

Drainage
 Letter

The Landings of Denmark

Filing No. 2

MVE Project No. 61108

December 29, 2022
PCD Proj No.: CDR-22-012

Drainage Letter

for
The Landings of Denmark
Filing No. 2
El Paso County, Colorado

Project No. 61108

December 29, 2022
prepared for:
Charles M. McAllister
PO Box 6797
Colorado Springs, CO 80934
prepared by:
MVE, Inc.
1903 Lelaray Street, Suite 200
Colorado Springs, CO 80909
719.576.0311

Copyright © MVE, Inc., 2022

Statements and Acknowledgments

Engineer's Statement

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

| David R. Gorman, P.E. Colorado No. $31672 \quad$ Date |
| :--- | :--- | :--- |

For and on Behalf of MVE, Inc.

Developer's Statement

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Charles M. McAllister

Date

PO Box 6797
Colorado Springs, CO 80934

El Paso County

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

```
Joshua Palmer, P.E.,
County Engineer / ECM Administrator
```

Date

Conditions:

Dranage Letter

The purpose of this Drainage Letter for The Landings of Denmark Filing No. 2 is to update the approved drainage report to allow the construction of the subdivision improvements which have not been constructed following the recording of the Final Plat on August 4, 2006. The approved drainage report is titled "Final Drainage Report The Landings of Denmark Filing No. 2" prepared by Premier Engineering, Inc., dated January, 2005. The property owners intend at this time to complete the subdivision improvements.

The existing subdivision known as "The Landings of Denmark Filing No. 2" is located in the West One-Half of Section 11, Township 13 South, Range 63 West of the $6^{\text {th }}$ P.M., El Paso County, Colorado. The site is made up of two (2) separate parcels made up of 13 vacant lots located in the northwest and southeast corners of The Landings of Denmark Filing No. 1. The subdivision is located on the east side of Log Road, north of Falcon Highway, south of Highway 110, and west of McClelland Road. The Final Plat for The Landings of Denmark Filing No. 2 was recorded August 4, 2006 under Reception Number 206712385 of the records of El Paso County, Colorado. Copies of the recorded plat have been included for reference. The site is located in both the Hook and Line Ranch Drainage Basin (CHBS1800), and the La Vega Ranch Drainage Basin (CHBR0400). The subdivision is zone RR-5 and contains thirteen (5 -acre rural) residential lots. The site is split into two (2) parcels (A and B). Parcel A is located northwest of The Landings of Denmark Filing No. 1, and Parcel B is located southeast of The Landings of Denmark Filing No. 1. The subdivision is $75.167 \pm$ acres in area, including the right-of-way that was dedicated to El Paso County for Osteen Ct., and Byrd Ct.
Parcel A, which is located northwest of The Landings of Denmark Filing No. 1, is bounded on the north by an unplatted parcel containing a single-family residence, several detached garages/sheds, and an unpaved driveway (zone A-35). The east side of Parcel A is adjacent to a vacant unplatted parcel (zone PUD). Parcel A is bounded on the south by lots $57,65,66$, and 67 of The Landings of Denmark Filing No. 1 (zone RR-5). Log Road borders the west side of the Parcel A. Three (3) vacant unplatted lots lie across Log Road to the west.

Parcel B, which is located southeast of The Landings of Denmark Filing No. 1, is bounded on the north by lot 115 of The Landings of Denmark Filing No. 1 and on the east by a vacant unplatted parcel (zone PUD). Parcel B is bounded on the west by lot 29 of The Landings of Denmark Filing No. 1 (zone RR-5). Falcon Highway borders the south side of the Parcel B. Three (3) unplatted lots, each containing a single-family residence, lie across Falcon Highway to the south.

All of The Landings of Denmark Filing No. 2 is vacant.
According to the Federal Emergency Management Agency's Flood Insurance Rate Map (FIRM) Community Panel Numbers 08041C0585G, and 08041C0595G, dated December 7, 2018, for El Paso County, Colorado the site is not located within any Federal Emergency Management Agency (FEMA) designated Special Flood Hazard Areas (SFHA). A portion of the FIRM is included with this Drainage Letter for reference.

According to the Natural Resources Conservation Service Web National Cooperative Soil Survey, the soil of the site is Truckton Sandy Loam (map unit 96), which is part of hydrologic soil group A.

Truckton Sandy Loam soil is typically deep and well drained. The permeability of the soil is moderate to rapid, surface runoff is medium and hazard of erosion is moderate. A portion of the National Cooperative Soil Survey Map is included with this Drainage Letter.

The existing drainage patterns of the The Landings of Denmark Filing No. 2 site are indicated in the attached Drainage Map Historic Conditions. The site is described by five (5) sub-basins: H1-H4 where sub-basins H1 and H3 include Filing No.2.

Parcel A drains easterly in sub-basin H1 to Design Point 1. This sub-basins features slopes of 5-10\% within the Filing No. 2 parcel and slopes of $10-15 \%$ east of said parcel. The flows exit the site at Design Point 1 and into the gravel Right-of-way, McClelland Road.

Parcel B drains southerly in sub-basin H3 to Design Point 3. This sub-basins features average slopes of $0.5-2 \%$ with slopes of $1-2 \%$ within the Filing No. 2 parcel. This flow combines with flows from H4 west of Design Point 3. This runoff collects at DP3 where a portion of the runoff drains via the existing 30" CMP culvert that drains under Falcon Highway. The majority of this runoff continues northeast of DP3 and flows into H2 where it will combine flows at Design Point 2.

