FINAL DRAINAGE REPORT

FOR

LOT 1 CROSSROADS MIXED USE FILING NO. 3

EL PASO COUNTY, COLORADO

NOVEMBER 2024

Prepared for: Crossroads Development Company, LLC

Mr. Danny Mientka 90 South Cascade Avenue, Suite 1500 Colorado Springs, Colorado Springs 80903

Prepared by:

CIVIL CONSULTANTS, INC.

212 N. Wahsatch Avenue, Suite 305 Colorado Springs, CO 80903 (719) 955-5485

> Project #18-007 PCD Filing No.: PPR

FINAL DRAINAGE REPORT FOR LOT 1 CROSSROADS MIXED USE FILING NO. 3

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all the requirements specified in this drainage report and plan.

BY:_____ Danny Mientka –Owner

DATE:

ADDRESS: Crossroads Development Company, LLC 90 South Cascade Avenue, Suite 1500 Colorado Springs, CO 80903

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:_____ DATE:_____ Joshua Palmer, P.E. County Engineer / ECM Administrator CONDITIONS:

FINAL DRAINAGE REPORT FOR LOT 1 CROSSROADS MIXED USE FILING NO. 3

TABLE OF CONTENTS

PURPOSE	4
PROJECT LOCATION AND DESCRIPTION	4
SOILS	4
FLOODPLAIN STATEMENT	5
PREVIOUS STUDIES	5
HYDROLOGIC CALCULATIONS	6
HYDRAULIC CALCULATIONS	7
DRAINAGE CRITERIA	7
EXISTING DRAINAGE CONDITIONS	7
FOUR STEP PROCESS	9
PROPOSED DRAINAGE CONDITIONS	10
WATER QUALITY PROVISIONS AND MAINTENANCE	14
EROSION CONTROL	14
DRAINAGE & BRIDGE FEES	14
CONSTRUCTION COST ESTIMATE	14
SUMMARY	15
REFERENCES	16

APPENDIX

Vicinity Map Soils Map FIRM Panels Hydrologic Calculations Hydraulic Calculations Drainage Maps

FINAL DRAINAGE REPORT FOR LOT 1 CROSSROADS MIXED USE FILING NO. 3

Purpose

This Final Drainage Report for Lot 1, Crossroads Mixed Use Filing No. 3, is in support of the Final Plat, Preliminary Plan, and Construction Drawings of the subject site. This report functions to identify the existing and proposed runoff patterns and recommend proposed drainage improvements which are intended to safely convey runoff through the proposed development, while minimizing impacts to downstream facilities and adjacent properties.

A Final Drainage Report for this site and Construction Drawings will be submitted concurrently with the Final Plat.

Project Location and Description

The subject site is located in the south half of Section 8, Township 14 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The 1.030-acre site is currently undeveloped. The site is bound to the west by Lot 1 of Crossroads Mixed Use Filing No. 2, to the north by Tract A, Crossroads Mixed Use Filing No. 3, to the east by Tract B, Crossroads Mixed Use Filing No. 3, and to the south by Highway 24. The proposed site will be developed as a commercial lot, with parking lot, two private access roads and the extension of Central Rail Point.

The majority of the existing site is covered with native grasses with fair to good cover. Known earthwork operations for "borrow material" have occurred over a small area of the eastern portion of the site in early to mid-2019, but have since stabilized. Generally, the site slopes from east to west at average slopes between 1% and 2%. The site lies within the Sand Creek Drainage Basin. No existing drainage facilities or improvements are onsite, however, surrounding drainage facilities are planned and existing and will connect onsite. No known irrigation systems or wells are present.

Soils

Soils in the project area have been determined to be Blakeland Loamy Sand (8), which is characterized to be part of Hydrologic Soil Types "A" as determined from the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) "Web Soils Survey". A soils map illustrating the site location and soil types is provided in the appendix of this report.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Nos. 08041C0752 G & 08041C0754 G, effective date December 7th, 2018, the site lies within Zone X (area of minimal flood hazard). A copy of these annotated maps can be found in the appendix. The Sand Creek East Fork Channel is located to the northwest of the adjacent Meadowbrook Crossing subdivision.

Previous Studies

The area which encompasses Lot 1 Crossroads Mixed Use Filing No. 2 has been previously studied. Below is a short outline of the assumptions regarding the lands of the subject site and those based upon the previously assembled and approved drainage reports and how the assumptions within them impact the subject site.

"Final Drainage Report for Lot 1 Crossroads Mixed Use Filing No.2, prepared by M&S Civil Consultants, Inc., approved October 5, 2023.

• Establishes all historic, existing, and future drainage patterns and detailed drainage information for the proposed site and adjacent properties.

"Final Drainage Report for Crossroads Mixed Use Filing No.2, prepared by M&S Civil Consultants, Inc., approved November 29, 2023.

• Establishes all historic, existing, and future drainage patterns and detailed drainage information for the proposed site and adjacent properties.

"Final Drainage Report for Crossroads Mixed Use Filing No.1, prepared by M&S Civil Consultants, Inc., approved June 9, 2022.

• Establishes all historic, existing, and future drainage patterns and detailed drainage information for the proposed site and adjacent properties.

"Sand Creek Drainage Basin Planning Study, Preliminary Design Report", prepared by Kiowa Engineering Corporation, dated January 1993, revised March 1996.

- Establishes that the subject site falls within the East Fork Sand Creek Drainage Basin, a portion of the larger Sand Creek Watershed
- Establishes that there are no requirements for major infrastructure improvements and subsequently no drainage-improvement related reimbursements with the development of this parcel
- Drainage fees shall be required to plat the subdivision

"Claremont Business Park Filing No.2 prepared by Matrix Design Group, revised November 2006

- Establishes the drainage patterns of offsite Basins 0S-4 and E2 which are to be conveyed within the Meadowbrook Rights of Way
- Established up-gradient offsite drainage to be directed under Meadowbrook north to offsite East Fork Sand Creek Channel, and away from the subject site

"Final Drainage Report, Lot 1 24/94 Business Park Filing No.1 prepared by Core Engineering Group, dated July 14, 2016

- The development of the 24/94 Business Park FDR shows future curb inlets along the future Meadowbrook Parkway extension on the south and west corners of the intersection to capture runoff from up-gradient watersheds in addition to a proposed inlet which was to be located above the intersection at the northwest corner of the subject site.
- Establishes that flows from the parcel upstream of the convenience store (29/94 FDR Basin OS4) EX-B now to be collected by the extension of a 36" RCP along the south side of Meadowbrook Parkway. Runoff within the right of way/roadway separated out as Basin EX-A2.
- Continues assumption that flows from Newt Drive be conveyed north to East Fork Sand Creek.
- Evaluated pre-development drainage patterns for subject site including direct discharge flow rates to the CDOT rights of way of 1.9 and 14.5 cfs for the 5 and 100 year events, respectively. (Basin EX-E).

"Preliminary and Final Drainage Report Meadowbrook Crossing Filing No. 1 and Filing 2, El Paso County, Colorado prepared by Kiowa Engineering Corporation, dated July 25, 2017

- Proposed the installation of a future 10' Type R inlet at the southeast corner of Newt Drive and Meadowbrook Parkway with the extension of Meadowbrook Parkway to the west (along the northern boundary of the subject site). The inlet was to function to collect offsite runoff from a portion of the south half of Meadowbrook Parkway and Newt Drive north of Hwy 24. Intercepted runoff would be conveyed via a proposed 24" storm sewer to the existing storm sewer system within the Meadowbrook Crossings development.
- Proposed the installation of a 10' Type R inlet at the west end of future Meadowbrook Parkway. The inlet was to collect runoff from the north half of the future roadway. An 18" storm drain was proposed to convey collected runoff to the existing water quality pond located within the Meadowbrook Crossings Development. The report indicates a separate forebay or the modification of an existing forebay would be required.
- Shifted the location of the existing 10' Type R curb inlet to be installed upstream of the intersection of Newt Drive (as shown with the 24/94 Business Park FDR), flows in excess of the inlet capacity are to continue within the future Meadowbrook.

"Final Drainage Report for Meadowbrook Dirt Borrow Site, El Paso County Colorado, prepared by M&S Civil Consultants, November 2018.

- Evaluated onsite drainage patterns
- Excluded offsite runoff impacts from areas to the east of site.

• Allowed site to be utilized as a "borrow site" for offsite earthwork activities.

Hydrologic Calculations

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Mile High Flood District Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

Hydraulic Calculations

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. Storm drains were designed using parameters and criteria summarized in Chapter 8 of El Paso County's Drainage Criteria Manual Vol. 1 and the City of Colorado Springs Drainage Criteria Manuals. Parameters such as Manning's values of 0.13 were used for concrete pipe flow and design considerations for maximum velocities were applied. The relevant data sheets are included in the appendix of this report. Hydraulic grade line calculations for the storm system in the proposed condition are provided in the Appendix of this Final Drainage report.

Drainage Criteria

This drainage analysis has been prepared in accordance with current El Paso County Drainage Criteria Manual and, where applicable, City of Colorado Springs and Mile High Flood District Criteria Manuals. Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method as required for basins having areas less than 100 acres. See Appendix for supporting calculations.

Existing Drainage Characteristics

The subject lots and surrounding areas had been utilized as a "borrow site" to provide surplus earthwork to offsite developments in the area. This recent grading effort occurred during the spring and summer of 2019. The site and surrounding areas have been since been graded during the development of Lot 1 Crossroads Mixed Use Filing No. 2. At the request of El Paso County, an existing conditions drainage analysis has been provided to show the changes to the topography and drainage patterns as a result of this effort.

In the existing condition, vegetation remains sparse, consisting primarily of graded soils and weeds with good to fair cover. Areas disturbed by grading activities were reseeded and have since stabilized. Ultimately, all runoff from the site is conveyed to the west towards existing drainage facilities located under Southern Rail Point, which are discharged to an existing FSD Pond located at the southeast corner of Cross Roads Mixed Use Filing No. 1. Ultimately, the drainage from the site discharges into the East Fork of Sand Creek. This section only discusses the changes in basin

geometry and drainage pattern and provides a direct comparison of the proposed conditions from Crossroads Mixed Use Filing No. 2 (CMU2) FDR versus the existing conditions of the subject lot.

<u>Design Point 1</u>

Off-site **Basin C** (Q5=1.0, Q100=7.5 cfs) consists of 3.40 acres of the northern portion of commercial Tract C located along the north and east side of the site. An existing private 30" storm sewer (**PR4**) collects and conveys undeveloped flows of Q5=1.0 and Q100=7.5 cfs in the 5 and 100-year storm event, respectively. Intercepted flows are conveyed west underground within the existing Central Rail Point roadway. **PR4** was designed to account for future development per the CMU2 FDR. The acreage and flows in the existing condition have changed from the CMU2 FDR LOT 1 report, in part to the new field survey provided by MS Civil Consultants, Inc.

Design Point 2

Off-site **Basin** C1 (Q5=0.4, Q100=2.6 cfs) consists of 1.16 acres of the southern portion of commercial Tract C located along the east side of the site. An existing private 30" storm sewer (**PR4.5**) collects and conveys undeveloped flows of Q5=0.4 and Q100=2.6 cfs in the 5 and 100-year storm event, respectively. Intercepted flows from **PR4** and **PR4.5** are conveyed west underground within the existing Central Rail Point roadway through **PR5**, **PR6**, **and PR7** at flow rates of Q5=1.4 and Q100=10.1 cfs. These flows are less than or equivalent to the flows cited in the CMU2 FDR LOT 1 report (Q5=1.4 and Q100=10.4 cfs). **PR4**, **PR4.5** and **PR5-7** were designed to account for future development per the CMU2 FDR. The acreage and flows in the existing condition have changed from the CMU2 FDR LOT 1 report, in part to the new field survey.

Design Point 8

Off-site **Basin E** (Q5=2.1, Q100=5.6 cfs) consists of 1.58 acres of a portion of undeveloped commercial lots, the northern half of existing Central Rail Point and the western half of existing Pacific Rail Point. An existing private 10' CDOT Type R at-grade inlet (**Inlet 6:** Q5=2.1, Q100=5.6 cfs intercepted; no flow by) is located on the north side of the roadway to intercept developed and undeveloped flows from **Basin E**. Future runoff bypassing this inlet continues to downstream infrastructure. Existing flows collected from the inlet are conveyed to a box base manhole in the center of the existing Central Rail Point via an existing private 30" (**PR9**) storm drain at flow rates of Q5=2.1 and Q100=5.6 cfs. **PR9** was designed to account for future development per the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR LOT 1 report (Q5=2.3 and Q100=9.1 cfs). The flows from **PR9** then combine with flows from **PR7** and continue to flow through an existing private 36" (**PR10**) storm drain at flow rates of Q5=3.5 and Q100=15.7 cfs. **PR10** was designed to account for future development per the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR. The flows in the existing private 36" (**PR10**) storm drain at flow rates of Q5=3.5 and Q100=15.7 cfs. **PR10** was designed to account for future development per the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR LOT 1 report (Q5=3.8 and Q100=15.7 cfs).

Design Point 9A

On-site **Basin E1A** (Q5=0.2, Q100=1.4 cfs) consists of 0.56 acres of a commercial lot. The undeveloped lot generally drains from south to northwest until the flows exit the basin as sheet flow at **DP9A** (Q5=0.2, Q100=1.4 cfs). The runoff from this design point is conveyed onto the southern half of Central Rail Point and combines with flows within **Basin *E1B** and ***E1C**. The acreage and flows in the existing condition have changed from the CMU2 FDR LOT 1 report, in part to the new topography that was provide by the field survey provided by MS Civil Consultants.

Design Point 9B

On-site **Basin** ***E1B** (Q5=1.8, Q100=3.3 cfs) consists of 0.43 acres of existing commercial Lot 1. The basin generally drains from south to northwest until the flows exit the basin through an existing 3' wide curb chase at **DP9B** (Q5=1.8, Q100=3.3 cfs). The runoff from this design point is conveyed onto the southern half of Central Rail Point and combines with flows within **Basin E1A** and ***E1C**. The **Basin *E1B** developed flows are the same as the developed flows cited in the CMU2 FDR LOT 1 report (Q5=1.8 and Q100=3.3 cfs).

Design Point 9

Off-site **Basin** *E1C (Q5=1.2, Q100=2.2 cfs) consists of 0.27 acres of undeveloped commercial lots, and the southern half of Central Rail Point. An existing private 10' CDOT Type R at-grade inlet (Inlet 7: Q5=2.6, Q100=5.7 cfs; with Q100=0.6 cfs of flow by) is located on the south side of the Central Rail Point to intercept developed and undeveloped flows from **Basin** *E1C, DP9A and DP9B. Future runoff bypassing this inlet continues to downstream infrastructure. Existing flows collected from the inlet combine with flows from PR10 and are conveyed south to a box base manhole on the south side of the roadway via a private 36" (PR11) storm drain and continue west underground at flow rates of Q5=6.0 and Q100=21.0 cfs. An existing 42" private storm sewer, then directs the system south under existing Southern Rail Point to an existing manhole and ultimately to the existing FSD pond for treatment. PR11 and the storm sewer infrastructure was designed to account for future development per the CMU2 FDR. The flows in the existing condition are less than the flows cited in the CMU2 FDR LOT1 report (Q5=7.9 and Q100=30.4 cfs).

Design Point 11

Off-site **Basin D** (Q5=0.5 cfs, Q100=3.6 cfs) consists of 1.62 acres of undeveloped commercial lots and off-site **Basin *G1** (Q5=2.9, Q100=5.4 cfs) consists of 0.69 acres of commercial lots and the east half of existing Southern Rail Point, located west of the subject site. An existing private 15' CDOT Type R sump inlet (**Inlet 9**: Q5=2.6, Q100=8.2 cfs intercepted; no flow by), located on the east side of existing Southern Rail Point collects the developed runoff from **Basin D and Basin *G1** as well as bypass flows from **DP8** and **DP9**, totaling Q5=2.6 and Q100=8.2 cfs. **DP11** was designed to account for future development per the CMU2 FDR. The flows in the existing condition are equivalent to or less than the flows cited in the CMU2 FDR LOT 1 report (Q5=2.9 and Q100=6.7 cfs).

*See Final Drainage Report for Lot 1 Crossroads Mixed Use Filing No.2 ("CMU2 FDR LOT1") by M&S Civil Consultants, Inc. approved October 2023 in the appendix for pre-development conditions at these locations. See Final Drainage Report for Crossroads Mixed Use Filing No.2 ("CMU2 FDR") by M&S Civil Consultants, Inc. approved November 2023 for additional predevelopment, historic, future, and full spectrum detention condition comparison for the intermediate events at these locations.

Four Step Process

Step 1 Employ Runoff Reduction Practices –Whenever possible, runoff produced within developable area containing impervious surfaces will be routed through landscaped areas to minimize direct connection of impervious surfaces.

Step 2 Stabilize Drainageways – The development of this site is not anticipated to have negative effects on downstream drainage ways since flows released will be below historic rates.

