

Preliminary Drainage Report – Early Grading Permit

Waterview East Commercial El Paso County, Colorado

Prepared for:

Heath Herber Waterview Commercial Investors, LLC 2727 Glen Arbor Drive Colorado Springs, CO 80920

Prepared by:

Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 900 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Jared Roberts, P.E.

Project #: 196195000

PCD Filing No.: SP-22-009 Prepared: March 23, 2023

Preliminary Drainage Report – Early Grading Permit Waterview East Commercial, El Paso County, CO

	.,,
CERTIFICATION	Unresolved;
	Update Header to "Final
DESIGN ENGINEER'S STATEMENT	Drainage Report"
The attached drainage plan and report were prepared are correct to the best of my knowledge and belie according to the criteria established by the Count conformity with the master plan of the drainage becaused by any negligent acts, errors, or omissions of the drainage becaused by any negligent acts, errors, or omissions of the drainage because and the drainage because	ared under my direction and supervision and ef. Said drainage report has been prepared ty for drainage reports and said report is in asin. I accept responsibility for any liability
SIGNATURE (Affix Seal): Jared Roberts, P.E. Colorado P.E. No. 60470) Date
OWNER/DEVELOPER'S STATEMENT	
I, the developer, have read and will comply with al Report and Plan.	I the requirements specified in this Drainage
Name of Developer	_
Authorized Signature Date	_
Printed Name	_
Title	-
Address:	-
EL PASO COUNTY	
Filed in accordance with the requirements of the Dra Paso County Engineering Criteria Manual and Land	
Josh Palmer, P.E. County Engineer/ ECM Administrator	Date
Conditions:	

Kimley » Horn

Contents

CERTIFICATION	1
DESIGN ENGINEER'S STATEMENT OWNER/DEVELOPER'S STATEMENT EL PASO COUNTY	1
INTRODUCTION	3
PURPOSE AND SCOPE OF STUDY	3
DRAINAGE BASINS	4
MAJOR BASIN DESCRIPTIONS	4 4
DRAINAGE DESIGN CRITERIA	11
DEVELOPMENT CRITERIA REFERENCE. HYDROLOGIC SOIL GROUP. HYDROLOGIC CRITERIA. HYDRAULIC CRITERIA. INLET AND PIPE SIZING. DETENTION POND SUMMARY.	11 12 12 12
DRAINAGE FACILITY DESIGN	13
GENERAL CONCEPT	
THE FOUR STEP PROCESS	
SUMMARY	14
REFERENCES	14
APPENDIX	15
APPENDIX A – VICINITY MAP	16
APPENDIX B – FEMA FIRM PANEL AND SOILS MAP	17
APPENDIX C – HYDROLOGIC CALCULATIONS	18
APPENDIX D – HYDRAULIC CALCULATIONS	19
APPENDIX E – MASTER DEVELOPMENT DRAINAGE PLANS	20
APPENDIX F – DRAINAGE EXHIBITS	21

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Preliminary Drainage Report (PDR) is to provide the hydrologic and preliminary grading exhibit and calculations and to document the drainage design methodology in support of the proposed Waterview East Subdivision ("the Project") for Waterview Commercial Investors, LLC. The finalized hydraulic design, including storm sewer and associated calculations will be provided with the Final Drainage Report. The Project is located within the jurisdictional limits of El Paso County ("the County"). Therefore, the hydrologic and grading design is based on the County's criteria which is described in further detail within the report.

LOCATION

The Project is located within part of the West 1/2 Unresolved: West of the 6th Principal Metidian, County of El F Update paragraph. As previously stated in the bounded by Powers Boulevard (Highway 21) on review #1 comments to the GEC: 1 to the east and to the south, and Bradley Road "Submit a separate final drainage report that is in the **Appendix A** of this report.

The Site is currently owned by Waterview Ea unplatted.

DESCRIPTION OF PROPERTY

strictly associated with the proposed early grading operations and calculations for any drainage facilities being installed with the early grading such as sizing of temporary sediment basins, or temporary swales."

The Site is approximately 22.1 acres consisting of undeveloped land with native vegetation and is classified as Vegetation within the site is characterized primarily by prairie grasses along with some area of scrub brush and a limited occurrence of small oaks. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land. There are no existing irrigation ditches on the Site.

The existing topography consists of slopes ranging from 1% to 33%.

According to NRCS soil mapping data, USCS Type A and B soils are the primary soil type within the site. Soils present at the Site consist mainly of "Blakeland loamy sand" which represent a moderate hazard for erosion. Appendix B contains detailed NRCS soil data.

The development of this site will include commercial developments, including convenience store, restaurants, storage units and retail stores. Roadway improvements to the site will include mowing, clearing, and grubbing, weed control, paved access road construction, roadway grading, three onsite extended detention basins, native seeding, and water quality features. Permanent improvements outside of the scope of early grading will be evaluated under the Final Drainage Report.

A Topographic field survey was completed and updated for the Project by Ridgeline Land Surveying dated February 7th, 2023 and is the basis for design for the drainage improvements.

> mlev»Horn Unresolved: "...included with the final plat application."

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The western half of the Property lies within the Big Johnson drainage basin, and the eastern half of the Property lies within the West Fork of Jimmy Camp Creek drainage basin. The watershed is generally located in the central portion of El Paso County. Refer to **Appendix A** for the Flood Insurance Rate Map (FIRM) number 08041C0768G effective date, December 7, 2018. There was a Drainage Basin Planning Study conducted for the Big Johnson basin in February 1992; however, there has not been one conducted for the Sand Creek basin. Please see reference in the **Appendix**.

MASTER DRAINAGE REPORT STUDY

The Waterview East commercial development project is part of the "Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group September 2019. As outlined in the Master Drainage Plan, the "East Pond" was sized to include flows from the future "Commercial Lot south of Bradley Road and West of Legacy Drive". In these watershed calculations a conservative weighted imperviousness value of 95% was used. This value is substantially higher than the calculated impervious value of 56% in proposed conditions.

As noted in the Master Drainage Plan, the eastern portion of the Site which is part of the West Fork Jimmy Camp Creek drainage basin will require on site detention. As noted in the Master Drainage Plan, the western portion of the Site which is part of the Big Johnson Reservoir drainage basin for future development of this lot "...On-site detention will be required and must discharge to the Powers Boulevard ditch." Based on the pond sizing calculations and required on site detention, the proposed development is in compliance with the above-mentioned Master Drainage Plan. Offsite flows are addressed in the existing sub-basin descriptions below.

Excerpts from "Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group June 2019 have been provided in **Appendix E**.

EXISTING SUB-BASIN DESCRIPTIONS

Historically, runoff from the Site is split almost directly down the center. With the eastern portion of the Site heading east and the western portion of the site heading west. The site has been divided into 2 existing onsite subbasins, EX-1 and EX-2.

Per map there are 3 onsite basins and 1 offsite basin.

Sub-Basin EX-1

The on-site sub-basin EX-1 is undeveloped consisting of native grasses and shrubs with an area of 10.36 acres comprising the eastern half of the property. Drainage flows overland from west to the east at slopes ranging from 1-33%. Flows are collected in the existing curb and gutter along Legacy Drive and are conveyed to an existing 12' COS D-10-R inlet at the intersection of Legacy Drive and Frontside Drive. Flows are then carried through existing storm

infrastructure into East Pond as outlined in the "Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group September 2019. Runoff during the 5-year and 100-year events are 3.54 cfs and 24.73 cfs respectively.

Sub-Basin EX-2

The on-site sub-basin EX-2 is undeveloped consisting of native grasses and shrubs with an area of 11.50 acres comprising the western half of the property. Drainage flows overland from northeast to southwest at slopes ranging from 1-33%. Flows are collected in the existing roadside ditch along Powers Blvd and travel south where they are conveyed west through an existing 60" CMP under Powers Blvd and into Big Johnson Reservoir. Runoff during the 5-year and 100-year events are 2.62 cfs and 22.34 cfs respectively.

Sub-Basin EX-3

The on-site sub-basin EX-3 is undeveloped, consisting of native grasses and shrubs, with a curb cut access. It has an area of 0.26 acres comprising a portion of the eastern site boundary. Drainage flows overland from west to east at slopes ranging from 1-25%. Flows are collected in the existing Frontside Drive curb and gutter and travels south where they are conveyed to existing storm infrastructure into the East Pond as outlined in the "Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group September 2019. Runoff during the 5-year and 100-year events are 0.21 cfs and 0.91 cfs respectively.

Type R inlets are in 5'
Sub-Basin OS-1 increments.

The off-site sub-basin OS-1 is undeveloped consisting of native grasses and shrubs with an area of 0.66 acres comprising the northern boundary of the Site. Drainage flows overland from north to south at slopes ranging from 5-33%. Flows convey though Basin EX-1 and are ultimately collected via existing curb and gutter along Legacy Drive, which are conveyed to an existing 12' COS D-10-R inlet at the intersection of Legacy Drive and Frontside Drive. Flows are then carried through existing storm infrastructure into East Pond as outlined in the "Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group September 2019. Runoff during the 5-year and 100-year events are 0.19 cfs and 1.61 cfs respectively.

Refer to **Appendix F** for the Existing Drainage Conditions Man.

PROPOSED SUB-BASIN DESCRIPTIONS

c&g, inlets, EDB's are not being built with early grading. Map should show how flows are moving across site with grading activities alone and no infrastructure being built.

For the proposed condition, stormwater will generally maintain historic now patterns for the east and west portions of the site. Proposed readways internal to the site will alter some of the existing flow paths. Proposed curb and gutter, and proposed storm inlets will convey flows to one of three proposed Private Full Spectrum Extended Detention Basins. From there flows will outfall to existing historic drainage paths, which will ultimately outfall to existing natural drainage channels, sub regional pond, or water quality features. The proposed project has been divided into 28 on-site sub-basins and 1 off-site basin. To satisfy the early grading permit requirements, these basins will be shown for reference, with only construction items associated with early grading to be shown. Construction of utility infrastructure as well as building footprints will not be constructed with this preliminary drainage report, and

will be evaluated with the submittal of the final drainage report.

Unresolved:

Combine sub-basins to what's draining into each TSR

Sub-Basin A1

The on-site sub-basin A1 consists of proposed parking, landscaping, round TSB. sub-basin has an area of 0.67 acres and a weighted imperviousness of 73%. Runoff in this basin will travel overland and into a crosspan to proposed private on-grade Type D inlet at DP 1. Flows will then be conveyed to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.87 cfs and 4.70 cfs respectively.

Sub-Basin A2

The on-site sub-basin A2 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.33 acres and a weighted imperviousness of 66%. Runoff in this basin will travel overland into a proposed private sump Type D inlet at DP 2. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 0.85 cfs and 2.22 cfs respectively.

Sub-Basin A3

The on-site sub-basin A3 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.41 acres and a weighted imperviousness of 81%. Runoff in this basin will travel overland into a proposed private sump Type D inlet at DP 3. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.27 cfs and 3.10 cfs respectively.

Sub-Basin A4

The on-site sub-basin A4 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.31 acres and a weighted imperviousness of 95%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private on-grade Type D inlet at DP 4. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.04 cfs and 2.41 cfs respectively.

Sub-Basin A5

The on-site sub-basin A5 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.32 acres and a weighted imperviousness of 92%. Runoff in this basin will travel overland into a proposed private sump 4' COS D-10-R inlet at DP 5. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.12 cfs and 2.60 cfs respectively.

Sub-Basin A6

The on-site sub-basin A6 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.30 acres and a weighted imperviousness of 89%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private on-grade Type D inlet at DP 6. Flows will then be conveyed via proposed stormwater infrastructure to proposed

Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 0.97 cfs and 2.29 cfs respectively.

Sub-Basin A7

The on-site sub-basin A7 consists of proposed drive aisle, landscaping, and sidewalk. The sub-basin has an area of 0.39 acres and a weighted imperviousness of 92%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump Recessed Type C Inlet at DP 7. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.43 cfs and 3.33 cfs respectively.

Sub-Basin A8

The on-site sub-basin A8 consists of proposed drive aisle, landscaping, and sidewalk. The sub-basin has an area of 0.42 acres and a weighted imperviousness of 93%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump Recessed Type C Inlet at DP 8. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.54 cfs and 3.57 cfs respectively.

Sub-Basin A9

The on-site sub-basin A9 consists of proposed drive aisle, landscaping, and sidewalk. The sub-basin has an area of 0.41 acres and a weighted imperviousness of 93%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump Recessed Type C Inlet at DP 9. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.53 cfs and 3.55 cfs respectively.

Sub-Basin A10

The on-site sub-basin A10 consists of proposed drive aisle, landscaping, and sidewalk. The sub-basin has an area of 0.40 acres and a weighted imperviousness of 90%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump 12' COS D-10-R inlet at DP 10. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 2.63 cfs and 6.16 cfs respectively.

Sub-Basin A11

The on-site sub-basin A11 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.26 acres and a weighted imperviousness of 75%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump Type D inlet at DP 11. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 0.62 cfs and 1.56 cfs respectively.

Sub-Basin A12

The on-site sub-basin A12 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 1.05 acres and a weighted imperviousness of 79%. Runoff in this

basin will travel overland into a proposed private on-grade 8' COS D-10-R inlet at DP 12. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 2.59 cfs and 6.33 cfs respectively.

Sub-Basin A13

The on-site sub-basin A13 consists of proposed drive aisle, landscaping, and sidewalk. The sub-basin has an area of 0.11 acres and a weighted imperviousness of 86%. Runoff in this basin will travel overland into a proposed private sump Type C inlet at DP 13. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 0.37 cfs and 0.87 cfs respectively.

Sub-Basin A14

The on-site sub-basin A14 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.16 acres and a weighted imperviousness of 75%. Runoff in this basin will travel overland into a proposed private sump Type C inlet at DP 14. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 0.36 cfs and 0.89 cfs respectively.

Sub-Basin A15

The on-site sub-basin A15 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.39 acres and a weighted imperviousness of 89%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private on-grade Type C inlet at DP 15. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 1.25 cfs and 2.97 cfs respectively.

Sub-Basin A16

The on-site sub-basin A16 consists of proposed drive aisle, landscaping, roofing, and sidewalk. The sub-basin has an area of 0.75 acres and a weighted imperviousness of 94%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private on-grade Type C inlet at DP 16. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 2). Runoff during the 5-year and 100-year events are 2.66 cfs and 6.17 cfs respectively.

Sub-Basin A17

The on-site sub-basin A17 consists of proposed drive aisle, landscaping, and roofing. The sub-basin has an area of 0.83 acres and a weighted imperviousness of 65%. Runoff in this basin will travel overland into a proposed private on-grade Type C inlet at DP 17. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 3). Runoff during the 5-year and 100-year events are 1.55 cfs and 4.06 cfs respectively.

Sub-Basin A18

The on-site sub-basin A18 consists of proposed drive aisle, and roofing. The sub-basin has an area of 1.34 acres and a weighted imperviousness of 95%. Runoff in this basin will travel overland and into a proposed crosspan to a proposed private sump Type C inlet at DP 18. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 3). Runoff during the 5-year and 100-year events are 4.57 cfs and 10.60 cfs respectively.

Sub-Basin A19

The on-site sub-basin A19 consists of proposed drive aisle, and roofing. The sub-basin has an area of 0.60 acres and a weighted imperviousness of 95%. Runoff in this basin will travel overland into a proposed private on-grade Type C inlet at DP 19. Flows will then be conveyed via proposed stormwater infrastructure to proposed Private Full Spectrum Extended Detention Basin (Pond 3). Runoff during the 5-year and 100-year events are 2.14 cfs and 4.96 cfs respectively.

Sub-Basin A20

The on-site sub-basin A20 consists of proposed drive aisle, and roofing. The sub-basin has an area of 0.49 acres and a weighted imperviousness of 92%. Runoff in this basin will travel overland and into a proposed crosspan through a proposed curb cut at DP 20. Flows will then be conveyed down a proposed riprap channel directly into the proposed Private Full Spectrum Extended Detention Basin (Pond 3). Runoff during the 5-year and 100-year events are 1.33 cfs and 3.12 cfs respectively.

Sub-Basin A21

The on-site sub-basin A21 consists of proposed drive aisle, and roofing. The sub-basin has an area of 0.63 acres and a weighted imperviousness of 93%. Runoff in this basin will travel overland and into a proposed crosspan through a proposed curb cut at DP 21. Flows will then be conveyed down a proposed riprap channel directly into the proposed Private Full Spectrum Extended Detention Basin (Pond 3). Runoff during the 5-year and 100-year events are 1.99 cfs and 4.65 cfs respectively.

Sub-Basin A22

The on-site sub-basin A22 consists of proposed drive aisle, sidewalk, landscaping, and roofing. The sub-basin has an area of 2.10 acres and a weighted imperviousness of 61%. Runoff in this basin will travel overland via curb and gutter into a proposed private on-grade 8' COS D-10-R inlet at DP 22. Flows will then be conveyed through proposed stormwater infrastructure into the proposed Private Full Spectrum Extended Detention Basin (Pond 1). Runoff during the 5-year and 100-year events are 4.10 cfs and 10.94 cfs respectively.