Sub-basin H4 drains in a southerly direction and flows to an existing 24" CMP owned by El Paso County. However, this pipe is currently silted full and is unable to drain any flows from this subbasin. All flows from this sub-basin currently travel into H 3 and H 2 via the existing roadside ditch that drains to the east. This pipe requires immediate maintenance before any construction can begin.

All flows from the site eventually enter Chico Creek. The sub-basins are described in more detail in the previously approved Final Drainage Report.

The Proposed drainage patterns of the Drainage Letter site are indicated on the attached Drainage Map Proposed Conditions from the previously approved Final Drainage Report. The drainage patterns are described by four (4) onsite sub-basins, and four (4) offsite sub-basins. The site will continue to drain as in existing conditions with Parcel A draining offsite to the east and Parcel B draining offsite to the south. The sub-basins are described in more detail in the previously approved Final Drainage Report.

The proposed improvements to be constructed are Byrd Court, and O'Steen Court, public paved rural local roadways each in a 60^{\prime} right-of-way. These roads will contain a roadside ditch draining into 2-24" RCP culvert with Flared End Sections and Type VL Riprap at the outlet. All flows from these sites will drain into a proposed trap channel that diverts the flows into the natural channels or existing drainage easements. The roadside ditches were sized to safely convey the stormwater runoff from the proposed roadways. Further details and calculations can be found in the previously approved Final Drainage Report and are included in this report's appendix.
The proposed development will not alter the existing basic drainage patterns of the site. The site will continue to drain off-site to the south and east as in existing conditions. The developed flow runoff quantities will not change from those described in the approved Final Drainage Report For The Landings of Denmark Filing No. 2.

Four Step Process:

The El Paso County Engineering Criteria Manual (Appendix I, Section I.7.2) requires the consideration of a "Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long term source controls". The Four Step Process is incorporated in this project and the elements are discussed below.

The portion of the site that is contained within the 5 -acre single family residential lots are excluded from Post Construction Stormwater Management requirements by ECM 1.7.1.B. 5 due to the low development density as 5 -acre lots. However, Byrd Court and O'Steen Court, which are both public roadways, are subject to Post Construction Stormwater Treatment requirements. This site will meet the requirements based the Runoff Reduction Standard indicated in ECM 1.7.1.C.3.

1) Runoff Reduction Practices are employed in this project. Impervious surfaces have been reduced as much as practically possible with the low residential density. All impervious surfaces on the site will drain to the surrounding pervious areas allowing infiltration and water quality mitigation. Minimized Directly Connected Impervious Areas (MDCIA) is employed on the project because runoff from the impervious areas of the future home sites will pass over the adjacent natural grassed areas for a distance of 25 feet to 300 feet before entering a roadside ditch or natural drainage way. Runoff from the paved public road will drain to the adjacent native vegetated roadside ditches that will capture and infiltrate runoff from the roadway surface. Runoff Reduction calculations are included in the appendix showing that the roadway runoff will infiltrate into the ground, evaporate, or evapotranspire a quantity of water equal to at least 60% of what the calculated WQCV would be if all impervious area for the applicable development site discharged without infiltration.
2) All drainage paths on the site will remain stabilized with the natural native grass lining. Disturbed areas will be reseeded. All culverts will have rip-rap aprons at the exits. The proposed grass-lined drainage channels for both roadways are adequate to convey the minor and major storm flows without erosion and sedimentation. No further stabilization is required.
3) The project contains no potentially hazardous uses. The site is exempted from the use of WQCV BMPs by ECM 1.7.1.B. 5 by virtue of the large lot rural residential nature of the site having percent imperviousness of less than 10%. The site includes the use of permanent rip rap aprons at the culvert crossings to control potential sedimentation. The runoff in the roadside ditches of the public roadway will infiltrate into the ground, evaporate, or evapotranspire a quantity of water equal to at least 60% of what the calculated WQCV would be if all impervious area for the applicable development site discharged without infiltration. Runoff Reduction can be found in the Previously Approved Preliminary and Final Drainage Report and are included in this report's appendix.
4) The site contains no storage of potentially harmful substances or use of potentially harmful substances. No Site Specific or Other Source Control BMP's are required.

No offsite drainage improvements will be required for the project. Costs for public non-reimbursable drainage improvements are listed below:

186 LF 24" RCP Pipe	at	$\$ 83 /$ LF	$=$	$\$ 15,438$
$8-24 " ~ R C P ~ F l a r e d ~ E n d ~ S e c t i o n ~$	at	$\$ 498 /$ EA	$=$	$\$ 3,984$
22 Tons Rip-Rap Type VL	at	$\$ 89 /$ ton	$=$	$\$ 1,958$
Total			$=\$ 21,380$	

The Hook and Line Ranch and the La Vega Ranch Drainage Basins have not been studied and are not Fee Basins at this time. No Drainage Fees or Bridge Fees were due or paid for the proposed Final Plat of The Landings of Denmark Filing No. 2 at the time it was platted.

