FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

JANUARY 2025

Prepared For: RMG – ROCKY MOUNTAIN GROUP

5085 List Drive, #200 Colorado Springs, CO 80919 719.548.0600

Prepared By:

TERRA NOVA ENGINEERING, INC.

721 S. 23RD Street Colorado Springs, CO 80904 719.635.6422

TNE Job No. 2419.00 County Job No. PPR2418

FINAL DRAINAGE REPORT FOR

PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

TABLE OF CONTENTS

Engineer's Statement	Page	3
Purpose	Page	4
General Description	Page	4
Existing Drainage Conditions	Page	5
Proposed Drainage Conditions	Page	7
Hydrologic Calculations	Page	14
Hydraulic Calculations	Page	15
Floodplain Statement	Page	15
Water Quality	Page	15
Construction Cost Opinion	Page	16
Drainage Fees	Page	17
Maintenance	Page	17
Summary	Page	17
Bibliography	Page	18

APPENDICIES

VICINITY MAP

NRCS SOILS MAP

FEMA FIRM MAP

HYDROLOGIC CALCULATIONS

HYDRAULIC CALCULATIONS

DETENTION CALCULATIONS

DRAINAGE PLAN

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Dane Frank	ORIW:
Dane Frank, P.E. 50207 On behalf of Terra Nova Engineering, Inc.	Date STONAL ENGINEERS
OWNER/DEVELOPER'S STATEMENT: I, the owner/developer have read and will comply with all o report and plan. Authorized Signature Sold Bells pers. Printed Name, Title	f the requirements specified in this drainage 2/6/25 Date
Colorago Commercias Const. INC Business Name	
Business Name 2325 ORAGIE RLVD CUSA: 25 CU 80921 Address	
EL PASO COUNTY: Filed in accordance with the requirements of the Drainag County Engineering Criteria Manual and Land Developmen	
Joshua Palmer, P.E. County Engineer / ECM Administrator	Date
Conditions:	

FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

PURPOSE

The purpose of this Final Drainage Report is to identify and analyze the proposed drainage patterns, determine proposed runoff quantities, size drainage structures for conveyance of developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development. The site has not previously been platted or studied.

GENERAL DESCRIPTION

This Final Drainage Report (FDR) is an analysis of approximately 17.22 acres of developed land located at 6001 E Platte Ave. The site is currently in use as and landscaping materials yard and is being developed as a mini storage facility. The site is in the northwest quarter of Section 18, Township 14 South, Range 65 West of the 6th Principal Meridian within El Paso County. The parcels are bounded to the north by Motel Road and E Platte Ave, to the east by two unplatted lots, to the south by an unplatted lot and LOT 2 COLORADO SPRINGS AIRPORT FIL NO 1B, and to the west by unplatted lots. (see vicinity map in appendix).

The site lies within the Sand Creek Basin, with storm runoff surface draining west across the site, before flowing onto the neighboring property where Sand Creek East Fork is located.

Soils for this project are delineated by the map in the appendix as Blakeland loamy sand (8), 1 to 9 percent slopes. Soils in the study area are shown as mapped by NRCS in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group A.

The site is currently developed with mostly dirt surfaces, some gravel and asphalt areas, and minimal vegetation that is mostly native grasses around the perimeter. The site drains to the west, with an average slope of 6.6%.

EXISTING DRAINAGE CONDITIONS

There are multiple existing buildings, a weight scale, miles of retaining or freestanding walls being used to create material storage areas, and a pond (low area that doesn't drain) on the site. Most of the west side of the site has a berm before an embankment drops down, which results in little runoff leaving the site. The existing pond area is said to be largely paved (unconfirmed), so most runoff would leave the site by evaporation.

There are ten drainage basins, four of which are offsite. See attached Existing Drainage Map in the appendix.

Offsite Basins

Basin OS-Z consists of 6.34 acres of existing dirt and gravel roads (construction yard) located on the eastern adjacent property and its runoff (Q_5 =6.1 cfs, Q_{100} =16.7 cfs) sheet flows west to Design Point Z on the eastern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-Y consists of 8.15 acres of existing dirt and gravel roads (construction yard) and undeveloped native grasses located on the eastern adjacent property and its runoff (Q_5 =3.6 cfs, Q_{100} =15.4 cfs) sheet flows southwest to Design Point Y on the eastern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-X consists of 1.20 acres of undeveloped native grass area located on the southern adjacent property and its runoff (Q_5 =0.4 cfs, Q_{100} =2.3 cfs) sheet flows north to Design Point X on the southern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-W consists of 0.45 acres of undeveloped native grass area and asphalt pavement located on the northern adjacent property and its runoff (Q_5 =0.5 cfs, Q_{100} =1.3 cfs) sheet flows southwest to Design Point W on the northern property line of the site. This basin is offsite and runoff flows into Basin EX-B (discussed below).

Onsite Basins

Basin EX-A consists of 0.3 acres of landscaping areas and buildings located at the north side of the site and its runoff (Q_5 =0.2 cfs, Q_{100} =0.8 cfs) sheet flows west to Design Point A on the northern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin EX-B consists of 0.64 acres of landscaping areas, buildings, some pavement, and a swale located on the north side of the site and its runoff ($Q_5=1.1$ cfs, $Q_{100}=2.6$ cfs) sheet flows west to Design Point B, a low point on the northern property line of the site. This basin is onsite and runoff flows into the low point at Design Point B. Once the basin overtops, excess runoff flows north and then west and into Sand Creek.

Basin EX-C consists of 15.4 acres of the bulk of the site and includes buildings, roads, storage areas, and parking areas located central to the site and its runoff ($Q_5=29.0$ cfs, $Q_{100}=65.0$ cfs) sheet flows west to Design Point C at the low point of the existing low area that doesn't drain on the west side of the site.

Basin EX-D consists of 1.05 acres of primarily dirt storage/stockpile area located on the south side of the property and its runoff (Q_5 =0.3 cfs, Q_{100} =1.9 cfs) sheet flows northwest to Design Point D on the eastern property line of the site, indicating that the runoff enters Basin OS-X. The combined flow (Q_5 =0.7 cfs, Q_{100} =4.2 cfs) sheet flows north and into Basin EX-C.

Basin EX-E consists of 0.16 acres of earth embankment located on the west side of the site and its runoff (Q_5 =0.1 cfs, Q_{100} =0.5 cfs) sheet flows west to Design Point E on the western property line of the site. This basin is onsite and runoff flows into Sand Creek.

Basin EX-F consists of 0.23 acres of earth embankment located on the northwest side of the site and its runoff (Q_5 =0.1 cfs, Q_{100} =0.7 cfs) sheet flows northwest to Design Point F on the northwest property line of the site. This basin is onsite and runoff flows into Sand Creek.

PROPOSED DRAINAGE CONDITIONS

Runoff in the developed conditions consists of 14 basins, four of which are offsite. Below is a description of the runoff in the developed conditions and how it will be safely routed, treated and detained. Basins on the west half of the site are proposed as undeveloped, but the proposed detention pond has been sized to account for their future commercial development.

Offsite Basins

Offsite Basins OS-Y, OS-X, & OS-W remain the same as in the existing condition. Offsite Basin OS-Z is broken down into 8 Basins in the proposed conditions. See below for discussions

Onsite Basins

Basin PR-1 consists of 0.07 acres of landscaping area located behind proposed Building B and its runoff (Q_5 =0.0 cfs, Q_{100} =0.2 cfs) sheet flows west to Design Point 1 on the northern property line of the site. This basin is onsite and runoff flows into Basin OS-W and into a proposed public 18" RCP culvert with a grooved headwall under Motel Road, eventually entering Design Point W (discussed in Existing Drainage Conditions).

Basin PR-2 consists of 0.13 acres of landscaping area located behind proposed Build A and its runoff (Q_5 =0.1 cfs, Q_{100} =0.4 cfs) sheet flows northwest to Design Point 2 on the northern property line of the site. This basin is onsite and runoff flows into Basin OS-W and eventually to Design Point W (discussed in Existing Drainage Conditions).

Basin OS-ZA consists of 0.44 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =0.4 cfs, Q_{100} =1.1 cfs) sheet flows west onto Basin PR-10A and is directed to Design Point 10A. Basin PR-10A consists of 0.06 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10A. The combined runoff (Q_5 =0.4 cfs, Q_{100} =1.3 cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #14 (Q_5 =0.4 cfs, Q_{100} =1.3 cfs) a proposed private 12" HDPE storm pipe to Design Point 10B.

Basin OS-ZB consists of 0.22 acres of construction yard located on the eastern adjacent property

and its runoff (Q_5 =0.2 cfs, Q_{100} =0.6 cfs) sheet flows west onto Basin PR-10B and is directed to Design Point 10B. Basin PR-10B consists of 0.03 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10B. The combined runoff (Q_5 =0.2 cfs, Q_{100} =0.6 cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #15 (Q_5 =0.7 cfs, Q_{100} =1.9 cfs) a proposed private 15" HDPE storm pipe to Design Point 10C.

Basin OS-ZC consists of 0.23 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =0.2 cfs, Q_{100} =0.6 cfs) sheet flows west onto Basin PR-10C and is directed to Design Point 10C. Basin PR-10C consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10C. The combined runoff (Q_5 =0.2 cfs, Q_{100} =0.7 cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #16 (Q_5 =0.9 cfs, Q_{100} =2.6 cfs) a proposed private 15" HDPE storm pipe to Design Point 10D.

Basin OS-ZD consists of 0.86 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =0.8 cfs, Q_{100} =2.3 cfs) sheet flows west onto Basin PR-10D and is directed to Design Point 10D. Basin PR-10D consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10D. The combined runoff (Q_5 =0.8 cfs, Q_{100} =2.4 cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #17 (Q_5 =1.7 cfs, Q_{100} =5.0 cfs) a proposed private 18" HDPE storm pipe to Design Point 10E.

Basin OS-ZH consists of 1.24 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =1.2 cfs, Q_{100} =3.3 cfs) sheet flows west onto Basin PR-10H and is directed to Design Point 10H. Basin PR-10H consists of 0.06 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10H. The combined runoff (Q_5 =1.2 cfs, Q_{100} =3.4 cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #18 (Q_5 =1.2 cfs, Q_{100} =3.4 cfs) a proposed private 12" HDPE storm pipe to Design Point 10G.

Basin OS-ZG consists of 0.85 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =0.8 cfs, Q_{100} =2.3 cfs) sheet flows west onto Basin PR-10G and is directed to Design Point 10G. Basin PR-10G consists of 0.05 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10G. The combined runoff (Q_5 =0.8 cfs, Q_{100} =2.4 cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #19 (Q_5 =2.0 cfs, Q_{100} =5.8 cfs) a proposed private 15" HDPE storm pipe to Design Point 10F.

Basin OS-ZF consists of 0.56 acres of construction yard located on the eastern adjacent property and its runoff (Q_5 =0.5 cfs, Q_{100} =1.5 cfs) sheet flows west onto Basin PR-10F and is directed to Design Point 10F. Basin PR-10F consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff (Q_5 =0.0 cfs, Q_{100} =0.1 cfs) is also directed to Design point 10F. The combined runoff (Q_5 =0.6 cfs, Q_{100} =1.6 cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #20 (Q_5 =2.6 cfs, Q_{100} =7.4 cfs) a proposed private 15" HDPE storm pipe to Design Point 10E.

In case of failure in any of the inlets for Basins OS-ZA thru OS-ZH, runoff will overtop the high point and be directed to one of the other inlets in the adjacent Basin.

Basin OS-ZE consists of 1.94 acres of construction yard located on the eastern adjacent property and its runoff ($Q_5=1.9$ cfs, $Q_{100}=5.1$ cfs) sheet flows west onto Basin PR-10E and is directed to Design Point 10E. Basin PR-10E consists of 0.09 acres of landscape area along the eastern property line of the site and its runoff ($Q_5=0.0$ cfs, $Q_{100}=0.2$ cfs) is also directed to Design point 10E. The combined runoff ($Q_5=1.9$ cfs, $Q_{100}=5.3$ cfs) is captured in a Type "C" inlet. and routed north via Pipe Run #13 a proposed private 24" RCP storm pipe routes the combined flow ($Q_5=6.2$ cfs, $Q_{100}=17.7$ cfs) of Design Point 10E and Pipe runs #17 & #20 to Design Point 3A. In case of failure in the inlet, runoff will overtop the proposed retaining wall at the west side of the basin and follow drainage patterns as described in Basin PR-3.

Basin PR-3A consists of 1.10 acres consists almost entirely of buildings and pavement central to the site. The runoff ($Q_5=5.0$ cfs, $Q_{100}=8.9$ cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3A, 2 private Type 13 inlets located in the proposed

4' concrete crosspan captures ($Q_5=2.5$ cfs, $Q_{100}=3.4$ cfs), while the flow by ($Q_5=2.5$ cfs, $Q_{100}=5.4$ cfs) continues in the crosspan west to Design Point 3B. Pipe run PR#9 a private 24" RCP routes the combined flow ($Q_5=8.7$ cfs, $Q_{100}=21.1$ cfs) of the captured flow and Pipe Run #13's flow toward Design Point 3B.

Basin PR-3B consists of 1.11 acres consists almost entirely of buildings and pavement central to the site. The runoff ($Q_5=5.0$ cfs, $Q_{100}=8.9$ cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3B ($Q_5=7.5$ cfs, $Q_{100}=14.4$ cfs) the flow by from Design Point 3A and Basin PR-3B 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures ($Q_5=4.0$ cfs, $Q_{100}=5.7$ cfs), while the flow by ($Q_5=4.0$ cfs, $Q_{100}=9.5$ cfs) continues in the crosspan west to Design Point 3C. Pipe run PR#8 a private 30" RCP routes the combined flow ($Q_5=12.5$ cfs, $Q_{100}=26.7$ cfs) of the captured flow and Pipe Run #9's flow toward Design Point 3C.

Basin PR-3C consists of 0.96 acres consists almost entirely of buildings and pavement central to the site. The runoff (Q_5 =4.3 cfs, Q_{100} =7.8 cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3C (Q_5 =8.0 cfs, Q_{100} =16.6 cfs) the flow by from Design Point 3B and Basin PR-3C 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures (Q_5 =4.1 cfs, Q_{100} =6.1 cfs), while the flow by (Q_5 =4.3 cfs, Q_{100} =11.1 cfs) continues in the crosspan west to Design Point 3D. Pipe run PR#7 a private 30" RCP routes the combined flow (Q_5 =16.5 cfs, Q_{100} =32.7 cfs) of the captured flow and Pipe Run #8's flow toward Design Point 3C.

Basin PR-3D consists of 0.97 acres consists almost entirely of buildings and pavement central to the site. The runoff (Q_5 =4.4 cfs, Q_{100} =7.8 cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3D (Q_5 =8.4 cfs, Q_{100} =18.4 cfs) the flow by from Design Point 3C and Basin PR-3D 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures (Q_5 =4.2 cfs, Q_{100} =6.5 cfs), while the flow by (Q_5 =4.5 cfs, Q_{100} =12.4 cfs) continues in the crosspan west to Design Point 3E. Pipe run PR#6 a private 30" RCP routes the combined flow (Q_5 =20.6 cfs, Q_{100} =39.0 cfs) of the captured flow and Pipe Run #7's flow toward a junction with PR#11 (see below for discussion) Design Point 3C.

Basin PR-4 consists of 3.66 acres gravel yard, with the two future canopies included in the drainage calcs, located on the south side of the site and its runoff (Q_5 =8.2 cfs, Q_{100} =16.8 cfs) sheet flows northwest to either Design Point 4, inlet #9, a proposed private 16' D10-R sump inlet, located on the south-central side of the site, or into the concrete cross-pans at the north side of the basin, flows west, and eventually into ether Inlet #8, a proposed private CDOT Type 14 sump inlet or Inlet #9. The combined flow (Q_5 =11.8 cfs, Q_{100} =32.2 cfs) from Basin PR-4 and the offsite Basin OS-Y is conveyed via Pipe Run 12, a proposed private 36" RCP, to an inlet junction at Inlet #8, a proposed private CDOT Type 13 inlet. The runoff is then conveyed north via Pipe Run 11, a proposed private 36" RCP, to an inlet junction at Inlet #3. From here the combined flow (Q_5 =32.4 cfs, Q_{100} =71.2 cfs) of Pipe run #6 & #11 is routed west via Pipe Run #5 & #4 private 42" RCPs. If either of these inlets become clogged, runoff will overtop and be collected in the opposite inlet.

Basin PR-3E consists of 1.01 acres consists almost entirely of buildings and pavement central to the site. The runoff (Q_5 =4.5 cfs, Q_{100} =8.1 cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3E (Q_5 =8.8 cfs, Q_{100} =20.2 cfs) the flow by from Design Point 3D and Basin PR-3E a private 20' Type R inlet located in the c&g captures the flow Pipe run PR#4 a private 42" RCP routes the combined flow (Q_5 =32.4 cfs, Q_{100} =71.2 cfs) of the captured flow and Pipe Run #5's a proposed private 42" RCP, to an inlet junction at Inlet #1, a proposed private 20' D10-R sump inlet. The combined runoff (Q_5 =41.2 cfs, Q_{100} =91.4 cfs) is then routed west via Pipe Runs #3 (proposed private 42" RCP), #2 (proposed private 48" RCP), and #1 (proposed private 48" RCP) to the proposed forebay for the proposed Pond 1 (discussed below). If any of these sump inlets become clogged, runoff will continue flowing in the concrete crosspans until it is collected in the next downstream inlet. If the proposed 20' D10-R sump inlet becomes clogged, runoff will back-up downstream until it is captured in Inlet #2 (see proposed drainage map).

Basin PR-5 consists of 0.56 acres of native grasses and a grass swale located at the south-central side of the site and its runoff (Q_5 =0.1 cfs, Q_{100} =0.9 cfs) is conveyed via grass swale to Design Point 4. This swale also collects flows from Basin OS-X (discussed in Existing Drainage Conditions) in the amount of Q_5 =0.4 cfs and Q_{100} =2.3 cfs. The combined runoff (Q_5 =0.5 cfs, Q_{100} =3.3 cfs) flows over a proposed 1' deep 6'x17' D_{50} =6" riprap pad and into an existing swale

just south of the south-central property line which eventually enters Sand Creek.

Basin PR-6 consists of 6.64 acres of the bulk of the western side of the site including the proposed private Pond 1 EDB (Design Point 6) and its runoff (Q_5 =3.1 cfs, Q_{100} =13.1 cfs) sheet flows west and into the proposed pond. This pond also collects flow from the underground conveyance system from Pipe Run 1, a proposed private 48" RCP, in the amount of Q_5 =41.2 cfs and Q_{100} =91.4 cfs. The combined runoff (Q_5 =44.3 cfs, Q_{100} =104.5 cfs) enters the pond at Design Point 6 where it is treated for water quality and/or detained.

The following basins in the current design contribute flow to Design Point 6: OS-ZA thru OS-ZH, OS-Y, PR-3A thru PR-3E, PR-4, PR-6, & PR-10A thru PR-10H. However, the pond is sized assuming that in the future Basins PR-5, PR-9 & OS-X will be routed to the pond for detention and WQ treatment. Basins OS-Z & OS-Y used actual existing ground cover to calculate impervious area while Basins PR-3, PR-4, & PR-10 used an imperviousness based upon the site development for this SDP and CD's. Basins PR-6, PR-5, & PR-9 assumed an imperviousness of 30%, while offsite Basin OS-X was assumed to be 2%. The 32.68 acres tributary to the EDB have an imperviousness of 38%.

All The combined flow of the currently proposed development and future commercial development will be captured in a 2.283-acre-foot Extended Detention Basin. Runoff entering the pond through the storm sewer system will be routed into a 638 cu-ft concrete lined forebay with a 1.5 feet high concrete cutoff wall. A 3-inch notch in the wall drains the flow to a 2' concrete trickle channel, then the runoff is routed to the 3.0' deep micropool which has a 6" deep initial surcharge area. Based upon this we need a WQCV of 0.475 ac-ft, an EURV volume of 0.851 ac-ft and 100-year volume of 0.957 ac-ft for a total volume needed of 2.283 ac-ft. The bottom of the micropool elevation is at 6199.50 while the top of the ISV elevation is at 6202.50. The bottom of the pond is set at 6202.00 and the top is 6213.00. The WQCV orifice starts at 6202.00 with the first orifice hole having a 1-3/8" diameter. The second orifice hole is set at 6203.70 and is 1-3/16" diameter, and the third one is set 6205.40 with a 1-7/8" diameter hole. The WQCV release is 0.20 cfs with a height of 6206.23. The EURV release is 0.4 cfs and has an elevation of 6208.68. A 4'x4' outlet structure is set at 6210.00. An 18" HDPE storm pipe with no restrictor will release Q₅=0.4 cfs and

Q₁₀₀=21.6 cfs discharge to an 8' wide concrete stilling basin at the west property line. The 5-Year and 100-Year HWL are 6208.53 and 6210.86 respectively. The concentrated outflow will dissipate energy by using the standing water in the stilling basin. Runoff will then outfall onto the adjacent property from the stilling basin via sheet flow. This sheet flow matches the existing condition of the existing pond filling up overtopping and sheet flowing west offsite over the existing prairie. The 23' wide emergency spillway is set at 6211.00 and has a flow of 0.69' deep, thus giving a freeboard of 1.31'.

The estimated on-site discharge into Sand Creek in the existing condition is Q_5 =30.8 cfs and Q_{100} =71.5 cfs. The estimated on-site discharge into Sand Creek in the proposed condition is Q_5 =1.2 cfs and Q_{100} =26.7 cfs, indicating a decrease in the discharge rate into Sand Creek of % $_5$ =96.1% and % $_{100}$ =62.7%. Flows are discharged from the pond outlet structure into the stilling basin where energy is dissipated to prevent erosion to the banks of Sand Creek, where it is then discharged into the catchment area of Sand Creek flowing west to the flowline of the creek, where it is transported south through the creek and ultimately into Fountain Creek. As Sand Creek handles the flow in the existing condition sufficiently, it can be assumed that Sand Creek will be able to handle the decreased flow from the developed site sufficiently. The Sand Creek outfall is considered a suitable outfall because the Sand Creek East Fork is considered a hydraulically adequate historic ephemeral channel segment and was the subject of previous channel improvements including drop structures, check dams, and boulders for erosion control. These existing channel improvements were identified via observation during site visits and of aerial photos, and they appear to be of sufficient quality.

Basin PR-7 consists of 0.34 acres of earth embankment located on the northwest side of the site and its runoff ($Q_5=0.2$ cfs, $Q_{100}=1.1$ cfs) sheet flows northwest, off-site, to Design Point 7, indicating that the runoff flows into Sand Creek.

Basin PR-8 consists of 0.30 acres of earth embankment located at the west side of the site, west of the proposed private Pond 1 EDB and its runoff (Q_5 =0.2 cfs, Q_{100} =1.0 cfs) sheet flows west, offsite, to Design Point 8, indicating that the runoff flows into Sand Creek.

Basin PR-9 consists of 0.59 acres of earth embankment and flatter area located at the southwest corner of the site and its runoff ($Q_5=0.2$ cfs, $Q_{100}=1.5$ cfs) sheet flows west, off-site, to Design Point 9, indicating that the runoff flows into Sand Creek.

There is one storm sewer system proposed on the site. This system collects runoff from the drain trench along the east property line and the two curb inlets in the mini-storage area and pipes the runoff to the detention pond. There are a series of area inlets along the storm pipe in the mini-storage area that are not required to capture runoff, but will lessen the surface flow along the central drive aisle. The storm pipes on the west side of the site have been sized to have some extra capacity so that the future commercial development can tie into them as well.

