

Info Only: EPC engineering comments are in blue text.

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

MAY 2024

Prepared For: **RMG – ROCKY MOUNTAIN GROUP** 5085 List Drive, #200 Colorado Springs, CO 80919 719.548.0600

Prepared By:

TERRA NOVA ENGINEERING, INC. 721 S. 23RD Street Colorado Springs, CO 80904 719.635.6422

TNE Job No. 2419.00 County Job No. ###

Please include project No. PPR2418

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose	Page 4
General Description	Page 4
Existing Drainage Conditions	Page 5
Proposed Drainage Conditions	Page 6
Hydrologic Calculations	Page 9
Hydraulic Calculations	Page 9
Floodplain Statement	Page 10
Water Quality	Page 10
Construction Cost Opinion	Page 10
Drainage Fees	Page 11
Maintenance	Page 11
Summary	Page 11
Bibliography	Page 12

APPENDICIES

VICINITY MAP NRCS SOILS MAP FEMA FIRM MAP HYDROLOGIC CALCULATIONS HYDRAULIC CALCULATIONS DETENTION CALCULATIONS DRAINAGE PLAN

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Dane Frank, P.E. 50207 On behalf of Terra Nova Engineering, Inc.

OWNER/DEVELOPER'S STATEMENT:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Authorized Signature

Printed Name, Title

Business Name

Address

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator

Conditions:

Joshua Palmer

Date

Date

Date

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

PURPOSE

The purpose of this Final Drainage Report is to identify and analyze the proposed drainage patterns, determine proposed runoff quantities, size drainage structures for conveyance of developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development. The site has not previously been platted or studied.

GENERAL DESCRIPTION

This Final Drainage Report (FDR) is an analysis of approximately 17.22 acres of developed land located at 6001 E Platte Ave. The site is currently in use as and landscaping materials yard and is being developed as a mini storage facility. The site is in the northwest quarter of Section 18, Township 14 South, Range 65 West of the 6th Principal Meridian within El Paso County. The parcels are bounded to the north by Motel Road and E Platte Ave, to the east by two unplatted lots, to the south by an unplatted lot and LOT 2 COLORADO SPRINGS AIRPORT FIL NO 1B, and to the west by unplatted lots. (see vicinity map in appendix).

The site lies within the Sand Creek Basin, with storm runoff surface draining west across the site, before flowing onto the neighboring property where Sand Creek East Fork is located.

Soils for this project are delineated by the map in the appendix as Blakeland loamy sand (8), 1 to 9 percent slopes. Soils in the study area are shown as mapped by NRCS in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group A.

The site is currently developed with mostly dirt surfaces, some gravel and asphalt areas, and minimal vegetation that is mostly native grasses around the perimeter. The site drains to the west, with an average slope of 6.6%.

EXISTING DRAINAGE CONDITIONS

There are multiple existing buildings, a weight scale, miles of retaining or freestanding walls being used to create material storage areas, and a pond (low area that doesn't drain) on the site. Most of the west side of the site is bermed up before an embankment drops down, which results in little runoff leaving the site. The existing pond area is said to be largely paved (unconfirmed), so most runoff would leave the site by evaporation.

There are ten drainage basins, four of which are offsite. See attached Existing Drainage Map in the appendix.

Offsite Basins

Basin OS-Z is 6.34 acres and drains to Design Point Z on the east property line of the site. This basin is offsite and drains onto the site and into Basin EX-C. The basin surfaces are primarily dirt and gravel (construction yard). Basin OS-Z has flows of $Q_5 = 6.1$ cfs and $Q_{100} = 16.7$ cfs.

Basin OS-Y is 8.15 acres and drains to Design Point Y on the east property line of the site. This basin is offsite and drains onto the site and into Basin EX-C. The basin surfaces are primarily dirt and gravel (construction yard), with some native grass area. Basin OS-Y has flows of $Q_5 = 3.6$ cfs and $Q_{100} = 15.4$ cfs.

Basin OS-X is 1.20 acres and drains to Design Point X on the south property line of the site. This basin is offsite and drains onto the site and into Basin EX-C. The basin surfaces are native grass (undeveloped land). Basin OS-X has flows of $Q_5 = 0.4$ cfs and $Q_{100} = 2.3$ cfs.

Basin OS-W is 0.45 acres and drains to Design Point W on the north property line of the site. This basin is offsite and drains onto the site and into Basin EX-B. The basin surfaces are native grass and asphalt (area beside Motel Road and the site's driveway). Basin OS-W has flows of $Q_5 = 0.5$ cfs and $Q_{100} = 1.3$ cfs.

Onsite Basins

Basin EX-A is 0.30 acres and drains to Design Point A at the site's north property line. Runoff

flows off the site and onto the Motel Road right of way. This basin consists of landscaping areas and buildings. Basin EX-A has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 0.8$ cfs.

Basin EX-B is 0.64 acres and drains to Design Point B at the at the site's north property line. Runoff flows off the site and onto the Motel Road right of way. This basin consists of landscaping areas, buildings, some pavement, and a swale. Basin EX-A has flows of $Q_5 = 1.1$ cfs and $Q_{100} = 2.6$ cfs.

Basin EX-C is 15.4 acres and drains to Design Point C at the existing pond on the site. Runoff doesn't appear to leave this pond other than by evaporation. This basin includes the bulk of the site and includes buildings, roads, storage areas, and parking areas. The surfaces are primarily dirt, gravel, or paved. Basin EX-C has flows of $Q_5 = 29.0$ cfs and $Q_{100} = 65.0$ cfs.

Basin EX-D is 1.05 acres and drains to Design Point D at the site's south/west property line. Runoff flows off the site and onto the adjacent property. This basin is primarily a dirt storage/stockpile area. Basin EX-D has flows of $Q_5 = 0.3$ cfs and $Q_{100} = 1.9$ cfs. through Basin OS-X and enters back onto the site at DP X, combining flows with OS-X.

Basin EX-E is 0.16 acres and drains to Design Point E at the site's west property line. Runoff flows off the site and onto the adjacent property. This basin consists an earth embankment. Basin EX-E has flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.5$ cfs.

Basin EX-F is 0.23 acres and drains to Design Point F at the site's northwest property line. Runoff flows off the site and onto the adjacent property. This basin consists an earth embankment. Basin EX-F has flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.7$ cfs.

PROPOSED DRAINAGE CONDITIONS

Runoff in the developed conditions consists of 14 basins, four of which are offsite. Below is a description of the runoff in the developed conditions and how it will be safely routed, treated and detained. Basins on the west half of the site are proposed as undeveloped, but the proposed detention pond has been sized to account for their future commercial development.

Offsite BasinsPlease describe the path of runoff flow at each Design
Point. Once collected at these points, where will the runoff
flow.next? How will these flows interact with the storm
infrastructure (including proposed or existing pipes,
culverts, inlets, swales, ponds, etc.)? Additional comments
may be added after addressing these points.
Include what basins are being combined at each DP locationOnsite BasinsInclude what basins are being combined at each DP locationBasin PR-1 is 0.07 acres and drains to Design Point 1 at the site's north property line. Basin PR-11 is a landscaping area behind proposed Building B. Basin PR-1 has flows of Q5 = 0.0 cfs and

 $Q_{100} = 0.2$ cfs.

Basin PR-2 is 0.13 acres and drains to Design Point 2 at the site's north property line. Basin PR-2 is a landscaping area behind proposed Building A. Basin PR-2 has flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.4$ cfs.

Basin PR-3 is 5.12 acres and drains to Design Point 3 at the west edge of the proposed mini-storage area. This area consists almost entirely of buildings and pavement that drain to an inlet. Basin PR-3 has flows of $Q_5 = 23.1$ cfs and $Q_{100} = 41.4$ cfs.

Basin PR-4 is 3.66 acres and drains to Design Point 4 at the west edge of a gravel parking area. This area is a gravel yard, and the two future canopies have been included in the drainage calese/public, Basin PR-4 has flows of $Q_5 = 8.2$ cfs and $Q_{100} = 16.8$ cfs. proposed/existing, type, size. If it is a sump inlet, please discuss emergency path if it gets clogged.

Basin PR-5 is 0.56 acres and drains to Design Point 5 at the site's south property line. The swale in this basin catches offsite flow and carries it west and back offsite. Basin PR-5 has flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.9$ cfs.

Basin PR-6 is 6.64 acres and drains to Design Point 6 at the northeast corner of the site. This basin is most of the western portion of the site and will remain undeveloped. The propoed detention pond is located in this basin. Basin PR-6 has flows of $Q_5 = 3.1$ cfs and $Q_{100} = 13.1$ cfs.

Basin PR-7 is 0.34 acres and drains to Design Point 7 at the northwest edge of the site. This basin is an earth embankment area that sheet flows offsite to the adjacent property. Basin PR-7 has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 1.1$ cfs.

Basin PR-8 is 0.30 acres and drains to Design Point 8 at the west edge of the site. This basin is an earth embankment area that sheet flows offsite to the adjacent property. Basin PR-8 has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 1.0$ cfs.

Basin PR-9 is 0.59 acres and drains to Design Point 9 at the west edge of the site. This basin is an earth embankment and flatter area that sheet flows offsite to the adjacent property. Basin PR-9 has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 1.5$ cfs.

Basin PR-10 is 0.40 acres and drains to Design Point 10 at the east edge of the site. This basin is between the east property line and proposed buildings that is largely embankment with a concrete drain trench to collect runoff from offsite. The drain trench discharges into a storm sewer. Basin PR-10 has flows of $Q_5 = 0.3$ cfs and $Q_{100} = 1.4$ cfs.

List all the basins that contribute to DP 6.

At Design Point 6 the combined flow of the currently proposed development and luture commercial development will be captured in a 2.657 acre-foot Extended Detention Basin. Runoff entering the pond through the storm sewer system will be routed into a 702 cu-ft concrete lined forebay with a 1.5 feet high concrete cutoff wall. A 3 inch notch in the wall drains the flow to a 2' concrete trickle channel, then the runoff is routed to the 3.0' deep micropool which has a 6" deep initial surcharge area. The 32.96 acres tributary to the EDB are 44% impervious. Based upon this we need a WQCV of 0.523 ac-ft, an EURV volume of 1.091 ac-ft and 100-year volume of 1.044 ac-ft for a total volume needed of 2.657 ac-ft. The bottom of the micropool elevation is at 6199.50 while the top of the ISV elevation is at 6202.50. The WQCV orifice starts at 6202.00 with two 1-5/8 inch diameter holes spaced 20.40 inches apart, then one 1-1/2 inch diameter hole spaced 20.40 inches apart, then one 3.00" diameter spaced 8.40 inches apart. A 4'x4' outlet structure is set at 6210.00. The 100-year water elevation tops out at 6210.54. A 18" HDPE storm pipe will release $Q_5=0.5$ cfs and $Q_{100}=11.3$ cfs discharge to a stilling basin at the west property line, which will outfall onto the adjacent property. Please compare the runoff at the design point (DP) between the existing and proposed conditions as they leave the site.

There is one storm sewer system proposed on the site. This system collects runoff from the drain trench along the east property line and the two curb inlets in the mini-storage area and pipes the

The existing flow at this point appears to sheet flow, will a stilling basin be sufficient to ensure a suitable outfall and matching the existing condition? runoff to the detention pond. There are a series of area inlets along the storm pipe in the ministorage area that are not required to capture runoff, but will lessen the surface flow along the central drive aisle. The storm pipes on the west side of the site have been sized to have some extra capacity so that the future commercial development can tie into them as well.

In an effort to protect receiving water and as part of the "four-step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

- 1. Reduce Runoff- There is no runoff reduction in the proposed mini-storage area. The proposed parking area south of the mini-storage has been surfaced with gravel, which will reduce runoff. These items will reduce the volume of runoff using ponding and infiltration.
- Stabilize Drainageways- There are no existing or proposed drainageways onsite. The Sand Creek East Fork is located west of the site; however, channel improvements have previously been constructed there.
- 3. Provide Water Quality Capture Volume (WQCV)- The Extended Detention Basin has been sized and designed to sufficiently capture the required WQCV and slowly release it though the outlet structure, thereby allowing solids and contaminants to settle out.
- 4. Consider Need for Industrial and Commercial BMPs- The proposed development is an indoor mini storage facility; therefore, no Industrial and Commercial BMPs have been proposed.

HYDROLOGIC CALCULATIONS

Discuss exclusions to areas that do not drain to the proposed EDB

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria Manual – Volumes 1 & 2, latest editions. The pertinent data sheets are included in the appendix of this report.

A culvert is proposed at one of the site entrances. Design calculations have been included for the proposed culvert.

Street runoff capacity calculations for the onsite drive isles have been included.

FLOODPLAIN STATEMENT

No portion of this site is within a designated FEMA floodplain, as determined by FIRM Number 08041C0754 G, dated December 7, 2018 (see appendix).

WATER QUALITY

The proposed detention basin provides water quality treatment for nearly all of the proposed development.

Runoff from basins PR-1, PR-2, PR-5, PR-7, PR-8, and PR-9 are not captured by the proposed detention pond. Basins PR-1 and PR-2 are landscaping areas along the property line with no impervious area. Basin PR-5 is an undeveloped area with a swale that directs offsite flow back offsite, with no impervious area. Basins PR-7 and PR-8 are earth embankments on the downstream edge of the site that drop 10-15 feet in elevation, with no impervious area. Basin PR-9 is part flatter undeveloped area and part earth embankment on the downstream edge of the site that doesn't flow toward the detention pond, with no impervious area. The combined area of these basins is 1.69 acres, with zero impervious area. As there is no impervious area in these basins, no WQCV treatment is required for them. Additionally, as all of these basins are landscaping or undeveloped areas, they would qualify as water quality treatment areas (grass buffers).

CONSTRUCTION COST OPINION Public Reimbursable None

Public Non-Reimbursable None All disturbed areas are required to be accounted for with treatment or water quality exclusions, not impervious areas.

If the areas are proposed to as "runoff reduction" water quality treatment areas as stated in the sentence after, they need to be identified as separate pervious areas with supporting calculations and identified clearly on the plans. Vegetation in RPAs and SPAs should have a uniform density of at least 80%. In the Drainage Report, runoff reduction calculations (UD-BMP spreadsheet or equivalent) shall be included. In the Drainage Report, include a figure delineating all proposed UIA, RPA, and SPA areas to be utilized for runoff reduction. All RPAs and SPAs are considered PCMs and therefore require a signed PCM Maintenance Agreement and an O&M Manual. Include a cost estimate for each PBMP with line items for all components (ex: riprap, road base, forebay, trickle channel, outlet structure, outlet pipe, spillway, etc). Input the total value into the FAE form under "Permanent Pond/BMP (provide engineer's estimate)" in Section 1. The total should not include grading, which is a separate line item in Section 1: "Earthwork." The cost estimate should include labor costs (as a separate line item or added into the cost of each component).

Private Non-Reimbursable				
1. 48" RCP	260 LF	\$ 245	\$	63,700
2. 42" RCP	80 LF	\$ 201	\$	16,080
3. 36" RCP	385 LF	\$ 151	\$	58,135
4. 30" RCP	170 LF	\$ 123	\$	20,910
5. 24" RCP	115 LF	\$ 98	\$	11,270
6. 18" HDPE	36 LF	\$ 50	\$	1,800
7. 6' Manhole	1 EA	\$ 10,000	\$	10,000
8. 7' Manhole	1 EA	\$ 14,000	\$	14,000
9. CDOT Type C Area Inlet	9 EA	\$ 6,037	\$	54,333
10. 16' D-10-R Curb Inlet	1 EA	\$ 13,835	\$	13,835
11. 20' D-10-R Curb Inlet	1 EA	\$ 20,000	\$	20,000
12. Concrete Drain Trench	710 LF	\$ 200	\$	142,000
13. EDB	1 EA	\$ 100,000	\$	100,000
		Tota	ıl \$	426,063

DRAINAGE FEES

This drainage report is part of a site development application; therefore, no drainage fees are due.

MAINTENANCE

The Extended Detention Basin is private and will be maintained by the property owner. The proposed storm sewers are private and will be maintained by the property owner.

SUMMARY

Development of this site will not adversely affect the surrounding development. This report is in general conformance with the previous reports which included this site. Site runoff and storm drain appurtenances from the development will not adversely affect the downstream and surrounding developments and will be safely routed to the proposed extended detention basin and runoff reduced to the allowable pre-developed rates while slowly treating the water quality capture volume.

Please include name, date of approval and prepared by whom of the previous reports. Also, please include them in the reference part.

Provide discussion earlier in report discussing suitable outfall location. Provide comparison of existing flow rates to developed/released flow rates.

PREPARED BY: TERRA NOVA ENGINEERING, INC.