Sub-Basin PD-1

The on-site sub-basin PD-1 consists of landscaping and proposed Private Full Spectrum Extended Detention Basin (Pond 1). The sub-basin has an area of 0.65 acres and a weighted imperviousness of 2%. Runoff in this basin will travel overland directly into Pond 1. Flows from Pond 1 will outfall at DP 23 into proposed storm infrastructure and flow into existing stormwater infrastructure located in Frontside Drive. Runoff during the 5-year and 100-year events are 0.19 cfs and 1.64 cfs respectively

Sub-Basin PD-2

The on-site sub-basin PD-2 consists of landscaping, roofing, and proposed Private Full Spectrum Extended Detention Basin (Pond 2). The sub-basin has an area of 0.74 acres and a weighted imperviousness of 26%. Runoff in this basin will flow directly into Pond 2. Flows from Pond 2 will outfall at DP 24 into proposed storm infrastructure and flow into existing stormwater infrastructure located in Frontside Drive. Runoff during the 5-year and 100-year events are 0.67 cfs and 2.57 cfs respectively.

Sub-Basin PD-3

The on-site sub-basin PD-3 consists of landscaping and proposed Private Full Spectrum Extended Detention Basin (Pond 3). The sub-basin has an area of 0.21 acres and a weighted imperviousness of 2%. Runoff in this basin will flow directly into Pond 3. Flows from Pond 3 will outfall at DP 25 into the existing roadside ditch along Powers Blvd. Runoff during the 5-year and 100-year events are 0.08 cfs and 0.65 cfs respectively.

Sub-Basin OS-1

The on-site sub-basin OS-1 consists of landscaping along the western property line. The sub-basin has an area of 2.05 acres and a weighted imperviousness of 4%. Runoff in this basin will flow offsite at DP 26 directly into the roadside ditch along Powers Blvd. Flows from this sub-basin will follow historic flow patterns. Runoff during the 5-year and 100-year events are 0.61 cfs and 4.46 cfs respectively.

The majority of this basin is landscaping and a short section of sidewalk. According to the El Paso County Engineering Criteria Manual, Section I.7.1.B.7, This area classifies as "Land Disturbance to Undeveloped Land that will Remain Undeveloped." This area will follow native drainage patterns and remain undeveloped with no buildings or pavement and therefore classifies as an exclusion.

Per the MDDP, the flows entering the Powers Blvd Ditch in the 100-year condition is 11.7 cfs. In the combined condition, Sub-Basin OS-1 and PD-3 will release into the powers ditch at 4.46 cfs and per historic flow, respectively, which will be lower than the flows designated per the MDDP.

Sub-Basin OS-2

The on-site sub-basin OS-2 consists of landscaping, and drive aisle along the eastern property line. The sub-basin has an area of 4.78 acres and a weighted imperviousness of 28%. Runoff in this basin will flow from north to south through a drainage swale to DP 27, and then directly into Legacy Hill Dr where it will be carried by curb and gutter into the existing storm water infrastructure. Flows from this sub-basin will follow existing flow patterns. Runoff during the 5-year and 100-year events are 4.34 cfs and 15.81 cfs respectively.

A large portion of this basin is landscaping. According to the El Paso County Engineering Criteria Manual, Section I.7.1.B.7, This landscape area classifies as "Land Disturbance to Undeveloped Land that will Remain Undeveloped." This area will follow native drainage patterns and remain undisturbed with no buildings or pavement and therefore classify as an exclusion.

The portions of the drive aisle from this basin that flow offsite will sheetflow into the proposed offsite sump Type R Inlets within Frontside Drive. These areas exceed the County's maximum requirement of 20%, not to exceed 1 acre of total onsite imperviousness being untreated. However, after referencing the Master Development Drainage Report for the basin, it was

determined that the East Pond (Design Point M) has adequate capacity and can treat this additional flow. Please reference **Appendix E** for the UD-Detention spreadsheet for this pond with relevant acreages highlighted, as well as the Proposed Drainage Map showing tributary basins.

Sub-Basin OS-3

The on-site sub-basin OS-3 consists of landscaping, and drive aisle along the southeast property line. The sub-basin has an area of 0.67 acres and a weighted imperviousness of 54%. Runoff in this basin will flow offsite at DP 28 directly into Legacy Hill Dr where it will be carried south by curb and gutter into the existing storm water infrastructure. Flows from this sub-basin will follow existing flow patterns. Runoff during the 5-year and 100-year events are 1.45 cfs and 4.03 cfs respectively.

This basin consists of landscaping and drive aisle. According to the El Paso County Engineering Criteria Manual, Section I.7.1.B.7, This landscape area classifies as "Land Disturbance to Undeveloped Land that will Remain Undeveloped." This area will follow native drainage patterns and remain undisturbed with no buildings or pavement and therefore classify as an exclusion.

The portions of the drive aisle from this basin that flow offsite will sheetflow into the proposed offsite sump Type R Inlets within Frontside Drive. These areas exceed the County's maximum requirement of 20%, not to exceed 1 acre of total onsite imperviousness being untreated. However, after referencing the Master Development Drainage Report for the basin, it was determined that the East Pond (Design Point M) has adequate capacity and can treat this additional flow. Please reference **Appendix E** for the UD-Detention spreadsheet for this pond with relevant acreages highlighted, as well as the Proposed Drainage Map showing tributary basins.

Sub-Basin OS-4

The on-site sub-basin OS-4 consists of landscaping, along the northern property line. The sub-basin has an area of 0.67 acres and a weighted imperviousness of 2%. Runoff in this basin will flow onsite at DP 29 directly into the drainage swale in Sub Basin OS-2, where it will convey to Legacy Hill Dr and be conveyed via curb and gutter into the existing storm water infrastructure. Flows from this sub-basin will follow existing flow patterns. Runoff during the 5-year and 100-year events are 0.18 cfs and 1.55 cfs respectively.

Refer to **Appendix F** for the Proposed Drainage Conditions Map.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the El Paso County Drainage Criteria Manual, Volumes 1 and 2 (The "CRITERIA") and the Urban Storm Drainage Criteria Manual (the "MANUAL"). Site drainage is not significantly impacted by such constraints as utilities or existing development.

HYDROLOGIC SOIL GROUP

According to NRCS soil mapping data, USCS Type A and B soils are the primary soil type within

the site. Soils present at the Site consist mainly of "Blakeland loamy sand" which represent a moderate hazard for erosion. **Appendix B** contains detailed NRCS soil data.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per chapter 5 of the CRITERIA. Design runoff was calculated using the Rational Method for developed conditions as established in the CRITERIA and MANUAL. Runoff coefficients for the proposed development were determined using Table 5-1 of the CRITERIA by calculating weighted impervious values for each specific site basin. Based upon this approach, the drainage design provided for the Site is conservative and in keeping with the zoning and historic drainage concept for the area.

HYDRAULIC CRITERIA

Hydraulic design, including pipe sizing, inlet sizing, HGL calculations, and other related designs will be provided with the Final Drainage Report.

INLET AND PIPE SIZING

Inlet and pipe sizing will not be included or installed with this early grace (swales, TSB, etc) calculations will be provided with the Final Drainage Report.

Unresolved:
Update to summarize
the temporary facilities
(swales, TSB, etc)
installed with Early
Grading.

DETENTION POND SUMMARY

Preliminary detention pond and water quality calculations have been completed. A total of three proposed private full spectrum extended detention basins have been designed for WQCV, EURV and 100-year flows. The three EDBs have been summarized below.

Pond	Approximate 100-yr Detention Volume Required (ac-ft)	Approximate WQCV Required (ac-ft)	Proposed 100-yr Volume (ac-ft)	Cumulative 100-yr Tributary Runoff (cfs)
1	0.264	0.046	0.397	12.58
2	1.200	0.210	1.618	55.29
3	0.687	0.120	0.902	28.05

Pond 1 services mainly the lot at the Northeast corner of the property. Flows are released at or below historic rates and are conveyed to Design Point 27 where it enters existing storm infrastructure.

Pond 2 consists of the northern half of the property not tributary to Pond 1. Flows are released at or below historic rates and are conveyed to Design Point 27 where it enters existing storm infrastructure.

Both Pond 1 and Pond 2 will combine flows and enter the existing Type R Inlet within Frontside Drive. Per the MDDP, Flows entering this inlet should be 1.3 CFS in the 5-year condition and 19.4 CFS in the 100-year condition. After design of the outlet structures, flows will release at or below these rates.

Pond 3 consists of the southern half of the site. Flows will be released into the Power Boulevard ditch, which accounts for 1.5 cfs in the 5-year condition, and 11.7 cfs in the 100-year condition. Outlet structures will be designed to release at or below these rates.

Final calculations are not provided with this early grading permit. Hydraulic calculations will be provided with the Final Drainage Report. Please reference the associated Grading and Erosion Control Plan for temporary sediment basin sizings to match the final design intent.

Ponds will be maintained by the metro district for the overall development. A maintenance access road will be provided with each pond, built per County standards.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

Unresolved:

Update. Right now all you are installing are

The proposed development includes commercial buildi temporary sediment basins, not EDBs. proposed development will decrease permeability on the site. This decrease has been accounted for in the Master Drainage Plan. The proposed drainage patterns will match historic patterns as much as possible and not significantly increase developed flows. The runoff within the site will be captured and treated via proposed private Full Spectrum Extended Detention Basins before being released into historic discharge points. There will be three (3) proposed Full Spectrum Detention Basins, also referred to as Pond 1, Pond 2, and Pond 3, throughout this report. These final calculations will be provided in the Final Drainage Report.

Provided in **Appendix C** are the hydrologic calculations used in pond sizing. Provided in Appendix D are preliminary pond sizing calculations, for reference. Existing and proposed Drainage Maps can be found in **Appendix F**.

DRAINAGE FEE

The project is within the Big Johnson drainage basin, and the West Fork of Jimmy Camp Creek drainage basin which is a part of the El Paso County Drainage Basin Fee Program. Drainage and bridge fees will be finalized with the Final Drainage Report. Drainage fees shall be paid at the time of final plat recordation.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the El Paso County Engineering Manual for BMP selection as noted below:

Step 1. **Employ Runoff Reduction Practices** – The project is proposing commercial development. The Site's proposed paved roadways will increase the Site's impervious area, however, the use of landscaping throughout the Site will slow runoff. The three proposed Full Spectrum Extended Detention Basins will be used to capture stormwater, provide water quality treatment, and maintain flows discharging off site at or below historic levels. Final design will be included in the Final Drainage Report.

Step 2. Implement BMPs That Provide a Water Quality Capture Volume with Slow Release – Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site.

Step 3 Stabilize Drainageways— Stabilizing proposed roadside ditches, swales, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Check dams will be used in areas with steeper grades to slow the runoff. We anticipate this will minimize erosion. Existing drainage ways will be graded to reduce the velocity of the water to minimize erosion.

Step 4. Implement Site Specific and Other Source Control BMPs – The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

SUMMARY

This report has been prepared in accordance with El Paso County stormwater criteria. It outlines the Site design for the 5-year and 100-year storm events drainage system. The drainage design presented within this report conforms to the criteria presented in the CRITERIA and the MANUAL Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments.

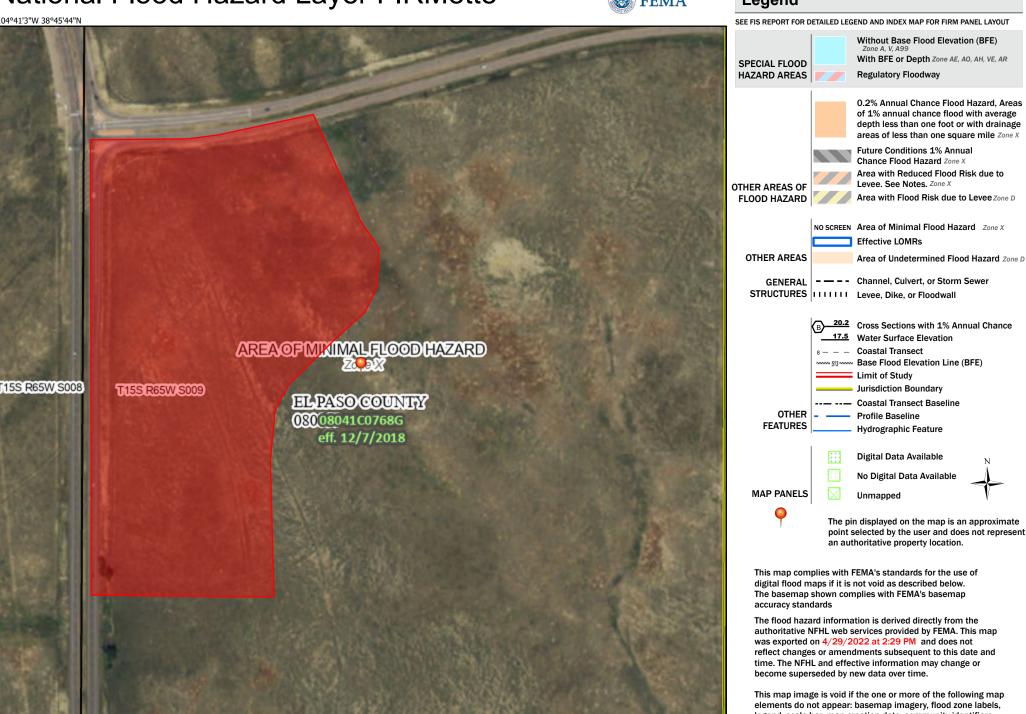
REFERENCES

- 1. El Paso County "Engineering Criteria Manual" Volumes 1 & 2, dated October 31, 2018
- 2. Natural Resources Conservation Service, Web Soil Survey, dated April 29, 2022.
- 3. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0768G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).
- 4. Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge" Prepared by: Matrix Design Group September 2019.

APPENDIX

APPENDIX A - VICINITY MAP

Waterview East Commercial Vicinity Map (Not to Scale)


APPENDIX B - FEMA FIRM PANEL AND SOILS MAP

National Flood Hazard Layer FIRMette

104°40'25"W 38°45'16"N

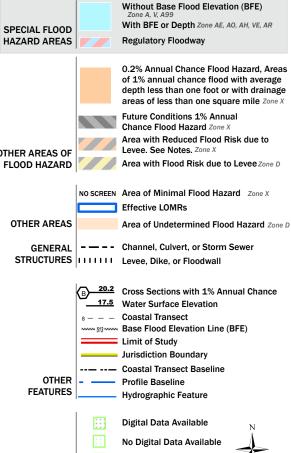
Feet

2.000

250

500

1,000


1.500

1:6.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/29/2022 at 2:29 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	6
Legend	7
Map Unit Legend	8
Map Unit Descriptions	
El Paso County Area, Colorado	10
8—Blakeland loamy sand, 1 to 9 percent slopes	10
56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	11
86—Stoneham sandy loam, 3 to 8 percent slopes	13
108—Wiley silt loam, 3 to 9 percent slopes	14
Soil Information for All Uses	16
Suitabilities and Limitations for Use	16
Land Management	16
Erosion Hazard (Road, Trail)	16
References	21

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

A

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

C Landfill
≜ Lava Flow

■ Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

٥

Stony Spot
Very Stony Spot

Ø

Wet Spot Other

Δ

Special Line Features

Water Features

~

Streams and Canals

Transportation

+++ Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

The same

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 14, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	19.2	45.9%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	12.2	29.3%
86	Stoneham sandy loam, 3 to 8 percent slopes	1.8	4.3%
108	Wiley silt loam, 3 to 9 percent slopes	8.6	20.5%
Totals for Area of Interest		41.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

Custom Soil Resource Report

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or eolian deposits

derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent

Custom Soil Resource Report

Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes

Map Unit Setting

National map unit symbol: 3690 Elevation: 5,600 to 6,400 feet

Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F

Frost-free period: 135 to 155 days

Farmland classification: Not prime farmland

Map Unit Composition

Nelson and similar soils: 55 percent Tassel and similar soils: 40 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nelson

Setting

Landform: Hills

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous residuum weathered from interbedded sedimentary

rock

Typical profile

A - 0 to 5 inches: fine sandy loam
Ck - 5 to 23 inches: fine sandy loam
Cr - 23 to 27 inches: weathered bedrock

Properties and qualities

Slope: 3 to 12 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 2.8 inches)

Custom Soil Resource Report

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R067BY045CO - Shaly Plains

Other vegetative classification: SHALY PLAINS (069AY046CO)

Hydric soil rating: No

Description of Tassel

Setting

Landform: Hills

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous slope alluvium over residuum weathered from

sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam
C - 4 to 10 inches: fine sandy loam
Cr - 10 to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent

Depth to restrictive feature: 6 to 20 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: D

Ecological site: R067BY045CO - Shaly Plains

Other vegetative classification: SHALY PLAINS (069AY046CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

86—Stoneham sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b2 Elevation: 5,100 to 6,500 feet

Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 52 degrees F

Frost-free period: 135 to 155 days

Farmland classification: Not prime farmland

Map Unit Composition

Stoneham and similar soils: 95 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stoneham

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous loamy alluvium

Typical profile

A - 0 to 4 inches: sandy loam

Bt - 4 to 8 inches: sandy clay loam

Btk - 8 to 11 inches: sandy clay loam

Ck - 11 to 60 inches: loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R067BY024CO - Sandy Plains

Custom Soil Resource Report

Other vegetative classification: SANDY PLAINS (069AY026CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

108—Wiley silt loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367b Elevation: 5,200 to 6,200 feet

Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F

Frost-free period: 135 to 155 days

Farmland classification: Not prime farmland

Map Unit Composition

Wiley and similar soils: 95 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wiley

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Calcareous silty eolian deposits

Typical profile

A - 0 to 4 inches: silt loam
Bt - 4 to 16 inches: silt loam
Bk - 16 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Custom Soil Resource Report

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R067BY002CO - Loamy Plains

Other vegetative classification: LOAMY PLAINS (069AY006CO)

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Management

Land management interpretations are tools designed to guide the user in evaluating existing conditions in planning and predicting the soil response to various land management practices, for a variety of land uses, including cropland, forestland, hayland, pastureland, horticulture, and rangeland. Example interpretations include suitability for a variety of irrigation practices, log landings, haul roads and major skid trails, equipment operability, site preparation, suitability for hand and mechanical planting, potential erosion hazard associated with various practices, and ratings for fencing and waterline installation.