In an effort to protect receiving water and as part of the "four-step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

- Reduce Runoff- There is no runoff reduction in the proposed mini-storage area. The
 proposed parking area south of the mini-storage has been surfaced with gravel, which will
 reduce runoff. These items will reduce the volume of runoff using ponding and infiltration.
 The proposed Extended Detention Basin also significantly reduces the runoff that flows
 off-site.
- 2. Stabilize Drainageways- There are no existing or proposed drainageways onsite. The Sand Creek East Fork is located west of the site; however, channel improvements have previously been constructed there.
- 3. Provide Water Quality Capture Volume (WQCV)- The Extended Detention Basin has been sized and designed to sufficiently capture the required WQCV and slowly release it though the outlet structure, thereby allowing solids and contaminants to settle out. There are a few on-site basins whose runoff is not treated in the proposed EDB. These areas consist mostly of earthen embankment. The runoff from these areas sheet flow over grassed earth, treating the runoff for water quality before it reaches Sand Creek. These areas are excluded per the ECM 1.7.1.B.7, "sites with land disturbance to undeveloped land that will remain undeveloped" and ECM 1.7.1.C.1 the County may exclude up to 20 percent, not to exceed 1 ac., of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site.

4. Consider Need for Industrial and Commercial BMPs- The proposed development is an indoor mini storage facility; therefore, no Industrial and Commercial BMPs have been proposed.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria Manual – Volumes 1 & 2, latest editions. The pertinent data sheets are included in the appendix of this report.

A culvert is proposed at one of the site entrances. Design calculations have been included for the proposed culvert.

Street runoff capacity calculations for the onsite drive isles have been included.

FLOODPLAIN STATEMENT

No portion of this site is within a designated FEMA floodplain, as determined by FIRM Number 08041C0754 G, dated December 7, 2018 (see appendix).

WATER QUALITY

The proposed Pond 1 detention basin provides water quality treatment for nearly all of the proposed development.

Runoff from basins PR-1, PR-2, PR-5, PR-7, PR-8, and PR-9 are not captured by the proposed detention pond. Basins PR-1 and PR-2 are landscaping areas along the property line with no impervious area. Basin PR-5 is an undeveloped area with a swale that directs offsite flow back offsite, with no impervious area. Basins PR-7 and PR-8 are earth embankments on the downstream edge of the site that drop 10-15 feet in elevation, with no impervious area. Basin PR-9 is part flatter undeveloped area and part earth embankment on the downstream edge of the site that doesn't flow toward the detention pond, with no impervious area. The combined area of these basins is 2.40 acres, with zero impervious area. Exclusions for WQ treatment Basins OS-W and PR-5 are referencing Exemption ECM I.7.1.C.1 - the County may exclude up to 20 percent, not to exceed 1 ac., of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site. 1.00 ac can't drain to the pond due to location and grade impediment. Basins PR-1, PR-2, PR-5, PR-7, PR-8, and PR-9 are using the exclusion of Exemption ECM I.7.1.B.7 - land disturbance to undeveloped land that will remain undeveloped. 1.44 ac will not drain to pond due to location & grade impediments but will remain open & landscape areas. - See the Water Quality Treatment Summary Table & Water Quality Treatment Map for treatment area types and exclusions in the appendix.

CONSTRUCTION COST OPINION

Public Reimbursable

None

Public Non-Reimbursable

None

Private Non-Reimbursable

1. 48" RCP	260 LF	\$ 245	\$ 63,700
2. 42" RCP	80 LF	\$ 201	\$ 16,080
3. 36" RCP	385 LF	\$ 151	\$ 58,135
4. 30" RCP	170 LF	\$ 123	\$ 20,910
5. 24" RCP	115 LF	\$ 98	\$ 11,270
6. 18" HDPE	98 LF	\$ 60	\$ 5,880

7. 15" HDPE	320 LF	\$ 50	\$ 16,000
8. 12" HDPE	148 LF	\$ 40	\$ 5,920
9. 6' Manhole	1 EA	\$ 15,130	\$ 15,130
10. 7' Manhole	1 EA	\$ 15,130	\$ 15,130
9. CDOT Type C Area Inlet	9 EA	\$ 6,037	\$ 54,333
10. 16' D-10-R Curb Inlet	1 EA	\$ 13,835	\$ 13,835
11. 20' D-10-R Curb Inlet	1 EA	\$ 20,000	\$ 20,000
12. 18" Dia Dome Inlets	7 EA	\$ 2,500	\$ 17,500
EDB (Pond 1)			
13. Concrete Forebays	1 EA	\$ 7,000	\$ 7,000
14. Trickle Channel	73 LF	\$ 80	\$ 5,840
15. 4'x4' Outlet Structure	1 EA	\$ 4,000	\$ 4,000
16. Micropool	1 EA	\$ 5,000	\$ 5,000
17. Pond Earthworks	3,157 CY	\$ 6	\$ 18,942
18. Spillway	1 EA	\$ 7,000	\$ 7,000
19. Reseed/Stabilization	1 EA	\$ 2,000	\$ 2,000
20. Aggregate Base Course	306 CY	\$ 66	\$ 20,196
21. Stilling Basin	1 EA	\$ 5,000	\$ 5,000

DRAINAGE FEES

This drainage report is part of a site development application; therefore, no drainage fees are due.

MAINTENANCE

The Extended Detention Basin is private and will be maintained by the property owner. The proposed storm sewers are private and will be maintained by the property owner.

SUMMARY

Development of this site will not adversely affect the surrounding development (see discussion on suitable outfall location earlier in report). Site runoff and storm drain appurtenances from the development will not adversely affect the downstream and surrounding developments and will be

Total \$ 408,801

safely routed to the proposed extended detention basin reduced to the allowable pre-developed rates while slowly treating the water quality capture volume. Runoff from areas of disturbance with no development are being excluded per exemptions and sheet flow offsite in historic paths and rates.

PREPARED BY:

TERRA NOVA ENGINEERING, INC.

Dane Frank, P.E. Project Engineer

Jobs/2419.00/Drainage/241900 FDR.doc

BIBLIOGRAPHY

"Urban Storm Drainage Criteria Manual Volume 1" Prepared by Mile High Flood Control District, Revised August 2018.

"Urban Storm Drainage Criteria Manual Volume 2" Prepared by Mile High Flood Control District, Revised September 2017.

"Urban Storm Drainage Criteria Manual Volume 3" Prepared by Mile High Flood Control District, Revised January 2021.

USDA NRCS Web Soil Survey.

FEMA Flood Insurance Rate Map Dated December 7, 2018.

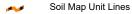
"Drainage Criteria Manual County of El Paso, Colorado Volume 1" approved October 2018 and prepared by El Paso County

"Drainage Criteria Manual County of El Paso, Colorado Volume 2" approved October 2018 and prepared by El Paso County

"Drainage Criteria Manual County of El Paso, Colorado Volume 1 update Chapter 6" approved October 2018 and prepared by El Paso County

"El Paso County Stormwater Drainage Facilities Maintenance Policy" approved October 2018 and prepared by El Paso County

Schedule Number: 5418000075


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

LEGEND

Spoil Area

Stony Spot

Wery Stony Spot

Wet Spot
Other

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	16.5	100.0%
Totals for Area of Interest		16.5	100.0%

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet

Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 98 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Blakeland

Setting

Landform: Hills, flats

Landform position (three-dimensional): Side slope, talf

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock and/or

eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand

C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to

very high (5.95 to 19.98 in/hr)

Depth to water table: More than 80 inches Frequency of flooding: None

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e

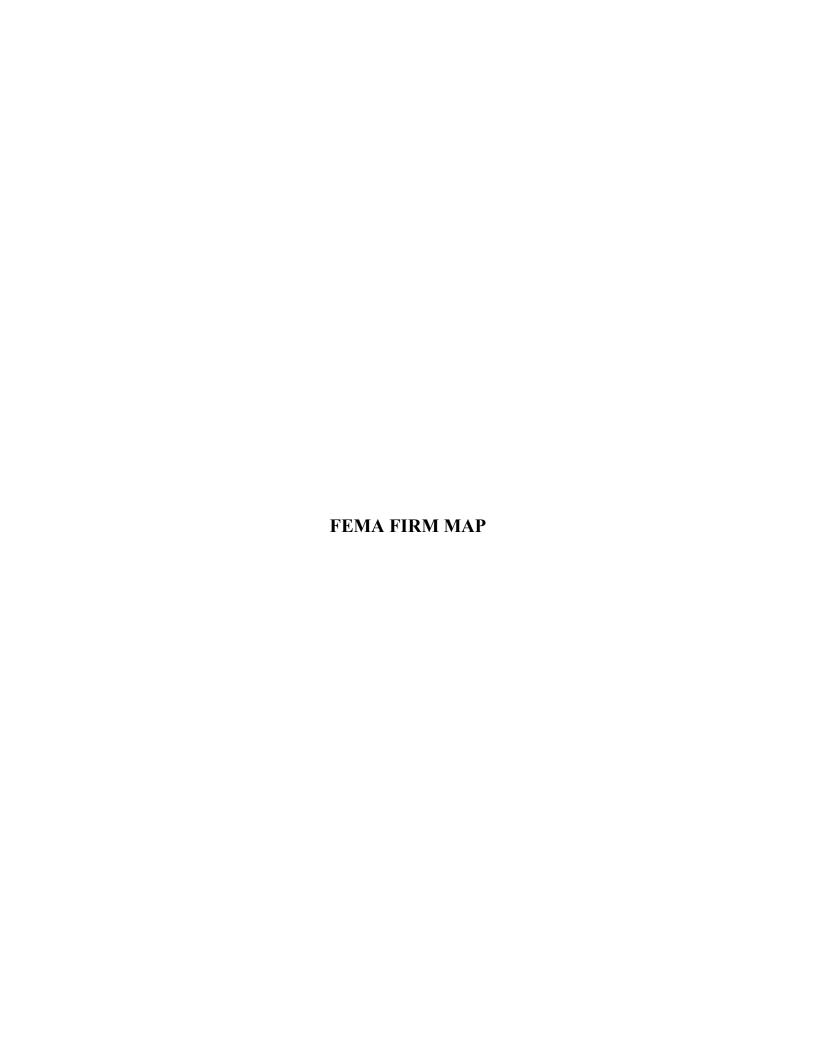
Hydrologic Soil Group: A

Ecological site: R049XB210CO - Sandy Foothill

Hydric soil rating: No

Minor Components

Other soils


Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023

NOTES TO USERS

s map is for use in administering the National Flood Insurance Program. It does necessarily identify all areas subject to flooding, particularly from local drainage cross of small size. The community map repository should be consulted for sebtle updated or additional flood Inspard information.

To data more dodes internation in ansalvative State Blood Blood for general blood of the other states and state in the same state in summary and states and the found in Part States and Produces and Pr

Coastal Base Flood Elivations shown on this map apply only landward of 0.0" North American Vertical Datum of 1980 (AVXVD6). Users of this FIRIN should be awaire that coastal 5000 elevations are also provided in the Summary of Billiador. Elevations table in the Flood Insurance Study report for this paradiction. Elevations thorough the Summary of Stilliador Elevations table should be used for construction. and/or floodplain management purposes when they are higher than the elevatio shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydrautic considerations with regard to requirements of the National Flood insurance Plogram. Floodway widths and other pertinent floodway data are provided in the Flood Issurance Study report for the jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood centro structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood centrol structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercotiz (UTM) zone 13. The horizontal datum was MADSS, GRSG spheeds. Comprehensive the production of PRIMS for adjaced praintedions may need in slight patients difference in map heature access puried-citon boundaries. These differences do not affect the accuracy of this PRIM.

Flood executions on the may are inferenced to the North American Vertical Datum of 1988 (NAVD98). These food elevations must be compared to structure and ground elevations relevanced to the surveilland described to the compared to structure and ground elevations referenced to the surveilland elevation of 1920 and the North American Vertical Datum of 1920 and the North American Vertical Datum of 1985, with the Notional Geodetic Survey settler at http://www.ngs.mosa.gov/ or consect the National Geodetic Survey settler and others.

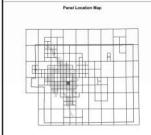
NGS Information Services NDAA, NNGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noss.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pass County, Colorado Springs Utilibre, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

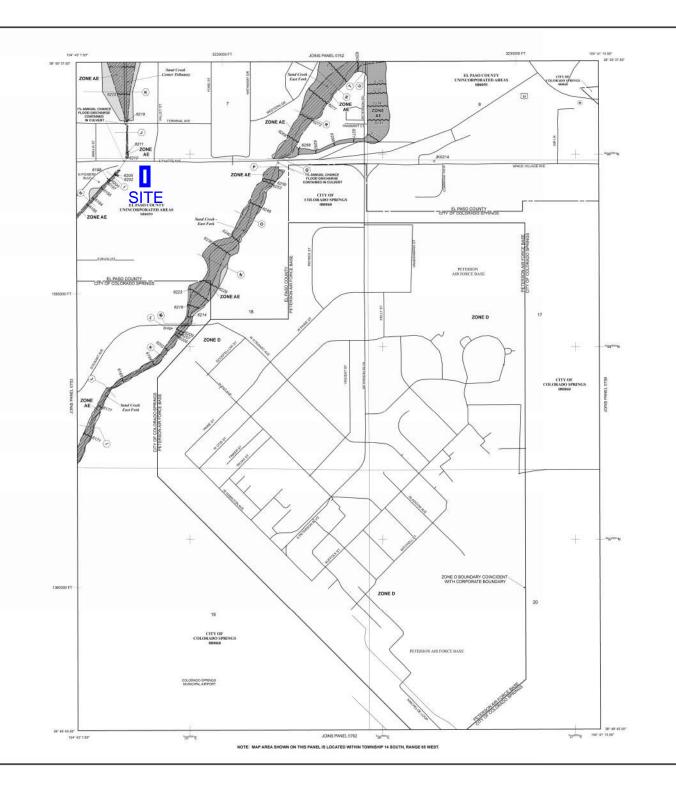
This map reflects more detailed and up-to-date stream channel configurations and floodsplain delineations than those shown on the previous FRM for this prodiction. The production of the previous FRM for this prodiction of the previous FRM for this prodiction of the production of th

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current oxporate intri locations.

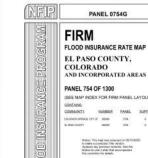

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a listing of Communities table containing National Flood Insurance Program dates for each community as well as a fishing of the panels on which each community is

Contact FEMA Map Service Center (NSC) vie the FEMA Map Information eXchange IFBMO, 1477-336-3527 for information on available product associated with the IFBMO. Available products may include proviously stated clients of Map Change, a stop on the IFBMO and IFBMO of IFBMO and IFBMO of IFBMO

If you have questions about this map or questions concerning the National Floo Insurance Program in general, please call 1-877-FEMA MAP (1-877-358-2627) over the FEMA website at http://www.fema.gov/business/mbp.


El Paso County Vertical Datum Offset Table Frodes Source

REFER TO SECTION 3.3 OF THE BL PASO COUNTY PLODO INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION



This Digital Flood Insurance Rate Map (DFRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Wister Conservation Board (CWCB) and the Federal Emergency Management Agency (FBMA).

LEGEND SPECIAL FLOOD HAZARD AREAS (SHIAS) SUBJECT TO DIALNDATION BY THE 1% ANNUAL CHANCE PLOOD ZOME A ZOME AE Book Flood Elevations determined. ZOME AH Rood Elevation determined. ZOME AH Rood Elevation determined. Rood Elevation determined. Road depths of 1 to 3 feet (usually street flow on sloping terrain); average depths, determined. For areas of allovial flat flooding, velocities also determined. Area to be protected from 1% arruse chance fixed by a Federal Food protection system under construction; no Base Food Devertions determined. ZOME V Cooker food Jone with velocity hazard (wave action); no base Flood Shoulders determined ZONE VE Coastal flood some with velocity hazard (view action); Base Flood Beatfood determined. FLOCOWAY AREAS IN ZONE AE OTHER FLOOD AREAS OTHER AREAS ZOME X Areas determined to be outside the 0.2% armust grance floodstain. ZOME D Areas in which flood hazards are undetermined, but possible COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and DMs are normally located within or actioner to Special Plood Hazard Areas Floodplain boundary ___ Processory boundary Zane D Soundary *********** CERS and CPA boundary Roundary slividing Special Flood Hoosel Areas of different Base Flood Bevasons, flood depths or flood velocities. ~~ 513 ~~ Base Flood Elevation fire and value: elevation in Nath Base Flood Elevation value where uniform within zone; elevation in feet* * Referenced to the North American Vertical Datum of 1988 (NAVID-98) A Cross section live 23------23 97" 07" 30.80" Geographic coordinates referenced to the North American Detum of 1963 (NAD EI) Organia 1800-meter Universal Transverse Plescator grid ticks, some CI Bench mark (see eiglanation in Mates to Use's section of this FORM panel) DX5510_ M1.5 MAP REPOSITORIES Reter to Map Repositories list on Map Index EFFECTIVE DATE OF DOLINTYWIDE FLOOD RISURANCE BATE MAP MARCH 17, 1997 To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 3 (600-636-662). MAP SCALE 1" = 500" NEB PANEL 0754G **FIRM** FLOOD INSURANCE RATE MAP EL PASO COUNTY. COLORADO AND INCORPORATED AREAS PANEL 754 OF 1300 ISEE MAP INDEX FOR FIRM PANEL LAYOUT CONTAINS COMMUNITY



NATIONNAL F

MAP NUMBER 08041C0754G

> MAP REVISED DECEMBER 7, 2018

Federal Emergency Management Agency

PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

EXISTING

	TOTAL	DEVELO	PED / IMPE	RVIOUS	UNDEVELO	PED / NON-I	<i>MPERVIOUS</i>	WEI	GHTED	WEIGH	TED CA
BASIN	AREA (Acres)	AREA (Acres)	C ₅	C_{100}	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀	CA ₅	CA ₁₀₀
OS-Z	6.34	1.90	0.90	0.96	4.44	0.08	0.35	0.33	0.53	2.07	3.38
OS-Y	8.15	0.82	0.90	0.96	7.33	0.08	0.35	0.16	0.41	1.32	3.35
OS-X	1.20	0.02	0.90	0.96	1.18	0.08	0.35	0.09	0.36	0.11	0.43
OS-W	0.45	0.11	0.90	0.96	0.34	0.08	0.35	0.28	0.50	0.13	0.22
EX-A	0.30	0.05	0.90	0.96	0.25	0.08	0.35	0.22	0.45	0.07	0.14
EX-B	0.64	0.29	0.90	0.96	0.35	0.08	0.35	0.45	0.63	0.29	0.40
EX-C	15.4	7.70	0.90	0.96	7.70	0.08	0.35	0.49	0.66	7.55	10.09
EX-D	1.05	0.02	0.90	0.96	1.03	0.08	0.35	0.10	0.36	0.10	0.38
EX-E	0.16	0.00	0.90	0.96	0.16	0.08	0.35	0.08	0.35	0.01	0.06
EX-F	0.23	0.00	0.90	0.96	0.23	0.08	0.35	0.08	0.35	0.02	0.08
Total	33.92	10.91			·					Calc:	DLF
			•							Date:	11/8//2024
										Checked:	JS

PLATTE SELF STORAGE RUNOFF SUMMARY

EXISTING

	AREA WEIGHTED		HTED	OVERLAND				STRE	ET / CH	STREET / CHANNEL FLOW			INTENSITY		TOTAL FLOWS	
BASIN	TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T_t	Length	Slope	Velocity	T_t	TOTAL	I_5	I_{100}	Q_5	Q_{100}
	(Acres)	* For Calcs See	Runoff Summary	C ₅	(ft)	(ft/ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-Z	6.34	0.33	0.53	0.33	300	0.02	19.3	230	2.0%	1.4	2.7	22.0	2.9	4.9	6.1	16.7
OS-Y	8.15	0.16	0.41	0.16	300	0.03	20.4	505	3.0%	1.7	4.9	25.3	2.7	4.6	3.6	15.4
OS-X	1.20	0.09	0.36	0.09	300	0.05	18.5	0	5.0%	2.2	0.0	18.5	3.2	5.4	0.4	2.3
OS-W	0.45	0.28	0.50	0.28	300	0.07	13.5	160	7.0%	2.6	1.0	14.5	3.6	6.0	0.5	1.3
EX-A	0.30	0.22	0.45	0.22	300	0.07	14.5	0	7.0%	2.6	0.0	14.5	3.6	6.0	0.2	0.8
EX-B	0.64	0.45	0.63	0.45	300	0.07	10.7	250	7.0%	2.6	1.6	12.2	3.8	6.4	1.1	2.6
EX-C	15.4	0.49	0.66	0.49	300	0.07	10.0	330	7.0%	2.6	2.1	12.1	3.8	6.4	29.0	65.0
EX-D	1.05	0.10	0.36	0.10	300	0.03	21.9	40	3.0%	1.7	0.4	22.2	2.9	4.9	0.3	1.9
EX-E	0.16	0.08	0.35	0.08	30	0.40	3.0	0	40.0%	6.3	0.0	5.0	5.2	8.7	0.1	0.5
EX-F	0.23	0.08	0.35	0.08	35	0.24	3.8	0	24.0%	4.9	0.0	5.0	5.2	8.7	0.1	0.7

Calc: DLF
Date: 11/8//2024
Checked: JS

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

EXISTING

Design	Contributing	Area	Flow (cfs)		
Point(s)	Basins	(ac)	Q ₅	Q 100	
\boldsymbol{Z}	OS-Z	6.34	6.1	16.7	
Y	OS-Y	8.15	3.6	15.4	
X	OS-X & DP D	2.25	0.7	4.2	
W	OS-W & DP A	0.75	0.7	2.2	
\boldsymbol{A}	EX-A	0.30	0.2	0.8	
В	EX-B & DP W	1.39	1.8	4.7	
C	EX-C, DP D, DP X, & DP Y	26.85	33.6	86.5	
D	EX-D	1.05	0.3	1.9	
$\boldsymbol{\mathit{E}}$	EX-E	0.16	0.1	0.5	
F	EX-F	0.23	0.1	0.7	