Dane Frank, P.E. Project Engineer

Jobs/2419.00/Drainage/241900 FDR.doc

BIBLIOGRAPHY

El Paso County Drainage Criteria Manual-Volumes 1 & 2, latest edition

VICINITY MAP

El Paso County - Community: Property Search

Schedule Number: 5418000075

PLATTE SELF STORAGE Vicinity Map

North is up M

NRCS SOILS MAP

Conservation Service

Web Soil Survey National Cooperative Soil Survey

	MAP L	EGEND		MAP INFORMATION
Area of Intere	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at
A	Area of Interest (AOI)	۵	Stony Spot	1:24,000.
Soils		å	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
<u> </u>	Soil Map Unit Polygons	w W	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
جب ج	Soil Map Unit Lines	× ∆	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
– 5	Soil Map Unit Points		Special Line Features	contrasting soils that could have been shown at a more detailed
	Special Point Features Blowout Borrow Pit Clay Spot		atures	scale.
<u> </u>			Streams and Canals	Please rely on the bar scale on each map sheet for map
			ation	measurements.
× C	Clay Spot	+++	Rails	Source of Map: Natural Resources Conservation Service
\diamond	Closed Depression	~	Interstate Highways	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
X C	Gravel Pit	~	US Routes	Maps from the Web Soil Survey are based on the Web Mercato
÷. (Gravelly Spot	~	Major Roads	projection, which preserves direction and shape but distorts
Ø -	andfill	~	Local Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
A. L		Backgrou	Ind Aerial Photography	accurate calculations of distance or area are required.
علام	/arsh or swamp	- Sec		This product is generated from the USDA-NRCS certified data a
 ⊗	line or Quarry			of the version date(s) listed below.
© N	/liscellaneous Water			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023
Õ F	Perennial Water			Soil map units are labeled (as space allows) for map scales
<u> </u>	Rock Outcrop			1:50,000 or larger.
+ 5	Saline Spot			Date(s) aerial images were photographed: Aug 19, 2018—Se
	Sandy Spot			23, 2018
	Severely Eroded Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
	Sinkhole			imagery displayed on these maps. As a result, some minor
*	Slide or Slip			shifting of map unit boundaries may be evident.
300	Sodic Spot			
ø s				

Map Unit Legend

Map Unit Symbol	Map Unit Symbol Map Unit Name		Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	16.5	100.0%
Totals for Area of Interest		16.5	100.0%

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

USDA

Minor Components

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023

FEMA FIRM MAP

NOTES TO USERS

nce Program. It do his map is for use in s map is for use in administering the National Flood Insurance Program. It does necessarily identify all areas subject to flooding, particularly from local drainage urces of small size. The community map repository should be consulted fo ssible updated or additional flood hazard information.

To obtain more detailed information in across where **Base Flood Elevations** (BFE) and/or floodings in the besind information. Users are noncomparing within the Flood insurance Study (FIS) proof that accompanies the FIRM. Users whould be assist that IBFEs alrown on the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent rounded whole-food information of the flood information of the FIRM represent.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be avare that coastal flood elevations are also provided in the Summary of Sillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Sillwater Elevations table should be used for construction Indior floodplain management purposes when they are higher than the elevatio hown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations wit regard to requirements of the National Flood Insurance Program. Floodway with and other pertinent floodway data are provided in the Flood Insurance Study repo for this funderland. or this juris

Certain areas not in Special Flood Hazard Areas may be protected by flood contro structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

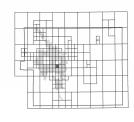
The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NADAS, GRS80 spheroid. Differences in dutum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in may feature across prisidiction bundlemse. These differences do not the dimension of the fature across prisidiction bundlemse. These differences do not may be address the dimensional transverse of the dimensional transverse to the dimensional transverse that the dimensional transverse that the dimensional transverse transverse that the dimensional transverse transverse transverse that the dimensional transverse the dimensional transverse transv ifferences in map features acro affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and conversion between the National Geodetic Vertical Datum of 1928 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.rsp.enda.gov/ or contact he National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mark** shown on this map, please contact the Information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Pase County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.


This map reflects more detailed and up-to-date stream channel configurations and floodplate delineations than those shown on the previous FRM for the sinitication. How been adjusted to confron to these me stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contrains authoritative yindraid, data) may reflect steam channel dataross that dRM from what is shown on this map. The profile baselines displaced and Floodway Data Tables in the Flood Insurance Study Report (which contrains authoritative yindraid, data) may reflect steam channel dataross that dRM from what is shown on this map. The profile baselines displaced and Floodway Data Tables if applicable, the FIS report. As a result, the profile baselines may devide significantly from the new base map channel representation and may appear coulde of the floodplane.

Corporate limits shown on this map are based on the best data available at the time if publication. Because changes due to annexations or de-annexations may have courred after this map was published, map users should contact appropriate ommunity officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is loward.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1477-358-2627 for information on available products associated with bit Flood Insurance Subpr Report direct portain with one of the set on the MSC me also be reached by Fax at 1-805-358-9620 and its website a hip/invex msc ferma gov/.

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

104' 43' 7.50" 3225000 FT JOINS PANEL 0752 38* 50' 37.50' 38: 50: 37.50 Sand Creek Senter Tributa Sand Creek East Fork EL PASO COUNTY UNINCORPORATED AREAS 080059 стту с ZONE AE -(K) 0 24] 7 ZONE ANNUAL CHA OOD DISCHA CONTAINED ZONE AE 6219 ZONE AE PANAMINT (**L**)-62 ,6211 ZONE 4299000mp JK0214 SPACE VILLAGE AVE P 619 Π 6205 6202 ZONE AE 1% ANNUAL CHANCE FLOOD DISCHARGE ONTAINED IN CULVER SITE CITY OF COLORADO SPRINGS 080060 UNINC DRPORATED AREAS EL PASO COUNTY CITY OF COLORADO SPRINCE ZONE AE Sand Creek East Fork PETERSON AIR FORCE BAS E BLIOU ST PETERSON AIR FORCE BASE EL PASO COUNTY Ŵ EL PASO COUNTY CITY OF COLORADO SPRINGS 6223 1365000 F ZONE AE 6218 18 () 17 ZONE D ZONE D +CORCORN. 4 +CITY OF COLORADO SPRINGS 080060 ZONE AE Sand Creek East Fork ITY OF COLOR HOTEST TRAFE 4297000rN ZONE D BOUNDARY COINCIDENT WITH CORPORATE BOUNDARY 1360000 FT ZONE D 20 19 CITY OF COLORADO SPRINGS PETERSON AIR FORCE BASE COLORADO SPRINGS MUNICIPAL AIRPORT 38" 48' 45.00" 38" 48' 45.00' JOINS PANEL 0762 104" 41" 15.00" 104° 43' 7.50" \$25000mE 12600mp NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 14 SOUTH, RANGE 65 WEST.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Heard Area is the area subject to flooding by the 1% armusi chance flood. Areas of Special Flood Heard Include Zorres A, AZ, AH, AA, AR, APS, V, and VE. The Base Flood Beladion is the water-sufface deviation of the 1% annual chance flood.
 ZONE A
 No Base Flood Elevations determined.

 ZONE AE
 Base Flood Elevations determined.

 ZONE AH
 Flood elevations determined.

 Elevations determined.
 Elevations determined.
 Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined. ZONE AO determined. Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood carted system that was subsequently decertified. Zone AR indicates that the former flood carted system is being resized to provide protection from the 1% annual chance or greater flood. ZONE AR Area to be protected from 156 annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations ZONE A99 ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Bevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Bevations determined. []]]] FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. ZONE X OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas Floodplain boundary ____ Floodway boundary Zone D Boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. ~~ 513 ~~ Base Flood Elevation line and value: elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet* * Referenced to the North American Vertical Datum of 1988 (NAVD 88) $\fbox{\textbf{A}} \fbox{\textbf{A}} \fbox{\textbf{A}} \raise \texttt{Cross section line}$ 23-------23 Transect line Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 97° 07' 30.00° 32° 22' 30.00° 4275000nN 1000-meter Universal Transverse Mercator grid ticks, zone 13 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection 6000000 FT Bench mark (see explanation in Notes to Users section of this FIRM panel) DX5510 M1.5 River Nile MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997 EFFECTIVE DATE(s) OF REVISION(S) TO THIS PA DECEMBER 7, 2018 - to update corporate limits, to change Base F Special Flood Hasand Aeeas, to update map format, to add reads and incorporate previously issued Letters of Map Revisi For community map revision history prior to countywide mapping, refer to the C Map History Table located in the Flood Insurance Study report for this jurisdiction To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500' 250 0 500 1000 -NFP PANEL 0754G FIRM 6 FLOOD INSURANCE RATE MAP EL PASO COUNTY. COLORADO AND INCORPORATED AREAS PANEL 754 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT CONTAINS: COMMUNITY NUMBER PANEL SUFFIX OOD INSU COLORADO SPRINGS, CITY OF BRORD 0754 000000 0754 Notice: This map was reissued on 05/15/2 to make a correction. This version replaces any previous versions. See the Notice to User Letter that accompanied this remarkable. NEATIONNAL FI orders: the Co n below should be munity Number MAP NUMBER 08041C0754G 9 MAP REVISED

DECEMBER 7, 2018

Federal Emergency Management Agency

HYDROLOGIC CALCULATIONS

PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

	TOTAL	DEVELO	PED / IMPE	RVIOUS	UNDEVELO	PED / NON-IN	MPERVIOUS	WEI	GHTED	WEIGH	TED CA
BASIN	AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀	CA ₅	CA ₁₀₀
OS-Z	6.34	1.90	0.90	0.96	4.44	0.08	0.35	0.33	0.53	2.07	3.38
OS-Y	8.15	0.82	0.90	0.96	7.33	0.08	0.35	0.16	0.41	1.32	3.35
OS-X	1.20	0.02	0.90	0.96	1.18	0.08	0.35	0.09	0.36	0.11	0.43
OS-W	0.45	0.11	0.90	0.96	0.34	0.08	0.35	0.28	0.50	0.13	0.22
EX-A	0.30	0.05	0.90	0.96	0.25	0.08	0.35	0.22	0.45	0.07	0.14
EX-B	0.64	0.29	0.90	0.96	0.35	0.08	0.35	0.45	0.63	0.29	0.40
EX-C	15.4	7.70	0.90	0.96	7.70	0.08	0.35	0.49	0.66	7.55	10.09
EX-D	1.05	0.02	0.90	0.96	1.03	0.08	0.35	0.10	0.36	0.10	0.38
EX-E	0.16	0.00	0.90	0.96	0.16	0.08	0.35	0.08	0.35	0.01	0.06
EX-F	0.23	0.00	0.90	0.96	0.23	0.08	0.35	0.08	0.35	0.02	0.08
Total	33.92	10.91								Calc:	DLF
										Date:	4/29/2024
										Checked:	

EXISTING

PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

	TOTAL	DEVELO	PED / IMPE	RVIOUS	UNDEVELO	PED / NON-IN	MPERVIOUS	WEIG	GHTED	WEIGH	TED CA
BASIN	AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀	CA ₅	CA ₁₀₀
OS-Z	6.34	1.90	0.90	0.96	4.44	0.08	0.35	0.33	0.53	2.07	3.38
OS-Y	8.15	0.82	0.90	0.96	7.33	0.08	0.35	0.16	0.41	1.32	3.35
OS-X	1.20	0.02	0.90	0.96	1.18	0.08	0.35	0.09	0.36	0.11	0.43
OS W	0.45	0.11	0.90	0.96	0.34	0.08	0.35	0.28	0.50	0.13	0.22
	0.07	0.00	0.90	0.96	0.07	0.08	0.35	0.08	0.35	0.01	0.02
\succ 2 \checkmark	0.13	0.00	0.90	0.96	0.13	0.08	0.35	0.08	0.35	0.01	0.05
\rightarrow 3 \checkmark	5.12	5.12	0.90	0.96	0.00	0.08	0.35	0.90	0.96	4.61	4.92
$4 \prec$	3.66	2.38	0.90	0.96	1.28	0.08	0.35	0.61	0.75	2.24	2.73
5 2	0.56	0.01	0.90	0.96	0.55	0.08	0.35	0.09	0.36	0.05	0.20
6	6.64	0.66	0.90	0.96	5.98	0.08	0.35	0.16	0.41	1.07	2.73
7	0.34	0.01	0.90	0.96	0.33	0.08	0.35	0.10	0.37	0.04	0.13
8	0.30	0.01	0.90	0.96	0.29	0.08	0.35	0.11	0.37	0.03	0.11
9)	0.59	0.01	0.90	0.96	0.58	0.08	0.35	0.09	0.36	0.06	0.21
10	0.40	0.04	0.90	0.96	0.36	0.08	0.35	0.16	0.41	0.06	0.16
Total	33.95	11.09								Calc:	DLF
										Date:	4/29/2024
										Checked:	0

PROPOSED

Use same labeling convention as in report and on drainage map

PLATTE SELF STORAGE RUNOFF SUMMARY

EXISTING

	AREA	WEIG	HTED		OVER	RLAND		STRE	ET / CH	ANNEL F	LOW	T _C	INTE	VSITY	TOTAL	FLOWS
BASIN	TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T _t	Length	Slope	Velocity	T_t	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	* For Calcs See	Runoff Summary	C_5	(<i>ft</i>)	(ft/ft)	(min)	(<i>ft</i>)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-Z	6.34	0.33	0.53	0.33	300	0.02	19.3	230	2.0%	1.4	2.7	22.0	2.9	4.9	6.1	16.7
OS-Y	8.15	0.16	0.41	0.16	300	0.03	20.4	505	3.0%	1.7	4.9	25.3	2.7	4.6	3.6	15.4
OS-X	1.20	0.09	0.36	0.09	300	0.05	18.5	0	5.0%	2.2	0.0	18.5	3.2	5.4	0.4	2.3
OS-W	0.45	0.28	0.50	0.28	300	0.07	13.5	160	7.0%	2.6	1.0	14.5	3.6	6.0	0.5	1.3
EX-A	0.30	0.22	0.45	0.22	300	0.07	14.5	0	7.0%	2.6	0.0	14.5	3.6	6.0	0.2	0.8
EX-B	0.64	0.45	0.63	0.45	300	0.07	10.7	250	7.0%	2.6	1.6	12.2	3.8	6.4	1.1	2.6
EX-C	15.4	0.49	0.66	0.49	300	0.07	10.0	330	7.0%	2.6	2.1	12.1	3.8	6.4	29.0	65.0
EX-D	1.05	0.10	0.36	0.10	300	0.03	21.9	40	3.0%	1.7	0.4	22.2	2.9	4.9	0.3	1.9
EX-E	0.16	0.08	0.35	0.08	30	0.40	3.0	0	40.0%	6.3	0.0	5.0	5.2	8.7	0.1	0.5
EX-F	0.23	0.08	0.35	0.08	35	0.24	3.8	0	24.0%	4.9	0.0	5.0	5.2	8.7	0.1	0.7
															Calc:	DLF
															Date:	4/29/2024

Checked:

n

PLATTE SELF STORAGE RUNOFF SUMMARY

PROPOSED

	AREA	WEIGI	HTED		OVER	RLAND		STRE	ET / CH	ANNEL F	LOW	T _C	INTE	NSITY	TOTAL	FLOWS
BASIN	TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T _t	Length	Slope	Velocity	T_t	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	* For Calcs See	Runoff Summary	C_5	(ft)	(ft/ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-Z	6.34	0.33	0.53	0.33	300	0.02	19.3	230	2.0%	1.4	2.7	22.0	2.9	4.9	6.1	16.7
OS-Y	8.15	0.16	0.41	0.16	300	0.03	20.4	505	3.0%	1.7	4.9	25.3	2.7	4.6	3.6	15.4
OS-X	1.20	0.09	0.36	0.09	300	0.05	18.5	0	5.0%	2.2	0.0	18.5	3.2	5.4	0.4	2.3
QS-W	0.45	0.28	0.50	0.28	300	0.07	13.5	160	7.0%	2.6	1.0	14.5	3.6	6.0	0.5	1.3
	0.07	0.08	0.35	0.08	100	0.08	9.3	0	8.0%	2.8	0.0	9.3	4.2	7.1	0.0	0.2
2 <	0.13	0.08	0.35	0.08	45	0.25	4.3	0	25.0%	5.0	0.0	5.0	5.2	8.7	0.1	0.4
3 🗸	5.12	0.90	0.96	0.90	100	0.02	2.9	450	2.0%	2.8	2.7	5.5	5.0	8.4	23.1	41.4
4 <	3.66	0.61	0.75	0.61	100	0.02	7.0	400	2.0%	1.0	6.7	13.7	3.7	6.1	8.2	16.8
5 <	0.56	0.09	0.36	0.09	300	0.02	25.0	0	2.0%	1.0	0.0	25.0	2.8	4.6	0.1	0.9
6 🗸	6.64	0.16	0.41	0.16	300	0.02	23.3	0	2.0%	1.0	0.0	23.3	2.9	4.8	3.1	13.1
7	0.34	0.10	0.37	0.10	25	0.33	2.8	0	33.0%	4.0	0.0	5.0	5.2	8.7	0.2	1.1
8	0.30	0.11	0.37	0.11	35	0.33	3.3	0	33.0%	4.0	0.0	5.0	5.2	8.7	0.2	1.0
9	0.59	0.09	0.36	0.09	100	0.06	10.1	0	6.0%	1.7	0.0	10.1	4.1	6.9	0.2	1.5
10	0.40	0.16	0.41	0.16	10	0.33	1.7	350	1.0%	2.0	2.9	5.0	5.2	8.7	0.3	1.4
LU															Calc:	DLF
															Date:	4/29/2024
															Checked:	0