In Conclusion, the drainage patterns generated by the The Landings of Denmark site under proposed developed conditions are essentially the same as those which existed for the existing Plan. The site and drainage are substantially in accordance with the previously approved Drainage Report prepared at the time of the Plan in 2005. The proposed development as described in this Drainage Letter will have no adverse impacts to downstream and surrounding developments or downstream drainage ways or storm drain facilities.

Attachments

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) \square Area of Interest (AOI)	\square \square	C C/D	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soil Rating Polygons	\square	D	Warning: Soil Map may not be valid at this scale.
A	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water Fe	ures	line placement. The maps do not show the small areas of
]	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+		Please rely on the bar scale on each map sheet for map
- C	\sim	Interstate Highways	measurements.
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service
D	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
. Not rated or not available	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \quad A / D$	5	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
B			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
$\checkmark \mathrm{C}$			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020
\cdots C/D			Soil map units are labeled (as space allows) for map scales
* D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: Sep 11, 2018-Oct
Soil Rating Points			20,2018
$\square \quad A$			The orthophoto or other base map on which the soil lines were
$\square \quad \mathrm{A} / \mathrm{D}$			imagery displayed on these maps. As a result, some minor
- B			shifting of map unit boundaries may be evident.
- B/D			

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
96	Truckton sandy loam, 0 to 3 percent slopes	A	41.9	100.0%
Totals for Area of Interest	$\mathbf{4 1 . 9}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) \square Area of Interest (AOI)	\square \square	C C/D	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soil Rating Polygons	\square	D	Warning: Soil Map may not be valid at this scale.
A	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water Fe	ures	line placement. The maps do not show the small areas of
]	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+		Please rely on the bar scale on each map sheet for map
- C	\sim	Interstate Highways	measurements.
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service
D	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
. Not rated or not available	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \quad A / D$	5	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
B			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
$\checkmark \mathrm{C}$			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020
\cdots C/D			Soil map units are labeled (as space allows) for map scales
* D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: Sep 11, 2018-Oct
Soil Rating Points			20,2018
$\square \quad A$			The orthophoto or other base map on which the soil lines were
$\square \quad \mathrm{A} / \mathrm{D}$			imagery displayed on these maps. As a result, some minor
- B			shifting of map unit boundaries may be evident.
- B/D			

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
96	Truckton sandy loam, 0 to 3 percent slopes	A	30.2	100.0%
Totals for Area of Interest	$\mathbf{3 0 . 2}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Almost all areas of this soil are used as rangeland. A few areas of crops such as alfalfa and corn are grown under sprinkler irrigation.
This soil is well suited to the production of native vegetation suitable for grazing. It is best suited to deeprooted grasses. The native vegetation is mainly cool- and warm-season grasses such as western wheatgrass, sideoats grama, and needleandthread.

Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand is the main limitation for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to openland and rangeland wildlife habitat. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frost action potential. Special designs for roads are needed to minimize this limitation. Practices are needed to control soil blowing and water erosion on construction sites where the plant cover has been removed. Capability subclass VIe, nonirrigated.

96-Truckton sandy loam, 0 to 3 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperatue is about 47 degrees F, and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown sandy loam about 5 inches thick. The next layer is dark grayish brown sandy loam about 3 inches thick. The subsoil is brown sandy loam about 16 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

Included with this soil in mapping are small areas of Blakeland loamy sand, 1 to 9 percent slopes; Bresser sandy loam, 0 to 3 percent slopes; Ellicott loamy coarse sand, 0 to 5 percent slopes; and Ustic Torrifluvents, loamy.

Permeability of this Truckton soil is moderately rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is slow, and the hazards of erosion and soil blowing are moderate.

This soil is used mainly for cultivated crops. It is also used for livestock grazing, for wildlife habitat, and as homesites.

Crops are commonly grown in combination with summer fallow because moisture is insufficient for annual cropping. Alfalfa can also be grown on this soil. When this soil is used as cropland, crop residue management and minimum tillage are necessary conservation practices.

This soil is well suited to the production of native vegetation suitable for grazing (fig. 7). It favors deeprooted grasses. The native vegetation is mainly cool- and warm-season grasses such as western wheatgrass, sideoats grama, and needleandthread.

Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings generally are suited to this soil. Soil blowing is the main limitation to the establishment of trees and shrubs. This limitation can be overcome by cultivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting cover is vital and should be provided in plans for habitat development. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frostaction potential. Special designs for roads are needed to overcome this limitation. Capability subclasses IIIe, nonirrigated, and $I I e$, irrigated.

97-Truckton sandy loam, 3 to 9 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown sandy loam about 5 inches thick. The next layer is dark grayish brown sandy loam about 3 inches thick. The subsoil is brown sandy loam about 16 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

THE LANDINGS OF DENMARK FILING NO. 2

12385

know all men by these present

Thot Landings of Denmork, L.L.C. o Limited Liobility Compony, being the owner of the
described froct of lond, to and description: parcel

\qquad
\qquad

Thence
Point of or Beginining.
Soid porcel contions $1,752,281$ soft. (40.227 ocres), more or less.

approvals

 R P \&ndericiald
The occomponing pot wos opopoved by the boord of County commisisoness this $14+$ doy Cecuc Clas

RECording
State of colorano

EsS whereof

notarial:
STAEE of Colopano , , ss
counn of el paso) ${ }^{\text {ss }}$

surveyor's certiflation:

notes:

1. These tracts of lond ore subject to the following:
为思

 e) Right of Woy ond essement to El Paso county Teeponone Compony in instument recorrsed in Book 2399 ot Page 635 .