Step 3 Provide Water Quality Capture Volume (WQCV)– The site will utilize an existing Full Spectrum Detention (FSD) Pond, located southwest of the subject site, for water quality. The water quality event storm shall be detained and released via the full spectrum detention (FSD) pond which will discharge the WQCV in approximately 40 hours, while reducing the 100 year peak discharge to approximately 90% of the pre-development flow rates. The pond continuously releases or infiltrates at least 97% of all of the runoff from a rainfall event that is less than or equal to a 5-year storm within 72 hours after the end of the event. It also continuously releases as quickly as practicable, but in all cases releases at least 99% of the runoff within 120 hours after the end of events greater than a 5-year storm.

Step 4 Consider Need for Selecting Industrial and Commercial BMP's – The proposed development will implement a Stormwater Management Plan including property housekeeping practices, spill containment procedures, and coverage of storage/handling areas. Specialized BMP's are not required since the vertical development of the commercial areas are unknown at this time.

Proposed Drainage Characteristics

The future site will be developed into one (1) commercial lot and extend the existing access road. The proposed development will extend Central Rail Pont to the east and allow for access to the commercial lot. The following summary generalizes the proposed drainage patterns and drainage improvements required to safely route developed runoff to downstream facilities.

Off-site flows will collect per the existing detailed drainage discussion. Runoff within the western portion of Lot 1 will flow northwest to the existing Central Rail Point (private). Flows within the existing Central Rail Point will be conveyed west and collected by a pair of at-grade inlets located at the west end of the roadway, then routed south and west via existing storm sewer systems to the existing off-site FSD Pond. Central Rail Point (private) will be extended to provide access and utility corridors for the development. Private storm sewer mains, stubs, and inlets will be extended along these corridors to serve the development. Runoff within the middle and eastern portion of Lot 1 will be directed via sheet flow to one of two inlets located within the subject site. Runoff from the proposed building shall be collected by a private roof drain system located on the back of the building. The flows from the building roof drains and two private inlets located within Lot 1 all combine at a proposed underground storm sewer system located the north side of the lot and are conveyed northwest. The existing storm sewer pipe located within Central Ral Point (private) will be extended northeast and the proposed storm sewer pipe conveying runoff from the site will tie in at the northwest boundary of the proposed Central Rail Point. All onsite storm sewer and drainage improvements shall be private. Proposed on-site flows will continue off-site through existing storm pipes, where the flows will combine with adjacent lot flows and continue through existing storm pipes to the existing FSD pond located southwest of the proposed site. The existing outfall from the pond will discharge into the existing borrow ditch located within the north half of the existing CDOT Right of Way as per the CMU1 MDDP. Refer to the "Existing Detailed Drainage Discussion" of this report for all Design Points upstream of Design Point 9, since none of the upstream drainage changes in the proposed conditions. The existing FSD Pond will function as intended and will not require additional maintenance due to the development of these lots. The contractor will be responsible for any reexcavation of sediment and debris that collects in the basin depression to ensure that the basin meets the design grades following construction. The storm lines shall be cleaned and free of sediment once after final stabilization.

Proposed Detailed Drainage Discussion

<u>Design Point 1</u>

Offsite **Basin C** (Q5=1.2 cfs, Q100=8.9 cfs) consists of 3.85 acres of the north portion of Tract B. The undeveloped lot generally drains from southeast to northwest until being intercepted at **DP1** (Q5=1.2 cfs, Q100=8.9 cfs) by an existing exposed 30" storm sewer stub. The collected runoff continues underground via an existing private 30" storm sewer (**PR4**) at peak flow rates of Q5=1.2 and Q100=8.9 cfs in the 5 and 100-year storm event, respectively. Intercepted flows continue west underground within the existing storm sewer system located under the existing Central Rail Point roadway. **PR4** was designed to account for future development per the CMU2 FDR.

Design Point 1.5

Onsite **Basin C1** (Q5=0.4 cfs, Q100=0.7 cfs) consists of 0.08 acres of proposed Central Rail Pt (private) located within Tract A. The developed flows from **Basin C1** drains from east to west until the flows are intercepted at **DP1.5** (Q5=0.4 cfs, Q100=0.7 cfs), a proposed private 10' CDOT Type R at-grade inlet. The runoff from this design point continues underground via a proposed private 18" RCP storm sewer (**PR4.1**) which conveys peak flows of Q5=0.4 cfs and Q100=0.7 cfs. Flows from **PR4 and PR4.1** combine at a proposed private 5' diameter manhole and continue southwest underground via **PR4.2** and peak flow rates of Q5=1.5 cfs and Q100=9.4 cfs.

Basin C8

Onsite **Basin C8** (Q5=0.1 cfs, Q100=0.2 cfs) consists of 0.03 acres of building rooftop. The developed flows are conveyed underground via a proposed private 6" HDPE storm drain (**PR1**) which conveys peak flows of Q5=0.1 cfs and Q100=0.2 cfs.

Basin C7

Onsite **Basin C7** (Q5=0.1 cfs, Q100=0.2 cfs) consists of 0.03 acres of building rooftop. The developed flows are conveyed underground via a proposed private 6" HDPE storm drain (**PR1.5**) which conveys peak flows of Q5=0.1 cfs and Q100=0.2 cfs. **PR1.5** combines with the flows from **PR1** at **PR2** (Q5=0.2 cfs, Q100=0.4 cfs), a proposed private 6" HDPE storm sewer.

Design Point 2

Basin C4 (Q5=0.0, Q100=0.1 cfs) consists of 0.04 acres of the southeast corner of Lot 1. Onsite **Basin C6** (Q5=0.7 cfs, Q100=1.2 cfs) consists of 0.15 acres of commercial lot. The flows form **Basin C4** generally drains from southeast to northwest until the flow exists the basin (as sheet flow) and enters **Basin C6**. The combined flows from **Basin C4 and C6** continue northwest to **DP2** (Q5=0.7 cfs, Q100=1.3 cfs), a proposed private 2'x3' ADS inlet atop a 24" drain basin. The runoff from this design point continues underground via a proposed private 12" PP storm sewer (**PR2.5**) which conveys peak flows of Q5=0.7 cfs and Q100=1.3 cfs. Flows from **PR2.5** continue northwest and combine with the

flows from **PR2** at **PR3** (Q5=0.9 cfs, Q100=1.7 cfs), a proposed private 12" PP storm sewer. Flows from **PR3** continue underground.

Design Point 3

Onsite **Basin C3** (Q5=0.0 cfs, Q100=0.1 cfs) consists of 0.03 acres of landscaping along the east boundary. Onsite **Basin C5** (Q5=1.1 cfs, Q100=2.1 cfs) consists of 0.27 acres of commercial lot. The flows from undeveloped **Basin C3** generally drains from southeast to northwest until the flows exit the basin as sheet flow at **Basin C5**. The combined flows from **Basin C3 and Basin C5** continue northwest to **DP3** (Q5=1.1 cfs, Q100=2.1 cfs), a proposed private 5' CDOT Type R sump inlet. The runoff from this design point continues underground via a proposed private 12" PP storm sewer (**PR3.5**) which conveys peak flows of Q5=1.1 cfs and Q100=2.1 cfs. Flows from **PR3.5** continue underground.

Design Point 4

Onsite **Basin C2** (Q5=0.5, Q100=0.9 cfs) consists of 0.11 acres of Tract A. The flows from developed **Basin C2** generally drains from east to west until the flows are intercepted at **DP4** (Q5=0.5 cfs, Q100=0.9 cfs), a proposed private 10' CDOT Type R at-grade inlet. The runoff from this design point combines with the flows from **PR3 and PR3.5** and continues underground via a proposed private 24" RCP storm sewer (**PR4.4**) which conveys peak flows of Q5=2.5 cfs and Q100=4.7 cfs. Flows from **PR4.4** are conveyed northwest to a proposed private 5' diameter manhole. Here, flows combine with the flows (from the future development) located on Tract B at a proposed private 24" RCP storm sewer (**PR4.3**) which collects no flow in the proposed private 30" RCP storm drain. Intercepted flows from **PR4.2** and **PR4.5** are conveyed west underground within the existing Central Rail Point roadway through **PR5**, **PR6**, and **PR7** at flow rates of Q5=3.4 and Q100=13.0 cfs. **PR4**, **PR4.5** and **PR5-7** were designed to account for future development per the CMU2 FDR.

Design Point 9A

Onsite **Basin E1A** (Q5=1.4, Q100=3.0 cfs) consists of 0.50 acres of a commercial lot. Onsite **Basin E1A.5** (Q5=0.0 cfs, Q100=0.1 cfs) consists of 0.04 acres of commercial lot. Flows from both basins are conveyed northwest until the flows exit the basin as at **DP9A** (Q5=1.4 cfs, Q100=3.0 cfs). The runoff from this design pint is conveyed onto the southern half of Central Rail Pt. and ultimately combines with the flows within **Basin *E1C**.

Design Point 9B

Offsite **Basin** *E1B (Q5=1.8, Q100=3.3 cfs) consists of 0.43 acres of proposed commercial Lot 2, CRMU2. The basin generally drains from south to northwest until the flows exit the basin at **DP9B** (Q5=1.8, Q100=3.3 cfs). The runoff from this design point is conveyed onto the southern half of Central Rail Pt. and ultimately combines with flows within **Basin E1C**.

Design Point 7

Off-site **Basin** ***D** (Q5=0.7 cfs, Q100=5.1 cfs) consists of 2.21 acres of future commercial lot from CRMU2 FDR LOT 1. **Basin** ***D** is located between existing Meadowbrook Parkway, existing Central Rail Point, existing Pacific Rail Point, and existing Southern Rail Point. **Basin** ***D** has a private 24"

storm drain at the southwest corner, **PR7**, to collect undeveloped peak flows of Q5=0.7 cfs and Q100=5.1 cfs from this basin in the 5 and 100-year storm events, respectively.

Design Point 8

Off-site **Basin** *E (Q5=1.6, Q100=3.9 cfs) consists of 0.99 acres of a portion of undeveloped commercial lots from CRMU2, the northern half of existing Central Rail Point and the western half of existing Pacific Rail Point. An existing private 10' CDOT Type R at-grade inlet, (**Inlet 6:** Q5=1.6, Q100=3.9 cfs intercepted; no flow by) is located on the north side of the roadway at **DP8** (Q5=1.6 cfs, Q100=3.9 cfs) to intercept developed and undeveloped flows from **Basin** *E. Future runoff bypassing this inlet continues to downstream infrastructure. Proposed flows collected from the inlet are conveyed to a box base manhole in the center of the existing Central Rail Point via an existing private 30" (**PR9**) storm drain at flow rates of Q5=2.3 and Q100=9.0 cfs. **PR9** was designed to account for future development per the CMU2 FDR. The flows in the proposed condition are less than or equal to the flows cited in the CMU2 FDR LOT 1 report (Q5=2.3 and Q100=9.1 cfs). The flows from **PR9** then combine with flows from **PR7** and continue to flow through an existing private 36" (**PR10**) storm drain at flow rates of Q5=5.7 and Q100=22.0 cfs. **PR10** was designed to account for future development per the CMU2 FDR.

Design Point 9

Off-site **Basin** *E1C (Q5=1.2, Q100=2.2 cfs) consists of 0.27 acres of undeveloped commercial lots from CRMU2, and the southern half of Central Rail Point. An existing private 10' CDOT Type R at-grade inlet (Inlet 7: Q5=4.3, Q100=8.3 cfs; with Q5=0.1 and Q100=1.9 cfs of flow by) is located on the south side of the Central Rail Point at DP9 (Q5=4.3 cfs, Q100=8.3 cfs) to intercept developed and undeveloped flows from Basin *E1C, DP9A and DP9B. Proposed runoff bypassing this inlet continues to downstream infrastructure. Proposed flows collected from the inlet combine with flows from PR10 and are conveyed south to a box base manhole on the south side of the roadway via a private 36" (PR11) storm drain and continue west underground at flow rates of Q5=9.2 and Q100=28.6 cfs. An existing 42" private storm sewer, then directs the system south under existing Southern Rail Point to an existing manhole and ultimately to the existing FSD pond for treatment. PR11 and the storm sewer infrastructure was designed to account for future development per the CMU2 FDR.

Design Point 11

Off-site **Basin** *G1 (Q5=2.9, Q100=5.4 cfs) consists of 0.69 acres of commercial lots and the east half of Southern Rail Point, located west of the existing site. A private 15' CDOT Type R sump inlet (Inlet 9: Q5=2.9, Q100=8.8 cfs intercepted; no flow by), located on the southeast side of existing Southern Rail Point collects the runoff from **Basin** *G1 as well as bypass flows from **DP8 and DP9**, at **DP11**, totaling Q5=2.9 and Q100=8.8 cfs. **PR14**, an existing 30" private storm sewer, directs runoff west to an underground box base manhole at peak flow rates of 2.9 cfs and 8.8 cfs in the minor and major storm events, respectively. **PR14** and the storm sewer infrastructure was designed to account for future development per the CMU2 FDR.

*See Crossroads Mixed Use Filing No. 2 FDR/MDDP ("CMU2 FDR") by M&S Civil Consultants, Inc. dated November 2022, in the appendix for predevelopment, and existing condition comparison for the events at these lots.

*See Lot 1 Crossroads Mixed Use Filing No. 2 FDR ("Lot 1 CMU2 FDR LOT 1") by M&S Civil Consultants, Inc. dated July 2023, in the appendix for predevelopment, and existing condition comparison for the events at these lots.

Water Quality Provisions and Maintenance

The off-site existing detention pond functions to provide detention and water quality for the proposed development. Refer to the Final Drainage Report for Crossroads Mixed Use Filing No. 1 in the appendix for details and calculations regarding the existing full spectrum detention pond.

Erosion Control

It is the policy of the El Paso County that M&S Civil Consultants submit a grading and erosion control plan with the drainage report. The plan includes proposed silt fence and vehicle tracking control as proposed erosion control measures. The plan also includes provisions for inlet protection, stockpiling, staging, and concrete washout areas. A stormwater management plan is provided to accompany the plans.

2024 Drainage & Bridge Fees:

Drainage fees for the subject site have been previously paid with Filing No. 2.

Item	Amount	Unit	Unit Cost	Total Cost
2'X3' ADS Inlet Atop 24" Drain Basin	1	EA	\$5,611.00	\$5,611.00
5' CDOT Type R Inlet	1	EA	\$6,703.00	\$6.703.00
10' CDOT Type R Inlet	2	EA	\$9,890.00	\$19,780.00
Type II MH	2	EA	\$6,000.00	\$12,000.00
6" HDPE SD	85	LF	\$30.00	\$2,550.00
12" PP SD	116	LF	\$50.00	\$5,800.00
18" PP SD	11	LF	\$70.00	\$770.00
24" PP SD	156	LF	\$81.00	\$12,636.00
TOTAL COST:				\$65,850.00

Construction Cost Estimate (Non-Reimbursable)

M & S Civil Consultants, Inc. (M & S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2024.

Summary

The construction of this site is for the purposes of developing commercial Lot 1 in the proposed condition. The site will be graded and all disturbed areas will be seeded. Proposed post construction runoff will be discharged from the lots at PR11 and PR14. At PR11, the proposed runoff is 26.5 cfs and 33.9 cfs less than the planned (future) runoff from the CMU2 FDR for the 5 and 100-year events of Q5=35.7 cfs and Q100=62.5, respectively. This difference is due to area adjustments of the basins located within Tract B, drainage within Tract B, as well as Tract B being undeveloped. At **PR14**, the proposed runoff is 0.4 cfs and 0.5 cfs less that the planned (future) runoff from the CMU2 FDR for the 5 and 100-year events, respectively. This difference is due to the fact that as more runoff reached the at grade inlets at **DP8 and DP9**, there is more flow by that reaches PR14. Nonetheless, the amount of runoff that reaches the previously assumed FSD Pond from adjacent lots and the proposed site is less than the previously assumed flows at this location from the CMU2 FDR for the 5 and 100-year events, respectively. Thus, the runoff from the proposed site does not affect the size of the previously assumed FSD Pond. Proposed post construction runoff will be discharged from the pond at the same, or lesser, rates than previously assumed for the 5 and 100 year design events from the CMU2 FDR. Thus, the development of the proposed site will not further impact the flows that are planned to be released from the FSD Pond in the CMU2 FDR (see appendix). The construction of Lot 1 Crossroads Mixed Use Filing No. 3 shall not adversely affect adjacent or downstream property.

A future conditions map and the associated calculations have been added to the appendix of this report for further comparison. The future conditions map and calculations illustrate that the flows exiting the future development of CMU3 are less than the proposed flow from the CMU2 FDR.