Use same labeling convention as in report and on drainage map

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

Design	Contributing	Area	Flow (cfs)			
Point(s)	Basins	(ac)	Q 5	Q 100		
Z	OS-Z	6.34	6.1	16.7		
Y	OS-Y	8.15	3.6	15.4		
X	OS-X,EX-D	2.25	0.7	4.2		
W	OS-W	0.45	0.5	1.3		
A	EX-A	0.30	0.2	0.8		
В	EX-B	0.64	1.1	2.6		
С	OS-Z,OS-Y,OS-X,EX-C,EX-D	32.14	39.4	101.4		
D	EX-D	1.05	0.3	1.9		
E	EX-E	0.16	0.1	0.5		
F	EX-F	0.23	0.1	0.7		
			Calc:	DLF		
			Date:	4/29/2024		
			Checked:	0		

EXISTING

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

Design Point(s)	Contributing Basins	Area	Flow	(cf s)
r oini(s)	Dusins	(ac)	Q 5	Q 100
1	PR-1	0.07	0.0	0.2
2	PR-2	0.13	0.1	0.4
3	PR-3	5.12	23.1	41.4
4	OS-Y,PR-4	11.81	11.8	32.2
5	OX-X,PR-5	1.76	0.5	3.3
6	PR-6 📉	<mark>6.64</mark>	<mark>3.1</mark>	<mark>13.1</mark>
7	PR-7	0.34	0.2	1.1
8	PR-8	0.30	0.2	1.0
9	PR-9	0.59	0.2	1.5
10	OS-Z,PR-10	6.74	6.4	18.1
\wedge			Calc:	DLF
			Date:	4/29/2024
1			Checked:	0
esign X, Y & Z	This should include a basins which end up detention pond			

PROPOSED

Inclu point

PLATTE SELF STORAGE PIPE ROUTING SUMMARY

Pipe Run	Inlet #	Contributing Flow Sources	5 Year Flow (cfs)	100 Year Flow (cfs)	Slope	Pipe Size & Type	Owner
PR#1	-	PR#2	41.4	91.7	2.7%	48" RCP	PVT
PR#2	-	PR#3	41.4	91.7	2.2%	48" RCP	PVT
PR#3	#1	PR#4,PR-3	41.4	91.7	2.2%	42" RCP	PVT
PR#4	#2	PR#5	18.3	50.3	1.7%	42" RCP	PVT
PR#5	#3	PR#6,PR#11	18.3	50.3	2.1%	42" RCP	PVT
PR#6	#4	PR#7	6.4	18.1	5.0%	30" RCP	PVT
PR#7	#5	PR#8	6.4	18.1	1.9%	30" RCP	PVT
PR#8	#6	PR#9	6.4	18.1	1.9%	30" RCP	PVT
PR#9	#7	PR#10	6.4	18.1	1.9%	24" RCP	PVT
PR#10	#10	PR#13	6.4	18.1	1.7%	24" RCP	PVT
PR#13	#11	OS-Z,PR-10	6.4	18.1	1.9%	24" RCP	PVT
PR#11	#8	PR#12	11.8	32.2	1.0%	36" RCP	PVT
PR#12	#9	OS-Y,PR-4	11.8	32.2	1.0%	36" RCP	PVT
PR#90	-	Pond outlet	0.5	11.3	1.4%	18" HDPE	PVT
						Calc	DI F

 Calc:
 DLF

 Date:
 4/29/2024

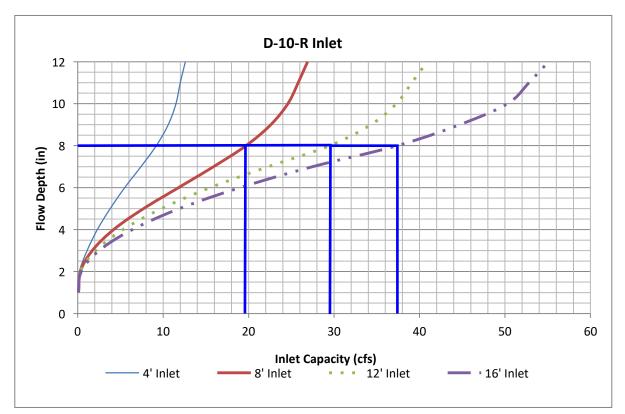
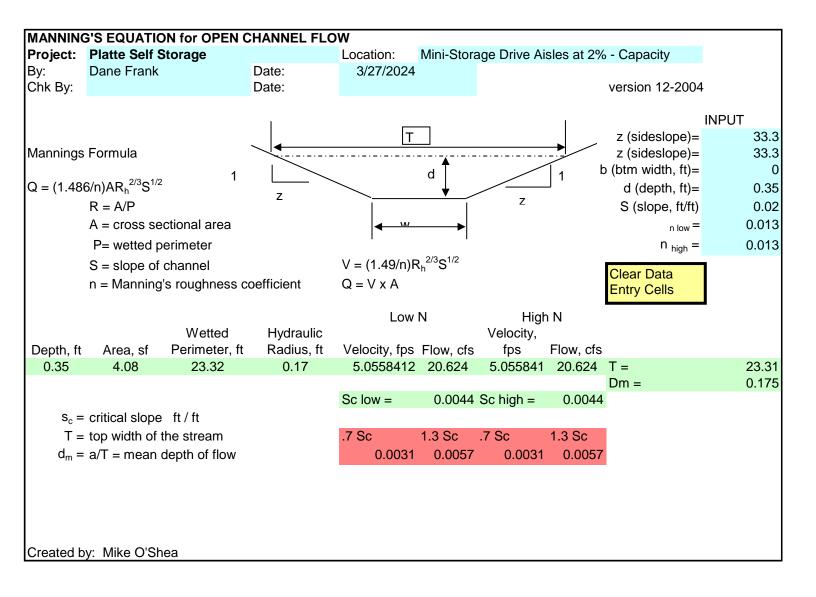
 Checked:
 0

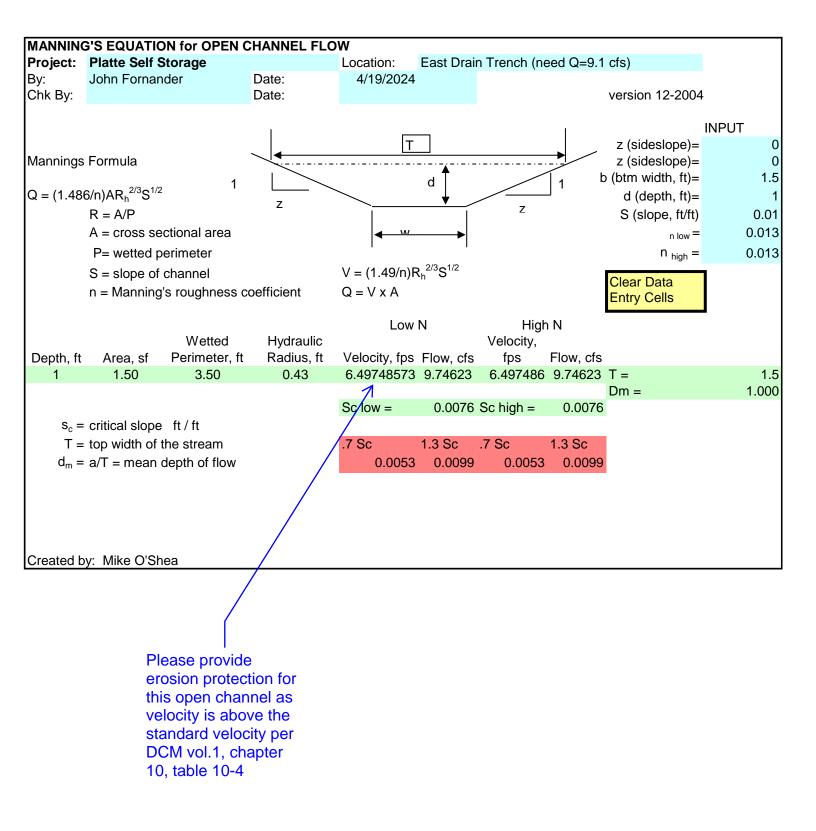
HYDRAULIC CALCULATIONS

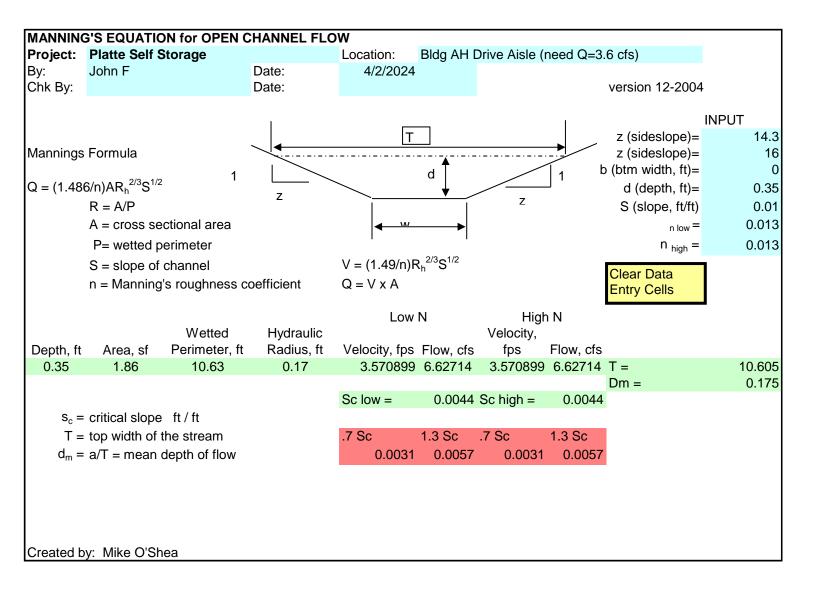
Please include inlet management tab, and inlet calculations.

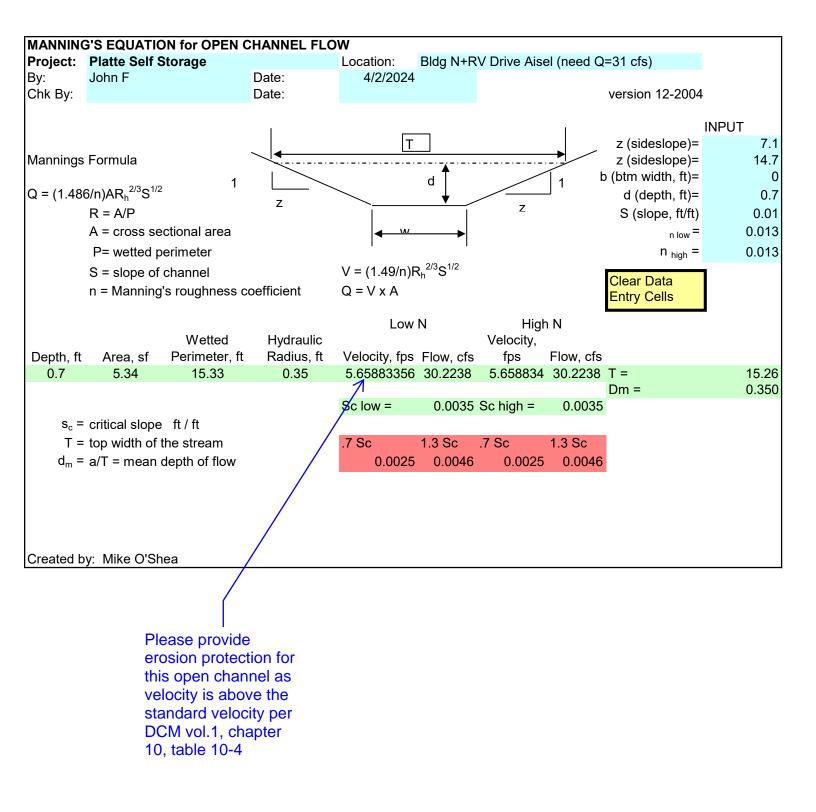
Also include calculations for riprap outlet protection

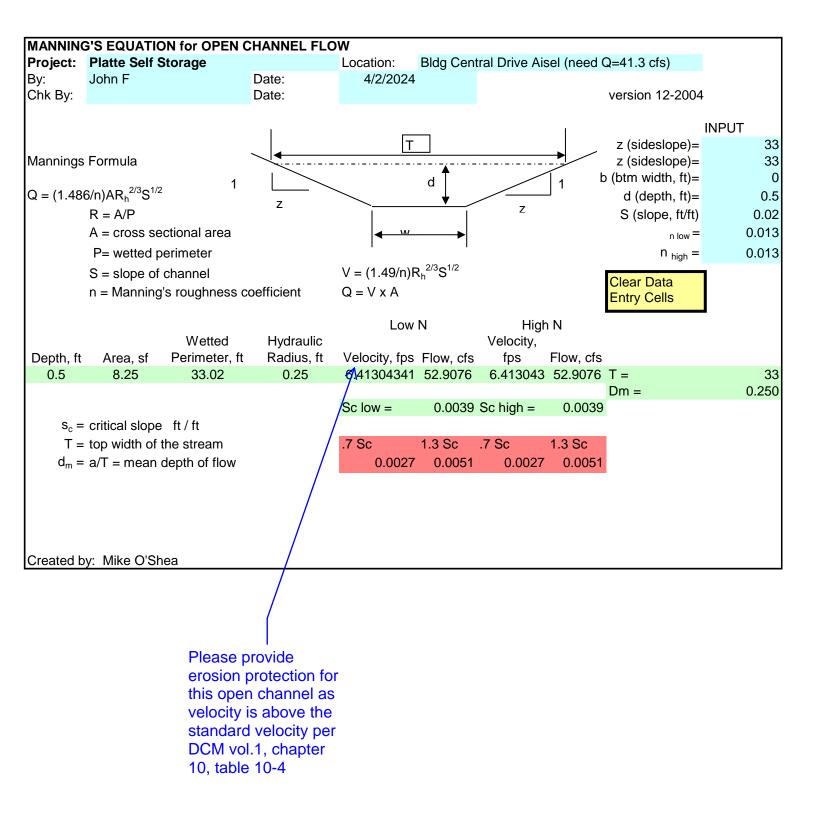
2419.00 Curb Inlet Capacity

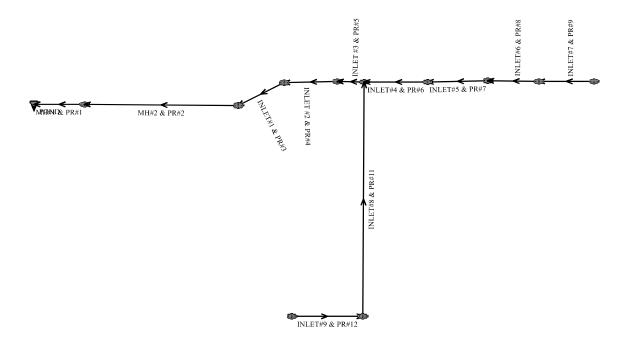




Figure 8-12. Inlet Capacity Chart Sump Conditions, Curb Opening (D-10-R) Inlet


- A 8' inlet has a capacity of 19.5 cfs.
- A 12' inlet has a capacity of 29.5 cfs.
- A 16' inlet has a capacity of 37.0 cfs.
- Combining 8' and 12' inlets would give a capacity of 49 cfs for a 20' inlet.


Please provide swale ID. Please ensure IDs match the ID labeled on the proposed drainage map.