 Right of Woy ond essesment gronted to mountain Veen Electicic Assococition, inc.. in instrument recorided in Book 6774 ot Poge 1346

 o) Resesvotion of minerols sights in the deed recorcted ot Receepion No. 9909 1488, ond ony interests therein or ights thereender.

2. prore to the estationment of ony drivenoy on to a County rood, on occess permit must be granted by the El Poso County
enty resistered in the State of Colorado.

3. There sholl be no direct tot occess to tog Rood, to Folcon Higheyy or to Highury 110 .

Easements:

Dedication:

 Noo $16.47^{\prime 2} \mathrm{E}$ E,

asti of bearings statement

The Landings of Denmark Filing No. 1 Existing/Historic Conditions

Time of Concentration Computation Table
Project: Denmark Subdivision - Onsite Existing Drainage Basins
Project Number:

The Landings of Denmark Filing No. 1 Existing/Historic Conditions

Hydrologic Computation Table - Rational Method
Project: Denmark Subdivision - Onsite Existing Drainage Basins
Project Number:

Drainage Basin	Design point	Area	Area	x "C"	Development \& Soil Type	$\begin{array}{r} \mathrm{Ru} \\ \text { Coef } \end{array}$	ff cient	Time of Conc. (minutes)		$\begin{aligned} & \text { sity } \\ & \mathrm{hr} .) \end{aligned}$		
	Momentun		5\%	100\%\%		§,	100.\%		5\%\%	100\%\%	5\%	100y
H1	1	185.84	46.46	65.04	Fair Pasture / Range	0.25	0.35	60.31	1.49	2.59	69.0	168.7
H2	2	211.87	52.97	74.15	Fair Pasture / Range	0.25	0.35	59.23	1.50	2.63	79.6	194.7
H3	5	126.09	31.52	44.13	Fair Pasture / Range	0.25	0.35	49.65	1.69	2.95	53.3	130.4
H4	6	65.09	16.27	22.78	Fair Pasture / Range	0.25	0.35	54.90	1.58	2.76	25.7	63.0
Performed by: jcj			Checked by: jcj			Date:		\#\#\#\#\#\#\#\#\#\#\#\#\#	Page 1 of 1			
Premier Engineering												

The Landings of Denmark Filing No. 1 Existing/Historic Conditions

HYDROLOGIC SUMMARY TABLE On-site Design / Discharge Points (Existing Conditions)

Drainage Basin	Design Point	Drainage Area (Acres)	Flow Rate (c.f.s.)	
			5 Year	100 Year
H1	1	185.84	69.0	168.7
H2	2	211.87	79.6	194.7
H3	5	126.09	53.3	130.4
H4	6	65.09	25.7	63.0
	.			

The Landings of Denmark Filing No. 2 Proposed Conditions

Time of Concentration Computation Table

Project Denmark Subdivision No. 2 -Proposed Conditions
Project Number

Premier Engineering

The Landings of Denmark, Filing No. 2 Proposed Conditions

Hydrologic Computation Table - Rational Method

The Landings of Denmark, Filing No. 2 Proposed Conditions

HYDROLOGIC SUMMARY TABLE

On-site Sub-basins

Drainage Basin	Design Point	Drainage Area (Acres)	Flow Rate (c f s)	
			5 Year	100 Year
A	1	259	153	36
B		1417	87	208
C		742	48	116
A,B,OS1\&2	2	18211	654	1590
C, OS3	3	3074	159	380
D		3002	165	395
C D,OS3\&4	5	13284	522	125, 0

OS-5 Calculation

From The Landings of Denmark, Filing No. 1: Proposed Conditions

Time of Concentration Computation Table

Project: Denmark Subdivision - Proposed Conditions
Project Number:

OS-5 Calculation

From The Landings of Denmark Filing No.1: Proposed Conditions

Hydrologic Computation Table - Rational Method
Project: Denmark Subdivision - Proposed Conditions
Project Number:

Drainage Basin	Desigh Pont	Area	Area	x "C"	Development \& Soil Type	Runoff Coefficient		Time of Conc. (minutes)	Intensity (in. / hr.)		Fowne (c).t.s:	
			5.s.	10081		5\%.	100.y:		Sy	100.y		100.\%
A1		21.40	5.78	7.92	Five Acre Development	0.27	0.37	33.55	2.17	3.79	12.5	30.0
B1		21.59	5.83	7.99	Five Acre Development	0.27	0.37	36.81	2.05	3.58	11.9	28.6
B2		9.47	2.56	3.50	Five Acre Development	0.27	0.37	30.05	2.32	4.05	5.9	14.2
B3		19.23	5.19	7.12	Five Acre Development	0.27	0.37	30.86	2.28	3.98	11.8	28.3
C1		23.32	6.30	8.63	Five Acre Development	0.27	0.37	34.81	2.12	3.70	13.3	31.9
D1		30.02	8.11	11.11	Five Acre Development	0.27	0.37	40.94	1.92	3.35	15.5	37.2
D2		25.33	6.84	9.37	Five Acre Deveiopment	0.27	0.37	39.58	1.96	3.42	13.4	32.0
D3		10.63	2.87	3.93	Five Acre Development	0.27	0.37	31.56	2.25	3.93	6.5	15.5
E1	6	65.09	17.57	24.08	Five Acre Development	0.27	0.37	52.36	1.63	2.85	28.7	68.7
T												
OS1		166.84	45.05	61.73	Rangelend	0.27	0.37	63.91	1.43	2.49	64.3	153.9
OS2		157.60	42.55	58.31	Rangelend	0.27	0.37	49.59	1.69	2.96	72.0	172.4
DS3		43.55	11.76	16.11	Rangelend	0.27	0.37	34.43	2.13	3.73	25.1	60.1