References

- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual".
- 2.) "Urban Storm Drainage Criteria Manual"
- 3.) SCS Soils Map for El Paso County.
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Revised date December 7th, 2018.
- 5.) "Final Drainage Report for Claremont Business Park Filing No. 2", dated November 2006, by Matrix Design Group, Inc.
- 6.) "Preliminary and Final Drainage Report Meadowbrook Crossing Filing 1 and Filing 2", dated July 25, 2017, by Kiowa Engineering Corporation.
- 7.) "Final Drainage Report Lot 1 24/94 Business Park Filing No. 1 on Platte Avenue and Meadowbrook Parkway", dated April 28, 2016 and revised July 14, 2016, by Core Engineering Group, LLC.
- 8.) "Final Drainage Report for Meadowbrook Dirt Borrow Site ", dated November 2018, by M&S Civil Consultants, Inc.
- 9.) "Sand Creek Drainage Basin Planning Study", revised March 1996, by Kiowa Engineering Corporation.
- "Final Drainage Report for Aura at Crossroads", dated April 4th, 2022, by Harris Kocher Smith.
- "Final Drainage Report for Crossroads Mixed Use Filing No.1", approved June 2023, by M&S Civil Consultants, Inc.
- 12.) "Final Drainage Report for Crossroads Mixed Use Filing No.2", approved November 2023, by M&S Civil Consultants, Inc.
- "Final Drainage Report for Lot 1 Crossroads Mixed Use Filing No.2", approved October 2023, by M&S Civil Consultants, Inc.

APPENDIX

VICINITY MAP

VICINITY MAP

N.T.S.

SOILS MAP

FIRM PANELS

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

HYDROLOGIC CALCULATIONS

		LOT 1 PRE (E:	CROS LIMIN xisting	SSROA NARY MArea	ADS M DRAI Runoj	IIXED NAGE ff Coeff	USE I CALC îicient	FILIN CULAT Summ	G NO. 3 TONS ary)	}					
			STREE	TS / COM	MERC.	MULTI-F.	AMILY/PA	RKLAND	OVERLAN	D / UNDE	VELOPED	WEIG	HTED		
BASIN	BASIN TOTAL AREA (Sq Ft) TOTAL AREA (Acres) TOTAL AREA (Acres) TOTAL AREA (Acres) TOTAL AREA (Acres) TOTAL AREA (Acres) TOTAL AREA (Acres) TOTAL C5 C100 AREA (Acres) C5 C100 AREA (Acres) C5 C100 C5 C100 C5 C100 C5 C100 C5 C100 C5 C100 Existing Area Drainage Summary														
	Existing Area Drainage Summary														
С	C 148180 3.40 0.00 0.81 0.88 0.00 0.49 0.62 3.40 0.08 0.35 0.08 0.35														
C1	50566	1.16	0.00	0.81	0.88	0.00	0.49	0.62	1.16	0.08	0.35	0.08	0.35		
D	70662	1.62	0.00	0.81	0.88	0.00	0.49	0.62	1.62	0.08	0.35	0.08	0.35		
E	68614	1.58	0.54	0.90	0.96	0.00	0.81	0.88	1.04	0.08	0.35	0.36	0.56		
EIA	24257	0.56	0.02	0.81	0.88	0.00	0.81	0.88	0.54	0.08	0.35	0.11	0.37		
* <i>E1B</i>	18815	0.43	0.43	0.81	0.88	0.00	0.81	0.88	0.00	0.08	0.35	0.81	0.88		
* <i>E1C</i>	11894	0.27	0.22	0.90	0.96	0.05	0.81	0.88	0.00	0.08	0.35	0.88	0.95		
*G1	29974	0.69	0.63	0.90	0.96	0.06	0.12	0.39	0.00	0.08	0.35	0.84	0.91		
*FROM <u>FDR FOR LOT 1 CROSSROA</u>	DS MIXED USE FI	LING NO. 2								(Calculated by: Date: Checked by:	GT 9/23/2024 DLM			

LOT 1 CROSSROADS MIXED USE FILING NO. 3 PRELIMINARY DRAINAGE REPORT

(Existing Drainage Summary)

From Area Run	off Coefficient	Summary			OVER	LAND		STRE	ET / CH	ANNEL F	LOW	Time of T	Travel (T _t)	INTEN	SITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCI	1 Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
						Existin	ıg Area	Draina	ge Sum	mary							
C 3.40 0.08 0.35 0.08 50 1.5 9.1 461 2.0% 2.1 3.7 12.7 12.8 3.8												6.3	1.0	7.5			
C1	C1 1.16 0.08 0.35 0.08 50 1.3								2.1%	2.2	2.6	12.2	12.2	3.8	6.4	0.4	2.6
D	1.62	0.08	0.35	0.08	50	1	10.4	353	1.4%	2.4	2.5	12.8	12.2	3.8	6.3	0.5	3.6
Ε	1.58	0.36	0.56	0.36	36	0.25	9.0	538	1.5%	2.4	3.7	12.7	13.2	3.8	6.3	2.1	5.6
ElA	0.56	0.11	0.37	0.11	50	2	8.0	200	3.3%	1.3	2.6	10.7	12.2	4.0	6.8	0.2	1.4
*E1B	0.43	0.81	0.88	0.81	30	2	1.5	285	2.1%	2.9	1.6	5.0	13.2	5.2	8.7	1.8	3.3
*E1C	0.27	0.88	0.95	0.88	50	1	2.2	420	1.4%	2.4	3.0	5.2	13.2	5.1	8.6	1.2	2.2
*G1 0.69 0.84 0.91 0.84 50 1 2.7 466										2.1	2.6	5.3	12.9	5.1	8.5	2.9	5.4
Intensity equations assume	e a minimum	travel time	of 5 minut	es.										Calcı	ulated by:	GT	
*VALUES DERIVED USI	NG DATA I	FROM <u>FDR</u>	FOR LOT	1 CROSSE	ROADS ME	XED USE F	TILING NO	.2							Date:	9/23/202	.4
														Ch	ecked by:	DLM	

					IO	F 1 /	20/		0.41								
					LOI		RU	JSSK	UAL	DS MI	IXEI	D USE FIL		j NU	. 3		
						Р	REI	LIML	NAK	RY DI	RAIN	VAGE REF	POR	Τ			
							(E)	<i>xistin</i>	g Ba	sin R	outi	ng Summa	rv)				
	From Area Runoff Coefficient Summary			1	OVERLA	1ND		PIPI	E / CHA	NNEL FLO)W	Time of Travel (T_t)	INTEN	SITY *	TOTAL	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA100	C ₅	Length H	leight	T _C	Length	Slope	Velocity	Tt	TOTAL	I5	I ₁₀₀	Q5	Q ₁₀₀	COMMENTS
				EVIC	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
	I C 0.27 1.19 I 12.7 3.8 6.3 I.0 7.5 Existing 30° RCP Pipe (Pvt)																
I C 0.27 1.19 12.7 3.8 6.3 I.0 7.5 Existing 30" RCP Pipe (Pvt)																	
2 C1 0.09 0.41 1 122 3.8 6.4 0.4 2.6 Existing 30" BCP Pipe (Pyt)																	
2 C1 0.09 0.41 Image: Constraint of the constraint																	
	Z C1 0.09 0.41 Image: C1 0.09 0.41 Image: C1 12.2 3.8 6.4 0.4 2.6 Existing 30" RCP Pipe (Pvt)																
9A	E1A	0.06	0.21									10.7	4.0	6.8	0.2	1.4	Existing Paved Access Drive (Pvt)
					To for E1A	Ucad											
9B	*E1B	0.35	0.38		TC IOI ETA	Useu						5.0	5.2	8.7	1.8	3.3	Existing 3' Curb Chase (Pvt)
8	F	0.57	0.88		Tc for *E11	3 Used						12.7	3.8	63	21	5.6	Evisting 10' CDOT Tupe P. At Grade Inlat (Put)
0	E	0.57	0.00									1217	510	015	2.1	5.0	Existing to CDOT Type K Aborade milet (190)
					Tc for *E	used											
9	*E1C, DP 9A, DP 9B	0.65	0.84									10.7	4.0	6.8	2.6	5.7	Existing 10' CDOT Type R At-Grade Inlet (Pvt)
					Tc for DP 9	A Used											
11	D, *G1, FB DP 8, FB DP 9	0.70	1.30									12.8	3.8	6.3	2.6	8.2	Existing 15' CDOT Type R Sump Inlet (Pvt)
					Tc for D	Used											
* Intensity equations ass	sume a minimum travel time of 5 minutes.											-					
Overflow- obtain flows	from inlet sheets provided in Background In	formation Se	ction of App	endix											D	GT	_
															Date: Checked by:	9/23/2024 DLM	_
															Checked by:	DLM	

	LOT 1 CROSS	ROADS	MIXED	USE FI	LINC	<i>G NO</i> .	3								
	FINAL I	DRAINA	GE CAL	CULAT	TION	S									
	(Existing Storm Sewer Routing Summary)														
	Intensity* Flow														
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA ₁₀₀	Maximum T _C	I 5	I 100	Q 5	Q 100							
4	DP1 0.27 1.19 12.7 3.8 6.3 1.0 7.5														
4.5	DP2	0.09	0.41	12.2	3.8	6.4	0.4	2.6	30" RCP						
5	PR4, PR4.5	0.37	1.60	12.7	3.8	6.3	1.4	10.1	30" RCP						
6	PR5	0.37	1.60	12.7	3.8	6.3	1.4	10.1	30" RCP						
7	PR6	0.37	1.60	12.7	3.8	6.3	1.4	10.1	30" RCP						
9	DP8	0.57	0.88	12.7	3.8	6.3	2.1	5.6	30" RCP						
10	PR7, PR9	0.93	2.48	12.7	3.8	6.3	3.5	15.7	36" RCP						
11	PR10, DP9	1.58	3.32	12.7	3.8	6.3	6.0	21.0	36" RCP						

DP - Design Point

EX - Existing Design Point

FB- Flow By from Design Point INT- Intercepted Flow from Design Point Calculated by: GT Date: 9/23/2024 Checked by: DLM

		LOT 1	CROS	SSRO/	ADS M	IIXED	USE I	FILIN	G NO. 3	}					
		PRE	LIMIN	VARY	DRAI	NAGE	CALC	TILAT	IONS						
		/D ₁	onoga	1 1 400	Duno	ff Coof	Gaiant	Cumma m							
		(oposea	i Area	<u>Λμης</u>	jj Coejj	icieni	Summ	iary)						
			STREE	TS / COM	MERC.	MULTI-FA	AMILY/PA	RKLAND	OVERLAN	D / UNDE	VELOPED	WEIG	HTED		
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀		
	Existing Area Drainage Summary C 167920 3.85 0.00 0.91 0.89 0.00 0.40 0.62 2.95 0.09 0.25 0.09 0.25														
С	C 167839 3.85 0.00 0.81 0.88 0.00 0.49 0.62 3.85 0.08 0.35 0.08 0.35														
СІ	CI 3611 0.08 0.90 0.96 0.00 0.49 0.62 3.63 0.08 0.90 0.96 C1 3611 0.08 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.06 0.35 0.90 0.96 C1 3611 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96														
C2	C1 3611 0.08 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 C2 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 C2 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 C3 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96														
СЗ	C2 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0. C3 1122 0.03 0.00 0.96 0.00 0.49 0.62 0.03 0.08 0.35 0.90 0.														
C4	1660	0.04	0.00	0.90	0.96	0.00	0.49	0.62	0.04	0.08	0.35	0.08	0.35		
C5	11594	0.27	0.24	0.90	0.96	0.00	0.49	0.62	0.03	0.08	0.35	0.81	0.89		
Сб	6386	0.15	0.14	0.90	0.96	0.00	0.49	0.62	0.00	0.08	0.35	0.87	0.94		
C 7	1188	0.03	0.03	0.81	0.88	0.00	0.49	0.62	0.00	0.08	0.35	0.81	0.88		
C8	1125	0.03	0.03	0.81	0.88	0.00	0.49	0.62	0.00	0.08	0.35	0.81	0.88		
*D	96318	2.21	0.00	0.81	0.88	0.00	0.49	0.62	2.21	0.08	0.35	0.08	0.35		
*E	42959	0.99	0.41	0.90	0.96	0.00	0.81	0.88	0.57	0.08	0.35	0.42	0.61		
E1A	21582	0.50	0.33	0.81	0.88	0.00	0.81	0.88	0.17	0.08	0.35	0.56	0.70		
E1A.5	1797	0.04	0.00	0.90	0.96	0.00	0.81	0.88	0.04	0.08	0.35	0.17	0.42		
* <i>E1B</i>	18815	0.43	0.43	0.81	0.88	0.00	0.81	0.88	0.00	0.08	0.35	0.81	0.88		
* <i>E1C</i>	11894	0.27	0.22	0.90	0.96	0.05	0.81	0.88	0.00	0.08	0.35	0.88	0.95		
*G1	29974	0.69	0.63	0.90	0.96	0.06	0.12	0.39	0.00	0.08	0.35	0.84	0.91		
*FROM FDR FOR LOT 1 CROSSROA	DS MIXED USE FI	LING NO. 2													
											Date:	10/28/2024			
											Checked by:	DLM			

LOT 1 CROSSROADS MIXED USE FILING NO. 3 PRELIMINARY DRAINAGE REPORT

(Proposed Drainage Summary)

From Area Runo	off Coefficient	Summary			OVER	LAND		STRE	ET / CH	ANNEL F	LOW	Time of T	Travel (T _t)	INTEN	SITY #	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCM	1 Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
						Existin	ig Area	Draina	ge Sum	mary							
С	3.85	0.08	0.35	0.08	31	1.0	7.0	544	1.7%	2.0	4.6	11.5	13.2	3.9	6.6	1.2	8.9
C1	0.08	0.90	0.96	0.90	45	1.0	1.9	95	1.6%	2.5	0.6	5.0	10.8	5.2	8.7	0.4	0.7
C2	0.11	0.90	0.96	0.90	50	1.0	2.0	98	1.5%	2.5	0.7	5.0	10.8	5.2	8.7	0.5	0.9
С3	0.03	0.08	0.35	0.08	15	0.2	6.5					6.5	10.1	4.8	8.0	0.0	0.1
<i>C4</i>	0.04	0.08	0.35	0.08	37	1.0	8.1	12	4.2%	4.1	0.0	8.1	10.3	4.4	7.5	0.0	0.1
C5	0.27	0.81	0.89	0.81	50	1.0	3.0	165	1.8%	2.7	1.0	5.0	11.2	5.2	8.7	1.1	2.1
С6	0.15	0.87	0.94	0.87	25	1.0	1.3	82.4	2.4%	3.1	0.4	5.0	10.6	5.2	8.7	0.7	1.2
<i>C</i> 7	0.03	0.81	0.88	0.81	35	0.5	2.8					5.0	10.2	5.2	8.7	0.1	0.2
<i>C</i> 8	0.03	0.81	0.88	0.81	35	0.5	2.8					5.0	10.2	5.2	8.7	0.1	0.2
*D	2.21	0.08	0.35	0.08	50	1	10.4	200	1.5%	1.2	1.1	11.5	11.4	3.9	6.6	0.7	5.1
*E	0.99	0.42	0.61	0.42	60	1.2	7.6	700	1.0%	2.0	3.8	11.4	14.2	3.9	6.6	1.6	3.9
ElA	0.50	0.56	0.70	0.56	25	2.5	2.3	334	1.3%	2.3	2.5	5.0	12.0	5.2	8.7	1.4	3.0
E1A.5	0.04	0.17	0.42	0.17	25	3	3.7	135	1.1%	1.1	2.1	5.8	10.9	4.9	8.3	0.0	0.1
*E1B	0.43	0.81	0.88	0.81	30	2	1.5	285	2.1%	2.9	1.6	5.0	12.0	5.2	8.7	1.8	3.3
*E1C	0.27	0.88	0.95	0.88	50	1	2.2	420	1.4%	2.4	2.9	5.1	10.9	5.1	8.6	1.2	2.2
*G1	0.69	0.84	0.91	0.84	50	1	2.7	466	1.1%	2.1	2.6	5.3	12.9	5.1	8.5	2.9	5.4
Intensity equations assume	a minimum	travel time	of 5 minute	es.	-					-				Calcı	ilated by:	SPM	
*VALUES DERIVED USI	NG DATA I	ROM <u>FDR</u>	FOR LOT	1 CROSSF	ROADS ME	XED USE F	ILING NO	.2							Date:	10/28/20	24
														Che	ecked by:	DLM	

LOT 1 CROSSROADS MIXED USE FILING NO. 3 FINAL DRAINAGE CALCULATIONS

(Proposed Storm Sewer Routing Summary)

