## FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

## JANUARY 2025

## Prepared For: **RMG – ROCKY MOUNTAIN GROUP** 5085 List Drive, #200 Colorado Springs, CO 80919 719.548.0600

Prepared By:

## TERRA NOVA ENGINEERING, INC.

721 S. 23<sup>RD</sup> Street Colorado Springs, CO 80904 719.635.6422

TNE Job No. 2419.00 County Job No. PPR2418

## FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

## **TABLE OF CONTENTS**

| Engineer's Statement         | Page 3  |
|------------------------------|---------|
| Purpose                      | Page 4  |
| General Description          | Page 4  |
| Existing Drainage Conditions | Page 5  |
| Proposed Drainage Conditions | Page 7  |
| Hydrologic Calculations      | Page 14 |
| Hydraulic Calculations       | Page 15 |
| Floodplain Statement         | Page 15 |
| Water Quality                | Page 15 |
| Construction Cost Opinion    | Page 16 |
| Drainage Fees                | Page 17 |
| Maintenance                  | Page 17 |
| Summary                      | Page 17 |
| Bibliography                 | Page 18 |

### **APPENDICIES**

VICINITY MAP NRCS SOILS MAP FEMA FIRM MAP HYDROLOGIC CALCULATIONS HYDRAULIC CALCULATIONS DETENTION CALCULATIONS DRAINAGE PLAN

## FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

## **DESIGN ENGINEER'S STATEMENT:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

FINAL DRAINAGE REPORT

Dane Frank, P.E. 50207 On behalf of Terra Nova Engineering, Inc.

## **OWNER/DEVELOPER'S STATEMENT:**

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Authorized Signature

Printed Name, Title

**Business Name** 

Address

## **EL PASO COUNTY:**

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. County Engineer / ECM Administrator Date

Conditions:

Date

Date

## FINAL DRAINAGE REPORT FOR PLATTE SELF STORAGE COLORADO SPRINGS, COLORADO

### PURPOSE

The purpose of this Final Drainage Report is to identify and analyze the proposed drainage patterns, determine proposed runoff quantities, size drainage structures for conveyance of developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development. The site has not previously been platted or studied.

#### **GENERAL DESCRIPTION**

This Final Drainage Report (FDR) is an analysis of approximately 17.22 acres of developed land located at 6001 E Platte Ave. The site is currently in use as and landscaping materials yard and is being developed as a mini storage facility. The site is in the northwest quarter of Section 18, Township 14 South, Range 65 West of the 6<sup>th</sup> Principal Meridian within El Paso County. The parcels are bounded to the north by Motel Road and E Platte Ave, to the east by two unplatted lots, to the south by an unplatted lot and LOT 2 COLORADO SPRINGS AIRPORT FIL NO 1B, and to the west by unplatted lots. (see vicinity map in appendix).

The site lies within the Sand Creek Basin, with storm runoff surface draining west across the site, before flowing onto the neighboring property where Sand Creek East Fork is located.

Soils for this project are delineated by the map in the appendix as Blakeland loamy sand (8), 1 to 9 percent slopes. Soils in the study area are shown as mapped by NRCS in the "Soils Survey of El Paso County Area" and contains soils of Hydrologic Group A.

The site is currently developed with mostly dirt surfaces, some gravel and asphalt areas, and minimal vegetation that is mostly native grasses around the perimeter. The site drains to the west, with an average slope of 6.6%.

#### **EXISTING DRAINAGE CONDITIONS**

There are multiple existing buildings, a weight scale, miles of retaining or freestanding walls being used to create material storage areas, and a pond (low area that doesn't drain) on the site. Most of the west side of the site has a berm before an embankment drops down, which results in little runoff leaving the site. The existing pond area is said to be largely paved (unconfirmed), so most runoff would leave the site by evaporation.

There are ten drainage basins, four of which are offsite. See attached Existing Drainage Map in the appendix.

#### Offsite Basins

Basin OS-Z consists of 6.34 acres of existing dirt and gravel roads (construction yard) located on the eastern adjacent property and its runoff ( $Q_5=6.1 \text{ cfs}$ ,  $Q_{100}=16.7 \text{ cfs}$ ) sheet flows west to Design Point Z on the eastern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-Y consists of 8.15 acres of existing dirt and gravel roads (construction yard) and undeveloped native grasses located on the eastern adjacent property and its runoff ( $Q_5=3.6$  cfs,  $Q_{100}=15.4$  cfs) sheet flows southwest to Design Point Y on the eastern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-X consists of 1.20 acres of undeveloped native grass area located on the southern adjacent property and its runoff ( $Q_5=0.4$  cfs,  $Q_{100}=2.3$  cfs) sheet flows north to Design Point X on the southern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin OS-W consists of 0.45 acres of undeveloped native grass area and asphalt pavement located on the northern adjacent property and its runoff ( $Q_5=0.5$  cfs,  $Q_{100}=1.3$  cfs) sheet flows southwest to Design Point W on the northern property line of the site. This basin is offsite and runoff flows into Basin EX-B (discussed below).

#### **Onsite Basins**

Basin EX-A consists of 0.3 acres of landscaping areas and buildings located at the north side of the site and its runoff ( $Q_5=0.2$  cfs,  $Q_{100}=0.8$  cfs) sheet flows west to Design Point A on the northern property line of the site. This basin is offsite and runoff flows into Basin EX-C (discussed below).

Basin EX-B consists of 0.64 acres of landscaping areas, buildings, some pavement, and a swale located on the north side of the site and its runoff ( $Q_5=1.1$  cfs,  $Q_{100}=2.6$  cfs) sheet flows west to Design Point B, a low point on the northern property line of the site. This basin is onsite and runoff flows into the low point at Design Point B. Once the basin overtops, excess runoff flows north and then west and into Sand Creek.

Basin EX-C consists of 15.4 acres of the bulk of the site and includes buildings, roads, storage areas, and parking areas located central to the site and its runoff ( $Q_5=29.0$  cfs,  $Q_{100}=65.0$  cfs) sheet flows west to Design Point C at the low point of the existing low area that doesn't drain on the west side of the site.

Basin EX-D consists of 1.05 acres of primarily dirt storage/stockpile area located on the south side of the property and its runoff ( $Q_5=0.3$  cfs,  $Q_{100}=1.9$  cfs) sheet flows northwest to Design Point D on the eastern property line of the site, indicating that the runoff enters Basin OS-X. The combined flow ( $Q_5=0.7$  cfs,  $Q_{100}=4.2$  cfs) sheet flows north and into Basin EX-C.

Basin EX-E consists of 0.16 acres of earth embankment located on the west side of the site and its runoff ( $Q_5=0.1$  cfs,  $Q_{100}=0.5$  cfs) sheet flows west to Design Point E on the western property line of the site. This basin is onsite and runoff flows into Sand Creek.

Basin EX-F consists of 0.23 acres of earth embankment located on the northwest side of the site and its runoff ( $Q_5=0.1$  cfs,  $Q_{100}=0.7$  cfs) sheet flows northwest to Design Point F on the northwest property line of the site. This basin is onsite and runoff flows into Sand Creek.

#### **PROPOSED DRAINAGE CONDITIONS**

Runoff in the developed conditions consists of 14 basins, four of which are offsite. Below is a description of the runoff in the developed conditions and how it will be safely routed, treated and detained. Basins on the west half of the site are proposed as undeveloped, but the proposed detention pond has been sized to account for their future commercial development.

#### Offsite Basins

Offsite Basins OS-Y, OS-X, & OS-W remain the same as in the existing condition. Offsite Basin OS-Z is broken down into 8 Basins in the proposed conditions. See below for discussions

### **Onsite Basins**

Basin PR-1 consists of 0.07 acres of landscaping area located behind proposed Building B and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.2$  cfs) sheet flows west to Design Point 1 on the northern property line of the site. This basin is onsite and runoff flows into Basin OS-W and into a proposed public 18" RCP culvert with a grooved headwall under Motel Road, eventually entering Design Point W (discussed in Existing Drainage Conditions).

Basin PR-2 consists of 0.13 acres of landscaping area located behind proposed Build A and its runoff ( $Q_5=0.1$  cfs,  $Q_{100}=0.4$  cfs) sheet flows northwest to Design Point 2 on the northern property line of the site. This basin is onsite and runoff flows into Basin OS-W and eventually to Design Point W (discussed in Existing Drainage Conditions).

Basin OS-ZA consists of 0.44 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=0.4$  cfs,  $Q_{100}=1.1$  cfs) sheet flows west onto Basin PR-10A and is directed to Design Point 10A. Basin PR-10A consists of 0.06 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10A. The combined runoff ( $Q_5=0.4$  cfs,  $Q_{100}=1.3$  cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #14 ( $Q_5=0.4$  cfs,  $Q_{100}=1.3$  cfs) a proposed private 12" HDPE storm pipe to Design Point 10B.

Basin OS-ZB consists of 0.22 acres of construction yard located on the eastern adjacent property

and its runoff (Q<sub>5</sub>=0.2 cfs, Q<sub>100</sub>=0.6 cfs) sheet flows west onto Basin PR-10B and is directed to Design Point 10B. Basin PR-10B consists of 0.03 acres of landscape area along the eastern property line of the site and its runoff (Q<sub>5</sub>=0.0 cfs, Q<sub>100</sub>=0.1 cfs) is also directed to Design point 10B. The combined runoff (Q<sub>5</sub>=0.2 cfs, Q<sub>100</sub>=0.6 cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #15 (Q<sub>5</sub>=0.7 cfs, Q<sub>100</sub>=1.9 cfs) a proposed private 15" HDPE storm pipe to Design Point 10C.

Basin OS-ZC consists of 0.23 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=0.2$  cfs,  $Q_{100}=0.6$  cfs) sheet flows west onto Basin PR-10C and is directed to Design Point 10C. Basin PR-10C consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10C. The combined runoff ( $Q_5=0.2$  cfs,  $Q_{100}=0.7$  cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #16 ( $Q_5=0.9$  cfs,  $Q_{100}=2.6$  cfs) a proposed private 15" HDPE storm pipe to Design Point 10D.

Basin OS-ZD consists of 0.86 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=0.8$  cfs,  $Q_{100}=2.3$  cfs) sheet flows west onto Basin PR-10D and is directed to Design Point 10D. Basin PR-10D consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10D. The combined runoff ( $Q_5=0.8$  cfs,  $Q_{100}=2.4$  cfs) is captured in an 18" diameter dome inlet and routed south via Pipe Run #17 ( $Q_5=1.7$  cfs,  $Q_{100}=5.0$  cfs) a proposed private 18" HDPE storm pipe to Design Point 10E.

Basin OS-ZH consists of 1.24 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=1.2$  cfs,  $Q_{100}=3.3$  cfs) sheet flows west onto Basin PR-10H and is directed to Design Point 10H. Basin PR-10H consists of 0.06 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10H. The combined runoff ( $Q_5=1.2$  cfs,  $Q_{100}=3.4$  cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #18 ( $Q_5=1.2$  cfs,  $Q_{100}=3.4$  cfs) a proposed private 12" HDPE storm pipe to Design Point 10G. Basin OS-ZG consists of 0.85 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=0.8$  cfs,  $Q_{100}=2.3$  cfs) sheet flows west onto Basin PR-10G and is directed to Design Point 10G. Basin PR-10G consists of 0.05 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10G. The combined runoff ( $Q_5=0.8$  cfs,  $Q_{100}=2.4$  cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #19 ( $Q_5=2.0$  cfs,  $Q_{100}=5.8$  cfs) a proposed private 15" HDPE storm pipe to Design Point 10F.

Basin OS-ZF consists of 0.56 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=0.5$  cfs,  $Q_{100}=1.5$  cfs) sheet flows west onto Basin PR-10F and is directed to Design Point 10F. Basin PR-10F consists of 0.04 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.1$  cfs) is also directed to Design point 10F. The combined runoff ( $Q_5=0.6$  cfs,  $Q_{100}=1.6$  cfs) is captured in an 18" diameter dome inlet and routed north via Pipe Run #20 ( $Q_5=2.6$  cfs,  $Q_{100}=7.4$  cfs) a proposed private 15" HDPE storm pipe to Design Point 10E.

In case of failure in any of the inlets for Basins OS-ZA thru OS-ZH, runoff will overtop the high point and be directed to one of the other inlets in the adjacent Basin.

Basin OS-ZE consists of 1.94 acres of construction yard located on the eastern adjacent property and its runoff ( $Q_5=1.9$  cfs,  $Q_{100}=5.1$  cfs) sheet flows west onto Basin PR-10E and is directed to Design Point 10E. Basin PR-10E consists of 0.09 acres of landscape area along the eastern property line of the site and its runoff ( $Q_5=0.0$  cfs,  $Q_{100}=0.2$  cfs) is also directed to Design point 10E. The combined runoff ( $Q_5=1.9$  cfs,  $Q_{100}=5.3$  cfs) is captured in a Type "C" inlet. and routed north via Pipe Run #13 a proposed private 24" RCP storm pipe routes the combined flow ( $Q_5=6.2$  cfs,  $Q_{100}=17.7$  cfs) of Design Point 10E and Pipe runs #17 & #20 to Design Point 3A. In case of failure in the inlet, runoff will overtop the proposed retaining wall at the west side of the basin and follow drainage patterns as described in Basin PR-3.

Basin PR-3A consists of 1.10 acres consists almost entirely of buildings and pavement central to the site. The runoff ( $Q_5=5.0$  cfs,  $Q_{100}=8.9$  cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3A, 2 private Type 13 inlets located in the proposed

4' concrete crosspan captures ( $Q_5=2.5$  cfs,  $Q_{100}=3.4$  cfs), while the flow by ( $Q_5=2.5$  cfs,  $Q_{100}=5.4$  cfs) continues in the crosspan west to Design Point 3B. Pipe run PR#9 a private 24'' RCP routes the combined flow ( $Q_5=8.7$  cfs,  $Q_{100}=21.1$  cfs) of the captured flow and Pipe Run #13's flow toward Design Point 3B.

Basin PR-3B consists of 1.11 acres consists almost entirely of buildings and pavement central to the site. The runoff ( $Q_5=5.0$  cfs,  $Q_{100}=8.9$  cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3B ( $Q_5=7.5$  cfs,  $Q_{100}=14.4$  cfs) the flow by from Design Point 3A and Basin PR-3B 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures ( $Q_5=4.0$  cfs,  $Q_{100}=5.7$  cfs), while the flow by ( $Q_5=4.0$  cfs,  $Q_{100}=9.5$  cfs) continues in the crosspan west to Design Point 3C. Pipe run PR#8 a private 30'' RCP routes the combined flow ( $Q_5=12.5$  cfs,  $Q_{100}=26.7$  cfs) of the captured flow and Pipe Run #9's flow toward Design Point 3C.

Basin PR-3C consists of 0.96 acres consists almost entirely of buildings and pavement central to the site. The runoff ( $Q_5=4.3$  cfs,  $Q_{100}=7.8$  cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3C ( $Q_5=8.0$  cfs,  $Q_{100}=16.6$  cfs) the flow by from Design Point 3B and Basin PR-3C 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures ( $Q_5=4.1$  cfs,  $Q_{100}=6.1$  cfs), while the flow by ( $Q_5=4.3$  cfs,  $Q_{100}=11.1$  cfs) continues in the crosspan west to Design Point 3D. Pipe run PR#7 a private 30" RCP routes the combined flow ( $Q_5=16.5$  cfs,  $Q_{100}=32.7$  cfs) of the captured flow and Pipe Run #8's flow toward Design Point 3C.

Basin PR-3D consists of 0.97 acres consists almost entirely of buildings and pavement central to the site. The runoff (Q<sub>5</sub>=4.4 cfs, Q<sub>100</sub>=7.8 cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3D (Q<sub>5</sub>=8.4 cfs, Q<sub>100</sub>=18.4 cfs) the flow by from Design Point 3C and Basin PR-3D 3 private Type 13 inlets located in the proposed 4' concrete crosspan captures (Q<sub>5</sub>=4.2 cfs, Q<sub>100</sub>=6.5 cfs), while the flow by (Q<sub>5</sub>=4.5 cfs, Q<sub>100</sub>=12.4 cfs) continues in the crosspan west to Design Point 3E. Pipe run PR#6 a private 30" RCP routes the combined flow (Q<sub>5</sub>=20.6 cfs, Q<sub>100</sub>=39.0 cfs) of the captured flow and Pipe Run #7's flow toward a junction with PR#11 (see below for discussion) Design Point 3C. Basin PR-4 consists of 3.66 acres gravel yard, with the two future canopies included in the drainage calcs, located on the south side of the site and its runoff ( $Q_5=8.2$  cfs,  $Q_{100}=16.8$  cfs) sheet flows northwest to either Design Point 4, inlet #9, a proposed private 16' D10-R sump inlet, located on the south-central side of the site, or into the concrete cross-pans at the north side of the basin, flows west, and eventually into ether Inlet #8, a proposed private CDOT Type 14 sump inlet or Inlet #9. The combined flow ( $Q_5=11.8$  cfs,  $Q_{100}=32.2$  cfs) from Basin PR-4 and the offsite Basin OS-Y is conveyed via Pipe Run 12, a proposed private 36" RCP, to an inlet junction at Inlet #8, a proposed private 36" RCP, to an inlet junction at Inlet #3. From here the combined flow ( $Q_5=32.4$  cfs,  $Q_{100}=71.2$  cfs) of Pipe run #6 & #11 is routed west via Pipe Run #5 & #4 private 42" RCPs. If either of these inlets become clogged, runoff will overtop and be collected in the opposite inlet.

Basin PR-3E consists of 1.01 acres consists almost entirely of buildings and pavement central to the site. The runoff ( $Q_5$ =4.5 cfs,  $Q_{100}$ =8.1 cfs) flows via concrete cross-pans from the north and south to the center drive aisle. At Design Point 3E ( $Q_5$ =8.8 cfs,  $Q_{100}$ =20.2 cfs) the flow by from Design Point 3D and Basin PR-3E a private 20' Type R inlet located in the c&g captures the flow Pipe run PR#4 a private 42" RCP routes the combined flow ( $Q_5$ =32.4 cfs,  $Q_{100}$ =71.2 cfs) of the captured flow and Pipe Run #5's a proposed private 42" RCP, to an inlet junction at Inlet #1, a proposed private 20' D10-R sump inlet. The combined runoff ( $Q_5$ =41.2 cfs,  $Q_{100}$ =91.4 cfs) is then routed west via Pipe Runs #3 (proposed private 42" RCP), #2 (proposed private 48" RCP), and #1 (proposed private 48" RCP) to the proposed forebay for the proposed Pond 1 (discussed below). If any of these sump inlets become clogged, runoff will continue flowing in the concrete crosspans until it is collected in the next downstream inlet. If the proposed 20' D10-R sump inlet becomes clogged, runoff will back-up downstream until it is captured in Inlet #2 (see proposed drainage map).

Basin PR-5 consists of 0.56 acres of native grasses and a grass swale located at the south-central side of the site and its runoff ( $Q_5=0.1$  cfs,  $Q_{100}=0.9$  cfs) is conveyed via grass swale to Design Point 4. This swale also collects flows from Basin OS-X (discussed in Existing Drainage Conditions) in the amount of  $Q_5=0.4$  cfs and  $Q_{100}=2.3$  cfs. The combined runoff ( $Q_5=0.5$  cfs,  $Q_{100}=3.3$  cfs) flows over a proposed 1' deep 6'x17' D<sub>50</sub>=6" riprap pad and into an existing swale

just south of the south-central property line which eventually enters Sand Creek.

Basin PR-6 consists of 6.64 acres of the bulk of the western side of the site including the proposed private Pond 1 EDB (Design Point 6) and its runoff ( $Q_5=3.1$  cfs,  $Q_{100}=13.1$  cfs) sheet flows west and into the proposed pond. This pond also collects flow from the underground conveyance system from Pipe Run 1, a proposed private 48" RCP, in the amount of  $Q_5=41.2$  cfs and  $Q_{100}=91.4$  cfs. The combined runoff ( $Q_5=44.3$  cfs,  $Q_{100}=104.5$  cfs) enters the pond at Design Point 6 where it is treated for water quality and/or detained.

The following basins in the current design contribute flow to Design Point 6: OS-ZA thru OS-ZH, OS-Y, PR-3A thru PR-3E, PR-4, PR-6, & PR-10A thru PR-10H. However, the pond is sized assuming that in the future Basins PR-5, PR-9 & OS-X will be routed to the pond for detention and WQ treatment. Basins OS-Z & OS-Y used actual existing ground cover to calculate impervious area while Basins PR-3, PR-4, & PR-10 used an imperviousness based upon the site development for this SDP and CD's. Basins PR-6, PR-5, & PR-9 assumed an imperviousness of 30%, while offsite Basin OS-X was assumed to be 2%. The 32.68 acres tributary to the EDB have an imperviousness of 38%.