Performed by:
JCJ
Checked by:
JCJ
Date: 6/28/00
Page 1 of 2

Premier Engineering

Original Filing No. 2 Drainage Report omitted this sub-basin. Now represents OS-5 on Proposed Conditions Drainage Map.

OS-5 Calculation

From The Landings of Denmark Filing No. 1: Proposed Conditions

HYDROLOGIC SUMMARY TABLE On-site Design / Discharge Points (Proposed Conditions)

Original Filing No. 2 Drainage Report omitted this sub-basin. Now represents OS-5 on Proposed Conditions Drainage Map.

Design Point 7 Calculation From The Landings of Denmark Filing No.1: Proposed Conditions

HYDROLOGIC SUMMARY TABLE On-site Design / Discharge Points (Proposed Conditions)

Drainage Basin	Design Point	Drainage Area (Acres)	Flow Rate (c.f.s.)	
			5 Year	100 Year
A1, OS1	1	188.24	67.7	165.2
B1-3,OS2	2	207.89	81.7	198.7
D1,D2	3	55.35	25.8	61.8
D1-3	4	65.98	28.2	67.6
D1-3, C1				
,OS3	5	132.85	46.7	112.9
E1	6	65.09	28.7	68.7
	.			
.				

Proposed Design Point 7 includes Filing No. 1's Proposed Design Point 2. However, the original calculation for Design Point 2 does not account for additional flows from OS-3.

Culvert Report

61108 - Byrd Ct 2-24 inch RCP Class III w/ FES (5-yr)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

$$
\begin{aligned}
& =6389.70 \\
& =57.25 \\
& =1.01 \\
& =6390.28 \\
& =24.0 \\
& =\text { Circular } \\
& =24.0 \\
& =2 \\
& =0.013 \\
& =\text { Circular Concrete } \\
& =\text { Groove end projecting (C) } \\
& =0.0045,2,0.0317,0.69,0.2
\end{aligned}
$$

$=6393.75$
$=32.00$
$=50.00$

Calculations
Qmin (cfs) $\quad=15.30$
Qmax (cfs) $\quad=15.30$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=15.30$
Qpipe (cfs) $\quad=15.30$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $=3.05$
Veloc Up (ft/s) $=4.98$
HGL Dn (ft)
HGL Up (ft)
Hw Elev (ft)
Hw/D (ft)
Flow Regime
= 6391.19
= 6391.26
= 6391.67
$=0.69$
$=$ Inlet Control

Culvert Report

61108 - Byrd Ct 2-24 inch RCP Class III w/ FES (100-yr)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

$$
\begin{aligned}
& =6389.70 \\
& =57.25 \\
& =1.01 \\
& =6390.28 \\
& =24.0 \\
& =\text { Circular } \\
& =24.0 \\
& =2 \\
& =0.013 \\
& =\text { Circular Concrete } \\
& =\text { Groove end projecting }(C) \\
& =0.0045,2,0.0317,0.69,0.2
\end{aligned}
$$

$=6393.75$
$=32.00$
$=50.00$

Calculations
Qmin (cfs) $\quad=36.60$
Qmax (cfs) $\quad=36.60$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $=36.60$
Qpipe (cfs) $\quad=36.60$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s)
Veloc Up (ft/s) $=7.05$
HGL Dn (ft) $=6391.47$
HGL Up (ft)
Hw Elev (ft)
Hw / D (ft)
Flow Regime
= 6391.82
$=6392.74$
$=1.23$
$=$ Inlet Control

Channel Report

61108-Byrd Ct Trap Channel - 5yr

Trapezoidal

Bottom Width (ft)
$=10.00$
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=3.00,3.00$
$=2.00$
$=10.00$
$=0.70$
$=0.035$

Known Q
$=15.30$

Highlighted
Depth (ft)
$=0.59$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=15.30$
$=6.94$
$=2.20$
$=13.73$
$=0.41$
$=13.54$
$=0.67$

Reach (ft)

Channel Report

61108-Byrd Ct Trap Channel - 100 yr

Trapezoidal

Bottom Width (ft)
$=10.00$
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=3.00,3.00$
$=2.00$
$=10.00$
$=0.70$
$=0.035$

Known Q
$=36.60$

Highlighted
Depth (ft)
$=0.96$
Q (cfs)
$=36.60$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=12.36$

Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=2.96$
$=16.07$
$=0.70$
$=15.76$
$=1.10$

Reach (ft)

Culvert Report

61108 - O'Steen Ct: 2-24 inch Class III RCP w/ FES (5 yr)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6349.98$
$=60.25$
$=1.00$
$=6350.58$
$=24.0$
= Circular
$=24.0$
$=2$
$=0.013$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6355.13$
$=32.00$
$=50.00$