Calc: DLF
Date: 11/8//2024
Checked: JS

PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

PROPOSED

	TOTAL	DEVELO	PED / IMPE	RVIOUS	UNDEVELO	PED / NON-II	MPERVIOUS	WEI	GHTED	WEIGH	TED CA
BASIN	AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀	CA ₅	CA ₁₀₀
OS-ZA	0.44	0.13	0.90	0.96	0.30	0.08	0.35	0.33	0.53	0.14	0.23
OS-ZB	0.22	0.06	0.90	0.96	0.15	0.08	0.35	0.33	0.53	0.07	0.12
OS-ZC	0.23	0.07	0.90	0.96	0.16	0.08	0.35	0.33	0.53	0.07	0.12
OS-ZD	0.86	0.26	0.90	0.96	0.60	0.08	0.35	0.33	0.53	0.28	0.46
OS-ZE	1.94	0.58	0.90	0.96	1.36	0.08	0.35	0.33	0.53	0.63	1.03
OS-ZF	0.56	0.17	0.90	0.96	0.39	0.08	0.35	0.33	0.53	0.18	0.30
OS-ZG	0.85	0.26	0.90	0.96	0.60	0.08	0.35	0.33	0.53	0.28	0.46
OS-ZH	1.24	0.37	0.90	0.96	0.87	0.08	0.35	0.33	0.53	0.40	0.66
OS-Y	8.15	0.82	0.90	0.96	7.33	0.08	0.35	0.16	0.41	1.32	3.35
OS-X	1.20	0.02	0.90	0.96	1.18	0.08	0.35	0.09	0.36	0.11	0.43
OS-W	0.45	0.11	0.90	0.96	0.34	0.08	0.35	0.28	0.50	0.13	0.22
PR-1	0.07	0.00	0.90	0.96	0.07	0.08	0.35	0.08	0.35	0.01	0.02
PR-2	0.13	0.00	0.90	0.96	0.13	0.08	0.35	0.08	0.35	0.01	0.05
PR-3A	1.10	1.10	0.90	0.96	0.00	0.08	0.35	0.90	0.96	0.99	1.05
PR-3B	1.11	1.11	0.90	0.96	0.00	0.08	0.35	0.90	0.96	1.00	1.06
PR-3C	0.96	0.96	0.90	0.96	0.00	0.08	0.35	0.90	0.96	0.86	0.92
PR-3D	0.97	0.97	0.90	0.96	0.00	0.08	0.35	0.90	0.96	0.87	0.93
PR-3E	1.01	1.01	0.90	0.96	0.00	0.08	0.35	0.90	0.96	0.91	0.97
PR-4	3.66	2.38	0.90	0.96	1.28	0.08	0.35	0.61	0.75	2.24	2.73
PR-5	0.56	0.01	0.90	0.96	0.55	0.08	0.35	0.09	0.36	0.05	0.20
PR-6	6.64	0.66	0.90	0.96	5.98	0.08	0.35	0.16	0.41	1.07	2.73
PR- 7	0.34	0.01	0.90	0.96	0.33	0.08	0.35	0.10	0.37	0.04	0.13
PR-8	0.30	0.01	0.90	0.96	0.29	0.08	0.35	0.11	0.37	0.03	0.11
PR-9	0.59	0.01	0.90	0.96	0.58	0.08	0.35	0.09	0.36	0.06	0.21
PR-10A	0.06	0.00	0.90	0.96	0.06	0.08	0.35	0.08	0.35	0.00	0.02
PR-10B	0.03	0.00	0.90	0.96	0.03	0.08	0.35	0.08	0.35	0.00	0.01
PR-10C	0.04	0.00	0.90	0.96	0.04	0.08	0.35	0.08	0.35	0.00	0.01
PR-10D	0.04	0.00	0.90	0.96	0.04	0.08	0.35	0.08	0.35	0.00	0.02
PR-10E	0.09	0.00	0.90	0.96	0.09	0.08	0.35	0.08	0.35	0.01	0.03
PR-10F	0.04	0.00	0.90	0.96	0.04	0.08	0.35	0.08	0.35	0.00	0.01
PR-10G	0.05	0.00	0.90	0.96	0.05	0.08	0.35	0.08	0.35	0.00	0.02
PR-10H	0.06	0.00	0.90	0.96	0.06	0.08	0.35	0.08	0.35	0.00	0.02
Total	33.97	11.07								Calc:	DLF
										Date:	11/8/2024
										Checked:	JS

PLATTE SELF STORAGE RUNOFF SUMMARY

PROPOSED

	AREA	WEIGI	HTED		OVER	LAND		STRE	EET / CH	ANNEL F	LOW	T_{C}	INTEN	VSITY	TOTAL	FLOWS
BASIN	TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T _t	Length	Slope	Velocity	T_t	TOTAL	I ₅	I ₁₀₀	Q_5	Q_{100}
	(Acres)	* For Calcs See .	Runoff Summary	C ₅	(ft)	(ft/ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS-ZA	0.44	0.33	0.53	0.33	300	0.02	19.3	230	2.0%	1.4	2.7	22.0	2.9	4.9	0.4	1.1
OS-ZB	0.22	0.33	0.53	0.33	300	0.02	19.3	231	2.0%	1.4	2.7	22.0	2.9	4.9	0.2	0.6
OS-ZC	0.23	0.33	0.53	0.33	300	0.02	19.3	232	2.0%	1.4	2.7	22.0	2.9	4.9	0.2	0.6
OS-ZD	0.86	0.33	0.53	0.33	300	0.02	19.3	233	2.0%	1.4	2.7	22.0	2.9	4.9	0.8	2.3
OS-ZE	1.94	0.33	0.53	0.33	300	0.02	19.3	234	2.0%	1.4	2.8	22.0	2.9	4.9	1.9	5.1
OS-ZF	0.56	0.33	0.53	0.33	300	0.02	19.3	235	2.0%	1.4	2.8	22.0	2.9	4.9	0.5	1.5
OS-ZG	0.85	0.33	0.53	0.33	300	0.02	19.3	236	2.0%	1.4	2.8	22.0	2.9	4.9	0.8	2.3
OS-ZH	1.24	0.33	0.53	0.33	300	0.02	19.3	237	2.0%	1.4	2.8	22.0	2.9	4.9	1.2	3.3
OS-Y	8.15	0.16	0.41	0.16	300	0.03	20.4	505	3.0%	1.7	4.9	25.3	2.7	4.6	3.6	15.4
OS-X	1.20	0.09	0.36	0.09	300	0.05	18.5	0	5.0%	2.2	0.0	18.5	3.2	5.4	0.4	2.3
OS-W	0.45	0.28	0.50	0.28	300	0.07	13.5	160	7.0%	2.6	1.0	14.5	3.6	6.0	0.5	1.3
PR-1	0.07	0.08	0.35	0.08	100	0.08	9.3	0	8.0%	2.8	0.0	9.3	4.2	7.1	0.0	0.2
PR-2	0.13	0.08	0.35	0.08	45	0.25	4.3	0	25.0%	5.0	0.0	5.0	5.2	8.7	0.1	0.4
PR-3A	1.10	0.90	0.96	0.90	100	0.02	2.9	450	2.0%	2.8	2.7	5.5	5.0	8.4	5.0	8.9
PR-3B	1.11	0.90	0.96	0.90	100	0.02	2.9	451	2.0%	2.8	2.7	5.5	5.0	8.4	5.0	8.9
PR-3C	0.96	0.90	0.96	0.90	100	0.02	2.9	452	2.0%	2.8	2.7	5.5	5.0	8.4	4.3	7.8
PR-3D	0.97	0.90	0.96	0.90	100	0.02	2.9	453	2.0%	2.8	2.7	5.5	5.0	8.4	4.4	7.8
PR-3E	1.01	0.90	0.96	0.90	100	0.02	2.9	454	2.0%	2.8	2.7	5.5	5.0	8.4	4.5	8.1
PR-4	3.66	0.61	0.75	0.61	100	0.02	7.0	400	2.0%	1.0	6.7	13.7	3.7	6.1	8.2	16.8
PR-5	0.56	0.09	0.36	0.09	300	0.02	25.0	0	2.0%	1.0	0.0	25.0	2.8	4.6	0.1	0.9
PR-6	6.64	0.16	0.41	0.16	300	0.02	23.3	0	2.0%	1.0	0.0	23.3	2.9	4.8	3.1	13.1
PR-7	0.34	0.10	0.37	0.10	25	0.33	2.8	0	33.0%	4.0	0.0	5.0	5.2	8.7	0.2	1.1
PR-8	0.30	0.11	0.37	0.11	35	0.33	3.3	0	33.0%	4.0	0.0	5.0	5.2	8.7	0.2	1.0
PR-9	0.59	0.09	0.36	0.09	100	0.06	10.1	0	6.0%	1.7	0.0	10.1	4.1	6.9	0.2	1.5
PR-10A	0.06	0.08	0.35	0.08	100	0.06	10.2	1	1.0%	1.7	0.0	10.2	4.1	6.9	0.0	0.1
PR-10B	0.03	0.08	0.35	0.08	100	0.06	10.2	2	1.0%	1.7	0.0	10.2	4.1	6.9	0.0	0.1
PR-10C	0.04	0.08	0.35	0.08	100	0.06	10.2	3	1.0%	1.7	0.0	10.2	4.1	6.9	0.0	0.1
PR-10D	0.04	0.08	0.35	0.08	100	0.06	10.2	4	1.0%	1.7	0.0	10.2	4.1	6.9	0.0	0.1
PR-10E	0.09	0.08	0.35	0.08	100	0.06	10.2	5	1.0%	1.7	0.0	10.2	4.1	6.9	0.0	0.2
PR-10F	0.04	0.08	0.35	0.08	100	0.06	10.2	6	1.0%	1.7	0.1	10.3	4.1	6.9	0.0	0.1
PR-10G	0.05	0.08	0.35	0.08	100	0.06	10.2	7	1.0%	1.7	0.1	10.3	4.1	6.9	0.0	0.1
PR-10H	0.06	0.08	0.35	0.08	100	0.06	10.2	8	1.0%	1.7	0.1	10.3	4.1	6.9	0.0	0.1
																DIE

Calc: DLF
Date: 11/8/2024
Checked: JS

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

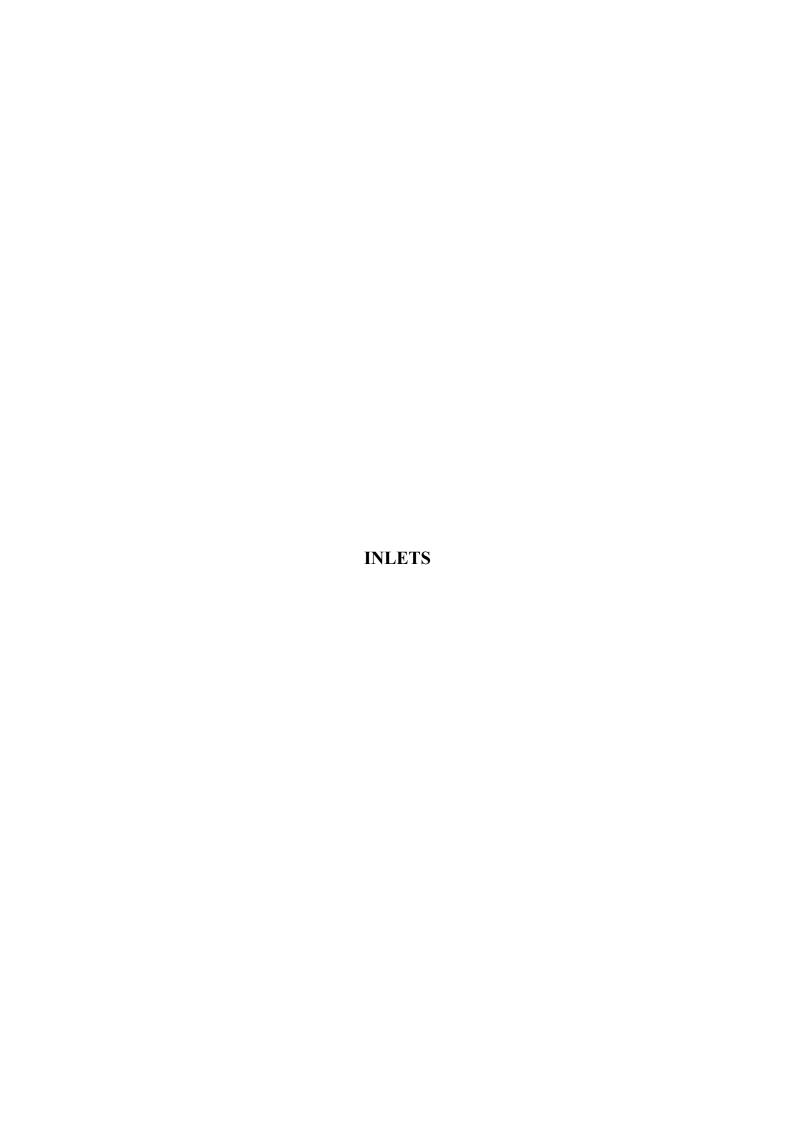
PROPOSED

Design Point(s)	Contributing Basins	Area	Flow (cfs)			
1 om(s)	Busins	(ac)	Q ₅	Q 100		
1	PR-1	0.07	0.0	0.2		
2	PR-2	0.13	0.1	0.4		
<i>3A</i>	PR-3A	1.10	5.0	8.9		
3B	PR-3B & PR 3A FLOW BY	1.11	7.5	14.4		
3C	PR-3C & PR 3B FLOW BY	0.96	8.4	17.2		
3D	PR-3D & PR 3C FLOW BY	0.97	8.6	18.9		
<i>3E</i>	PR-3E & PR 3D FLOW BY	1.01	9.0	20.6		
4	PR-4 & DP Y	11.81	11.8	32.2		
5	PR-5 & DP X	1.76	0.5	3.3		
6	PR-6 & PR#1	7.74	44.9	105.2		
7	PR-7	0.34	0.2	1.1		
8	PR-8	0.30	0.2	1.0		
9	PR-9	0.59	0.2	1.5		
10A	PR-10A & OS-ZA	0.49	0.4	1.3		
10B	PR-10B & DP ZB	0.25	0.2	0.6		
10C	PR-10C & DP ZC	0.27	0.2	0.7		
10D	PR-10D & DP ZD	0.90	0.8	2.4		
10E	PR-10E & DP ZE	2.03	1.9	5.3		
10F	PR-10F & DP ZF	0.60	0.6	1.6		
10G	PR-10G & DP ZG	0.90	0.8	2.4		
10H	PR-10H & DP ZH	1.30	1.2	3.4		
W	OS-W, DP 1 & DP 2	0.65	0.5	1.9		
X	OS-X	1.20	0.4	2.3		
Y	OS-Y	8.15	3.6	15.4		

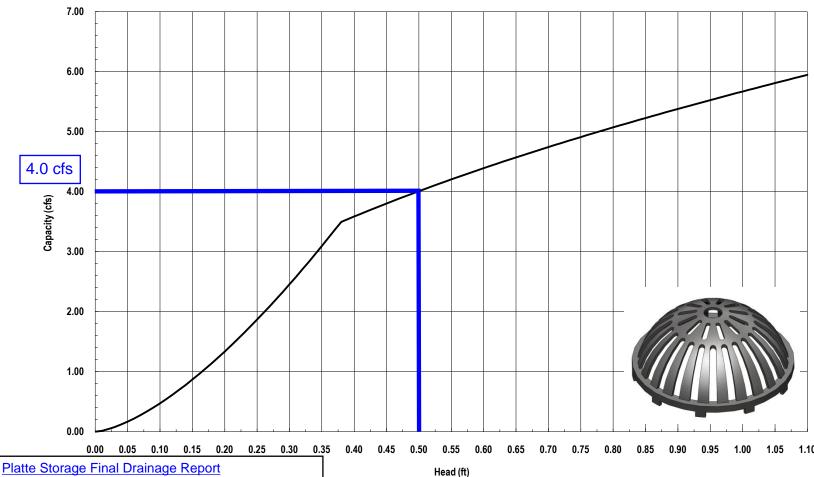
Calc: DLF
Date: 11/8/2024
Checked: JS

PLATTE SELF STORAGE PIPE ROUTING SUMMARY

Pipe	Inlet #	Contributing	5 Year	100 Year	Slope	Pipe Size	Owner
Run		Flow Sources	Flow (cfs)	Flow (cfs)	-	& Type	
<i>PR</i> #1	-	PR#2	41.2	91.4	2.7%	48" RCP	PVT
<i>PR</i> #2	-	PR#3	41.2	91.4	2.2%	48" RCP	PVT
PR#3	#1	DP 3E & PR#4	41.2	91.4	2.2%	42" RCP	PVT
<i>PR</i> #4	#2	PR#5	32.4	71.2	1.7%	42" RCP	PVT
PR#5	#3	PR#6 & PR#11	32.4	71.2	2.1%	42" RCP	PVT
PR#6	# 4	DP 3D & PR#7	20.6	39.0	5.0%	30" RCP	PVT
PR #7	#5	DP 3C & PR#8	16.5	32.7	1.9%	30" RCP	PVT
PR#8	#6	DP 3B & PR#9	12.5	26.7	1.9%	30" RCP	PVT
<i>PR</i> #9	# <i>7</i>	DP3A & PR#13	8.7	21.1	1.9%	24" RCP	PVT
PR#10	#10	PR#13	6.2	17.7	1.7%	24" RCP	PVT
PR#11	#8	PR#12	11.8	32.2	1.0%	36" RCP	PVT
PR#12	#9	DP 4	11.8	32.2	1.0%	36" RCP	PVT
PR#13	#11	DP 10E & PR#17 & 20	6.2	17.7	1.0%	24" RCP	PVT
PR#14	#12	DP 10A	0.4	1.3	1.0%	12" HDPE	PVT
PR#15	#13	DP 10B & PR#14	0.7	1.9	1.0%	15" HDPE	PVT
PR#16	#14	DP 10C & PR#15	0.9	2.6	1.0%	15" HDPE	PVT
PR#17	#15	DP 10D & PR#16	1.7	5.0	1.0%	18" HDPE	PVT
PR#18	#16	DP 10H	1.2	3.4	1.0%	12" HDPE	PVT
PR#19	# <i>17</i>	DP 10G & PR#18	2.0	5.8	1.0%	15" HDPE	PVT
PR#20	#18	DP 10F & PR#19	2.6	7.4	1.0%	15" HDPE	PVT
PR#90	-	Pond outlet	0.5	11.3	1.4%	18" HDPE	PVT


Calc: DLF
Date: 11/8/2024
Checked: JS

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY


Water Quality Treatment Summary Table

water Quality Treatment Summary Table							
Basin ID	Total Area	Total Proposed Disturbed Area	Area Trib to Pond 1	Disturbed Area Treated via Runoff Reduction	Disturbed Area Excluded from WQ per ECM App 1.7.1.C.1	Disturbed Area Excluded from WQ per ECM App I.7.1.B.#	Applicable WQ Exclusions (App I.7.1.B.#)
	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	
OS-ZA	0.44	-	0.44	-	-	-	-
OS-ZB	0.22	-	0.22	-	-	-	-
OS-ZC	0.23	-	0.23	-	-	-	-
OS-ZD	0.86	-	0.86	-	-	-	-
OS-ZE	1.94	-	1.94	-	-	-	-
OS-ZF	0.56	-	0.56	-	-	-	-
OS-ZG	0.85	-	0.85	-	-	-	-
OS-ZH	1.24	-	1.24	-	-	-	-
OS-Y	8.15	-	8.15	-	-	-	-
OS-X	1.20	-	-	-	-	-	-
OS-W	0.45	0.45	-	-	0.45	-	-
PR-1	0.07	0.07	-	-	-	0.07	I.7.1.B.7
PR-2	0.13	0.13	-	-	-	0.13	I.7.1.B.7
PR-3A	1.10	1.10	1.10	-	-	-	-
PR-3B	1.11	1.11	1.11	-	-	-	-
PR-3C	0.96	0.96	0.96	-	-	-	-
PR-3D	0.97	0.97	0.97	-	-	-	-
PR-3E	1.01	1.01	1.01	-	-	-	-
PR-4	3.66	3.66	3.66	-	-	-	-
PR-5	0.56	0.56	-	-	0.55	0.01	I.7.1.B.7
PR-6	6.64	6.64	6.64	-	-	-	-
PR- 7	0.34	0.34	-	-	-	0.34	I.7.1.B.7
PR-8	0.30	0.30	-	=	-	0.30	I.7.1.B.7
PR-9	0.59	0.59	-	=	-	0.59	I.7.1.B.7
PR-10A	0.06	0.06	0.06	=	-	-	-
PR-10B	0.03	0.03	0.03	-	-	-	-
PR-10C	0.04	0.04	0.04	-	-	-	-
PR-10D	0.04	0.04	0.04	-	-	-	-
PR-10E	0.09	0.09	0.09	-	-	-	-
PR-10F	0.04	0.04	0.04	-	-	-	-
PR-10G	0.05	0.05	0.05	-	-	-	-
PR-10H	0.06	0.06	0.06	-	-	-	-
		TOTALS	30.33		1.00	1.44	
		B TO POND IN				Calc:	DLF
		5, PR-9 & OS-X	2.35			Date:	11/8/2024
AREA TR	IB FOR I	POND DESIGN	32.68			Checked:	JS

Nyloplast 18" Dome Grate Inlet Capacity Chart

Platte Storage Final Drainage Report
DP 10A Inlet #12: Q5=0.4 cfs; Q100=1.3 cfs
DP 10B Inlet #13: Q5=0.2 cfs; Q100=0.6 cfs
DP 10C Inlet #14: Q5=0.2 cfs; Q100=0.7cfs
DP 10D Inlet #15: Q5=0.8 cfs; Q100=2.4 cfs
DP 10F Inlet #18: Q5=0.6 cfs; Q100=1.6 cfs
DP 10G Inlet #17: Q5=0.8 cfs; Q100=2.4 cfs
DP 10H Inlet #16: Q5=1.2 cfs; Q100=3.4 cfs
Inlet capacity=4.0 cfs
Thus, each inlet has sufficient capacity.

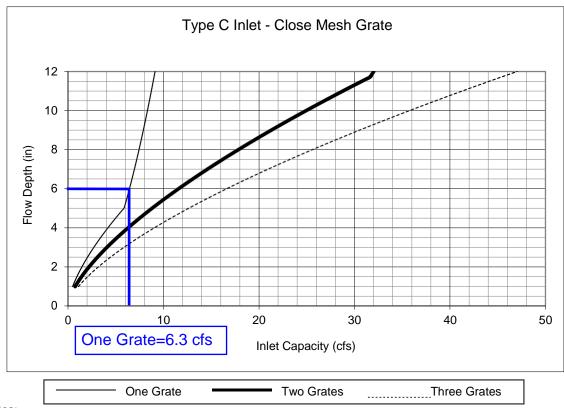

3130 Verona Avenue • Buford, GA 30518 (866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490 © Nyloplast Inlet Capacity Charts June 2012 Chapter 8 Inlets

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Platte Storage Final Drainage Report

DP 10E Inlet #11: Q5=1.9 cfs; Q100=5.3 cfs Single-grate inlet capacity=6.3 cfs

Thus, inlet has sufficient capacity.

Notes:

1. The standard inlet parameters must apply to use these charts.

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP 3A Inlet #7	<u>DP 3B Inlet #6</u>	<u>DP 3C Inlet #5</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale
Inlet Type	User-Defined	User-Defined	User-Defined
SER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	5.0	7.5	8.0
Major Q _{Known} (cfs)	8.9	14.4	16.6
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstre	am (left) to downstream (right) in order t	for bypass flows to be linked.
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Percent Impervious NRCS Soil Type			
Watershed Profile Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P_1 (inches)			
One-riodi Frecipitation, F ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
ALCULATED OUTPUT			

Minor Total Design Peak Flow, Q (cfs)	5.0	7.5	8.0
Major Total Design Peak Flow, Q (cfs)	8.9	14.4	16.6
Minor Flow Bypassed Downstream, Qb (cfs)	2.5	3.6	4.0
Major Flow Bypassed Downstream, Q _b (cfs)	5.4	8.8	10.6

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP 3D Inlet #4	<u>DP 3E Inlet #1</u>	DP 10E Inlet #11
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	STREET	AREA
Hydraulic Condition	Swale	In Sump	Swale
Inlet Type	User-Defined	CDOT Type R Curb Opening	CDOT Type C
SER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	8.4	8.8	1.9
Major Q _{Known} (cfs)	18.4	20.2	5.3
Bypass (Carry-Over) Flow from Upstream			
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres)			
Watershed Characteristics Subcatchment Area (acres)			
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft)			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft)			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)			
Subcatchment Area (acres) Percent Impervious			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) Major Storm Rainfall Input			
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)			

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	8.4	8.8	1.9
Major Total Design Peak Flow, Q (cfs)	18.4	20.2	5.3
Minor Flow Bypassed Downstream, Q _b (cfs)	4.3	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	12.0	N/A	0.0

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP 4 Inlet #9
Site Type (Urban or Rural)	URBAN
Inlet Application (Street or Area)	STREET
Hydraulic Condition	In Sump
Inlet Type	CDOT Type R Curb Opening

USER-DEFINED INPUT

11.8
32.2

Receive Bypass Flow from:	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0

Watershed Characteristics

Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	

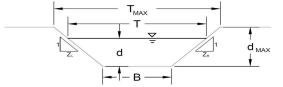
Watershed Profile

Trateroneur rome	
Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

Major Storm Rainfall Input


Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	11.8
Major Total Design Peak Flow, Q (cfs)	32.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A

A, B, C, D, or E =

DP 3A Inlet #7

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Slope
Channel Ch

 Check one of the following soil types:

 Soil Type:
 Max. Velocity (V_{MAX})
 Max Froude No. (F_{MAX})

 Non-Cohesive
 5.0 fps
 0.60

 Cohesive
 7.0 fps
 0.80

 Paved
 N/A
 N/A

Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.013 ft/ft So = 0.0200 B = 0.00 Z1 = 24.00 ft/ft Z2 = 24.00 ft/ft Choose One: Non-Cohesive Cohesive C Paved

Minor Storm

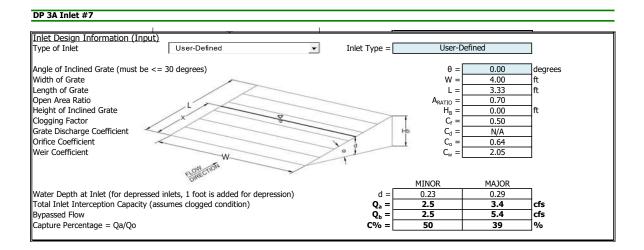
 Minor Storm
 Major Storm

 T_{MAX} =
 40.00
 40.00
 ft

 d_{MAX} =
 0.50
 0.50
 ft

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth a_{llow} = 38.6 38.6 cfs _{a_{llow}} = 0.50 0.50 ft

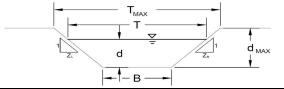

Major Storm

Q_o = 5.0 8.9 cfs d = 0.23 0.29 ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet_v5.03, DP 3A Inlet #7 1/13/2025, 2:18 PM

MHFD-Inlet, Version 5.03 (August 2023) AREA INLET IN A SWALE


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

MHFD-Inlet was only used for the sizing of the inlet so the froude number and velocities in these calculations do not affect the design. Manning's open channel flow calculations were used to size the swales and they are included elsewhere in the report.