All The combined flow of the currently proposed development and future commercial development will be captured in a 2.283-acre-foot Extended Detention Basin. Runoff entering the pond through the storm sewer system will be routed into a 638 cu-ft concrete lined forebay with a 1.5 feet high concrete cutoff wall. A 3-inch notch in the wall drains the flow to a 2' concrete trickle channel, then the runoff is routed to the 3.0' deep micropool which has a 6" deep initial surcharge area. Based upon this we need a WQCV of 0.475 ac-ft, an EURV volume of 0.851 ac-ft and 100-year volume of 0.957 ac-ft for a total volume needed of 2.283 ac-ft. The bottom of the micropool elevation is at 6199.50 while the top of the ISV elevation is at 6202.00 with the first orifice hole having a 1-3/8" diameter. The second orifice hole is set at 6203.70 and is 1-3/16" diameter, and the third one is set 6205.40 with a 1-7/8" diameter hole. The WQCV release is 0.20 cfs with a height of 6206.23. The EURV release is 0.4 cfs and has an elevation of 6208.68. A 4'x4' outlet structure is set at 6210.00. An 18" HDPE storm pipe with no restrictor will release  $Q_5=0.4$  cfs and

 $Q_{100}$ =21.6 cfs discharge to an 8' wide concrete stilling basin at the west property line. The 5-Year and 100-Year HWL are 6208.53 and 6210.86 respectively. The concentrated outflow will dissipate energy by using the standing water in the stilling basin. Runoff will then outfall onto the adjacent property from the stilling basin via sheet flow. This sheet flow matches the existing condition of the existing pond filling up overtopping and sheet flowing west offsite over the existing prairie. The 23' wide emergency spillway is set at 6211.00 and has a flow of 0.69' deep, thus giving a freeboard of 1.31'.

The estimated on-site discharge into Sand Creek in the existing condition is  $Q_5=30.8$  cfs and  $Q_{100}=71.5$  cfs. The estimated on-site discharge into Sand Creek in the proposed condition is  $Q_5=1.2$  cfs and  $Q_{100}=26.7$  cfs, indicating a decrease in the discharge rate into Sand Creek of  $\%_5=96.1\%$  and  $\%_{100}=62.7\%$ . Flows are discharged from the pond outlet structure into the stilling basin where energy is dissipated to prevent erosion to the banks of Sand Creek, where it is then discharged into the catchment area of Sand Creek flowing west to the flowline of the creek, where it is transported south through the creek and ultimately into Fountain Creek. As Sand Creek handles the flow in the existing condition sufficiently, it can be assumed that Sand Creek will be able to handle the decreased flow from the developed site sufficiently. The Sand Creek outfall is considered a **suitable outfall** because the Sand Creek East Fork is considered a hydraulically adequate historic ephemeral channel segment and was the subject of previous channel improvements including drop structures, check dams, and boulders for erosion control. These existing channel improvements were identified via observation during site visits and of aerial photos, and they appear to be of sufficient quality.

Basin PR-7 consists of 0.34 acres of earth embankment located on the northwest side of the site and its runoff ( $Q_5=0.2$  cfs,  $Q_{100}=1.1$  cfs) sheet flows northwest, off-site, to Design Point 7, indicating that the runoff flows into Sand Creek.

Basin PR-8 consists of 0.30 acres of earth embankment located at the west side of the site, west of the proposed private Pond 1 EDB and its runoff ( $Q_5=0.2$  cfs,  $Q_{100}=1.0$  cfs) sheet flows west, offsite, to Design Point 8, indicating that the runoff flows into Sand Creek.

Basin PR-9 consists of 0.59 acres of earth embankment and flatter area located at the southwest corner of the site and its runoff ( $Q_5=0.2$  cfs,  $Q_{100}=1.5$  cfs) sheet flows west, off-site, to Design Point 9, indicating that the runoff flows into Sand Creek.

There is one storm sewer system proposed on the site. This system collects runoff from the drain trench along the east property line and the two curb inlets in the mini-storage area and pipes the runoff to the detention pond. There are a series of area inlets along the storm pipe in the ministorage area that are not required to capture runoff, but will lessen the surface flow along the central drive aisle. The storm pipes on the west side of the site have been sized to have some extra capacity so that the future commercial development can tie into them as well.

In an effort to protect receiving water and as part of the "four-step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

- Reduce Runoff- There is no runoff reduction in the proposed mini-storage area. The proposed parking area south of the mini-storage has been surfaced with gravel, which will reduce runoff. These items will reduce the volume of runoff using ponding and infiltration. The proposed Extended Detention Basin also significantly reduces the runoff that flows off-site.
- Stabilize Drainageways- There are no existing or proposed drainageways onsite. The Sand Creek East Fork is located west of the site; however, channel improvements have previously been constructed there.
- 3. Provide Water Quality Capture Volume (WQCV)- The Extended Detention Basin has been sized and designed to sufficiently capture the required WQCV and slowly release it though the outlet structure, thereby allowing solids and contaminants to settle out. There are a few on-site basins whose runoff is not treated in the proposed EDB. These areas consist mostly of earthen embankment. The runoff from these areas sheet flow over grassed earth, treating the runoff for water quality before it reaches Sand Creek. These areas are excluded per the ECM 1.7.1.B.7, "sites with land disturbance to undeveloped land that will remain undeveloped" and ECM 1.7.1.C.1 the County may exclude up to 20 percent, not to exceed 1 ac., of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site.

 Consider Need for Industrial and Commercial BMPs- The proposed development is an indoor mini storage facility; therefore, no Industrial and Commercial BMPs have been proposed.

### HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

## HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria Manual – Volumes 1 & 2, latest editions. The pertinent data sheets are included in the appendix of this report.

A culvert is proposed at one of the site entrances. Design calculations have been included for the proposed culvert.

Street runoff capacity calculations for the onsite drive isles have been included.

### FLOODPLAIN STATEMENT

No portion of this site is within a designated FEMA floodplain, as determined by FIRM Number 08041C0754 G, dated December 7, 2018 (see appendix).

### WATER QUALITY

The proposed Pond 1 detention basin provides water quality treatment for nearly all of the proposed development.

Runoff from basins PR-1, PR-2, PR-5, PR-7, PR-8, and PR-9 are not captured by the proposed detention pond. Basins PR-1 and PR-2 are landscaping areas along the property line with no impervious area. Basin PR-5 is an undeveloped area with a swale that directs offsite flow back offsite, with no impervious area. Basins PR-7 and PR-8 are earth embankments on the downstream edge of the site that drop 10-15 feet in elevation, with no impervious area. Basin PR-9 is part flatter undeveloped area and part earth embankment on the downstream edge of the site that doesn't flow toward the detention pond, with no impervious area. The combined area of these basins is 2.40 acres, with zero impervious area. Exclusions for WQ treatment Basins OS-W and PR-5 are referencing Exemption ECM I.7.1.C.1 - the County may exclude up to 20 percent, not to exceed 1 ac., of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site. 1.00 ac can't drain to the pond due to location and grade impediment. Basins PR-1, PR-2, PR-5, PR-7, PR-8, and PR-9 are using the exclusion of Exemption ECM I.7.1.B.7 - land disturbance to undeveloped land that will remain undeveloped. 1.44 ac will not drain to pond due to location & grade impediments but will remain open & landscape areas. - See the Water Quality Treatment Summary Table & Water Quality Treatment Map for treatment area types and exclusions in the appendix.

### **CONSTRUCTION COST OPINION**

#### **Public Reimbursable**

None

#### **Public Non-Reimbursable**

None

#### **Private Non-Reimbursable**

| 1. 48" RCP  | 260 LF | \$ 245 | \$<br>63,700 |
|-------------|--------|--------|--------------|
| 2. 42" RCP  | 80 LF  | \$ 201 | \$<br>16,080 |
| 3. 36" RCP  | 385 LF | \$ 151 | \$<br>58,135 |
| 4. 30" RCP  | 170 LF | \$ 123 | \$<br>20,910 |
| 5. 24" RCP  | 115 LF | \$ 98  | \$<br>11,270 |
| 6. 18" HDPE | 98 LF  | \$ 60  | \$<br>5,880  |

| 7. 15" HDPE                | 320 LF   | \$ 50     | \$     | 16,000  |
|----------------------------|----------|-----------|--------|---------|
| 8. 12" HDPE                | 148 LF   | \$ 40     | \$     | 5,920   |
| 9. 6' Manhole              | 1 EA     | \$ 15,130 | \$     | 15,130  |
| 10. 7' Manhole             | 1 EA     | \$ 15,130 | \$     | 15,130  |
| 9. CDOT Type C Area Inlet  | 9 EA     | \$ 6,037  | \$     | 54,333  |
| 10. 16' D-10-R Curb Inlet  | 1 EA     | \$ 13,835 | \$     | 13,835  |
| 11. 20' D-10-R Curb Inlet  | 1 EA     | \$ 20,000 | \$     | 20,000  |
| 12. 18" Dia Dome Inlets    | 7 EA     | \$ 2,500  | \$     | 17,500  |
| EDB (Pond 1)               |          |           |        |         |
| 13. Concrete Forebays      | 1 EA     | \$ 7,000  | \$     | 7,000   |
| 14. Trickle Channel        | 73 LF    | \$ 80     | \$     | 5,840   |
| 15. 4'x4' Outlet Structure | 1 EA     | \$ 4,000  | \$     | 4,000   |
| 16. Micropool              | 1 EA     | \$ 5,000  | \$     | 5,000   |
| 17. Pond Earthworks        | 3,157 CY | \$ 6      | \$     | 18,942  |
| 18. Spillway               | 1 EA     | \$ 7,000  | \$     | 7,000   |
| 19. Reseed/Stabilization   | 1 EA     | \$ 2,000  | \$     | 2,000   |
| 20. Aggregate Base Course  | 306 CY   | \$ 66     | \$     | 20,196  |
| 21. Stilling Basin         | 1 EA     | \$ 5,000  | \$     | 5,000   |
|                            |          | To        | tal \$ | 408.801 |

#### Total \$ 408,801

### **DRAINAGE FEES**

This drainage report is part of a site development application; therefore, no drainage fees are due.

### MAINTENANCE

The Extended Detention Basin is private and will be maintained by the property owner. The proposed storm sewers are private and will be maintained by the property owner.

## SUMMARY

Development of this site will not adversely affect the surrounding development (see discussion on suitable outfall location earlier in report). Site runoff and storm drain appurtenances from the development will not adversely affect the downstream and surrounding developments and will be

safely routed to the proposed extended detention basin reduced to the allowable pre-developed rates while slowly treating the water quality capture volume. Runoff from areas of disturbance with no development are being excluded per exemptions and sheet flow offsite in historic paths and rates.

## PREPARED BY: TERRA NOVA ENGINEERING, INC.

Dane Frank, P.E. Project Engineer

Jobs/2419.00/Drainage/241900 FDR.doc

## BIBLIOGRAPHY

"Urban Storm Drainage Criteria Manual Volume 1" Prepared by Mile High Flood Control District, Revised August 2018.

"Urban Storm Drainage Criteria Manual Volume 2" Prepared by Mile High Flood Control District, Revised September 2017.

"Urban Storm Drainage Criteria Manual Volume 3" Prepared by Mile High Flood Control District, Revised January 2021.

USDA NRCS Web Soil Survey.

FEMA Flood Insurance Rate Map Dated December 7, 2018.

"Drainage Criteria Manual County of El Paso, Colorado Volume 1" approved October 2018 and prepared by El Paso County

"Drainage Criteria Manual County of El Paso, Colorado Volume 2" approved October 2018 and prepared by El Paso County

"Drainage Criteria Manual County of El Paso, Colorado Volume 1 update Chapter 6" approved October 2018 and prepared by El Paso County

"El Paso County Stormwater Drainage Facilities Maintenance Policy" approved October 2018 and prepared by El Paso County

VICINITY MAP

# El Paso County - Community: Property Search

## Schedule Number: 5418000075

PLATTE SELF STORAGE Vicinity Map





## NRCS SOILS MAP



**Conservation Service** 

Web Soil Survey National Cooperative Soil Survey

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAP L                 | EGEND     |                       | MAP INFORMATION                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Area of Interes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | st (AOI)              | 33        | Spoil Area            | The soil surveys that comprise your AOI were mapped at                                                                         |
| Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ea of Interest (AOI)  | ۵         | Stony Spot            | 1:24,000.                                                                                                                      |
| Soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | å         | Very Stony Spot       | Warning: Soil Map may not be valid at this scale.                                                                              |
| Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oil Map Unit Polygons | Ŵ         | Wet Spot              | Enlargement of maps beyond the scale of mapping can cause                                                                      |
| 🫹 So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oil Map Unit Lines    | ∆         | Other                 | misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of         |
| Sc Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oil Map Unit Points   | 4         | Special Line Features | contrasting soils that could have been shown at a more detailed                                                                |
| Special Poir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Water Fea |                       | scale.                                                                                                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | owout                 |           | Streams and Canals    | Please rely on the bar scale on each map sheet for map                                                                         |
| 🖾 Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prrow Pit             | Transport | ation                 | measurements.                                                                                                                  |
| 💥 Cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay Spot               | +++       | Rails                 | Source of Map: Natural Resources Conservation Service                                                                          |
| Closed | osed Depression       | ~         | Interstate Highways   | Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                            |
| 💥 Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ravel Pit             | ~         | US Routes             | Maps from the Web Soil Survey are based on the Web Mercato                                                                     |
| 🔹 Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ravelly Spot          | ~         | Major Roads           | projection, which preserves direction and shape but distorts                                                                   |
| 🙆 La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indfill               | ~         | Local Roads           | distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more |
| 🙏 La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iva Flow              | Backgrou  |                       | accurate calculations of distance or area are required.                                                                        |
| ملان Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arsh or swamp         | Buongrou  |                       | This product is generated from the USDA-NRCS certified data a                                                                  |
| 🙊 Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ine or Quarry         |           |                       | of the version date(s) listed below.                                                                                           |
| Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iscellaneous Water    |           |                       | Soil Survey Area: El Paso County Area, Colorado<br>Survey Area Data: Version 21, Aug 24, 2023                                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erennial Water        |           |                       | Soil map units are labeled (as space allows) for map scales                                                                    |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ock Outcrop           |           |                       | 1:50,000 or larger.                                                                                                            |
| Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aline Spot            |           |                       | Date(s) aerial images were photographed: Aug 19, 2018—Se                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | andy Spot             |           |                       | 23, 2018                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | everely Eroded Spot   |           |                       | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nkhole                |           |                       | imagery displayed on these maps. As a result, some minor                                                                       |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ide or Slip           |           |                       | shifting of map unit boundaries may be evident.                                                                                |
| 3 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |                       |                                                                                                                                |
| ා Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | odic Spot             |           |                       |                                                                                                                                |



## Map Unit Legend

| Map Unit Symbol             | Map Unit Name                               | Acres in AOI | Percent of AOI |
|-----------------------------|---------------------------------------------|--------------|----------------|
| 8                           | Blakeland loamy sand, 1 to 9 percent slopes | 16.5         | 100.0%         |
| Totals for Area of Interest |                                             | 16.5         | 100.0%         |



## El Paso County Area, Colorado

### 8—Blakeland loamy sand, 1 to 9 percent slopes

#### Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

#### Map Unit Composition

Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Blakeland**

#### Setting

Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

#### **Typical profile**

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

#### **Properties and qualities**

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

#### Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

USDA

Minor Components

#### Other soils

Percent of map unit: 1 percent Hydric soil rating: No

#### Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

## **Data Source Information**

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 21, Aug 24, 2023



## FEMA FIRM MAP

#### NOTES TO USERS

e Program II do his man is for use i a map is for use in administering the National Flood Insurance Program. It does necessarily identify all areas subject to flooding, particularly from local drainage rose of small size. The community map respectively should be consulted for soble updated or additional flood heared information.

To obtain more obtained information in a mass where **Bose Tool Televations** (BFC), about Reducelings them also industriving, where we can concepting the problem and the main industriving, where we can concept the consult the R-Pollem and Rookev, Data and/or Summary of Silvater Elevations tables contrained within the Tool situations that BFCs allocated the also had obtained to the same that BFCs allocated the situation of the SIL industriant situation of the R-RM regression trained within the tool situation data presented in the R-RM regot should be ultimate. Accordingly, fitoid elevation data presented in the R-RM regot should be ultimate.

Coastal Base Flood Elevations shown on this map apply only landward of 0.07 North American Vertical Datum of 1988 (MAVDB). Users of the FIRM should be aware that coastal flood elevations are also provided in the Summary of Billwater Elevators table in the Flood Insurance Study report for this patientity of Billwater between in the Summary of Billwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevatio shown on this FIRM.

Boundaries of the **Boodways** were computed at cross sections and interpolate bateware cross sections. The Roodways were based on hydrautic considerations with regard to requirements of the National Rood Insurance Program. Roodway width and other pertinent Boodway data are provided in the Flood Insurance Study report for the jurisdiction.

Certain areas not in Special Flood Hazard Åreas may be protected by flood centre structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of the map are Universal Tearcovers Mercolor (UTM) zone 13. The hydrodial disk with the second second second production of PHMs for adjacent instructions may need in sight patients differences in map leasure scores µridiction boundaries. These differences do not affect the accuracy of this PHM.

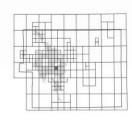
Pool devations on the max are inferenced to be North American Vertical Datum of 1988 (NAVD93). These food servations must be compared to structure and ground elevations devented the area werklich afters. To inferenzion regarding conversion between the National Geodetic Vertical Datum of 1953 and the North American Vertical Datum of 1954, valid http://www.grunoia.gov/ or contact the National Geodetic Survey atthis to between the National Geodetic Vertical Datum of 1953 and the North American Vertical Datum of 1954, valid http://www.grunoia.gov/ or contact the National Geodetic Survey atthe following advices:

NGS Information Services NOAA, NINGS12 National Candetric Survey SSMC-3, #9202 1315 East-West Highway Sever Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncas.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pasc County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more draised and up-to-date stream channel configurations and Boolgian islamations than those shown on the providus. Field to this juridictur, have been adjusted to confront is been environed channel or configuration. An result, the Fixed Profes and Fixed Dublic date may environ configuration. An a regulation of the configuration and the stream of the configuration and append insch-context subschräften ablack date may environ. Budy Report Insch-context subschräften ablack date may environ and flootsey. Date Tables if applicable the stream of the main the may represent the typicable model and the stream of the main and flootsey. Date Tables if applicable, the HT Singert A a result, the profess baselines may devide significantly from the me base may channel representation and may space subschräft flootsey. Date the stream of the main the may devide significantly from the me base may channel representation and may space subschräft the the mean stream of the main the main stream of the stream of the stream of the main the main stream of the stream of the stream of the main the main the stream of the str


Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annerations or de-annevations may have occurred after this map was published, map users should context appropriate community officials to verify current oxporate timt locations.

Please wher to the separately printed Map Index for an overview map of the county showing the layout of map panels, community map repository addresses; and a Using of Communities table contraining National Flood Insurance Program dates for each community as well as a taking of the panels on which each community is provided.

Contact FEMA Map Service Center (MSC) via the FEMA Map Internation aXchange (FMX) 1477-305-2027 for information on available products associated with the PRON, Available products may include periodually tabled ultimer of Map Lengue, a strate of the service of the service of the service of the service of the the reached by Fax at 1-600-356-9620 and its weeke at the livew map Lengue.







This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partier (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA)

Additional Flood Hazard information and resources ar available from local communities and the Colorad



3230000 F 104541535.0 1041-437 2 507 3225000 FT JOINS PANEL 0752 39- 50- 37, 52 161 102 37 107 Send Creek East Fork EL PASO COUNTY UNINCORPORATED AREAS 000059 ZONE AE CTIVO KADO Ş -(6) 0 E 7 6 ZONE CONTAINED ZONE 4219 ZONE AE PMMMP/T -3 2 ZONE ------"K0214 SPACE VILLAGE AVE (P)-619 To Π ZONEAE ANNUAL CHANCE FLOOD DISCHARGE SITE CITY OF COLORADO SPRINGS 00060 BATED AREAS EL PASO COUNTY CITY OF COLORADO SPHINGS ZONE AE Nend Creek-East Fork These are the base flood TON ARE elevations that need to be PETERSON AIR FORCE BASE EL PASO COUNTY CITY OF COLORADO SPRINGS shown on the drainage 1365000 FT maps 1/1214 18 0 17 ZONE D ZONE D + -Carton N CITY OF COLORADO SPRINGS 000060 AE Sand Creek East Fork SULUK -non ALCONT. ZONE D BOUNDARY COINCIDENT WITH CORPORATE BOUNDARY 1380000 FT ZONE D 20 19 CITY OF COLORADO SPRINGS PETERSON AIR FORCE BASE COLORADO SPRENOS MUNICIPAL ARPORT 38" 48 45.00" 38" 48" 45, 52 JOINS PWNEL 0762 STATE 104147 15.001 154' 45' 7.50' \$25\*\*\*\*E Sugarange. NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 14 SOUTH, RANGE 65 WEST.