Erosion Hazard (Road, Trail)

The ratings in this interpretation indicate the hazard of soil loss from unsurfaced roads and trails. The ratings are based on soil erosion factor K, slope, and content of rock fragments.

The ratings are both verbal and numerical. The hazard is described as "slight," "moderate," or "severe." A rating of "slight" indicates that little or no erosion is likely; "moderate" indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and "severe" indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified aspect of forestland management (1.00) and the point at which the soil feature is not a limitation (0.00).

Custom Soil Resource Report

The map unit components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as listed for the map unit. The percent composition of each component in a particular map unit is presented to help the user better understand the percentage of each map unit that has the rating presented.

Other components with different ratings may be present in each map unit. The ratings for all components, regardless of the map unit aggregated rating, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.

MAP LEGEND MAP INFORMATION Area of Interest (AOI) **US Routes** The soil surveys that comprise your AOI were mapped at 1:24.000. Area of Interest (AOI) Major Roads Soils Local Roads -Warning: Soil Map may not be valid at this scale. Soil Rating Polygons Background Very severe Enlargement of maps beyond the scale of mapping can cause Aerial Photography Severe misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of Moderate contrasting soils that could have been shown at a more detailed scale. Slight Not rated or not available Please rely on the bar scale on each map sheet for map Soil Rating Lines measurements. Very severe Source of Map: Natural Resources Conservation Service Severe Web Soil Survey URL: Moderate Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator Not rated or not available projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Soil Rating Points Albers equal-area conic projection, should be used if more Very severe accurate calculations of distance or area are required. Severe This product is generated from the USDA-NRCS certified data as Moderate of the version date(s) listed below. Slight Soil Survey Area: El Paso County Area, Colorado Not rated or not available Survey Area Data: Version 19, Aug 31, 2021 Water Features Streams and Canals Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. **Transportation** Rails Date(s) aerial images were photographed: Aug 14, 2018—Sep 23. 2018 Interstate Highways

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor

shifting of map unit boundaries may be evident.

Tables—Erosion Hazard (Road, Trail)

Map unit symbol	Map unit name	Rating	Component name (percent)	Rating reasons (numeric values)	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	Moderate	Blakeland (98%)	Slope/erodibility (0.50)	19.2	45.9%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	Moderate	Nelson (55%)	Slope/erodibility (0.50)	12.2	29.3%
86	Stoneham sandy loam, 3 to 8 percent slopes	Moderate	Stoneham (95%)	Slope/erodibility (0.50)	1.8	4.3%
108	Wiley silt loam, 3 to 9 percent slopes	Moderate	Wiley (95%)	Slope/erodibility (0.50)	8.6	20.5%
Totals for Area	of Interest	•	•		41.8	100.0%

Rating	Acres in AOI	Percent of AOI
Moderate	41.8	100.0%
Totals for Area of Interest	41.8	100.0%

Rating Options—Erosion Hazard (Road, Trail)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX C – HYDROLOGIC CALCULATIONS

		SUMM	ARY - EXISTII	NG RUNOFF TA	ABLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
1	EX-1	10.36	3.54	24.73	3.54	24.73
2	EX-2	11.50	2.62	22.34	2.62	22.34
3	EX-3	0.26	0.21	0.91	0.21	0.91

Waterview East Commercial Drainage Report El Paso County, CO

$$I = \frac{28.5 P_1}{(10 + T_D)^{0.786}}$$

Where:

I = rainfall intensity (inches per hour)

P₁ = one-hour rainfall depth (inches) from NOAA Atlas 14
Point Precipitation Frequency Estimates, Colorado Springs, CO

T_C = storm duration (minutes)

	<u>2-yr</u>	<u>5-yr</u>	<u> 10-yr</u>	<u>100-yr</u>
P. =	1.01	1 20	1 56	2 75

Time Intensity Frequency Tabulation

	<u> </u>	- 1	,	
TIME	2 YR	5 YR	10 YR	100 YR
5	3.43	4.38	5.29	9.33
10	2.73	3.49	4.22	7.44
15	2.29	2.93	3.54	6.24
30	1.58	2.02	2.45	4.31
60	1.02	1.30	1.58	2.78
120	0.63	0.80	0.97	1.71

Weighted Imperviousness Calculations - Existing Conditions

SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVEI	MENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
EX-1	451188	10.36	0	90%	0.71	0.73	0.75	0.81	10.03	2%	0.03	0.09	0.17	0.36	0.33	100%	0.89	0.90	0.92	0.96	5%	0.06	0.12	0.19	0.38
EX-2	501101	11.50	0	90%	0.71	0.73	0.75	0.81	11.50	2%	0.03	0.09	0.17	0.36	0.00	100%	0.89	0.90	0.92	0.96	2%	0.03	0.09	0.17	0.36
EX-3	11114	0.26	0	90%	0.71	0.73	0.75	0.81	0.21	2%	0.03	0.09	0.17	0.36	0.04	100%	0.89	0.90	0.92	0.96	18%	0.17	0.22	0.29	0.46
OS-1	28574	0.66	0	90%	0.71	0.73	0.75	0.81	0.66	2%	0.03	0.09	0.17	0.36	0.00	100%	0.89	0.90	0.92	0.96	2%	0.03	0.09	0.17	0.36
TOTAL	963,403	22.77	0.00	90%	0.71	0.73	0.75	0.81	22.41	2%	0.03	0.09	0.17	0.36	0.37	100%	0.89	0.90	0.92	0.96	4%	0.04	0.10	0.18	0.37

Watervie	w East Com	mercial								Watercou	ırse Coeffic	ient				
Existing I	Runoff Calcu	ılations			Forest	& Meadow	2.50	Short G	rass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of C	Concentratio	n			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paved	d Area & Sha	allow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	Т	RAVEL TIM	IE				T(c) CHECK		FINAL
		DATA				TIME			T(t)				(URE	BANIZED BA	SINS)	T(c)
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
1	EX-1	451,188	10.36	0.12	100	3.4%	12.1	742	9.7%	7.00	2.2	5.7	17.8	842	14.7	14.7
2	EX-2	501,101	11.50	0.09	100	2.8%	13.1	1710	5.6%	7.00	1.7	17.2	30.3	1810	20.1	20.1
3	EX-3	11,114	0.26	0.22	100	9.6%	7.6	40	0.6%	7.00	0.5	1.2	8.8	140	10.8	8.8
4	OS-1	28,574	0.66	0.09	34	33.0%	3.4	625	2.8%	7.00	1.2	8.9	12.3	659	13.7	12.3

Waterview East Commercial Existing Runoff Calculations

Design Storm 5 Year

(Rational Method Procedure)

В	ASIN INFORMATIO	ON			DIRECT	RUNOFF		C	UMULATI	VE RUNOF	FF	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	CxA	l in/hr	Q cfs	T(c) min	CxA	l in/hr	Q cfs	NOTES
1	EX-1	10.36	0.12	14.7	1.20	2.96	3.54				3.54	
2	EX-2	11.50	0.09	20.1	1.04	2.53	2.62				2.62	
3	EX-3	0.26	0.22	8.8	0.06	3.66	0.21				0.21	
4	OS-1	0.66	0.09	12.3	0.06	3.20	0.19				0.19	

Waterview East Commercial Existing Runoff Calculations

Design Storm 100 Year

(Rational Method Procedure)

E	BASIN INFORMATION	٧		DIF	RECT RUNG	OFF		(CUMULATI	VE RUNOF	F	
DESIGN POINT	DRAIN BASIN	AREA ac.	RUNOFF COEFF	T(c) min	CxA	l in/hr	Q cfs	T(c) min	CxA	l in/hr	Q cfs	NOTES
1	EX-1	10.36	0.38	14.7	3.92	6.30	24.73				24.73	
2	EX-2	11.50	0.36	20.1	4.14	5.40	22.34				22.34	
3	EX-3	0.26	0.46	8.8	0.12	7.80	0.91				0.91	
4	OS-1	0.66	0.36	12.3	0.24	6.83	1.61				1.61	

Waterview East Commercial Drainage Report El Paso County, CO

		SUMM	ARY - PROPOS	SED RUNOFF T	ABLE	
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5-YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)
1	A1	0.67	1.87	4.70	1.87	4.70
2	A2	0.33	0.85	2.22	0.85	2.22
3	А3	0.41	1.27	3.10	1.27	3.10
4	A4	0.31	1.04	2.41	1.04	2.41
5	A5	0.32	1.12	2.60	1.12	2.60
6	A6	0.30	0.97	2.29	0.97	2.29
7	A7	0.39	1.43	3.33	1.43	3.33
8	A8	0.42	1.54	3.57	1.54	3.57
9	A9	0.41	1.53	3.55	1.53	3.55
10	A10	0.75	2.63	6.16	2.63	6.16
11	A11	0.26	0.62	1.56	0.62	1.56
12	A12	1.05	2.59	6.33	2.59	6.33
13	A13	0.11	0.37	0.87	0.37	0.87
14	A14	0.16	0.36	0.89	0.36	0.89
15	A15	0.39	1.25	2.97	1.25	2.97
16	A16	0.75	2.66	6.17	2.66	6.17
17	A17	0.83	1.55	4.06	1.55	4.06
18	A18	1.34	4.57	10.60	4.57	10.60
19	A19	0.60	2.14	4.96	2.14	4.96
20	A20	0.49	1.33	3.12	1.33	3.12
21	A21	0.63	1.99	4.65	1.99	4.65
22	A22	2.10	4.10	10.94	4.10	10.94
23	PD-1	0.65	0.19	1.64	0.19	1.64
24	PD-2	0.74	0.67	2.57	0.67	2.57
25	PD-3	0.21	0.08	0.65	0.08	0.65
26	OS-1	2.05	0.61	4.46	0.61	4.46
27	OS-2	4.78	4.34	15.81	4.52	17.37
28	OS-3	0.67	1.45	4.03	1.45	4.03
29	OS-4	0.61	0.18	1.55	0.18	1.55

Weighted Imperviousness Calculations

SUB-	AREA	AREA	ROOF	ROOF		RO	OF		LANDSCAPE	LANDSCAPE		LAND	SCAPE		PAVEMENT	PAVEMENT		PAVE	ИENT		WEIGHTED		WEIGHTED	COEFFICIEN	TS
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	AREA	IMPERVIOUSNESS	C2	C5	C10	C100	IMPERVIOUSNESS	C2	C5	C10	C100
A1	29196	0.67	0.25	90%	0.71	0.73	0.75	0.81	0.16	2%	0.03	0.09	0.17	0.36	0.26	100%	0.89	0.90	0.92	0.96	73%	0.62	0.64	0.68	0.76
A2	14430	0.33	0.13	90%	0.71	0.73	0.75	0.81	0.10	2%	0.03	0.09	0.17	0.36	0.10	100%	0.89	0.90	0.92	0.96	66%	0.56	0.59	0.62	0.72
А3	17922	0.41	0.17	90%	0.71	0.73	0.75	0.81	0.06	2%	0.03	0.09	0.17	0.36	0.18	100%	0.89	0.90	0.92	0.96	81%	0.69	0.71	0.74	0.81
A4	13342	0.31	0.16	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	0.15	100%	0.89	0.90	0.92	0.96	95%	0.80	0.81	0.83	0.88
A5	13734	0.32	0.10	90%	0.71	0.73	0.75	0.81	0.01	2%	0.03	0.09	0.17	0.36	0.20	100%	0.89	0.90	0.92	0.96	92%	0.79	0.81	0.83	0.88
A6	13231	0.30	0.12	90%	0.71	0.73	0.75	0.81	0.02	2%	0.03	0.09	0.17	0.36	0.16	100%	0.89	0.90	0.92	0.96	89%	0.76	0.78	0.80	0.86
A7	17111	0.39	-	90%	0.71	0.73	0.75	0.81	0.03	2%	0.03	0.09	0.17	0.36	0.36	100%	0.89	0.90	0.92	0.96	92%	0.82	0.83	0.86	0.91
A8	18143	0.42	-	90%	0.71	0.73	0.75	0.81	0.03	2%	0.03	0.09	0.17	0.36	0.39	100%	0.89	0.90	0.92	0.96	93%	0.83	0.85	0.87	0.92
A9	18021	0.41	-	90%	0.71	0.73	0.75	0.81	0.03	2%	0.03	0.09	0.17	0.36	0.39	100%	0.89	0.90	0.92	0.96	93%	0.83	0.84	0.87	0.92
A10	32454	0.75	0.10	90%	0.71	0.73	0.75	0.81	0.07	2%	0.03	0.09	0.17	0.36	0.58	100%	0.89	0.90	0.92	0.96	90%	0.79	0.81	0.83	0.89
A11	11290	0.26	0.07	90%	0.71	0.73	0.75	0.81	0.06	2%	0.03	0.09	0.17	0.36	0.13	100%	0.89	0.90	0.92	0.96	75%	0.64	0.67	0.70	0.78
A12	45772	1.05	-	90%	0.71	0.73	0.75	0.81	0.23	2%	0.03	0.09	0.17	0.36	0.82	100%	0.89	0.90	0.92	0.96	79%	0.70	0.72	0.76	0.83
A13	4637	0.11	-	90%	0.71	0.73	0.75	0.81	0.02	2%	0.03	0.09	0.17	0.36	0.09	100%	0.89	0.90	0.92	0.96	86%	0.77	0.79	0.81	0.88
A14	6932	0.16	0.04	90%	0.71	0.73	0.75	0.81	0.04	2%	0.03	0.09	0.17	0.36	0.09	100%	0.89	0.90	0.92	0.96	75%	0.65	0.67	0.70	0.78
A15	16786	0.39	0.25	90%	0.71	0.73	0.75	0.81	0.02	2%	0.03	0.09	0.17	0.36	0.11	100%	0.89	0.90	0.92	0.96	89%	0.73	0.75	0.77	0.83
A16	32766	0.75	0.04	90%	0.71	0.73	0.75	0.81	0.04	2%	0.03	0.09	0.17	0.36	0.66	100%	0.89	0.90	0.92	0.96	94%	0.83	0.84	0.87	0.92
A17	36266	0.83	0.34	90%	0.71	0.73	0.75	0.81	0.26	2%	0.03	0.09	0.17	0.36	0.24	100%	0.89	0.90	0.92	0.96	65%	0.55	0.58	0.62	0.71
A18	58375	1.34	0.72	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	0.62	100%	0.89	0.90	0.92	0.96	95%	0.79	0.81	0.83	0.88
A19	26189	0.60	0.30	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	0.30	100%	0.89	0.90	0.92	0.96	95%	0.80	0.82	0.84	0.89
A20	21287	0.49	0.37	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	0.12	100%	0.89	0.90	0.92	0.96	92%	0.75	0.77	0.79	0.85
A21	27276	0.63	0.43	90%	0.71	0.73	0.75	0.81	-	2%	0.03	0.09	0.17	0.36	0.19	100%	0.89	0.90	0.92	0.96	93%	0.77	0.78	0.80	0.86
A22	91562	2.10	0.29	90%	0.71	0.73	0.75	0.81	0.80	2%	0.03	0.09	0.17	0.36	1.01	100%	0.89	0.90	0.92	0.96	61%	0.54	0.57	0.61	0.71
PD-1	28372	0.65	-	90%	0.71	0.73	0.75	0.81	0.65	2%	0.03	0.09	0.17	0.36	-	100%	0.89	0.90	0.92	0.96	2%	0.03	0.09	0.17	0.36
PD-2	32272	0.74	0.15	90%	0.71	0.73	0.75	0.81	0.54	2%	0.03	0.09	0.17	0.36	0.05	100%	0.89	0.90	0.92	0.96	26%	0.22	0.27	0.33	0.49
PD-3	9268	0.21	-	90%	0.71	0.73	0.75	0.81	0.21	2%	0.03	0.09	0.17	0.36	-	100%	0.89	0.90	0.92	0.96	2%	0.03	0.09	0.17	0.36
OS-1	89106	2.05	-	90%	0.71	0.73	0.75	0.81	2.00	2%	0.03	0.09	0.17	0.36	0.05	100%	0.89	0.90	0.92	0.96	4%	0.05	0.11	0.19	0.37
OS-2	208367	4.78	-	90%	0.71	0.73	0.75	0.81	3.53	2%	0.03	0.09	0.17	0.36	1.26	100%	0.89	0.90	0.92	0.96	28%	0.26	0.30	0.37	0.52
OS-3	29397	0.67	-	90%	0.71	0.73	0.75	0.81	0.32	2%	0.03	0.09	0.17	0.36	0.36	100%	0.89	0.90	0.92	0.96	54%	0.49	0.52	0.57	0.68
OS-4	26532	0.61	-	90%	0.71	0.73	0.75	0.81	0.61	2%	0.03	0.09	0.17	0.36	-	100%	0.89	0.90	0.92	0.96	2%	0.03	0.09	0.17	0.36
TOTAL	990,036	22.73	4.05	90%	0.71	0.73	0.75	0.81	9.83	2%	0.03	0.09	0.17	0.36	8.85	100%	0.89	0.90	0.92	0.96	56%	0.49	0.52	0.57	0.67

Pond 1 Imperviousness:
Pond 2 Imperviousness:
Pond 3 Imperviousness:

47.18%
79.52%
83.42%

Watervie	w East Con	nmercial -	Drainage	Report						Watercou	rse Coeffic	ient				
Proposed Runoff Calculations						& Meadow	2.50	Short G	ass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of (Concentratio					Cultivation	5.00			re Ground	10.00					20.00
		SUB-BASIN DATA			INIT	IAL / OVERL	AND	Т	RAVEL TIM T(t)	1E			(LIRE	T(c) CHECK BANIZED BA		FINAL T(c)
DESIGN	DRAIN	AREA	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	1(0)
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
1	A1	29,196	0.67	0.64	100	7.6%	4.3	110	1.0%	20.00	2.0	0.9	5.2	210	11.2	5.2
2	A2	14,430	0.33	0.59	60	15.6%	2.9	20	3.1%	20.00	3.5	0.1	5.0	80	10.4	5.0
3	А3	17,922	0.41	0.71	70	7.5%	3.1	70	1.6%	20.00	2.5	0.5	5.0	140	10.8	5.0
4	A4	13,342	0.31	0.81	100	0.8%	5.7	23	0.8%	20.00	1.8	0.2	5.9	123	10.7	5.9
5	A5	13,734	0.32	0.81	60	3.0%	2.9	65	2.8%	20.00	3.3	0.3	5.0	125	10.7	5.0
6	A6	13,231	0.30	0.78	100	1.0%	5.9	38	1.0%	20.00	2.0	0.3	6.2	138	10.8	6.2
7	A7	17,111	0.39	0.83	50	2.6%	2.5	216	1.4%	20.00	2.4	1.5	5.0	266	11.5	5.0
8	A8	18,143	0.42	0.85	50	3.2%	2.2	218	2.1%	20.00	2.9	1.3	5.0	268	11.5	5.0
9	A9	18,021	0.41	0.84	50	3.6%	2.2	216	2.9%	20.00	3.4	1.1	5.0	266	11.5	5.0
10	A10	32,454	0.75	0.81	80	3.1%	3.3	220	3.4%	20.00	3.7	1.0	5.0	300	11.7	5.0
11	A11	11,290	0.26	0.67	100	0.8%	8.6	63	1.1%	20.00	2.1	0.5	9.1	163	10.9	9.1
12	A12	45,772	1.05	0.72	100	0.5%	8.7	388	2.8%	20.00	3.3	1.9	10.6	488	12.7	10.6
13	A13	4,637	0.11	0.79	20	0.2%	4.4	92	2.0%	20.00	2.8	0.5	5.0	112	10.6	5.0
14	A14	6,932	0.16	0.67	100	0.5%	9.9	134	0.8%	20.00	1.8	1.2	11.1	234	11.3	11.1
15	A15	16,786	0.39	0.75	60	1.0%	5.0	30	3.0%	20.00	3.5	0.1	5.1	90	10.5	5.1
16	A16	32,766	0.75	0.84	100	2.0%	3.7	329	1.7%	20.00	2.6	2.1	5.8	429	12.4	5.8
17	A17	36,266	0.83	0.58	100	0.5%	12.0	300	0.9%	20.00	1.9	2.6	14.6	400	12.2	12.2
18	A18	58,375	1.34	0.81	100	2.7%	3.8	269	1.4%	20.00	2.4	1.9	5.7	369	12.1	5.7
19	A19	26,189	0.60	0.82	50	3.1%	2.5	240	2.3%	20.00	3.0	1.3	5.0	290	11.6	5.0
20	A20	21,287	0.49	0.77	100	0.5%	7.6	222	0.8%	20.00	1.8	2.1	9.7	322	11.8	9.7
21	A21	27,276	0.63	0.78	100	1.6%	5.0	156	0.8%	20.00	1.8	1.5	6.5	256	11.4	6.5
22	A22	91,562	2.10	0.57	100	1.4%	8.7	247	1.5%	20.00	2.4	1.7	10.4	347	11.9	10.4
23	PD-1	28,372	0.65	0.09	100	2.0%	14.7	201	4.8%	7.00	1.5	2.2	16.9	301	11.7	11.7
24	PD-2	32,272	0.74	0.27	100	1.9%	12.3	116	7.0%	7.00	1.9	1.0	13.3	216	11.2	11.2
25	PD-3	9,268	0.21	0.09	60	15.0%	5.8	60	2.0%	7.00	1.0	1.0	6.8	120	10.7	6.8
26	OS-1	89,106	2.05	0.11	100	6.1%	9.9	1220	3.0%	7.00	1.2	16.8	26.7	1320	17.3	17.3
27	OS-2	208,367	4.78	0.30	100	11.3%	6.5	670	1.8%	7.00	0.9	11.9	18.4	770	14.3	14.3
28	OS-3	29,397	0.67	0.52	50	4.9%	4.4	148	3.9%	7.00	1.4	1.8	6.2	198	11.1	6.2
29	OS-4	26,532	0.61	0.09	36	33.0%	3.5	625	2.8%	8.00	1.3	7.8	11.3	661	13.7	11.3

Waterview East Commercial - Drainage Report

Proposed Runoff Calculations

Design Storm 5 Year

(Rational Method Procedure)

R	ASIN INFORMATION	N			DIRECT	RUNOFF		CUMULATIVE RUNOFF			FF	T
DESIGN	DRAIN	AREA	RUNOFF	T(c)	CxA	I	Q	T(c)	CxA	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
1	A1	0.67	0.64	5.2	0.43	4.33	1.87				1.87	
2	A2	0.33	0.59	5.0	0.19	4.38	0.85				0.85	
3	A3	0.41	0.71	5.0	0.29	4.38	1.27				1.27	
4	A4	0.31	0.81	5.9	0.25	4.18	1.04				1.04	
5	A5	0.32	0.81	5.0	0.25	4.38	1.12				1.12	
6	A6	0.30	0.78	6.2	0.24	4.12	0.97				0.97	
7	A7	0.39	0.83	5.0	0.33	4.38	1.43				1.43	
8	A8	0.42	0.85	5.0	0.35	4.38	1.54				1.54	
9	A9	0.41	0.84	5.0	0.35	4.38	1.53				1.53	
10	A10	0.75	0.81	5.0	0.60	4.38	2.63				2.63	
11	A11	0.26	0.67	9.1	0.17	3.62	0.62				0.62	
12	A12	1.05	0.72	10.6	0.76	3.41	2.59				2.59	
13	A13	0.11	0.79	5.0	0.08	4.38	0.37				0.37	
14	A14	0.16	0.67	11.1	0.11	3.34	0.36				0.36	
15	A15	0.39	0.75	5.1	0.29	4.34	1.25				1.25	
16	A16	0.75	0.84	5.8	0.63	4.20	2.66				2.66	
17	A17	0.83	0.58	12.2	0.48	3.22	1.55				1.55	
18	A18	1.34	0.81	5.7	1.08	4.22	4.57				4.57	
19	A19	0.60	0.82	5.0	0.49	4.38	2.14				2.14	
20	A20	0.49	0.77	9.7	0.38	3.54	1.33				1.33	
21	A21	0.63	0.78	6.5	0.49	4.07	1.99				1.99	
22	A22	2.10	0.57	10.4	1.19	3.44	4.10				4.10	
23	PD-1	0.65	0.09	11.7	0.06	3.27	0.19				0.19	
24	PD-2	0.74	0.27	11.2	0.20	3.33	0.67				0.67	
25	PD-3	0.21	0.09	6.8	0.02	4.00	0.08				0.08	
26	OS-1	2.05	0.11	17.3	0.22	2.73	0.61				0.61	
27	OS-2	4.78	0.30	14.3	1.45	2.99	4.34				4.52	Includes OS-4
28	OS-3	0.67	0.52	6.2	0.35	4.12	1.45				1.45	
29	OS-4	0.61	0.09	11.3	0.05	3.32	0.18				0.18	

Waterview East Commercial - Drainage Report

Proposed Runoff Calculations

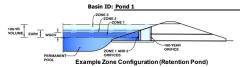
Design Storm 100 Year

(Rational Method Procedure)

	BASIN INFORMATION	N	1	Dig	ECT RUNG	OFF		CUMULATIVE RUNOFF		F	T	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	CxA	I	Q	T(c)	CxA	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
1	A1	0.67	0.76	5.2	0.51	9.22	4.70				4.70	
2	A2	0.33	0.72	5.0	0.24	9.33	2.22				2.22	
3	A3	0.41	0.81	5.0	0.33	9.33	3.10				3.10	
4	A4	0.31	0.88	5.9	0.27	8.90	2.41				2.41	
5	A5	0.32	0.88	5.0	0.28	9.33	2.60				2.60	
6	A6	0.30	0.86	6.2	0.26	8.77	2.29				2.29	
7	A7	0.39	0.91	5.0	0.36	9.33	3.33				3.33	
8	A8	0.42	0.92	5.0	0.38	9.33	3.57				3.57	
9	A9	0.41	0.92	5.0	0.38	9.33	3.55				3.55	
10	A10	0.75	0.89	5.0	0.66	9.33	6.16				6.16	
11	A11	0.26	0.78	9.1	0.20	7.71	1.56				1.56	
12	A12	1.05	0.83	10.6	0.87	7.26	6.33				6.33	
13	A13	0.11	0.88	5.0	0.09	9.33	0.87				0.87	
14	A14	0.16	0.78	11.1	0.12	7.12	0.89				0.89	
15	A15	0.39	0.83	5.1	0.32	9.26	2.97				2.97	
16	A16	0.75	0.92	5.8	0.69	8.95	6.17				6.17	
17	A17	0.83	0.71	12.2	0.59	6.85	4.06				4.06	
18	A18	1.34	0.88	5.7	1.18	9.00	10.60				10.60	
19	A19	0.60	0.89	5.0	0.53	9.33	4.96				4.96	
20	A20	0.49	0.85	9.7	0.41	7.54	3.12				3.12	
21	A21	0.63	0.86	6.5	0.54	8.67	4.65				4.65	
22	A22	2.10	0.71	10.4	1.49	7.33	10.94				10.94	
23	PD-1	0.65	0.36	11.7	0.23	6.98	1.64				1.64	
24	PD-2	0.74	0.49	11.2	0.36	7.11	2.57				2.57	
25	PD-3	0.21	0.36	6.8	0.08	8.53	0.65				0.65	
26	OS-1	2.05	0.37	17.3	0.77	5.83	4.46				4.46	
27	OS-2	4.78	0.52	14.3	2.48	6.38	15.81				17.37	Includes OS-4
28	OS-3	0.67	0.68	6.2	0.46	8.79	4.03				4.03	
29	OS-4	0.61	0.36	11.3	0.22	7.09	1.55				1.55	

APPENDIX D - HYDRAULIC CALCULATIONS

This section is not needed for early grading.


Please provide calculations for swales, which will direct flows through the site.

Please provide calculations for TSB ponds.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Waterview East Commercial

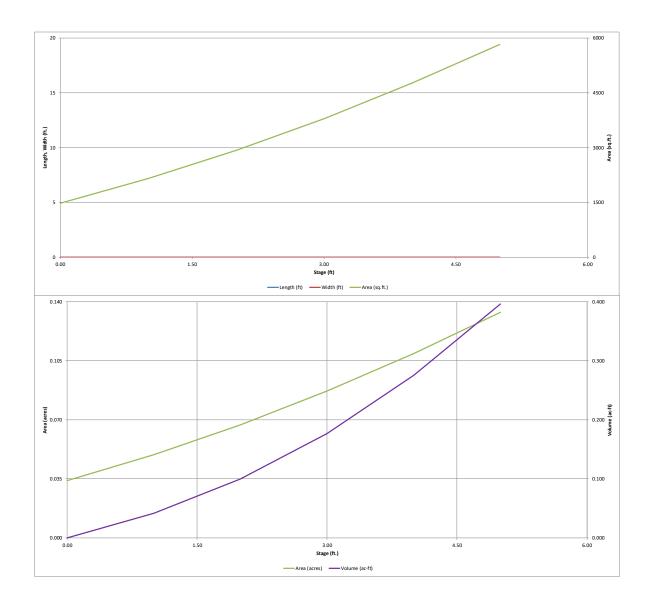
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	2.75	acres
Watershed Length =	380	ft
Watershed Length to Centroid =	190	ft
Watershed Slope =	0.014	ft/ft
Watershed Imperviousness =	47.18%	percent
Percentage Hydrologic Soil Group A =	50.0%	percent
Percentage Hydrologic Soil Group B =	50.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Painfall Denths -	Hear Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Lithan Hydrograph Procedure

the embedded Colorado Urban Hydrograph Procedure.									
Water Quality Capture Volume (WQCV) =	0.046	acre-feet							
Excess Urban Runoff Volume (EURV) =	0.143	acre-feet							
2-yr Runoff Volume (P1 = 1.01 in.) =	0.091	acre-feet							
5-yr Runoff Volume (P1 = 1.29 in.) =	0.123	acre-feet							
10-yr Runoff Volume (P1 = 1.56 in.) =	0.162	acre-feet							
25-yr Runoff Volume (P1 = 2 in.) =	0.261	acre-feet							
50-yr Runoff Volume (P1 = 2.25 in.) =	0.311	acre-feet							
100-yr Runoff Volume (P1 = 2.75 in.) =	0.431	acre-feet							
500-yr Runoff Volume (P1 = 3.14 in.) =	0.515	acre-feet							
Approximate 2-yr Detention Volume =	0.084	acre-feet							
Approximate 5-yr Detention Volume =	0.115	acre-feet							
Approximate 10-yr Detention Volume =	0.153	acre-feet							
Approximate 25-yr Detention Volume =	0.198	acre-feet							
Approximate 50-yr Detention Volume =	0.214	acre-feet							
Approximate 100-yr Detention Volume =	0.264	acre-feet							
		-							

Optional Use	r Overrides
	acre-feet
	acre-feet
1.01	inches
1.29	inches
1.56	inches
2.00	inches
2.25	inches
2.75	inches
	inches


Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.046	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.097	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.122	acre-feet
Total Detention Basin Volume =	0.264	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

Initial Surcharge Area (A _{ISV}) =	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (LMAIN) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

FOR	REFE
-----	------

Depth Increment =	1.00	ft	,	,		Colinsol I			,
Stage - Storage	Stage	Optional Override Stage (ft)	Length	Width	Area (ft²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Description Top of Micropool	(ft) 	0.00	(ft) 	(ft) 		1,481	0.034	(it)	(ac-it)
	-	1.00	-		1	2,150	0.049	1,815	0.042
		2.00	-		-	2,919	0.067	4,350	0.100
		3.00	-		-	3,789	0.087	7,704	0.177
		4.00 5.00	-		_	4,759 5,830	0.109	11,978 17,272	0.275 0.397
					-	0,000		,	
			-		-				
			-		-				
			-		-				
	-		-		-				
	-				-				
			-		-				
					-				
	-		-		-				
			-		-				
	-		-		-				
					-				
			-		-				
			-		-				
	-		-		-				
					-				
			-		-				
					-				
			-		-				
	-				-				
			-		-				
	-		-		_				
	-				-				
			-		-				
					-				
			-		-				
					-				
			-		-				
					-				
			-		-				
					-				
					-				
	-		-		-				
	-		-		-				
			-		-				
			-		_				
	-		-		-				
	-		-		-				
					-				
			-		-				
	-		-		-				
	1		-		1 1				
			-						
			-		-				
	-				-				
	-		-		-				
			-		-				
					-				
					-				
					-				
	1				1 1				
			-		-				
					-				
171		\			-				
· 16		\mathbf{M}	7						
	-	VI			-				
						7 A	, -		
			-	~	T		<i>\ </i>	-	_
			_ =	===	_	7 \	V <i>I</i>	1	
			-				1	_ /	
					-			- 1	
			-		-			<u> </u>	
			_		-				

FOR REFERENCE ONLY

MHFD-Detention_v4 04_Pond1.xism, Basin 3/16/2023, 3:38 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

1.00

Stage (ft) Length (ft)

(ft)

(ft²)

5,450

7,402

9,453

11,598

13,836

18,594

Stage (ft) 0.00

1.00

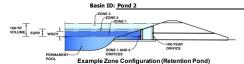
2.00

3.00

4.00

5.00

6.00


MHFD-Detention, Version 4.04 (February 2021)

Depth Increment =

Stage - Storage
Description

Top of Micropool

Project: Waterview East Commercial

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	7.76	acres
Watershed Length =	800	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	79.52%	percent
Percentage Hydrologic Soil Group A =	50.0%	percent
Percentage Hydrologic Soil Group B =	50.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Painfall Denths -	Hear Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Proced	ure.
Water Quality Capture Volume (WQCV) =	0.210	acre-feet
Excess Urban Runoff Volume (EURV) =	0.747	acre-feet
2-yr Runoff Volume (P1 = 1.01 in.) =	0.472	acre-feet
5-yr Runoff Volume (P1 = 1.29 in.) =	0.623	acre-feet
10-yr Runoff Volume (P1 = 1.56 in.) =	0.778	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.068	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.226	acre-feet
100-yr Runoff Volume (P1 = 2.75 in.) =	1.564	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	1.817	acre-feet
Approximate 2-yr Detention Volume =	0.456	acre-feet
Approximate 5-yr Detention Volume =	0.605	acre-feet
Approximate 10-yr Detention Volume =	0.764	acre-feet
Approximate 25-yr Detention Volume =	0.966	acre-feet
Approximate 50-yr Detention Volume =	1.030	acre-feet
Approximate 100-yr Detention Volume =	1.200	acre-feet

Optional User Override						
	acre-feet					
	acre-feet					
1.01	inches					
1.29	inches					
1.56	inches					
2.00	inches					
2.25	inches					
2.75	inches					
	inches					