					Inter	isity*	Fl	ow	PIPE SIZE
PIPE RUN	Contributing Pipes/Design Points/Basins	Equivalent CA 5	Equivalent CA 100	Maximum T _C	I_5	I 100	Q 5	Q 100	
1	BASIN C8	0.02	0.02	5.0	5.2	8.7	0.1	0.2	6" HDPE
1.5	BASIN C7	0.02	0.02	5.0	5.2	8.7	0.1	0.2	6" HDPE
2	PR1, PR1.5	0.04	0.05	5.0	5.2	8.7	0.2	0.4	6" HDPE
2.5	DP4	0.13	0.15	5.0	5.2	8.7	0.7	1.3	12" PP
3	PR2, PR2.5	0.17	0.20	5.0	5.2	8.7	0.9	1.7	12" PP
3.5	DP3	0.22	0.25	5.0	5.2	8.7	1.1	2.1	12" PP
4	DP1	0.31	1.35	11.5	3.9	6.6	1.2	8.9	30" RCP
4.1	DP1.5	0.07	0.08	5.0	5.2	8.7	0.4	0.7	18" RCP
4.2	PR4, PR4.1	0.38	1.43	11.5	3.9	6.6	1.5	9.4	30" RCP
4.3	FUTURE FLOWS FROM TRACT B								24" RCP
4.4	DP2, PR3, PR3.5	0.49	0.55	5.0	5.2	8.7	2.5	4.7	24" RCP
4.5	PR4.3, PR4.4	0.49	0.55	5.0	5.2	8.7	2.5	4.7	30" RCP
5	PR4.2, PR4.5	0.87	1.97	11.5	3.9	6.6	3.4	13.0	30" RCP
6	PR5	0.87	1.97	11.5	3.9	6.6	3.4	13.0	30" RCP
7	PR6	0.87	1.97	11.5	3.9	6.6	3.4	13.0	30" RCP
8	DP7	0.18	0.77	11.5	3.9	6.6	0. 7	5.1	24" RCP
9	PR8, DP8 (Inlet 6)	0.60	1.37	11.5	3.9	6.6	2.3	9.0	30" RCP
10	PR7, PR9	1.46	3.35	11.5	3.9	6.6	5.7	22.0	30" RCP
11	PR10, DP9 (Inlet 7)	2.34	4.35	11.5	3.9	6.6	9.2	28.6	36" RCP
14	DP11 (Inlet 9)	0.58	1.03	5.3	5.1	8.5	2.9	8.8	30" RCP

DP - Design Point

EX - Existing Design Point

FB- Flow By from Design Point INT- Intercepted Flow from Design Point Calculated by: SPM Date: 10/28/2024 Checked by: DLM

					LOT 1	CRO) SSR	OAI	DS M	IXE	D USE FII	INC	G NC) 3		
					LUII	DRE	I IMI		וח עק	2 1 1	VACE PEL		, 1.0 Т	•••		
					1	(Pr	LINII MNNSA	od R	rsin k	Routi	ing Summe		1			
	From Area Runoff Coefficient Summary			1	OVERI AND	(1)	pro-		NNEL ELO	w	Time of Travel (T .)	INTER	SITV *	τοται	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA100	C ₅ Le	ength Height	Tc	Length	Slope	Velocity	T,	TOTAL	I, I,	I ₁₀₀	Q5	Q100	COMMENTS
				((ft) (ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
				EXISTIN	I G DRAIN A	GE BA	SIN RO	UTING	SUMMA	IRY						
1	С	0.31	1.35								11.5	3.9	6.6	1.2	8.9	Existing 30" RCP Pipe (Pvt)
					Tc for C Used		-									
1.5	C1	0.07	0.08								5.0	5.2	8.7	0.4	0.7	Proposed 10' CDOT Type R At-Grade Inlet (Pvt)
2	2 C4, C6 0.13 0.15 Image: C1 + C1 + C1 + C2 + C2 + C2 + C2 + C2 +															Proposed 2'v2' ADS Inlat aton Drain Pasin (Dut)
															r oposed 2 x5 AD5 linet alop Drain Basin (1 vr)	
Joint Control Contron Control Control Control Control Control Control C																
3	3 C3, C5 0.2 0.2 0.2 0.2 0.1 </td <td>Proposed 5' CDOT Type R Sump Inlet (Pvt)</td>															Proposed 5' CDOT Type R Sump Inlet (Pvt)
	Te for C3 Used 50 52 97 05 00															
4	C2	0.10	0.10		To for Co Coda						5.0	5.2	8.7	0.5	0.9	Proposed 10' CDOT Type R At-Grade Inlet (Pvt)
					Tc for C2 Used											
9A	E1A, E1A.5	0.28	0.36								5.8	4.9	8.3	1.4	3.0	Existing Paved Access Drive (Pvt)
				Т	c for E1A.5 Used											
9B	*E1B	0.35	0.38								5.0	5.2	8.7	1.8	3.3	Existing 3' Curb Chase (Pvt)
					C *FIDIA		-									
7	*D	0.18	0.77		Ic for *EIB Used	1					11.5	3.9	6.6	07	51	Evicting 24" DCD Ding (Dut)
'	D	0.10	0.77								11.5	5.7	0.0	0.7	5.1	Existing 24 KCF Fipe (FVI)
					Tc for D used											
8	*E	0.42	0.60								11.4	3.9	6.6	1.6	3.9	Existing 10' CDOT Type R At-Grade Inlet (Pvt)
					To for E used											
9	*E1C, DP 9A, DP 9B	0.88	1.00		TC IOI E used						5.8	4.9	8.3	4.3	8.3	Existing 10' CDOT Type R At-Grade Inlet (Pyt)
	,															
				Т	c for DP 9A Used											
11	*G1, FB DP 8, FB DP 9	0.58	1.03								5.3	5.1	8.5	2.9	8.8	Existing 15' CDOT Type R Sump Inlet (Pvt)
					Tc for *G1 Used		-									
* Intensity equations ass	sume a minimum travel time of 5 minutes.															<u></u>
Overflow- obtain flows f	from inlet sheets provided in Background Is	nformation Se	ection of App	endix											SPM	_
														Date	10/28/2024	_
11														Checked by	: DLM	

		LOT 1	CROS	SSRO A	ADS M	IIXED	USE I	FILIN	G NO. 3	}					
		PRE	LIMI	VARY	DRAI	NAGE	CALC	CULAT	TONS						
	(Future Area Runoff Coefficient Summary)														
			STREE	TS / COM	MERC.	MULTI-F.	AMILY/PA	RKLAND	OVERLAN	D / UNDE	VELOPED	WEIG	HTED		
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀		
	Existing Area Drainage Summary C 48363 1.11 0.81 0.88 0.00 0.49 0.62 0.00 0.08 0.25 0.91 0.90														
С	C 48363 1.11 1.11 0.81 0.88 0.00 0.49 0.62 0.00 0.08 0.35 0.81 0.88 CI 3611 0.08 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.81 0.88														
C1	C1 3611 0.08 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.01 0.06 C1 3611 0.08 0.08 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.01 0.06 C2 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96														
C2	CI 3611 0.08 0.90 0.90 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 $C2$ 4625 0.11 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 $C3$ 0.02 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96														
С3	C2 4625 0.11 0.90 0.96 0.00 0.49 0.62 0.00 0.08 0.35 0.90 0.96 C3 1122 0.03 0.00 0.96 0.00 0.49 0.62 0.03 0.08 0.35 0.90 0.96 C3 1122 0.03 0.00 0.96 0.00 0.49 0.62 0.03 0.08 0.35 0.08 0.35 0.08 0.35														
<i>C4</i>	C3 1122 0.03 0.00 0.90 0.96 0.00 0.49 0.62 0.03 0.08 0.35 0.08 0.35 C4 1660 0.04 0.00 0.90 0.96 0.00 0.49 0.62 0.04 0.08 0.35 0.08 0.35														
C5	11594	0.27	0.24	0.90	0.96	0.00	0.49	0.62	0.03	0.08	0.35	0.81	0.89		
С6	6386	0.15	0.14	0.90	0.96	0.00	0.49	0.62	0.00	0.08	0.35	0.87	0.94		
С7	1188	0.03	0.03	0.81	0.88	0.00	0.49	0.62	0.00	0.08	0.35	0.81	0.88		
<i>C</i> 8	1125	0.03	0.03	0.81	0.88	0.00	0.49	0.62	0.00	0.08	0.35	0.81	0.88		
*D	96318	2.21	2.21	0.81	0.88	0.00	0.49	0.62	0.00	0.08	0.35	0.81	0.88		
*E	42959	0.99	0.41	0.90	0.96	0.57	0.81	0.88	0.00	0.08	0.35	0.85	0.91		
E1A	21582	0.50	0.33	0.81	0.88	0.00	0.81	0.88	0.17	0.08	0.35	0.56	0.70		
E1A.5	1797	0.04	0.00	0.90	0.96	0.00	0.81	0.88	0.04	0.08	0.35	0.17	0.42		
*E1B	18815	0.43	0.43	0.81	0.88	0.00	0.81	0.88	0.00	0.08	0.35	0.81	0.88		
*E1C	11894	0.27	0.22	0.90	0.96	0.05	0.81	0.88	0.00	0.08	0.35	0.88	0.95		
*G1	29974	0.69	0.63	0.90	0.96	0.06	0.12	0.39	0.00	0.08	0.35	0.84	0.91		
СІА	48482	1.11	1.11	0.81	0.88	0.00	0.12	0.39	0.00	0.08	0.35	0.81	0.88		
C2A	27663	0.64	0.64	0.81	0.88	0.00	0.12	0.39	0.00	0.08	0.35	0.81	0.88		
СЗА	43919	1.01	1.01	0.81	0.88	0.00	0.12	0.39	0.00	0.08	0.35	0.81	0.88		
*FROM <u>FDR FOR LOT 1 CROSS</u> F	ROADS MIXED USE F	ILING NO. 2								(Calculated by:	SPM			
											Date: Checked by:	10/28/2024 DLM			

		L	OT 1	CRC) SSI	ROA	DS N	AIXE	ED U	ISE I	FILI	NG I	NO. 3	}			
				PRE	LIM	INA	RYL	DRA	INA	GE R	EP	ORT					
					(Fu	t1110	Dra	inaa	o Su	- m m n	1 /17)						
					(1 4	iure	Dia	mug	e Du	mmu	<u>'y)</u>		-				
From Area Rui	noff Coefficient	Summary	1		OVER	LAND		STRE	ET / CH	ANNEL F	LOW	Time of T	Fravel (T _t)	INTEN	SITY #	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	Tt	TOTAL	СНЕСК	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DC	M Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
	Existing Area Drainage Summary C 1.11 0.81 0.88 0.81 50 1.0 2.9 296 0.5% 1.4 3.5 6.4 11.9 4.8 8.1 4.3 7.9																
С	C 1.11 0.81 0.88 0.81 50 1.0 2.9 296 0.5% 1.4 3.5 6.4 11.9 4.8 8.1 4.3 7.9 C1 0.08 0.90 0.96 0.90 45 1.0 1.9 95 1.6% 2.5 0.6 5.0 10.8 5.2 8.7 0.4 0.7																
C1 0.08 0.90 0.90 45 1.0 1.9 95 1.6% 2.5 0.6 5.0 10.8 5.2 8.7 0.4 0.7															0.7		
C2 0.11 0.90 0.96 0.90 50 1.0 2.0 98 1.5% 2.5 0.7 5.0 10.8 5.2 8.7 0.5 0.9 C3 0.03 0.08 0.35 0.08 15 0.2 6.5 10 10.8 5.2 8.7 0.9 0.1															0.9		
<i>C3</i>	C2 0.11 0.90 0.90 0.90 30 1.0 2.0 98 1.370 2.3 0.7 5.0 10.8 5.2 8.7 0.3 0.9 C3 0.03 0.08 0.35 0.08 15 0.2 6.5 10 6.5 10.1 4.8 8.0 0.0 0.1															0.1	
<i>C4</i>	C3 0.05 0.08 0.35 0.08 13 0.2 0.3 1 1 4.8 8.0 0.0 0.1 C4 0.04 0.08 0.35 0.08 37 1.0 8.1 12 4.2% 4.1 0.0 8.1 10.3 4.4 7.5 0.0 0.1															0.1	
C5	C4 0.04 0.08 0.35 0.08 37 1.0 8.1 12 4.2% 4.1 0.0 8.1 10.3 4.4 7.5 0.0 0.1 C5 0.27 0.81 0.89 0.81 50 1.0 3.0 165 1.8% 2.7 1.0 5.0 11.2 5.2 8.7 1.1 2.1															2.1	
<i>C6</i>	0.15	0.87	0.94	0.87	25	1.0	1.3	82.4	2.4%	3.1	0.4	5.0	10.6	5.2	8.7	0.7	1.2
C 7	0.03	0.81	0.88	0.81	35	0.5	2.8					5.0	10.2	5.2	8.7	0.1	0.2
<i>C</i> 8	0.03	0.81	0.88	0.81	35	0.5	2.8					5.0	10.2	5.2	8.7	0.1	0.2
*D	2.21	0.81	0.88	0.81	50	1	2.9	200	1.5%	1.2	1.1	5.0	11.4	5.2	8.7	9.3	16.9
*E	0.99	0.85	0.91	0.85	60	1.2	2.8	700	1.0%	2.0	3.8	6.6	14.2	4.7	8.0	4.0	7.2
ElA	0.50	0.56	0.70	0.56	25	2.5	2.3	334	1.3%	2.3	2.5	5.0	12.0	5.2	8.7	1.4	3.0
E1A.5	0.04	0.17	0.42	0.17	20	3	3.1	135	1.1%	1.1	2.1	5.2	10.9	5.1	8.6	0.0	0.1
*E1B	0.43	0.81	0.88	0.81	30	2	1.5	285	2.1%	2.9	1.6	5.0	12.0	5.2	8.7	1.8	3.3
*E1C	0.27	0.88	0.95	0.88	50	1	2.2	420	1.4%	2.4	2.3	5.0	10.9	5.2	8.7	1.2	2.2
*G1	0.69	0.84	0.91	0.84	50	1	2.7	466	1.1%	2.1	2.6	5.3	12.9	5.1	8.5	2.9	5.4
CIA	1.11	0.81	0.88	0.81	50	1	2.9	117	1.3%	2.3	0.9	5.0	10.9	5.2	8.7	4.7	8.5
C2A	0.64	0.81	0.88	0.81	50	1	2.9	217	1.8%	2.7	2.6	5.6	11.5	5.0	8.4	2.6	4.7
СЗА	1.01	0.81	0.88	0.81	50	1.5	2.6	230	1.7%	2.0	1.9	5.0	11.6	5.2	8.7	4.2	7.7
Intensity equations assum	e a minimum	travel time	e of 5 minut	es.										Calcu	ulated by:	SPM	
*VALUES DERIVED US	ING DATA H	FROM <u>FDF</u>	R FOR LOT	1 CROSSE	ROADS ME	XED USE F	ILING NO	<u>0.2</u>						Ch	Date: ecked by:	10/28/20 DLM)24
														UI	cencu by.		

LOT 1 CROSSROADS MIXED USE FILING NO. 3 PRELIMINARY DRAINAGE REPORT																
(Future Basin Routing Summary)																
From Area Runoff Coefficient Summary				OVERLAND	PIPE / CHANNEL FLOW		Time of Travel (T_t)	INTENSITY *		TOTAL FLOWS						
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA ₁₀₀	C ₅	Length Height	T _C	Length	Slope	Velocity	T _t	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀	COMMENTS
(tt) (tt) (%) (ps) (min) (in/hr) (in/hr) (c.f.s.) EXISTING DRAINAGE BASIN ROUTING SUMMARY																
1	С	0.90	0.98								6.4	4.8	8.1	4.3	7.9	Existing 30" RCP Pipe (Pvt)
1.5	C1	0.07	0.08		Tc for C Used						5.0	5.2	8.7	0.4	0.7	Proposed 10' CDOT Type R At-Grade Inlet (Pvt)
154	C1A	0.90	Tc for C1 Used							5.0	5.2	87	47	85	Future storm nine	
1.5/1	CIA	0.90	0.90								510	5.2	0.7	4.7	0.5	i uture storm pipe
	C1. C(0.12	0.15		Tc for C1A Used	r					5.0		0.7	0.7	1.2	
2	(4, (6	0.13	0.15								5.0	5.2	8.7	0.7	1.3	Proposed 2'x5' ADS Inlet atop Drain Basin (Pvt)
					Tc for C4 Used											
3	C3, C5	0.22	0.25								5.0	5.2	8.7	1.1	2.1	Proposed 5' CDOT Type R Sump Inlet (Pvt)
					Tc for C3 Used											
4	C2, C3A	0.91	0.99								5.0	5.2	8.7	4.7	8.6	Proposed 10' CDOT Type R At-Grade Inlet (Pvt)
					Tc for C2 Used											
4A	C2A	0.51	0.56		1010/02/0304						5.6	5.0	8.4	2.6	4.7	Future storm pipe
					T. C. COL H. I	ļ										
9.4	E1A, E1A,5	0.28	0.36		I c for C2A Used						5.2	5.1	8.6	1.5	3.1	Existing Paved Access Drive (Pvt)
	,															
0.P	*F1D	0.25	0.29		Tc for E1A.5 Used						5.0	5.2	07	1.0	2.2	
<i>9b</i>	"EID	0.35	0.56								5.0	5.2	0.7	1.0	5.5	Existing 3' Curb Chase (PVI)
					Tc for *E1B Used											
7	*D	1.79	1.95								5.0	5.2	8.7	9.3	16.9	Existing 24" RCP Pipe (Pvt)
					Tc for D used											
8	*E	0.83	0.90								6.6	4.7	8.0	4.0	7.2	Existing 10' CDOT Type R At-Grade Inlet (Pvt)
					Tc for E used											
9	*E1C, DP 9A, DP 9B	0.88	1.00		Te for E used						5.2	5.1	8.6	4.5	8.6	Existing 10' CDOT Type R At-Grade Inlet (Pvt)
11	*C1 ER DD & ER DD 0	0.58	1.05		Tc for DP 9A Used	r					5.2	5.1	85	2.0	80	Existing 151 CDOT Trans D. Surger Leber (Dec)
11	G1, FB D1 6, FB D1 9	0.58	1.05								5.5	5.1	0.5	2.9	0.9	Existing 15 CDO1 Type R Sump Inlet (PVI)
					Tc for *G1 Used											
* Intensity equations assume a minimum travel time of 5 minutes.																
Date: 10/28/2024																
	Checked by: DLM															