1/13/2025, 2:18 PM MHFD-Inlet_v5.03, DP 3A Inlet #7

A, B, C, D, or E =

DP 3B Inlet #6

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe

 Check one of the following soil types:

 Soil Type:
 Max. Velocity (V_{MAX})
 Max Froude No. (F_{MAX})

 Non-Cohesive
 5.0 fps
 0.60

 Cohesive
 7.0 fps
 0.80

 Paved
 N/A
 N/A

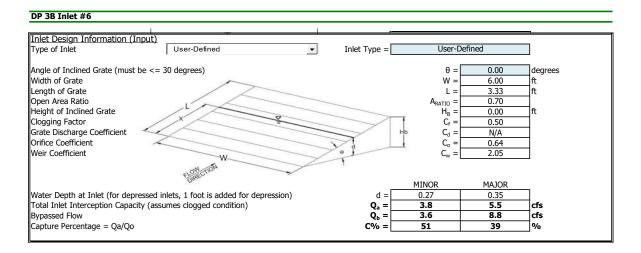
Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.013 ft/ft So = 0.0200 B = 0.00 Z1 = 24.00 ft/ft Z2 = 24.00 ft/ft Choose One: Non-Cohesive Cohesive C Paved

 Minor Storm
 Major Storm

 T_{MAX} =
 40.00
 40.00
 ft

 d_{MAX} =
 0.50
 0.50
 ft

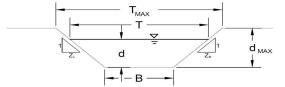

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth $\begin{array}{c|cccc} & \text{Minor Storm} & \text{Major Storm} \\ \mathbf{Q}_{\text{allow}} = & \mathbf{38.6} & \mathbf{38.6} & \mathbf{cfs} \\ \mathbf{d}_{\text{allow}} = & \mathbf{0.50} & \mathbf{0.50} & \mathbf{ft} \end{array}$

Q_o = 7.5 14.4 cfs d = 0.27 0.35 ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet_v5.03, DP 3B Inlet #6 1/13/2025, 2:18 PM


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

MHFD-Inlet was only used for the sizing of the inlet so the froude number and velocities in these calculations do not affect the design. Manning's open channel flow calculations were used to size the swales and they are included elsewhere in the report.

MHFD-Inlet_v5.03, DP 3B Inlet #6 1/13/2025, 2:18 PM

A, B, C, D, or E =

DP 3C Inlet #5

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe

 Check one of the following soil types:

 Soil Type:
 Max. Velocity (V_{MAX})
 Max Froude No. (F_{MAX})

 Non-Cohesive
 5.0 fps
 0.60

 Cohesive
 7.0 fps
 0.80

 Paved
 N/A
 N/A

Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.013 ft/ft So = 0.0200 B = 0.00 Z1 = 24.00 ft/ft Z2 = 24.00 ft/ft Choose One: Non-Cohesive Cohesive C Paved

Minor Storm

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth
 Dallow =
 38.6
 38.6
 cfs

 I_{allow} =
 0.50
 0.50
 ft

Major Storm

Q_o = 8.0 16.6 cfs d = 0.28 0.36 ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet_v5.03, DP 3C Inlet #5 1/13/2025, 2:18 PM

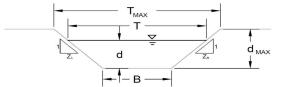
DP 3C Inlet #5 Inlet Design Information (Input) Type of Inlet User-Defined -Inlet Type = User-Defined Angle of Inclined Grate (must be <= 30 degrees) 0.00 degrees Width of Grate W = 6.00 Length of Grate L= 3.33 Open Area Ratio 0.70 A_{RATIO} = $H_B = C_f =$ Height of Inclined Grate 0.00 Clogging Factor Grate Discharge Coefficient C_d = N/A Orifice Coefficient Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) 0.28 0.36 Total Inlet Interception Capacity (assumes clogged condition) Q_a = 6.0 cfs 4.0 Bypassed Flow $Q_b =$ 4.0 10.6 cfs C% = % Capture Percentage = Qa/Qo 50 36

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

MHFD-Inlet was only used for the sizing of the inlet so the froude number and velocities in these calculations do not affect the design. Manning's open channel flow calculations were used to size the swales and they are included elsewhere in the report. Additionally, this design point is on a paved area.

MHFD-Inlet_v5.03, DP 3C Inlet #5 1/13/2025, 2:18 PM

A, B, C, D, or E =


So =

B =

Z1 =

Z2 =

DP 3D Inlet #4

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

ft/ft

ft/ft

ft/ft

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe
Check one of the following soil types:

 Check one of the following soil types:

 Soil Type:
 Max. Velocity (V_{MAX})
 Max Froude No. (F_{MAX})

 Non-Cohesive
 5.0 fps
 0.60

 Cohesive
 7.0 fps
 0.80

 Paved
 N/A
 N/A

Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.013

0.0200

0.00

24.00

24.00

Cohesive

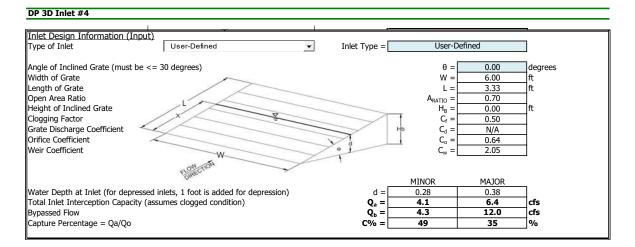
C Paved

Non-Cohesive

Choose One:

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth
 Minor Storm
 Major Storm


 Qallow =
 38.6
 38.6
 cfs

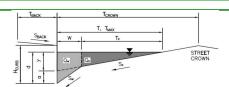
 dallow =
 0.50
 0.50
 ft

Q_o = 8.4 18.4 cfs d = 0.28 0.38 ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet_v5.03, DP 3D Inlet #4 1/13/2025, 2:18 PM

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.


MHFD-Inlet was only used for the sizing of the inlet so the froude number and velocities in these calculations do not affect the design. Manning's open channel flow calculations were used to size the swales and they are included elsewhere in the report. Additionally, this design point is on a paved area.

MHFD-Inlet_v5.03, DP 3D Inlet #4 1/13/2025, 2:18 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: DP 3E Inlet #1

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb

Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

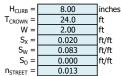
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown

Gutter Width

Street Transverse Slope

Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)

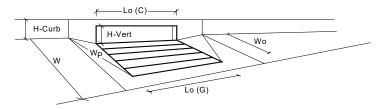
Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)


Max. Allowable Spread for Minor & Major Storm

Max. Allowable Depth at Gutter Flowline for Minor & Major Storm

Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition


0.0 ft/ft $S_{BACK} =$ 0.000 $n_{BACK} =$ 0.012

	Minor Storm	Major Storm	
$T_{MAX} =$	24.0	24.0	ft
$d_{MAX} =$	7.8	7.8	inches
			_

	Minor Storm	Major Storm	_
$Q_{allow} =$	SUMP	SUMP	cfs

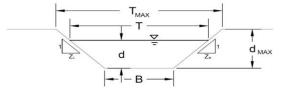
INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	1.00	1.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	7.3	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o = [$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} = [$	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) = $	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) = [$	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) = $	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) = $	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∏ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.44	0.44	drt drt
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.86	0.86	†
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	1
	23mbildeon [,	,	_
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	20.6	20.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	8.8	20.2	cfs

1

A, B, C, D, or E =

So =


B =

Z1 =

Z2 =

d_{MAX} =

DP 10E Inlet #11

This worksheet uses the NRCS vegetal retardance method to determine Manning's n for grass-lined channels.

An override Manning's n can be entered for other channel materials.

ft/ft

ft/ft

ft/ft

0.60

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe

 Check one of the following soil types:

 Soil Type:
 Max. Velocity (V_{MAX})
 Max Froude No. (F_{MAX})

 Non-Cohesive
 5.0 fps
 0.60

 Cohesive
 7.0 fps
 0.80

 Paved
 N/A
 N/A

Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.60

Non-Cohesive

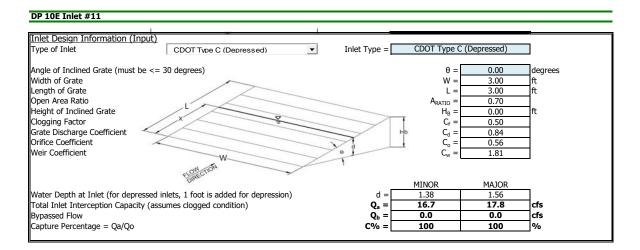
0.035

0.0200

0.00

3.00

10.00

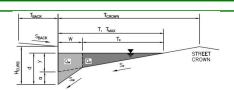

Choose One

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth $\begin{aligned} & & & & & & & & & & & & & & \\ \mathbf{Q}_{allow} &= & & & & & & & & & \\ \mathbf{d}_{allow} &= & & & & & & & & \\ \mathbf{0}.60 & & & & & & & & \\ \end{bmatrix} & & & & & & & & \\ \mathbf{M}ajor \ Storm & & & & \\ \mathbf{cfs} & & & & & \\ \mathbf{cfs} & & & & & \\ \mathbf{ft} & & & & & \\ \end{aligned}$

Q_o = 1.9 5.3 cfs d = 0.38 0.56 ft

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

MHFD-Inlet was only used for the sizing of the inlet so the froude number and velocities in these calculations do not affect the design. Manning's open channel flow calculations were used to size the swales and they are included elsewhere in the report.

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: DP 4 Inlet #9

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb

Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

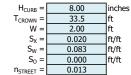
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown

Gutter Width

Street Transverse Slope

Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)

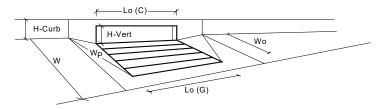
Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)


Max. Allowable Spread for Minor & Major Storm

Max. Allowable Depth at Gutter Flowline for Minor & Major Storm

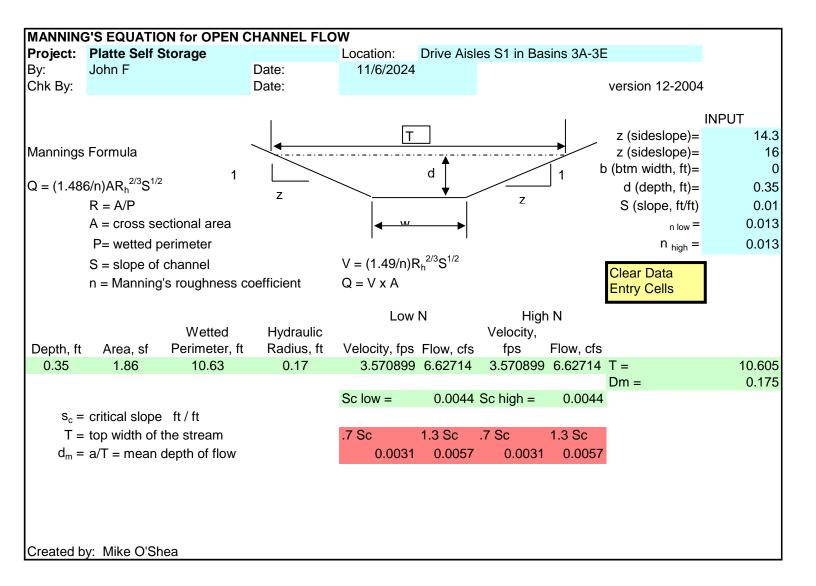
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition


0.0 ft/ft $S_{BACK} =$ 0.000 $n_{BACK} =$ 0.012

	Minor Storm	Major Storm	
$T_{MAX} =$	33.5	33.5	ft
$d_{MAX} =$	8.0	8.0	inches
			_

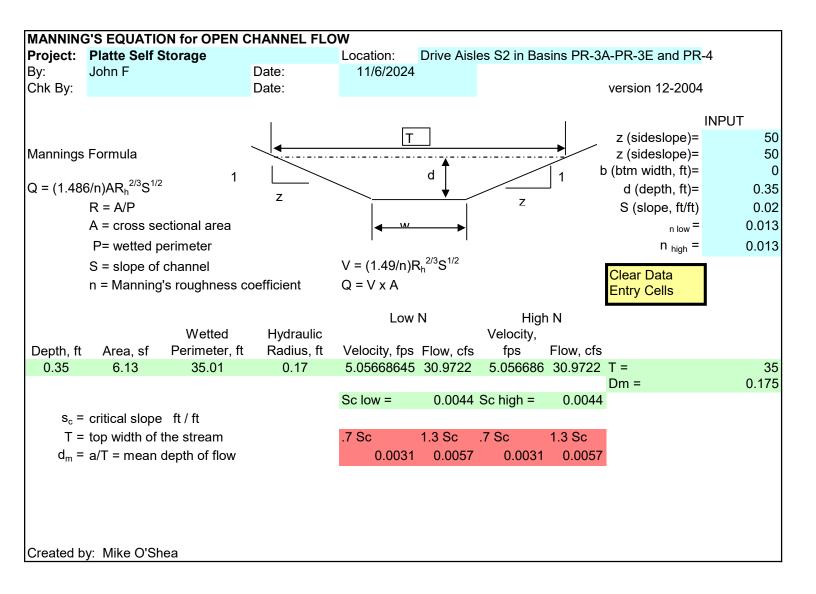
	Minor Storm	Major Storm	_
Q _{allow} =	SUMP	SUMP	cfs

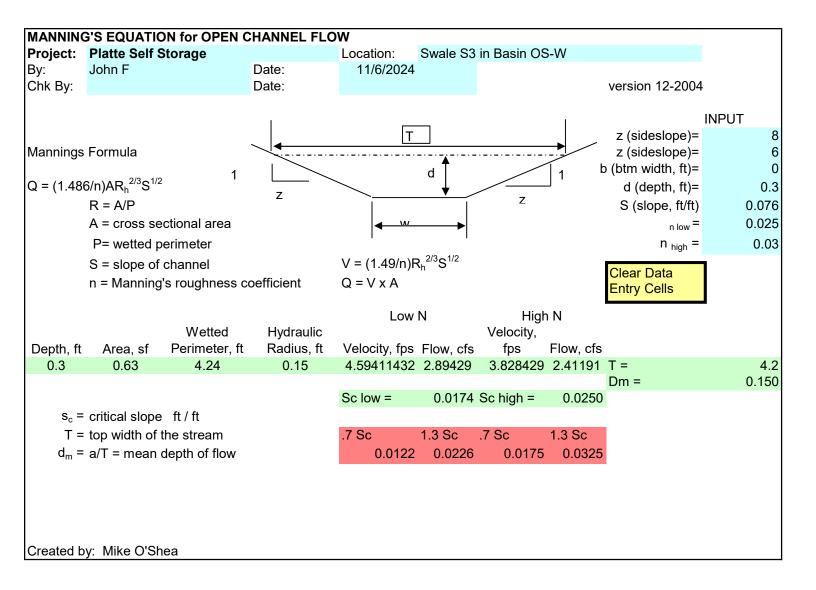

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

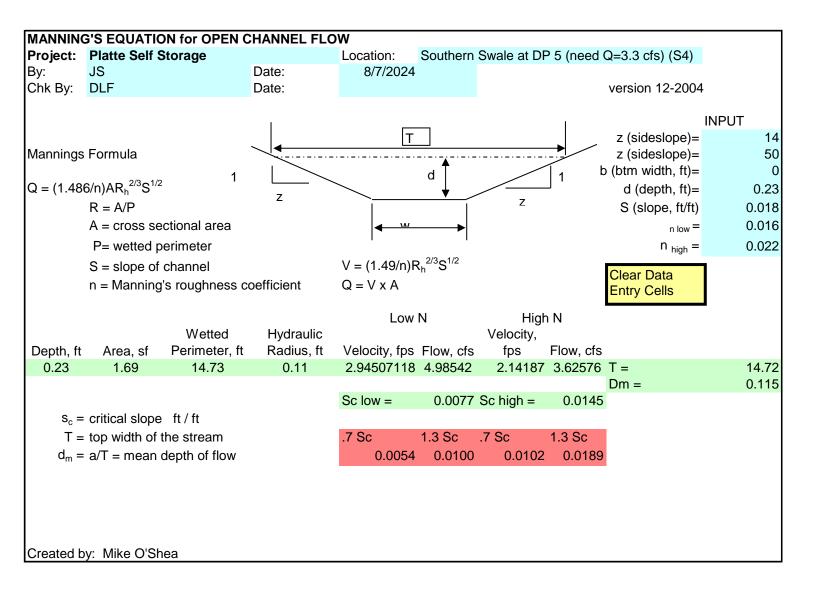
	MINOR	MAJOR	
Type =	CDOT Type R	Curb Opening	
a _{local} =	1.00	1.00	inches
No =	1	1	1
Ponding Depth =	8.0	8.0	inches
	MINOR	MAJOR	Override Depths
L ₀ (G) =	N/A	N/A	feet
$W_o = [$	N/A	N/A	feet
$A_{ratio} = [$	N/A	N/A	
$C_f(G) = [$		N/A	
$C_w(G) = [$	N/A	N/A	
$C_o(G) = [$	N/A	N/A	
	MINOR	MAJOR	
$L_{o}(C) = [$	30.00	30.00	feet
$H_{vert} = [$	6.00	6.00	inches
$H_{throat} = [$		6.00	inches
Theta =	63.40	63.40	degrees
$W_p = [$	2.00	2.00	feet
$C_f(C) =$	0.10	0.10	
$C_w(C) = [$	3.60	3.60	
$C_o(C) = $	0.67	0.67	
	MINOR	MAJOR	
d _{Grate} =	N/A	N/A	Tft .
	0.50	0.50	ft
	N/A	N/A	1
	0.89	0.89	1
RF _{Combination} =	N/A	N/A]
	MINOR	MAIOR	
0 =[cfs
Q PEAK REQUIRED =	11.8	32.2	cfs
	$\begin{aligned} a_{local} &= \\ No &= \\ No &= \\ Ponding Depth &= \\ \end{aligned} \\ L_{o} (G) &= \\ W_{o} &= \\ A_{ratio} &= \\ C_{r} (G) &= \\ C_{o} (G) &= \\ \end{aligned} \\ L_{o} (C) &= \\ H_{vert} &= \\ H_{threat} &= \\ H_{threat} &= \\ W_{o} &= \\ C_{r} (C) &= \\ C_{w} (C) &= \\ C_{o} (C) &= \\ \end{aligned} \\ d_{Grate} &= \\ d_{curb} &= \\ RF_{Grate} &= \\ RF_{Curb} &= \\ RF_{Curb} &= \\ RF_{Curb} &= \\ \end{aligned}$		

1

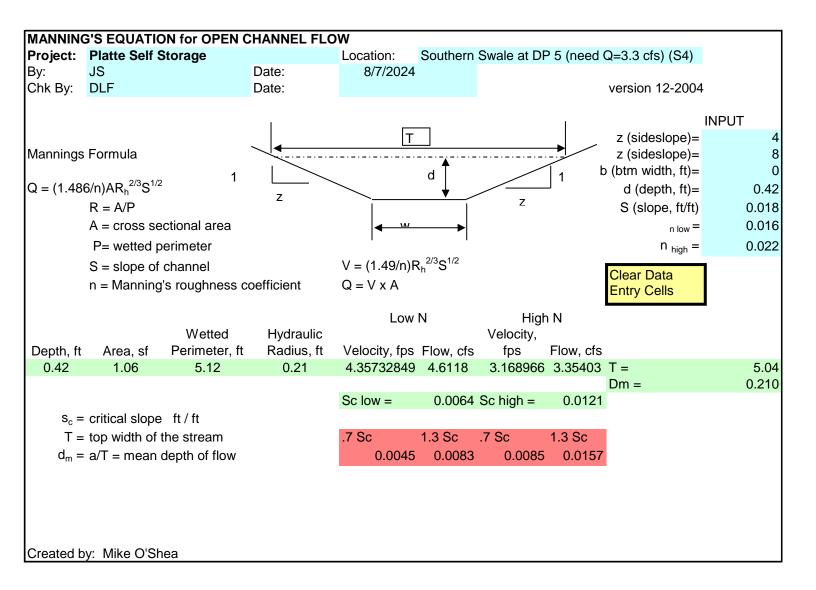
Basins 3A thru 3E flow is split between north of and south of Design Points 3A thru 3E.