Define Zones and Basin Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.210	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.537	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	0.452	acre-fe
Total Detention Basin Volume =	1.200	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
	-								
			-		-				
			-		-				
			-		-				
			-		-				
			_		_				
			-		-				
			-						
			-		-				
			-						
			-		-				
					-				
			-						
					-				
			-		-		1	1	
			-		-				
			_		_		1	1	
			-		-			1	
			-		-				
			-		-		1	1	
			-		-				
									<u> </u>
			-		-				
			-		-		i -	i -	
			-		-				
			-		-				
			-		-				
					-				
			-		-				
			-		-				
			-		-				
			-		-				
			-		-				
			_		_				
			-		-				
			-		-				
			-		-				
	 						 		
			-		-				
			-		-		i -	i -	
			-		-				
			-		-		1	1	
			-						
			-		-				
			-		-				
	 		- - - - -	 					
			-		-				
			-		-				
					-				
			-						
	 		- - -		-				
			-		-		i e	i	
			-		-				
			-		-				
			-	-	-				
			-		-				
				 			l	l	
							 		
	-		-		-		l	l	
							l	l	
~ / 7			-		-				
			⊢ -				 		
		A >		i —					
7 7 1	<u> </u>	/\ <i> </i>		 	-		 		
\			/ : 1		 -				
_	~ /	N/		1.	-		-		<u> </u>
	_ ~ 4	-					⊢ —		
	 	- 1		_		1 -		 	
	 						.	<u> </u>	
			ļ <u> </u>		-		. / /	_	
			-				\	- 1	

Area (acre)

0.125

0.170

0.217

0.266

0.371

0.427

6,426

14,853

25,379

38,096

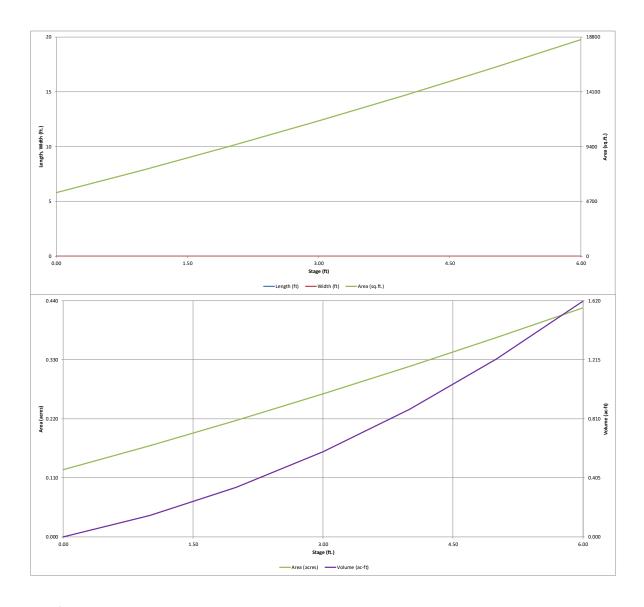
53,098

70,479

Volume (ac-ft)

0.148

0.341


0.583

0.875

1.219

1.618

FOR REFE

FOR REFERENCE ONLY

MHFD-Detention_v4 04_Pond2_xtsm, Basin 3/16/2023, 3:39 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Waterview East Commercial

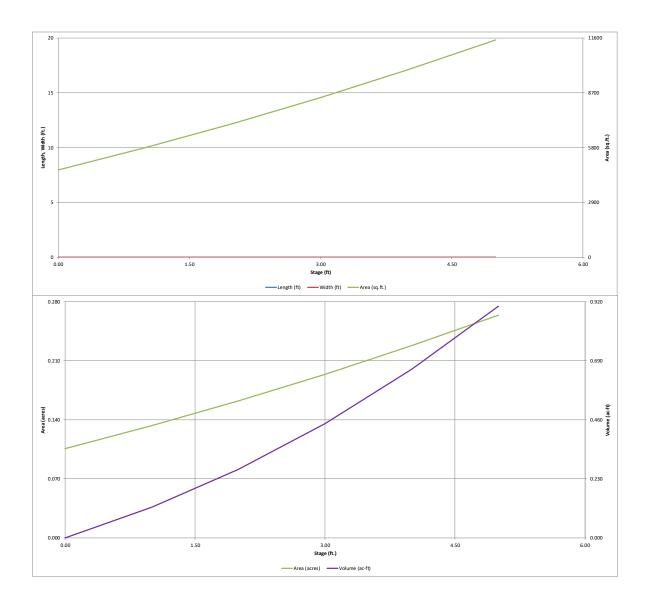
Watershed Information

Selected BMP Type =	EDB				
Watershed Area =	4.10	acres			
Watershed Length =	580	ft			
Watershed Length to Centroid =	290	ft			
Watershed Slope =	0.019	ft/ft			
Watershed Imperviousness =	83.42%	percent			
Percentage Hydrologic Soil Group A =	80.0%	percent			
Percentage Hydrologic Soil Group B =	20.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	igraph Procedu	ıre.
Water Quality Capture Volume (WQCV) =	0.120	acre-feet
Excess Urban Runoff Volume (EURV) =	0.440	acre-feet
2-yr Runoff Volume (P1 = 1.01 in.) =	0.258	acre-feet
5-yr Runoff Volume (P1 = 1.29 in.) =	0.340	acre-feet
10-yr Runoff Volume (P1 = 1.56 in.) =	0.420	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.567	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.650	acre-feet
100-yr Runoff Volume (P1 = 2.75 in.) =	0.823	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.956	acre-feet
Approximate 2-yr Detention Volume =	0.255	acre-feet
Approximate 5-yr Detention Volume =	0.336	acre-feet
Approximate 10-yr Detention Volume =	0.418	acre-feet
Approximate 25-yr Detention Volume =	0.544	acre-feet
Approximate 50-yr Detention Volume =	0.588	acre-feet
Approximate 100-yr Detention Volume =	0.687	acre-feet

Optiona	Optional User Overrides					
		acre-feet				
		acre-feet				
1.0	1	inches				
1.2	9	inches				
1.5	6	inches				
2.0	0	inches				
2.2	5	inches				
2.7	5	inches				
		inches				


Define Zones and Basin Geometry

etine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.120	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.320	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.247	acre-fee
Total Detention Basin Volume =	0.687	acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

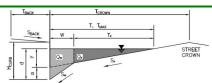
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (LMAIN) =	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Depth (increpoe)	4,615 0.106 5,793 0.133 5,204 0.11 7,071 0.162 11,636 0.26 8,449 0.194 19,396 0.44 9,928 0.228 28,584 0.65 11,507 0.264 39,302 0.90 11,507 0.264 39,302 0.90		Г			(ft)	Description
1.00	5,793 0.133 5,204 0.11 7,071 0.162 11,636 0.26 8,449 0.194 19,396 0.44 9,928 0.228 28,584 0.65 11,507 0.264 39,302 0.90				0.00		
- 220 7,871	7,071 0.162 11,636 0.26 8,449 0.194 19,396 0.44 9,928 0.228 28,584 0.65 11,507 0.264 39,302 0.90		+				
1	8,449 0.194 19,396 0.44 9,928 0.228 28,584 0.65 11,507 0.264 39,302 0.90		+				
9,938 0.288 33,940 0.264 39,902 39,902	9,928 0.228 28,584 0.65 11,507 0.264 39,302 0.90						
1.500	11,507 0.264 39,302 0.90						
				-	4.00		
				-	5.00		
				-		-	
				-			
				-			
			T	-			
		_	T				
			1				
		_	+				
			+				
			+				
		_	+				
			+				
			_				
		_					
			L				
		[Ι.				
			Г	-		-	
			T	-			
		-	t	-			
		_	t				
			t				
			+				
			H				
			╁				
		_	┝				
			_				
				-			
				-			
				-			
				-			
			1	-			
			T				
			+				
		_	+				
			+				
			+				
		_	+				
			-				
			_				
		_					
				-			
				-			
				-			
			Π	-			
		- 1	t	-			
			t				
			t				
			+				
		_	H				
		_	+				
			╄				
			1				
			L				
			┝				
		- 1	+				
			L				
			L				
		+	+				
			t	-			
			F	-			
			╁				
			╁				
			L	-			
			L	-			
			Ͱ				
			۲				
				-			
			F				
		-+	╁				
			۲	-		-	
				-			
		- [F	-			
			╁				
			T	-			
			Г	-			\ .
		+	+			- i	\sim \wedge

FOR REFERENCE OF THE PROPERTY OF THE PROPERTY

MHFD-Detention_v4 04_Pond3.xism, Basin 3/16/2023, 3.42 PM

Waterview East - Tributary Drainage Basins							
Pond ID	Tributary Basins	Impervious Area	Total Area	% Impervious			
Pond 1	A22, PD-1	1.3	2.75	47.3%			
Pond 2	A1-A16, PD-2	6.1	7.76	78.6%			
Pond 3	A17-A21, PD-3	3.63	4.1	88.5%			
Total		11.03	14.61	75.5%			


FOR REFERENCE ONLY

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

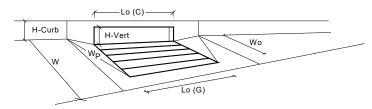
Project:

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Inlet ID: DP 27 EX. INLET

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions


MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

_			
$T_{BACK} =$	50.0	ft	
$S_{BACK} =$	0.100	ft/ft	
$n_{BACK} =$	0.020		
-		='	
$H_{CURB} =$	6.00	inches	
$T_{CROWN} =$	44.0	ft	
W =	2.00	ft	
$S_X =$	0.017	ft/ft	
$S_W =$	0.083	ft/ft	
$S_0 =$	0.000	ft/ft	
n _{STREET} =	0.016		
-		='	
_	Minor Storm	Major Storm	
$T_{MAX} =$	22.0	44.0	ft
$d_{MAX} =$	6.0	12.0	inches
•			="
	Minor Storm	Major Storm	
$Q_{allow} =$	SUMP	SUMP	cfs

FOR REFERENCE ONLY

1

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet Colorado Springs D-10-R	Type =		rings D-10-R	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.00	4.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	10.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	12.00	12.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	8.00	8.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	8.00	8.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	81.00	81.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Trt.
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.71	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.87	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOD	MA100	
Total Talet Takananting Consider (consideration)	۰ ٦	MINOR 8.9	MAJOR 32.1	7-6-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.9 8.0	32.1 31.0	cfs cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	0.0	31.0	us

FOR REFERENCE ONLY

APPENDIX E - MASTER DEVELOPMENT DRAINAGE PLANS

b. The <u>fully developed conditions</u> for the site are as follows:

1. <u>Big Johnson Reservoir:</u>

Under proposed conditions, developed flows for the westernmost drainage basin (Big Johnson Reservoir) will be directed into a proposed full spectrum detention pond on the west side of the site approximately 2,030 feet south of the intersection of Bradley Road and Powers Boulevard. Sub-basins and Design Points within this major basin are summarized in Tables 3.3, 3.4, and 3.5 below:

Table 3.3 Trails at Aspen Ridge Big Johnson Reservoir Proposed Conditions - Sub-basin Summa	ry		
Basin	Area	Q5	Q100
	acres	cfs	cfs
Big Johnson Reservoir N	14.1	21.2	46.8
0	11.7	17.4	38.4
p	8.52	22.0	43.9
Q	2.4	4.2	8.8
OS-2	11.4	1.7	11.7

Table 3.4 <u>Trails at Aspen Ridge</u> Big Johnson Reservoir Proposed Design Point Summary												
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)							
N	N	P	14.1	21.2	46.8							
О	О	P	11.7	17.4	38.4							
P (Into West Pond)	N, O, P	West Pond Discharge	34.7	47.6	101.5							
West Pond Discharge (UD-Detention)	N, O, P	Powers Ditch		1.0	28.3							
Q	Q	Powers Ditch	2.4	4.9	10.3							
OS-2 (This sub-basin is just southeast of the Powers and Bradley intersection. Flows which might have flowed across TAR to the Powers ditch will be diverted to the ditch prior to entering the TAR property.)	OS-2	Powers Ditch	11.4	1.7	11.7							

	Table 3.8 <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Design Point Flow Description
Design Point	Description
OS-1	 This design point is at the downstream end of the offsite sub-basin north of Bradley Road. Flows in this sub-basin will sheet flow to the road ditch running along Bradley and Powers Boulevard. Once channelized in the ditch flows will be directed to a proposed 24-inch RCP storm pipe sleeved into one of the existing 42-inch CMP cross road pipes and conveyed on to design point A. Please note that approximately 7.3 acres of the area tributary to this design point have been diverted from the Big Johnson Reservoir by CDOT construction of Powers Boulevard. Future development of that portion of the tributary sub-basin must redirect these flows to the Big Johnson Reservoir to maintain compliance with the two relevant DBPS reports. Development of the OS-1 Sub-basin will require onsite detention and an FDR.
A	 This design point is at the manhole (MH-3) receiving flows from DP OS-1 to the north and flows from Sub-basin A captured in the two pairs of inlets on Frontside Drive to the east and west of its intersection with Legacy Drive. These flows will be conveyed on via 30-inch storm pipe to design point B. Flows from the required onsite detention from the two commercial lots on either side of Legacy Drive will be picked up in the back of the inlets. A 24-inch storm pipe will be stubbed out for the west commercial lot (Inlet 1-A) and an 18-inch will be stubbed out for the east commercial lot (Inlet 3-A).
В	- This design point is at a manhole (MH-108) just downstream of an on-grade inlet (1-B) capturing gutter flows from the west half of Legacy Drive reflected in Sub-basin B. These flows are carried downstream via 30-inch storm pipe to design point C.
С	- This design point is a manhole (MH-6) which combines storm sewer flows from design point B with storm sewer flows from Sub-basin C. Flows in Sub-basin C will sheet flow off the residential lots and into the street curb and gutter. The road gutters will convey these flows on to be captured in four pairs of sump inlets (1-C through 8-C) and conveyed to the design point. The combined flows will be conveyed downstream via 42-inch storm pipe to design point D.
D	- This design point is at a manhole (MH-117) just downstream of an at-grade inlet (1-D) capturing flows from Sub-basin D. Flows in Sub-basin D will sheet flow to the Legacy Road curb and gutter. These gutter flows are captured in the at-grade inlet and combined with storm sewer flows from design point C and carried on via 42-inch storm pipe to design point E.
Е	- This design point is located at a manhole (MH-15) just downstream of a pair of sump inlets capturing flows from Sub-basin E. Flows in Sub-basin E will sheet flow across the park area until being captured in the curb and gutter along Falling Rock Drive. Concentrated gutter flows will then be captured by the sump inlets and conveyed on via storm sewer to the design point. These flows will be combined with flows from design point D and carried on via 48-inch storm pipe to design point G.

32

Trails at Aspen Ridge (Waterview II)
El Paso County, CO
JTS
Proposed Condition Project Name: Project Location: Designer Notes:

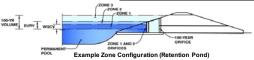
Average Channel Velocity Average Slope for Initial Flow

(If specific channel vel is used, this will be ignored) (If Elevations are used, this will be ignored)

Channel Flow Type Key
Heavy Meadow 2
Tillage/Field 3
Short Pasture and Lawns 4
Nearly Bare Ground 5
Grassed Waterway 6
Paved Areas 7