MANNING	'S EQUATI	ON FOR PIF	PE FLOW					
Project:	Platte Self			Location:	Driveway C	ulvert (need	d Q=2 cfs)	
	Dane Fran		Date: Date:	4/5/2024			version 12.8.	00
`							CI	ear Data
				θ	~			ntry Cells
			×		×		INPUT	
				\frown		D=	18	inches
		Ā	X	<	-X	d=		inches
Mannings I	Formula	d	-			n=		mannings coef
	x = 2/3 = 1/2			D		θ=		degrees
Q=(1.486/r	n)AR _h ^{2/3} S ^{1/2}	_		\searrow		S=	0.04	slope in/in
	R=A/P							
	A=cross sect				V=(1.49/n)I	D ^{2/3} ⊂ ^{1/2}		
l	P=wetted per				Q=V x A	κ _h σ		
	S=slope of ch	roughness coef	ficient		Q=V X A			
	n–manning s	Toughiness coel		Solution to Ma	annings Equati	on	Mannir	ng's n-values
					0,			
	Area,ft ²	Wetted Perimeter, ft	Hydraulic Radius, ft	velocity ft/s	flow, cfs		PVC	0.01
	1.77	4.71	0.38	11.89	21.01		PVC PE (<9"dia)	
	1.77	4.71	0.30	11.09	21.01		PE (>12"dia)	
							PE(9-12"dia)	
							CMP	
							ADS N12	
	Created by:	Mike O'Shea					HCMP	
l							Conc	0.013

2419.00 6001 E Platte Ave Storage East System Layout Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 4/26/2024 2:19:34 PM

UDSewer Results Summary

2.1.1.4Project Title: 6001 E Platte Storage - 5 YearRun Date:
4/26/2024 2:19:34 PMProject Description: East System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 Rainfall Calculation Method: Formula

One Hour Depth (in): 1.50 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6209.00

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	ı Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	KUNOII	5yr Coefficient	Overland Length (ft)			Gutter Velocity (fps)
POND	6211.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH#1 & PR#1	6220.00	41.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MH#2 & PR#2	6223.50	41.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#1 & PR#3	6233.50	41.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #2 & PR#4	6234.00	18.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #3 & PR#5	6234.40	18.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#8 & PR#11	6237.45	11.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#9 & PR#12	6236.85	11.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#4 & PR#6	6235.60	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#5 & PR#7	6236.80	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#6 & PR#8	6238.10	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#7 & PR#9	6239.30	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#10 & PR#10	6239.85	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TRENCH & PR#13	6240.35	6.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loca	al Contrib	ution			Total Do	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	1 1
POND	0.00	0.00	0.00	0.00	0.00	5.97	6.91	0.15	41.30	
MH#1 & PR#1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.30	
MH#2 & PR#2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.30	
INLET#1 & PR#3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.30	
INLET #2 & PR#4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.20	
INLET #3 & PR#5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.20	
INLET#8 & PR#11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.80	
INLET#9 & PR#12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.80	
INLET#4 & PR#6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	
INLET#5 & PR#7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	
INLET#6 & PR#8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	
INLET#7 & PR#9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	
INLET#10 & PR#10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	
TRENCH & PR#13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.40	

		Ele	evation		Loss C	oeffici	ents	Given	Dimensio	ons
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	_	Cross Section	Rise (ft or in)	Span (ft or in)
MH#1 & PR#1	30.00	6205.00	2.7	6205.80	0.013	0.03	0.00	CIRCULAR	48.00 in	48.00 in
MH#2 & PR#2	227.00	6211.00	2.2	6216.00	0.013	0.05	0.00	CIRCULAR	48.00 in	48.00 in
INLET#1 & PR#3	45.00	6216.80	2.2	6217.80	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #2 & PR#4	24.00	6225.50	1.7	6225.90	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #3 & PR#5	7.00	6226.00	2.1	6226.15	0.013	0.05	0.00	CIRCULAR	42.00 in	42.00 in
INLET#8 & PR#11	352.00	6227.75	1.0	6231.25	0.013	1.00	0.25	CIRCULAR	36.00 in	36.00 in
INLET#9 & PR#12	31.00	6231.55	1.0	6231.85	0.013	1.00	0.00	CIRCULAR	36.00 in	36.00 in
INLET#4 & PR#6	47.00	6228.15	5.0	6230.50	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#5 & PR#7	57.00	6230.60	1.9	6231.70	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#6 & PR#8	62.00	6231.80	1.9	6233.00	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#7 & PR#9	57.00	6233.60	1.9	6234.70	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in
INLET#10 & PR#10	24.00	6235.00	1.7	6235.40	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in
TRENCH & PR#13	32.00	6235.70	1.9	6236.30	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Input Summary:

Sewer Flow Summary:

	-	Flow Dacity	Critic	al Flow		Noi	mal Flov	v			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	•	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH#1 & PR#1	235.17	18.71	23.03	6.93	13.62	14.08	2.75	Supercritical	41.30	0.00	
MH#2 & PR#2	213.76	17.01	23.03	6.93	14.30	13.15	2.50	Supercritical	41.30	0.00	
INLET#1 & PR#3	150.38	15.63	24.00	7.27	15.04	13.34	2.45	Supercritical	41.30	0.00	
INLET #2 & PR#4	130.22	13.53	15.64	5.57	10.61	9.54	2.12	Supercritical	18.20	0.00	
INLET #3 & PR#5	146.19	15.19	15.64	5.57	10.01	10.36	2.38	Supercritical	18.20	0.00	
INLET#8 & PR#11	66.69	9.43	13.08	5.09	10.25	7.11	1.60	Supercritical	11.80	0.00	
INLET#9 & PR#12	65.82	9.31	13.08	5.09	10.32	7.05	1.58	Supercritical	11.80	0.00	
INLET#4 & PR#6	91.96	18.73	10.05	4.44	5.36	10.77	3.41	Supercritical	6.40	0.00	
INLET#5 & PR#7	57.14	11.64	10.05	4.44	6.78	7.69	2.15	Supercritical	6.40	0.00	
INLET#6 & PR#8	57.22	11.66	10.05	4.44	6.77	7.70	2.15	Supercritical	6.40	0.00	
INLET#7 & PR#9	31.51	10.03	10.75	4.70	7.34	7.87	2.09	Supercritical	6.40	0.00	

INLET#10 & PR#10	29.28	9.32	10.75	4.70	7.62	7.46	1.94	Supercritical	6.40	0.00	
TRENCH & PR#13	31.05	9.88	10.75	4.70	7.39	7.78	2.06	Supercritical	6.40	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcı	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH#1 & PR#1	41.30	CIRCULAR	48.00 in	48.00 in	27.00 in	27.00 in	48.00 in	48.00 in	12.57	
MH#2 & PR#2	41.30	CIRCULAR	48.00 in	48.00 in	27.00 in	27.00 in	48.00 in	48.00 in	12.57	
INLET#1 & PR#3	41.30	CIRCULAR	42.00 in	42.00 in	27.00 in	27.00 in	42.00 in	42.00 in	9.62	
INLET #2 & PR#4	18.20	CIRCULAR	42.00 in	42.00 in	21.00 in	21.00 in	42.00 in	42.00 in	9.62	
INLET #3 & PR#5	18.20	CIRCULAR	42.00 in	42.00 in	21.00 in	21.00 in	42.00 in	42.00 in	9.62	
INLET#8 & PR#11	11.80	CIRCULAR	36.00 in	36.00 in	21.00 in	21.00 in	36.00 in	36.00 in	7.07	
INLET#9 & PR#12	11.80	CIRCULAR	36.00 in	36.00 in	21.00 in	21.00 in	36.00 in	36.00 in	7.07	
INLET#4 & PR#6	6.40	CIRCULAR	30.00 in	30.00 in	12.00 in	12.00 in	30.00 in	30.00 in	4.91	
INLET#5 & PR#7	6.40	CIRCULAR	30.00 in	30.00 in	15.00 in	15.00 in	30.00 in	30.00 in	4.91	
INLET#6 & PR#8	6.40	CIRCULAR	30.00 in	30.00 in	15.00 in	15.00 in	30.00 in	30.00 in	4.91	
INLET#7 & PR#9	6.40	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	
INLET#10 & PR#10	6.40	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	
TRENCH & PR#13	6.40	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6209.00

	Invert	Elev.	Ma	nstream inhole osses	HG	Ĺ		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH#1 & PR#1	6205.00	6205.80	0.00	0.00	6209.00	6209.00	6209.21	0.01	6209.23
MH#2 & PR#2	6211.00	6216.00	0.01	0.00	6212.19	6217.92	6214.88	3.79	6218.66

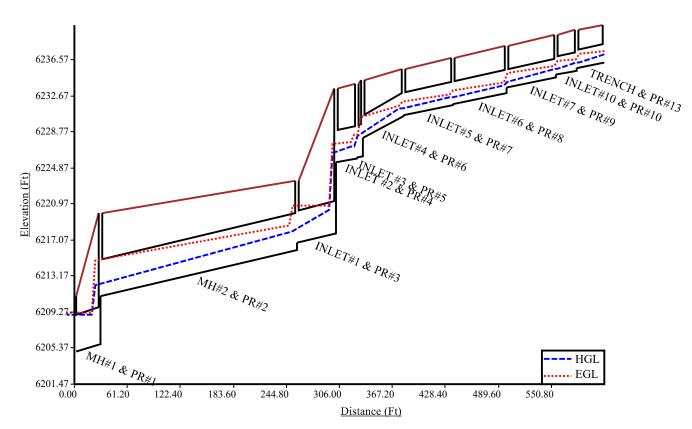
INLET#1 & PR#3	6216.80	6217.80	0.07	0.00	6218.05	6220.34	6220.82	0.00	6220.82
INLET #2 & PR#4	6225.50	6225.90	0.01	0.00	6226.50	6227.20	6227.50	0.19	6227.69
INLET #3 & PR#5	6226.00	6226.15	0.00	0.00	6227.21	6228.38	6228.50	0.00	6228.50
INLET#8 & PR#11	6227.75	6231.25	0.04	0.04	6228.60	6232.34	6229.39	3.35	6232.74
INLET#9 & PR#12	6231.55	6231.85	0.04	0.00	6232.41	6232.94	6233.18	0.16	6233.34
INLET#4 & PR#6	6228.15	6230.50	0.00	0.00	6228.60	6231.34	6230.40	1.25	6231.64
INLET#5 & PR#7	6230.60	6231.70	0.00	0.00	6231.34	6232.54	6232.08	0.76	6232.84
INLET#6 & PR#8	6231.80	6233.00	0.00	0.00	6232.54	6233.84	6233.29	0.86	6234.14
INLET#7 & PR#9	6233.60	6234.70	0.00	0.00	6234.21	6235.60	6235.17	0.77	6235.94
INLET#10 & PR#10	6235.00	6235.40	0.01	0.00	6235.64	6236.30	6236.50	0.14	6236.64
TRENCH & PR#13	6235.70	6236.30	0.01	0.00	6236.32	6237.20	6237.26	0.28	6237.54

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

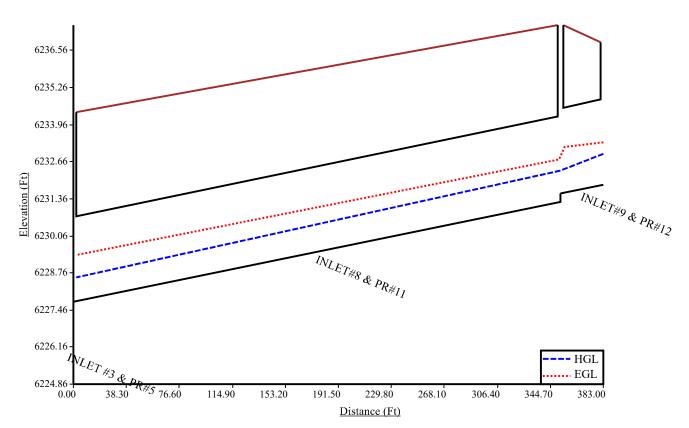
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} ^ 2/(2*g)$ Junction Loss K * $V_{fi} ^ 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft


					Do	wnstrea	m	ι	J pstrean	n		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
MH#1 & PR#1	30.00	5.00	6.00	7.83	9.00	6.92	1.58	25.40	15.12	9.78	138.93	
MH#2 & PR#2	227.00	5.00	6.00	7.83	15.00	9.92	4.58	12.00	8.42	3.08	675.92	
INLET#1 & PR#3	45.00	4.50	6.00	7.25	10.90	7.58	2.83	28.90	16.58	11.83	246.33	
INLET #2 & PR#4	24.00	4.50	6.00	7.25	13.50	8.87	4.12	13.70	8.98	4.23	66.48	
INLET #3 & PR#5	7.00	4.50	6.00	7.25	13.49	8.87	4.12	14.00	9.13	4.38	19.65	
INLET#8 & PR#11	352.00	4.00	6.00	6.67	11.30	7.48	3.32	10.40	7.03	2.87	688.55	
INLET#9 & PR#12	31.00	4.00	6.00	6.67	9.80	6.73	2.57	8.00	5.83	1.67	49.76	
INLET#4 & PR#6	47.00	3.50	6.00	6.08	11.00	7.04	3.46	8.70	5.89	2.31	75.23	
INLET#5 & PR#7	57.00	3.50	6.00	6.08	8.50	5.79	2.21	8.70	5.89	2.31	78.37	
INLET#6 & PR#8	62.00	3.50	6.00	6.08	8.50	5.79	2.21	8.70	5.89	2.31	85.25	

INLET#7 & PR#9	57.00	3.00	4.00	5.50	8.00	5.08	2.25	8.20	5.18	2.35	63.18	
INLET#10 & PR#10	24.00	3.00	4.00	5.50	7.60	4.88	2.05	7.90	5.03	2.20	25.37	
TRENCH & PR#13	32.00	3.00	4.00	5.50	7.30	4.73	1.90	7.10	4.63	1.80	31.39	


Total earth volume for sewer trenches = 2244 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - $\,\circ\,$ Four inches for pipes less than 33 inches.
 - $\circ\,$ Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 4/26/2024 10:31:41 AM

UDSewer Results Summary

Project Title: 6001 E Platte Storage - 100 Year **Project Description:** East System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6212.00

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	ı Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	KUNOII	5yr Coefficient	Overland Length (ft)			Gutter Velocity (fps)
POND	6211.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH#1 & PR#1	6220.00	91.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

1										I
MH#2 & PR#2	6223.50	91.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#1 & PR#3	6233.50	91.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #2 & PR#4	6234.00	50.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #3 & PR#5	6234.40	50.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#8 & PR#11	6237.45	32.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#9 & PR#12	6236.85	32.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#4 & PR#6	6235.60	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#5 & PR#7	6236.80	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#6 & PR#8	6238.10	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#7 & PR#9	6239.30	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#10 & PR#10	6239.85	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TRENCH & PR#13	6240.35	18.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	Contri	bution			Total Des	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
POND	0.00	0.00	0.00	0.00	0.00	7.84	11.69	0.07	91.70	Surface Water Present (Upstream)
MH#1 & PR#1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.70	Surface Water Present (Downstream)
MH#2 & PR#2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.70	
INLET#1 & PR#3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.70	
INLET #2 & PR#4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	50.30	
INLET #3 & PR#5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	50.30	
INLET#8 & PR#11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.20	
INLET#9 & PR#12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.20	
INLET#4 & PR#6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	

INLET#5 & PR#7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	
INLET#6 & PR#8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	
INLET#7 & PR#9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	
INLET#10 & PR#10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	
TRENCH & PR#13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.10	

Sewer Input Summary:

		Ele	vation		Loss C	oeffici	ents	Given	Dimensio	ons
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH#1 & PR#1	30.00	6205.00	2.7	6205.80	0.013	0.03	0.00	CIRCULAR	48.00 in	48.00 in
MH#2 & PR#2	227.00	6211.00	2.2	6216.00	0.013	0.05	0.00	CIRCULAR	48.00 in	48.00 in
INLET#1 & PR#3	45.00	6216.80	2.2	6217.80	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #2 & PR#4	24.00	6225.50	1.7	6225.90	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #3 & PR#5	7.00	6226.00	2.1	6226.15	0.013	0.05	0.00	CIRCULAR	42.00 in	42.00 in
INLET#8 & PR#11	352.00	6227.75	1.0	6231.25	0.013	1.00	0.25	CIRCULAR	36.00 in	36.00 in
INLET#9 & PR#12	31.00	6231.55	1.0	6231.85	0.013	1.00	0.00	CIRCULAR	36.00 in	36.00 in
INLET#4 & PR#6	47.00	6228.15	5.0	6230.50	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#5 & PR#7	57.00	6230.60	1.9	6231.70	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#6 & PR#8	62.00	6231.80	1.9	6233.00	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#7 & PR#9	57.00	6233.60	1.9	6234.70	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in
INLET#10 & PR#10	24.00	6235.00	1.7	6235.40	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in
TRENCH & PR#13	32.00	6235.70	1.9	6236.30	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