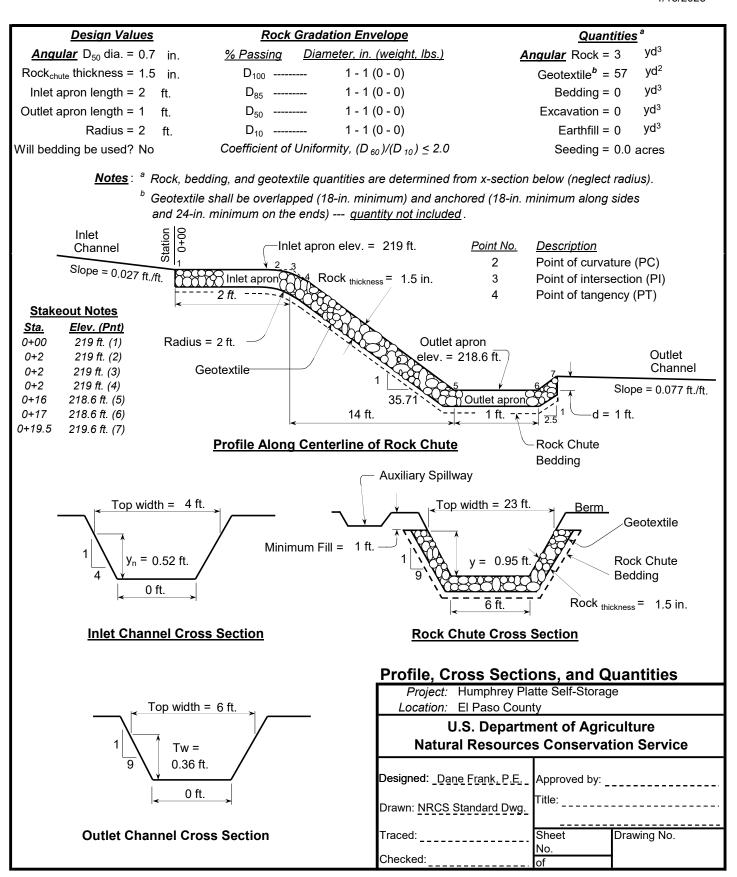

Basin 3A Q100=8.9 cfs split =4.5 cfs < 6.63 cfs

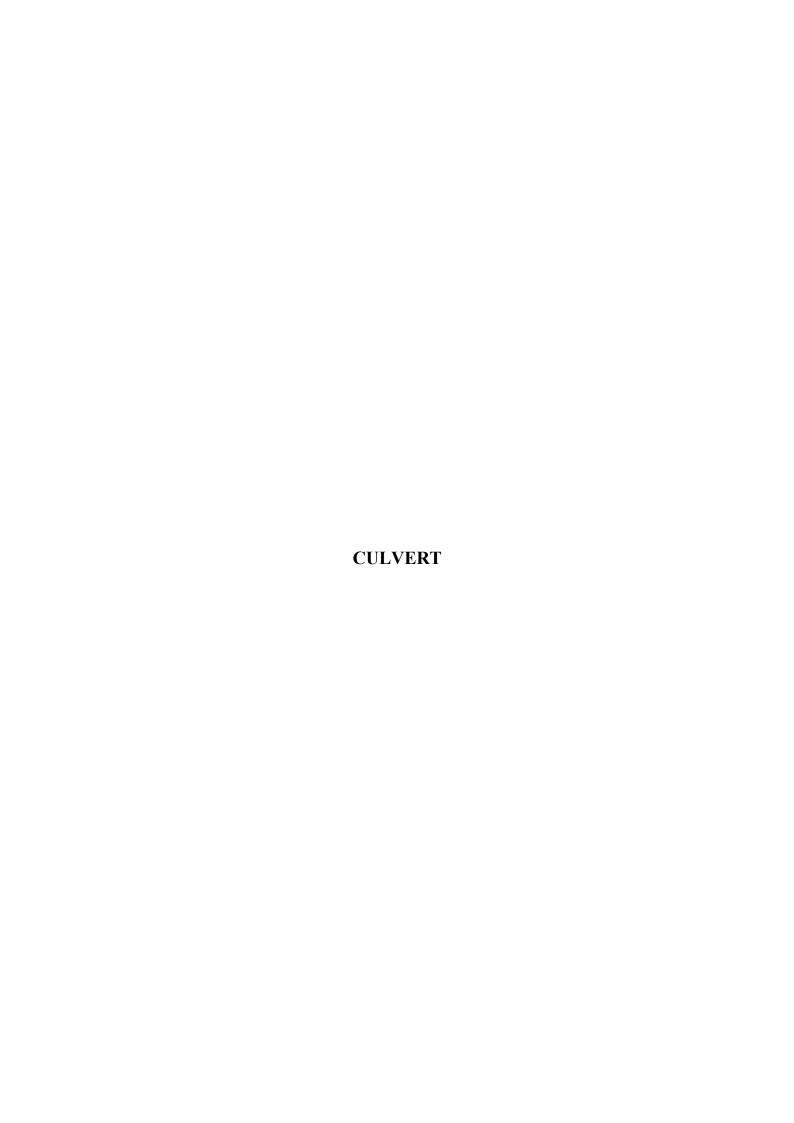

Basin 3B Q100=8.9 cfs split =4.5 cfs < 6.63 cfs


Basin 3C Q100=7.8 cfs split =3.9 cfs < 6.63 cfs

Basin 3D Q100=7.8 cfs split =3.9 cfs < 6.63 cfs

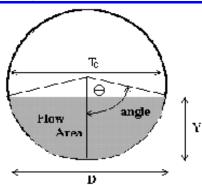

Basin 3E Q100=8.1 cfs split =4.1 cfs < 6.63 cfs




The swale at DP 5 needed two calculations. This is for the upstream (east) side of the swale.

The swale at DP 5 needed two calculations. This is for the downstream (west) side of the swale.

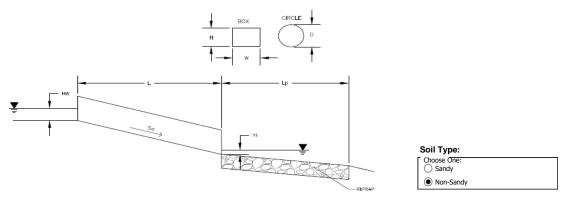
Rock_Chute.xls 1/13/2025



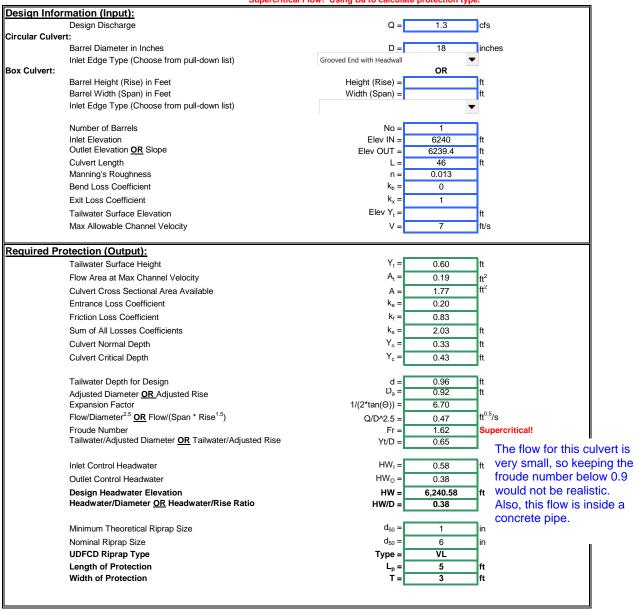
CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: Humprey Self Storage

Pipe ID: 18" RCP Culvert (Basin OS-W)


Design Information (Input) Pipe Invert Slope	So =	0.0130	ft/ft
Pipe Manning's n-value	n =	0.0130	10/10
Pipe Diameter	n = D =	18.00	inches
Design discharge	Q =	1.30	cfs
Design discharge	Q =	1.30	CIS
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	12.01	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>0.98</td><td>radians</td></theta<3.14)<>	Theta =	0.98	radians
Flow area	An =	0.29	sq ft
Top width	Tn =	1.25	ft
Wetted perimeter	Pn =	1.47	ft
Flow depth	Yn =	0.33	ft
Flow velocity	Vn =	4.45	fps
Discharge	Qn =	1.30	cfs
Percent Full Flow	Flow =	10.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.62	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.13</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.13	radians
Critical flow area	Ac =	0.41	sq ft
Critical top width	Tc=	1.35	ft
Critical flow depth	Yc=	0.43	ft
Critical flow velocity	Vc=	3.14	fps
Critical Depth Froude Number	Fr _c =	1.00	

241900 Drive Culvert, Pipe 1/15/2025, 9:49 AM


Determination of Culvert Headwater and Outlet Protection

Project: Humphrey Self Storage

Basin ID: 18" RCP Culvert (Basin OS-W)

Supercritical Flow! Using Da to calculate protection type.

11/7/24, 3:00 PM

Program:UDSEWER Math

Model Interface 2.1.1.4

Run Date: 11/7/2024 2:59:57 PM

UDSewer Results Summary

Project Title: 6001 E Platte Storage - 5 Year

Project Description: East System

5-YEAR

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.50 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6208.12

Manhole Input Summary:

		Giv	ven Flow	Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Kunoii	5yr Coefficient	Overland Length (ft)	I	1 1	Gutter Velocity (fps)
POND	6211.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH#1 & PR#1	6220.00	41.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

МТТ#2 0										
MH#2 & PR#2	6223.50	41.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#1 & PR#3	6233.50	41.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #2 & PR#4	6234.00	32.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #3 & PR#5	6234.40	32.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#8 & PR#11	6237.45	11.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#9 & PR#12	6236.85	11.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#4 & PR#6	6235.60	20.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#5 & PR#7	6236.80	16.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#6 & PR#8	6238.10	12.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#7 & PR#9	6239.30	8.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#10 & PR#10	6239.85	6.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #11 & PR#13	6250.50	6.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #18 & PR#20	6251.50	2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #17 & PR#19	6252.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #16 & PR#18	6252.50	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #15 & PR#17	6251.50	1.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #14 & PR#16	6252.00	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #13 & PR#15	6252.50	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #12 & PR#14	6253.00	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

Local Contribution	Total Design Flow	
Local Contribution	Total Design 11011	

Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
POND	0.00	0.00	0.00	0.00	0.00	5.96	6.92	0.15	41.20	
MH#1 & PR#1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.20	
MH#2 & PR#2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.20	
INLET#1 & PR#3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	41.20	
INLET #2 & PR#4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.40	
INLET #3 & PR#5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.40	
INLET#8 & PR#11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.80	
INLET#9 & PR#12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.80	
INLET#4 & PR#6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.60	
INLET#5 & PR#7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.50	
INLET#6 & PR#8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.50	
INLET#7 & PR#9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.70	
INLET#10 & PR#10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.20	
INLET #11 & PR#13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.20	
INLET #18 & PR#20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.60	
INLET #17 & PR#19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00	
INLET #16 & PR#18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.20	
INLET #15 & PR#17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.70	
INLET #14 & PR#16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90	
INLET #13 & PR#15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	
INLET #12 & PR#14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	

Sewer Input Summary:

			vation		Loss C	oeffici	ents	Given	Dimensio	ons
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH#1 & PR#1	29.50	6205.00	2.7	6205.80	0.013	0.03	0.00	CIRCULAR	48.00 in	48.00 in
MH#2 & PR#2	222.50	6211.11	2.2	6216.00	0.013	0.05	0.00	CIRCULAR	48.00 in	48.00 in
INLET#1 & PR#3	45.00	6216.81	2.2	6217.80	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #2 & PR#4	24.00	6225.49	1.7	6225.90	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in
INLET #3 & PR#5	7.00	6227.00	2.1	6227.15	0.013	0.05	0.00	CIRCULAR	42.00 in	42.00 in
INLET#8 & PR#11	352.00	6227.73	1.0	6231.25	0.013	1.00	0.25	CIRCULAR	36.00 in	36.00 in
INLET#9 & PR#12	31.00	6231.54	1.0	6231.85	0.013	1.00	0.00	CIRCULAR	36.00 in	36.00 in
INLET#4 & PR#6	47.00	6228.15	5.0	6230.50	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#5 & PR#7	57.00	6230.62	1.9	6231.70	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#6 & PR#8	62.00	6231.82	1.9	6233.00	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
INLET#7 & PR#9	57.00	6233.62	1.9	6234.70	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in
INLET#10 & PR#10	24.00	6234.99	1.7	6235.40	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in

							J			
INLET #11 & PR#13	32.00	6235.69	1.9	6236.30	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in
INLET #18 & PR#20	98.00	6246.72	1.0	6247.70	0.012	1.00	0.00	CIRCULAR	15.00 in	15.00 in
INLET #17 & PR#19	74.00	6247.86	1.0	6248.60	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #16 & PR#18	74.00	6248.76	1.0	6249.50	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in
INLET #15 & PR#17	98.00	6246.32	1.0	6247.30	0.012	1.00	0.00	CIRCULAR	18.00 in	18.00 in
INLET #14 & PR#16	74.00	6247.46	1.0	6248.20	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #13 & PR#15	74.00	6248.36	1.0	6249.10	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #12 & PR#14	74.00	6249.26	1.0	6250.00	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in

Sewer Flow Summary:

	1	l Flow pacity	Critic	cal Flow		Noi	rmal Flov	v			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH#1 & PR#1	236.67	18.83	23.00	6.92	13.55	14.14	2.77	Supercritical	41.20	0.00	
MH#2 & PR#2	213.63	17.00	23.00	6.92	14.29	13.14	2.50	Supercritical	41.20	0.00	
INLET#1 & PR#3	149.63	15.55	23.97	7.26	15.06	13.28	2.43	Supercritical	41.20	0.00	
INLET #2 & PR#4	131.53	13.67	21.14	6.68	14.20	11.32	2.15	Supercritical	32.40	0.00	
INLET #3 & PR#5	146.19	15.19	21.14	6.68	13.44	12.21	2.39	Supercritical	32.40	0.00	
INLET#8 & PR#11	66.88	9.46	13.08	5.09	10.24	7.13	1.61	Supercritical	11.80	0.00	
INLET#9 & PR#12	66.88	9.46	13.08	5.09	10.24	7.13	1.61	Supercritical	11.80	0.00	
INLET#4 & PR#6	91.96	18.73	18.50	6.49	9.65	15.10	3.48	Supercritical	20.60	0.00	
INLET#5 & PR#7	56.69	11.55	16.47	5.98	11.08	10.01	2.14	Supercritical	16.50	0.00	
INLET#6 & PR#8	56.69	11.55	14.24	5.44	9.57	9.27	2.15	Supercritical	12.50	0.00	
INLET#7 & PR#9	31.27	9.95	12.62	5.20	8.66	8.52	2.06	Supercritical	8.70	0.00	
INLET#10 & PR#10	29.58	9.41	10.57	4.65	7.46	7.45	1.96	Supercritical	6.20	0.00	

INLET #11 & PR#13	31.27	9.95	10.57	4.65	7.25	7.75	2.07	Supercritical	6.20	0.00	
INLET #18 & PR#20	7.02	5.72	7.75	4.06	6.32	5.29	1.48	Supercritical	2.60	0.00	
INLET #17 & PR#19	7.02	5.72	6.76	3.73	5.48	4.93	1.50	Supercritical	2.00	0.00	
INLET #16 & PR#18	3.87	4.93	5.54	3.38	4.59	4.35	1.44	Supercritical	1.20	0.00	
INLET #15 & PR#17	11.41	6.46	5.88	3.39	4.70	4.64	1.55	Supercritical	1.70	0.00	
INLET #14 & PR#16	7.02	5.72	4.47	2.94	3.63	3.93	1.50	Supercritical	0.90	0.00	
INLET #13 & PR#15	7.02	5.72	3.92	2.74	3.20	3.65	1.49	Supercritical	0.70	0.00	
INLET #12 & PR#14	3.87	4.93	3.14	2.45	2.61	3.18	1.44	Supercritical	0.40	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calcı	ılated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH#1 & PR#1	41.20	CIRCULAR	48.00 in	48.00 in	27.00 in	27.00 in	48.00 in	48.00 in	12.57	
MH#2 & PR#2	41.20	CIRCULAR	48.00 in	48.00 in	27.00 in	27.00 in	48.00 in	48.00 in	12.57	
INLET#1 & PR#3	41.20	CIRCULAR	42.00 in	42.00 in	27.00 in	27.00 in	42.00 in	42.00 in	9.62	
INLET #2 & PR#4	32.40	CIRCULAR	42.00 in	42.00 in	27.00 in	27.00 in	42.00 in	42.00 in	9.62	
INLET #3 & PR#5	32.40	CIRCULAR	42.00 in	42.00 in	24.00 in	24.00 in	42.00 in	42.00 in	9.62	
INLET#8 & PR#11	11.80	CIRCULAR	36.00 in	36.00 in	21.00 in	21.00 in	36.00 in	36.00 in	7.07	
INLET#9 & PR#12	11.80	CIRCULAR	36.00 in	36.00 in	21.00 in	21.00 in	36.00 in	36.00 in	7.07	
INLET#4 & PR#6	20.60	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
INLET#5 & PR#7	16.50	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
INLET#6 & PR#8	12.50	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
INLET#7 & PR#9	8.70	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	
INLET#10 & PR#10	6.20	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	
INLET #11 & PR#13	6.20	CIRCULAR	24.00 in	24.00 in	15.00 in	15.00 in	24.00 in	24.00 in	3.14	
INLET #18 & PR#20	2.60	CIRCULAR	15.00 in	15.00 in	12.00 in	12.00 in	15.00 in	15.00 in	1.23	
INLET #17 & PR#19	2.00	CIRCULAR	15.00 in	15.00 in	12.00 in	12.00 in	15.00 in	15.00 in	1.23	
INLET #16 & PR#18	1.20	CIRCULAR	12.00 in	12.00 in	9.00 in	9.00 in	12.00 in	12.00 in	0.79	
INLET #15 & PR#17	1.70	CIRCULAR	18.00 in	18.00 in	9.00 in	9.00 in	18.00 in	18.00 in	1.77	
INLET #14 & PR#16	0.90	CIRCULAR	15.00 in	15.00 in	9.00 in	9.00 in	15.00 in	15.00 in	1.23	
INLET #13 & PR#15	0.70	CIRCULAR	15.00 in	15.00 in	9.00 in	9.00 in	15.00 in	15.00 in	1.23	

| INLET #12 & PR#14 | 0.40 | CIRCULAR | 12.00 in | 12.00 in | 6.00 in | 12.00 in | 12.00 in | 12.00 in | 0.79 |

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6208.12

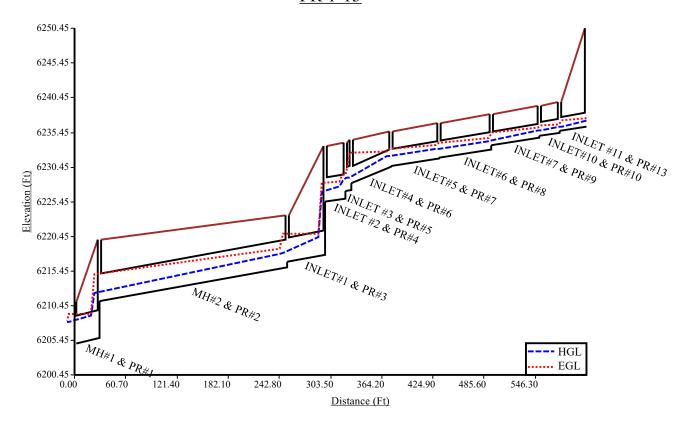
	Invert 1	Elev.	Ma	nstream inhole osses	HG	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH#1 & PR#1	6205.00	6205.80	0.00	0.00	6208.12	6209.01	6209.24	0.00	6209.24
MH#2 & PR#2	6211.11	6216.00	0.01	0.00	6212.30	6217.92	6214.98	3.69	6218.66
INLET#1 & PR#3	6216.81	6217.80	0.07	0.00	6218.24	6219.80	6220.16	0.45	6220.62
INLET #2 & PR#4	6225.49	6225.90	0.04	0.00	6226.88	6227.66	6228.18	0.18	6228.35
INLET #3 & PR#5	6227.00	6227.15	0.01	0.00	6228.12	6230.24	6230.44	0.00	6230.44
INLET#8 & PR#11	6227.73	6231.25	0.04	0.17	6230.60	6232.34	6230.65	2.09	6232.74
INLET#9 & PR#12	6231.54	6231.85	0.04	0.00	6232.39	6232.94	6233.18	0.16	6233.34
INLET#4 & PR#6	6228.15	6230.50	0.01	0.00	6230.25	6232.04	6232.50	0.20	6232.69
INLET#5 & PR#7	6230.62	6231.70	0.01	0.00	6232.05	6233.07	6233.10	0.53	6233.63
INLET#6 & PR#8	6231.82	6233.00	0.01	0.00	6233.08	6234.19	6233.95	0.69	6234.65
INLET#7 & PR#9	6233.62	6234.70	0.01	0.00	6234.34	6235.75	6235.47	0.70	6236.17
INLET#10 & PR#10	6234.99	6235.40	0.01	0.00	6235.76	6236.28	6236.48	0.14	6236.62
INLET #11 & PR#13	6235.69	6236.30	0.01	0.00	6236.30	6237.18	6237.23	0.29	6237.52
INLET #18 & PR#20	6246.72	6247.70	0.07	0.00	6247.25	6248.35	6247.68	0.92	6248.60
INLET #17 & PR#19	6247.86	6248.60	0.00	0.00	6248.35	6249.16	6248.69	0.69	6249.38
INLET #16 & PR#18	6248.76	6249.50	0.00	0.00	6249.17	6249.96	6249.44	0.70	6250.14

INLET #15 & PR#17	6246.32	6247.30	0.01	0.00	6246.71	6247.79	6247.04	0.92	6247.97
INLET #14 & PR#16	6247.46	6248.20	0.00	0.00	6247.79	6248.57	6248.00	0.70	6248.71
INLET #13 & PR#15	6248.36	6249.10	0.00	0.00	6248.63	6249.43	6248.83	0.71	6249.54
INLET #12 & PR#14	6249.26	6250.00	0.00	0.00	6249.48	6250.26	6249.63	0.72	6250.35

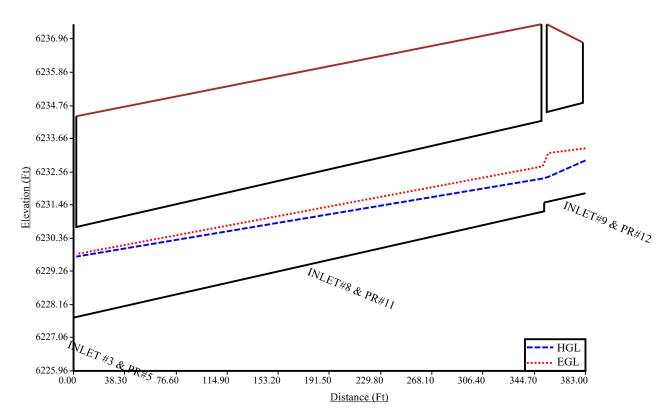
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_fi ^2 (2*g)$
- Lateral loss = $V_f \circ ^2/(2*g)$ Junction Loss K * $V_f \circ ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

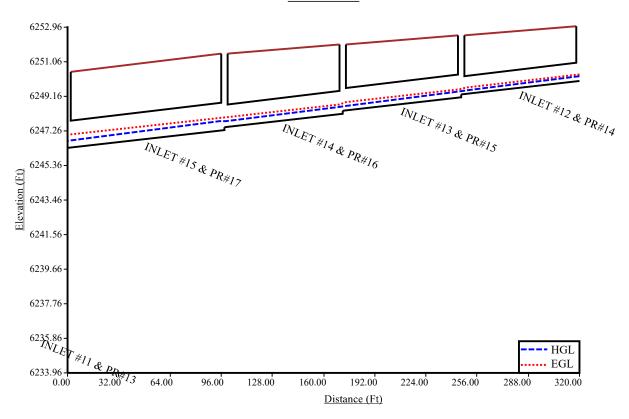
The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

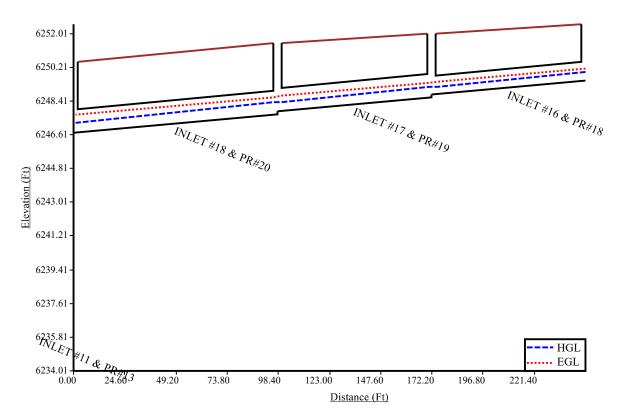

		Downstream Transh				Upstream						
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)		Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
MH#1 & PR#1	29.50	5.00	6.00	7.83	8.99	6.91	1.58	25.40	15.12	9.78	136.60	
MH#2 & PR#2	222.50	5.00	6.00	7.83	14.79	9.81	4.48	12.00	8.42	3.08	656.08	
INLET#1 & PR#3	45.00	4.50	6.00	7.25	10.88	7.57	2.82	28.90	16.58	11.83	246.24	
INLET #2 & PR#4	24.00	4.50	6.00	7.25	13.52	8.88	4.13	13.70	8.98	4.23	66.53	
INLET #3 & PR#5	7.00	4.50	6.00	7.25	11.49	7.87	3.12	12.00	8.13	3.38	16.35	
INLET#8 & PR#11	352.00	4.00	6.00	6.67	11.34	7.50	3.34	10.40	7.03	2.87	690.02	
INLET#9 & PR#12	31.00	4.00	6.00	6.67	9.82	6.74	2.58	8.00	5.83	1.67	49.82	
INLET#4 & PR#6	47.00	3.50	6.00	6.08	11.00	7.04	3.46	8.70	5.89	2.31	75.23	
INLET#5 & PR#7	57.00	3.50	6.00	6.08	8.47	5.77	2.19	8.70	5.89	2.31	78.22	
INLET#6 & PR#8	62.00	3.50	6.00	6.08	8.46	5.77	2.19	8.70	5.89	2.31	85.03	
INLET#7 & PR#9	57.00	3.00	4.00	5.50	7.97	5.07	2.23	8.20	5.18	2.35	63.03	
INLET#10 & PR#10	24.00	3.00	4.00	5.50	7.62	4.89	2.06	7.90	5.03	2.20	25.40	
INLET #11 & PR#13	32.00	3.00	4.00	5.50	7.32	4.74	1.91	27.40	14.78	11.95	135.18	
INLET #18 & PR#20	98.00	2.25	4.00	4.63	7.31	4.30	2.34	7.35	4.32	2.36	79.01	
INLET #17 & PR#19	74.00	2.25	4.00	4.63	7.03	4.16	2.20	6.55	3.92	1.96	54.47	
INLET #16 & PR#18	74.00	2.00	4.00	4.33	6.48	3.74	2.07	6.00	3.50	1.83	45.52	
INLET #15 & PR#17	98.00	2.50	4.00	4.92	7.86	4.72	2.47	7.90	4.74	2.49	92.41	

INLET #14 & PR#16	74.00	2.25	4.00	4.63	7.83	4.56	2.60	7.35	4.32	2.36	62.35	
INLET #13 & PR#15	74.00	2.25	4.00	4.63	7.03	4.16	2.20	6.55	3.92	1.96	54.47	
INLET #12 & PR#14	74.00	2.00	4.00	4.33	6.48	3.74	2.07	6.00	3.50	1.83	45.52	


Total earth volume for sewer trenches = 2757 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.