Calculations
Qmin (cfs) $\quad=15.90$
Qmax (cfs) $\quad=15.90$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=15.90$
Qpipe (cfs) $\quad=15.90$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $=3.14$
Veloc Up (ft/s) $=5.04$
HGL Dn (ft) $=6351.48$
HGL Up (ft)
Hw Elev (ft)
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft})$
Flow Regime
$=6351.58$
$=6352.00$
$=0.71$
$=$ Inlet Control

Culvert Report

61108 - O'Steen Ct: 2-24 inch Class III RCP w/ FES (100 yr)

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
$=6349.98$
$=60.25$
$=1.00$
= 6350.58
$=24.0$
= Circular
$=24.0$
$=2$
$=0.013$
= Circular Concrete
= Groove end projecting (C)
$=0.0045,2,0.0317,0.69,0.2$
$=6355.13$
$=32.00$
$=50.00$

Calculations
Qmin (cfs) $\quad=38.00$
Qmax (cfs) $\quad=38.00$
Tailwater Elev (ft) $\quad=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $=38.00$
Qpipe (cfs) $\quad=38.00$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $\quad=6.42$
Veloc Up (ft/s) $\quad=7.20$
HGL Dn (ft) $=6351.76$
HGL Up (ft)
Hw Elev (ft)
$=6352.15$
Hw/D (ft)
Flow Regime
= 6353.11
$=1.26$
$=$ Inlet Control

Channel Report

61108-O'Steen Ct 10 Bottom Width Transition to 8' Bottom Width Trap Channel-5yr

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=10.00$
$=2.00,2.00$
$=2.00$
$=10.00$
$=3.00$
$=0.050$

Known Q
$=15.90$

Highlighted
Depth (ft)
$=0.49$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=15.90$
$=5.38$
$=2.96$
$=12.19$
$=0.42$
$=11.96$
$=0.63$

Reach (ft)

Channel Report

61108-O'Steen Ct 10 Bottom Width Transition to 8' Bottom Width Trap Channel-100yr

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=10.00$
$=2.00,2.00$
= 2.00
= 10.00
$=3.00$
$=0.050$

Known Q
$=38.00$

Highlighted
Depth (ft)
$=0.82$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=38.00$
$=9.54$
= 3.98
$=13.67$
$=0.73$
$=13.28$
$=1.07$

Reach (ft)

Channel Report

61108-O'Steen Ct Trap Channel- 5 yr

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations

Compute by:
Known Q (cfs)
$=8.00$
$=3.00,3.00$
= 2.00
= 10.00
$=1.00$
$=0.035$

Known Q
$=15.90$

Highlighted
Depth (ft)
$=0.61$
Q (cfs)
Area (sqft)
Velocity (ft/s)
$=15.90$

Wetted Perim (ft)
$=6.00$
$=2.65$
Crit Depth, Yc (ft)
$=11.86$
Top Width (ft)
$=0.47$
EGL (ft)
$=11.66$
$=0.72$

Elev (ft)

Section

Depth (ft)

Channel Report

61108-O'Steen Ct Trap Channel-100yr

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=8.00$
$=3.00,3.00$
$=2.00$
= 10.00
$=1.00$
$=0.035$

Known Q
$=38.00$

Highlighted
Depth (ft)
$=0.99$
Q (cfs)
$=38.00$
Area (sqft)
Velocity (ft/s)
$=10.86$
Wetted Perim (ft)
$=3.50$
Crit Depth, Yc (ft) $\quad=0.80$
Top Width (ft)
$=13.94$
EGL (ft)

Depth (ft)
Elev (ft)
Section

Reach (ft)

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0.00 cfs
Design Flow: 67.50 cfs
Maximum Flow: 169.00 cfs
Table 1 - Summary of Culvert Flows at Crossing: Proposed Design Point 5

Headwater	Total Discharge	Culvert 1	Roadway Elevation (ft) (cfs)	Discharge (cfs)
Discharge (cfs)	Iterations			
6341.00	0.00	0.00	0.00	1
6343.21	16.90	16.90	0.00	1
6343.73	33.80	22.37	11.24	12
6343.85	50.70	23.59	26.80	7
6343.94	67.50	24.46	42.79	6
6344.02	84.50	25.16	59.05	5
6344.08	101.40	25.73	75.52	5
6344.14	118.30	26.21	91.68	4
6344.19	135.20	26.65	108.20	4
6344.23	152.10	27.00	124.66	3
6344.26	169.00	27.30	141.56	3
6343.66	19.32	19.32	0.00	Overtopping

Rating Curve Plot for Crossing: Proposed Design Point 5
Total Rating Curve
Crossing: Proposed Design Point 5