		Flow Dacity	Critic	al Flow	Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH#1 & PR#1	235.17	18.71	34.84	9.39	20.81	17.55	2.69	Pressurized	91.70	30.00	
MH#2 & PR#2	213.76	17.01	34.84	9.39	21.96	16.36	2.43	Supercritical	91.70	0.00	
INLET#1 & PR#3	150.38	15.63	35.59	10.55	23.69	16.40	2.28	Supercritical	91.70	0.00	
INLET #2 & PR#4	130.22	13.53	26.60	7.83	18.12	12.66	2.09	Supercritical	50.30	0.00	
INLET #3 & PR#5	146.19	15.19	26.60	7.83	16.99	13.79	2.36	Supercritical	50.30	0.00	

INLET#8 & PR#11	66.69	9.43	22.09	7.08	17.64	9.35	1.54	Supercritical	32.20	0.00	
INLET#9 & PR#12	65.82	9.31	22.09	7.08	17.77	9.26	1.52	Supercritical	32.20	0.00	
INLET#4 & PR#6	91.96	18.73	17.29	6.18	9.02	14.56	3.49	Supercritical	18.10	0.00	
INLET#5 & PR#7	57.14	11.64	17.29	6.18	11.60	10.33	2.15	Supercritical	18.10	0.00	
INLET#6 & PR#8	57.22	11.66	17.29	6.18	11.59	10.34	2.15	Supercritical	18.10	0.00	
INLET#7 & PR#9	31.51	10.03	18.39	7.01	13.04	10.38	1.95	Supercritical	18.10	0.00	
INLET#10 & PR#10	29.28	9.32	18.39	7.01	13.65	9.81	1.79	Supercritical	18.10	0.00	
TRENCH & PR#13	31.05	9.88	18.39	7.01	13.16	10.26	1.92	Supercritical	18.10	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH#1 & PR#1	91.70	CIRCULAR	48.00 in	48.00 in	36.00 in	36.00 in	48.00 in	48.00 in	12.57	
MH#2 & PR#2	91.70	CIRCULAR	48.00 in	48.00 in	36.00 in	36.00 in	48.00 in	48.00 in	12.57	
INLET#1 & PR#3	91.70	CIRCULAR	42.00 in	42.00 in	36.00 in	36.00 in	42.00 in	42.00 in	9.62	
INLET #2 & PR#4	50.30	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
INLET #3 & PR#5	50.30	CIRCULAR	42.00 in	42.00 in	30.00 in	30.00 in	42.00 in	42.00 in	9.62	
INLET#8 & PR#11	32.20	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
INLET#9 & PR#12	32.20	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
INLET#4 & PR#6	18.10	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
INLET#5 & PR#7	18.10	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
INLET#6 & PR#8	18.10	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
INLET#7 & PR#9	18.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
INLET#10 & PR#10	18.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
TRENCH & PR#13	18.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater	Elevation	(ft):	6212.00
1	Liciation	(10)	0212.00

	Invert	Elev.	Ma	nstream anhole osses	HG	Ĺ		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH#1 & PR#1	6205.00	6205.80	0.00	0.00	6212.00	6212.12	6212.83	0.12	6212.95
MH#2 & PR#2	6211.00	6216.00	0.04	0.00	6212.83	6218.90	6216.99	3.29	6220.27
INLET#1 & PR#3	6216.80	6217.80	0.34	0.00	6219.24	6221.54	6222.95	0.00	6222.95
INLET #2 & PR#4	6225.50	6225.90	0.10	0.00	6227.01	6229.02	6229.50	0.00	6229.50
INLET #3 & PR#5	6226.00	6226.15	0.02	0.00	6229.04	6229.95	6230.37	0.00	6230.37
INLET#8 & PR#11	6227.75	6231.25	0.32	0.34	6230.71	6233.09	6231.04	2.83	6233.87
INLET#9 & PR#12	6231.55	6231.85	0.32	0.00	6233.41	6233.69	6234.36	0.11	6234.47
INLET#4 & PR#6	6228.15	6230.50	0.01	0.00	6229.96	6231.94	6232.19	0.34	6232.53
INLET#5 & PR#7	6230.60	6231.70	0.01	0.00	6231.95	6233.14	6233.22	0.51	6233.73
INLET#6 & PR#8	6231.80	6233.00	0.01	0.00	6233.15	6234.44	6234.43	0.61	6235.03
INLET#7 & PR#9	6233.60	6234.70	0.03	0.00	6234.69	6236.23	6236.36	0.64	6236.99
INLET#10 & PR#10	6235.00	6235.40	0.06	0.00	6236.29	6236.93	6237.63	0.06	6237.69
TRENCH & PR#13	6235.70	6236.30	0.06	0.00	6236.99	6237.83	6238.43	0.16	6238.59

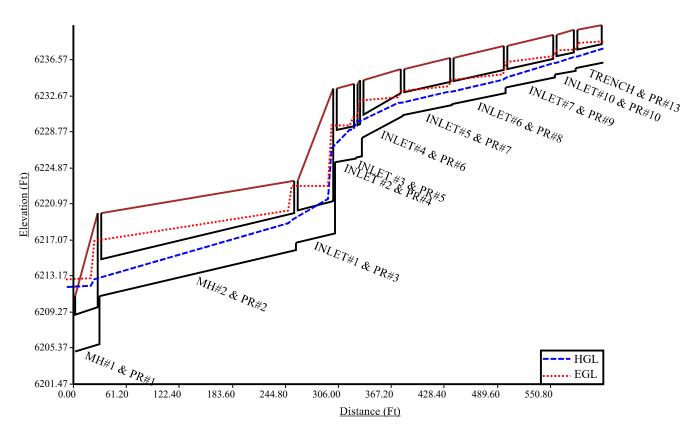
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * V_fi $^2/(2*g)$
- Lateral loss = V_fo $^2/(2*g)$ Junction Loss K * V_fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

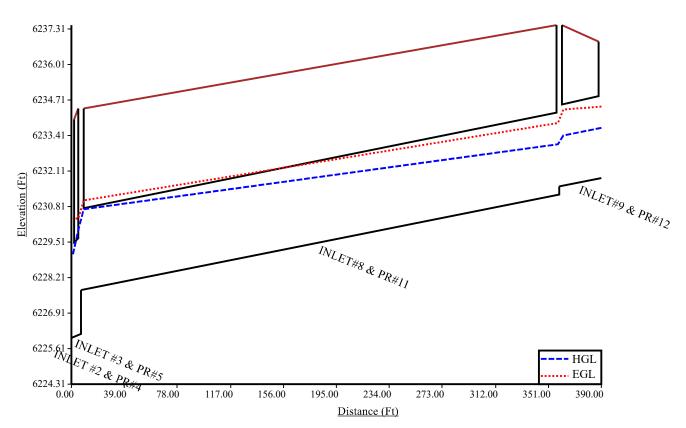
Excavation Estimate:

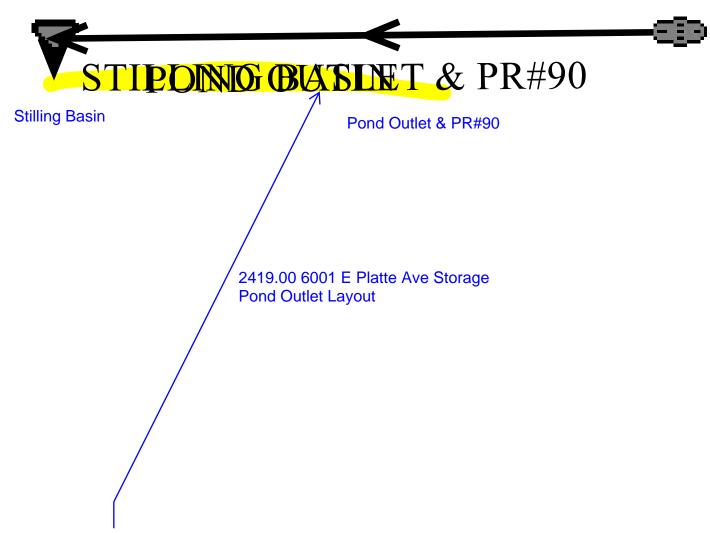
The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

					Downstream				Jpstrean			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
MH#1 & PR#1	30.00	5.00	6.00	7.83	9.00	6.92	1.58	25.40	15.12	9.78	138.93	
MH#2 & PR#2	227.00	5.00	6.00	7.83	15.00	9.92	4.58	12.00	8.42	3.08	675.92	


INLET#1 & PR#3	45.00	4.50	6.00	7.25	10.90	7.58	2.83	28.90	16.58	11.83	246.33	
INLET #2 & PR#4	24.00	4.50	6.00	7.25	13.50	8.87	4.12	13.70	8.98	4.23	66.48	
INLET #3 & PR#5	7.00	4.50	6.00	7.25	13.49	8.87	4.12	14.00	9.13	4.38	19.65	
INLET#8 & PR#11	352.00	4.00	6.00	6.67	11.30	7.48	3.32	10.40	7.03	2.87	688.55	
INLET#9 & PR#12	31.00	4.00	6.00	6.67	9.80	6.73	2.57	8.00	5.83	1.67	49.76	
INLET#4 & PR#6	47.00	3.50	6.00	6.08	11.00	7.04	3.46	8.70	5.89	2.31	75.23	
INLET#5 & PR#7	57.00	3.50	6.00	6.08	8.50	5.79	2.21	8.70	5.89	2.31	78.37	
INLET#6 & PR#8	62.00	3.50	6.00	6.08	8.50	5.79	2.21	8.70	5.89	2.31	85.25	
INLET#7 & PR#9	57.00	3.00	4.00	5.50	8.00	5.08	2.25	8.20	5.18	2.35	63.18	
INLET#10 & PR#10	24.00	3.00	4.00	5.50	7.60	4.88	2.05	7.90	5.03	2.20	25.37	
TRENCH & PR#13	32.00	3.00	4.00	5.50	7.30	4.73	1.90	7.10	4.63	1.80	31.39	

Total earth volume for sewer trenches = 2244 cubic yards.


• The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.


- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - $\,\circ\,$ Four inches for pipes less than 33 inches.
 - $\,\circ\,$ Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Please fix this error.

Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 4/26/2024 2:34:34 PM

UDSewer Results Summary

2.1.1.4Project Title: 6001 E Platte Storage - 5 YearRun Date:
4/26/2024 2:34:34 PMProject Description: Pond Outlet System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 Rainfall Calculation Method: Formula

One Hour Depth (in): 1.50 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6201.00

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	n Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	KUNOII	5yr Coefficient	Overland Length (ft)			Gutter Velocity (fps)
STILLING BASIN	6201.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

		6209.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
--	--	---------	------	------	------	------	------	------	------	------	------

Manhole Output Summary:

		Local	Contri	bution			Total Des	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
STILLING BASIN	0.00	0.00	0.00	0.00	0.00	0.08	6.02	2.12	0.50	
POND OUTLET & PR#90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	Surface Water Present (Downstream)

Sewer Input Summary:

			vation		Loss C	oeffici	ents	Given	Dimensio	ons
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
POND OUTLET & PR#90	36.00	6201.00	1.4	6201.50	0.012	0.03	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

		l Flow pacity	Critic	al Flow		Noi	rmal Flow	v			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	•		Flow Condition	Flow	Length	Comment
POND OUTLET & PR#90	13.50	7.64	3.14	2.42	2.37	3.64	1.74	Supercritical	0.50	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
POND OUTLET & PR#90	0.50	CIRCULAR	18.00 in	18.00 in	6.00 in	6.00 in	18.00 in	18.00 in	1.77	

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available

size.

- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

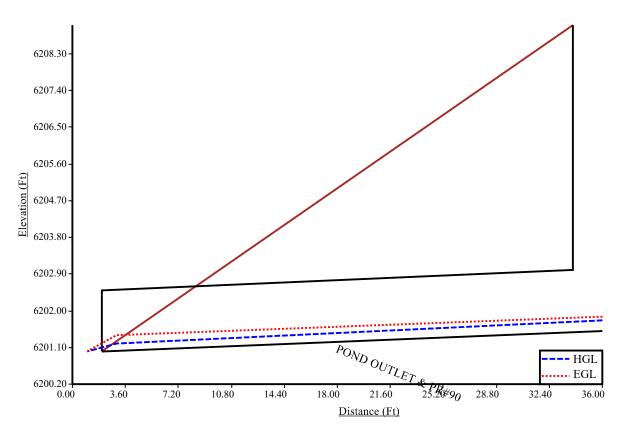
Tailwater Elevation (ft): 6201.00

	Invert	Elev.	Ma	nstream Inhole Dsses	HG	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
POND OUTLET & PR#90	6201.00	6201.50	0.00	0.00	6201.19	6201.76	6201.40	0.45	6201.85

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * $V_{fi} ^{2}(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

					Do	wnstrea	m	U	Jpstrean	n		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
POND OUTLET & PR#90	36.00	2.50	4.00	4.92	0.00	0.55	0.00	14.50	8.04	5.79	43.45	Sewer Too Shallow

Total earth volume for sewer trenches = 43 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - $\,\circ\,$ Four inches for pipes less than 33 inches.
 - $\circ~$ Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 4/26/2024 2:28:37 PM

UDSewer Results Summary

2.1.1.4 **Run Date:** 4/26/2024 2:28:37 PM **Project Title:** 6001 E Platte Storage - 100 Year **Project Description:** Pond Outlet System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6201.00

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	n Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	KUNOII	5yr Coefficient	Overland Length (ft)			Gutter Velocity (fps)
STILLING BASIN	6201.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PR#90	POND OUTLET & PR#90	6209.00	11.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-------	---------------------------	---------	-------	------	------	------	------	------	------	------	------

Manhole Output Summary:

		Local	Contri	bution			Total Des	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
STILLING BASIN	0.00	0.00	0.00	0.00	0.00	0.97	11.67	0.09	11.30	
POND OUTLET & PR#90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.30	Surface Water Present (Downstream)

Sewer Input Summary:

			vation		Loss C	oeffici	ents	Given	Dimensio	ons
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
POND OUTLET & PR#90	36.00	6201.00	1.4	6201.50	0.012	0.03	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Flow Capacity		Critical Flow		Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	e e		Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
POND OUTLET & PR#90	13.45	7.61	15.41	7.02	12.64	8.53	1.53	Supercritical	11.30	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
POND OUTLET & PR#90	11.30	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available

size.

- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

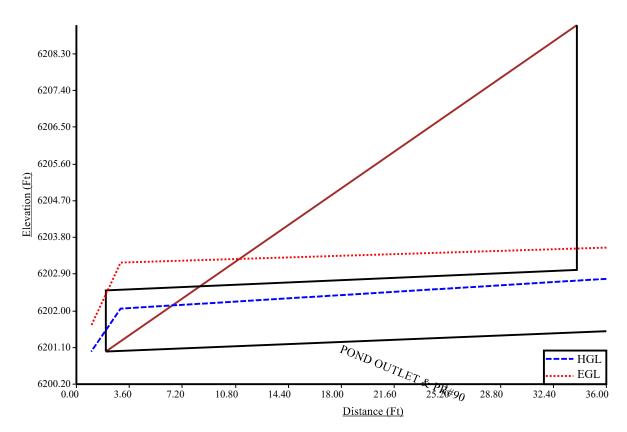
Tailwater Elevation (ft): 6201.00

	Invert	Elev. Downstream Losses		HGI	Ĺ	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream Upstream (ft)		Downstream (ft)	Friction Loss (ft)	Upstream (ft)
POND OUTLET & PR#90	6201.00	6201.50	0.00	0.00	6202.05	6202.78	6203.18	0.37	6203.55

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

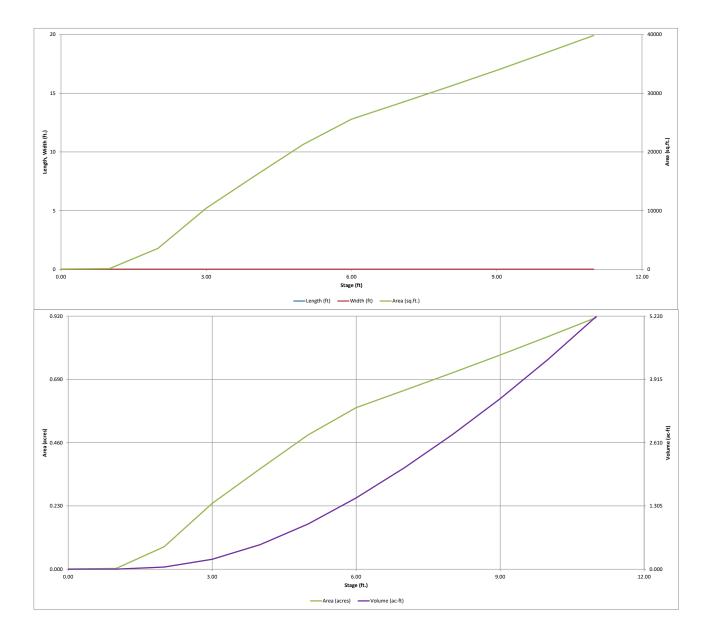
Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

					Downstream			Upstream				
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
POND OUTLET & PR#90	36.00	2.50	4.00	4.92	0.00	0.54	0.00	14.50	8.04	5.79	43.44	Sewer Too Shallow

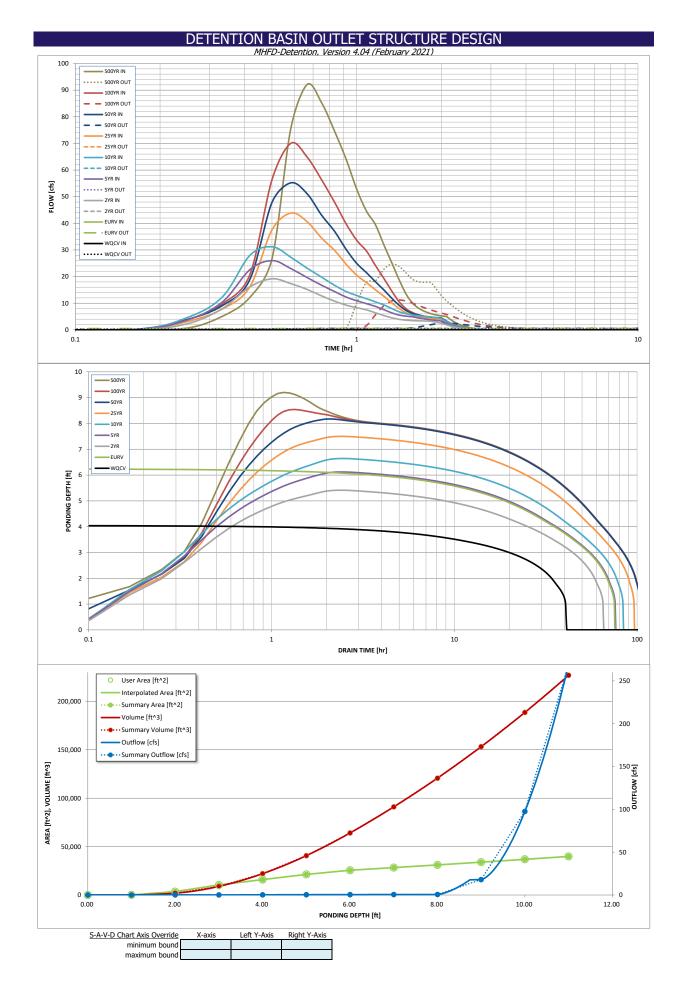
Total earth volume for sewer trenches = 43 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - $\circ\,$ Four inches for pipes less than 33 inches.
 - \circ Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.


DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

				MHFD	-Detention, Version	4.04 (Febr	uary 2021)							
	Platte Self													
Basin ID:	Stormwate	er Pond	_		D			<i>c</i> .						
	2 ONE 1	-	_		Provide p	bond	Identi	fier, s	see					
		1			GEC Pla	n cor	nmen	ts						
'		100-YEA	R		Depth Increment =	1.00	le l							
PERMANENT ZONE POOL Example Zone	CES						Optional	Louisth	Mr. data	Area	Optional Override		Volume	Mahama
POOL Example Zone	Configurat	ion (Retentio	on Pona)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft ³)	Volume (ac-ft)
Watershed Information		_			Top of Micropool		0.00				35	0.001		
Selected BMP Type =	EDB	_			6203		1.00				119	0.003	77	0.002
Watershed Area =	32.96	acres			6204		2.00				3,553	0.082	1,913	0.044
Watershed Length = Watershed Length to Centroid =	1,610 730	ft ft			6205 6206		3.00 4.00				10,414 15,905	0.239	8,896 22,056	0.204 0.506
Watershed Slope =	0.035	ft/ft			6207		5.00				21,269	0.488	40,643	0.933
Watershed Imperviousness =	44.00%	percent			6208		6.00				25,579	0.587	64,067	1.471
Percentage Hydrologic Soil Group A =	100.0%	percent			6209		7.00				28,311	0.650	91,012	2.089
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D =	0.0%	percent percent			6210 6211		8.00 9.00				31,084 33,911	0.714 0.778	120,709 153,207	2.771 3.517
Target WQCV Drain Time =	40.0	hours			6212		10.00				36,847	0.846	188,586	4.329
Location for 1-hr Rainfall Depths =					6213		11.00				39,841	0.915	226,930	5.210
After providing required inputs above inc														
depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro			Orthogodala											<u> </u>
Water Quality Capture Volume (WQCV) =	0.523	acre-feet	Optional Use	acre-feet										
Excess Urban Runoff Volume (EURV) =	1.613	acre-feet		acre-feet									1	
2-yr Runoff Volume (P1 = 1.19 in.) =	1.211	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	1.620	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	1.947	acre-feet	1.75	inches									+	I
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	2.517 3.072	acre-feet acre-feet	2.00	inches inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	3.789	acre-feet	2.52	inches									1	
500-yr Runoff Volume (P1 = 3 in.) =	4.970	acre-feet	3.00	inches										
Approximate 2-yr Detention Volume =	1.032	acre-feet												<u> </u>
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	1.363 1.673	acre-feet acre-feet												
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	2.063	acre-reet acre-feet												
Approximate 50-yr Detention Volume =	2.320	acre-feet												
Approximate 100-yr Detention Volume =	2.657	acre-feet												
Define Zones and Basin Geometry	0.533	a ana ƙast												<u> </u>
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.523	acre-feet acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	1.044	acre-feet												
Total Detention Basin Volume =	2.657	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												⊢
Initial Surcharge Depth (ISD) = Total Available Detention Depth (H _{total}) =	user	ft ft												
Depth of Trickle Channel $(H_{TC}) =$	user	ft												
Slope of Trickle Channel (S _{TC}) =	user	ft/ft												
Slopes of Main Basin Sides (S_{main}) =	user	H:V												L
Basin Length-to-Width Ratio ($R_{L/W}$) =	user													
Initial Surcharge Area $(A_{ISV}) =$	user	ft 2												
Surcharge Volume Length (L _{ISV}) =	user	ft												
Surcharge Volume Width (W_{ISV}) =	user	ft												
Depth of Basin Floor (H_{FLOOR}) =	user	ft ft												<u> </u>
Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) =	user user	ft												
Area of Basin Floor (A _{FLOOR}) =	user	ft ²												
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³												
Depth of Main Basin (H_{MAIN}) =	user	ft												<u> </u>
Length of Main Basin $(L_{MAIN}) =$ Width of Main Basin $(W_{MAIN}) =$	user	ft ft												
Area of Main Basin (M _{MAIN}) =	user	ft ²											1	
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												<u> </u>
													L	
													-	\square
							-							
													<u> </u>	F
													L	
													-	
													L	
													L	


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Platte Self Storage		D-Detention, Vers	1 ebiuai	y 2021)				
	Stormwater Pond								
ZONE 2 ZONE 2 ZONE 1	\sim			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	-		
VOLUME EURY WOCY			Zone 1 (WQCV)	4.05	0.523	Orifice Plate			
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)	6.24	1.091	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	7.84	1.044	Weir&Pipe (Restrict)	1		
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	2.657		-		
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WQ</u>	CV in a Filtration Bl	<u>MP)</u>				Calculated Parame	ters for Underdrain	1
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)		drain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrair	n Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orific							Calculated Parame		
Invert of Lowest Orifice =	0.00		bottom at Stage =	,		ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	5.56 N/A	inches	bottom at Stage =	010)		iptical Half-Width = ical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			•	Elliptical Slot Area =	N/A N/A	ft ²	
	N/A	inches			-		N/A	Inc	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)		1.70	3.40	4.10					1
Orifice Area (sq. inches)		1.64	1.50	3.00					
									_
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectange		1	1				-	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A		ft (relative to basin	-	•	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A		ft (relative to basin	bottom at Stage =	= 0 ft) Vertica	l Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Crate and	Outlet Pipe OP Per	tangular/Trangzoid	al Weir (and No Ou	tlat Pina)		Calculated Parame	eters for Overflow W	Voir
	Zone 3 Weir	Not Selected			<u>lace ripe</u>		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	8.00		ft (relative to basin b	ottom at Stage = 0 f	+) Height of Grat	e Upper Edge, H. =	8.00	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	ottom ut Stuge – o i		/eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10		10.11	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet		erflow Grate Open	,	12.66	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A		C	Verflow Grate Ope	n Area w/ Debris =	6.33	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
			•						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		<u>Ca</u>	alculated Parameter	<u>rs for Outlet Pipe w/</u>	Flow Restriction Pl	ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below ba	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	1.25	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches		Outle	t Orifice Centroid =	0.56	N/A	feet
Restrictor Plate Height Above Pipe Invert =	12.00		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	1.91	N/A	radians
User Input: Emergency Spillway (Rectangular or							Calculated Parame		
Spillway Invert Stage=	9.00		bottom at Stage =	0 ft)	· · ·	esign Flow Depth=	0.93	feet	
Spillway Crest Length =	23.00	feet			5	Top of Freeboard =	10.93	feet	
Spillway End Slopes = Freeboard above Max Water Surface =		H:V feet				Top of Freeboard = Top of Freeboard =	0.91	acres	
Freeboard above Max water Surface =	1.00	leet			Dasin volume at	TOP OF FREEDOard =	5.15	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	l runoff volumes by	∕ entering new valu	ies in the Inflow Hy	drographs table (Co	olumns W through ,	4F).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A 0.523	N/A 1.613	1.19 1.211	1.50 1.620	1.75 1.947	2.00 2.517	2.25 3.072	2.52 3.789	3.00 4.970
CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.211	1.620	1.947	2.517	3.072	3.789	4.970
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.8	7.3	14.6	23.9	38.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.22	0.44	0.72	1.16
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A 0.2	N/A 0.5	19.2 0.4	26.0 0.5	31.2 0.5	43.9 0.6	55.2 2.6	70.0	92.1 24.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.6	0.1	0.2	0.5	0.6
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.2	0.8	1.4 N/A
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 38	N/A 68	N/A 60	N/A 69	N/A 76	N/A 87	N/A 93	N/A 92	N/A 89
Time to Drain 99% of Inflow Volume (hours) =	40	72	63	73	81	92	100	99	98
Maximum Ponding Depth (ft) =	4.05	6.24	5.41	6.12	6.64	7.50	8.18	8.54	9.20
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =	0.37 0.525	0.60 1.614	0.53 1.142	0.59 1.536	0.63 1.859	0.68 2.415	0.72 2.893	0.75 3.166	0.79 3.674
	0.325	1.011	1.1.16	1.550	1.000	J	2.000	3.100	5.57 1

PLATTE SELF STORAGE

	PROPOS		T DESIGN V	OLUME		_
ELEV	AREA	AREA	DELTA	VOLUME	VOLUME	
(FT + 6000)	(SF)	AVG. (SF)	ELEV. (FT)	(CF)	TOTAL (CF)	
204.00	468					1
		468	1.5	702		
206.00	468				702	
205.5	684					
			End A	rea Method:	702	C.F.
					0.016	A.F.
•••			•			
3%	of WQCV =	683.46	cu-ft			

PROPOSED FORBAY DESIGN VOLUME

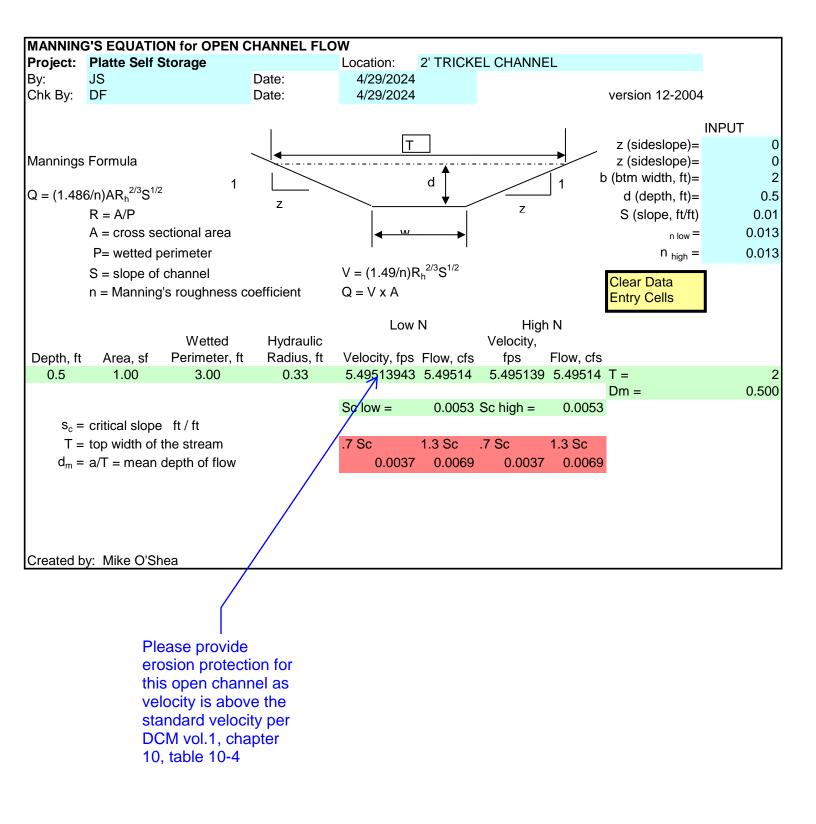
TOTAL= 702.00 > 683.46

PROPOSED MICROPOOL VOLUME

ELEV (FT + 6000)	AREA (SF)	AREA AVG. (SF)	DELTA ELEV. (FT)	VOLUME (CF)	VOLUME TOTAL (CF)	
199.50	35	0.5	<u>.</u>			
	<u>-</u>	35	2.5	87	0-	
202.00	35				87	
			End A	rea Method:	87	C.F.
					0.002	A.F.

Forebay Wall Notch

Notch to releae 2% of the undetained 100-year peak discharge.


100-y peak discharge	=	23.9 cfs
2.0%	=	0.48 cfs

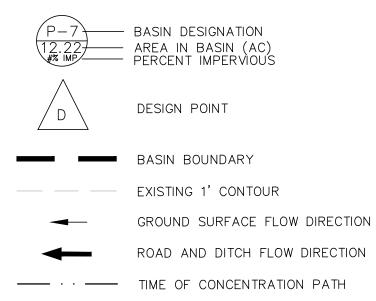
The general form of the equation for horizontal crested weirs is Q = CLH3/2 where:

Q = Weir flow discharge (cfs)	0.48	
C = Weir flow coefficient	3.4	
H = Depth of flow over the weir (ft)	1.50	Opening Height
L = Length of the weir (ft)	0.08	Length
L = Length of the weir (in)	1	

Minimim notch length is 3" per standards

Notch to releae 2% of the undetained 100-year peak discharge is <u>3" wide by 18" high (min allowed)</u>

Please include calculations for trickle channel, emergency spillway, ripraps, stilling basin.


Per DCMv2 – Chap 4.2, trickle channel should at a minimum provide capacity equal to twice the release capacity at the upstream forebay outlet. Provide these calcs in the drainage report and revise plans as needed.