5-YEARPR 1-13


5-YEARPR 11-12

5-YEAR PR 14-17

5-YEARPR 18-20

11/7/24, 2:57 PM

Program:UDSEWER Math

Model Interface 2.1.1.4

Run Date:

11/7/2024 2:57:55 PM

UDSewer Results Summary

Project Title: 6001 E Platte Storage - 100 Year

Project Description: East System

100-YEAR

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6210.54

Manhole Input Summary:

		Giv	ven Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Kunon	5yr Coefficient	Overland Length (ft)	I I	1	Gutter Velocity (fps)			
POND	6211.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
MH#1 & PR#1	6220.00	91.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

MH#2 & PR#2	6223.50	91.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#1 & PR#3	6233.50	91.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #2 & PR#4	6234.00	71.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #3 & PR#5	6234.40	71.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#8 & PR#11	6237.45	32.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#9 & PR#12	6236.85	32.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#4 & PR#6	6235.60	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#5 & PR#7	6236.80	32.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#6 & PR#8	6238.10	26.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#7 & PR#9	6239.30	21.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET#10 & PR#10	6239.85	17.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #11 & PR#13	6250.50	17.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #18 & PR#20	6251.50	7.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #17 & PR#19	6252.00	5.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #16 & PR#18	6252.50	3.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #15 & PR#17	6251.50	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #14 & PR#16	6252.00	2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #13 & PR#15	6252.50	1.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET #12 & PR#14	6253.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

Local Contribution	Total Design Flow	
Local Contribution	Total Design 11011	

Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
POND	0.00	0.00	0.00	0.00	0.00	7.82	11.69	0.07	91.40	
MH#1 & PR#1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.40	
MH#2 & PR#2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.40	
INLET#1 & PR#3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	91.40	
INLET #2 & PR#4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	71.20	
INLET #3 & PR#5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	71.20	
INLET#8 & PR#11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.20	
INLET#9 & PR#12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.20	
INLET#4 & PR#6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.00	
INLET#5 & PR#7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.70	
INLET#6 & PR#8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.70	
INLET#7 & PR#9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.10	
INLET#10 & PR#10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.70	
INLET #11 & PR#13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.70	
INLET #18 & PR#20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.40	
INLET #17 & PR#19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.80	
INLET #16 & PR#18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.40	
INLET #15 & PR#17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00	
INLET #14 & PR#16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.60	
INLET #13 & PR#15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.90	
INLET #12 & PR#14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.30	

Sewer Input Summary:

			vation		Loss C	oeffici	ents	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
MH#1 & PR#1	29.50	6205.00	2.7	6205.80	0.013	0.03	0.00	CIRCULAR	48.00 in	48.00 in	
MH#2 & PR#2	222.50	6211.11	2.2	6216.00	0.013	0.05	0.00	CIRCULAR	48.00 in	48.00 in	
INLET#1 & PR#3	45.00	6216.81	2.2	6217.80	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in	
INLET #2 & PR#4	24.00	6225.49	1.7	6225.90	0.013	0.24	0.00	CIRCULAR	42.00 in	42.00 in	
INLET #3 & PR#5	7.00	6227.00	2.1	6227.15	0.013	0.05	0.00	CIRCULAR	42.00 in	42.00 in	
INLET#8 & PR#11	352.00	6227.73	1.0	6231.25	0.013	1.00	0.25	CIRCULAR	36.00 in	36.00 in	
INLET#9 & PR#12	31.00	6231.54	1.0	6231.85	0.013	1.00	0.00	CIRCULAR	36.00 in	36.00 in	
INLET#4 & PR#6	47.00	6228.15	5.0	6230.50	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in	
INLET#5 & PR#7	57.00	6230.62	1.9	6231.70	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in	
INLET#6 & PR#8	62.00	6231.82	1.9	6233.00	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in	
INLET#7 & PR#9	57.00	6233.62	1.9	6234.70	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in	
INLET#10 & PR#10	24.00	6234.99	1.7	6235.40	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in	

							J			
INLET #11 & PR#13	32.00	6235.69	1.9	6236.30	0.013	0.11	0.00	CIRCULAR	24.00 in	24.00 in
INLET #18 & PR#20	98.00	6246.72	1.0	6247.70	0.012	1.00	0.00	CIRCULAR	15.00 in	15.00 in
INLET #17 & PR#19	74.00	6247.86	1.0	6248.60	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #16 & PR#18	74.00	6248.76	1.0	6249.50	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in
INLET #15 & PR#17	98.00	6246.32	1.0	6247.30	0.012	1.00	0.00	CIRCULAR	18.00 in	18.00 in
INLET #14 & PR#16	74.00	6247.46	1.0	6248.20	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #13 & PR#15	74.00	6248.36	1.0	6249.10	0.012	0.05	0.00	CIRCULAR	15.00 in	15.00 in
INLET #12 & PR#14	74.00	6249.26	1.0	6250.00	0.012	0.05	0.00	CIRCULAR	12.00 in	12.00 in

Sewer Flow Summary:

	1	l Flow pacity	Critic	cal Flow	Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH#1 & PR#1	236.67	18.83	34.78	9.37	20.70	17.62	2.71	Pressurized	91.40	29.50	
MH#2 & PR#2	213.63	17.00	34.78	9.37	21.93	16.34	2.43	Supercritical	91.40	0.00	
INLET#1 & PR#3	149.63	15.55	35.55	10.52	23.71	16.32	2.26	Supercritical	91.40	0.00	
INLET #2 & PR#4	131.53	13.67	31.72	9.13	22.02	13.94	2.03	Supercritical	71.20	0.00	
INLET #3 & PR#5	146.19	15.19	31.72	9.13	20.68	15.09	2.29	Supercritical	71.20	0.00	
INLET#8 & PR#11	66.88	9.46	22.09	7.08	17.61	9.37	1.54	Supercritical Jump	32.20	299.96	
INLET#9 & PR#12	66.88	9.46	22.09	7.08	17.61	9.37	1.54	Supercritical		0.00	
INLET#4 & PR#6	91.96	18.73	25.28	8.84	13.64	17.96	3.39	Supercritical Jump	39.00	19.82	
INLET#5 & PR#7	56.69	11.55	23.36	7.97	16.35	11.96	2.01	Supercritical	32.70	0.00	
INLET#6 & PR#8	56.69	11.55	21.14	7.22	14.48	11.38	2.07	Supercritical	26.70	0.00	
INLET#7 & PR#9	31.27	9.95	19.74	7.63	14.44	10.68	1.87	Supercritical	21.10	0.00	
INLET#10 & PR#10	29.58	9.41	18.19	6.93	13.38	9.83	1.82	Supercritical	17.70	0.00	

INLET #11 & PR#13	31.27	9.95	18.19	6.93	12.93	10.26	1.94	Supercritical	17.70	0.00	
INLET #18 & PR#20	7.02	5.72	15.00	6.03	15.00	6.03	0.00	Pressurized	7.40	98.00	
INLET #17 & PR#19	7.02	5.72	11.70	5.65	10.40	6.39	1.27	Supercritical Jump	5.80	58.43	
INLET #16 & PR#18	3.87	4.93	9.46	5.12	8.72	5.56	1.18	Supercritical Jump	3.40	14.81	
INLET #15 & PR#17	11.41	6.46	10.32	4.77	8.34	6.24	1.50	Supercritical	5.00	0.00	
INLET #14 & PR#16	7.02	5.72	7.75	4.06	6.32	5.29	1.48	Supercritical	2.60	0.00	
INLET #13 & PR#15	7.02	5.72	6.58	3.67	5.33	4.86	1.50	Supercritical	1.90	0.00	
INLET #12 & PR#14	3.87	4.93	5.78	3.47	4.79	4.44	1.43	Supercritical	1.30	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	ılated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH#1 & PR#1	91.40	CIRCULAR	48.00 in	48.00 in	36.00 in	36.00 in	48.00 in	48.00 in	12.57	
MH#2 & PR#2	91.40	CIRCULAR	48.00 in	48.00 in	36.00 in	36.00 in	48.00 in	48.00 in	12.57	
INLET#1 & PR#3	91.40	CIRCULAR	42.00 in	42.00 in	36.00 in	36.00 in	42.00 in	42.00 in	9.62	
INLET #2 & PR#4	71.20	CIRCULAR	42.00 in	42.00 in	36.00 in	36.00 in	42.00 in	42.00 in	9.62	
INLET #3 & PR#5	71.20	CIRCULAR	42.00 in	42.00 in	33.00 in	33.00 in	42.00 in	42.00 in	9.62	
INLET#8 & PR#11	32.20	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
INLET#9 & PR#12	32.20	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
INLET#4 & PR#6	39.00	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	4.91	
INLET#5 & PR#7	32.70	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
INLET#6 & PR#8	26.70	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	4.91	
INLET#7 & PR#9	21.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	

•								J		
INLET#10 & PR#10	17.70	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
INLET #11 & PR#13	17.70	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
INLET #18 & PR#20	7.40	CIRCULAR	15.00 in		sized corre	18.00 in eer has chectly. UDS	SEWER's	suggestio		Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
INLET #17 & PR#19	5.80	CIRCULAR	15.00 in	15.00 in	15.00 in	15.00 in	15.00 in	15.00 in	1.23	
INLET #16 & PR#18	3.40	CIRCULAR	12.00 in	12.00 in	12.00 in	12.00 in	12.00 in	12.00 in	0.79	
INLET #15 & PR#17	5.00	CIRCULAR	18.00 in	18.00 in	15.00 in	15.00 in	18.00 in	18.00 in	1.77	
INLET #14 & PR#16	2.60	CIRCULAR	15.00 in	15.00 in	12.00 in	12.00 in	15.00 in	15.00 in	1.23	
INLET #13 & PR#15	1.90	CIRCULAR	15.00 in	15.00 in	12.00 in	12.00 in	15.00 in	15.00 in	1.23	
INLET #12 & PR#14	1.30	CIRCULAR	12.00 in	12.00 in	9.00 in	9.00 in	12.00 in	12.00 in	0.79	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6210.54

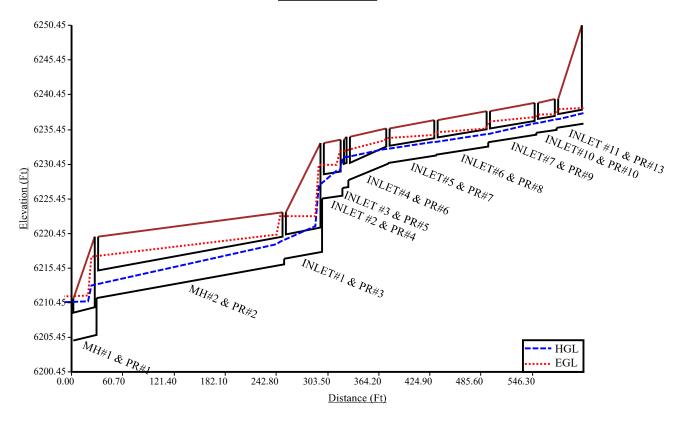
	Invert 1	Elev.	Ma	nstream inhole osses	HG	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
MH#1 & PR#1	6205.00	6205.80	0.00	0.00	6210.54	6210.66	6211.36	0.12	6211.48	
MH#2 & PR#2	6211.11	6216.00	0.04	0.00	6212.93	6218.90	6217.08	3.18	6220.26	
INLET#1 & PR#3	6216.81	6217.80	0.34	0.00	6219.23	6221.52	6222.92	0.00	6222.92	
INLET #2 & PR#4	6225.49	6225.90	0.20	0.00	6227.33	6229.49	6230.34	0.00	6230.34	

						3			
INLET #3 & PR#5	6227.00	6227.15	0.04	0.00	6229.54	6231.41	6232.26	0.00	6232.26
INLET#8 & PR#11	6227.73	6231.25	0.32	0.77	6233.03	6233.59	6233.36	0.70	6234.05
INLET#9 & PR#12	6231.54	6231.85	0.32	0.00	6233.93	6233.93	6234.37	0.15	6234.52
INLET#4 & PR#6	6228.15	6230.50	0.05	0.00	6231.46	6232.61	6232.44	1.38	6233.82
INLET#5 & PR#7	6230.62	6231.70	0.03	0.00	6232.64	6233.65	6234.20	0.43	6234.63
INLET#6 & PR#8	6231.82	6233.00	0.02	0.00	6233.67	6234.76	6235.04	0.53	6235.57
INLET#7 & PR#9	6233.62	6234.70	0.04	0.00	6234.82	6236.34	6236.59	0.66	6237.25
INLET#10 & PR#10	6234.99	6235.40	0.05	0.00	6236.40	6236.92	6237.61	0.05	6237.66
INLET #11 & PR#13	6235.69	6236.30	0.05	0.00	6236.97	6237.82	6238.40	0.16	6238.56
INLET #18 & PR#20	6246.72	6247.70	0.56	0.00	6247.97	6249.06	6248.53	1.09	6249.62
INLET #17 & PR#19	6247.86	6248.60	0.02	0.00	6249.30	6249.57	6249.64	0.43	6250.07
INLET #16 & PR#18	6248.76	6249.50	0.01	0.00	6249.79	6250.29	6250.08	0.61	6250.70
INLET #15 & PR#17	6246.32	6247.30	0.12	0.00	6247.01	6248.16	6247.62	0.89	6248.51
INLET #14 & PR#16	6247.46	6248.20	0.00	0.00	6248.41	6248.85	6248.52	0.59	6249.10
INLET #13 & PR#15	6248.36	6249.10	0.00	0.00	6248.85	6249.65	6249.17	0.69	6249.86
INLET #12 & PR#14	6249.26	6250.00	0.00	0.00	6249.66	6250.48	6249.97	0.70	6250.67

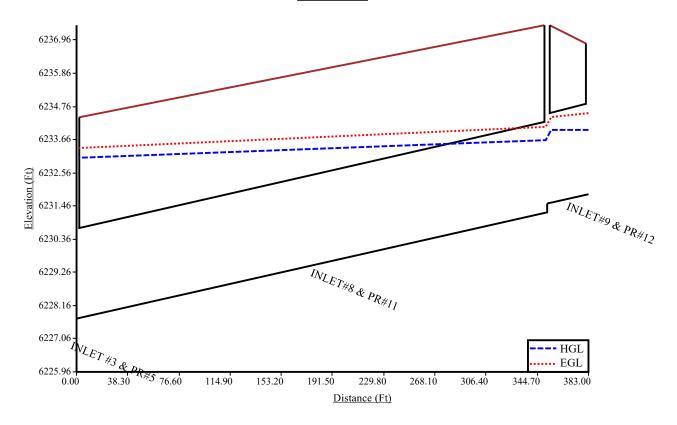
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V fi $^2/(2*g)$
- Lateral loss = $V_{fo} ^2/(2*g)$ Junction Loss K * $V_{fi} ^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

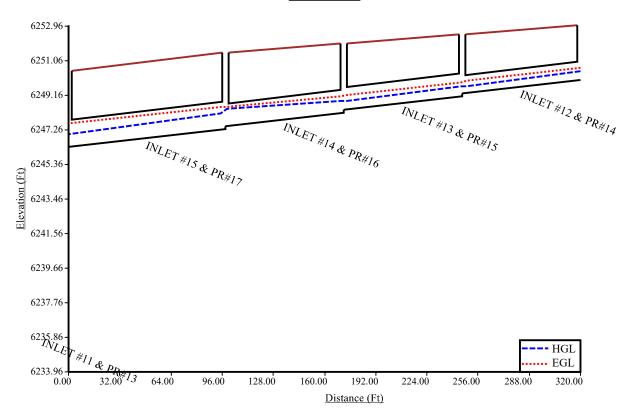
The trench side slope is 1.0 ft/ft
The minimum trench width is 1.00 ft

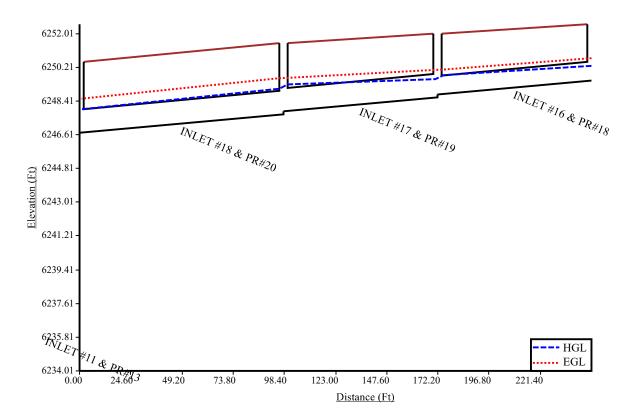

					Do	wnstrea	ım	U	pstrean	n		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
MH#1 & PR#1	29.50	5.00	6.00	7.83	8.99	6.91	1.58	25.40	15.12	9.78	136.60	

11/1/24, 2.3/ 1 10		0.	JOE VVEIX IVIO	atil Model II	11011400 11	Journo. 000	' L i latte	Clorage	100 1001	,0,,,202		
MH#2 & PR#2	222.50	5.00	6.00	7.83	14.79	9.81	4.48	12.00	8.42	3.08	656.08	
INLET#1 & PR#3	45.00	4.50	6.00	7.25	10.88	7.57	2.82	28.90	16.58	11.83	246.24	
INLET #2 & PR#4	24.00	4.50	6.00	7.25	13.52	8.88	4.13	13.70	8.98	4.23	66.53	
INLET #3 & PR#5	7.00	4.50	6.00	7.25	11.49	7.87	3.12	12.00	8.13	3.38	16.35	
INLET#8 & PR#11	352.00	4.00	6.00	6.67	11.34	7.50	3.34	10.40	7.03	2.87	690.02	
INLET#9 & PR#12	31.00	4.00	6.00	6.67	9.82	6.74	2.58	8.00	5.83	1.67	49.82	
INLET#4 & PR#6	47.00	3.50	6.00	6.08	11.00	7.04	3.46	8.70	5.89	2.31	75.23	
INLET#5 & PR#7	57.00	3.50	6.00	6.08	8.47	5.77	2.19	8.70	5.89	2.31	78.22	
INLET#6 & PR#8	62.00	3.50	6.00	6.08	8.46	5.77	2.19	8.70	5.89	2.31	85.03	
INLET#7 & PR#9	57.00	3.00	4.00	5.50	7.97	5.07	2.23	8.20	5.18	2.35	63.03	
INLET#10 & PR#10	24.00	3.00	4.00	5.50	7.62	4.89	2.06	7.90	5.03	2.20	25.40	
INLET #11 & PR#13	32.00	3.00	4.00	5.50	7.32	4.74	1.91	27.40	14.78	11.95	135.18	
INLET #18 & PR#20	98.00	2.25	4.00	4.63	7.31	4.30	2.34	7.35	4.32	2.36	79.01	
INLET #17 & PR#19	74.00	2.25	4.00	4.63	7.03	4.16	2.20	6.55	3.92	1.96	54.47	
INLET #16 & PR#18	74.00	2.00	4.00	4.33	6.48	3.74	2.07	6.00	3.50	1.83	45.52	
INLET #15 & PR#17	98.00	2.50	4.00	4.92	7.86	4.72	2.47	7.90	4.74	2.49	92.41	
INLET #14 & PR#16	74.00	2.25	4.00	4.63	7.83	4.56	2.60	7.35	4.32	2.36	62.35	
INLET #13 & PR#15	74.00	2.25	4.00	4.63	7.03	4.16	2.20	6.55	3.92	1.96	54.47	
INLET #12 & PR#14	74.00	2.00	4.00	4.33	6.48	3.74	2.07	6.00	3.50	1.83	45.52	


Total earth volume for sewer trenches = 2757 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.