				•																						-								
		Ar	ea					Surface Type		nal 'C' Valu										w Lengths					Channel Flow			Tc	Rainfall	Intensity 8	Rational F	low Rate	SWMM	Values
Sub-basin	Comments	sf	acres		Surface Type ntial 1/8 or less C100			Pavement (100% Imp	t	P	urface Type ark (7% Imp.		Surface T Indeveloped			omposite 6 C100	Percent Impervious	Initial ft	True Initial Length ft		True Channe Length ft	(decimal)	IIIIII	Average (%) Slope	Type (See Key above) Ground Type	•	Channel Tc (min)		i5 in/hr	Q5 cfs	i100 in/hr	Q100 cfs	Q5 cfs	Q100 cfs
<u>West Fork-Jimmy Camp Creek</u> OS-1	- The most northwestern portion of this basin (7.268 Acres) outside of the proposed Trails at Aspen Ridge development was rerouted out of the Big Johnson Reservoir basin by CDDT construction of Powers Boulevard and Bradley Road. Future development of the rerouted area will require routing the flows back to the Big Johnson Reservoir to return the area to compliance with the relevant DBPS studies.	853,954		0.45	0.59	, , , , , , , , , , , , , , , , , , ,	0.90	0.96		0.65	0.80	0.0		85395		9 0.36	2.00	780.00	J		780.00		23.57	1.40	5	1.2			2.23	4.0	3.75	26.7	1.1	16.2
Α	-Drainage area is upstream of two pairs of inlets near roundabout at intersection of Frontside Dr. and Legacy DrDevelopment of adjacent commercial lots will require FDR and onsite detentionNote: The Commercial development will have 95% impervious (per DCM), but since it is required to detain prior to discharging to storm sewer the C values reflect undeveloped commercial areas.	804,622	18.47	0.45	0.59	22315	0.90	0.96	78609	0.65	0.80	0.0	9 0.36	70369	8 0.18	8 0.42	13.32	861.00	300.00	869.00	1430.00	0.06	26.77	1.10	7	2.1	11.4	38.1	2.10	7.0	3.54	28.0	5.0	34.6
В	- At grade inlet approximately 400 feet downstream of roundabout.	46,101	1.06	0.45	0.59	46101	0.90	0.96		0.65	0.80	0.0	9 0.36		0.4	5 0.59	65.00	185.00	185.00	400.00	400.00	0.04	9.86	3.40	7	3.7	1.8	11.7	3.86	1.9	6.48	4.1	2.5	7.0
с	- Includes the area north of Moose Meadow Street and between Beartrack Point and Sidewinder Drive and four pairs of sump inlets	648,154	14.88	0.45	0.59	627120	0.90	0.96	21034	0.65	0.80	0.0	9 0.36		0.46	6 0.60	66.14	162.00	162.00	822.00	822.00	0.05	8.51	3.29	7	3.6	3.8	12.3	3.77	26.3	6.34	57.2	19.5	58.9
D	-drainage area upstream of at grade inlet approximately 575 feet south of Moose Meadow Street.	96,065	2.21	0.45	0.59		0.90	0.96	14,978	0.65	0.80	81087 0.0	9 0.36		0.69	9 0.82	21.50	473.00	300.00	555.00	728.00	0.06	8.85	4.00	7	4.0	3.0	11.9	3.83	5.9	6.44	11.8	4.1	14.2
E	- Located at a pair of sump inlets at the intersection of Sunday Gulch and Falling Rock Drive.	373,189	8.57	0.45	0.59	49513	0.90	0.96	40601	0.65	0.80	283075 0.0	9 0.36		0.68	5 0.79	24.81	859.00	300.00	1450.00	2009.00	0.07	12.39	4.00	7	4.0	8.4	20.8	2.96	16.6	4.97	33.9	12.8	39.1
F	-Represents area captured by at grade inlets on Lazy Ridge Drive and Wagon Hammer Drive, as well as sump inlets west of the intersection of Lookout Court and Sunday Gulch.	569,234	13.07	0.45	0.59	569234	0.90	0.96		0.65	0.80	0.0	9 0.36		0.48	5 0.59	65.00	332.00	300.00	868.00	900.00	0.07	11.14	2.00	7	2.8	5.3	16.4	3.32	19.7	5.57	43.3	15.4	46.2
G	-At grade inlet on the east side of Sunday Gulch near intersection with Lookout Court.	48,227	1.11	0.45	0.59	48227	0.90	0.96		0.65	0.80	0.0	9 0.36		0.45	5 0.59	65.00	80.00	80.00	667.00	667.00	0.05	6.12	2.45	7	3.1	3.6	9.7	4.15	2.1	6.97	4.6	2.1	6.1
н	-This represents the area draining to Buffalo Horn Drive with the exception any flow by from the at grade inlets in Sub-basin F.	1,022,296	23.47	0.45	0.59	921233	0.90	0.96	39,492	0.65	0.80	61571 0.0	9 0.36		0.48	8 0.62	62.86	250.00	250.00	1074.00	1074.00	0.04	11.13	2.00	7	2.8	6.3	17.5	3.22	36.6	5.42	79.1	26.8	80.4

		I Ar	rea						Ratio	nal 'C' Valu	ies						Т			Flo	ow Lengths		1						Γc Ra	infall Inte	ensity & R	Rational Flo	ow Rate	SWMM Valu	ues
Sub-basin	Comments				Surface Type tial 1/8 or less			Surface Type Pavement (100% Imp.	2	S	Surface Type Park (7% Imp.			urface Type veloped (2%		Comp	oosite	Percent mpervious	Initial	True Initial		True Channe	Average (decimal		Average (%)	Channel Flow Type (See Key above)		Channel T			Q5	i100	Q100	Q5 C	Q100
		sf	acres	C5	C100	Area (SF)	C5	C100	Area (SF)	C5	C100	Area	C5	C100	Area	C5	C100		ft	Length ft	t ft	Length ft	Slope	Tc (min)	Slope	Ground Type		Tc (min) (I	nin) in/	nr	cfs	in/hr	cfs	cfs	cfs
ı	-Represents area draining to the proposed sump inlet at the end of the cul-de-sac on Falling Rock Drive.	344,236	7.90	0.45	0.59	305401	0.90	0.96	31104	0.65	0.80	7731	0.09	0.36		0.50	0.63	66.86	153.00	153.00	1104.00	1104.00	0.05	7.88	2.61	7	3.2	5.7	3.6 3.0	2	14.3	6.08	30.4	10.5	31.8
ı	-Represents drainage area tributary to sump inlets near intersection of Redshirt Point and Big Johnson Drive.	229,049	5.26	0.45	0.59	70187	0.90	0.96	158,862	0.65	0.80		0.09	0.36		0.76	0.85	89.28	266.00	266.00	909.00	909.00	0.09	4.77	3.20	7	3.6	4.2	9.0 4.3	7	17.2	7.17	32.2	11.1	32.7
к	-This sub-basin is tributary to the future sump inlets near the intersection of Big Johnson Drive and Roundhouse Drive.	1,414,842	32.48	0.45	0.59	1414842	0.90	0.96		0.65	0.80		0.09	0.36		0.45	0.59	65.00	400.00	300.00	1400.00	1500.00	0.06	13.26	3.50	7	3.7	6.7	9.9 3.0	12	44.5	5.07	98.0	33.3 1	101.7
Marksheffel Tributary to Jimmy Camp Creek L	-Represents entire drainage area to the Northeast Pond.	330,836	7.59	0.45	0.59	259741	0.90	0.96		0.65	0.80	71095	0.09	0.36		0.49	0.64	52.54	290.00	290.00	490.00	490.00	0.05	10.88	5.40	7	4.6	1.8	2.6 3.	3	14.1	6.27	30.5		
West Fork-Jimmy Camp Creek M	Drainage area in and around East Full Spectrum Detention Pond	447,971	10.29	0.45	0.59		0.90	0.96		0.65	0.80	447971	0.09	0.36		0.65	0.80	7.00	437.00	300.00	10.00	147.00	0.06	9.32	1.00	7	2.0	1.2 1	0.5 4.0	2 2	27.1	6.75	56.0	14.2	61.8
<u>Big Johnson Reservoir</u> N	-Represents area upstream of sump inlets near intersection of Natural Bridge Trail and Blue Miner Street.	614,283	14.10	0.45	0.59	614283	0.90	0.96		0.65	0.80		0.09	0.36		0.45	0.59	65.00	150.00	150.00	1229.00	1229.00	0.03	9.94	2.50	7	3.2	6.5	6.4 3.:	2 2	21.2	5.58	46.8		
o	-Represents area upstream of sump inlet at intersection of Rainy Creek Trail and Triple Tree Loop	510,492	11.72	0.45	0.59	510,492	0.90	0.96	0	0.65	0.80	0	0.09	0.36	0	0.45	0.59	65.00	104.00	104.00	1230.00	1230.00	0.02	9.47	1.40	7	2.4	8.7 1	8.1 3.	7	16.8	5.32	37.1		
P	-Drainage area in and around the West Pond.	370,936	8.52	0.45	0.59		0.90	0.96	70,884	0.65	0.80	300052	0.09	0.36		0.70	0.83	24.77	560.00	300.00	378.00	638.00	0.06	9.43	2.00	7	2.8	3.8 1	3.2 3.0	7 1	22.0	6.16	43.9		
Q	-This area is infeasible to detain and discharges to the Powers Boulevard Ditch -Less than one acre (0.31 Acres) of developed area is within the Big Johnson Reservir Basin, therefore, compliance with the county's MS4 permit is maintained.		2.43	0.45	0.59	38,063	0.90	0.96	0	0.65	0.80	67,954	0.09	0.36	0	0.58	0.72	27.82	143.00	143.00	687.00	687.00	0.06	6.08	3.35	4	1.3	9.0 1	5.1 3.4	5	4.9	5.80	10.3		
R	-This area is infeasible to detain and discharges to the swale at the southeast corner of the propertyLess than one acre (0.67 Acres) of developed area is within the West Fork Jimmy Campr Creek Basin, therefore, compliance with the county's MS4 permit is maintained.	81,300	1.87	0.45	0.59		0.90	0.96		0.65	0.80	81300	0.09	0.36		0.65	0.80	7.00	21.00	21.00	220.00	220.00	0.33	1.16	10.00	5	3.2	1.2	5.0 5.	0	6.2	8.58	12.9	1.7	7.8
OS-2	- Commercially zoned lot just southeast of the intersection of Bradley and Powers. This area will be required to provide its own detention which must discharge to the Powers Boulevard Ditch.	498,467	11.44	0.45	0.59		0.90	0.96		0.65	0.80		0.09	0.36	498467	0.09	0.36	2.00	971.00	300.00	1411.00	2082.00	0.04	34.50	2.83	5	1.7	20.7	5.2 1.0	i7	1.7	2.81	11.7		


20190726 MDDP Rational Calcs Drainage Worksheet.xls

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximated future detention for Commercial lot South of Bradley Road and West of Legacy Drive

Peguired Volume Calculation

ired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	13.43	acres
Watershed Length =	894	ft
Watershed Slope =	0.070	ft/ft
Watershed Imperviousness =	95.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	_
Water Quality Capture Volume (WQCV) =	0.501	acre-feet
E (EUD) 0	4 420	(

Location for 1-hr Rainfall Depths =	User Input	_
Water Quality Capture Volume (WQCV) =	0.501	acre-feet
Excess Urban Runoff Volume (EURV) =	1.436	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.234	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.600	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.926	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.252	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.517	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.867	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	4.110	acre-feet
Approximate 2-yr Detention Volume =	1.158	acre-feet
Approximate 5-yr Detention Volume =	1.504	acre-feet
Approximate 10-yr Detention Volume =	1.831	acre-feet
Approximate 25-yr Detention Volume =	1.964	acre-feet
Approximate 50-yr Detention Volume =	2.037	acre-feet
Approximate 100-yr Detention Volume =	2.102	acre-feet

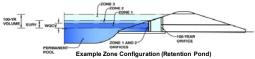
Optional User Override 1-hr Precipitation 1.19 inches 1.50 inches 1.75 inches 2.00 inches 2.25 inches 2.52 inches

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	0.501	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.935	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.666	acre-feet
Total Detention Basin Volume =	2.102	acre-feet
Initial Surcharge Volume (ISV) =	65	ft^3
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	4.00	ft
Depth of Trickle Channel (H _{TC}) =	0.50	ft
Slope of Trickle Channel (S_{TC}) =	0.005	ft/ft
Slopes of Main Basin Sides (S _{main}) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	ĺ
		•

Initial Surcharge Area (A _{ISV}) =	198	ft^2
Surcharge Volume Length (L _{ISV}) =	14.1	ft
Surcharge Volume Width (W _{ISV}) =	14.1	ft
Depth of Basin Floor (H _{FLOOR}) =	1.22	ft
Length of Basin Floor (L _{FLOOR}) =	262.3	ft
Width of Basin Floor (W _{FLOOR}) =	135.8	ft
Area of Basin Floor (A _{FLOOR}) =	35,621	ft^2
Volume of Basin Floor (V _{FLOOR}) =	15,609	ft^3
Depth of Main Basin (H _{MAIN}) =	1.95	ft
Length of Main Basin (L _{MAIN}) =	278.0	ft
Width of Main Basin (W _{MAIN}) =	151.4	ft
Area of Main Basin (A _{MAIN}) =	42,086	ft^2
Volume of Main Basin (V _{MAIN}) =	75,793	ft^3
Calculated Total Basin Volume (Vtotal) =	2.102	acre-fee

Depth Increment =	0.1	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Top of Micropool	0.00		14.1	14.1	198		0.005		
ISV	0.33		14.1	14.1	198		0.005	63	0.001
	0.40		14.1	14.1	198		0.005	77	0.002
	0.50		14 1	14.1	198		0.005	97	0.002
	0.60		14.1	14.1	198		0.005	117	0.003
	0.70		14.1	14.1	198		0.005	137	0.003
	0.80		14.1	14.1	198		0.005	157	0.004
	0.90		26.3	20.1	528		0.012	186	0.004
	1.00		46.7	30.1	1,405		0.032	279	0.006
	1.10		67.1	40.1	2,690		0.062	480	0.011
	1.20		87.5	50.1	4.383		0.101	830	0.019
	1.30		107.9	60.1	6,484		0.149	1,370	0.031
	1.40		128.3	70.1	8,992		0.206	2,141	0.049
	1.50		148.7	80.1	11,909		0.273	3,182	0.073
	1.60		169.1	90.1	15,234		0.350	4,536	0.104
	1.70		189.5	100.1	18,967		0.435	6,243	0.143
	1.80		209.9	110.1	23,108		0.530	8,343	0.192
	1.90		230.3	120.1	27,656		0.635	10,878	0.250
	2.00		250.7	130.1	32,613		0.749	13,888	0.319
Floor	2.05		260.9	135.1	35,245		0.809	15,584	0.358
	2.10		262.8	136.2	35,790		0.822	17,724	0.407
	2.20		263.6	137.0	36,110		0.829	21,319	0.489
Zone 1 (WQCV)	2.22		263.7	137.2	36,174		0.830	22,042	0.506
	2.30		264.4	137.8	36,431		0.836	24,946	0.573
	2.40		265.2	138.6	36,753		0.844	28,605	0.657
	2.50		266.0	139.4	37,077		0.851	32,297	0.741
	2.60		266.8	140.2	37,402		0.859	36,021	0.827
	2.70		267.6	141.0	37,728		0.866	39,777	0.913
	2.80		268.4	141.8	38,056		0.874	43,566	1.000
	2.90		269.2	142.6	38,384		0.881	47,388	1.088
	3.00		270.0	143.4	38,715		0.889	51,243	1.176
	3.10		270.8	144.2	39,046		0.896	55,131	1.266
	3.20		271.6	145.0	39,378		0.904	59,053	1.356
Zone 2 (EURV)	3.29		272.3	145.7	39,679		0.911	62,610	1.437
	3.30		272.4	145.8	39,712		0.912	63,007	1.446
	3.40		273.2	146.6	40,048		0.919	66,995	1.538
	3.50		274.0	147.4	40,384		0.927	71,017	1.630
	3.60		274.8	148.2	40,722		0.935	75,072	1.723
	3.70		275.6	149.0	41,061		0.943	79,161	1.817
	3.80		276.4	149.8	41,401		0.950	83,284	1.912
	3.90		277.2	150.6	41,743		0.958	87,441	2.007
Zone 3 (100-year)	4.00		278.0	151.4	42,086		0.966	91,633	2.104
	4.10		278.8	152.2	42,430		0.974	95,858	2.201
	4.20		279.6	153.0	42,775		0.982	100,119	2.298
	4.30		280.4	153.8	43,122		0.990	104,413	2.397
	4.40		281.2	154.6	43,470		0.998	108,743	2.496
	4.50		282.0	155.4	43,819		1.006	113,107	2.597
	4.60		282.8	156.2	44,170		1.014	117,507	2.698
	4.70		283.6	157.0	44,521		1.022	121,941	2.799
	4.80		284.4	157.8	44,874		1.030	126,411	2.902
	4.90		285.2	158.6	45,229		1.038	130,916	3.005
	5.00		286.0	159.4	45,585		1.046	135,457	3.110
	5.10		286.8 287.6	160.2	45,941		1.055	140,033 144,645	3.215
	5.20 5.30		287.6	161.0 161.8	46,300 46,659		1.063	144,645	3.321 3.427
	5.40		289.2	162.6	47,020		1.079	153,977	3.535
	5.50		290.0	163.4	47,382		1.088	158,697	3.643
	5.60 5.70		290.8 291.6	164.2 165.0	47,745 48,110		1.096	163,454 168,246	3.752 3.862
	5.80		292.4	165.8	48,476		1.113	173,076	3.973
	5.90		293.2	166.6	48,843		1.121	177,942	4.085


South West Commercial Site.xlsm, Basin

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: West Fork of Jimmy Camp Creek: East Pond(located in Sub-basin M)

Required Volume Calculation

uired volume Calculation		_
Selected BMP Type =	EDB	
Watershed Area =	157.90	acres
Watershed Length =	3,742	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	45.40%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	87.0%	percent
Percentage Hydrologic Soil Groups C/D =	13.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	=
Water Quality Capture Volume (WQCV) =	2.553	acre-feet
Excess Urban Runoff Volume (EURV) =	7.491	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	6.103	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	8.512	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	11.664	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	16.728	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	20.230	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	24.794	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	38.509	acre-feet
Approximate 2-yr Detention Volume =	5.710	acre-feet
Approximate 5-yr Detention Volume =	7.997	acre-feet
Approximate 10-yr Detention Volume =	10.523	acre-feet
Approximate 25-yr Detention Volume =	11.595	acre-feet
Approximate 50-yr Detention Volume =	12.129	acre-feet
Approximate 100-yr Detention Volume =	13.732	acre-feet

Optional User Override

1-hr Precipitation						
1.19	inches					
1.50	inches					
1.75	inches					
2.00	inches					
2.25	inches					
2.52	inches					
3.55	inches					

Stage-Storage Calculation

		ago otorago oaroaranon
acre-fee	2.553	Zone 1 Volume (WQCV) =
acre-fee	4.938	Zone 2 Volume (EURV - Zone 1) =
acre-fee	6.241	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fee	13.732	Total Detention Basin Volume =
ft^3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (S _{main}) =
Ī	user	Basin Length-to-Width Ratio (R _{L/W}) =
-		