DECEMBER 7, 2018

Federal Emergency Management Agency

HYDROLOGIC CALCULATIONS

## PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

|       | TOTAL   | DEVELO  | PED / IMPE     | DUIDUS           | UNDEVELO | DED / NON D    | <b>MPERVIOUS</b> | U/E L          | CUTED            | WEICH           | WEIGHTED CA       |  |
|-------|---------|---------|----------------|------------------|----------|----------------|------------------|----------------|------------------|-----------------|-------------------|--|
|       |         | DEVELO  | PED / IMPE     | RVIOUS           | UNDEVELO | PED / NON-II   | WPERVIOUS        | WEI            | GHTED            | WEIGH           | IEDCA             |  |
| BASIN | AREA    | AREA    | C <sub>5</sub> | C                | AREA     | C              | C                | C              | C                | CA <sub>5</sub> | CA                |  |
|       | (Acres) | (Acres) | $C_5$          | C <sub>100</sub> | (Acres)  | C <sub>5</sub> | C <sub>100</sub> | C <sub>5</sub> | C <sub>100</sub> | CA <sub>5</sub> | CA <sub>100</sub> |  |
| OS-Z  | 6.34    | 1.90    | 0.90           | 0.96             | 4.44     | 0.08           | 0.35             | 0.33           | 0.53             | 2.07            | 3.38              |  |
| OS-Y  | 8.15    | 0.82    | 0.90           | 0.96             | 7.33     | 0.08           | 0.35             | 0.16           | 0.41             | 1.32            | 3.35              |  |
| OS-X  | 1.20    | 0.02    | 0.90           | 0.96             | 1.18     | 0.08           | 0.35             | 0.09           | 0.36             | 0.11            | 0.43              |  |
| OS-W  | 0.45    | 0.11    | 0.90           | 0.96             | 0.34     | 0.08           | 0.35             | 0.28           | 0.50             | 0.13            | 0.22              |  |
| EX-A  | 0.30    | 0.05    | 0.90           | 0.96             | 0.25     | 0.08           | 0.35             | 0.22           | 0.45             | 0.07            | 0.14              |  |
| EX-B  | 0.64    | 0.29    | 0.90           | 0.96             | 0.35     | 0.08           | 0.35             | 0.45           | 0.63             | 0.29            | 0.40              |  |
| EX-C  | 15.4    | 7.70    | 0.90           | 0.96             | 7.70     | 0.08           | 0.35             | 0.49           | 0.66             | 7.55            | 10.09             |  |
| EX-D  | 1.05    | 0.02    | 0.90           | 0.96             | 1.03     | 0.08           | 0.35             | 0.10           | 0.36             | 0.10            | 0.38              |  |
| EX-E  | 0.16    | 0.00    | 0.90           | 0.96             | 0.16     | 0.08           | 0.35             | 0.08           | 0.35             | 0.01            | 0.06              |  |
| EX-F  | 0.23    | 0.00    | 0.90           | 0.96             | 0.23     | 0.08           | 0.35             | 0.08           | 0.35             | 0.02            | 0.08              |  |
| Total | 33.92   | 10.91   |                |                  |          |                |                  |                |                  | Calc:           | DLF               |  |
|       |         |         | 4              |                  |          |                |                  |                |                  | Date:           | 11/8//2024        |  |
|       |         |         |                |                  |          |                |                  |                |                  | Checked:        | JS                |  |

## EXISTING

## PLATTE SELF STORAGE RUNOFF SUMMARY

## EXISTING

|         | AREA    | WEIG            | HTED             |                | OVEF   | RLAND   |                | STRE   | ET / CH | ANNEL F  | FLOW  | T <sub>C</sub> | INTE           | <b>NSITY</b>     | TOTAL    | FLOWS            |
|---------|---------|-----------------|------------------|----------------|--------|---------|----------------|--------|---------|----------|-------|----------------|----------------|------------------|----------|------------------|
| BASIN   | TOTAL   | C <sub>5</sub>  | C <sub>100</sub> | C <sub>5</sub> | Length | Slope   | T <sub>t</sub> | Length | Slope   | Velocity | $T_t$ | TOTAL          | I <sub>5</sub> | I <sub>100</sub> | Q5       | Q <sub>100</sub> |
|         | (Acres) | * For Calcs See | Runoff Summary   | $C_5$          | (ft)   | (ft/ft) | (min)          | (ft)   | (%)     | (fps)    | (min) | (min)          | (in/hr)        | (in/hr)          | (c.f.s.) | (c.f.s.)         |
| OS-Z    | 6.34    | 0.33            | 0.53             | 0.33           | 300    | 0.02    | 19.3           | 230    | 2.0%    | 1.4      | 2.7   | 22.0           | 2.9            | 4.9              | 6.1      | 16.7             |
| OS-Y    | 8.15    | 0.16            | 0.41             | 0.16           | 300    | 0.03    | 20.4           | 505    | 3.0%    | 1.7      | 4.9   | 25.3           | 2.7            | 4.6              | 3.6      | 15.4             |
| OS-X    | 1.20    | 0.09            | 0.36             | 0.09           | 300    | 0.05    | 18.5           | 0      | 5.0%    | 2.2      | 0.0   | 18.5           | 3.2            | 5.4              | 0.4      | 2.3              |
| OS-W    | 0.45    | 0.28            | 0.50             | 0.28           | 300    | 0.07    | 13.5           | 160    | 7.0%    | 2.6      | 1.0   | 14.5           | 3.6            | 6.0              | 0.5      | 1.3              |
| EX-A    | 0.30    | 0.22            | 0.45             | 0.22           | 300    | 0.07    | 14.5           | 0      | 7.0%    | 2.6      | 0.0   | 14.5           | 3.6            | 6.0              | 0.2      | 0.8              |
| EX-B    | 0.64    | 0.45            | 0.63             | 0.45           | 300    | 0.07    | 10.7           | 250    | 7.0%    | 2.6      | 1.6   | 12.2           | 3.8            | 6.4              | 1.1      | 2.6              |
| EX-C    | 15.4    | 0.49            | 0.66             | 0.49           | 300    | 0.07    | 10.0           | 330    | 7.0%    | 2.6      | 2.1   | 12.1           | 3.8            | 6.4              | 29.0     | 65.0             |
| EX-D    | 1.05    | 0.10            | 0.36             | 0.10           | 300    | 0.03    | 21.9           | 40     | 3.0%    | 1.7      | 0.4   | 22.2           | 2.9            | 4.9              | 0.3      | 1.9              |
| EX-E    | 0.16    | 0.08            | 0.35             | 0.08           | 30     | 0.40    | 3.0            | 0      | 40.0%   | 6.3      | 0.0   | 5.0            | 5.2            | 8.7              | 0.1      | 0.5              |
| EX-F    | 0.23    | 0.08            | 0.35             | 0.08           | 35     | 0.24    | 3.8            | 0      | 24.0%   | 4.9      | 0.0   | 5.0            | 5.2            | 8.7              | 0.1      | 0.7              |
| <u></u> |         |                 |                  |                |        |         |                |        |         |          |       |                |                |                  | Calc:    | DLF              |
|         |         |                 |                  |                |        |         |                |        |         |          |       |                |                |                  | Date:    | 11/8//2024       |
|         |         |                 |                  |                |        |         |                |        |         |          |       |                |                |                  | Checked: | JS               |

# PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

| Design   | <i>Contributing</i>      | Area  | Flow (cfs) |              |  |  |
|----------|--------------------------|-------|------------|--------------|--|--|
| Point(s) | Basins                   | (ac)  | Q 5        | <b>Q</b> 100 |  |  |
| Ζ        | OS-Z                     | 6.34  | 6.1        | 16.7         |  |  |
| Y        | OS-Y                     | 8.15  | 3.6        | 15.4         |  |  |
| X        | OS-X & DP D              | 2.25  | 0.7        | 4.2          |  |  |
| W        | OS-W & DP A              | 0.75  | 0.7        | 2.2          |  |  |
| A        | EX-A                     | 0.30  | 0.2        | 0.8          |  |  |
| В        | EX-B & DP W              | 1.39  | 1.8        | 4.7          |  |  |
| С        | EX-C, DP D, DP X, & DP Y | 26.85 | 33.6       | 86.5         |  |  |
| D        | EX-D                     | 1.05  | 0.3        | 1.9          |  |  |
| E        | EX-E                     | 0.16  | 0.1        | 0.5          |  |  |
| F        | EX-F                     | 0.23  | 0.1        | 0.7          |  |  |
|          |                          |       | Calc:      | DLF          |  |  |
|          |                          |       | Date:      | 11/8//2024   |  |  |
|          |                          |       | Checked:   | JS           |  |  |

## EXISTING

## PLATTE SELF STORAGE AREA RUNOFF COEFFICIENT (C) SUMMARY

## PROPOSED

|               | TOTAL           | DEVELO          | PED / IMPE     | RVIOUS           | UNDEVELO        | PED / NON-II   | <b>MPERVIOUS</b> | WEI            | GHTED            | WEIGHTED CA     |                   |  |
|---------------|-----------------|-----------------|----------------|------------------|-----------------|----------------|------------------|----------------|------------------|-----------------|-------------------|--|
| BASIN         | AREA<br>(Acres) | AREA<br>(Acres) | C <sub>5</sub> | C <sub>100</sub> | AREA<br>(Acres) | C <sub>5</sub> | C <sub>100</sub> | C <sub>5</sub> | C <sub>100</sub> | CA <sub>5</sub> | CA <sub>100</sub> |  |
| OS-ZA         | 0.44            | 0.13            | 0.90           | 0.96             | 0.30            | 0.08           | 0.35             | 0.33           | 0.53             | 0.14            | 0.23              |  |
| OS-ZB         | 0.22            | 0.06            | 0.90           | 0.96             | 0.15            | 0.08           | 0.35             | 0.33           | 0.53             | 0.07            | 0.12              |  |
| OS-ZC         | 0.23            | 0.07            | 0.90           | 0.96             | 0.16            | 0.08           | 0.35             | 0.33           | 0.53             | 0.07            | 0.12              |  |
| OS-ZD         | 0.86            | 0.26            | 0.90           | 0.96             | 0.60            | 0.08           | 0.35             | 0.33           | 0.53             | 0.28            | 0.46              |  |
| OS-ZE         | 1.94            | 0.58            | 0.90           | 0.96             | 1.36            | 0.08           | 0.35             | 0.33           | 0.53             | 0.63            | 1.03              |  |
| OS-ZF         | 0.56            | 0.17            | 0.90           | 0.96             | 0.39            | 0.08           | 0.35             | 0.33           | 0.53             | 0.18            | 0.30              |  |
| OS-ZG         | 0.85            | 0.26            | 0.90           | 0.96             | 0.60            | 0.08           | 0.35             | 0.33           | 0.53             | 0.28            | 0.46              |  |
| OS-ZH         | 1.24            | 0.37            | 0.90           | 0.96             | 0.87            | 0.08           | 0.35             | 0.33           | 0.53             | 0.40            | 0.66              |  |
| OS-Y          | 8.15            | 0.82            | 0.90           | 0.96             | 7.33            | 0.08           | 0.35             | 0.16           | 0.41             | 1.32            | 3.35              |  |
| OS-X          | 1.20            | 0.02            | 0.90           | 0.96             | 1.18            | 0.08           | 0.35             | 0.09           | 0.36             | 0.11            | 0.43              |  |
| OS-W          | 0.45            | 0.11            | 0.90           | 0.96             | 0.34            | 0.08           | 0.35             | 0.28           | 0.50             | 0.13            | 0.22              |  |
| PR-1          | 0.07            | 0.00            | 0.90           | 0.96             | 0.07            | 0.08           | 0.35             | 0.08           | 0.35             | 0.01            | 0.02              |  |
| PR-2          | 0.13            | 0.00            | 0.90           | 0.96             | 0.13            | 0.08           | 0.35             | 0.08           | 0.35             | 0.01            | 0.05              |  |
| PR-3A         | 1.10            | 1.10            | 0.90           | 0.96             | 0.00            | 0.08           | 0.35             | 0.90           | 0.96             | 0.99            | 1.05              |  |
| PR-3B         | 1.11            | 1.11            | 0.90           | 0.96             | 0.00            | 0.08           | 0.35             | 0.90           | 0.96             | 1.00            | 1.06              |  |
| PR-3C         | 0.96            | 0.96            | 0.90           | 0.96             | 0.00            | 0.08           | 0.35             | 0.90           | 0.96             | 0.86            | 0.92              |  |
| PR-3D         | 0.97            | 0.97            | 0.90           | 0.96             | 0.00            | 0.08           | 0.35             | 0.90           | 0.96             | 0.87            | 0.93              |  |
| PR-3E         | 1.01            | 1.01            | 0.90           | 0.96             | 0.00            | 0.08           | 0.35             | 0.90           | 0.96             | 0.91            | 0.97              |  |
| PR-4          | 3.66            | 2.38            | 0.90           | 0.96             | 1.28            | 0.08           | 0.35             | 0.61           | 0.75             | 2.24            | 2.73              |  |
| PR-5          | 0.56            | 0.01            | 0.90           | 0.96             | 0.55            | 0.08           | 0.35             | 0.09           | 0.36             | 0.05            | 0.20              |  |
| PR-6          | 6.64            | 0.66            | 0.90           | 0.96             | 5.98            | 0.08           | 0.35             | 0.16           | 0.41             | 1.07            | 2.73              |  |
| <b>PR-</b> 7  | 0.34            | 0.01            | 0.90           | 0.96             | 0.33            | 0.08           | 0.35             | 0.10           | 0.37             | 0.04            | 0.13              |  |
| PR-8          | 0.30            | 0.01            | 0.90           | 0.96             | 0.29            | 0.08           | 0.35             | 0.11           | 0.37             | 0.03            | 0.11              |  |
| PR-9          | 0.59            | 0.01            | 0.90           | 0.96             | 0.58            | 0.08           | 0.35             | 0.09           | 0.36             | 0.06            | 0.21              |  |
| PR-10A        | 0.06            | 0.00            | 0.90           | 0.96             | 0.06            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.02              |  |
| PR-10B        | 0.03            | 0.00            | 0.90           | 0.96             | 0.03            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.01              |  |
| <b>PR-10C</b> | 0.04            | 0.00            | 0.90           | 0.96             | 0.04            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.01              |  |
| PR-10D        | 0.04            | 0.00            | 0.90           | 0.96             | 0.04            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.02              |  |
| <b>PR-10E</b> | 0.09            | 0.00            | 0.90           | 0.96             | 0.09            | 0.08           | 0.35             | 0.08           | 0.35             | 0.01            | 0.03              |  |
| <b>PR-10F</b> | 0.04            | 0.00            | 0.90           | 0.96             | 0.04            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.01              |  |
| PR-10G        | 0.05            | 0.00            | 0.90           | 0.96             | 0.05            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.02              |  |
| <b>PR-10H</b> | 0.06            | 0.00            | 0.90           | 0.96             | 0.06            | 0.08           | 0.35             | 0.08           | 0.35             | 0.00            | 0.02              |  |
| Total         | 33.97           | 11.07           |                |                  |                 |                |                  |                |                  | Calc:           | DLF               |  |
|               |                 |                 | 3              |                  |                 |                |                  |                |                  | Date:           | 11/8/2024         |  |

Checked: JS

## PLATTE SELF STORAGE RUNOFF SUMMARY

### PROPOSED

| BASIN<br>OS-ZA<br>OS-ZB<br>OS-ZC | TOTAL<br>(Acres)<br>0.44<br>0.22<br>0.23 | C <sub>5</sub><br>* For Cales See<br>0.33 | C <sub>100</sub><br>Runoff Summary | C <sub>5</sub> | Length |         |       |        |       |          |       |       |                |                  |          |                  |
|----------------------------------|------------------------------------------|-------------------------------------------|------------------------------------|----------------|--------|---------|-------|--------|-------|----------|-------|-------|----------------|------------------|----------|------------------|
| OS-ZB                            | 0.44 0.22                                |                                           | Runoff Summary                     | C5             |        | Slope   | Tt    | Length | Slope | Velocity | $T_t$ | TOTAL | I <sub>5</sub> | I <sub>100</sub> | Q5       | Q <sub>100</sub> |
| OS-ZB                            | 0.22                                     | 0.33                                      |                                    | - 5            | (ft)   | (ft/ft) | (min) | (ft)   | (%)   | (fps)    | (min) | (min) | (in/hr)        | (in/hr)          | (c.f.s.) | (c.f.s.)         |
|                                  |                                          |                                           | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 230    | 2.0%  | 1.4      | 2.7   | 22.0  | 2.9            | 4.9              | 0.4      | 1.1              |
| OS-ZC                            | 0.23                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 231    | 2.0%  | 1.4      | 2.7   | 22.0  | 2.9            | 4.9              | 0.2      | 0.6              |
|                                  | 0.25                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 232    | 2.0%  | 1.4      | 2.7   | 22.0  | 2.9            | 4.9              | 0.2      | 0.6              |
| OS-ZD                            | 0.86                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 233    | 2.0%  | 1.4      | 2.7   | 22.0  | 2.9            | 4.9              | 0.8      | 2.3              |
| OS-ZE                            | 1.94                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 234    | 2.0%  | 1.4      | 2.8   | 22.0  | 2.9            | 4.9              | 1.9      | 5.1              |
| OS-ZF                            | 0.56                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 235    | 2.0%  | 1.4      | 2.8   | 22.0  | 2.9            | 4.9              | 0.5      | 1.5              |
| OS-ZG                            | 0.85                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 236    | 2.0%  | 1.4      | 2.8   | 22.0  | 2.9            | 4.9              | 0.8      | 2.3              |
| OS-ZH                            | 1.24                                     | 0.33                                      | 0.53                               | 0.33           | 300    | 0.02    | 19.3  | 237    | 2.0%  | 1.4      | 2.8   | 22.0  | 2.9            | 4.9              | 1.2      | 3.3              |
| OS-Y                             | 8.15                                     | 0.16                                      | 0.41                               | 0.16           | 300    | 0.03    | 20.4  | 505    | 3.0%  | 1.7      | 4.9   | 25.3  | 2.7            | 4.6              | 3.6      | 15.4             |
| OS-X                             | 1.20                                     | 0.09                                      | 0.36                               | 0.09           | 300    | 0.05    | 18.5  | 0      | 5.0%  | 2.2      | 0.0   | 18.5  | 3.2            | 5.4              | 0.4      | 2.3              |
| OS-W                             | 0.45                                     | 0.28                                      | 0.50                               | 0.28           | 300    | 0.07    | 13.5  | 160    | 7.0%  | 2.6      | 1.0   | 14.5  | 3.6            | 6.0              | 0.5      | 1.3              |
| PR-1                             | 0.07                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.08    | 9.3   | 0      | 8.0%  | 2.8      | 0.0   | 9.3   | 4.2            | 7.1              | 0.0      | 0.2              |
| PR-2                             | 0.13                                     | 0.08                                      | 0.35                               | 0.08           | 45     | 0.25    | 4.3   | 0      | 25.0% | 5.0      | 0.0   | 5.0   | 5.2            | 8.7              | 0.1      | 0.4              |
| PR-3A                            | 1.10                                     | 0.90                                      | 0.96                               | 0.90           | 100    | 0.02    | 2.9   | 450    | 2.0%  | 2.8      | 2.7   | 5.5   | 5.0            | 8.4              | 5.0      | 8.9              |
| PR-3B                            | 1.11                                     | 0.90                                      | 0.96                               | 0.90           | 100    | 0.02    | 2.9   | 451    | 2.0%  | 2.8      | 2.7   | 5.5   | 5.0            | 8.4              | 5.0      | 8.9              |
| PR-3C                            | 0.96                                     | 0.90                                      | 0.96                               | 0.90           | 100    | 0.02    | 2.9   | 452    | 2.0%  | 2.8      | 2.7   | 5.5   | 5.0            | 8.4              | 4.3      | 7.8              |
| PR-3D                            | 0.97                                     | 0.90                                      | 0.96                               | 0.90           | 100    | 0.02    | 2.9   | 453    | 2.0%  | 2.8      | 2.7   | 5.5   | 5.0            | 8.4              | 4.4      | 7.8              |
| PR-3E                            | 1.01                                     | 0.90                                      | 0.96                               | 0.90           | 100    | 0.02    | 2.9   | 454    | 2.0%  | 2.8      | 2.7   | 5.5   | 5.0            | 8.4              | 4.5      | 8.1              |
| <b>PR-4</b>                      | 3.66                                     | 0.61                                      | 0.75                               | 0.61           | 100    | 0.02    | 7.0   | 400    | 2.0%  | 1.0      | 6.7   | 13.7  | 3.7            | 6.1              | 8.2      | 16.8             |
| <b>PR-5</b>                      | 0.56                                     | 0.09                                      | 0.36                               | 0.09           | 300    | 0.02    | 25.0  | 0      | 2.0%  | 1.0      | 0.0   | 25.0  | 2.8            | 4.6              | 0.1      | 0.9              |
| PR-6                             | 6.64                                     | 0.16                                      | 0.41                               | 0.16           | 300    | 0.02    | 23.3  | 0      | 2.0%  | 1.0      | 0.0   | 23.3  | 2.9            | 4.8              | 3.1      | 13.1             |
| <b>PR-</b> 7                     | 0.34                                     | 0.10                                      | 0.37                               | 0.10           | 25     | 0.33    | 2.8   | 0      | 33.0% | 4.0      | 0.0   | 5.0   | 5.2            | 8.7              | 0.2      | 1.1              |
| PR-8                             | 0.30                                     | 0.11                                      | 0.37                               | 0.11           | 35     | 0.33    | 3.3   | 0      | 33.0% | 4.0      | 0.0   | 5.0   | 5.2            | 8.7              | 0.2      | 1.0              |
| PR-9                             | 0.59                                     | 0.09                                      | 0.36                               | 0.09           | 100    | 0.06    | 10.1  | 0      | 6.0%  | 1.7      | 0.0   | 10.1  | 4.1            | 6.9              | 0.2      | 1.5              |
| <b>PR-10</b> A                   | 0.06                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 1      | 1.0%  | 1.7      | 0.0   | 10.2  | 4.1            | 6.9              | 0.0      | 0.1              |
| PR-10B                           | 0.03                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 2      | 1.0%  | 1.7      | 0.0   | 10.2  | 4.1            | 6.9              | 0.0      | 0.1              |
| <b>PR-10C</b>                    | 0.04                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 3      | 1.0%  | 1.7      | 0.0   | 10.2  | 4.1            | 6.9              | 0.0      | 0.1              |
| PR-10D                           | 0.04                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 4      | 1.0%  | 1.7      | 0.0   | 10.2  | 4.1            | 6.9              | 0.0      | 0.1              |
| <b>PR-10E</b>                    | 0.09                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 5      | 1.0%  | 1.7      | 0.0   | 10.2  | 4.1            | 6.9              | 0.0      | 0.2              |
| <b>PR-10F</b>                    | 0.04                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 6      | 1.0%  | 1.7      | 0.1   | 10.3  | 4.1            | 6.9              | 0.0      | 0.1              |
| <b>PR-10G</b>                    | 0.05                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 7      | 1.0%  | 1.7      | 0.1   | 10.3  | 4.1            | 6.9              | 0.0      | 0.1              |
| PR-10H                           | 0.06                                     | 0.08                                      | 0.35                               | 0.08           | 100    | 0.06    | 10.2  | 8      | 1.0%  | 1.7      | 0.1   | 10.3  | 4.1            | 6.9              | 0.0      | 0.1              |
|                                  |                                          |                                           |                                    |                |        |         |       |        |       |          |       |       |                |                  | Calc:    | DLF              |
|                                  |                                          |                                           |                                    |                |        |         |       |        |       |          |       |       |                |                  | Date:    | 11/8/2024        |

## PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

## PROPOSED

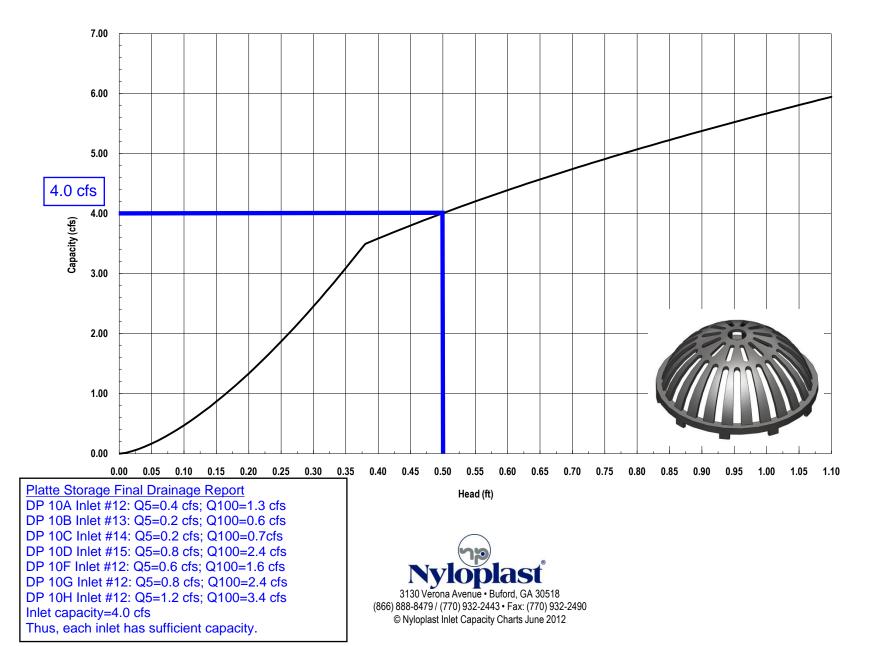
| Design<br>Point(s) | Contributing<br>Basins | Area  | Flow     | (cfs)        |
|--------------------|------------------------|-------|----------|--------------|
| r oini(s)          | Dusins                 | (ac)  | Q 5      | <b>Q</b> 100 |
| 1                  | PR-1                   | 0.07  | 0.0      | 0.2          |
| 2                  | PR-2                   | 0.13  | 0.1      | 0.4          |
| <i>3A</i>          | PR-3A                  | 1.10  | 5.0      | 8.9          |
| <i>3B</i>          | PR-3B & PR 3A FLOW BY  | 1.11  | 7.5      | 14.4         |
| <i>3C</i>          | PR-3C & PR 3B FLOW BY  | 0.96  | 8.4      | 17.2         |
| 3D                 | PR-3D & PR 3C FLOW BY  | 0.97  | 8.6      | 18.9         |
| <i>3E</i>          | PR-3E & PR 3D FLOW BY  | 1.01  | 9.0      | 20.6         |
| 4                  | PR-4 & DP Y            | 11.81 | 11.8     | 32.2         |
| 5                  | PR-5 & DP X            | 1.76  | 0.5      | 3.3          |
| 6                  | PR-6 & PR#1            | 7.74  | 44.9     | 105.2        |
| 7                  | <b>PR-7</b>            | 0.34  | 0.2      | 1.1          |
| 8                  | PR-8                   | 0.30  | 0.2      | 1.0          |
| 9                  | PR-9                   | 0.59  | 0.2      | 1.5          |
| <i>10A</i>         | PR-10A & OS-ZA         | 0.49  | 0.4      | 1.3          |
| <i>10B</i>         | PR-10B & DP ZB         | 0.25  | 0.2      | 0.6          |
| <i>10C</i>         | PR-10C & DP ZC         | 0.27  | 0.2      | 0.7          |
| <i>10D</i>         | PR-10D & DP ZD         | 0.90  | 0.8      | 2.4          |
| <i>10E</i>         | PR-10E & DP ZE         | 2.03  | 1.9      | 5.3          |
| <i>10F</i>         | PR-10F & DP ZF         | 0.60  | 0.6      | 1.6          |
| <i>10G</i>         | PR-10G & DP ZG         | 0.90  | 0.8      | 2.4          |
| <i>10H</i>         | PR-10H & DP ZH         | 1.30  | 1.2      | 3.4          |
| W                  | OS-W, DP 1 & DP 2      | 0.65  | 0.5      | 1.9          |
| X                  | OS-X                   | 1.20  | 0.4      | 2.3          |
| Y                  | OS-Y                   | 8.15  | 3.6      | 15.4         |
|                    |                        |       | Calc:    | DLF          |
|                    |                        |       | Date:    | 11/8/2024    |
|                    |                        |       | Checked: | JS           |

# PLATTE SELF STORAGE PIPE ROUTING SUMMARY

| Pipe<br>Run   | Inlet #     | Contributing<br>Flow Sources | 5 Year<br>Flow (cfs) | 100 Year<br>Flow (cfs) | Slope | Pipe Size<br>& Type | Owner     |
|---------------|-------------|------------------------------|----------------------|------------------------|-------|---------------------|-----------|
| PR#1          | -           | PR#2                         | 41.2                 | 91.4                   | 2.7%  | 48" RCP             | PVT       |
| PR#2          | -           | PR#3                         | 41.2                 | 91.4                   | 2.2%  | 48" RCP             | PVT       |
| <b>PR#3</b>   | #1          | DP 3E & PR#4                 | 41.2                 | 91.4                   | 2.2%  | 42" RCP             | PVT       |
| <b>PR#4</b>   | #2          | PR#5                         | 32.4                 | 71.2                   | 1.7%  | 42" RCP             | PVT       |
| <b>PR#5</b>   | #3          | PR#6 & PR#11                 | 32.4                 | 71.2                   | 2.1%  | 42" RCP             | PVT       |
| <b>PR#6</b>   | #4          | DP 3D & PR#7                 | 20.6                 | 39.0                   | 5.0%  | 30" RCP             | PVT       |
| <b>PR</b> #7  | #5          | DP 3C & PR#8                 | 16.5                 | 32.7                   | 1.9%  | 30" RCP             | PVT       |
| <b>PR#8</b>   | #6          | DP 3B & PR#9                 | 12.5                 | 26.7                   | 1.9%  | 30" RCP             | PVT       |
| <i>PR</i> #9  | #7          | DP3A & PR#13                 | 8.7                  | 21.1                   | 1.9%  | 24" RCP             | PVT       |
| <b>PR</b> #10 | <i>#10</i>  | PR#13                        | 6.2                  | 17.7                   | 1.7%  | 24" RCP             | PVT       |
| <b>PR</b> #11 | <b>#8</b>   | PR#12                        | 11.8                 | 32.2                   | 1.0%  | 36" RCP             | PVT       |
| <b>PR#12</b>  | <b>#9</b>   | DP 4                         | 11.8                 | 32.2                   | 1.0%  | 36" RCP             | PVT       |
| <b>PR#13</b>  | #11         | DP 10E & PR#17 & 20          | 6.2                  | 17.7                   | 1.0%  | 24" RCP             | PVT       |
| <b>PR</b> #14 | #12         | DP 10A                       | 0.4                  | 1.3                    | 1.0%  | 12" HDPE            | PVT       |
| <b>PR#15</b>  | #13         | DP 10B & PR#14               | 0.7                  | 1.9                    | 1.0%  | 15" HDPE            | PVT       |
| PR#16         | #14         | DP 10C & PR#15               | 0.9                  | 2.6                    | 1.0%  | 15" HDPE            | PVT       |
| <b>PR#17</b>  | #15         | DP 10D & PR#16               | 1.7                  | 5.0                    | 1.0%  | 18" HDPE            | PVT       |
| PR#18         | # <b>16</b> | DP 10H                       | 1.2                  | 3.4                    | 1.0%  | 12" HDPE            | PVT       |
| PR#19         | #17         | DP 10G & PR#18               | 2.0                  | 5.8                    | 1.0%  | 15" HDPE            | PVT       |
| PR#20         | # <b>18</b> | DP 10F & PR#19               | 2.6                  | 7.4                    | 1.0%  | 15" HDPE            | PVT       |
| <b>PR#90</b>  | -           | Pond outlet                  | 0.5                  | 11.3                   | 1.4%  | 18" HDPE            | PVT       |
|               |             |                              |                      |                        |       | Calc:               | DLF       |
|               |             |                              |                      |                        |       | Date:               | 11/8/2024 |

Checked: JS

## PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

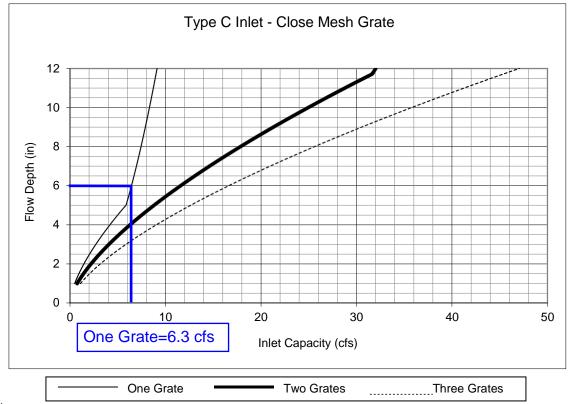

### Water Quality Treatment Summary Table

| water Quanty Freatment Summary Table |               |                                        |                           |                                                      |                                                                |                                                                |                                                |  |
|--------------------------------------|---------------|----------------------------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|--|
| Basin ID                             | Total<br>Area | Total<br>Proposed<br>Disturbed<br>Area | Area<br>Trib to<br>Pond 1 | Disturbed Area<br>Treated via<br>Runoff<br>Reduction | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.C.1 | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.B.# | Applicable WQ<br>Exclusions<br>(App I.7.1.B.#) |  |
|                                      | (ac)          | (ac)                                   | (ac)                      | (ac)                                                 | (ac)                                                           | (ac)                                                           |                                                |  |
| OS-ZA                                | 0.44          | -                                      | 0.44                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZB                                | 0.22          | -                                      | 0.22                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZC                                | 0.23          | -                                      | 0.23                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZD                                | 0.86          | -                                      | 0.86                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZE                                | 1.94          | -                                      | 1.94                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZF                                | 0.56          | -                                      | 0.56                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZG                                | 0.85          | -                                      | 0.85                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-ZH                                | 1.24          | -                                      | 1.24                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-Y                                 | 8.15          | -                                      | 8.15                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-X                                 | 1.20          | -                                      | -                         | -                                                    | -                                                              | -                                                              | -                                              |  |
| OS-W                                 | 0.45          | 0.45                                   | -                         | -                                                    | 0.45                                                           | -                                                              | -                                              |  |
| PR-1                                 | 0.07          | 0.07                                   | -                         | -                                                    | -                                                              | 0.07                                                           | I.7.1.B.7                                      |  |
| PR-2                                 | 0.13          | 0.13                                   | -                         | -                                                    | -                                                              | 0.13                                                           | I.7.1.B.7                                      |  |
| PR-3A                                | 1.10          | 1.10                                   | 1.10                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-3B                                | 1.11          | 1.11                                   | 1.11                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-3C                                | 0.96          | 0.96                                   | 0.96                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-3D                                | 0.97          | 0.97                                   | 0.97                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-3E                                | 1.01          | 1.01                                   | 1.01                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-4                                 | 3.66          | 3.66                                   | 3.66                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| <b>PR-5</b>                          | 0.56          | 0.56                                   | -                         | -                                                    | 0.55                                                           | 0.01                                                           | I.7.1.B.7                                      |  |
| PR-6                                 | 6.64          | 6.64                                   | 6.64                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| <b>PR-7</b>                          | 0.34          | 0.34                                   | -                         | -                                                    | -                                                              | 0.34                                                           | I.7.1.B.7                                      |  |
| PR-8                                 | 0.30          | 0.30                                   | -                         | -                                                    | -                                                              | 0.30                                                           | I.7.1.B.7                                      |  |
| PR-9                                 | 0.59          | 0.59                                   | -                         | -                                                    | -                                                              | 0.59                                                           | I.7.1.B.7                                      |  |
| PR-10A                               | 0.06          | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-10B                               | 0.03          | 0.03                                   | 0.03                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-10C                               | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-10D                               | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-10E                               | 0.09          | 0.09                                   | 0.09                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| <b>PR-10F</b>                        | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| PR-10G                               | 0.05          | 0.05                                   | 0.05                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| <b>PR-10H</b>                        | 0.06          | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                              |  |
| D to                                 | CINC TR       | TOTALS                                 | 30.33                     |                                                      | 1.00                                                           | 1.44                                                           |                                                |  |
|                                      |               | B TO POND IN<br>5, PR-9 & OS-X         | 2.35                      |                                                      |                                                                | Calc:<br>Date:                                                 | DLF<br>11/8/2024                               |  |
| -                                    |               |                                        | <b>32.68</b>              |                                                      |                                                                | Checked:                                                       | JS                                             |  |
| AREA TRIB FOR POND DESIGN            |               | 1 = 1.90                               |                           |                                                      |                                                                | 00                                                             |                                                |  |

HYDRAULIC CALCULATIONS

**INLETS** 

Nyloplast 18" Dome Grate Inlet Capacity Chart




## Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Platte Storage Final Drainage Report

DP 10E Inlet #11: Q5=1.9 cfs; Q100=5.3 cfs Single-grate inlet capacity=6.3 cfs

Thus, inlet has sufficient capacity.



#### Notes:

1. The standard inlet parameters must apply to use these charts.

#### MHFD-Inlet, Version 5.03 (August 2023)

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                         | DP 3A Inlet #7 | DP 3B Inlet #6 | DP 3C Inlet #5 |
|------------------------------------|----------------|----------------|----------------|
| Site Type (Urban or Rural)         | URBAN          | URBAN          | URBAN          |
| Inlet Application (Street or Area) | AREA           | AREA           | AREA           |
| Hydraulic Condition                | Swale          | Swale          | Swale          |
| Inlet Type                         | User-Defined   | User-Defined   | User-Defined   |

#### **USER-DEFINED INPUT**

| User-Defined Design Flows      |     |      |      |
|--------------------------------|-----|------|------|
| Minor Q <sub>Known</sub> (cfs) | 5.0 | 7.5  | 8.0  |
| Major Q <sub>Known</sub> (cfs) | 8.9 | 14.4 | 16.6 |

#### Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

| Receive Bypass Flow from:                        | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
|--------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |

#### Watershed Characteristics

| Subcatchment Area (acres) |  |  |
|---------------------------|--|--|
| Percent Impervious        |  |  |
| NRCS Soil Type            |  |  |

#### Watershed Profile

| Overland Slope (ft/ft) |  |  |
|------------------------|--|--|
| Overland Length (ft)   |  |  |
| Channel Slope (ft/ft)  |  |  |
| Channel Length (ft)    |  |  |

#### Minor Storm Rainfall Input

| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |  |

#### **Major Storm Rainfall Input**

| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |  |

#### CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs)                | 5.0 | 7.5  | 8.0  |
|------------------------------------------------------|-----|------|------|
| Major Total Design Peak Flow, Q (cfs)                | 8.9 | 14.4 | 16.6 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 2.5 | 3.6  | 4.0  |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 5.4 | 8.8  | 10.6 |

### MHFD-Inlet, Version 5.03 (August 2023)

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                         | DP 3D Inlet #4 | DP 3E Inlet #1           | DP 10E Inlet #11 |
|------------------------------------|----------------|--------------------------|------------------|
| Site Type (Urban or Rural)         | URBAN          | URBAN                    | URBAN            |
| Inlet Application (Street or Area) | AREA           | STREET                   | AREA             |
| Hydraulic Condition                | Swale          | In Sump                  | Swale            |
| Inlet Type                         | User-Defined   | CDOT Type R Curb Opening | CDOT Type C      |

#### USER-DEFINED INPUT

| User-Defined Design Flows      |      |      |     |
|--------------------------------|------|------|-----|
| Minor Q <sub>Known</sub> (cfs) | 8.4  | 8.8  | 1.9 |
| Major Q <sub>Known</sub> (cfs) | 18.4 | 20.2 | 5.3 |

#### Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from:                        | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
|--------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |

#### Watershed Characteristics

| Subcatchment Area (acres) |  |  |
|---------------------------|--|--|
| Percent Impervious        |  |  |
| NRCS Soil Type            |  |  |

#### Watershed Profile

| Overland Slope (ft/ft) |  |  |
|------------------------|--|--|
| Overland Length (ft)   |  |  |
| Channel Slope (ft/ft)  |  |  |
| Channel Length (ft)    |  |  |

#### Minor Storm Rainfall Input

| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, $P_1$ (inches)             |  |  |

#### **Major Storm Rainfall Input**

| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |  |

#### CALCULATED OUTPUT

| Minor Total Design Peak Flow, Q (cfs)                | 8.4  | 8.8  | 1.9 |
|------------------------------------------------------|------|------|-----|
| Major Total Design Peak Flow, Q (cfs)                | 18.4 | 20.2 | 5.3 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 4.3  | N/A  | 0.0 |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 12.0 | N/A  | 0.0 |

### MHFD-Inlet, Version 5.03 (August 2023)

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                         | <u>DP 4 Inlet #9</u>     |
|------------------------------------|--------------------------|
| Site Type (Urban or Rural)         | URBAN                    |
| Inlet Application (Street or Area) | STREET                   |
| Hydraulic Condition                | In Sump                  |
| Inlet Type                         | CDOT Type R Curb Opening |

#### **USER-DEFINED INPUT**

| User-Defined Design Flows      |      |
|--------------------------------|------|
| Minor Q <sub>Known</sub> (cfs) | 11.8 |
| Major Q <sub>Known</sub> (cfs) | 32.2 |

#### Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from:                        | No Bypass Flow Received |
|--------------------------------------------------|-------------------------|
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     |