100-YEAR PR 1 - PR 13


100-YEAR PR 11-12

100-YEARPR 14-17

100-YEAR PR 18-20

POND OUTLET

11/7/24, 9:53 AM

Program: UDSEWER Math Model Interface 2.1.1.4 Run Date:

11/7/2024 9:53:20

UDSewer Results Summary

Project Title: 6001 E Platte Storage - 5 Year **Project Description:** Pond Outlet System

AM

5-YEAR

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5

Rainfall Calculation Method: Formula

One Hour Depth (in): 1.50 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6202.50

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Kunoii	5yr Coefficient	Overland Length (ft)	I I	1 1	Gutter Velocity (fps)
STILLING BASIN	6201.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

POND										
OUTLE	6209.00	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
& PR#90)									

Manhole Output Summary:

		Local	Contri	bution			Total Des	ign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
STILLING BASIN	0.00	0.00 0.00		0.00 0.00		0.11	6.22	1.63	0.70	Surface Water Present (Upstream)
POND OUTLET & PR#90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	Surface Water Present (Downstream)

Sewer Input Summary:

		Ele	Loss C	oeffici	ents	Given Dimensions				
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
POND OUTLET & PR#90	38.63	6201.00	1.3	6201.50	0.012	0.03	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

		l Flow pacity	Critical Flow			Noi	rmal Flow	y .			
Element Name	Flow (cfs) Velocity (fps)		Depth (in)	Velocity (fps)	Depth (in)				Flow (cfs)	Surcharged Length (ft)	Comment
POND OUTLET & PR#90	13.01	7.36	3.73	2.65	2.84	3.92	1.71	Supercritical Jump	0.70	0.17	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment	
POND OUTLET & PR#90	0.70	CIRCULAR	18.00 in	18.00 in	9.00 in	9.00 in	18.00 in	18.00 in	1.77	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

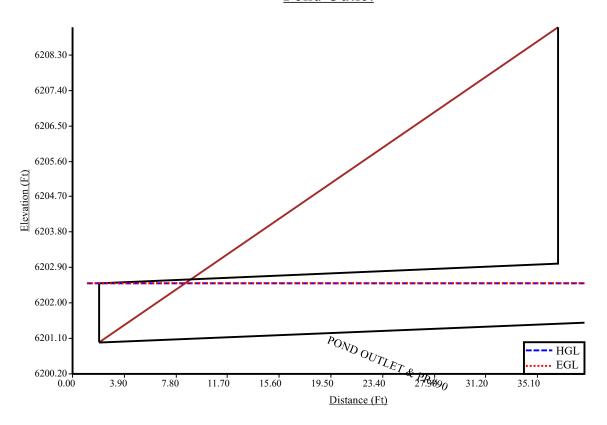
Grade Line Summary:

Tailwater Elevation (ft): 6202.50

	Invert 1	Elev.	Ma	nstream inhole osses	HG	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Lateral Loss Loss (ft) (ft)		Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
POND OUTLET & PR#90	6201.00	6201.50	0.00	0.00	6202.50	6202.50	6202.50	0.00	6202.50

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V fi $^2/(2*g)$
- Lateral loss = V fo $^2/(2*g)$ Junction Loss K * V fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft
The minimum trench width is 1.00 ft

					Do	wnstrea	ım	J	Jpstrean	n		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
POND OUTLET & PR#90	38.63	2.50	4.00	4.92	0.00	0.54	0.00	14.50	8.04	5.79	46.62	Sewer Too Shallow

Total earth volume for sewer trenches = 47 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

5-YEARPond Outlet

Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 11/7/2024 9:57:43

UDSewer Results Summary

Project Title: 6001 E Platte Storage - 100 Year **Project Description:** Pond Outlet System

100-YEAR

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100

Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100

Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

Backwater Calculations:

Tailwater Elevation (ft): 6202.50

Manhole Input Summary:

		Giv	ven Flow			Sub Basir	Informat	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Kunom	5yr Coefficient	Overland Length (ft)	I I	I	Gutter Velocity (fps)
STILLING BASIN	6201.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

POND										
OUTLET	6209.00	21.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
& PR#90										

Manhole Output Summary:

			Contri				Total Des			
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
STILLING BASIN	0.00	0.00	0.00	0.00	0.00	1.85	11.71	0.05	21.60	Surface Water Present (Upstream)
POND OUTLET & PR#90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.60	Surface Water Present (Downstream)

Sewer Input Summary:

		Ele	Loss Coefficients			Given Dimensions				
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
POND OUTLET & PR#90	38.63	6201.00	1.3	6201.50	0.012	0.03	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	II.	Full Flow Capacity		al Flow	Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)			Flow Condition	Flow	Surcharged Length (ft)	Comment
POND OUTLET & PR#90	13.01	7.36	18.00	12.22	18.00	12.22	0.00	Pressurized	21.60	38.63	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

Element Name Peak Flow Section Rise Span Rise	sed		alculated		sting	Exis			
Name (cfs) Section Part Part Part Part Part Part Part Part	pan Arc	Rise	se Span]	Span	Rise	l (PAGG	Flow	Element Name

POND OUTLET & PR#90	21.60	CIRCULAR	18.00 in	18.00 in	24.00 in	24.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
---------------------	-------	----------	-------------	-------------	-------------	-------------	-------------	-------------	------	---

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

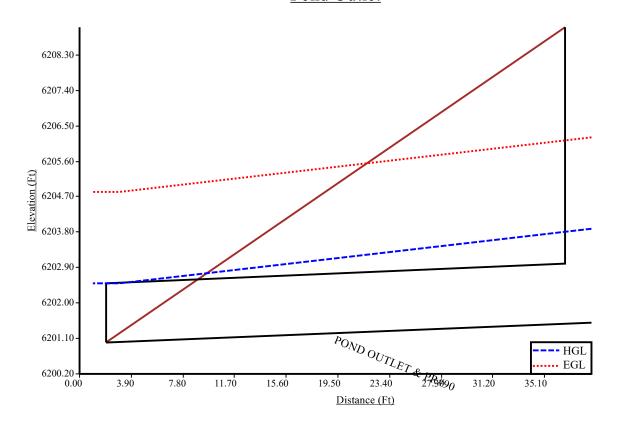
Grade Line Summary:

Tailwater Elevation (ft): 6202.50

	Invert 1	Elev.	Ma	nstream inhole osses	HG	L	EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
POND OUTLET & PR#90	6201.00	6201.50	0.00	0.00	6202.50	6203.88	6204.82	1.38	6206.20

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V fi $^2/(2*g)$
- Lateral loss = V fo $^2/(2*g)$ Junction Loss K * V fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

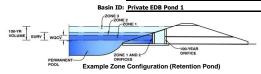
					Downstream			J	Jpstrean	n			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment	
POND OUTLET & PR#90	38.63	2.50	4.00	4.92	0.00	0.54	0.00	14.50	8.04	5.79	46.62	Sewer Too Shallow	

Total earth volume for sewer trenches = 47 cubic yards.

• The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.

100-YEAR Pond Outlet

PLATTE SELF STORAGE SURFACE ROUTING SUMMARY


Water Quality Treatment Summary Table

		114	iter Qui	anty Treatmen	it Summary	abic	
Basin ID	Total Area	Total Proposed Disturbed Area	Area Trib to Pond 1	Disturbed Area Treated via Runoff Reduction	Disturbed Area Excluded from WQ per ECM App 1.7.1.C.1	Disturbed Area Excluded from WQ per ECM App I.7.1.B.#	Applicable WQ Exclusions (App I.7.1.B.#)
	(ac)	(ac)	(ac)	(ac)	(ac)	(ac)	
OS-ZA	0.44	-	0.44	-	-	-	-
OS-ZB	0.22	-	0.22	-	-	-	-
OS-ZC	0.23	-	0.23	-	-	-	-
OS-ZD	0.86	-	0.86	-	-	-	-
OS-ZE	1.94	-	1.94	-	-	-	-
OS-ZF	0.56	-	0.56	-	-	-	-
OS-ZG	0.85	-	0.85	-	-	-	-
OS-ZH	1.24	-	1.24	-	-	-	-
OS-Y	8.15	-	8.15	-	-	-	-
OS-X	1.20	-	-	-	-	-	-
OS-W	0.45	0.45	-	-	0.45	-	-
PR-1	0.07	0.07	-	-	-	0.07	I.7.1.B.7
PR-2	0.13	0.13	-	-	-	0.13	I.7.1.B.7
PR-3A	1.10	1.10	1.10	-	-	-	-
PR-3B	1.11	1.11	1.11	-	-	-	-
PR-3C	0.96	0.96	0.96	-	-	-	-
PR-3D	0.97	0.97	0.97	-	-	-	-
PR-3E	1.01	1.01	1.01	-	-	-	-
PR-4	3.66	3.66	3.66	-	-	-	-
PR-5	0.56	0.56	-	-	0.55	0.01	I.7.1.B.7
PR-6	6.64	6.64	6.64	-	-	-	-
PR- 7	0.34	0.34	-	-	-	0.34	I.7.1.B.7
PR-8	0.30	0.30	-	=	-	0.30	I.7.1.B.7
PR-9	0.59	0.59	-	=	-	0.59	I.7.1.B.7
PR-10A	0.06	0.06	0.06	=	-	-	-
PR-10B	0.03	0.03	0.03	-	-	-	-
PR-10C	0.04	0.04	0.04	-	-	-	-
PR-10D	0.04	0.04	0.04	-	-	-	-
PR-10E	0.09	0.09	0.09	-	-	-	-
PR-10F	0.04	0.04	0.04	-	-	-	-
PR-10G	0.05	0.05	0.05	-	-	-	-
PR-10H	0.06	0.06	0.06	-	-	-	-
		TOTALS	30.33		1.00	1.44	
		B TO POND IN				Calc:	DLF
		5, PR-9 & OS-X	2.35			Date:	11/8/2024
AREA TR	IB FOR I	POND DESIGN	32.68			Checked:	JS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Platte Self Storage

Watershed Information

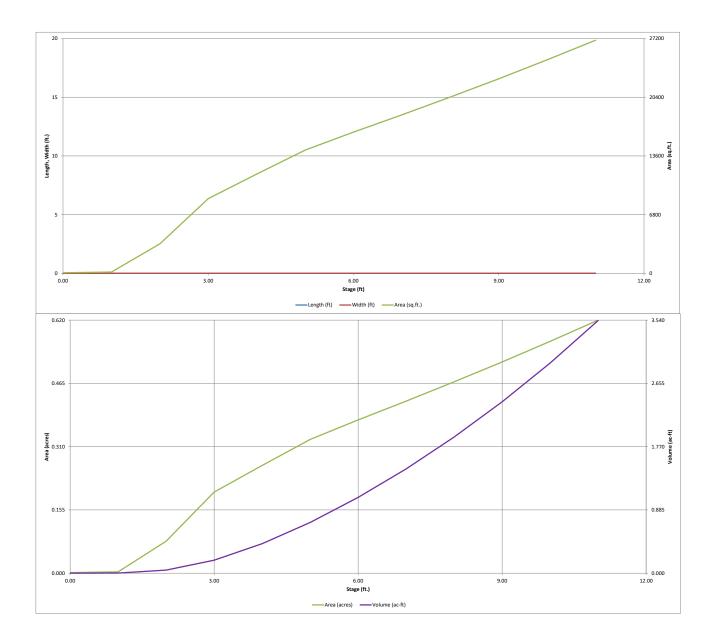
Selected BMP Type =	EDB	
Watershed Area =	32.68	acres
Watershed Length =	1,610	ft
Watershed Length to Centroid =	730	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	38.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-br Rainfall Denths =	User Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban riyaro	grapiriroccaa	ic.
Water Quality Capture Volume (WQCV) =	0.475	acre-feet
Excess Urban Runoff Volume (EURV) =	1.326	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.986	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.333	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.608	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.161	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.693	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	3.393	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	4.538	acre-feet
Approximate 2-yr Detention Volume =	0.842	acre-feet
Approximate 5-yr Detention Volume =	1.117	acre-feet
Approximate 10-yr Detention Volume =	1.381	acre-feet
Approximate 25-yr Detention Volume =	1.719	acre-feet
Approximate 50-yr Detention Volume =	1.951	acre-feet
Approximate 100-yr Detention Volume =	2.283	acre-feet

Optional User Overrides

	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.00	inches


Define Zones and Basin Geometry

erine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.475	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.851	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.957	acre-feet
Total Detention Basin Volume =	2.283	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fe

Donth Trees	1.00	ft							
Depth Increment =	1.00	nt Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft ³)	(ac-ft)
Top of Micropool		0.00				63	0.001		
6203	-	1.00				148	0.003	105	0.002
6204	-	2.00				3,413	0.078	1,886	0.043
6205	-	3.00				8,656	0.199	7,920	0.182
6206		4.00				11,501	0.264	17,998	0.413
6207		5.00				14,272	0.328	30,884	0.709
6208	-	6.00				16,360	0.376	46,200	1.061
6209	-	7.00				18,366	0.422	63,563	1.459
6210	-	8.00				20,424	0.469	82,958	1.904
6211	-	9.00				22,541	0.517	104,440	2.398
6212	-	10.00				24,740	0.568	128,081	2.940
6213	-	11.00				27,005	0.620	153,953	3.534
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	-								
	_								
	_								
	-								
	_								
	-								
	_								
	-								
	_								
	_								
	-								
	_		-						
	_		_						
	_								
	-		-						
	-								
	-								
	-		-		-				
	-								
									1
	-								1
	-								
	-								
	-								-
								<u>L</u>	
	-		-		-				
	-								
	-								
. —					. —				

241900 MHFD-Detention_v4 04 - Pond V4, Basin

241900 MHFD-Detention_v4 04 - Pond V4, Basin 11/7/2024, 9:59 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Basin ID: Private EDB Pond 1 ZONE 1 AND 2 ORIFICES **Example Zone Configuration (Retention Pond)**

Project: Platte Self Storage

	Estimated	Estimated		
	Stage (ft)	Volume (ac-ft)	Outlet Type	
Zone 1 (WQCV)	4.23	0.475	Orifice Plate	
Zone 2 (EURV)	6.68	0.851	Orifice Plate	
one 3 (100-year)	8.78	0.957	Weir&Pipe (Restrict)	
•	Total (all zones)	2.283		

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)</u> Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Diameter = inches

Underdrain Orifice Centroid = feet

Elliptical Slot Area =

feet

feet

ft²

N/A

Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Invert of Lowest Orifice = WQ Orifice Area per Row = ft² 0.00 ft (relative to basin bottom at Stage = 0 ft) N/A ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = Depth at top of Zone using Orifice Plate = 6.71 N/A Orifice Plate: Orifice Vertical Spacing = N/A inches Elliptical Slot Centroid = N/A

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

N/A

inches

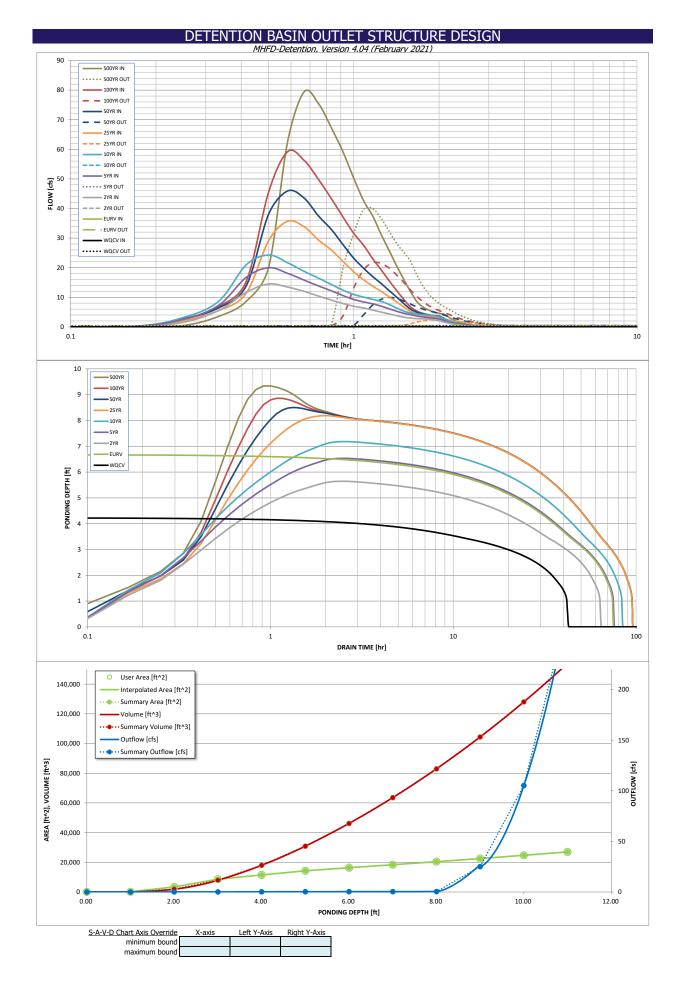
and Total Aled of Eden Office Now (hambered from lowest to highest)											
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft)	0.00	1.70	3.40								
Orifice Area (sq. inches)	1.50	1.10	2.75								

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

Orifice Plate: Orifice Area per Row =

oser input: Vertical Office (Circular of Rectarg	ulai)				Calculated Parame	ters for vertical Offi	lice
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	•			

User Input: Overflow Weir (Dropbox with Flat o	Calculated Paramet	ters for Overflow W	leir			
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	l
Overflow Weir Front Edge Height, Ho =	8.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	8.00	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	7.16	N/A	i
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	12.66	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A	Overflow Grate Open Area w/ Debris =	6.33	N/A	ft ²
Debris Clogging % =	50%	N/A	%		•	


<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>

er Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or R	Rectangular Orifice)	Calculated Parameters	ers for Outlet Pipe w/ Flow Restriction Plate			
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected		
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft ²	
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet	
Restrictor Plate Height Above Pipe Invert =	18.00		inches Half-Central Angle o	f Restrictor Plate on Pipe =	3.14	N/A	radians	

User Input: Emergency Spillway (Rectangular or Trapezoidal)

nput: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway										
Spillway Invert Stage=	9.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.69	feet					
Spillway Crest Length =	23.00	feet	Stage at Top of Freeboard =	10.69	feet					
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.60	acres					
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	3.34	acre-ft					
·-		=			="					

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through A	1 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.475	1.326	0.986	1.333	1.608	2.161	2.693	3.393	4.538
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.986	1.333	1.608	2.161	2.693	3.393	4.538
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.8	7.3	14.4	23.6	37.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.22	0.44	0.72	1.15
Peak Inflow Q (cfs) =	N/A	N/A	14.5	20.0	24.3	35.7	45.9	59.2	79.4
Peak Outflow Q (cfs) =	0.2	0.4	0.3	0.4	0.4	2.6	9.9	21.6	39.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	0.5	0.4	0.7	0.9	1.1
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.2	0.7	1.7	2.0
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	68	58	69	76	85	84	81	78
Time to Drain 99% of Inflow Volume (hours) =	41	72	62	73	81	91	90	89	88
Maximum Ponding Depth (ft) =	4.23	6.68	5.64	6.53	7.18	8.19	8.50	8.86	9.34
Area at Maximum Ponding Depth (acres) =	0.28	0.41	0.36	0.40	0.43	0.48	0.49	0.51	0.53
Maximum Volume Stored (acre-ft) =	0.476	1.327	0.929	1.266	1.536	1.990	2.145	2.321	2.571

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
		COLIF	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.02	0.46
	0:15:00	0.00	0.00	1.56	2.53	3.16	2.14	2.69	2.64	3.55
	0:20:00	0.00	0.00	5.57	7.31	8.67	5.51	6.45	6.93	8.60
	0:25:00	0.00	0.00	11.66	16.72	20.93	11.39	13.87	15.32	20.12
	0:30:00	0.00	0.00	14.49	19.99	24.26	29.11	38.08	45.54	62.47
	0:35:00 0:40:00	0.00	0.00	13.45	18.09	21.67	35.66	45.91	59.18	79.36
-	0:45:00	0.00	0.00	12.00 10.40	15.81 13.83	18.79 16.48	33.83 29.34	43.55 37.49	56.30 49.82	75.46 67.25
-	0:50:00	0.00	0.00	9.03	12.18	14.31	25.95	32.89	43.31	59.03
•	0:55:00	0.00	0.00	7.87	10.55	12.40	22.06	27.72	37.04	50.16
•	1:00:00	0.00	0.00	6.97	9.25	10.95	18.57	23.16	31.56	42.59
	1:05:00	0.00	0.00	6.37	8.42	10.04	15.92	19.79	27.51	37.43
	1:10:00	0.00	0.00	5.65	7.77	9.30	13.75	16.97	23.02	31.14
	1:15:00	0.00	0.00	4.98	6.98	8.57	11.98	14.63	19.24	25.77
	1:20:00	0.00	0.00	4.36	6.10	7.55	10.12	12.24	15.55	20.63
	1:25:00	0.00	0.00	3.78	5.28	6.36	8.43	10.06	12.27	16.10
	1:30:00 1:35:00	0.00	0.00	3.29	4.60	5.35	6.74	7.90	9.33	12.04
ŀ	1:40:00	0.00	0.00	2.95 2.78	4.13 3.68	4.71 4.37	5.28 4.38	6.04 4.97	6.81 5.36	8.64 6.77
	1:45:00	0.00	0.00	2.78	3.68	4.37	4.38 3.88	4.97	4.60	5.72
-	1:50:00	0.00	0.00	2.65	3.12	3.98	3.59	4.05	4.00	5.04
ļ	1:55:00	0.00	0.00	2.36	2.94	3.79	3.39	3.82	3.78	4.59
	2:00:00	0.00	0.00	2.10	2.73	3.48	3.26	3.67	3.55	4.27
	2:05:00	0.00	0.00	1.64	2.14	2.71	2.54	2.85	2.70	3.22
	2:10:00	0.00	0.00	1.25	1.62	2.05	1.91	2.13	1.99	2.35
	2:15:00	0.00	0.00	0.95	1.23	1.55	1.44	1.60	1.49	1.76
	2:20:00	0.00	0.00	0.72	0.93	1.16	1.08	1.20	1.12	1.32
	2:25:00	0.00	0.00	0.54	0.69	0.86	0.80	0.88	0.83	0.98
	2:30:00	0.00	0.00	0.40	0.50	0.63	0.58	0.64	0.61	0.71
-	2:35:00 2:40:00	0.00	0.00	0.29 0.20	0.36 0.26	0.46	0.42	0.47	0.44	0.52
-	2:45:00	0.00	0.00	0.20	0.26	0.33	0.31 0.21	0.23	0.32	0.37 0.24
-	2:50:00	0.00	0.00	0.13	0.17	0.13	0.21	0.23	0.21	0.24
•	2:55:00	0.00	0.00	0.04	0.06	0.07	0.07	0.07	0.06	0.07
•	3:00:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.02	0.02
	3:05:00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
j	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
}	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
}	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	0.00	63	0.001	0	0.000	0.00	Fo
	1.00	148	0.003	105	0.002	0.05	sta
	2.00	3,413	0.078	1,886	0.043	0.09	ch
	3.00	8,656	0.199	7,920	0.182	0.13	fro
	4.00	11,501	0.264	17,998	0.413	0.23	_Sh
	5.00	14,272	0.328	30,884	0.709	0.30	Als
	6.00	16,360	0.376	46,200	1.061	0.35	ou
	7.00	18,366	0.422	63,563	1.459	0.39	٥٧
	8.00	20,424	0.469	82,958	1.904	0.43	wł
	9.00	22,541	0.517	104,440	2.398	25.17	_
	10.00	24,740	0.568	128,081	2.940	105.17	4
	11.00	27,005	0.620	153,953	3.534	277.37	-
							-
						1	-
							-
							_
							_
							1
							1
							1
							1
							4
							_
						ļ	4
						-	-
							-
							_
						1	-
							-
							-
							-
							1
							1
							1
							4
							_
						1	=
							-
							1
							4
							_
							-
							4
							-
							1
							1
							_]
							4
							1
							- - -

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

Stormwater Detention and Infiltration Design Data Sheet

Workhook Protected

Worksheet Protected

Stormwater Facility Name: Platte Self Storage EDB

Facility Location & Jurisdiction: 6001 E Platte Ave, El Paso County

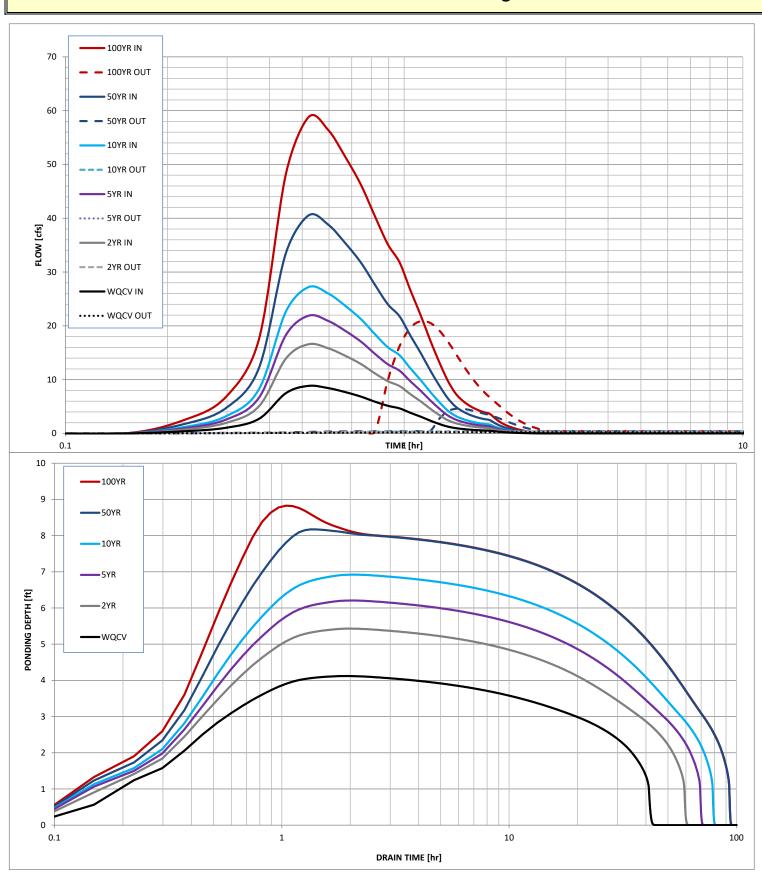
User Input: Watershed Characteristics

Watershed Slope =	0.035	ft/ft
Watershed Length =	1610	ft
Watershed Area =	32.68	acres
Watershed Imperviousness =	38.0%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	100.0% 0.0%	percen percen

Location for 1-hr Rainfall Depths (use dropdown):

User Input

WQCV Treatment Method = Extended Detention


User Defined	User Defined	User Defined	User Defined
Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
0.00	63	0.00	0.00
1.00	148	1.00	0.05
2.00	3,413	2.00	0.09
3.00	8,656	3.00	0.13
4.00	11,501	4.00	0.23
5.00	14,272	5.00	0.30
6.00	16,360	6.00	0.35
7.00	18,366	7.00	0.39
8.00	20,424	8.00	0.43
9.00	22,541	9.00	25.17
10.00	24,740	10.00	105.17
11.00	27,005	11.00	277.37

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

Routed Hydrograph Results

Routed Hydrograph Results							_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.00	2.52	in
Calculated Runoff Volume =	0.475	0.897	1.188	1.480	2.217	3.233	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	0.475	0.896	1.187	1.480	2.216	3.232	acre-ft
Time to Drain 97% of Inflow Volume =	39.0	54.8	63.8	71.9	83.6	80.2	hours
Time to Drain 99% of Inflow Volume =	40.8	57.8	67.5	76.3	89.5	88.2	hours
Maximum Ponding Depth =	4.12	5.43	6.21	6.92	8.17	8.83	ft
Maximum Ponded Area =	0.27	0.35	0.38	0.42	0.48	0.51	acres
Maximum Volume Stored =	0.444	0.851	1.136	1.422	1.980	2.304	acre-ft

Stormwater Detention and Infiltration Design Data Sheet

PLATTE SELF STORAGE

PROPOSED FORBAY DESIGN VOLUME

ELEV (FT + 6000)	AREA (SF)	AREA AVG. (SF)	DELTA ELEV. (FT)	VOLUME (CF)	VOLUME TOTAL (CF)
204.00	425				
		425	1.5	638	
206.00	425				638

205.5 684

End Area Method: **638** C.F.