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

Stage - Storage Optional Coptional	Depth Increment =	1	ft							
Stage - Storage Chemic C			Optional				Optional			
Top of Micropool	Stage - Storage	Stage	Override	Length			Override			Volume
S817									(ft^3)	(ac-ft)
S818	Top of Micropool		0.00				50	0.001		
5819	5817		1.00	-			1,795	0.041	905	0.021
S820	5818		2.00				10,792	0.248	7,108	0.163
\$821	5819	-	3.00	-			33,227	0.763	29,225	0.671
5822	5820		4.00	-	-	-	80,330	1.844	86,004	1.974
\$822 6.00 155.782 3.645 346.834 8.00 \$823 7.00 164.044 3.766 \$10,047 11.70 \$824 8.00 169.388 8.388 67.675 15.58 \$825 9.00 180.213 4.137 1.026.308 23.561 \$826 10.00 180.213 4.137 1.026.308 23.561	5821		5.00				143,075	3.285	197,706	4.539
5824 8.00 169,388 3.888 676,753 15.536 5825 9.00 174,764 4.012 848,819 19.486 5826 10.00 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561	5822		6.00		-			3.645		8.004
5824 8.00 169,388 3.888 676,753 15.536 5825 9.00 174,764 4.012 848,819 19.486 5826 10.00 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561 180,213 4.137 1,026,308 23.561	5823		7.00		-		164,044	3.766	510,047	11.709
\$825 9.00 174,764 4.012 848,819 19.486 \$826 10.00 180,213 4.137 1,025,308 (23.56) 180,213 4.137 1,025,308 (23.56) 180,213 4.137 1,025,308 (23.56)		-			_					15.536
5826 10.00 180,213 4,137 1,026,308 23.561					-	-				19.486
	5826		10.00		-		180,213	4.137	1,026,308	23.561
					_					
					_					
					_					
					_					
		-		_						
				-						
				-						
				-						
				-	-	-				
				-	-					
				-		-				
				-		-				
						-				
				-		-				
				-		-				
						-				
				_						
				-						
				-						
				-						
		-		-						
				-						
		-		-						
		-		-						
				-						
		-		-						
		-				-				
		-		-		-				
		-		-	-	-				

Proposed (Aspen Ridge s - Sub-basin S	ummary			
Basin	Area	Q5	Q100			
Duom	acres	cfs	cfs			
Wes	t Fork-Jir	mmy Camp Cree	k			
West Fork-Jimmy Camp Creek OS-1	19.6	1.1	16.2			
А	18.5	5.0 —	34.6			
В	1.1	2.5	7.0			
С	14.9	19.5	58.9			
D	2.2	4.1	14.2			
Е	8.6	12.8	39.1			
F	13.1	15.4	46.2			
G	1.1	2.1	6.1			
Н	23.5	26.8	80.4			
ļ	7.9	10.5	31.8			
J	5.3	11.1	32.7			
K	32.5	33.3	101.7			
West Fork-Jimmy Camp Creek M	10.3	14.2	61.8			
R	1.9	1.7	7.8			
	Big Johns	on Reservoir				
Big Johnson Reservoir N	14.10	21.2	46.8			
0	11.72	16.8	37.1			
P	8.52	22.0	43.9			
Q	2.43	4.9	10.3			
OS-2 11.44 1.7 11.7						
		y to Jimmy Cam				
Marksheffel Tributary to						
Jimmy Camp Creek L	5.3	17.2	32.2			
BR1	0.3	8.0	1.6			
BR2	2.8	2.9	7.4			

Trails at Aspen Ridge Big Johnson Reservoir Proposed Design Point Summary									
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)				
N	N	Р	14.1	21.2	46.8				
0	0	Р	11.7	16.8	37.1				
P (Into West Pond)	N, O, P	West Pond Discharge	34.3	47.1	100.6				
West Pond Discharge (UD-Detention)	N, O, P	Powers Ditch		1.0	28.3				
Q	Q	Powers Ditch	2.4	4.9	10.3				
OS-2	OS-2	Powers Ditch	11.4	1.7	11.7				

Trails at Aspen Ridge West Fork - Jimmy Camp Creek Proposed Design Point Summary							
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)		
OS-1	OS-1	A	19.6	4.0	26.7		
A	OS-1 & A	В	38.1	11.6	57.5		
В	OS-1, A, B	С	39.1	12.4	58.5		
С	OS-1, A, B,	D	54.0	27.3	90.3		
D	OS-1, A, B, C, D	E	56.2	30.2	95.6		
E	OS-1, A, B, C, D, E	F	64.8	39.3	111.6		
F	F	G	13.1	19.7	43.3		
G	OS-1, A, B, C, D, E, F, G	М	79.0	46.9	125.9		
Н	Н	М	23.5	36.6	79.1		
J	J	K	5.3	17.2	32.2		
K	J, K	1	37.7	57.2	121.7		
l	J, K, I	М	45.6	59.7	127.2		
M (Into East Pond	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	East Pond Discharge	158.4	122.6	287.5		
East Pond Discharge (SWMM)	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	Offsite Swale		21.1	127.4		
R	R	Offsite Swale	1.9	6.2	12.9		

Trails at Aspen Ridge Marksheffel Tributary to Jimmy Camp Creek Proposed Design Point Summary									
Design Point Sub-Basins Downstream Total Area Q(5) Q(100) Design Point (ac.) (cfs)									
L	L	Northeast Pond Discharge	7.6	14.1	30.5				
Northeast Pond Discharge L Bradley Road Ditch 0.3 8									
BR1	BR1	Bradley Road Ditch	0.3	0.8	1.6				
BR2	BR2	Bradley Road Ditch	2.8	2.9	7.4				

DESCRIPTION

BENCHMARK DATA(ELEV.)

(DESCRIPTION/LOCATION)

REVISIONS

NAME: \\Eros\Projects\19.886.008 Trails at Aspen Ridge\200 Drainage\201 Drainage Reports\\MDDP\DWG\DR02-MDDP Basins_1_8325_2357.sv\$.dwg
PCP: Matrix.ctb

BASIS OF BEARING:

REFERENCE

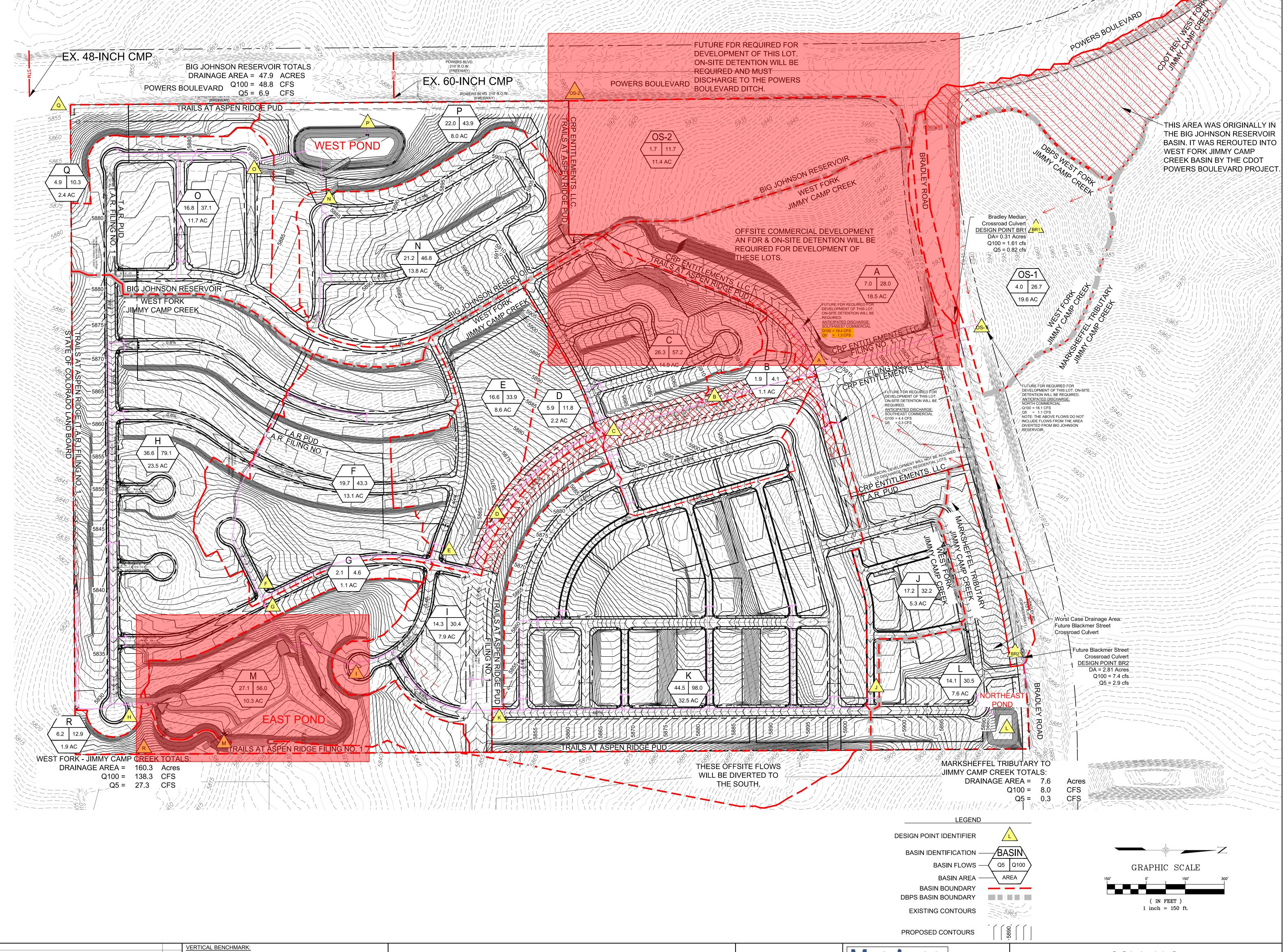
DRAWINGS

X-886-PR STORM

X-886-PR STORM_F1

886-PR Legacy Drive

886-PR Legacy Drive-Roundabout


DATE

PLOT DATE: Mon Sep 23, 2019 9:57am

PCP: Matrix.ctb

X-Title(Drainage)

X-886-PR SITE 10415-Storm Base-20

COLA, LLC.

TRAILS AT ASPEN RIDGE: FILING #1 & PUD

MDDP-AMENDMENT &

PRELIMINARY DRAINAGE REPORT

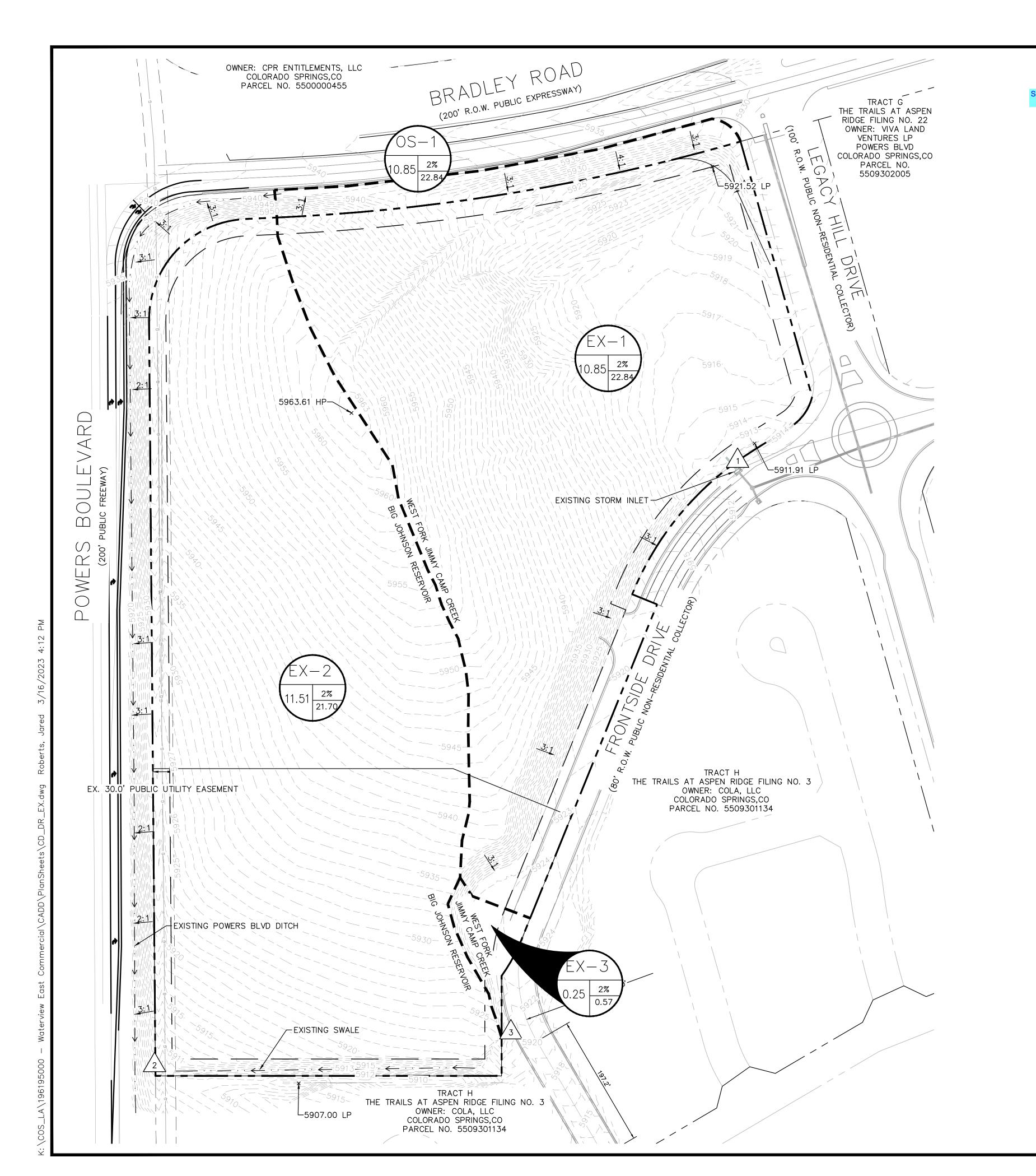
SHEET NO. 2 OF 2 SHEETS

DESIGNED BY: JTS
DRAWN BY: JTS
CHECKED BY:

SCALE HORIZ: VERT:

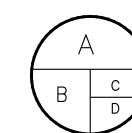
2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208

PREPARED UNDER MY


DESIGN GROUP, INC.

DIRECT SUPERVISION, FOR

AND ON BEHALF OF MATRIX


APPENDIX F - DRAINAGE EXHIBITS

See comment on PDR for existing map.

LEGEND

A = BASIN DESIGNATION
B = AREA (ACRES)
C = BASIN IMPERVIOUSNESS
D = 100-YR DESIGN STORM RUNOFF (CFS)

DESIGN POINT

EXISTING FLOW DIRECTION

DRAINAGE BASIN BOUNDARY

PROPERTY LINE

PROPOSED MAJOR CONTOUR

XXXX
PROPOSED MINOR CONTOUR

EXISTING MAJOR CONTOUR

EXISTING MAJOR CONTOUR

SWALE FLOW DIRECTION

KIMEY-HORN AND ASSOCIATES, INC.

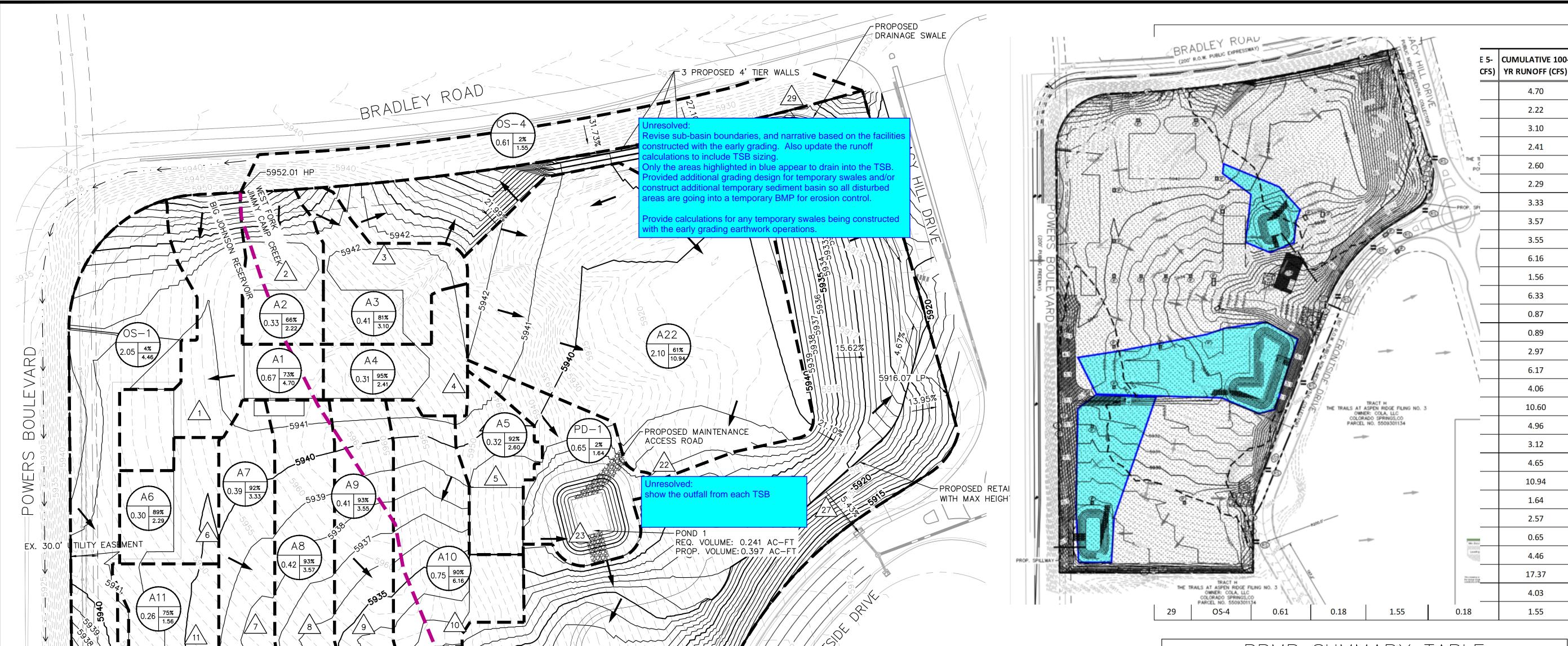
2 North Nevada Avenue, Suite 300

Colorado Springs, Colorado 80903 (719) 453-0180

DRAWN BY: JAR CHECKED BY: EJG DATE: 05/06/2022

WATERVIEW EAST COMMERCIAL CONSTRUCTION DOCUMENTS EXISTING DRAINAGE MAP

GRAPHIC SCALE IN FEET
0 40 80 160



FOR REVIEW ONLY
NOT FOR
CONSTRUCTION
Kimley Horn
Kimley-Horn and Associates, Inc.