We need to know how much of the proposed area of disturbance (not just the impervious surfaces) is treated vs untreated and if there are any exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.#). An accompanying summary table on this map would also be very helpful (example provided):

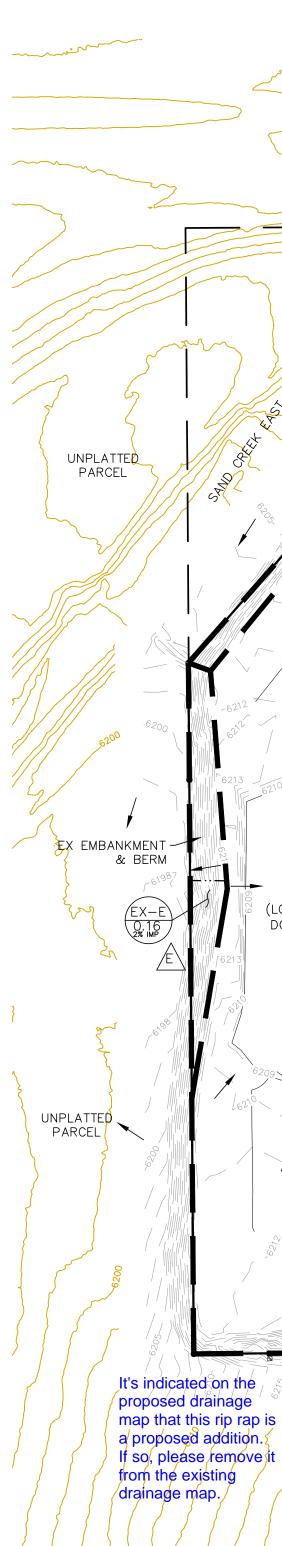
DRAINAGE MAPS

			Water Qu	ality Treatmen	t Summary Tab	le	
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to Pond A (ac)	Disturbed Area Treated via Runoff Reduction (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.C.1 (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.B.# (ac)	Applicable WQ Exclusions (App I.7.1.B.#)
А	4.50	4.50	4.50				
В	1.25	1.25		1.25			
С	6.00	4.00				4.00	ECM App I.7.1.B.5
D	2.50	2.50	1.00		0.50	1.00	ECM App I.7.1.B.7
E	3.00		3.00				
F	8.25						
Total	25.50	12.25	8.50	1.25	0.50	5.00	
Comments		[For each row, the sum of the values in Columns 4-7 must be greater than or equal to the value in Column 3 above.]		[See RR calc spreadsheet.]	[Total must be <20% of site and <1ac.]		
		Total Proposed Disturbed Area (ac)		ed Treated Area ac)	Excluded	Disturbed Area from WQ c)	Minimum Area to be Treated (ac)
		12.25	9.	.75	5.	50	6.75

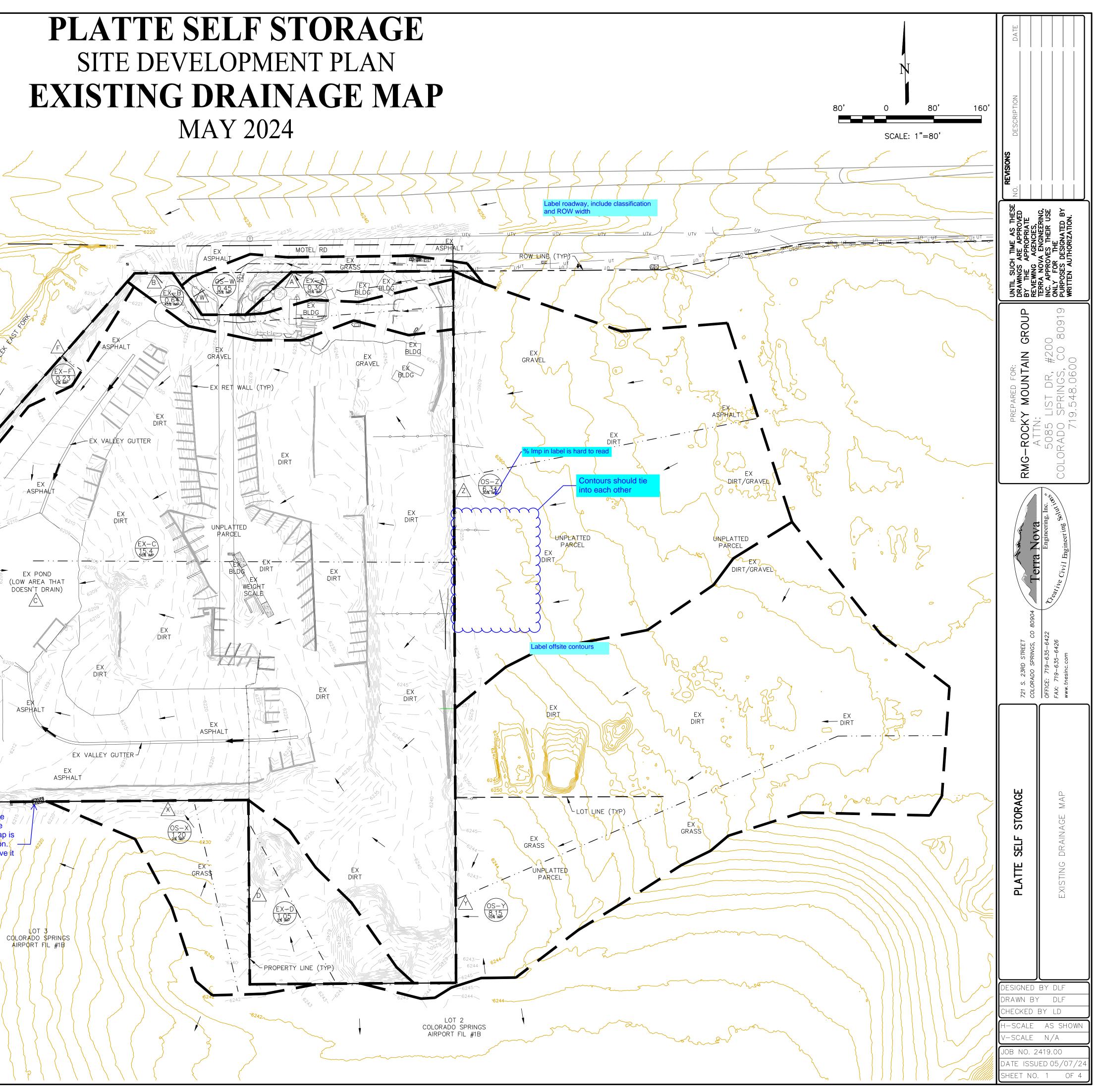
<u>LEGEND</u>

<u>NOTES</u>

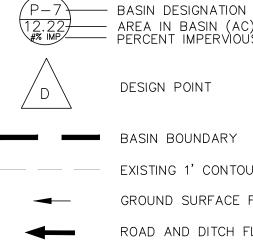
1. BROWN GROUND SURFACE CONTOURS ARE LIDAR DATA DOWNLOADED FROM THE COLORADO HAZARD MAPPING & RISK MAP PORTAL, DATA SET: 2018 3DEP EAST CO EL PASO. THIS DATA IS APPROXIMATE. LIDAR DATA IS FROM 2018 AND AT 2' INTERVALS.


2. THE EXISTING SITE IS A LANDSCAPING MATERIALS YARD. GROUND SURFACES ARE DIRT, GRAVEL, AND ASPHALT. THE EDGE OF ASPHALT IS OFTEN COVERED BY DIRT/GRAVEL AND IT'S EXTENTS ARE ONLY ROUGHLY KNOWN.

			
	AREA	TOTAL	FLOWS
BASIN	TOTAL	Q5	Q100
	(Acres)	(c.f.s.)	(c.f.s.)
OS-Z	6.34	6.1	16.7
OS-Y	8.15	3.6	15.4
OS-X	1.20	0.4	2.3
OS-W	0.45	0.5	1.3
EX-A	0.30	0.2	0.8
EX-B	0.64	1.1	2.6
EX-C	15.4	29.0	65.0
EX-D	1.05	0.3	1.9
EX-E	0.16	0.1	0.5
EX-F	0.23	0.1	0.7


<u>BASIN</u>		SUMMARY		
	AREA	TOTAL FLO		

Design	Contributing	Area	Flow (cfs)	
Point(s)	Basins	(ac)	Q 5	Q 100
Z	OS-Z	6.34	6.1	16.7
Y	OS-Y	8.15	3.6	15.4
X	OS-X,EX-D	2.25	0.7	4.2
W	OS-W	0.45	0.5	1.3
A	EX-A	0.30	0.2	0.8
B	EX-B	0.64	1.1	2.6
С	OS-Z,OS-Y,OS-X,EX-C,EX-D	32.14	39.4	101.4
D	EX-D	1.05	0.3	1.9
E	EX-E	0.16	0.1	0.5
F	EX-F	0.23	0.1	0.7


DESIGN DOINT SUMMARY

PLATTE SELF STORAGE SITE DEVELOPMENT PLAN MAY 2024

<u>LEGEND</u>

— AREA IN BASIN (AC) — PERCENT IMPERVIOUS

BASIN BOUNDARY

EXISTING 1' CONTOUR GROUND SURFACE FLOW DIRECTION ROAD AND DITCH FLOW DIRECTION PROPOSED RETAINING WALL TIME OF CONCENTRATION PATH

<u>NOTES</u>

1. BROWN GROUND SURFACE CONTOURS ARE LIDAR DATA DOWNLOADED FROM THE COLORADO HAZARD MAPPING & RISK MAP PORTAL, DATA SET: 2018 3DEP EAST CO EL PASO. THIS DATA IS APPROXIMATE. LIDAR DATA IS FROM 2018 AND AT 2' INTERVALS.

BASIN	AREA	TOTAL FLOWS	
	TO TAL (Acres)	Q5 (c.f.s.)	Q100 (c.f.s.)
OS-Z	6.34	6.1	16.7
OS-Y	8.15	3.6	15.4
OS-X	1.20	0.4	2.3
OS-W	0.45	0.5	1.3
1	0.07	0.0	0.2
2	0.13	0.1	0.4
3	5.12	23.1	41.4
4	3.66	8.2	16.8
5	0.56	0.1	0.9
6	6.64	3.1	13.1
7	0.34	0.2	1.1
8	0.30	0.2	1.0
9	0.59	0.2	1.5
10	0.40	0.3	1.4

Please show and label all side slope of the pond. Side slope cannot be steeper than 3:1.

> Please consider the distance between inlet and outlet. Distance measured along the trickle channel (from inlet to outlet) to the average basin width is at least 1.5:1, and greater than 2:1 is preferred. USDCM, Chapter 4, T-6.

> > Please show all drainage easement R PVT 18" HDPE S

X/PR EMBANKMENT -

0.30 2% IMP/

Please províde

riprap

calculation for the

Please display more off-site contour 50

-200 feet beyond the

boundary or drainage

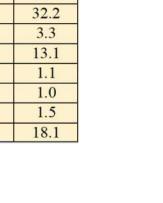
basin delineation line

to illustrate how the

runoff diverges from

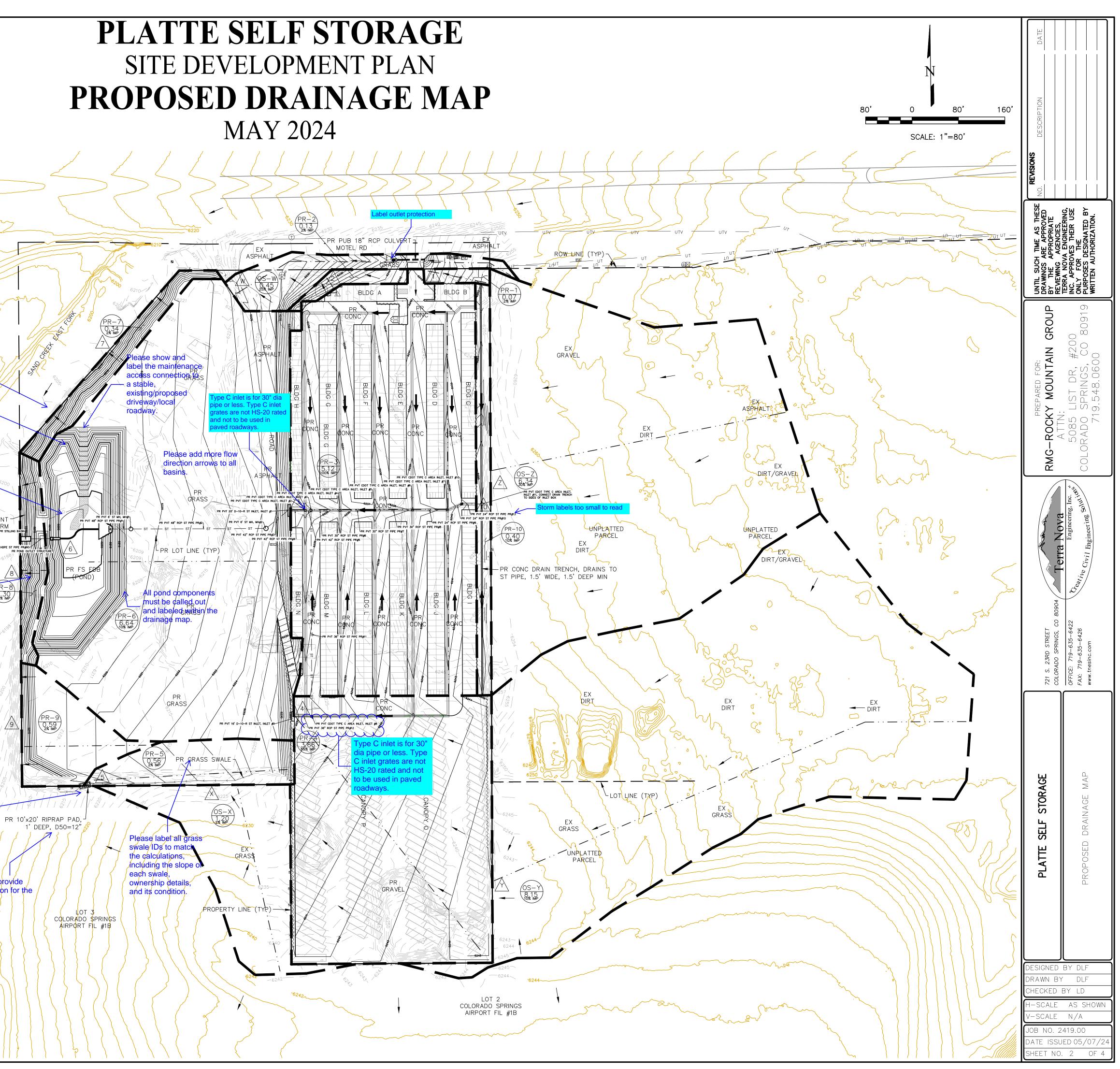
UNPLATTED PARCEL

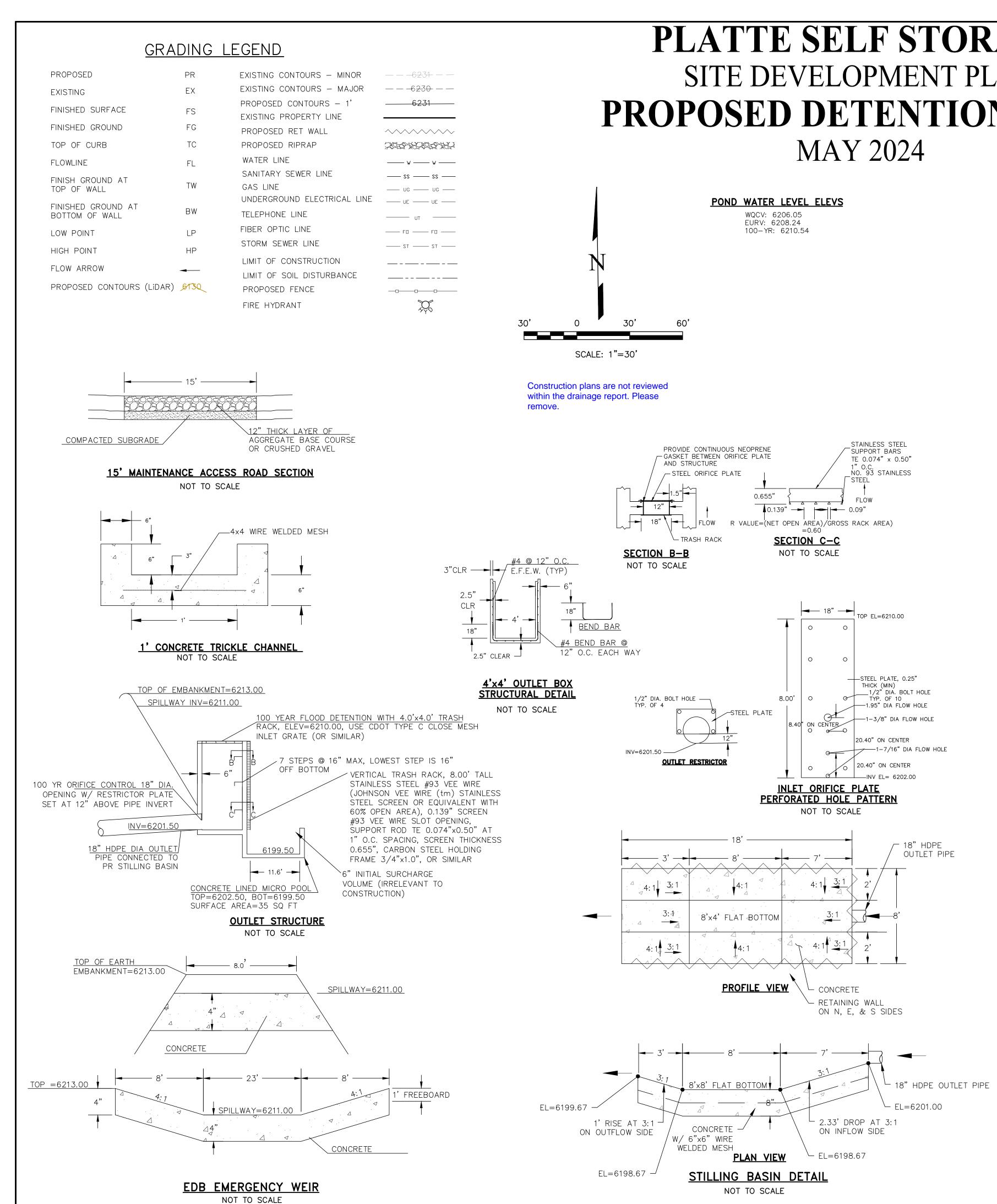
the site.