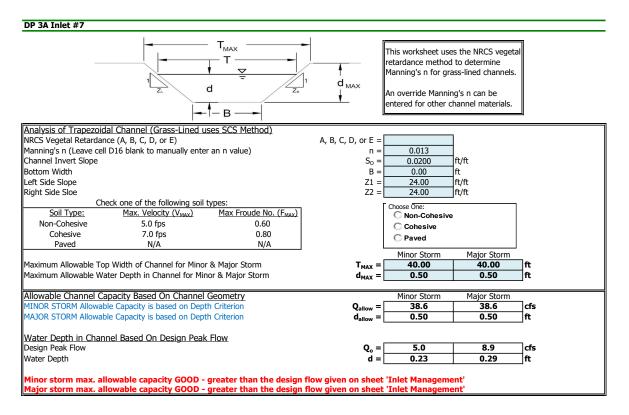
#### Watershed Characteristics

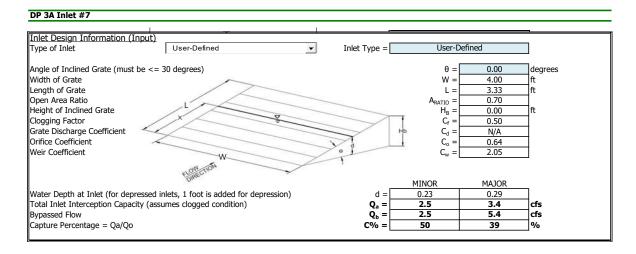
| Subcatchment Area (acres) |  |
|---------------------------|--|
| Percent Impervious        |  |
| NRCS Soil Type            |  |

#### Watershed Profile

| Overland Slope (ft/ft) |  |
|------------------------|--|
| Overland Length (ft)   |  |
| Channel Slope (ft/ft)  |  |
| Channel Length (ft)    |  |

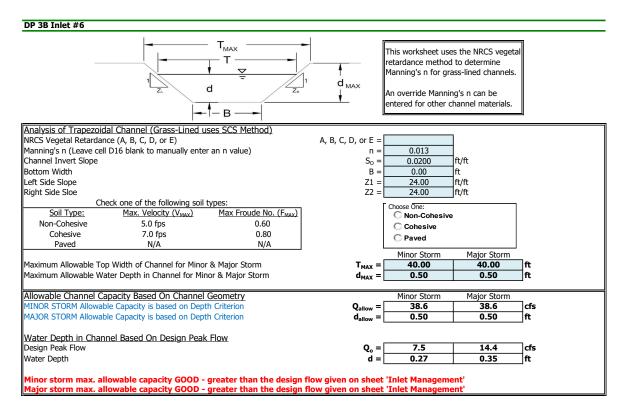
#### Minor Storm Rainfall Input

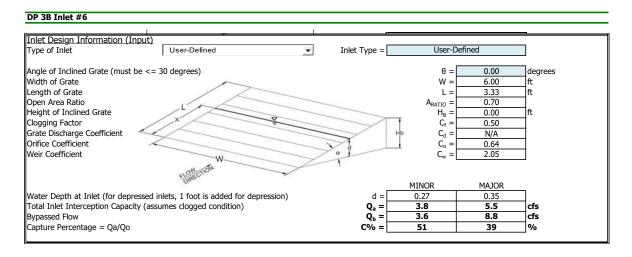

| Design Storm Return Period, T <sub>r</sub> (years) |  |
|----------------------------------------------------|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |


#### Major Storm Rainfall Input

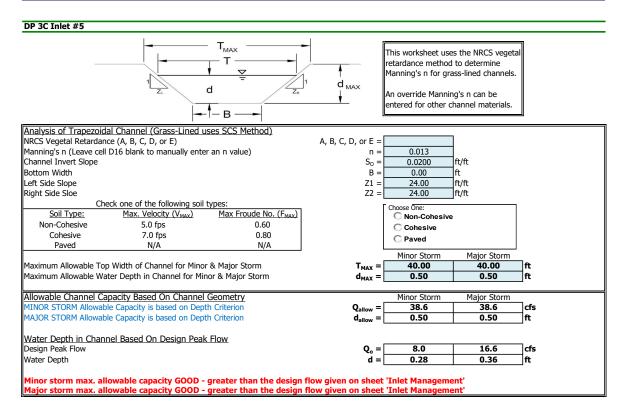
| Design Storm Return Period, T <sub>r</sub> (years) |  |
|----------------------------------------------------|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |

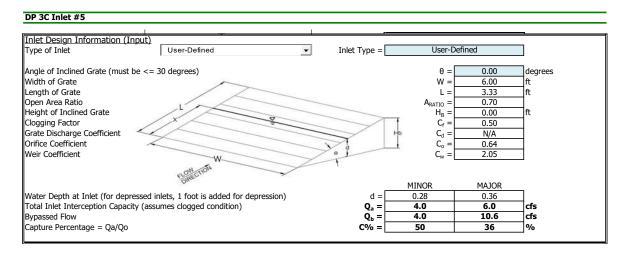
#### CALCULATED OUTPUT


| Minor Total Design Peak Flow, Q (cfs)                | 11.8 |
|------------------------------------------------------|------|
| Major Total Design Peak Flow, Q (cfs)                | 32.2 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A  |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A  |



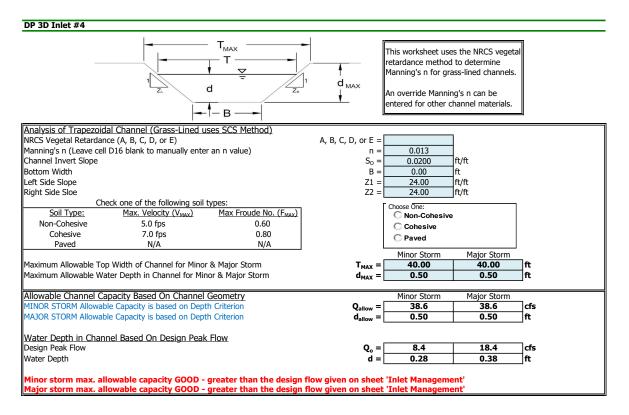


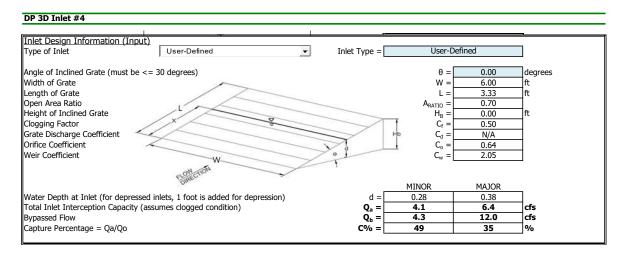


#### Warning 04: Froude No. exceeds USDCM Volume I recommendation.


Provide explanation of how high Fr # is being dealt with. (Typical comment for all inlets that have this warning.)

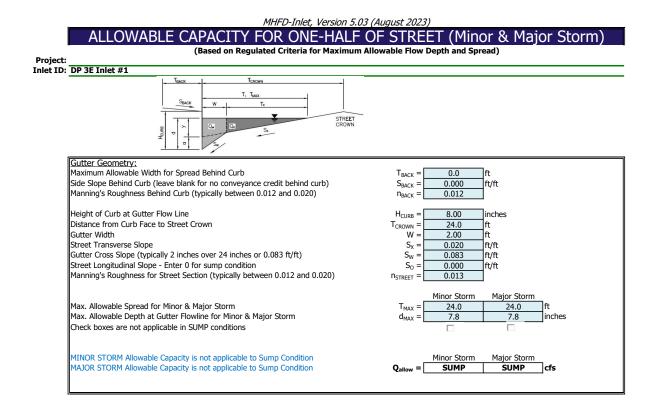




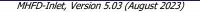

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

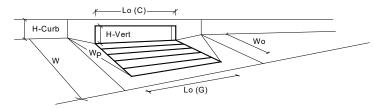




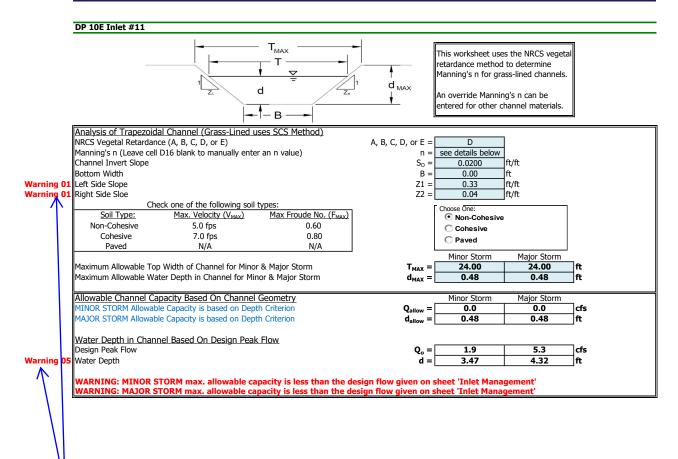


Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

> Provide explanation of how high velocity is being dealt with. (Typical comment for all inlets that have this warning.)

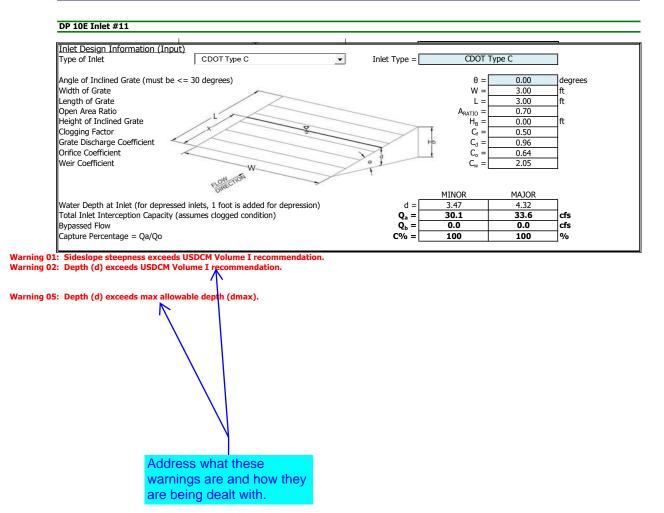


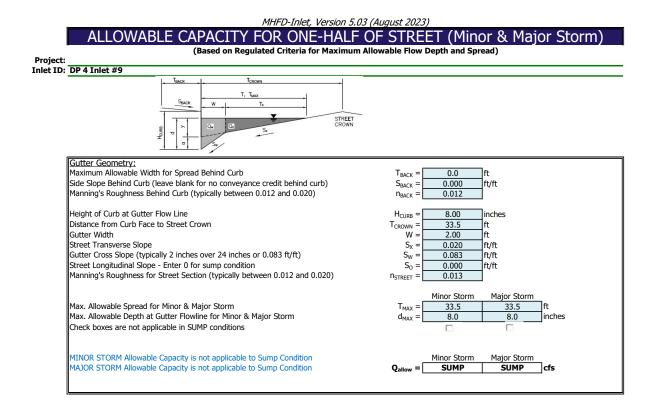




Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

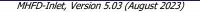


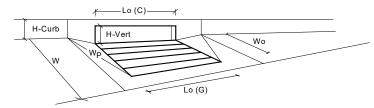

# INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)



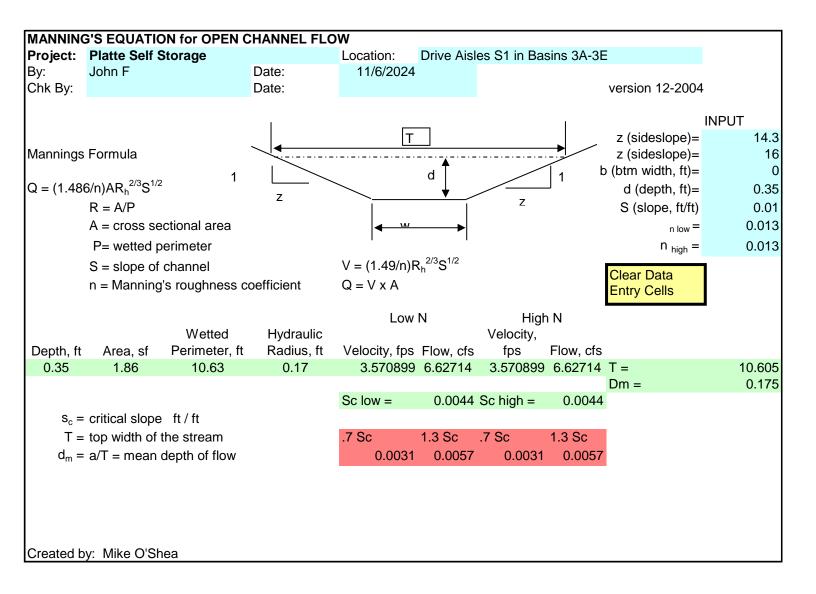

| Design Information (Innut)                                                   |                             | MINOD | MAJOD                 |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|-----------------------|-----------------|
| Design Information (Input) CDOT Type R Curb Opening                          | <b>T</b>                    | MINOR | MAJOR<br>Curb Opening | 7               |
| Type of Inlet                                                                | Type =                      | /1    |                       | la ale a a      |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 1.00  | 1.00                  | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1                     |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 7.3   | 7.3                   | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR                 | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A   | N/A                   | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A   | N/A                   | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A   | N/A                   |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                | N/A   | N/A                   |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A   | N/A                   |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{o}(G) =$                | N/A   | N/A                   |                 |
| Curb Opening Information                                                     |                             | MINOR | MAJOR                 |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 20.00 | 20.00                 | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00                  | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00                  | inches          |
| Angle of Throat                                                              | Theta =                     | 63.40 | 63.40                 | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00  | 2.00                  | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10  | 0.10                  |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60  | 3.60                  | 1               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{o}(C) =$                | 0.67  | 0.67                  |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR                 |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A                   | ∃ft             |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.44  | 0.44                  | -Ift            |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A                   |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>curb</sub> =        | 0.86  | 0.86                  | 1               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A                   | -               |
|                                                                              |                             |       |                       | <b>_</b>        |
|                                                                              | -                           | MINOR | MAJOR                 | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =[    | 20.6  | 20.6                  | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 8.8   | 20.2                  | cfs             |



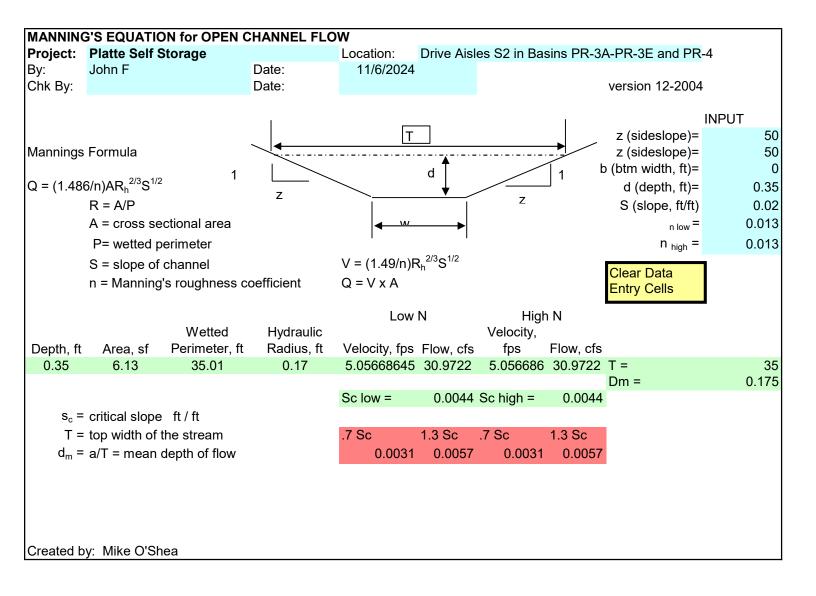


Address what these warnings are and how they are being dealt with.

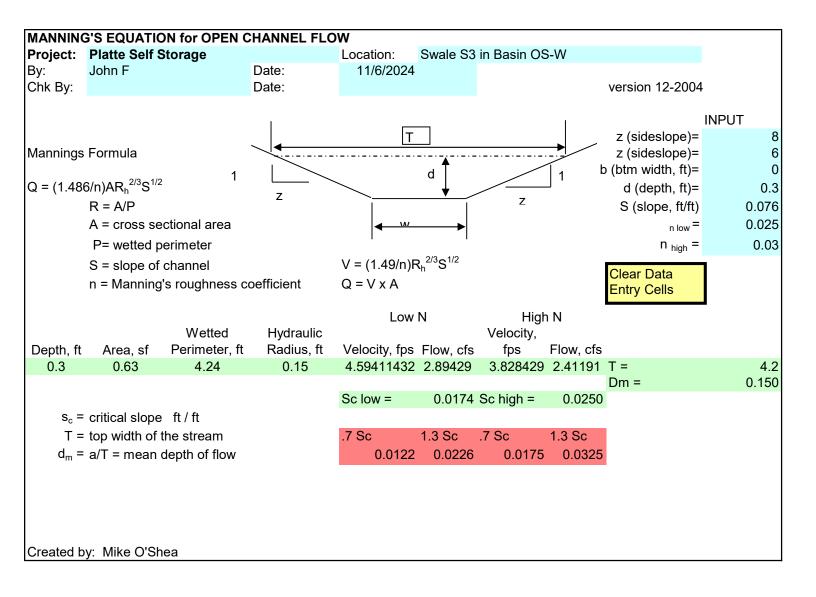


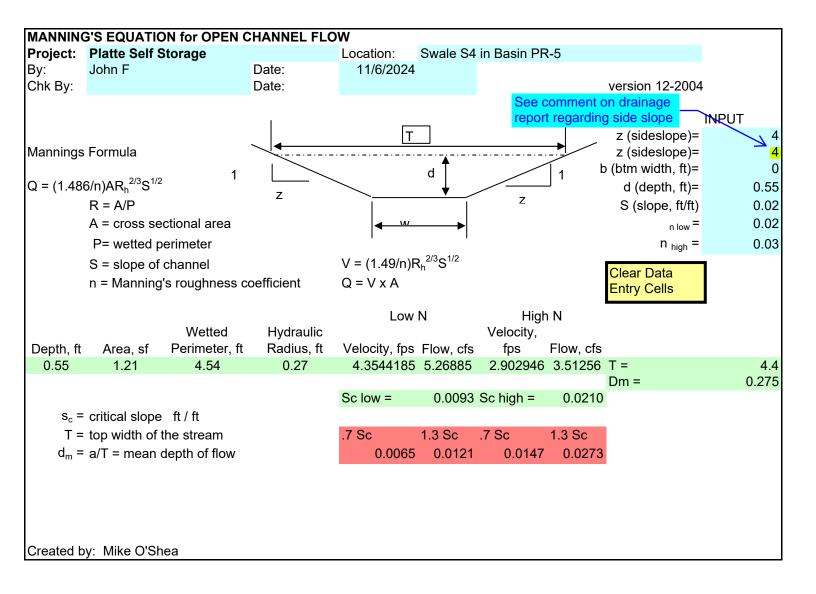



# INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.03 (August 2023)

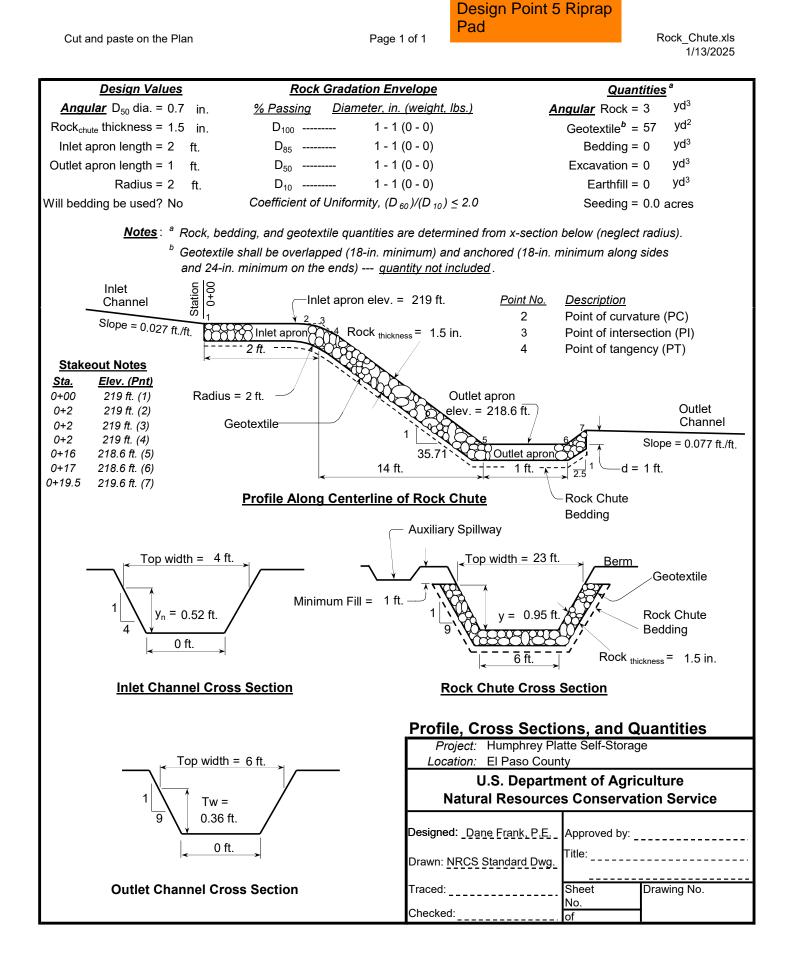






| Design Information (Innut)                                                   |                             | MINOD | MA100                 |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|-----------------------|-----------------|
| Design Information (Input) CDOT Type R Curb Opening                          | <b>T</b>                    | MINOR | MAJOR<br>Curb Opening | -               |
| Type of Inlet                                                                | Type =                      | /1    |                       | la ale a a      |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 1.00  | 1.00                  | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1                     | 4               |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 8.0   | 8.0                   | linches         |
| Grate Information                                                            |                             | MINOR | MAJOR                 | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A   | N/A                   | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A   | N/A                   | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A   | N/A                   |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                | N/A   | N/A                   |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_{w}(G) =$                | N/A   | N/A                   |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_o(G) = [$                | N/A   | N/A                   |                 |
| Curb Opening Information                                                     | -                           | MINOR | MAJOR                 | _               |
| Length of a Unit Curb Opening                                                | $L_{0}(C) =$                | 30.00 | 30.00                 | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00                  | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00                  | inches          |
| Angle of Throat                                                              | Theta =                     | 63.40 | 63.40                 | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00  | 2.00                  | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10  | 0.10                  |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60  | 3.60                  |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{o}(C) =$                | 0.67  | 0.67                  |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR                 |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A                   | Tft             |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.50  | 0.50                  | T <sub>ft</sub> |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A                   | 4               |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.89  | 0.89                  | 4               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A                   | 1               |
|                                                                              |                             |       |                       | -               |
|                                                                              | -                           | MINOR | MAJOR                 | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 37.4  | 37.4                  | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | $Q_{PEAK REQUIRED} =$       | 11.8  | 32.2                  | cfs             |