PROJECT NO.
196195000

PROJECT NO. 196195000 SHEET

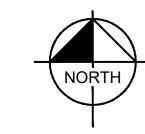
SUMMARY - EXISTING RUNOFF TABLE DESIGN BASIN AREA | DIRECT 5-YR | DIRECT 100-YR | CUMULATIVE 5- | CUMULATIVE 100-POINT DESIGNATION (ACRES) RUNOFF (CFS) RUNOFF (CFS) YR RUNOFF (CFS) YR RUNOFF (CFS) 24.73 EX-1 24.73 EX-2 2.62 22.34 22.34 EX-3 0.26 0.21 0.91 0.21 0.91 0.19 OS-1 1.61 0.19

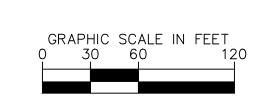
MATCHLINE DR-2

A = BASIN DESIGNATIONB = AREA (ACRES)
C = BASIN IMPERVIOUSNESS
D = 100-YR DESIGN STORM RUNOFF (CFS)

<u>LEGEND</u>

0


FLOW DIRECTION MAJOR DRAINAGE BASIN BOUNDARY DRAINAGE BASIN BOUNDARY PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MAJOR CONTOUR EXISTING STORM SEWER EXISTING STORM MANHOLE EXISTING STORM INLET


DESIGN POINT

GRADING REFLECTS EARLY GRADING PERMIT. PROPOSED UTILITIES AND FINAL CONDITIONS TO BE EVALUATED WITH FINAL DRAINAGE REPORT.

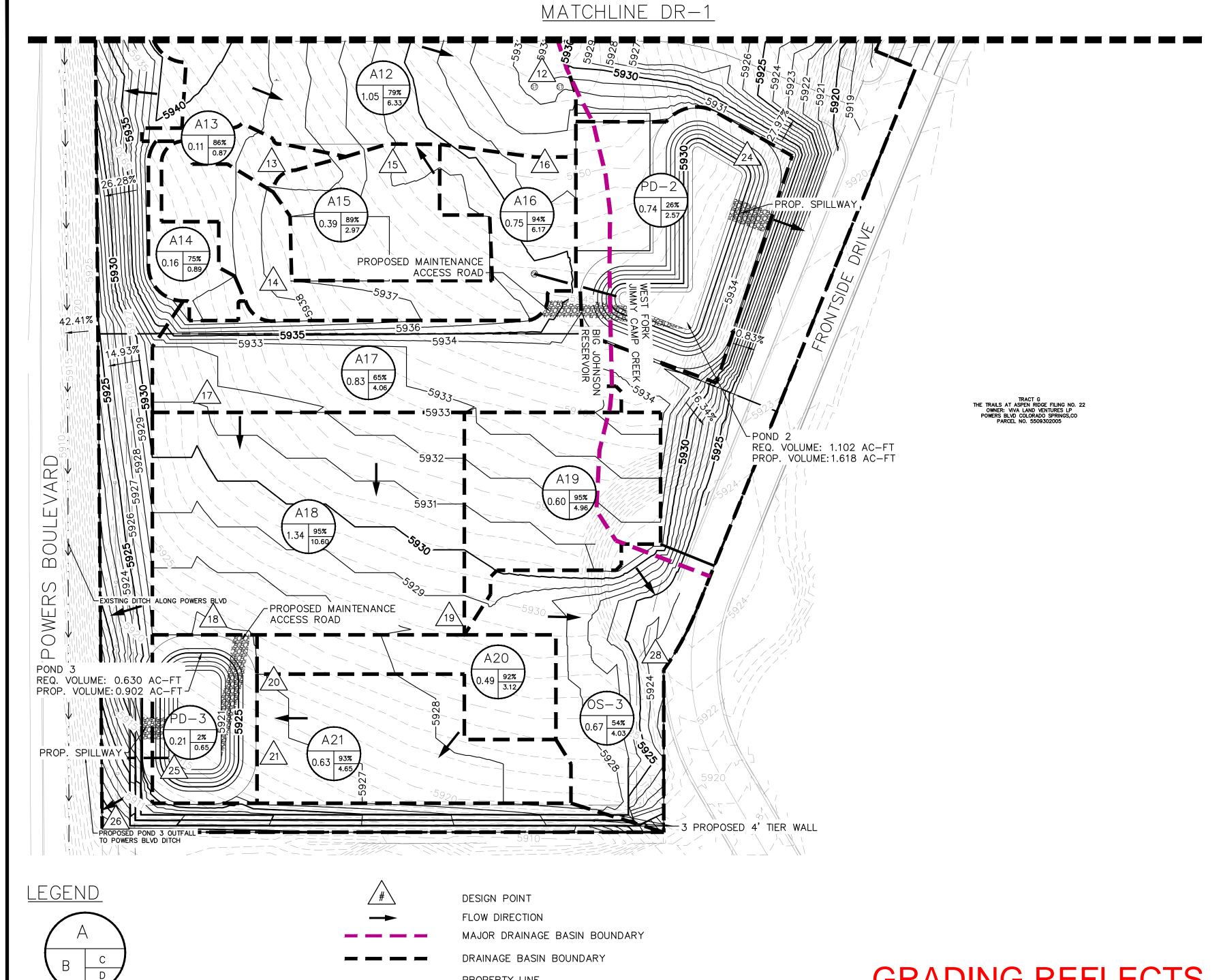
PBMP SUMMARY TABLE							
BASINS	PBMP TRIBUTARY AREA (AC)	PBMP					
A22, PD-1	2.7500	EDB - PD-1					
A1-A16, PD-2	7.7600	EDB - PD-2					
A17-A21, PD-3	4.1000	EDB - PD-3					
0S-1 - 0S-3	7.5000	EXCLUDED					

EXCLUDED BASED ON EL PASO COUNTY ENGINEERING CRITERIA MANUAL, SECTION 1.7.1.B.7, "LAND DISTURBANCE TO UNDEVELOPED LAND THAT WILL REMAIN UNDEVELOPED."

Know what's **below. ○ Call** before you dig.

FOR REVIEW ONLY
NOT FOR
CONSTRUCTION Kimley Horn
Kimley-Horn and Associates, Inc.

DESIGNED BY: JAF

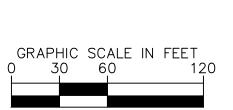

DRAWN BY: JA CHECKED BY: EJG

DATE: 05/06/2022

WATERVIEW EAST COMMERCIAL CONSTRUCTION DOCUMENTS
PROPOSED DRAINAGE MAP

PROJECT NO. 196195000

SHEET DR-1



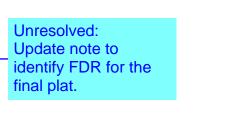
SUMMARY - PROPOSED RUNOFF TABLE									
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	DIRECT 5-YR RUNOFF (CFS)	DIRECT 100-YR RUNOFF (CFS)	CUMULATIVE 5- YR RUNOFF (CFS)	CUMULATIVE 100- YR RUNOFF (CFS)			
1	A1	0.67	1.87	4.70	1.87	4.70			
2	A2	0.33	0.85	2.22	0.85	2.22			
3	А3	0.41	1.27	3.10	1.27	3.10			
4	A4	0.31	1.04	2.41	1.04	2.41			
5	A5	0.32	1.12	2.60	1.12	2.60			
6	A6	0.30	0.97	2.29	0.97	2.29			
7	Α7	0.39	1.43	3.33	1.43	3.33			
8	A8	0.42	1.54	3.57	1.54	3.57			
9	A9	0.41	1.53	3.55	1.53	3.55			
10	A10	0.75	2.63	6.16	2.63	6.16			
11	A11	0.26	0.62	1.56	0.62	1.56			
12	A12	1.05	2.59	6.33	2.59	6.33			
13	A13	0.11	0.37	0.87	0.37	0.87			
14	A14	0.16	0.36	0.89	0.36	0.89			
15	A15	0.39	1.25	2.97	1.25	2.97			
16	A16	0.75	2.66	6.17	2.66	6.17			
17	A17	0.83	1.55	4.06	1.55	4.06			
18	A18	1.34	4.57	10.60	4.57	10.60			
19	A19	0.60	2.14	4.96	2.14	4.96			
20	A20	0.49	1.33	3.12	1.33	3.12			
21	A21	0.63	1.99	4.65	1.99	4.65			
22	A22	2.10	4.10	10.94	4.10	10.94			
23	PD-1	0.65	0.19	1.64	0.19	1.64			
24	PD-2	0.74	0.67	2.57	0.67	2.57			
25	PD-3	0.21	0.08	0.65	0.08	0.65			
26	OS-1	2.05	0.61	4.46	0.61	4.46			
27	OS-2	4.78	4.34	15.81	4.52	17.37			
28	OS-3	0.67	1.45	4.03	1.45	4.03			
29	OS-4	0.61	0.18	1.55	0.18	1.55			

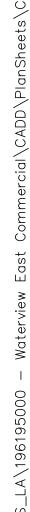
DESIGNED BY: JAF DRAWN BY: JA CHECKED BY: EJO

DATE: 05/06/202

COMMERCIAL

FOR REVIEW ONLY
NOT FOR
CONSTRUCTION Kimley Horn
Kimley-Horn and Associates, Inc.


> PROJECT NO. 196195000


SHEET DR-2

PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR A = BASIN DESIGNATIONB = AREA (ACRES)EXISTING MAJOR CONTOUR C = 100-YR COMPOSITE RUNOFF COEFFICIENT D = 100-YR DESIGN STORM RUNOFF (CFS) EXISTING MAJOR CONTOUR EXISTING STORM SEWER EXISTING STORM MANHOLE O EXISTING STORM INLET

GRADING REFLECTS EARLY GRADING PERMIT. PROPOSED UTILITIES AND FINAL CONDITIONS TO BE **EVALUATED WITH FINAL** DRAINAGE REPORT.

V3_Early Grading - Final Drainage Report.pdf Markup Summary

Callout (8)

Subject: Callout Page Label: 1 Author: CDurham

Date: 6/20/2023 5:17:23 PM

Status: Color: Layer: Space: Unresolved:

Revise to Final Drainage Report - Early Grading

Permit

Pedininger (Trainge Report - Early Grading Pennit Watefelver East Commercial, El Paso Country, CO Unresolved; Update Header to "Final Drainage Report" or processing Report of Selection and selection

Subject: Callout Page Label: 2

Author: CDurham **Date:** 6/19/2023 5:23:18 PM

Status: Color: Layer: Space: Unresolved:

Update Header to "Final Drainage Report"

transipports of the dat will include commercial developments, including consent in the contract of the contraction, one contract of the contr Subject: Callout Page Label: 4

Author: CDurham

Date: 6/20/2023 5:38:45 PM

Status: Color: Layer: Space: Unresolved:

"...included with the final plat application."

nprising the eastern half of the property. Dreas ranging from 1-33%. Flows are collected we and are conveyed to an existing 12 COS 7 Year of the conveyed to an existing 12 COS 7 Year of the conveyed to th Subject: Callout Page Label: 5 Author: CDurham

Date: 6/20/2023 5:19:32 PM

Status: Color: Layer: Space: Type R inlets are in 5' increments.

stings storm ininstanceuse into the Sast Pond as out sings PBIA Amendment for Waterview East 8 Pmid as (See Prepared by Maint: Design Group September are event are 0.21 ds and 0.91 ds respectively. PBBIA 0.95 ds and 0.91 ds respectively. DBBIA 0.95 ds and 0.91 ds respectively. BBIA 0.95 ds and 0.91 ds respectively. and site sub-bytas 0.95 is undeveloped constitute of 0.65 angles comprising the northern boundary in to south's at dopes ranging from 5-30%. Flows commanding distinctive of a sessing cut and anglesse along in such data of the sessing cut and anglesse along in such as the sessing cut and anglesse along in such as the sessing cut and anglesse along in such as the sessing cut and anglesse along in the session of the session Subject: Callout Page Label: 6 Author: CDurham

Date: 6/20/2023 5:20:17 PM

Status:
Color: Layer:
Space:

Type R inlets are in 5' increments.

own for reference, with only consown. Construction of utility infrast ructed with this preliminary drains

Subject: Callout Page Label: 6 Author: CDurham

Date: 6/20/2023 5:21:07 PM

Status: Color: Layer: Space: Final Drainage report

Subject: Callout Page Label: 6 Author: CDurham

Date: 6/20/2023 5:22:41 PM

Status: Color: Layer: Space:

c&g, inlets, EDB's are not being built with early grading. Map should show how flows are moving across site with grading activities alone and no

infrastructure being built.

INAL

Subject: Callout Page Label: [1] DR-2 Author: CDurham

Date: 6/20/2023 5:38:07 PM

Status: Color: Layer: Space:

Unresolved:

Update note to identify FDR for the final plat.

Cloud (1)

Subject: Cloud Page Label: 13 Author: CDurham

Date: 6/20/2023 5:33:50 PM

Status: Color: Layer: Space:

Cloud+ (1)

Subject: Cloud+ Page Label: 4 Author: CDurham

Date: 6/19/2023 5:24:50 PM

Status: Color: Layer: Space:

Unresolved:

Update paragraph. As previously stated in the

review #1 comments to the GEC:

"Submit a separate final drainage report that is strictly associated with the proposed early grading operations and calculations for any drainage facilities being installed with the early grading such as sizing of temporary sediment basins, or

temporary swales."

Highlight (4)

Subject: Highlight Page Label: 5 Author: CDurham

Date: 6/20/2023 5:18:36 PM

Status: Color: Layer: Space:

are then

e collecte Subject: Highlight Page Label: 5 ng 12' Cl Author: CDurham

Date: 6/20/2023 5:19:04 PM

Status: Color: Layer: Space:

12'

ately colle Subject: Highlight Page Label: 6 ng 12' CC Author: CDurham

Date: 6/20/2023 5:19:57 PM

carried th Status: Color: Layer: Space:

Subject: Highlight Page Label: 6 Author: CDurham

Date: 6/20/2023 5:21:43 PM

Status: Color: Layer: Space:

12'

Proposed curb and gutter, and proposed storm inlets will convey flows to

one of three proposed Private Full Spectrum

Extended Detention Basins.

Image (1)

Subject: Image Page Label: [1] DR-1 Author: CDurham

Date: 6/20/2023 5:37:14 PM

Status: Color: Layer: Space:

Text Box (8)

Subject: Text Box Page Label: 5 Author: CDurham

Date: 6/20/2023 5:18:51 PM

Status: Color: Layer: Space:

Per map there are 3 onsite basins and 1 offsite

basin.

Subject: Text Box Page Label: [1] DR-EX Author: CDurham

Date: 6/20/2023 5:23:18 PM

Status: Color: Layer: Space:

See comment on PDR for existing map.

Subject: Text Box Page Label: 55 Author: CDurham

Date: 6/20/2023 5:31:23 PM

Status: Color: Layer: Space:

This section is not needed for early grading.

Please provide calculations for swales, which will direct flows through the site.

Please provide calculations for TSB ponds.

Subject: Text Box Page Label: 7 Author: CDurham

Date: 6/20/2023 5:33:03 PM

Status: Color: Layer: Space: Unresolved:

Combine sub-basins to what's draining into each

TSB.

Unresolved:
Update to summarize
the temporary facilities
fly 9f (swales, TSB, etc)
installed with Early
Grading.

Subject: Text Box Page Label: 13 Author: CDurham

Date: 6/20/2023 5:34:05 PM

Status: Color: Layer: Space: Unresolved:

Update to summarize the temporary facilities (swales, TSB, etc) installed with Early Grading.

ric for the overall development. A maintenance budger County sharinate.

Little County sharinate

Subject: Text Box Page Label: 14 Author: CDurham

Date: 6/20/2023 5:34:54 PM

Status: Color: Layer: Space: Unresolved:

Update. Right now all you are installing are temporary sediment basins, not EDBs.

Subject: Text Box Page Label: [1] DR-1 Author: CDurham

Date: 6/20/2023 5:36:38 PM

Status: Color: Layer: Space: Unresolved:

show the outfall from each TSB

Subject: Text Box Page Label: [1] DR-1 Author: CDurham

Date: 6/20/2023 5:37:02 PM

Status: Color: Layer: Space: Unresolved:

Revise sub-basin boundaries, and narrative based on the facilities constructed with the early grading. Also update the runoff calculations to include TSB

sizing

Only the areas highlighted in blue appear to drain into the TSB. Provided additional grading design for temporary swales and/or construct additional temporary sediment basin so all disturbed areas are going into a temporary BMP for erosion control.

Provide calculations for any temporary swales being constructed with the early grading earthwork operations.