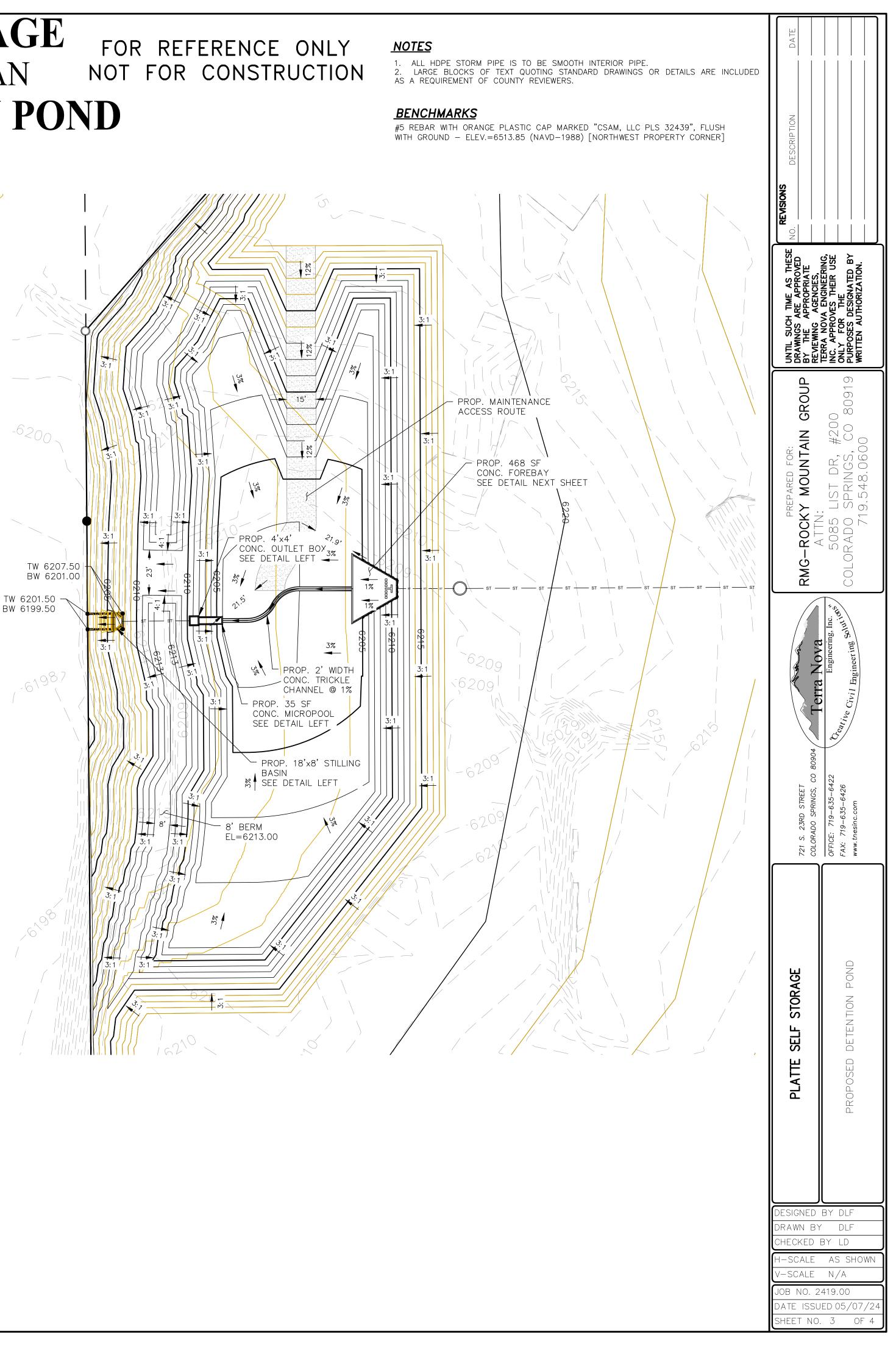

DESIGN POINT SUMMARY

Design	Contributing Basins	Area	Flow (cfs)	
Point(s)		(ac)	Q 5	Q 100
1	PR-1	0.07	0.0	0.2
2	PR-2	0.13	0.1	0.4
3	PR-3	5.12	23.1	41.4
4	OS-Y,PR-4	11.81	11.8	32.2
5	OX-X,PR-5	1.76	0.5	3.3
6	PR-6	6.64	3.1	13.1
7	PR-7	0.34	0.2	1.1
8	PR-8	0.30	0.2	1.0
9	PR-9	0.59	0.2	1.5
10	OS-ZPR-10	6.74	6.4	18.1

See comments on summary table in report

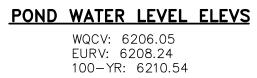

label spillway with type, size, and condition.

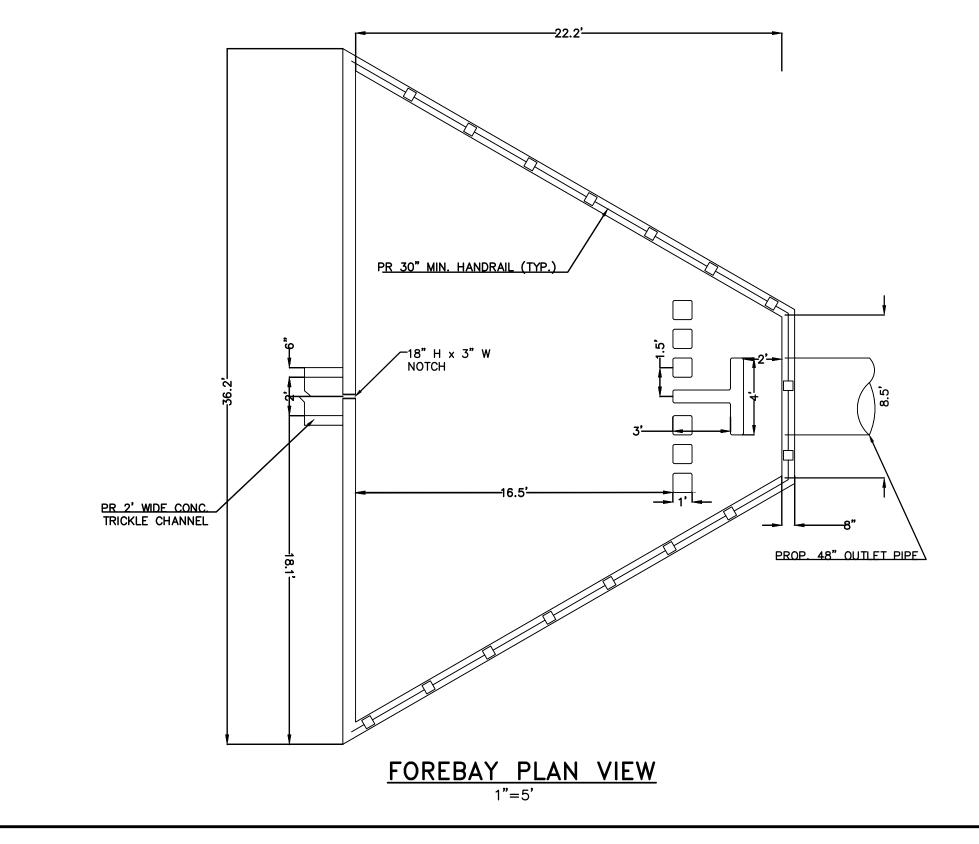

Please show and


Disturbed areas must be within the drainage basin boundary.

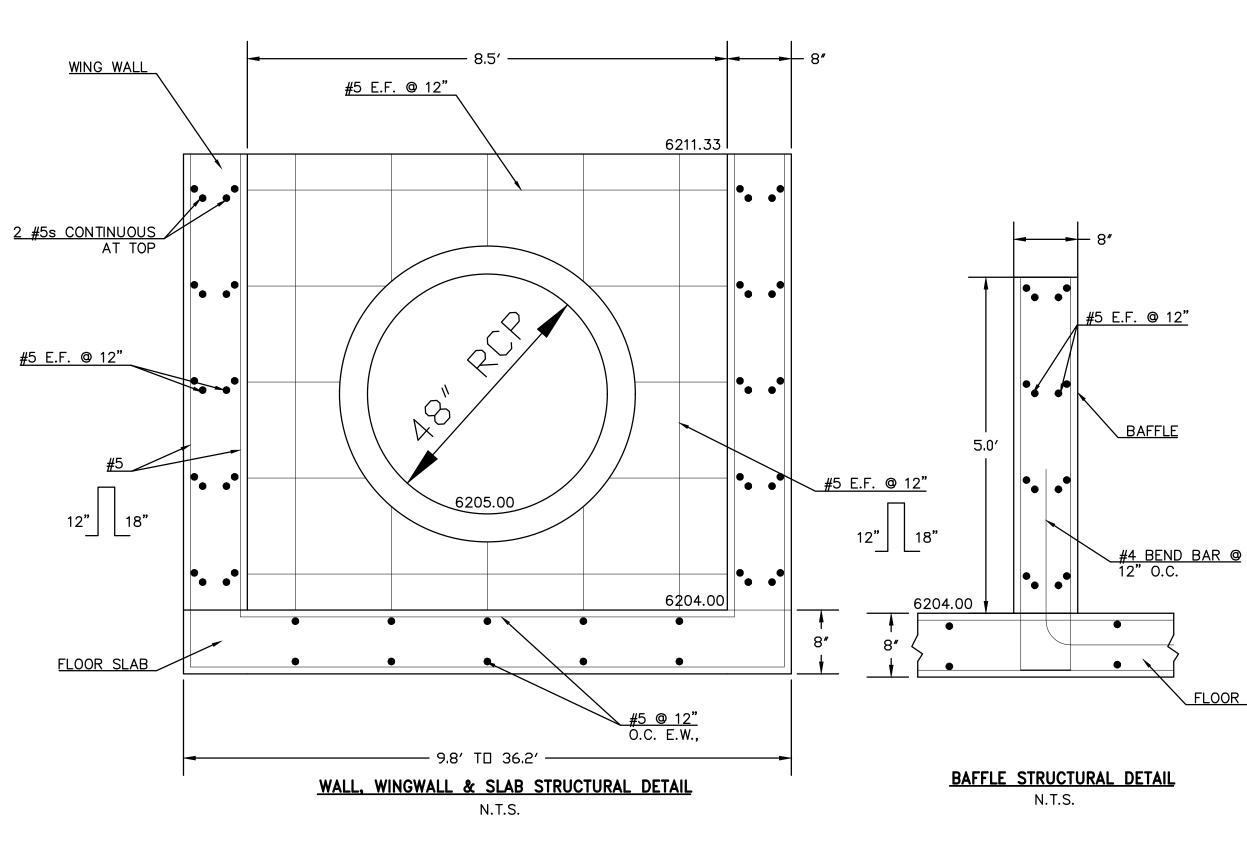
PLATTE SELF STORAGE SITE DEVELOPMENT PLAN MAY 2024

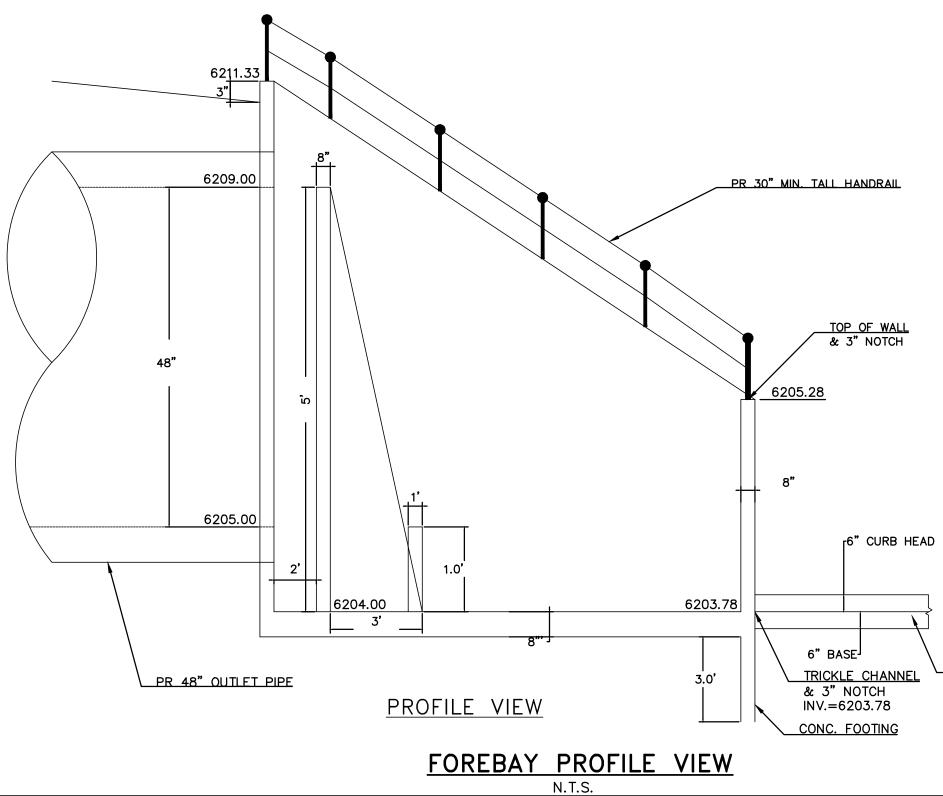
PLATTE SELF STORAGE SITE DEVELOPMENT PLAN **PROPOSED DETENTION POND**




<u>GRADING LEGEND</u>

PROPOSED	PR	E
EXISTING	EX	E
FINISHED SURFACE	FS	F
FINISHED GROUND	FG	ŀ
TOP OF CURB	TC	ł
FLOWLINE	FL	
FINISH GROUND AT TOP OF WALL	TW	
FINISHED GROUND AT BOTTOM OF WALL	BW	-
LOW POINT	LP	F
HIGH POINT	HP	
FLOW ARROW		
PROPOSED CONTOURS	(LIDAR) <u>6130</u>	


EXISTING CONTOURS - MINOR	
EXISTING CONTOURS - MAJOR	
PROPOSED CONTOURS - 1'	
EXISTING PROPERTY LINE	
PROPOSED RET WALL	$\sim \sim \sim$
PROPOSED RIPRAP	79959
WATER LINE	\
SANITARY SEWER LINE	<u> </u>
GAS LINE	UC
UNDERGROUND ELECTRICAL LINE	——— UE
TELEPHONE LINE	
FIBER OPTIC LINE	—— FD
STORM SEWER LINE	st
LIMIT OF CONSTRUCTION	
LIMIT OF SOIL DISTURBANCE	
PROPOSED FENCE	
FIRE HYDRANT	
-	


— — —6 2 31- — —
— — —6 2 3 0 — —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CHARDER CHARDER
w w
<u> </u>
UG UG
UE UE
UT
FD FD
ST ST
, Ç





# PLATTE SELF STORAGE SITE DEVELOPMENT PLAN **PROPOSED DETENTION POND** MAY 2024





## <u>NOTES</u>

ALL HDPE STORM PIPE IS TO BE SMOOTH INTERIOR PIPE.
 LARGE BLOCKS OF TEXT QUOTING STANDARD DRAWINGS OR DETAILS ARE INCLUDED AS A REQUIREMENT OF COUNTY REVIEWERS.

## **BENCHMARKS**

#5 REBAR WITH ORANGE PLASTIC CAP MARKED "CSAM, LLC PLS 32439", FLUSH WITH GROUND — ELEV.=6513.85 (NAVD—1988) [NORTHWEST PROPERTY CORNER]

## FOR REFERENCE ONLY NOT FOR CONSTRUCTION

FLOOR SLAB

PR 2' WIDE CONC. TRICKLE CHANNEL

E NO. DESCRIPTION DATE	
UNTIL SUCH TIME AS THESE DRAWINGS ARE APPROVED BY THE APPROPRIATE REVIEWING AGENCIES,	TERRA NOVA ENGINEERING, INC. APPROVES THEIR USE ONLY FOR THE PURPOSES DESIGNATED BY WRITTEN AUTHORIZATION.
PREPARED FOR: RMG-ROCKY MOUNTAIN GROUP	5085 LIST DR, #200 Colorado Springs, co 80919 719.548.0600
721 S. 23RD STREET COLORADO SPRINGS, CO 80904 Terra Nova	OFFICE: 719–635–6422 $C_{catifice}$ Engineering, Inc FAX: 719–635–6426 $C_{catifice}$ Civil Engineering Solutions www.tnesinc.com
PLATTE SELF STORAGE	PROPOSED DETENTION POND
H-SCALE V-SCALE JOB NO. 2	DLF BY LD AS SHOWN N/A 419.00 ED 05/07/24