LOT 1 CROSSROADS MIXED USE FILING NO. 3												
FINAL DRAINAGE CALCULATIONS												
(Future Storm Sewer Routing Summary)												
	Intensity* Flov											
PIPE RUN	Contributing Pipes/Design Points/Basins	Equivalent CA 5	Equivalent CA 100	Maximum T _C	Ι,	I 100	Q 5	Q 100				
1	BASIN C8	0.02	0.02	5.0	5.2	8.7	0.1	0.2	6" HDPE			
1.5	BASIN C7	0.02	0.02	5.0	5.2	8.7	0.1	0.2	6" HDPE			
2	PR1, PR1.5	0.04	0.05	5.0	5.2	8.7	0.2	0.4	6" HDPE			
2.5	DP2	0.13	0.15	5.0	5.2	8.7	0. 7	1.3	12" PP			
3	PR2, PR2.5	0.17	0.20	5.0	5.2	8.7	0.9	1.7	12" PP			
3.5	DP3	0.22	0.25	5.0	5.2	8.7	1.1	2.1	12" PP			
4	DP1	0.90	0.98	6.4	4.8	8.1	4.3	7.9	30" RCP			
4.1	DP1.5	0.07	0.08	5.0	5.2	8.7	0.4	0.7	18" RCP			
4.2	PR4, PR4.1	0.97	1.06	6.4	4.8	8.1	4. 7	8.5	30" RCP			
4.3	DP1.5A, DP4A	1.42	1.54	5.6	5.0	8.4	7.1	12.9	24" RCP			
4.4	DP2, PR3, PR3.5	1.30	1.43	5.0	5.2	8.7	6. 7	12.4	24" RCP			
4.5	PR4.3, PR4.4	2.72	2.97	5.0	5.2	8.7	14.1	25.8	30" RCP			
5	PR4.2, PR4.5	3.69	4.03	6.4	4.8	8.1	17.7	32.4	30" RCP			
6	PR5	3.69	4.03	6.4	4.8	8.1	17.7	32.4	30" RCP			
7	PR6	3.69	4.03	6.4	4.8	8.1	17.7	32.4	30" RCP			
8	DP7	1.79	1.95	5.0	5.2	8.7	9.3	16.9	24" RCP			
9	PR8, DP8 (Inlet 6)	2.62	2.84	5.0	5.2	8.7	13.6	24.7	30" RCP			
10	PR7, PR9	6.32	6.87	6.4	4.8	8.1	30.3	55.3	30" RCP			
11	PR10, DP9 (Inlet 7)	7.19	7.87	6.4	4.8	8.1	34.5	63.4	36" RCP			
14	DP11 (Inlet 9)	0.58	1.05	5.3	5.1	8.5	2.9	8.9	30" RCP			

DP - Design Point

EX - Existing Design Point

FB- Flow By from Design Point INT- Intercepted Flow from Design Point Calculated by: SPM Date: 10/28/2024 Checked by: DLM
HYDRAULIC CALCULATIONS

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP8	DP9	<u>DP11</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	2.1	2.6	2.6
Major Q _{Known} (cfs)	5.6	5.7	8.2
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstrea	am (left) to downstream (right) in order fo	or bypass flows to be linked.
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Watershed Characteristics			
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	2.1	2.6	2.6
Major Total Design Peak Flow, Q (cfs)	5.6	5.7	8.2
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.6	0.6	N/A

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min, value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: $OK - O < Allowable Street Capacity'$	-1.1/	MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0 ₀ =	2.1	5.6	rfs
Water Spread Width	т =	6.9	11.1	- fr
Water Denth at Flowline (outside of local depression)	d =	3.2	4.2	inches
Water Depth at Street Crown (or at Tury)	denoura =	0.0	0.0	inches
Patio of Cutter Flow to Design Flow	F =	0.0	0.526	Inches
Discharge outside the Gutter Section W carried in Section T	0 -	0.757	0.320	ofe
Discharge outside the Gutter Section W	<u>v</u> –	0.5	2./	CTS
Discharge within the Gutter Section w	~~	0.1	2.5	CTS c-
Discharge Benind the Curb Face	QBACK -	0.0	0.0	cts
Flow Area within the Gutter Section w	A _W =	0.36	0.53	sq ft
Velocity within the Gutter Section W	V _W =	4.4	5.5	fps
Water Depth for Design Condition	d _{LOCAL} =	6.2	7.2	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	_
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	_	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1 ' i
Interception Rate of Side Flow	R _x =	N/A	N/A	1 1
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	ا ٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L =	N/A	N/A	- _A
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fns
Intercention Rate of Frontal Flow	Re =	N/A	N/A	- 105
Interception Rate of Side Flow	R =	N/A	Ν/Δ	-1
Actual Interception Capacity	<u> </u>	N/A	N/A	
Actual Interception capacity Carry-Over Flow $= 0$ =0 (to be applied to curb opening or peytid/s inlet)	Qa -		N/A	
Cdffy-Over Flow = $Q_0 \cdot Q_0$ (to be applied to curb opening or next d/s mice)			MA10D	CTS
	s –	0.162		م. م
Equivalent Slope S _e	5 _e -	0.102	0.119	π/π
Required Length L_T to Have 100% Interception	L _T =	6.84	13.02	π
Under No-Clogging Condition		MINOR	MAJUR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	6.84	10.00	ft
Interception Capacity	Qi =	2.1	5.2	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	6.84	9.38	ft
Actual Interception Capacity	Q _a =	2.1	5.0	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	Q _b =	0.0	0.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	5.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.6	cfs
Capture Percentage = $0/0$	<u> </u>	100	00	0/-

MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q _o =	2.6	5.7	cfs
Water Spread Width	T =	7.7	11.2	ft
Water Depth at Flowline (outside of local depression)	d =	3.4	4.2	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.704	0.522	1
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.8	2.7	cfs
Discharge within the Gutter Section W	Q _w =	1.8	3.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.40	0.53	sa ft
Velocity within the Gutter Section W	V _w =	4.6	5.6	fps
Water Depth for Design Condition	d _{LOCAL} =	6.4	7.2	inches
Grate Analysis (Calculated)		MINOR	MAJOR	Interfec
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	En-GRATE =	N/A	N/A	-
Inder No-Clogging Condition	-0'ORATE	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fns
Intercention Rate of Frontal Flow	R _f =	N/A	N/A	- 103
Interception Rate of Side Flow	R. =	N/A	N/A	-
Interception Capacity	0 =	N/A	N/A	ofe
Inder Clossing Condition	~u	MINOR	MATOR	us
Clossing Coefficient for Multiple-unit Grate Inlet	GrateCoeff -	N/A		^ا ٦
Clogging Easter for Multiple-unit Grate Inlet	GrateClog -	N/A	N/A	-
Clogging Factor for multiple-unit Grate Inter			N/A	
Alinimum Valasity Whore Crote Splach Over Regine			N/A	- IL face
Minimum Velocity where Grate Spidsh-Over Degins	v° -		N/A	- TPS
Interception Rate of Frontal Flow	r _f -	N/A	N/A	-
Interception Rate of Side Flow	к _х =	IN/A	IN/A	' ا.
Actual Interception Capacity	Qa =	<u>N/A</u>	N/A	cfs
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next u/s milet)	Q _b =		N/A MAJOD	cts
Curb Opening or Slotted Iniet Analysis (Calculated)	с _ Г		MAJUK	
Equivalent Slope S _e	5 _e –	0.152	0.118	π/π
Required Length L_T to have 100% Interception		/.85	13.1/	ft
Under No-Clogging Condition	. –	MINOR	MAJOK	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	7.85	10.00	ft
Interception Capacity	Qi =	2.6	5.3	cfs
Under Clogging Condition	. .	MINOR	MAJOR	-
Clogging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	7.85	9.38	ft
Actual Interception Capacity	Q _a =	2.6	5.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	0.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity				
	Q =	2.6	5.1	cts
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	2.6	5.1 0.6	cfs

MHFD-Inlet, Version 5.03 (August 2023)

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	6.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{n}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{n}(G) =$	N/A	N/A	
Curb Opening Information	-0 (-)	MINOR	MATOR	
Length of a Unit Curb Opening	L. (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	Hunt =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	Hatarat =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W -	2 00	2.00	foot
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$C_{1}(C) =$	0.10	0.10	icci
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{\rm f}(C) = C_{\rm f}(C) = 0$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{W}(C) = C_{V}(C) = 0$	0.67	0.67	-
Crate Flow Analycis (Calculated)	00(0)	MINOR	MAIOR	
Glate Flow Analysis (Calculated)	Conf	MINUR		Г
Clogging Coencient for Multiple Units	Clear	N/A	IN/A	-
Crogging Factor for Multiple Units	Clog =	N/A	IN/A	
Grate Capacity as a weir (based on MHFD - CSU 2010 Study)	0	MINOR	MAJOR	- <i>c</i> -
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cts
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	- T	MINOR	MAJOR	7 /
Interception without Clogging	Q _{oi} =	N/A	N/A	cts
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	4.0	14.1	cfs
Interception with Clogging	Q _{wa} =	3.9	13.5	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	25.3	31.0	cfs
Interception with Clogging	Q _{oa} =	24.2	29.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	9.4	19.5	cfs
Interception with Clogging	Q _{ma} =	9.0	18.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.9	13.5	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	Т =	12.0	22.0	ft
Resultant Flow Denth at Street Crown	dcpown =	0.0	0.0	inches
	CROWN	010	0.0	incines
I ow Head Performance Reduction (Calculated)		MINOR	MATOR	
Depth for Grate Midwidth	da . =	N/A	N/A	Πn
Denth for Curb Opening Weir Equation	d _{Grate} –	0.20	0.40	н. А
Grated Inlet Performance Reduction Factor for Long Inlets	DE -	N/A	N/A	IC
Curb Opening Performance Reduction Easter for Long Inicia	Grate =	0.67	0.02	-
Combination Inlet Performance Reduction Factor for Long Inlets		0.07 N/A	0.03 N/A	-
Complitation the Performance Reduction Factor for Long thets	RFCombination =	IN/A	IN/A	1
		MINOD	MAJOD	
Takal Inlat Intercontian Connects (accument descent according a	~ 「		MAJUK	ofe
Total The Interception Capacity (assumes clogged condition)	Q _a =	3.9	13.5	cis
Injet Capacity 15 GOOD for Minor and Major Storms (>O Peak)	PEAK REQUIRED =	2.0	0.2	us

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

INLET NAME Site Type (Urban or Rural) Inlet Application (Street or Area) Hydraulic Condition Inlet Type DP1.5 URBAN DP2 URBAN DP4 URBAN DP8 URBAN DP9 URBAN DP11 URBAN STREET STREET STREET STREET STREET STREET On Grade In Sump On Grade On Grade On Grade In Sump CDOT Type R Curb Opening USER-DEFINED INPUT User-Defined Design Flows Minor Q_{Known} (cfs) Major Q_{Known} (cfs) 0.4 0.7 0.5 1.6 4.3 2.9 0.7 1.3 0.9 3.9 8.3 8.8 Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q_b (cfs) Major Bypass Flow Received, Q_b (cfs) Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked. No Bypass Flow Received 0.0 No Bypass Flow Received 0.0 No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Watershed Characteristics			
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.4	0.7	0.5	1.6	4.3	2.9
Major Total Design Peak Flow, Q (cfs)	0.7	1.3	0.9	3.9	8.3	8.8
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	0.0	0.0	0.1	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	0.0	0.0	1.9	N/A

MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Cloaging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	-
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0 ₀ =	0.4	0.7	rfs
Water Spread Width	T =	1.9	2.3	- ⁶¹³
Water Denth at Flowline (outside of local depression)	d =	2.0	2.1	inches
Water Depth at Street Crown (or at T)	d _{cpown} =	0.0	0.0	inchec
Patio of Gutter Flow to Decign Flow	E. =	1 000	1 000	lliciics
Discharge outside the Cutter Section W carried in Section T	~ = L	1.000	0.0	
Discharge outside the Gutter Section W	~	0.0	0.0	
Discharge within the Gutter Section w	<u> </u>	0.4	0.7	
Discharge Bening the Curb Face	VBACK	0.0	0.0	CTS
Flow Area within the Gutter Section w	A _W =	0.00	0.10	sq rt
Velocity within the Gutter Section W		0.0	3.9	fps
Water Depth for Design Condition	d _{local} =	5.0	5.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	_ L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A] '
Interception Rate of Side Flow	R _x =	N/A	N/A	י ך
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	_	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	י ך
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	י T
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = O_{a} - O_{a} (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S.	S. =	0.208	0.208	ft/ft
Required Length L- to Have 100% Interception	L _T =	2.62	3.48	- n,
Inder No-Clogging Condition	-, _	MINOR	MATOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı =Γ	2.62	3 48	٦
Intercention Canacity	0 =	0.4	0.7	- fc
Under Cleasing Condition	<u>ب</u> ا		MA10P	us
Clogging Coefficient	CurbCooff -	1 25	1.25	7
Clogging Coenicient Classing Faster for Multiple unit Curb Opening or Slotted Inlet		0.06	1.23	-
Clogging Factor for Multiple-unit Curb Opening or Siotled Inlet		0.00	2.00	- <u>-</u> _
Effective (Unclogged) Length	~_F	2.62	5.40	-π_
Actual Interception Capacity	Qa =	0.4	0.7	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	Q _b =	0.0	0.0	cfs
Summary	с Г	MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q=	0.4	0.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Canture Percentage – 0 /0	C% -	100	100	0/0

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	5.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{c}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	G (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C (G) =	N/A	N/A	
Curb Opening Information	00 (0) -	MINOR	MATOR	
Length of a Unit Curb Opening	L (C) -	5.00	5.00	foot
Height of Vertical Curb Opening in Inches	L ₀ (C) -	6.00	6.00	inchec
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Angle of Threat	Thota -	62.40	62.40	dogroop
Angle of Throat	meta =	03.40	1.00	degrees
Side width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	1.00	1.00	reet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)	_	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	•
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHED - CSU 2010 Study)		MINOR	MAIOR	
Interception without Clogging	0 =	3.7	6.4	cfs
Interception with Clogging	0 =	33	5.7	cfs
Curb Capacity as an Orifice (based on MHED - CSU 2010 Study)		MINOR	MATOR	
Intercention without Clogging	0	84	9.7	cfs
Interception with Clogging	Q ₀ -	7.6	9.7	cfc
Curb Opening Capacity as Mixed Flow	Q _{oa} –	7.0	0.7	us
Curb Opening Capacity as Mixed Flow	o _□	F 2	MAJUR 7.2	ofe
Interception without clogging	Q _{mi} =	5.2	7.5	cis
Interception with Clogging	$Q_{ma} =$	4./	6.6	crs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.3	5./	crs
Resultant Street Conditions	. –	MINOR	MAJOR	7 4 .
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.8	18.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.41	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	N/A	N/A	
5	combination	,		
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	<u>а</u> Г	2.2	E 7	
	Q. =	3.3	5./	CIS

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_0 =$	0.5	0.9	cfs
Water Spread Width	T =	2.0	3.9	T _{ft}
Water Depth at Flowline (outside of local depression)	d =	2.0	2.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	1.000	0.953	-
Discharge outside the Gutter Section W, carried in Section T,	0, =	0.0	0.0	cfs
Discharge within the Gutter Section W	0 =	0.5	0.9	
Discharge Rehind the Curch Face	0nack =	0.0	0.0	- CIS cfc
Flow Area within the Gutter Section W	Aw =	0.17	0.0	
Velocity within the Gutter Section W	₩ - V	3.0	3.5	for
Velocity Within the Guiler Section w	d	5.0	3.5	- TPS
Water Depth for Design Condition	ULOCAL -	3.U	3.5	Inches
Grate Analysis (Calculated)		MINUK	MAJUK	
I otal Length of Iniet Grate Opening	_ '-+	N/A	N/A	- ^{ft}
Ratio of Grate Flow to Design How	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	у Г	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	7
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	· ۲
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S.	S _e =	0.208	0.199	ft/ft
Required Length L _T to Have 100% Interception	L _T =	2.93	4.04	T _{ft}
Inder No-Clogging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	2.93	4.04	T _{ff}
Intercention Canacity	O, =	0.5	0.9	
Inder Clogging Condition	τυ <u>Γ</u>	MINOR	MAIOR	
Clogging Coefficient	CurbCoeff -	1 25	1 25	7
Clogging Eactor for Multiple-unit Curb Opening or Slotted Inlet		0.06	0.06	-
Effective (Unclosed) Length		2 03	4.04	-l.
Effective (Uncloggeu) Lengun	~	2.93	4.04	
	~	0.5	0.9	- Cfs
$Carry-Over Flow = Q_{h(GRATF)} Q_a$	Q _b = [0.0	cts
Summary	o - □	MINUK	MAJUK	⊐
I otal Inlet Interception Capacity	v=	0.5	0.9	cts
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
	C (1)	100	100	0/