**SWALES** 

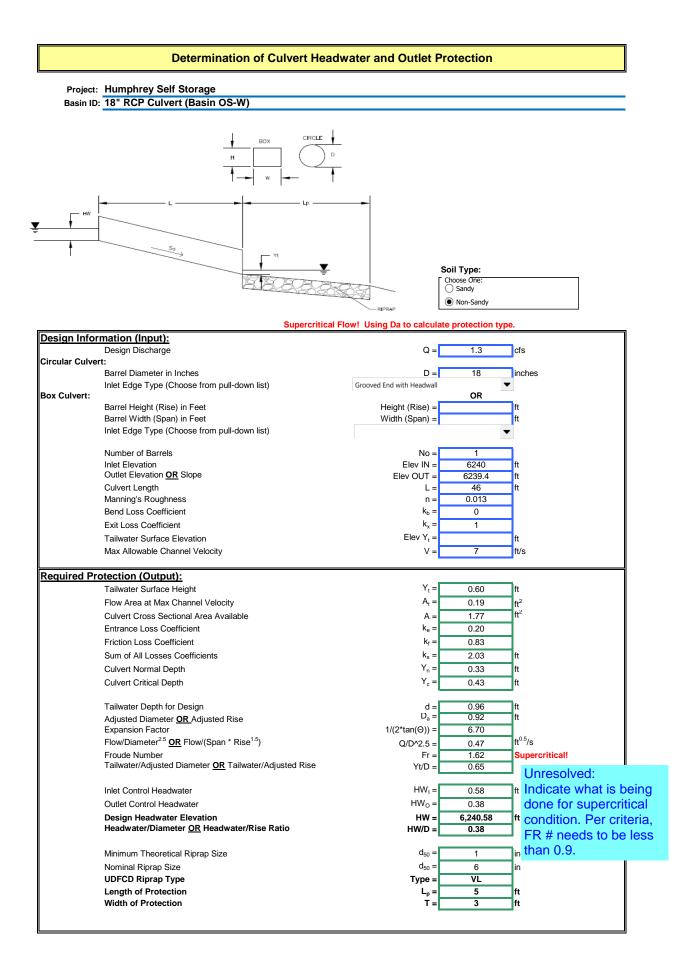



Basins 3A thru 3E flow is split between north of and south of Design Points 3A thru 3E. Basin 3A Q100=8.9 cfs split =4.5 cfs < 6.63 cfs Basin 3B Q100=8.9 cfs split =4.5 cfs < 6.63 cfs Basin 3C Q100=7.8 cfs split =3.9 cfs < 6.63 cfs Basin 3D Q100=7.8 cfs split =3.9 cfs < 6.63 cfs Basin 3E Q100=8.1 cfs split =4.1 cfs < 6.63 cfs








## Design Point 5 Q100=3.3 cfs < 3.5 cfs




CULVERT

## **CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)**

| e: 18" RCP Culvert (Basin OS-W)                                                                              |                      |        |               |
|--------------------------------------------------------------------------------------------------------------|----------------------|--------|---------------|
| Flow                                                                                                         | Tc<br>$\Theta$ angle | Y      |               |
| Area                                                                                                         | L,                   | ,<br>, |               |
|                                                                                                              | ע                    |        |               |
| Design Information (Input)                                                                                   |                      |        |               |
| Pipe Invert Slope                                                                                            | So =                 | 0.0130 | ft/ft         |
| Pipe Manning's n-value                                                                                       | n =                  | 0.0130 |               |
| Pipe Diameter                                                                                                | D =                  | 18.00  | inches        |
| Design discharge                                                                                             | Q =                  | 1.30   | cfs           |
| Full-flow Capacity (Calculated)                                                                              |                      |        |               |
| Full-flow area                                                                                               | Af =                 | 1.77   | sq ft         |
| Full-flow wetted perimeter                                                                                   | Pf =                 | 4.71   | ft            |
| Half Central Angle                                                                                           | Theta =              | 3.14   | radians       |
| Full-flow capacity                                                                                           | Qf =                 | 12.01  | cfs           |
| Calculation of Normal Flow Condition                                                                         |                      |        |               |
| Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>0.98</td><td>radians</td></theta<3.14)<>       | Theta =              | 0.98   | radians       |
| Flow area                                                                                                    | An =                 | 0.29   | sq ft         |
| Top width                                                                                                    | Tn =                 | 1.25   | ft            |
| Wetted perimeter                                                                                             | Pn =                 | 1.47   | ft            |
| Flow depth                                                                                                   | Yn =                 | 0.33   | ft            |
| Flow velocity                                                                                                | Vn =                 | 4.45   | fps           |
| Discharge                                                                                                    | Qn =                 | 1.30   | cfs           |
| Percent Full Flow                                                                                            | Flow =               | 10.8%  | of full flow  |
| Normal Depth Froude Number                                                                                   | Fr <sub>n</sub> =    | 1.62   | supercritical |
| Calculation of Critical Flow Condition                                                                       |                      |        |               |
| Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.13</td><td>radians</td></theta-c<3.14)<> | Theta-c =            | 1.13   | radians       |
| Critical flow area                                                                                           | Ac =                 | 0.41   | sq ft         |
| Critical top width                                                                                           | Tc =                 | 1.35   | ft            |
| Critical flow depth                                                                                          | Yc =                 | 0.43   | ft            |
| Critical flow velocity                                                                                       | Vc =                 | 3.14   | fps           |
| Critical Depth Froude Number                                                                                 | Fr <sub>c</sub> =    | 1.00   |               |



# HGL CALCULATIONS



#### Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 11/7/2024 2:59:57 PM

# **UDSewer Results Summary**

**Project Title:** 6001 E Platte Storage - 5 Year **Project Description:** East System

# **5-YEAR**

# **System Input Summary**

### **Rainfall Parameters**

Rainfall Return Period: 5 Rainfall Calculation Method: Formula

**One Hour Depth (in):** 1.50 **Rainfall Constant "A":** 28.5 **Rainfall Constant "B":** 10 **Rainfall Constant "C":** 0.786

### **Rational Method Constraints**

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

### **Sizer Constraints**

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

## **Backwater Calculations:**

Tailwater Elevation (ft): 6208.12

# **Manhole Input Summary:**

|                 |                             | Gi                              | ven Flow                       | Sub Basin Information     |       |                    |        |                          |      |                             |
|-----------------|-----------------------------|---------------------------------|--------------------------------|---------------------------|-------|--------------------|--------|--------------------------|------|-----------------------------|
| Element<br>Name | Ground<br>Elevation<br>(ft) | Total<br>Known<br>Flow<br>(cfs) | Local<br>Contribution<br>(cfs) | Drainage<br>Area<br>(Ac.) | Kunom | 5yr<br>Coefficient | Longth | Overland<br>Slope<br>(%) |      | Gutter<br>Velocity<br>(fps) |
| POND            | 6211.00                     | 0.00                            | 0.00                           | 0.00                      | 0.00  | 0.00               | 0.00   | 0.00                     | 0.00 | 0.00                        |
| MH#1 &<br>PR#1  | 6220.00                     | 41.20                           | 0.00                           | 0.00                      | 0.00  | 0.00               | 0.00   | 0.00                     | 0.00 | 0.00                        |

file:///C:/Users/terra/OneDrive/Documents/report0.html

11/7/24, 3:00 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| 11/7/24, 3.00 FIV       |         |       | 02021121111 |      |      |      | age e lea |      | .00  |      |
|-------------------------|---------|-------|-------------|------|------|------|-----------|------|------|------|
| MH#2 &<br>PR#2          | 6223.50 | 41.20 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#1<br>& PR#3       | 6233.50 | 41.20 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET #2<br>& PR#4      | 6234.00 | 32.40 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET #3<br>& PR#5      | 6234.40 | 32.40 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#8<br>& PR#11      | 6237.45 | 11.80 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#9<br>& PR#12      | 6236.85 | 11.80 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#4<br>& PR#6       | 6235.60 | 20.60 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#5<br>& PR#7       | 6236.80 | 16.50 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#6<br>& PR#8       | 6238.10 | 12.50 | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#7<br>& PR#9       | 6239.30 | 8.70  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET#10<br>& PR#10     | 6239.85 | 6.20  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#11 &<br>PR#13 | 6250.50 | 6.20  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#18 &<br>PR#20 | 6251.50 | 2.60  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#17 &<br>PR#19 | 6252.00 | 2.00  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#16 &<br>PR#18 | 6252.50 | 1.20  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#15 &<br>PR#17 | 6251.50 | 1.70  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#14 &<br>PR#16 | 6252.00 | 0.90  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#13 &<br>PR#15 | 6252.50 | 0.70  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |
| INLET<br>#12 &<br>PR#14 | 6253.00 | 0.40  | 0.00        | 0.00 | 0.00 | 0.00 | 0.00      | 0.00 | 0.00 | 0.00 |

# Manhole Output Summary:

|                                   | Local Contribution      | Total Design Flow |     |
|-----------------------------------|-------------------------|-------------------|-----|
| file:///C·/Lleare/torra/OpeDrive/ | Documents/report() html |                   | 2/9 |

11/7/24, 3:00 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| Element<br>Name   | Overland<br>Time<br>(min) | Gutter<br>Time<br>(min) | Basin Tc<br>(min) | Intensity<br>(in/hr) | Local<br>Contrib<br>(cfs) | Coeff.<br>Area | Intensity<br>(in/hr) | Manhole Tc<br>(min) | Peak<br>Flow<br>(cfs) | Comment |
|-------------------|---------------------------|-------------------------|-------------------|----------------------|---------------------------|----------------|----------------------|---------------------|-----------------------|---------|
| POND              | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 5.96           | 6.92                 | 0.15                | 41.20                 |         |
| MH#1 & PR#1       | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 41.20                 |         |
| MH#2 & PR#2       | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 41.20                 |         |
| INLET#1 & PR#3    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 41.20                 |         |
| INLET #2 & PR#4   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 32.40                 |         |
| INLET #3 & PR#5   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 32.40                 |         |
| INLET#8 & PR#11   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 11.80                 |         |
| INLET#9 & PR#12   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 11.80                 |         |
| INLET#4 & PR#6    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 20.60                 |         |
| INLET#5 & PR#7    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 16.50                 |         |
| INLET#6 & PR#8    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 12.50                 |         |
| INLET#7 & PR#9    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 8.70                  |         |
| INLET#10 & PR#10  | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 6.20                  |         |
| INLET #11 & PR#13 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 6.20                  |         |
| INLET #18 & PR#20 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 2.60                  |         |
| INLET #17 & PR#19 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 2.00                  |         |
| INLET #16 & PR#18 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 1.20                  |         |
| INLET #15 & PR#17 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 1.70                  |         |
| INLET #14 & PR#16 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 0.90                  |         |
| INLET #13 & PR#15 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 0.70                  |         |
| INLET #12 & PR#14 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 0.40                  |         |

# Sewer Input Summary:

|                     |                         | Ele                          | vation       | l                          | Loss C        | oeffici      | ents            | Given            | Dimensio              | ons                   |
|---------------------|-------------------------|------------------------------|--------------|----------------------------|---------------|--------------|-----------------|------------------|-----------------------|-----------------------|
| Element<br>Name     | Sewer<br>Length<br>(ft) | Downstream<br>Invert<br>(ft) | Slope<br>(%) | Upstream<br>Invert<br>(ft) | Mannings<br>n | Bend<br>Loss | Lateral<br>Loss | Cross<br>Section | Rise<br>(ft or<br>in) | Span<br>(ft or<br>in) |
| MH#1 & PR#1         | 29.50                   | 6205.00                      | 2.7          | 6205.80                    | 0.013         | 0.03         | 0.00            | CIRCULAR         | 48.00 in              | 48.00 in              |
| MH#2 & PR#2         | 222.50                  | 6211.11                      | 2.2          | 6216.00                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 48.00 in              | 48.00 in              |
| INLET#1 & PR#3      | 45.00                   | 6216.81                      | 2.2          | 6217.80                    | 0.013         | 0.24         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET #2 & PR#4     | 24.00                   | 6225.49                      | 1.7          | 6225.90                    | 0.013         | 0.24         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET #3 & PR#5     | 7.00                    | 6227.00                      | 2.1          | 6227.15                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET#8 & PR#11     | 352.00                  | 6227.73                      | 1.0          | 6231.25                    | 0.013         | 1.00         | 0.25            | CIRCULAR         | 36.00 in              | 36.00 in              |
| INLET#9 & PR#12     | 31.00                   | 6231.54                      | 1.0          | 6231.85                    | 0.013         | 1.00         | 0.00            | CIRCULAR         | 36.00 in              | 36.00 in              |
| INLET#4 & PR#6      | 47.00                   | 6228.15                      | 5.0          | 6230.50                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#5 & PR#7      | 57.00                   | 6230.62                      | 1.9          | 6231.70                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#6 & PR#8      | 62.00                   | 6231.82                      | 1.9          | 6233.00                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#7 & PR#9      | 57.00                   | 6233.62                      | 1.9          | 6234.70                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 24.00 in              | 24.00 in              |
| INLET#10 &<br>PR#10 | 24.00                   | 6234.99                      | 1.7          | 6235.40                    | 0.013         | 0.11         | 0.00            | CIRCULAR         | 24.00 in              | 24.00 in              |

11/7/24, 3:00 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| INLET #11 &<br>PR#13 | 32.00 | 6235.69 | 1.9 | 6236.30 | 0.013 | 0.11 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
|----------------------|-------|---------|-----|---------|-------|------|------|----------|----------|----------|
| INLET #18 &<br>PR#20 | 98.00 | 6246.72 | 1.0 | 6247.70 | 0.012 | 1.00 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #17 &<br>PR#19 | 74.00 | 6247.86 | 1.0 | 6248.60 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #16 &<br>PR#18 | 74.00 | 6248.76 | 1.0 | 6249.50 | 0.012 | 0.05 | 0.00 | CIRCULAR | 12.00 in | 12.00 in |
| INLET #15 &<br>PR#17 | 98.00 | 6246.32 | 1.0 | 6247.30 | 0.012 | 1.00 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| INLET #14 &<br>PR#16 | 74.00 | 6247.46 | 1.0 | 6248.20 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #13 &<br>PR#15 | 74.00 | 6248.36 | 1.0 | 6249.10 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #12 &<br>PR#14 | 74.00 | 6249.26 | 1.0 | 6250.00 | 0.012 | 0.05 | 0.00 | CIRCULAR | 12.00 in | 12.00 in |

# **Sewer Flow Summary:**

|                     | -             | l Flow<br>pacity  | Critic        | al Flow           |               | Noi               | rmal Flov        | V                 |               |                              |         |
|---------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|------------------|-------------------|---------------|------------------------------|---------|
| Element<br>Name     | Flow<br>(cfs) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Froude<br>Number | Flow<br>Condition | Flow<br>(cfs) | Surcharged<br>Length<br>(ft) | Comment |
| MH#1 &<br>PR#1      | 236.67        | 18.83             | 23.00         | 6.92              | 13.55         | 14.14             | 2.77             | Supercritical     | 41.20         | 0.00                         |         |
| MH#2 &<br>PR#2      | 213.63        | 17.00             | 23.00         | 6.92              | 14.29         | 13.14             | 2.50             | Supercritical     | 41.20         | 0.00                         |         |
| INLET#1 &<br>PR#3   | 149.63        | 15.55             | 23.97         | 7.26              | 15.06         | 13.28             | 2.43             | Supercritical     | 41.20         | 0.00                         |         |
| INLET #2 &<br>PR#4  | 131.53        | 13.67             | 21.14         | 6.68              | 14.20         | 11.32             | 2.15             | Supercritical     | 32.40         | 0.00                         |         |
| INLET #3 &<br>PR#5  | 146.19        | 15.19             | 21.14         | 6.68              | 13.44         | 12.21             | 2.39             | Supercritical     | 32.40         | 0.00                         |         |
| INLET#8 &<br>PR#11  | 66.88         | 9.46              | 13.08         | 5.09              | 10.24         | 7.13              | 1.61             | Supercritical     | 11.80         | 0.00                         |         |
| INLET#9 &<br>PR#12  | 66.88         | 9.46              | 13.08         | 5.09              | 10.24         | 7.13              | 1.61             | Supercritical     | 11.80         | 0.00                         |         |
| INLET#4 &<br>PR#6   | 91.96         | 18.73             | 18.50         | 6.49              | 9.65          | 15.10             | 3.48             | Supercritical     | 20.60         | 0.00                         |         |
| INLET#5 &<br>PR#7   | 56.69         | 11.55             | 16.47         | 5.98              | 11.08         | 10.01             | 2.14             | Supercritical     | 16.50         | 0.00                         |         |
| INLET#6 &<br>PR#8   | 56.69         | 11.55             | 14.24         | 5.44              | 9.57          | 9.27              | 2.15             | Supercritical     | 12.50         | 0.00                         |         |
| INLET#7 &<br>PR#9   | 31.27         | 9.95              | 12.62         | 5.20              | 8.66          | 8.52              | 2.06             | Supercritical     | 8.70          | 0.00                         |         |
| INLET#10 &<br>PR#10 | 29.58         | 9.41              | 10.57         | 4.65              | 7.46          | 7.45              | 1.96             | Supercritical     | 6.20          | 0.00                         |         |

11/7/24, 3:00 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| ,                    |       |      |       |      |      |      |      | 0             |      |      |  |
|----------------------|-------|------|-------|------|------|------|------|---------------|------|------|--|
| INLET #11 &<br>PR#13 | 31.27 | 9.95 | 10.57 | 4.65 | 7.25 | 7.75 | 2.07 | Supercritical | 6.20 | 0.00 |  |
| INLET #18 &<br>PR#20 | 7.02  | 5.72 | 7.75  | 4.06 | 6.32 | 5.29 | 1.48 | Supercritical | 2.60 | 0.00 |  |
| INLET #17 &<br>PR#19 | 7.02  | 5.72 | 6.76  | 3.73 | 5.48 | 4.93 | 1.50 | Supercritical | 2.00 | 0.00 |  |
| INLET #16 &<br>PR#18 | 3.87  | 4.93 | 5.54  | 3.38 | 4.59 | 4.35 | 1.44 | Supercritical | 1.20 | 0.00 |  |
| INLET #15 &<br>PR#17 | 11.41 | 6.46 | 5.88  | 3.39 | 4.70 | 4.64 | 1.55 | Supercritical | 1.70 | 0.00 |  |
| INLET #14 &<br>PR#16 | 7.02  | 5.72 | 4.47  | 2.94 | 3.63 | 3.93 | 1.50 | Supercritical | 0.90 | 0.00 |  |
| INLET #13 &<br>PR#15 | 7.02  | 5.72 | 3.92  | 2.74 | 3.20 | 3.65 | 1.49 | Supercritical | 0.70 | 0.00 |  |
| INLET #12 &<br>PR#14 | 3.87  | 4.93 | 3.14  | 2.45 | 2.61 | 3.18 | 1.44 | Supercritical | 0.40 | 0.00 |  |