1. Culvert Data: Culvert 1

Table 2 - Culvert Summary Table: Culvert 1

Total Disc	Culv ert	Head wate		Outl et	Flow Type	Nor mal	Criti cal	Outl et	Tail wate		Tail wate
harg	Disc	r	rol	Cont		Dept	Dept	Dept	r	Velo	r
	harg	Elev	Dept	rol		h (ft)	h (ft)	h (ft)	Dept	city	Velo
(cfs)		ation	h (ft)	Dept					h (ft)	(ft/s	city
	(cfs)	(ft)		h (ft))	(ft/s
0.00	0.00	6341	0.00	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
cfs	cfs	. 00		0							
16.9	16.9	6343	2.21	0.66	6-	0.98	1.39	1.39	1.26	6.03	3.52
0 cfs	0 cfs	. 21		7	FFc						
33.8	22.3	6343	2.73	1.27	6-	1.15	1.61	1.64	1.64	6.56	4.19
0 cfs	7 cfs	. 73		7	FFt						
50.7	23.5	6343	2.85	1.64	6-	1.19	1.65	1.91	1.91	5.86	4.64
0 cfs	9 cfs	. 85		0	FFt						
67.5	24.4	6343	2.94	1.92	6-	1.21	1.68	2.13	2.13	5.50	4.98
0 cfs	6 cfs	. 94		6	FFt						
84.5	25.1	6344	3.02	2.17	6-	1.23	1.71	2.31	2.31	5.31	5.27

0 cfs	6 cfs	. 02		1	FFt						
101.	25.7	6344	3.08	2.38	6-	1.25	1.73	2.50	2.48	5.24	5.51
40	3 cfs	. 08		3	FFt						
cfs											
118.	26.2	6344	3.14	2.57	4-FFf	1.26	1.75	1.26	2.62	10.5	5.73
30	1 cfs	. 14		2						6	
cfs											
135.	26.6	6344	3.19	2.74	4-FFf	1.27	1.76	1.27	2.76	10.6	5.92
20	5 cfs	. 19		5						1	
cfs											
152.	27.0	6344	3.23	2.90	4-FFf	1.28	1.77	1.28	2.88	10.6	6.10
10	0 cfs	. 23		1						4	
cfs											
169.	27.3	6344	3.26	3.04	4-FFf	1.29	1.78	1.29	3.00	10.6	6.26
00	0 cfs	. 26		4						7	
cfs											

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 6341.00 ft , Outlet Elevation (invert): 6339.80 ft

Culvert Length: 44.46 ft ,
Culvert Slope: 0.0270

Culvert Performance Curve Plot: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6341.00 ft
Outlet Station: 44.44 ft
Outlet Elevation: 6339.80 ft
Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 2.50 ft
Barrel Material: Corrugated Steel
Embedment: 0.00 in
Barrel Manning's n: 0.0170

Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting ($\mathrm{Ke}=0.9$)
Inlet Depression: None
Tailwater Data for Crossing: Proposed Design Point 5

Table 3 - Downstream Channel Rating Curve (Crossing: Proposed Design Point 5)

Flow (cfs)	Water Surface Elev (ft)	Velocity $(\mathrm{ft} / \mathrm{s})$	Depth (ft)	Shear (psf)	Froude Number
	6339.80	0.00	0.00	0.00	0.00
0.00	6341.06	1.26	3.52	0.79	0.78
16.90	6341.44	1.64	4.19	1.02	0.82
33.80	6341.71	1.91	4.64	1.19	0.84
50.70	6341.92	2.13	4.98	1.33	0.85
67.50	6342.11	2.31	5.27	1.44	0.86
84.50	6342.27	2.48	5.51	1.54	0.87
101.40	6342.42	2.62	5.73	1.64	0.88
118.30	6342.56	2.76	5.92	1.72	0.89
135.20	6342.68	2.88	6.10	1.80	0.90
152.10	6342.80	3.00	6.26	1.87	0.90
169.00					

Tailwater Channel Data - Proposed Design Point 5
Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 3.00 (_:1)
Channel Slope: 0.0100
Channel Manning's n: 0.0300
Channel Invert Elevation: 6339.80 ft

Roadway Data for Crossing: Proposed Design Point 5
Roadway Profile Shape: Irregular Roadway Shape (coordinates)
Irregular Roadway Cross-Section

Coord No.	Station (ft)	Elevation (ft)
0	0.00	6343.43
1	48.23	6343.66
2	97.79	6344.01
3	143.59	6344.29
4	192.15	6344.46
5	239.77	6344.32
6	283.26	6344.20
7	327.91	6344.17
8	376.63	6344.19

Roadway Surface: Paved
Roadway Top Width: 24.00 ft

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0.00 cfs
Design Flow: 28.70 cfs
Maximum Flow: 68.70 cfs
Table 1 - Summary of Culvert Flows at Crossing: Proposed Design Point 6

Headwater	Total Discharge	Culvert 1	Roadway Elevation (ft) (cfs)	Discharge (cfs)
Discharge (cfs)	Iterations			
6355.00	0.00	0.00	0.00	1
6356.42	6.87	6.87	0.00	1
6357.32	13.74	13.74	0.00	1
6357.72	20.61	16.25	4.22	16
6357.78	28.70	16.59	11.92	5
6357.81	34.35	16.72	17.44	4
6357.85	41.22	16.83	24.28	4
6357.87	48.09	16.92	30.89	3
6357.90	54.96	17.01	37.76	3
6357.93	61.83	16.98	44.74	3
6357.95	68.70	16.84	51.79	3
6357.62	15.64	15.64	0.00	Overtopping

Rating Curve Plot for Crossing: Proposed Design Point 6
Total Rating Curve
Crossing: Proposed Design Point 6

