u>1.93</u> feet
F) Height of Water Quality Screen (H_{TR})	H _{TR} = <u>51.16</u> inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches

Design Procedure Form: Extended Detention Basin (EDB)		
Designer: Company: Date: Project: Location:	JPS JPS January 22, 2021 ARACO CONCRETE BASIN EDB-A2	Sheet 4 of 4
 Overflow Emba A) Describe en B) Slope of Ov (Horizontal 	inkment nbankment protection for 100-year and greater overtopping: rerflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway
11. Vegetation		Choose One O Irrigated Not Irrigated
12. Access A) Describe Se	ediment Removal Procedures	Periodic inspection and maintenance by property owner as required Ramp provided for skid-loader access to pond bottom
Notes:		

APPENDIX D

FIGURES

National Flood Hazard Layer FIRMette

Legend