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W. Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min, value = 0.5)	$C_{e}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{\ell}(C) =$	0.10	0.10	
Street Hydraulics: $OK - O < Allowable Street Canacity'$	9 (6)	MINOR	MAIOR	
Design Discharge for Half of Street (from Inlet Management)	0 -	1.6	3.9	cfs
Mater Coread Width	Q₀ - -	1.0 E 0	0.4	4
Water Donth at Eleviling (outside of local depression)	d =	3.9	9.4	inchos
Water Depth at Front Crown (or at T)	d	2.9	3.0	inches
Depth at Street Clowin (Or at T _{MAX})	u _{crown} =	0.0	0.0	inches
Ratio of Guiler Flow to Design Flow	Ľ, –	0.826	0.605	
Discharge outside the Gutter Section W, carried in Section I_x	$Q_x =$	0.3	1.5	CTS
Discharge within the Gutter Section W	Q _w =	1.3	2.4	cts
Discharge Bening the Curb Face	$Q_{BACK} =$	0.0	0.0	CTS
Flow Area within the Gutter Section W	A _W =	0.32	0.46	sq ft
Velocity within the Gutter Section W	V _w =	4.1	5.1	fps
Water Depth for Design Condition	d _{LOCAL} =	5.9	6.8	inches
Grate Analysis (Calculated)	_	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	· · · · ·	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	R. =	N/A	N/A	
Interception Capacity	0. =	N/A	N/A	cfs
Inder Clogging Condition	-	MINOR	MATOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	7
Clogging Eactor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (upclogged) Length of Multiple-upit Crate Inlet		N/A	N/A	A
Minimum Volocity Where Crate Salach Over Begins		N/A	N/A	foc
	v _o –	N/A	N/A	ips
Interception Rate of Frontal Flow	R _f =	N/A	IN/A	_
	R _x =	IN/A	IN/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cts
Carry-Over Flow = $Q_0 - Q_0$ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	<u>N/A</u>	CTS
Curb Opening or Slotted Inlet Analysis (Calculated)	- -	MINOR	MAJOR	7.0.0
Equivalent Slope Se	S _e =	0.1/5	0.134	ft/ft
Required Length L _T to Have 100% Interception	$L_T =$	5.75	10.25	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.75	10.00	ft
Interception Capacity	$Q_i =$	1.6	3.9	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	$L_e = 1$	5.75	9.38	ft
Actual Interception Capacity	Q _a =	1.6	3.9	cfs
Carry-Over Flow = $Q_{b(GRATE)} - Q_a$		-		٦.
	$Q_{\rm h} =$	0.0	0.0	cfs
Summary	Q _b =	0.0 MINOR	0.0 MAJOR	cfs
Summary Total Inlet Interception Capacity	Q _b =	0.0 MINOR 1.6	0.0 MAJOR 3.9	cfs
Summary Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow hypassing inlet)	Q _b =	0.0 MINOR 1.6 0.0	0.0 MAJOR 3.9 0.0	cfs cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min, value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min, value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: $OK - O < Allowable Street Capacity'$	-1 (-7	MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0 ₀ =	4.3	8.3	rfs
Water Spread Width	Ϋ́=	9.9	13.2	
Water Denth at Flowling (outside of local depression)	d =	3.9	47	inchec
Water Depth at Street Crown (or at T)		0.0	0.0	inches
Patio of Cutter Flow to Design Flow	GCROWN -	0.583	0.0	Inches
Discharge outside the Cutter Section W, carried in Section T	<u> </u>	1.0	4.6	-fa
Discharge outside the Gutter Section W, carried in Section T _x	<u>v</u> _	1.0	4.0	CTS
Discharge within the Gutter Section w	Qw =	2.5	3./	cfs
Discharge Behind the Curb Face	QBACK =	0.0	0.0	cts
Flow Area within the Gutter Section W	A _W =	0.48	0.61	sq ft
Velocity within the Gutter Section W	V _W =	5.2	6.1	fps
Water Depth for Design Condition	d _{LOCAL} =	6.9	7.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	1 ' I
Interception Rate of Side Flow	$R_x =$	N/A	N/A	1
Interception Capacity	$\hat{Q_i} =$	N/A	N/A	cfs
Inder Cloaging Condition	- <u>-</u>	MINOR	MAJOR	
Cloaging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	' ۲
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L =	N/A	N/A	- _A
Minimum Velocity Where Grate Snlash-Over Begins	V. =	N/A	N/A	fnc
Intercention Date of Frontal Flow	R ₆ =	N/A	N/A	- 105
Interception Rate of Frontain low	P =	N/A	N/A	-
	~~-	IN/A	N/A	
Actual Interception Capacity	v	N/A	N/A	cts
Carry-Over How = $Q_0 - Q_0$ (to be applied to curb opening or next u/s mec)	Q _b =	N/A	N/A MAJOD	cts
Curb Opening or Slotted Inlet Analysis (Calculated)	s _ [MAJUK	- 1A
Equivalent Slope S _e	5 _e -	0.130	0.105	
Required Length L_T to have 100% interception	L _T =	10.93	16.88	π.
Under No-Clogging Condition	. –	MINOR	MAJOR	٦.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	$Q_i =$	4.2	6.7	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	9.38	9.38	ft
Actual Interception Capacity	Q _a =	4.2	6.4	cfs
Carry-Over Flow = $Q_{b(GRATF)}$ - Q_a		0.1	1.0	
	Q _b =	0.1	1.9	CTS
Summary	Q _b =	MINOR	1.9 MAJOR	CIS
Summary Total Inlet Interception Capacity	Q _b = Q =	0.1 MINOR 4.2	1.9 MAJOR 6.4	Tcfs
Summary Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b = Q = O _b =	0.1 MINOR 4.2 0.1	1.9 MAJOR 6.4 1,9	 cfs cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	6.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{n}(G) =$	N/A	N/A	
Curb Opening Information	-0 (-)	MINOR	MAIOR	
Length of a Unit Curb Opening	L (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	н. =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H =	6.00	6.00	inches
Δngle of Throat	Theta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)		2.00	2.00	foot
Clogging Eactor for a Single Curb Opening (typical value 0.10)	$C_{p} = $	2.00	0.10	leet
Curb Opening Wair Coefficient (typical value 2.3-3.7)	$C_{f}(C) = C_{f}(C) $	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 2.5-5.7)	$C_{w}(C) = C_{w}(C) $	0.67	0.67	-
Curb Opening Office Coefficient (typical value 0.00 - 0.70)	$c_0(c) =$	0.07	0.07	
Grate Flow Analysis (Calculated)	о с Г	MINOR	MAJOR	7
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	- T	MINOR	MAJOR	٦.
Interception without Clogging	$Q_{wi} =$	N/A	N/A	cts
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	=	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	4.0	14.1	cfs
Interception with Clogging	Q _{wa} =	3.9	13.5	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	25.3	31.0	cfs
Interception with Clogging	$Q_{0a} =$	24.2	29.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-1
Interception without Clogging	O _{mi} =	9.4	19.5	cfs
Interception with Cloaging	Oma =	9.0	18.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.9	13.5	cfs
Resultant Street Conditions	Courb	MINOR	MATOR	
Total Inlet Length	I =[15.00	15.00	feet
Pecultant Street Flow Spread (based on street geometry from above)	т –	12.00	22.0	A
Resultant Flow Depth at Street Crown	d	0.0	22.0	inches
Resultant flow Depth at Street Crown	u _{CROWN} -	0.0	0.0	inches
Low Hood Derformance Deduction (Calculated)		MINOD	MAJOD	
Low Head Performance Reduction (Calculated)	L ا	MINOR	MAJOR	٦
Depth for Grate Mildwidth	a _{Grate} =	IN/A	N/A	п. Ф
Deput for Curb Opening Weir Equation Croted Jalet Performance Reduction Eactor for Long Jalets	a _{Curb} =	0.20	U.40	"
Grated Thet Performance Reduction Factor for Long Thets	RF _{Grate} =	IN/A	IN/A	_
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.6/	0.83	4
Compination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	L
		MINOR	MAJOR	٦.
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.9	13.5	cts
	<u> </u>			

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

LIRBAN	LIDBANI		
01107	URBAN	URBAN	URBAN
STREET	STREET	STREET	STREET
On Grade	On Grade	On Grade	In Sump
ening CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
	STREET On Grade ening CDOT Type R Curb Opening	STREET STREET On Grade On Grade ening CDOT Type R Curb Opening CDOT Type R Curb Opening	STREET STREET STREET On Grade On Grade On Grade ening CDOT Type R Curb Opening CDOT Type R Curb Opening CDOT Type R Curb Opening

SER-DEFINED INPUT					
User-Defined Design Flows					
Minor Q _{Known} (cfs)	0.4	4.7	4.0	4.5	2.9
Major Q _{Known} (cfs)	0.7	8.6	7.2	8.6	8.9
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstre	eam (left) to downstream (right) in order	for bypass flows to be linked.		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
Watershed Characteristics					
Subcatchment Area (acres)					
Percent Impervious					
NRCS Soil Type					
Watershed Profile					
Overland Slope (ft/ft)					
Overland Length (ft)					
Channel Slope (ft/ft)					
Channel Length (ft)					
					•
Minor Storm Rainfall Input					
Design Storm Return Period, T _r (years)					
One-Hour Precipitation, P ₁ (inches)					
					•
Major Storm Rainfall Input					
Design Storm Return Period, T _r (years)					
One-Hour Precipitation, P ₁ (inches)					
	-			•	•

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.4	4.7	4.0	4.5	2.9
Major Total Design Peak Flow, Q (cfs)	0.7	8.6	7.2	8.6	8.9
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.2	0.1	0.2	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	2.1	1.3	2.1	N/A

MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	- `` !
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - O < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	0. =	0.4	0.7	cfs
Water Spread Width	τ=	1.9	2.3	
Water Denth at Flowline (outside of local depression)	d =	2.0	2.1	linches
Water Depth at Street Crown (or at Twy)	denound	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	F =	1 000	1 000	
Discharge outside the Gutter Section W carried in Section T	~- E	0.0	1.000	- of c
Discharge within the Gutter Section W	Qx −	0.0	0.0	
Discharge Willin the Guiler Section w	~~	0.4	0.7	
Discharge Benind the Curb race		0.0	0.0	
Flow Area within the Gutter Section w	A _W =	0.00	0.18	sq ft
Velocity within the Gutter Section W	V _W =	0.0	3.9	fps
Water Depth for Design Condition	d _{LOCAL} =	5.0	5.1	inches
Grate Analysis (Calculated)	. –	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	F	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	י ר
Cloaging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	1 '
Effective (uncloaged) Length of Multiple-unit Grate Inlet	L, =	N/A	N/A	−l _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Intercention Rate of Side Flow	R. =	N/A	N/A	1
	0, =	N/A	N/A	- cfs
Carry-Over Flow = Ω_{0} - Ω_{0} (to be applied to curb opening or next d/s inlet)	0, =	N/A	N/A	- CIS Cfe
Curb Opening or Slotted Inlet Analysis (Calculated)	<u> </u>	MINOR	MATOR	
Fourivalent Slone S	S. =	0 208	0.208	
Required Length L to Have 100% Intercention	J_=	2.62	3 48	
Under No Cleasing Condition		MINOR	MAIOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L.)	ı - F	2.62		
		2.02	0.40	
Interception Capacity	Qi -		0.7	CTS
Under Clogging Condition			MAJUK	-
Clogging Coefficient	Curbcoerr =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4.
Effective (Unclogged) Length		2.62	3.48	ft
Actual Interception Capacity	Q _a =	0.4	0.7	cfs
Carry-Over Flow = $Q_{b(GRATE)} - Q_a$	Q _b =	0.0	0.0	cfs
Summary	-	MINOR	MAJOR	_
Total Inlet Interception Capacity		~ ~	~ -	
	Q =	0.4	0.7	_cts
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	0.4	0.7	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_0 =$	4.7	8.6	cfs
Water Spread Width	T =	10.3	13.4	ft
Water Depth at Flowline (outside of local depression)	d =	4.0	4.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.563	0.443	
Discharge outside the Gutter Section W, carried in Section T,	0, =	2.1	4.8	cfs
Discharge within the Gutter Section W	0 =	2.6	3.8	cfs
Discharge Behind the Curb Face	ORACK =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _M =	0.50	0.62	sa ft
Velocity within the Gutter Section W	V =	53	6.1	foc
Water Depth for Design Condition	- w•	7.0	77	inches
Crote Applycic (Colculated)		MINOR	MA10P	IIICIICS
Grate Analysis (Calculated) Total Longth of Talat Grate Opening	ı – E			A
I otal Length of Iniel Grate Opening	_ <u>`</u> -	N/A	IN/A	π
Ratio of Grate Flow to Design Flow	Co-GRATE -	IN/A	IN/A	
Under No-Clogging Condition	V	MINOR	MAJOK	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	_
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.126	0.103	ft/ft
Required Length L _T to Have 100% Interception	$L_T =$	11.59	17.28	ft
Under No-Cloading Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	$Q_i =$	4.6	6.8	cfs
Under Cloaaina Condition	- <u>-</u>	MINOR	MAJOR	
Cloaging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Incloaded) Length	L. =	9.38	9.38	n n
Actual Intercention Canacity	ō =	4 5	65	cfe
Carry = Over Flow = Over = O	$x_{a} = 0$	0.2	21	CIS
	v b =1	MINOR	MAIOR	LIS
Summer Summer States State	0-	45	65	cfc
Total Inlet Care: Over Flow (flow bypassing inlet)	ă-H	0.2	2.5	
Capture Percentage = 0.70	C% -	0.2	2.1	

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q _o =	4.0	7.2	cfs
Water Spread Width	T =	9.5	12.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.8	4.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.600	0.475	-
Discharge outside the Gutter Section W. carried in Section T.	0, =	1.6	3.8	rfs
Discharge within the Gutter Section W	0 =	2.4	3.4	cfs
Discharge Rehind the Curb Face	OPACK =	0.0	0.0	- cfs
Flow Area within the Gutter Section W	A _W =	0.47	0.58	so ft
Velocity within the Gutter Section W	V =	5.1	5.0	foc
Welocity Within the Guiter Section w	- wv	5.1	5.9 75	- ips
Crete Applying (Coloulated)	ULOCAL -		7.5 MA10P	Inches
Grate Analysis (Calculated)	⊏	MINUR N/A		
		IN/A	IN/A	-π
Ratio of Grate How to Design How	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	у Г	MINOR	MAJUK	
Minimum Velocity Where Grate Splash-Over Begins	v _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	K _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.133	0.109	ft/ft
Required Length L_{T} to Have 100% Interception	L _T =	10.42	15.37	ft
Under No-Cloaging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Qi =	4.0	6.1	cfs
Inder Clogging Condition	~ _	MINOR	MAIOR	
Clogging Coefficient	CurbCoeff =	1 25	1.25	Г
Clogging Eactor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclosed) Length		9.38	0.00	- A
Actual Intercention Capacity	~	3.0	5.50	
	~	3.9	5.7	- CTS
Carry-Over Flow = Qh(GRATE) Qa	Qb -1	MINOR	<u>1.3</u>	CTS
Summary	o - □		MAJUK	٦
I otal Inlet Interception Capacity	v=	3.9	5.9	cts
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	1.3	cfs
(2)	C 0/- -	00	07	0/-