1. Culvert Data: Culvert 1

Table 2 - Culvert Summary Table: Culvert 1

Total Disc	Culv ert	Head wate	Inlet Cont	Outl et	Flow Type	Nor mal	Criti cal	Outl et	Tail wate	Outl et	Tail wate
harg	Disc	r	rol	Cont		Dept	Dept	Dept	r	Velo	r
e	harg	Elev	Dept	rol		h (ft)	$\mathrm{h}(\mathrm{ft})$	h (ft)	Dept	city	Velo
(cfs)	e	ation	h (ft)	Dept					h (ft)	(ft/s	city
	(cfs)	(ft)		h (ft))	(ft/s
)
0.00	0.00	6355	0.00	0.00	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
cfs	cfs	. 00		0							
6.87	6.87	6356	1.42	0.39	6-	1.01	0.93	0.93	0.67	4.80	5.14
cfs	cfs	. 42		1	FFc						
13.7	13.7	6357	2.32	1.93	6-	1.68	1.33	1.33	0.87	6.17	6.12
4 cfs	4 cfs	. 32		8	FFc						
20.6	16.2	6357	2.72	2.66	6-	2.00	1.45	1.45	1.01	6.65	6.77
1 cfs	5 cfs	. 72		4	FFc						
28.7	16.5	6357	2.78	2.77	6-	2.00	1.47	1.47	1.14	6.71	7.35
0 cfs	9 cfs	. 78		0	FFc						
34.3	16.7	6357	2.80	2.81	6-	2.00	1.47	1.47	1.22	6.74	7.69

5 cfs	2 cfs	.81		1	FFc						
41.2	16.8	6357	2.82	2.84	$6-$	2.00	1.48	1.48	1.31	6.76	8.05
2 cfs	3 cfs	.85		5	FFc						
48.0	16.9	6357	2.84	2.87	$6-$	2.00	1.48	1.48	1.38	6.78	8.37
9 cfs	2 cfs	.87		5	FFc						
54.9	17.0	6357	2.85	2.90	$6-$	2.00	1.49	1.49	1.46	6.79	8.65
6 cfs	1 cfs	.90		3	FFc						
61.8	16.9	6357	2.85	2.92	$6-$	2.00	1.49	1.52	1.52	6.62	8.91
3 cfs	8 cfs	.93		8	FFt						
68.7	16.8	6357	2.82	2.95	$6-$	2.00	1.48	1.58	1.58	6.32	9.15
0 cfs	4 cfs	.95		2	FFt						

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 6355.00 ft , Outlet Elevation (invert): 6354.08 ft

Culvert Length: 49.12 ft , Culvert Slope: 0.0187

Culvert Performance Curve Plot: Culvert 1
Performance Curve
Culvert: Culvert 1

Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6355.00 ft
Outlet Station: 49.11 ft
Outlet Elevation: 6354.08 ft
Number of Barrels: 1

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 2.00 ft
Barrel Material: Corrugated Steel
Embedment: 0.00 in
Barrel Manning's n: 0.0300

Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting
Inlet Depression: None
Tailwater Data for Crossing: Proposed Design Point 6

Table 3 - Downstream Channel Rating Curve (Crossing: Proposed Design Point 6)

Flow (cfs)	Water Surface Elev (ft)	Velocity $(\mathrm{ft} / \mathrm{s})$	Depth (ft)	Shear (psf)	Froude Number
	6354.08	0.00	0.00	0.00	
0.00	6354.75	0.67	5.14	2.08	1.00
6.87	6354.95	0.87	6.12	2.70	1.64
13.74	6355.09	1.01	6.77	3.14	1.68
20.61	6355.22	1.14	7.35	3.56	1.72
28.70	6355.30	1.22	7.69	3.81	1.74
34.35	6355.39	1.31	8.05	4.08	1.76
41.22	6355.46	1.38	8.37	4.32	1.77
48.09	6355.54	1.46	8.65	4.54	1.79
54.96	6355.60	1.52	8.91	4.75	1.80
61.83	6355.66	1.58	9.15	4.94	1.81
8.70					

Tailwater Channel Data - Proposed Design Point 6
Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 3.00 (_:1)
Channel Slope: 0.0500
Channel Manning's n: 0.0300
Channel Invert Elevation: 6354.08 ft
Roadway Data for Crossing: Proposed Design Point 6
Roadway Profile Shape: Irregular Roadway Shape (coordinates)
Irregular Roadway Cross-Section

Coord No.	Station (ft)	Elevation (ft)
0	0.00	6360.07
1	38.46	6359.43
2	82.27	6358.89
3	129.27	6358.56
4	177.03	6358.26
5	222.27	6357.98
6	272.14	6357.71
7	323.36	6357.66
8	371.08	6357.62

Roadway Surface: Paved
Roadway Top Width: 25.00 ft

NOTE:

$$
\therefore \text { Dession const }
$$

$$
\triangle \quad \text { osesin pent }
$$

the landings of
DENMARK SUBDIVISION

final drainage plan

 PROPOSED CONDITIONS SCALE: 1 " = 200 FEETTHE LANDings of d
Filing no. 2
Final drainage basin mal
PROPOSED CoNottions

	MONUMENT VALLEY	PREMIER Enoneer
cimosiol	何	Professional Civil Engi
Mesmaine	M E E	
	nexanemenexe	