0.015 A.F.

3% of WQCV = 626.33 cu-ft

TOTAL= 637.50 > 626.33

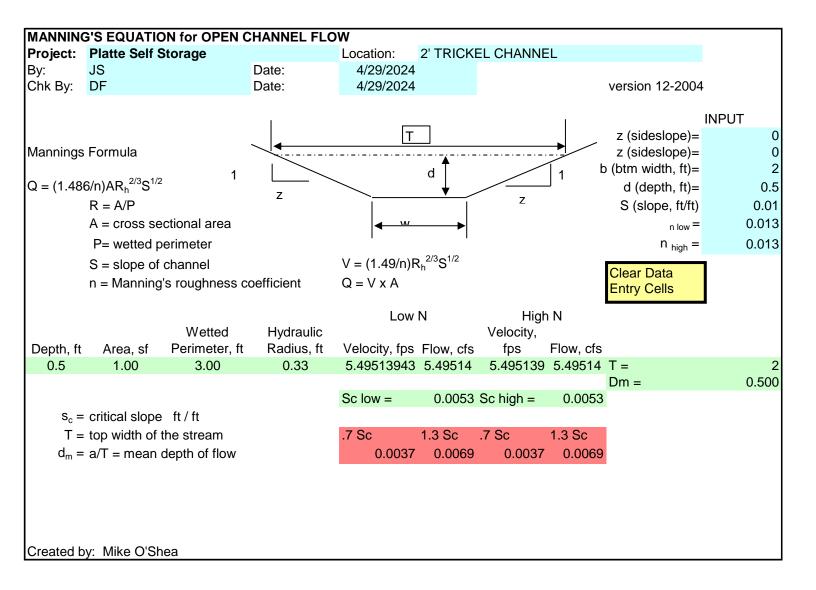
PROPOSED MICROPOOL VOLUME

ELEV	AREA	AREA	DELTA	VOLUME	VOLUME
(FT + 6000)	(SF)	AVG. (SF)	ELEV. (FT)	(CF)	TOTAL (CF)
199.50	63				
		63	2.5	158	
202.00	63				158

End Area Method: 158 C.F. 0.004 A.F.

Forebay Wall Notch

Notch to releae 2% of the undetained 100-year peak discharge.


100-y peak discharge = **21.6** cfs 2.0% = **0.43** cfs

The general form of the equation for horizontal crested weirs is Q = CLH3/2 where:

Q = Weir flow discharge (cfs)	0.43	
C = Weir flow coefficient	3.4	
H = Depth of flow over the weir (ft)	1.50	Opening Height
L = Length of the weir (ft)	0.07	Length
L = Length of the weir (in)	8.0	

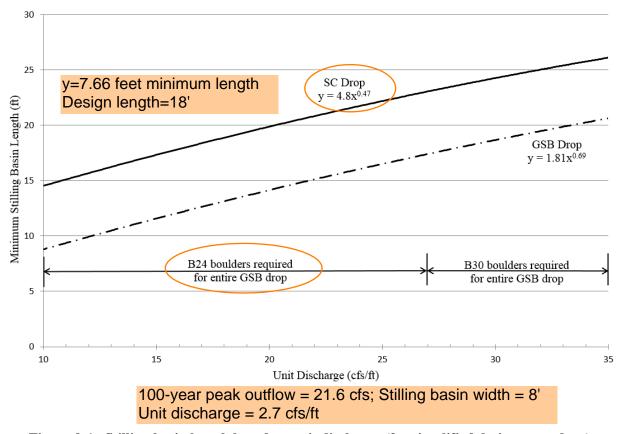
Minimim notch length is 3" per standards

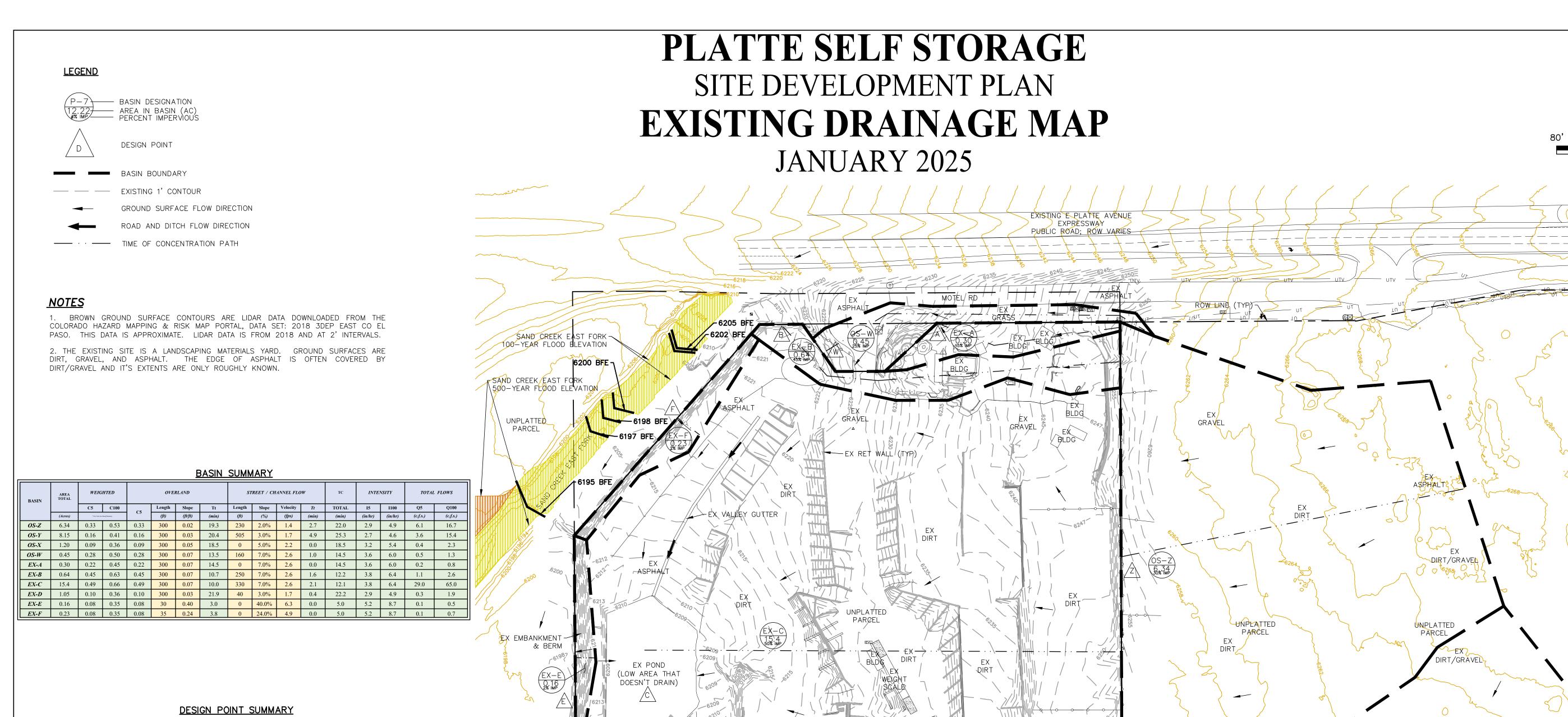
Notch to releae 2% of the undetained 100-year peak discharge is 3" wide by 18" high (min allowed)

Chapter 9 Hydraulic Structures

PLATTE SELF-STORAGE Calc: JS; Checked: DLF; Date: 11/11/2024

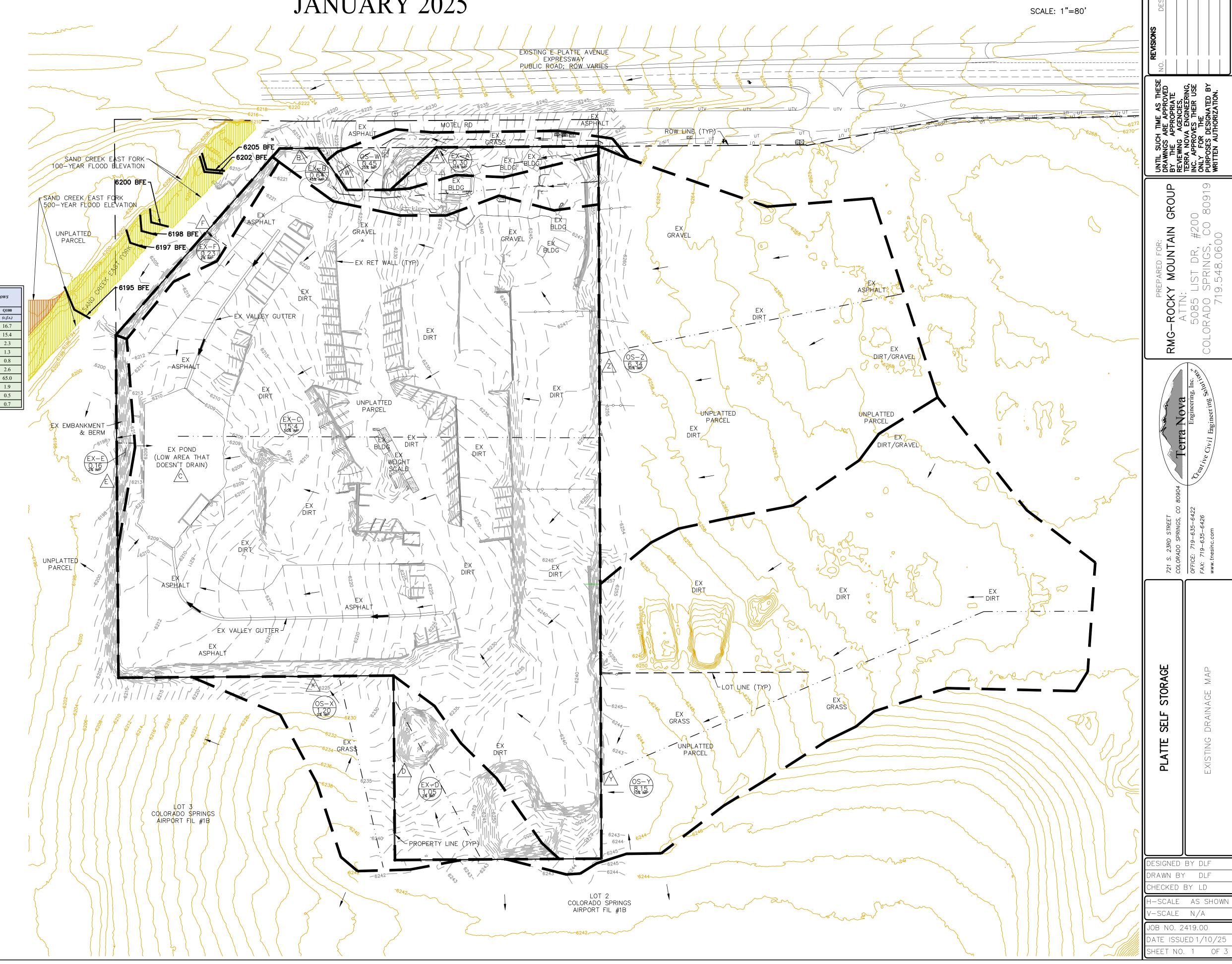
In non-cohesive soil channels and channels where future degradation is expected, especially where there is no drop structure immediately downstream, it is generally recommended that the stilling basin be eliminated and the sloping face extended five feet below the downstream future channel invert elevation (after accounting for future streambed degradation). A scour hole will form naturally downstream of a structure in non-cohesive soils and construction of a hard basin is an unnecessary cost. Additionally, a hard basin would be at risk for undermining. See Figure 9-12 for the profile of the GSB and Figure 9-17 for that of an SC in this configuration. In some cases, the structure may have a net drop height of zero immediately after construction, but is designed with a long-term net height of 3 to 5 feet to accommodate future lowering of the channel invert.

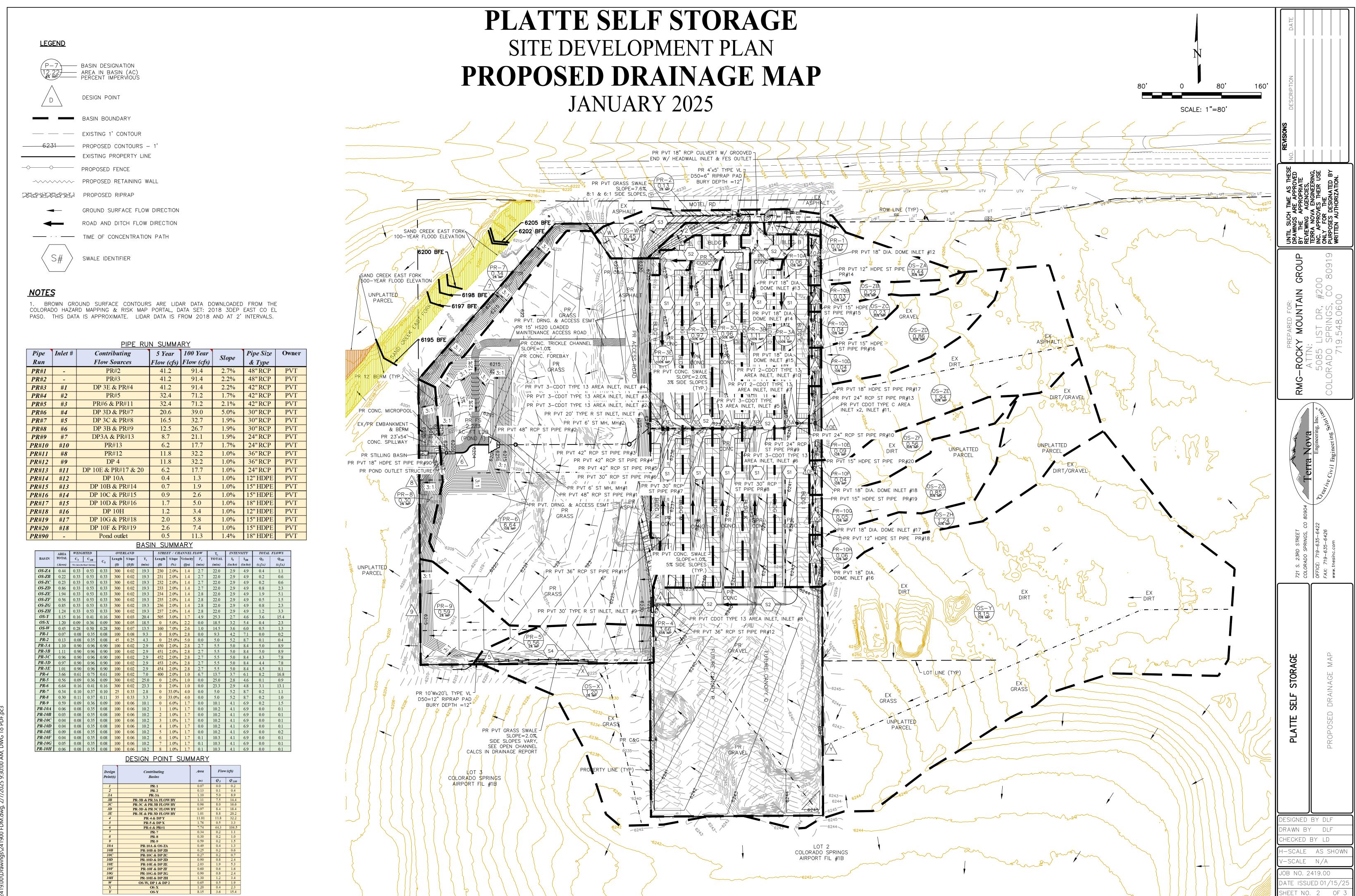


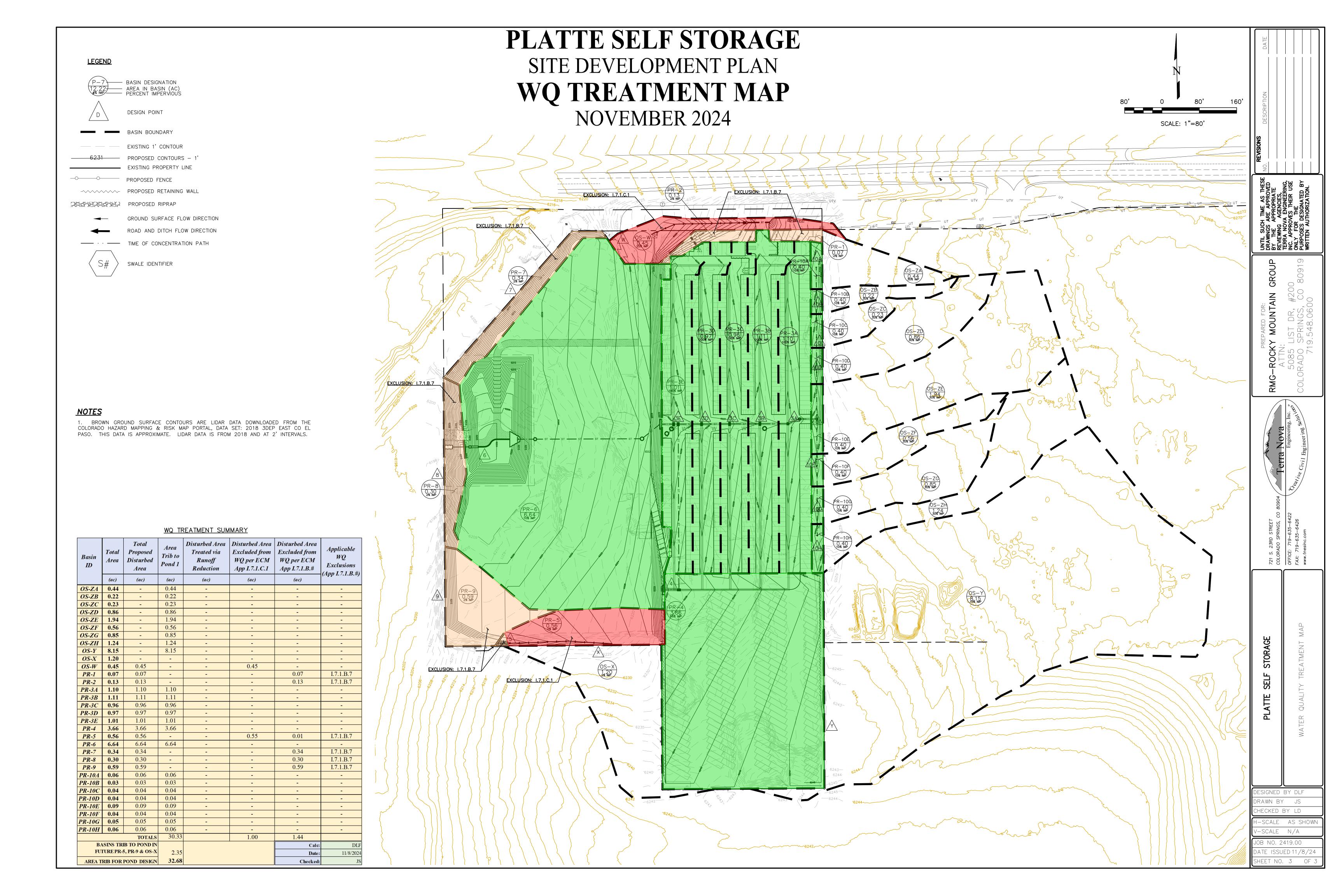

Figure 9-1. Stilling basin length based on unit discharge (for simplified design procedure)

2.2.6 Seepage Analysis and Cutoff Wall Design

The simplified drop structure design only applies to drops with cutoffs located in cohesive soils. Therefore, it is necessary to determine surface and subsurface soil conditions in the vicinity of a proposed drop structure prior to being able to use the simplified approach for cutoff design. For a drop structure constructed in cohesive soils meeting all requirements of a simplified design, the cutoff wall must be a minimum of six feet deep for concrete and ten feet deep for sheet pile.


If a proposed drop structure meets the requirements of the simplified approach, but is located in non-cohesive soils, guidance on determining the required cutoff wall depth is described in Section 2.4.


DRAINAGE MAPS Note: The County wouldn't allow EDB Plans to be included in this report.


DESIGN	POINT	SUMMARY

Design	Design Contributing	Area	Flow (cfs)	
Point(s)	Basins	(ac)	Q 5	Q100
Z	OS-Z	6.34	6.1	16.7
Y	OS-Y	8.15	3.6	15.4
X	OS-X & DP D	2.25	0.7	4.2
W	OS-W & DP A	0.75	0.7	2.2
A	EX-A	0.30	0.2	0.8
В	EX-B & DP W	1.39	1.8	4.7
C	EX-C, DP D, DP X, & DP Y	26.85	33.6	86.5
D	EX-D	1.05	0.3	1.9
E	EX-E	0.16	0.1	0.5
F	EX-F	0.23	0.1	0.7

\sdot\:\