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	Q _o =	4.5	8.6	cfs
Water Spread Width	T =	10.1	13.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.9	4.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.572	0.443	1
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.9	4.8	cfs
Discharge within the Gutter Section W	Q _w =	2.6	3.8	cfs
Discharge Behind the Curb Face	QBACK =	0.0	0.0	cfs
Flow Area within the Gutter Section W	Aw =	0.49	0.62	sa ft
Velocity within the Gutter Section W	V =	53	6.1	fns
Water Denth for Design Condition	d ocu	6.9	77	inches
Crate Analysis (Calculated)	GIULAI	MINOR	MATOR	Inches
Total Length of Tolet Grate Opening	1 =	N/A	N/A	A
Patio of Grate Flow to Design Flow	E ourre =	N/A	N/A	
Inder No-Clogging Condition	-o-GRATE	MINOR	MATOR	_
Minimum Velocity Where Grate Splach-Over Begins	V -	N/A	N/A	fnc
Intercention Date of Frontal Flow	v ₀ –	N/A	N/A	ips
Interception Rate of Fional Flow		N/A	N/A	-
Interception Rate of Side Flow	~ -	N/A	IN/A	afa
Interception Capacity	Qi -		IN/A MATOR	CTS
Under Clogging Condition	CrotoCooff -	MINUK		
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	IN/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet		N/A	N/A	π.
Minimum Velocity Where Grate Splash-Over Begins	v _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	_
Equivalent Slope S _e	S _e =	0.128	0.103	ft/ft
Required Length L_{T} to Have 100% Interception	L _T =	11.27	17.28	ft
Under No-Clogging Condition		MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	$Q_i =$	4.4	6.8	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbCloa =	0.06	0.06	
				~
Effective (Unclogged) Length	L _e =	9.38	9.38	It
Effective (Unclogged) Length Actual Interception Capacity	L _e = Q _a =	9.38 4.3	9.38 6.5	ft fs
Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = O _{h/GRATE} -Q _a	$L_{e} = $ $Q_{a} = $ $Q_{b} = $	9.38 4.3 0.2	9.38 6.5 2.1	tt cfs cfs
Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = Q _{h(GRATF)} -Q _n Summary	$L_{e} = Q_{a} = Q_{b} = Q_{b} = Q_{b}$	9.38 4.3 0.2 MINOR	9.38 6.5 2.1 MAJOR	ft cfs cfs
Effective (Unclogged) Length Actual Interception Capacity Carry-Over Flow = Q _{h(GBATE)} -Q _n Summary Total Inlet Interception Capacity	Q _b =	9.38 4.3 0.2 MINOR 4.3	9.38 6.5 2.1 MAJOR 6.5	tt cfs <u>cfs</u>
Effective (Unclogged) Length Actual Interception Capacity <u>Carry-Over Flow = Q_{h(GRATE)}-Q_a <u>Summary</u> Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet)</u>	$L_{e} = Q_{a} = Q_{h} = Q_{h$	9.38 4.3 0.2 MINOR 4.3 0.2	9.38 6.5 2.1 MAJOR 6.5 2.1	tt cfs cfs cfs cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	6.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	-0 (-)	MINOR	MAIOR	-
Length of a Unit Curb Opening	$L_{2}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	-0 (-) Hunt =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	Hthroat =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W. =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{\rm c}({\rm c}) =$	0.10	0.10	1000
Curb Opening Weir Coefficient (typical value 2 3-3 7)	$C_{1}(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-7	MINOR	MAIOP	
Clossing Coefficient for Multiple Units	Coof -	MINOR N/A	MAJOR N/A	٦
Clogging Eactor for Multiple Units	Clea =	N/A	N/A	-
Crosto Conscitu as a Weir (based on MHED - CSU 2010 Study)	ciog =	IN/A	IN/A	
Intersection without Cleasing	o _F	MINUR	MAJOR	ofe
Interception without Clogging	Q _{wi} =	N/A	N/A	cis
Create Connection with Clogging	Q _{wa} =	IN/A	IN/A	cis
Grate Capacity as an Ornice (Dased on MITED - CSU 2010 Study)	0 F	MINOR	MAJOR	afa
Interception without Clogging	Q _{oi} =	N/A	IN/A	
Interception with Clogging	Q _{oa} =	N/A	N/A	cts
(-rate (apacity as Mixed Flow)		MINDP		
the capacity as mixed now	а Г	PHINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception without Clogging Interception with Clogging	Q _{mi} = Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition)	Q _{mi} = Q _{ma} = Q _{Grate} =	N/A N/A N/A	N/A N/A N/A N/A	cfs cfs cfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated)	Q _{mi} = Q _{ma} = Q _{Grate} =	N/A N/A N/A MINOR	N/A N/A N/A MAJOR	cfs cfs cfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units	$Q_{mi} =$ $Q_{ma} =$ $Q_{Grate} =$ Coef =	N/A N/A N/A MINOR 1.31	MAJOR N/A N/A MAJOR 1.31	cfs cfs cfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \mathbf{Q}_{Grate} = \end{array}$ $\begin{array}{c} Coef = \\ Clog = \end{array}$	N/A N/A N/A MINOR 1.31 0.04	N/A N/A N/A MAJOR 1.31 0.04	cfs cfs cfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \textbf{Q}_{Grate} = \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR	MAGOK N/A N/A MAJOR 1.31 0.04 MAJOR	cfs cfs cfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \end{array}$	N/A N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0	MAJOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1	ds ds ds ds
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ \hline \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9	N/A N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5	ds ds dfs dfs dfs dfs dfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception with Clogging Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \hline \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR	MAJOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR	ds ds ds ds ds ds ds
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{wa} = \\ \hline \\ Q_{oi} = \\ \hline \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3	MAJOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0	ds ds ds ds ds ds ds ds
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Interception without Clogging Interception without Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline Q_{Grate} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \hline \\ Q_{oa} = \\ Q_{oa} = \\ \hline \end{array}$	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7	ds ds ds ds ds ds ds ds ds
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Interception without Clogging Interception with Clogging Interception with Clogging Curb Opening Capacity as Mixed Flow	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{oi} = \\ Q_{oi} = \\ Q_{oi} = \\ \hline \\ Q_{oi} = \\ Q_{oi} = \\ \hline \end{array}$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR	ds ds ds ds ds ds ds ds ds
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Interception with Clogging Interception with Clogging Curb Opening Capacity as Mixed Flow Interception without Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{oa} = \\ Q_{oa} = \\ Q_{oa} = \\ Q_{oa} = \\ \hline \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5	ds ds ds ds ds ds ds ds ds ds ds
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Interception without Clogging Interception without Clogging Interception with Clogging Interception with Clogging Interception with Clogging Interception with Clogging Interception without Clogging	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \hline \\ Q_{oa} = \\ Q_{oa} = \\ \hline \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 25.3 24.2 MINOR 9.4 9.0	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6	dfs
Interception without Clogging Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening Clow Analysis (Calculated) Clogging Coefficient for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Interception with Clogging Interception without Clogging Interception with Clogging Resulting Curb Opening Capacity (assumes clogged condition)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{wa} = \\ Q_{oa} = \\ Q_{oa} = \\ Q_{ma} = \\ Q_{ma} = \\ Q_{ma} = \\ Q_{ma} = \\ Q_{Curb} = \\ \end{array}$	MINOR N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5	65 65 65 65 65 65 65 65 65 65
Interception without Clogging Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Interception with Clogging Interception with Clogging Resulting Curb Opening Capacity (assumes clogged condition) Resulting Curb Opening Capacity (assumes clogged condition)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline Q_{ma} = \\ \hline Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ \hline \\ Q_{wi} = \\ \hline \\ Q_{wa} = \\ \hline \\ Q_{oa} = \\ \hline \\ Q_{ma} = \\ \hline \\ Q_{ma} = \\ \hline \\ \hline \\ Q_{curb} = \\ \hline \end{array}$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR	dfs dfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Interception with Clogging Interception with Clogging Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \end{array} \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{wa} = \\ Q_{oa} = \\ Q_{oa} = \\ Q_{ma} = \\ Q_{ma} = \\ Q_{Curb} = \\ L = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 3.9 MINOR 15.00	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR 15.00	ds ds ds ds ds ds ds ds ds ds ds ds ds d
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Interception with Clogging Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wi} = \\ Q_{wa} = \\ \hline \\ Q_{oa} = \\ \hline \\ Q_{oa} = \\ \hline \\ Q_{ma} = \\ \hline \\ Q_{ma} = \\ \hline \\ Q_{curb} = \\ \hline \\ T = \\ \hline \end{array}$	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5 MAJOR 19.5 18.6 13.5 MAJOR	ds ds dfs dfs dfs dfs dfs dfs dfs dfs df
Interception without Clogging Interception with Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening Clow Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Interception without Clogging Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Deptin at Street Crown	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ Q_{wa} = \\ Q_{oa} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0	ds ds ds ds ds ds ds ds ds ds ds ds ds d
Interception without Clogging Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} L = \\ T = \\ \\ C_{COWN} = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0	MAOK N/A MAJOR 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Resultant Clogging Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated)	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \end{array}$	N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR	ds ds ds ds ds ds ds ds ds ds ds ds ds d
Interception without Clogging Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Clurb Opening Clow Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception with Clogging Interception with Clogging Interception without Clogging Interception with Clogging Resultant Street Conditions Total Inlet Length Resultant Street Cow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ \hline \\ Q_{wa} = \\ Q_{wa} = \\ \hline \\ Q_{oi} = \\ Q_{oa} = \\ \hline \\ Q_{ma} = \\ \hline \\ Q$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR N/A	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Curb Opening Weir Equation	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ \\ Q_{wi} = \\ \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ \\ Q_{oa} = \\ \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ \\ Q_{ma} = \\ \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} L = \\ \\ C_{Corb} = \\ \end{array}$ $\begin{array}{c} L = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MINOR N/A N/A N/A N/A N/A N/A MINOR 1.31 0.04 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR N/A 0.20	MAOK N/A MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Carb Opening Weir Equation Grated Inlet Performance Reduction Factor For Long Inlets	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{curb} = \\ Q_{curb} = \\ \end{array}$ $\begin{array}{c} L = \\ T = \\ d_{CroWN} = \\ \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Grate} = \\ \end{array}$	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	MAOK N/A MAJOR 1.31 0.04 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Opening Capacity as Mixed Flow Interception without Clogging Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Coef = \\ Clog = \\ Q_{Grate} = \\ Q_{wi} = \\ Q_{wi} = \\ Q_{wi} = \\ Q_{oi} = \\ Q_{oi$	MINOR N/A N/A N/A N/A N/A MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR N/A 0.67	MAOR N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A 0.40 N/A 0.40 N/A	frs frs frs frs frs frs fr fr fr fr fr fr fr fr fr
Interception without Clogging Interception with Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Interception with Clogging Curb Capacity as A Mixed Flow Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Q_{Grate} = \\ Q_{Grate} = \\ Q_{wi} = \\ Q_{wi} = \\ Q_{wa} = \\ \hline \\ Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{m$	MINOR N/A N/A N/A N/A N/A MINOR 1.31 0.04 MINOR 1.31 0.04 MINOR 9.4 9.0 3.9 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR 15.00 12.0 0.0 0 X/A N/A	MAOR N/A N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A 0.40 N/A 0.83 N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Interception with Clogging Interception with Clogging Interception with Clogging Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{ma} = \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{curb} = \\ R_{curb} = \\ R_{f_{Grate}} = \\ R_{f_{Grate}} = \\ R_{f_{Curb}} = \\ R_{f_{Curb}} = \\ R_{f_{Curb}} = \\ \end{array}$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR N/A 0.67 N/A	MAOK N/A MAJOR 14.1 13.5 MAJOR 31.0 29.7 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A N/A N/A N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception without Clogging Resulting Grate Capacity (assumes clogged condition) Curb Opening How Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Interception with Clogging Interception with Clogging Resultant Clogging Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Depth for Grate Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Resultation Inlet Performance Reduction Factor for Long Inlets Curb Opening Resultation Inlet Performance Reduction Factor for Long Inlets Curb Opening Resultation Inlet Performance Reduction Factor for Long Inlets Curb Opening Resultation Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ Q_{Grate} = \\ \end{array}$ $\begin{array}{c} Coef = \\ Clog = \\ Q_{wi} = \\ Q_{wa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{oa} = \\ \end{array}$ $\begin{array}{c} Q_{oi} = \\ Q_{oa} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \end{array}$ $\begin{array}{c} Q_{curb} = \\ Q_{curb} = \\ R_{Fcate} = \\ \end{array}$	MINOR N/A MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR N/A 0.20 N/A 0.67 N/A MINOR	MAOK N/A MAJOR 1.31 0.04 MAJOR 13.5 MAJOR 19.5 18.6 13.5 MAJOR 15.00 22.0 0.0 MAJOR N/A 0.40 N/A 0.83 N/A	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs
Interception without Clogging Interception with Clogging Interception with Clogging Resulting Grate Capacity (assumes clogged condition) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Clogging Interception without Clogging Interception with Clogging Resultant Street Clogging Resultant Street Conditions Total Inlet Length Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reducti	$\begin{array}{c} Q_{mi} = \\ Q_{ma} = \\ Q_{ma} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Q_{Grate} = \\ \hline \\ Q_{Grate} = \\ Q_{a} = \\ Q_{wa} = \\ Q_{wa} = \\ Q_{wa} = \\ Q_{ma} = \\ \hline \\ Q_{cab} = \\ \hline \\ R_{Fa} = \\ R_{Forb} = \\ R_{F_{combination}} = \\ R_{F_{combination}} = \\ \hline \\ R_{F_{combi$	MINOR N/A N/A N/A MINOR 1.31 0.04 MINOR 4.0 3.9 MINOR 25.3 24.2 MINOR 9.4 9.0 3.9 MINOR 15.00 12.0 0.0 MINOR 12.0 0.0 MINOR N/A 0.20 N/A 0.67 N/A MINOR 3.9	MAOR N/A N/A N/A MAJOR 1.31 0.04 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 14.1 13.5 MAJOR 15.00 22.0 0.0 MAJOR 15.00 22.0 0.0 MAJOR N/A 0.40 N/A N/A N/A MAJOR 13.5	dfs dfs dfs dfs dfs dfs dfs dfs dfs dfs

PROPOSED STORM

Conduit FlexTable: 100 YR

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design)	Length (Unified) (ft)	Velocity (ft/s)	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In)	Energy Grade Line (Out)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)	Headloss (ft)	Upstream Structure
				(98)					(11)	(10)	(10)	(11)		Line (In) (ft)
PR 4.2 (EX)	261	MH 2	9.40	18.5	38.5	7.89	0.73	1.02	6,309.45	6,309.02	6,309.07	6,308.85	0.22	6,309.46
PR 4.1	262	INET 3	0.70	5.4	10.4	3.89	0.24	0.31	6,309.46	6,309.46	6,309.46	6,309.46	0.00	6,309.47
PR 5 (EX)	268	EX MH 1	13.00	25.9	190.2	8.59	0.87	1.21	6,308.84	6,306.32	6,308.37	6,305.17	3.20	6,308.85
PR 4.3	272	LAT 2	0.00	0.0	151.3	0.00	(N/A)	0.00	6,310.44	6,308.92	6,310.44	6,308.92	1.52	6,310.44
PR 4.5 (EX)	273	MH 1	4.70	9.4	27.4	6.42	0.52	0.71	6,308.91	6,308.89	6,308.78	6,308.85	-0.06	6,308.92
PR 4.4	274	INLET 2	4.70	12.1	4.6	8.36	0.47	0.76	6,309.35	6,309.31	6,309.06	6,308.77	0.29	6,309.49
Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Conduit Description								
0.50	1.020	6,314.28	6,313.91	6,308.04	6,307.46	Circle - 30.0 in								
0.59	1.500	6,315.00	6,314.28	6,308.50	6,308.34	Circle - 18.0 in								
1.67	1.020	6,313.91	6,311.44	6,307.16	6,304.30	Circle - 30.0 in								
0.00	1.500	6,317.46	6,314.25	6,310.44	6,308.17	Circle - 24.0 in								
5.80	1 0 2 0	6 214 25	6 212 01	6 207 07	6 207 46	Circle 20.0 in								
5.05	1.020	0,314.25	0,313.91	6,307.87	0,307.40	CITCIE - 30.0 III								

StormCAD [10.03.04.53] Page 1 of 1

- EGL - HGL

EGL HGL

Conduit FlexTable: 100 YR

Label	ID	Upstream Structure	Flow (cfs)	Flow / Capacity (Design)	Length (Unified) (ft)	Velocity (ft/s)	Depth (Normal) (ft)	Depth (Critical) (ft)	Energy Grade Line (In)	Energy Grade Line (Out)	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)	Headloss (ft)	Upstream Structure
				(%)					(ft)	(ft)	(ft)	(ft)		Hydraulic Grade
														(ft)
PR 4.2 (EX)	261	MH 2	8.50	16.8	38.5	7.67	0.69	0.97	6,310.15	6,310.14	6,310.09	6,310.09	0.00	6,310.15
PR 4.1	262	INET 3	0.70	5.4	10.4	0.40	0.24	0.31	6,310.16	6,310.16	6,310.16	6,310.15	0.00	6,310.16
PR 5 (EX)	268	EX MH 1	32.40	64.5	190.2	10.87	1.46	1.94	6,310.07	6,307.60	6,309.09	6,305.76	3.33	6,310.09
PR 4.3	272	LAT 2	12.90	46.6	151.3	8.66	0.96	1.29	6,312.29	6,310.90	6,311.73	6,310.63	1.09	6,312.57
PR 4.5 (EX)	273	MH 1	25.80	51.4	27.4	10.30	1.27	1.73	6,310.62	6,310.52	6,310.16	6,310.09	0.07	6,310.63
PR 4.4	274	INLET 2	12.40	31.9	4.6	3.95	0.78	1.27	6,310.89	6,310.88	6,310.65	6,310.63	0.01	6,311.01
Upstream	Upstream	Elevation Ground	Elevation Ground	Invert (Start)	Invert (Stop)	Conduit	"							
Structure	Structure	(Start)	(Stop)	(ft)	(ft)	Description								
Velocity (In-	Headloss	(π)	(π)											
(ft/s)	Coefficient													
0.40	1.020	6,314.28	6,313.91	6,308.04	6,307.46	Circle - 30.0 in								
0.40	1.500	6,315.00	6,314.28	6,308.50	6,308.34	Circle - 18.0 in								
5.26	1.020	6,313.91	6,311.44	6,307.16	6,304.30	Circle - 30.0 in								
6.01	1.500	6,317.46	6,314.25	6,310.44	6,308.17	Circle - 24.0 in								
3 95	1 0 2 0	6 214 25	6 212 01	c 207 07	C 207 4C	Circle 20.0 in								
5.55	1.020	0,314.25	0,313.91	6,307.87	6,307.46	Circle - 30.0 in								

StormCAD [10.03.04.53] Page 1 of 1

DRAINAGE MAPS

					<u>LEGEND</u> BASIN DESIGI			
						Z	C5	
					AC	25 <u>.25</u> .35	F	
					\wedge		\$0100	
					1	SURFAC	E DESIGN POINT	
						FUTURE	BASIN BOUNDARY	
						PIPE RUI	N LABEL	
						PROP M	IAJ CONT	
					(6,3,7)			
					(2/2)		IIN CONT	
						PROPOSE	ED STORM SEWER PIP	E
						PROPOSE	ED STORM SEWER PIP	E (OTHERS)
					H.P.	EXISTING HIGH POI	FLOW DIRECTION AR	ROW
					L.P. X	LOW POIN	NT	
						EXISTING	SWALE	
						FILING BC		
						– – PROPOSE – – PROPOSE	D UTILITY EASEMENT D DRAINAGE EASEME	NT
							D LANDSCAPE EASEN	1ENT
BA	ASIN	ISUN	IMARY			<i>s</i> — EX. SANI	TARY SEWER LINE	
BASI	N	ARE (ACRE	A ES) _{Q5} Q	100		EX. WATE	ER LINE RM MANHOLE	
C C1		3.40 1.16	1.0 7 5 0.4 2	.5		EX. STOR	RM INLET	
D		1.62 1.58	2 0.5 3 3 2.1 5	9.6 9.6	<u> </u>	EX. SANI	ER VALVE	
E1A *E1B		0.56	5 0.2 1 3 1.8 3	.4				
*E1C *G1		0.27	7 1.2 2	2				
			SURFA	CE ROU	ING SUMMARY]	
ESIGN OINT	Q_5	Q ₁₀₀	BAS	SIN	STRUCI	URE		
1	1.0	7.5	C	1	EX. 30" RCP	PIPE (PVT)	-	
9A	0.4	2.6	E1	A	EX. DAVED ACCES	S DRIVE (PVT)	-	
9B 8	1.8 2.1	3.3 5.6	*E* E	В	EX. 3' CURB C EX. 10' CDOT TYPE R	HASE (PVT) AT-GRADE INLET	_	
9	2.6	5.7	*E1C, DP 9	A, DP 9B DP8, FB	EX. 10' CDOT TYPE R	AT-GRADE INLET	_	
	2.6	8.2	DF	9	EX 15 CDUT TYPE R	SUMP INLET (PVT)		
		STC	RM SEW	ER SUM				
PIPE RUN		Q ₅	Q ₁₀₀	PIPE SIZE	PIPES/DESIGN POINTS			
4		1.0	7.5	30" RCP	DP1			
4.5 5		0.4	2.6	30" RCP 30" RCP	DP2 PR4, PR4.5			
6		1.4	10.1 10.1	30" RCP 30" RCP	PR5 PR6			
9 10		2.1 3.5	5.6 15.7	30" RCP 36" RCP	DP8 PR7, PR9			
11		6.0	21.0	36" RCP	PR10, DP9			
							1" = 60'	
						0	30 60	120

DESIGN

POINT

212 N. WAHSATCH AVE., STE 305	LOT 1-CROSSROADS MIXED USE FILING NO. 3									
COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485	EXISTING DRAINAGE MAP									
	PROJECT NO. 18	-007	SCALE:	DATE: 11/01/2024						
	DESIGNED BY: DRAWN BY: CHECKED BY:	GT GT VAS	HURIZUNTAL: 1"=60' VERTICAL: N/A	SHEE	SHEET 1 OF 1					

Scale in Feet

	BASIN SUMMA				PIPE RUN	Q ₅	Q ₁₀₀	PIPE SIZE	CONTRIBUTING PIPES/DESIGN POINTS
		AREA			1	0.1	0.2	6"HDPE	BASIN C8
	BASIN	(ACRES)	Q ₅	Q ₁₀₀	1.5	0.1	0.2	6" HDPE	BASIN C7
	С	3.85	1.2	8.9	2	0.2	0.4	6"HDPE	PR1, PR1.5
SUMMARY	C1	0.08	0.4	0.7	2.5	0.7	1.3	12" PP	DP4
	C2	0.11	0.5	0.9	3	0.9	1.7	12" PP	PR2, PR2.5
STRUCTURE	C3	0.03	0.0	0.1	3.5	1.1	2.1	12" PP	DP3
FX 30" RCP PIPE (P\/T)	C4	0.04	0.0	0.1	4	1.2	8.9	30" RCP	DP1
D 10' CDOT TYPE P AT CRADE INLET	C5	0.27	1.1	2.1	4.1	0.4	0.7	18" RCP	DP1.5
(PVT)	C6	0.15	0.7	1.2	4.2	1.5	9.4	30" RCP	PR4, PR4.1
2. 2'X3' ADS INLET ATOP DRAIN BASIN	C7	0.03	0.1	0.2	4.3			24" RCP	FUTURE
(PVT)	C8	0.03	0.1	0.2	4.4	2.5	4.7	24" RCP	DP2, PR3, PR3.5
2. 5' CDOT TYPE R SUMP INLET (PVT)	*D	2.21	0.7	5.1	4.5	2.5	4.7	30" RCP	PR4.3, PR4.4
P. TO CDOT TYPE R AT GRADE INLET (PVT)	*E	0.99	1.6	3.9	5	3.4	13.0	30" RCP	PR4.2, PR4.5
EX. PAVED ACCESS DRIVE (PVT)	E1A	0.50	1.4	3.0	6	3.4	13.0	30" RCP	PR5
EX. 3' CURB CHASE (PVT)	E1A.5	0.04	0.0	0.1	7	3.4	13.0	30" RCP	PR6
	*E1B	0.43	1.8	3.3	8	0.7	5.1	24" RCP	DP7
10' CDOT TYPE R AT_CRADE INLET	*E1C	0.27	1.2	2.2	9	2.3	9.0	30" RCP	PR8, DP8 (INLET 6
	*G1	0.69	2.9	5.4	10	5.7	22.0	30" RCP	PR7, PR9
10 CDOT TYPE R AT-GRADE INLET					11	0.2	200		

						А	В	С	D	E
					1		STO	RM SEW	ER SUM	MARY
	BASIN SUMMARY				2	PIPE			PIPE	CONTRIBUTING PIPES/DESIGN
		AREA				RUN	Q 5	Q ₁₀₀	SIZE	PUINTS
	BASIN	(ACRES)	Q_5	Q,	3	1	0.1	0.2	6"HDPE	BASIN C8
NG SUMMARY	С	1.11	4.3	7	4	1.5	0.1	0.2	2 6" HDPE BASIN	
	C1	0.08	0.4	0	5	2	0.2	0.4	6"HDPE	PR1, PR1.5
STRUCTURE	C2	0.11	0.5	0	6	2.5	0.7	1.3	12" PP	DP2
EX. 30" RCP PIPE (PVT)	С3	0.03	0.0	C	7	3	0.9	1.7	12" PP	PR2, PR2.5
PROP. 10' CDOT TYPE R AT GRADE INLET	C4	0.04	0.0	C	8	3.5	1.1	2.1	12" PP	DP3
(PVT)	C5	0.27	1.1	2	9	4	4.3	7.9	30" RCP	DP1
FUTURE STORM PIPE	C6	0.15	0.7	1	10	4.1	0.4	0.7	18" RCP	DP1.5
PROP. 2'X3' ADS INLET ATOP DRAIN	C7	0.03	0.1	0	11	4.2	4.7	8.5	30" RCP	PR4, PR4.1
BASIN (PVT)	С8	0.03	0.1	0	12	4.3	7.1	12.9	24" RCP	DP1.5, DP4A
PROP. 5' CDOT TYPE R SUMP INLET (PVT)	*D	2.21	9.3	16	13	4.4	6.7	12.4	24" RCP	DP2, PR3, PR3.5
PROP. 10' CDOT TYPE R AT GRADE INLET	*E	0.99	4.0	7	14	4.5	14.1	25.8	30" RCP	PR4.3, PR4.4
	E1A	0.50	1.4	3	15	5	17.7	32.4	30" RCP	PR4.2, PR4.5
FUTURE STURM PIPE	E1A.5	0.04	0.0	C	16	6	17.7	32.4	30" RCP	PR5
EX. PAVED ACCESS DRIVE (PVT)	*E1B	0.43	1.8	3	17	7	17.7	32.4	30" RCP	PR6
EX. 3' CURB CHASE (PVT)	*E1C	0.27	1.2	2	18	8	9.3	16.9	24" RCP	DP7
EX 24" RCP PIPE (PVT)	*G1	0.69	2.9	5	19	9	13.6	24.7	30" RCP	PR8, DP8 (INLET 6)
EX. 10' CDOT TYPE R AT-GRADE INLET	C1A	1.11	4.7	8	20	10	30.3	55.3	30" RCP	PR7, PR9
EX. 10' CDOT TYPE R AT-GRADE INLET	C2A	0.64	2.6	4	21	11	34.5	63.4	36" RCP	PR10, DP9 (INLET 7)
EX 15' CDOT TYPE R SUMP INLET (PVT)	СЗА	1.01	4.7	7	22	14	2.9	8.9	30" RCP	DP11 (INLET 9)
	NG SUMMARY STRUCTURE EX. 30" RCP PIPE (PVT) PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) FUTURE STORM PIPE PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) PROP. 5' CDOT TYPE R SUMP INLET (PVT) PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) FUTURE STORM PIPE EX. PAVED ACCESS DRIVE (PVT) EX. 3' CURB CHASE (PVT) EX. 10' CDOT TYPE R AT–GRADE INLET EX. 10' CDOT TYPE R SUMP INLET (PVT)	NG SUMMARYBASINNG SUMMARYCSTRUCTUREC1EX. 30" RCP PIPE (PVT)C3PROP. 10' CDOT TYPE R AT GRADE INLETC4(PVT)C5FUTURE STORM PIPEC6PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT)C7PROP. 5' CDOT TYPE R AT GRADE INLET (PVT)*DPROP. 10' CDOT TYPE R AT GRADE INLET*EPROP. 10' CDOT TYPE R AT GRADE INLET*EPROP. 5' CDOT TYPE R AT GRADE INLET*EFUTURE STORM PIPEE1AEX. PAVED ACCESS DRIVE (PVT)*E1BEX. 3' CURB CHASE (PVT)*E1BEX. 10' CDOT TYPE R AT-GRADE INLETC1AEX. 10' CDOT TYPE R AT-GRADE INLETC1AEX. 10' CDOT TYPE R AT-GRADE INLETC2AEX 15' CDOT TYPE R SUMP INLET (PVT)C3A	BASIN SUMMARY NG SUMMARY C 1.11 C1 0.08 STRUCTURE C2 0.11 EX. 30" RCP PIPE (PVT) C3 0.03 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C4 0.04 FUTURE STORM PIPE C6 0.15 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C8 0.03 PROP. 5' CDOT TYPE R AT GRADE INLET (PVT) C7 0.03 PROP. 10' CDOT TYPE R AT GRADE INLET C7 0.03 PROP. 10' CDOT TYPE R AT GRADE INLET *D 2.21 PROP. 10' CDOT TYPE R AT GRADE INLET *E 0.99 EX. 3' CURB CHASE (PVT) *E1A 0.50 EX. 3' CURB CHASE (PVT) *E1A 0.50 EX. 10' CDOT TYPE R AT-GRADE INLET *E1B 0.43 EX. 10' CDOT TYPE R AT-GRADE INLET *E1C 0.27 *EX 10' CDOT TYPE R AT-GRADE INLET *E1C 0.27 *E1C 0.27 *E1A 0.69 EX. 10' CDOT TYPE R AT-GRADE INLET *E1C 0.27 *E1C 0.27	BASIN SUMMARY NG SUMMARY C 1.11 4.3 C 1.11 4.3 C1 0.08 0.4 C2 0.11 0.5 EX. 30" RCP PIPE (PVT) C3 0.03 0.0 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C4 0.04 0.0 FUTURE STORM PIPE C6 0.15 0.7 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C8 0.03 0.1 PROP. 5' CDOT TYPE R AT GRADE INLET (PVT) *D 2.21 9.3 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *E 0.99 4.0 EX. 3' CURB CHASE (PVT) *E1A 0.50 1.4 EX. 10' CDOT TYPE R AT-GRADE INLET *E1B 0.43 1.8 *E1C 0.27 1.2 *E1B 0.69 2.9 EX. 10' C	BASIN SUMMARY NG SUMMARY AREA (ACRES) Q5 Q4 C 1.11 4.3 7 C1 0.08 0.4 0 C2 0.11 0.5 0 EX. 30" RCP PIPE (PVT) C3 0.03 0.0 0 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C4 0.04 0 0 FUTURE STORM PIPE C6 0.15 0.7 1 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C7 0.03 0.1 0 PROP. 5' CDOT TYPE R AT GRADE INLET (PVT) C8 0.03 0.1 0 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *D 2.21 9.3 16 FUTURE STORM PIPE C6 0.15 0.7 1 FUTURE STORM PIPE E1A. 0.50 1.4 3 EX. A' CURB CHASE (PVT) *E1A 0.50 1.4 3 EX. 3' CURB CHASE (PVT) *E1A 0.50 1.4 3 EX. 10' CDOT TYPE R AT-GRADE INLET *E1A <	BASIN SUMMARY 2 NG SUMMARY C 1.11 4.3 7 4 C 1.11 4.3 7 4 C1 0.08 0.4 0 5 C2 0.11 0.5 0 6 EX. 30° RCP PIPE (PVT) C3 0.03 0.0 C 7 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C4 0.04 0 1 0 FUTURE STORM PIPE C6 0.15 0.7 1 10 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C8 0.03 0.1 0 11 PROP. 10' CDOT TYPE R SUMP INLET (PVT) PROP. 5' CDOT TYPE R AT GRADE INLET (PVT) C7 0.03 0.1 0 12 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *E 0.99 4.0 7 14 FUTURE STORM PIPE E1A. 0.50 1.4 3 15 FUTURE STORM PIPE E1A.5 0.04 0.0 C 16 EX. 3' CURB CHASE (PVT)	BASIN SUMMARY 2 PIPE RUN NG SUMMARY 2 PIPE RUN NG SUMMARY C 1.11 4.3 7 4 1.5 C 1.11 4.3 7 4 1.5 C 1.11 4.3 7 4 1.5 C1 0.08 0.4 0 5 2 C2 0.11 0.5 0 6 2.5 EX. 30" RCP PIPE (PVT) C3 0.03 0.0 C 7 3 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C4 0.04 0.0 C 8 3.5 FUTURE STORM PIPE C6 0.15 0.7 1 10 4.1 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C8 0.03 0.1 0 12 4.3 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *D 2.21 9.3 16 13 4.4 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *E1A 0.50	A B 1 STO BASIN SUMMARY 2 PIPE RUN Q5 NG SUMMARY C 1.11 4.3 7 4 1.5 0.1 C 0.08 0.4 0 5 2 0.2 C2 0.11 0.5 0 6 2.5 0.7 C3 0.03 0.0 C 7 3 0.9 PROP. 10' CDOT TYPE R AT GRADE INLET C5 0.27 1.1 2 9 4 4.3 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C6 0.15	A B C 1 STORM SEW BASIN SUMMARY 2 PIPE RUN Q5 Q100 NG SUMMARY C 1 0.1 0.2 0.1 NG SUMMARY C 1.11 4.3 7 4 1.5 0.1 0.2 NG SUMMARY C 1.11 4.3 7 4 1.5 0.1 0.2 STRUCTURE C1 0.08 0.4 0 5 2 0.2 0.4 EX. 30" RCP PIPE (PVT) C3 0.03 0.0 C 7 3 0.9 1.7 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) C3 0.03 0.0 C 8 3.5 1.1 2.1 PROP. 2'X3' ADS INLET ATOP DRAIN BASIN (PVT) C6 0.15 0.7 1 10 4.4 3.5 PROP. 10' CDOT TYPE R AT GRADE INLET (PVT) *b 2.21 9.3 16 13 4.4 6.7 12.4 PROP. 10' CDOT TYPE R AT GRADE INL	NG SUMMARY BASIN SUMMARY PIPE RUN Q5 Q1 STORM SEWER SUM NG SUMMARY AREA (ACRES) Q5 Q 3 1 0.1 0.2 6" HDPE STRUCTURE C 1.11 4.3 7 4 1.5 0.1 0.2 6" HDPE C1 0.08 0.4 0 5 2 0.2 0.4 6" HDPE C2 0.11 0.5 0 6 2.5 0.7 1.3 12" PP C3 0.03 0.0 C 7 3 0.9 1.7 12" PP C4 0.040 0.0 C 7 3 0.9 1.7 12" PP C5 0.27 1.11 2.9 4 4.3 7.9 30" RCP FUTURE STORM PIPE C6 0.15 0.7 1 4.1 0.4 0.7 18" RCP PROP. 5' CDOT TYPE R AT GRADE INLET C7 0.03 0.1 11<