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

## Sewer Sizing Summary:

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peak<br>Tlow<br>cfs) | Cross<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Area<br>(ft^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.40                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.40                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.80                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.80                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.60                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.50                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.50                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.70                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.60                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.00                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.20                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.70                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ).90                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ).70                 | CIRCULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | low<br>sfs)<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.80<br>1.20<br>1.20<br>1.80<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1 | Low<br>Section.20CIRCULAR.20CIRCULAR.20CIRCULAR.20CIRCULAR.20CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.50CIRCULAR.50CIRCULAR.50CIRCULAR.20CIRCULAR.20CIRCULAR.20CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.40CIRCULAR.41.41.41.41.42CIRCULAR.44.44.45.44.45.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44.44 | Cross<br>Section         Rise           .20         CIRCULAR         48.00 in           .20         CIRCULAR         48.00 in           .20         CIRCULAR         48.00 in           .20         CIRCULAR         42.00 in           .20         CIRCULAR         42.00 in           .20         CIRCULAR         42.00 in           .240         CIRCULAR         42.00 in           .240         CIRCULAR         36.00 in           .80         CIRCULAR         36.00 in           .60         CIRCULAR         30.00 in           .50         CIRCULAR         30.00 in           .50         CIRCULAR         30.00 in           .70         CIRCULAR         24.00 in           .20         CIRCULAR         24.00 in           .20         CIRCULAR         15.00 in           .00         CIRCULAR         15.00 in           .20         CIRCULAR         15.00 in           .20         CIRCULAR         15.00 in | Iow<br>efs)         Cross<br>Section         Rise         Span           1.20         CIRCULAR         48.00 in         48.00 in           1.20         CIRCULAR         48.00 in         48.00 in           1.20         CIRCULAR         48.00 in         48.00 in           1.20         CIRCULAR         42.00 in         42.00 in           1.20         CIRCULAR         42.00 in         42.00 in           2.40         CIRCULAR         42.00 in         42.00 in           2.40         CIRCULAR         42.00 in         42.00 in           2.40         CIRCULAR         36.00 in         36.00 in           3.80         CIRCULAR         30.00 in         30.00 in           3.60         CIRCULAR         30.00 in         30.00 in           5.50         CIRCULAR         30.00 in         30.00 in           3.70         CIRCULAR         24.00 in         24.00 in           3.20         CIRCULAR         15.00 in         15.00 in           3.00         In         15.00 in         15.00 in           3.20         CIRCULAR         15.00 in         15.00 in           3.20         CIRCULAR         15.00 in         15.00 in           3.20< | Iow<br>efs)Cross<br>SectionRiseSpanRise1.20CIRCULAR48.00 in48.00 in27.00 in1.20CIRCULAR48.00 in48.00 in27.00 in1.20CIRCULAR42.00 in42.00 in27.00 in2.40CIRCULAR42.00 in42.00 in24.00 in2.40CIRCULAR42.00 in42.00 in24.00 in2.40CIRCULAR36.00 in36.00 in21.00 in2.80CIRCULAR36.00 in30.00 in18.00 in3.80CIRCULAR30.00 in30.00 in18.00 in3.60CIRCULAR30.00 in30.00 in18.00 in3.60CIRCULAR30.00 in10.00 in15.00 in3.60CIRCULAR24.00 in24.00 in15.00 in3.60CIRCULAR15.00 in12.00 in15.00 in3.60CIRCULAR24.00 in24.00 in15.00 in3.60CIRCULAR15.00 in15.00 in12.00 in3.60CIRCULAR15.00 in15.00 in12.00 in3.70CIRCULAR15.00 in15.00 in12.00 in3.70CIRCULAR15.00 in15.00 in9.00 in3.70CIRCULAR18.00 in18.00 in9.00 in3.70CIRCULAR15.00 in15.00 in9.00 in3.70CIRCULAR15.00 in15.00 in9.00 in3.70CIRCULAR15.00 in15.00 in9.00 in | low<br>cfs)Cross<br>SectionRiseSpanRiseSpan1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in1.20CIRCULAR42.00 in42.00 in27.00 in27.00 in2.40CIRCULAR42.00 in42.00 in27.00 in27.00 in2.40CIRCULAR42.00 in42.00 in24.00 in24.00 in2.40CIRCULAR36.00 in36.00 in21.00 in21.00 in80CIRCULAR36.00 in30.00 in18.00 in18.00 in60CIRCULAR30.00 in30.00 in18.00 in18.00 in70CIRCULAR30.00 in30.00 in15.00 in15.00 in70CIRCULAR24.00 in24.00 in15.00 in15.00 in70CIRCULAR24.00 in24.00 in15.00 in15.00 in70CIRCULAR15.00 in15.00 in15.00 in12.00 in70CIRCULAR15.00 in15.00 in12.00 in12.00 in70CIRCULAR15.00 in15.00 in12.00 in12.00 in70CIRCULAR15.00 in15.00 in9.00 in9.00 in70CIRCULAR15.00 in15.00 in9.00 in9.00 in70CIRCULAR15.00 in15.00 in9.00 in9.00 in70CIRCULAR15.00 in15.00 in9.00 in9.00 in70CIRCULAR | low<br>(sfs)Cross<br>SectionRiseSpanRiseSpanRiseSpanRise1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in1.20CIRCULAR42.00 in42.00 in27.00 in27.00 in42.00 in2.40CIRCULAR42.00 in42.00 in27.00 in27.00 in42.00 in2.40CIRCULAR42.00 in42.00 in24.00 in24.00 in42.00 in2.40CIRCULAR36.00 in36.00 in21.00 in21.00 in36.00 in3.80CIRCULAR36.00 in30.00 in21.00 in21.00 in30.00 in5.50CIRCULAR30.00 in30.00 in18.00 in30.00 in5.50CIRCULAR30.00 in24.00 in15.00 in24.00 in2.50CIRCULAR24.00 in24.00 in15.00 in15.00 in2.60CIRCULAR24.00 in24.00 in15.00 in15.00 in3.70CIRCULAR24.00 in24.00 in15.00 in15.00 in3.70CIRCULAR15.00 in15.00 in15.00 in15.00 in3.70CIRCULAR15.00 in15.00 in12.00 in15.00 in3.70CIRCULAR15.00 in15.00 in9.00 in12.00 in3.70CIRCULAR15.00 in15.00 in9.00 in15.00 in3.70CIRCULAR15.00 in15.00 | Iow<br>(fs)Cross<br>SectionRiseSpanRiseSpanRiseSpanRiseSpan1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in48.00 in1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in48.00 in1.20CIRCULAR42.00 in42.00 in27.00 in27.00 in42.00 in42.00 in2.40CIRCULAR42.00 in42.00 in27.00 in27.00 in42.00 in42.00 in2.40CIRCULAR42.00 in42.00 in24.00 in24.00 in42.00 in42.00 in2.40CIRCULAR36.00 in36.00 in21.00 in21.00 in36.00 in36.00 in3.80CIRCULAR36.00 in36.00 in21.00 in21.00 in36.00 in30.00 in3.80CIRCULAR30.00 in30.00 in18.00 in18.00 in30.00 in30.00 in5.50CIRCULAR30.00 in30.00 in18.00 in18.00 in30.00 in30.00 in2.50CIRCULAR24.00 in24.00 in15.00 in15.00 in24.00 in24.00 in3.00CIRCULAR24.00 in24.00 in15.00 in15.00 in24.00 in24.00 in3.00CIRCULAR15.00 in15.00 in15.00 in15.00 in15.00 in24.00 in3.00CIRCULAR15.00 in15.00 in15.00 in15.00 in15.00 in15.00 in3.00CIRCULAR15.00 i | Iow<br>(ft)Cross<br>SectionRiseSpanRiseSpanRiseSpanRiseSpanArea<br>(ft^2)1.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in48.00 in12.571.20CIRCULAR48.00 in48.00 in27.00 in27.00 in48.00 in48.00 in12.571.20CIRCULAR42.00 in42.00 in27.00 in27.00 in42.00 in42.00 in9.622.40CIRCULAR42.00 in42.00 in24.00 in24.00 in42.00 in9.622.40CIRCULAR42.00 in42.00 in24.00 in24.00 in36.00 in9.622.40CIRCULAR36.00 in36.00 in21.00 in21.00 in36.00 in7.073.80CIRCULAR36.00 in36.00 in21.00 in30.00 in36.00 in7.073.60CIRCULAR30.00 in30.00 in18.00 in30.00 in30.00 in4.915.50CIRCULAR30.00 in30.00 in18.00 in30.00 in30.00 in4.915.50CIRCULAR24.00 in24.00 in15.00 in14.00 in31.443.00CIRCULAR24.00 in24.00 in15.00 in24.00 in30.00 in3.0030.00 in15.00 in15.00 in15.00 in30.00 in31.443.00CIRCULAR24.00 in24.00 in15.00 in15.00 in31.443.00CIRCULAR15.00 in15.00 in15.00 in< |

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| INLET #12 & PR#14 | 0.40 | CIRCULAR | 12.00 in | 12.00 in | 6.00 in | 6.00 in | 12.00 in | 12.00 in | 0.79 |  |
|-------------------|------|----------|----------|----------|---------|---------|----------|----------|------|--|
|-------------------|------|----------|----------|----------|---------|---------|----------|----------|------|--|

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

## **Grade Line Summary:**

Tailwater Elevation (ft): 6208.12

|                      | Invert             | Elev.            | Ma                   | nstream<br>inhole<br>osses | HG                 | L                |                    | EGL                      |                  |
|----------------------|--------------------|------------------|----------------------|----------------------------|--------------------|------------------|--------------------|--------------------------|------------------|
| Element<br>Name      | Downstream<br>(ft) | Upstream<br>(ft) | Bend<br>Loss<br>(ft) | Lateral<br>Loss<br>(ft)    | Downstream<br>(ft) | Upstream<br>(ft) | Downstream<br>(ft) | Friction<br>Loss<br>(ft) | Upstream<br>(ft) |
| MH#1 &<br>PR#1       | 6205.00            | 6205.80          | 0.00                 | 0.00                       | 6208.12            | 6209.01          | 6209.24            | 0.00                     | 6209.24          |
| MH#2 &<br>PR#2       | 6211.11            | 6216.00          | 0.01                 | 0.00                       | 6212.30            | 6217.92          | 6214.98            | 3.69                     | 6218.66          |
| INLET#1 &<br>PR#3    | 6216.81            | 6217.80          | 0.07                 | 0.00                       | 6218.24            | 6219.80          | 6220.16            | 0.45                     | 6220.62          |
| INLET #2 &<br>PR#4   | 6225.49            | 6225.90          | 0.04                 | 0.00                       | 6226.88            | 6227.66          | 6228.18            | 0.18                     | 6228.35          |
| INLET #3 &<br>PR#5   | 6227.00            | 6227.15          | 0.01                 | 0.00                       | 6228.12            | 6230.24          | 6230.44            | 0.00                     | 6230.44          |
| INLET#8 &<br>PR#11   | 6227.73            | 6231.25          | 0.04                 | 0.17                       | 6230.60            | 6232.34          | 6230.65            | 2.09                     | 6232.74          |
| INLET#9 &<br>PR#12   | 6231.54            | 6231.85          | 0.04                 | 0.00                       | 6232.39            | 6232.94          | 6233.18            | 0.16                     | 6233.34          |
| INLET#4 &<br>PR#6    | 6228.15            | 6230.50          | 0.01                 | 0.00                       | 6230.25            | 6232.04          | 6232.50            | 0.20                     | 6232.69          |
| INLET#5 &<br>PR#7    | 6230.62            | 6231.70          | 0.01                 | 0.00                       | 6232.05            | 6233.07          | 6233.10            | 0.53                     | 6233.63          |
| INLET#6 &<br>PR#8    | 6231.82            | 6233.00          | 0.01                 | 0.00                       | 6233.08            | 6234.19          | 6233.95            | 0.69                     | 6234.65          |
| INLET#7 &<br>PR#9    | 6233.62            | 6234.70          | 0.01                 | 0.00                       | 6234.34            | 6235.75          | 6235.47            | 0.70                     | 6236.17          |
| INLET#10 &<br>PR#10  | 6234.99            | 6235.40          | 0.01                 | 0.00                       | 6235.76            | 6236.28          | 6236.48            | 0.14                     | 6236.62          |
| INLET #11 &<br>PR#13 | 6235.69            | 6236.30          | 0.01                 | 0.00                       | 6236.30            | 6237.18          | 6237.23            | 0.29                     | 6237.52          |
| INLET #18 &<br>PR#20 | 6246.72            | 6247.70          | 0.07                 | 0.00                       | 6247.25            | 6248.35          | 6247.68            | 0.92                     | 6248.60          |
| INLET #17 &<br>PR#19 | 6247.86            | 6248.60          | 0.00                 | 0.00                       | 6248.35            | 6249.16          | 6248.69            | 0.69                     | 6249.38          |
| INLET #16 &<br>PR#18 | 6248.76            | 6249.50          | 0.00                 | 0.00                       | 6249.17            | 6249.96          | 6249.44            | 0.70                     | 6250.14          |

11/7/24, 3:00 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59

| INLET #15 &<br>PR#17 | 6246.32 | 6247.30 | 0.01 | 0.00 | 6246.71 | 6247.79 | 6247.04 | 0.92 | 6247.97 |
|----------------------|---------|---------|------|------|---------|---------|---------|------|---------|
| INLET #14 &<br>PR#16 | 6247.46 | 6248.20 | 0.00 | 0.00 | 6247.79 | 6248.57 | 6248.00 | 0.70 | 6248.71 |
| INLET #13 &<br>PR#15 | 6248.36 | 6249.10 | 0.00 | 0.00 | 6248.63 | 6249.43 | 6248.83 | 0.71 | 6249.54 |
| INLET #12 &<br>PR#14 | 6249.26 | 6250.00 | 0.00 | 0.00 | 6249.48 | 6250.26 | 6249.63 | 0.72 | 6250.35 |

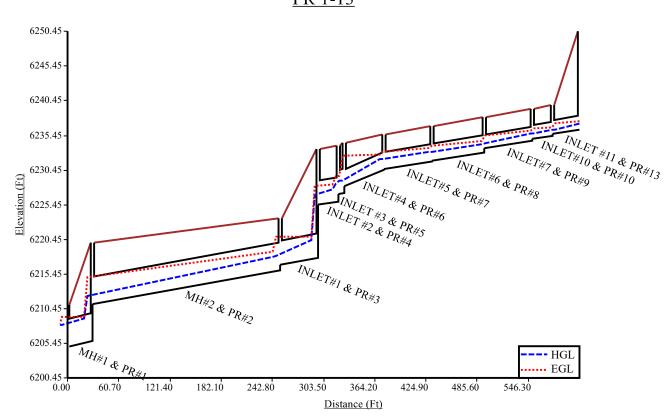
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K \*  $V_{fi} ^ 2/(2*g)$
- Lateral loss =  $V_{fo} \wedge 2/(2*g)$  Junction Loss K \*  $V_{fi} \wedge 2/(2*g)$ .
- Friction loss is always Upstream EGL Downstream EGL.

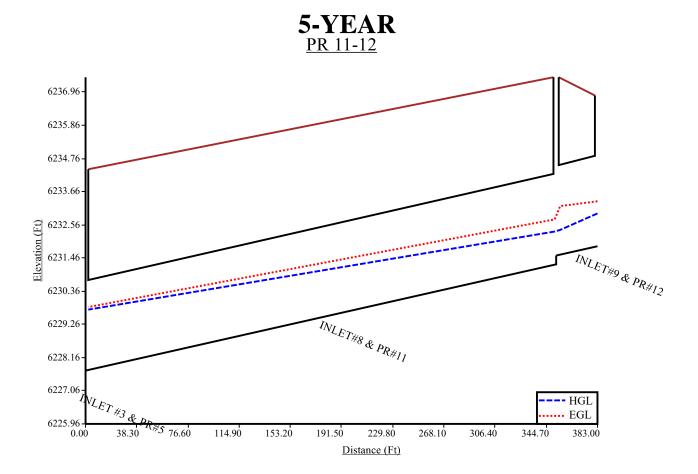
## **Excavation Estimate:**

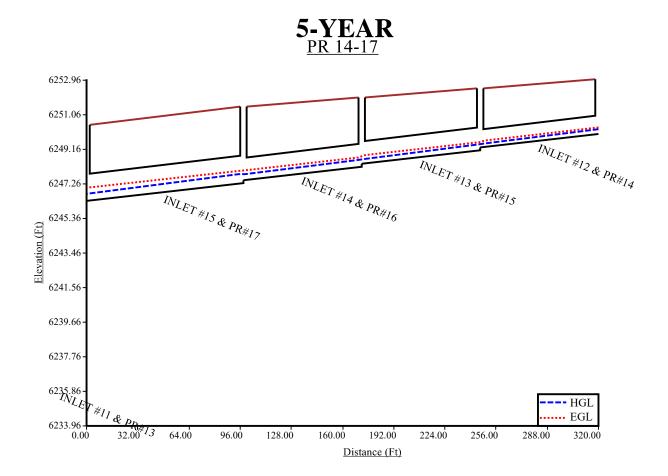
The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

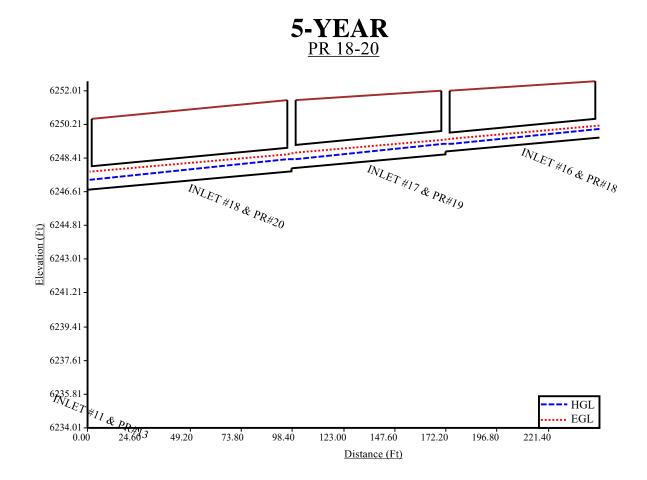
|                      |                |              |                 |                         | Do                   | ownstrea                | am 🛛          | ι     | Jpstrean                | n             |                    |         |
|----------------------|----------------|--------------|-----------------|-------------------------|----------------------|-------------------------|---------------|-------|-------------------------|---------------|--------------------|---------|
| Element<br>Name      | Length<br>(ft) | Wall<br>(in) | Bedding<br>(in) | Bottom<br>Width<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) |       | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Volume<br>(cu. yd) | Comment |
| MH#1 & PR#1          | 29.50          | 5.00         | 6.00            | 7.83                    | 8.99                 | 6.91                    | 1.58          | 25.40 | 15.12                   | 9.78          | 136.60             |         |
| MH#2 & PR#2          | 222.50         | 5.00         | 6.00            | 7.83                    | 14.79                | 9.81                    | 4.48          | 12.00 | 8.42                    | 3.08          | 656.08             |         |
| INLET#1 & PR#3       | 45.00          | 4.50         | 6.00            | 7.25                    | 10.88                | 7.57                    | 2.82          | 28.90 | 16.58                   | 11.83         | 246.24             |         |
| INLET #2 & PR#4      | 24.00          | 4.50         | 6.00            | 7.25                    | 13.52                | 8.88                    | 4.13          | 13.70 | 8.98                    | 4.23          | 66.53              |         |
| INLET #3 & PR#5      | 7.00           | 4.50         | 6.00            | 7.25                    | 11.49                | 7.87                    | 3.12          | 12.00 | 8.13                    | 3.38          | 16.35              |         |
| INLET#8 & PR#11      | 352.00         | 4.00         | 6.00            | 6.67                    | 11.34                | 7.50                    | 3.34          | 10.40 | 7.03                    | 2.87          | 690.02             |         |
| INLET#9 & PR#12      | 31.00          | 4.00         | 6.00            | 6.67                    | 9.82                 | 6.74                    | 2.58          | 8.00  | 5.83                    | 1.67          | 49.82              |         |
| INLET#4 & PR#6       | 47.00          | 3.50         | 6.00            | 6.08                    | 11.00                | 7.04                    | 3.46          | 8.70  | 5.89                    | 2.31          | 75.23              |         |
| INLET#5 & PR#7       | 57.00          | 3.50         | 6.00            | 6.08                    | 8.47                 | 5.77                    | 2.19          | 8.70  | 5.89                    | 2.31          | 78.22              |         |
| INLET#6 & PR#8       | 62.00          | 3.50         | 6.00            | 6.08                    | 8.46                 | 5.77                    | 2.19          | 8.70  | 5.89                    | 2.31          | 85.03              |         |
| INLET#7 & PR#9       | 57.00          | 3.00         | 4.00            | 5.50                    | 7.97                 | 5.07                    | 2.23          | 8.20  | 5.18                    | 2.35          | 63.03              |         |
| INLET#10 &<br>PR#10  | 24.00          | 3.00         | 4.00            | 5.50                    | 7.62                 | 4.89                    | 2.06          | 7.90  | 5.03                    | 2.20          | 25.40              |         |
| INLET #11 &<br>PR#13 | 32.00          | 3.00         | 4.00            | 5.50                    | 7.32                 | 4.74                    | 1.91          | 27.40 | 14.78                   | 11.95         | 135.18             |         |
| INLET #18 &<br>PR#20 | 98.00          | 2.25         | 4.00            | 4.63                    | 7.31                 | 4.30                    | 2.34          | 7.35  | 4.32                    | 2.36          | 79.01              |         |
| INLET #17 &<br>PR#19 | 74.00          | 2.25         | 4.00            | 4.63                    | 7.03                 | 4.16                    | 2.20          | 6.55  | 3.92                    | 1.96          | 54.47              |         |
| INLET #16 &<br>PR#18 | 74.00          | 2.00         | 4.00            | 4.33                    | 6.48                 | 3.74                    | 2.07          | 6.00  | 3.50                    | 1.83          | 45.52              |         |
| INLET #15 &<br>PR#17 | 98.00          | 2.50         | 4.00            | 4.92                    | 7.86                 | 4.72                    | 2.47          | 7.90  | 4.74                    | 2.49          | 92.41              |         |

11/7/24, 3:00 PM


UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 14:59


| INLET #14 &<br>PR#16 | 74.00 | 2.25 | 4.00 | 4.63 | 7.83 | 4.56 | 2.60 | 7.35 | 4.32 | 2.36 | 62.35 |  |
|----------------------|-------|------|------|------|------|------|------|------|------|------|-------|--|
| INLET #13 &<br>PR#15 | 74.00 | 2.25 | 4.00 | 4.63 | 7.03 | 4.16 | 2.20 | 6.55 | 3.92 | 1.96 | 54.47 |  |
| INLET #12 &<br>PR#14 | 74.00 | 2.00 | 4.00 | 4.33 | 6.48 | 3.74 | 2.07 | 6.00 | 3.50 | 1.83 | 45.52 |  |


**Total earth volume for sewer trenches** = 2757 cubic yards.


• The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.

- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
  - Four inches for pipes less than 33 inches.
  - Six inches for pipes less than 60 inches.
  - Eight inches for all larger sizes.









#### Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 11/7/2024 2:57:55 PM

### **UDSewer Results Summary**

**Project Title:** 6001 E Platte Storage - 100 Year **Project Description:** East System

# **100-YEAR**

## **System Input Summary**

### **Rainfall Parameters**

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

### **Rational Method Constraints**

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

#### **Sizer Constraints**

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

### **Backwater Calculations:**

Tailwater Elevation (ft): 6210.54

## **Manhole Input Summary:**

|                 |                             | Gi                              | ven Flow                       |                           |        | Sub Basir          | ı Informat | ion                      |      |                             |
|-----------------|-----------------------------|---------------------------------|--------------------------------|---------------------------|--------|--------------------|------------|--------------------------|------|-----------------------------|
| Element<br>Name | Ground<br>Elevation<br>(ft) | Total<br>Known<br>Flow<br>(cfs) | Local<br>Contribution<br>(cfs) | Drainage<br>Area<br>(Ac.) | Kunott | 5yr<br>Coefficient | Longth     | Overland<br>Slope<br>(%) |      | Gutter<br>Velocity<br>(fps) |
| POND            | 6211.00                     | 0.00                            | 0.00                           | 0.00                      | 0.00   | 0.00               | 0.00       | 0.00                     | 0.00 | 0.00                        |
| MH#1 &<br>PR#1  | 6220.00                     | 91.40                           | 0.00                           | 0.00                      | 0.00   | 0.00               | 0.00       | 0.00                     | 0.00 | 0.00                        |

file:///C:/Users/terra/OneDrive/Documents/report0.html

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

| 11/1/24, 2.37 FIV       |         |       | UDSEWER Wa |      |      |      | age  |      | 1.07 |      |
|-------------------------|---------|-------|------------|------|------|------|------|------|------|------|
| MH#2 &<br>PR#2          | 6223.50 | 91.40 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#1<br>& PR#3       | 6233.50 | 91.40 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET #2<br>& PR#4      | 6234.00 | 71.20 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET #3<br>& PR#5      | 6234.40 | 71.20 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#8<br>& PR#11      | 6237.45 | 32.20 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#9<br>& PR#12      | 6236.85 | 32.20 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#4<br>& PR#6       | 6235.60 | 39.00 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#5<br>& PR#7       | 6236.80 | 32.70 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#6<br>& PR#8       | 6238.10 | 26.70 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#7<br>& PR#9       | 6239.30 | 21.10 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET#10<br>& PR#10     | 6239.85 | 17.70 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#11 &<br>PR#13 | 6250.50 | 17.70 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#18 &<br>PR#20 | 6251.50 | 7.40  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#17 &<br>PR#19 | 6252.00 | 5.80  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#16 &<br>PR#18 | 6252.50 | 3.40  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#15 &<br>PR#17 | 6251.50 | 5.00  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#14 &<br>PR#16 | 6252.00 | 2.60  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#13 &<br>PR#15 | 6252.50 | 1.90  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| INLET<br>#12 &<br>PR#14 | 6253.00 | 1.30  | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## Manhole Output Summary:

|                                  | Local Contribution     | Total Design Flow |     |
|----------------------------------|------------------------|-------------------|-----|
| file:///C:/Users/terra/OneDrive/ | Documents/report0.html |                   | 2/8 |

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

| Element<br>Name   | Overland<br>Time<br>(min) | Gutter<br>Time<br>(min) | Basin Tc<br>(min) | Intensity<br>(in/hr) | Local<br>Contrib<br>(cfs) | Coeff.<br>Area | Intensity<br>(in/hr) | Manhole Tc<br>(min) | Peak<br>Flow<br>(cfs) | Comment |
|-------------------|---------------------------|-------------------------|-------------------|----------------------|---------------------------|----------------|----------------------|---------------------|-----------------------|---------|
| POND              | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 7.82           | 11.69                | 0.07                | 91.40                 |         |
| MH#1 & PR#1       | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 91.40                 |         |
| MH#2 & PR#2       | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 91.40                 |         |
| INLET#1 & PR#3    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 91.40                 |         |
| INLET #2 & PR#4   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 71.20                 |         |
| INLET #3 & PR#5   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 71.20                 |         |
| INLET#8 & PR#11   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 32.20                 |         |
| INLET#9 & PR#12   | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 32.20                 |         |
| INLET#4 & PR#6    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 39.00                 |         |
| INLET#5 & PR#7    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 32.70                 |         |
| INLET#6 & PR#8    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 26.70                 |         |
| INLET#7 & PR#9    | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 21.10                 |         |
| INLET#10 & PR#10  | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 17.70                 |         |
| INLET #11 & PR#13 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 17.70                 |         |
| INLET #18 & PR#20 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 7.40                  |         |
| INLET #17 & PR#19 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 5.80                  |         |
| INLET #16 & PR#18 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 3.40                  |         |
| INLET #15 & PR#17 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 5.00                  |         |
| INLET #14 & PR#16 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 2.60                  |         |
| INLET #13 & PR#15 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 1.90                  |         |
| INLET #12 & PR#14 | 0.00                      | 0.00                    | 0.00              | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                | 1.30                  |         |

# Sewer Input Summary:

|                     |                         | Ele                          | vation       | l                          | Loss C        | oeffici      | ents            | Given            | Dimensio              | ons                   |
|---------------------|-------------------------|------------------------------|--------------|----------------------------|---------------|--------------|-----------------|------------------|-----------------------|-----------------------|
| Element<br>Name     | Sewer<br>Length<br>(ft) | Downstream<br>Invert<br>(ft) | Slope<br>(%) | Upstream<br>Invert<br>(ft) | Mannings<br>n | Bend<br>Loss | Lateral<br>Loss | Cross<br>Section | Rise<br>(ft or<br>in) | Span<br>(ft or<br>in) |
| MH#1 & PR#1         | 29.50                   | 6205.00                      | 2.7          | 6205.80                    | 0.013         | 0.03         | 0.00            | CIRCULAR         | 48.00 in              | 48.00 in              |
| MH#2 & PR#2         | 222.50                  | 6211.11                      | 2.2          | 6216.00                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 48.00 in              | 48.00 in              |
| INLET#1 & PR#3      | 45.00                   | 6216.81                      | 2.2          | 6217.80                    | 0.013         | 0.24         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET #2 & PR#4     | 24.00                   | 6225.49                      | 1.7          | 6225.90                    | 0.013         | 0.24         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET #3 & PR#5     | 7.00                    | 6227.00                      | 2.1          | 6227.15                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 42.00 in              | 42.00 in              |
| INLET#8 & PR#11     | 352.00                  | 6227.73                      | 1.0          | 6231.25                    | 0.013         | 1.00         | 0.25            | CIRCULAR         | 36.00 in              | 36.00 in              |
| INLET#9 & PR#12     | 31.00                   | 6231.54                      | 1.0          | 6231.85                    | 0.013         | 1.00         | 0.00            | CIRCULAR         | 36.00 in              | 36.00 in              |
| INLET#4 & PR#6      | 47.00                   | 6228.15                      | 5.0          | 6230.50                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#5 & PR#7      | 57.00                   | 6230.62                      | 1.9          | 6231.70                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#6 & PR#8      | 62.00                   | 6231.82                      | 1.9          | 6233.00                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 30.00 in              | 30.00 in              |
| INLET#7 & PR#9      | 57.00                   | 6233.62                      | 1.9          | 6234.70                    | 0.013         | 0.05         | 0.00            | CIRCULAR         | 24.00 in              | 24.00 in              |
| INLET#10 &<br>PR#10 | 24.00                   | 6234.99                      | 1.7          | 6235.40                    | 0.013         | 0.11         | 0.00            | CIRCULAR         | 24.00 in              | 24.00 in              |

file:///C:/Users/terra/OneDrive/Documents/report0.html

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

| INLET #11 &<br>PR#13 | 32.00 | 6235.69 | 1.9 | 6236.30 | 0.013 | 0.11 | 0.00 | CIRCULAR | 24.00 in | 24.00 in |
|----------------------|-------|---------|-----|---------|-------|------|------|----------|----------|----------|
| INLET #18 &<br>PR#20 | 98.00 | 6246.72 | 1.0 | 6247.70 | 0.012 | 1.00 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #17 &<br>PR#19 | 74.00 | 6247.86 | 1.0 | 6248.60 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #16 &<br>PR#18 | 74.00 | 6248.76 | 1.0 | 6249.50 | 0.012 | 0.05 | 0.00 | CIRCULAR | 12.00 in | 12.00 in |
| INLET #15 &<br>PR#17 | 98.00 | 6246.32 | 1.0 | 6247.30 | 0.012 | 1.00 | 0.00 | CIRCULAR | 18.00 in | 18.00 in |
| INLET #14 &<br>PR#16 | 74.00 | 6247.46 | 1.0 | 6248.20 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #13 &<br>PR#15 | 74.00 | 6248.36 | 1.0 | 6249.10 | 0.012 | 0.05 | 0.00 | CIRCULAR | 15.00 in | 15.00 in |
| INLET #12 &<br>PR#14 | 74.00 | 6249.26 | 1.0 | 6250.00 | 0.012 | 0.05 | 0.00 | CIRCULAR | 12.00 in | 12.00 in |

# **Sewer Flow Summary:**

|                     | -             | l Flow<br>pacity  | Critic        | al Flow           |               | Normal Flow       |                  |                       |               |                              |         |
|---------------------|---------------|-------------------|---------------|-------------------|---------------|-------------------|------------------|-----------------------|---------------|------------------------------|---------|
| Element<br>Name     | Flow<br>(cfs) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Froude<br>Number | Flow<br>Condition     | Flow<br>(cfs) | Surcharged<br>Length<br>(ft) | Comment |
| MH#1 &<br>PR#1      | 236.67        | 18.83             | 34.78         | 9.37              | 20.70         | 17.62             | 2.71             | Pressurized           | 91.40         | 29.50                        |         |
| MH#2 &<br>PR#2      | 213.63        | 17.00             | 34.78         | 9.37              | 21.93         | 16.34             | 2.43             | Supercritical         | 91.40         | 0.00                         |         |
| INLET#1 &<br>PR#3   | 149.63        | 15.55             | 35.55         | 10.52             | 23.71         | 16.32             | 2.26             | Supercritical         | 91.40         | 0.00                         |         |
| INLET #2 &<br>PR#4  | 131.53        | 13.67             | 31.72         | 9.13              | 22.02         | 13.94             | 2.03             | Supercritical         | 71.20         | 0.00                         |         |
| INLET #3 &<br>PR#5  | 146.19        | 15.19             | 31.72         | 9.13              | 20.68         | 15.09             | 2.29             | Supercritical         | 71.20         | 0.00                         |         |
| INLET#8 &<br>PR#11  | 66.88         | 9.46              | 22.09         | 7.08              | 17.61         | 9.37              | 1.54             | Supercritical<br>Jump | 32.20         | 299.96                       |         |
| INLET#9 &<br>PR#12  | 66.88         | 9.46              | 22.09         | 7.08              | 17.61         | 9.37              | 1.54             | Supercritical         |               |                              |         |
| INLET#4 &<br>PR#6   | 91.96         | 18.73             | 25.28         | 8.84              | 13.64         | 17.96             | 3.39             | Supercritical<br>Jump | 39.00         | 19.82                        |         |
| INLET#5 &<br>PR#7   | 56.69         | 11.55             | 23.36         | 7.97              | 16.35         | 11.96             | 2.01             | Supercritical         | 32.70         | 0.00                         |         |
| INLET#6 &<br>PR#8   | 56.69         | 11.55             | 21.14         | 7.22              | 14.48         | 11.38             | 2.07             | Supercritical         | 26.70         | 0.00                         |         |
| INLET#7 &<br>PR#9   | 31.27         | 9.95              | 19.74         | 7.63              | 14.44         | 10.68             | 1.87             | Supercritical         | 21.10         | 0.00                         |         |
| INLET#10 &<br>PR#10 | 29.58         | 9.41              | 18.19         | 6.93              | 13.38         | 9.83              | 1.82             | Supercritical         | 17.70         | 0.00                         |         |

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

|                      |       |      |       |      |       |       |      | 0                     |       |       |  |
|----------------------|-------|------|-------|------|-------|-------|------|-----------------------|-------|-------|--|
| INLET #11 &<br>PR#13 | 31.27 | 9.95 | 18.19 | 6.93 | 12.93 | 10.26 | 1.94 | Supercritical         | 17.70 | 0.00  |  |
| INLET #18 &<br>PR#20 | 7.02  | 5.72 | 15.00 | 6.03 | 15.00 | 6.03  | 0.00 | Pressurized           | 7.40  | 98.00 |  |
| INLET #17 &<br>PR#19 | 7.02  | 5.72 | 11.70 | 5.65 | 10.40 | 6.39  | 1.27 | Supercritical<br>Jump | 5.80  | 58.43 |  |
| INLET #16 &<br>PR#18 | 3.87  | 4.93 | 9.46  | 5.12 | 8.72  | 5.56  | 1.18 | Supercritical<br>Jump | 3.40  | 14.81 |  |
| INLET #15 &<br>PR#17 | 11.41 | 6.46 | 10.32 | 4.77 | 8.34  | 6.24  | 1.50 | Supercritical         | 5.00  | 0.00  |  |
| INLET #14 &<br>PR#16 | 7.02  | 5.72 | 7.75  | 4.06 | 6.32  | 5.29  | 1.48 | Supercritical         | 2.60  | 0.00  |  |
| INLET #13 &<br>PR#15 | 7.02  | 5.72 | 6.58  | 3.67 | 5.33  | 4.86  | 1.50 | Supercritical         | 1.90  | 0.00  |  |
| INLET #12 &<br>PR#14 | 3.87  | 4.93 | 5.78  | 3.47 | 4.79  | 4.44  | 1.43 | Supercritical         | 1.30  | 0.00  |  |

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

## Sewer Sizing Summary:

|                    |                       |                  | Exis        | ting        | Calcu       | lated       |             | Used        |                |         |
|--------------------|-----------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|---------|
| Element<br>Name    | Peak<br>Flow<br>(cfs) | Cross<br>Section | Rise        | Span        | Rise        | Span        | Rise        | Span        | Area<br>(ft^2) | Comment |
| MH#1 & PR#1        | 91.40                 | CIRCULAR         | 48.00<br>in | 48.00<br>in | 36.00<br>in | 36.00<br>in | 48.00<br>in | 48.00<br>in | 12.57          |         |
| MH#2 & PR#2        | 91.40                 | CIRCULAR         | 48.00<br>in | 48.00<br>in | 36.00<br>in | 36.00<br>in | 48.00<br>in | 48.00<br>in | 12.57          |         |
| INLET#1 & PR#3     | 91.40                 | CIRCULAR         | 42.00<br>in | 42.00<br>in | 36.00<br>in | 36.00<br>in | 42.00<br>in | 42.00<br>in | 9.62           |         |
| INLET #2 & PR#4    | 71.20                 | CIRCULAR         | 42.00<br>in | 42.00<br>in | 36.00<br>in | 36.00<br>in | 42.00<br>in | 42.00<br>in | 9.62           |         |
| INLET #3 & PR#5    | 71.20                 | CIRCULAR         | 42.00<br>in | 42.00<br>in | 33.00<br>in | 33.00<br>in | 42.00<br>in | 42.00<br>in | 9.62           |         |
| INLET#8 &<br>PR#11 | 32.20                 | CIRCULAR         | 36.00<br>in | 36.00<br>in | 30.00<br>in | 30.00<br>in | 36.00<br>in | 36.00<br>in | 7.07           |         |
| INLET#9 &<br>PR#12 | 32.20                 | CIRCULAR         | 36.00<br>in | 36.00<br>in | 30.00<br>in | 30.00<br>in | 36.00<br>in | 36.00<br>in | 7.07           |         |
| INLET#4 & PR#6     | 39.00                 | CIRCULAR         | 30.00<br>in | 30.00<br>in | 24.00<br>in | 24.00<br>in | 30.00<br>in | 30.00<br>in | 4.91           |         |
| INLET#5 & PR#7     | 32.70                 | CIRCULAR         | 30.00<br>in | 30.00<br>in | 27.00<br>in | 27.00<br>in | 30.00<br>in | 30.00<br>in | 4.91           |         |
| INLET#6 & PR#8     | 26.70                 | CIRCULAR         | 30.00<br>in | 30.00<br>in | 24.00<br>in | 24.00<br>in | 30.00<br>in | 30.00<br>in | 4.91           |         |
| INLET#7 & PR#9     | 21.10                 | CIRCULAR         | 24.00<br>in | 24.00<br>in | 21.00<br>in | 21.00<br>in | 24.00<br>in | 24.00<br>in | 3.14           |         |

file:///C:/Users/terra/OneDrive/Documents/report0.html

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

|                      |       |          |             |             |             |             |             | .g          |      |                                                                                                                                                              |
|----------------------|-------|----------|-------------|-------------|-------------|-------------|-------------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INLET#10 &<br>PR#10  | 17.70 | CIRCULAR | 24.00<br>in | 24.00<br>in | 21.00<br>in | 21.00<br>in | 24.00<br>in | 24.00<br>in | 3.14 |                                                                                                                                                              |
| INLET #11 &<br>PR#13 | 17.70 | CIRCULAR | 24.00<br>in | 24.00<br>in | 21.00<br>in | 21.00<br>in | 24.00<br>in | 24.00<br>in | 3.14 |                                                                                                                                                              |
| INLET #18 &<br>PR#20 | 7.40  | CIRCULAR | 15.00<br>in | 15.00<br>in | 18.00<br>in | 18.00<br>in | 15.00<br>in | 15.00<br>in | 1.23 | Existing height is<br>smaller<br>than the suggested<br>height.<br>Existing width is<br>smaller<br>than the suggested<br>width.<br>Exceeds max.<br>Depth/Rise |
| INLET #17 &<br>PR#19 | 5.80  | CIRCULAR | 15.00<br>in | 15.00<br>in | 15.00<br>in | 15.00<br>in | 15.00<br>in | 15.00<br>in | 1.23 |                                                                                                                                                              |
| INLET #16 &<br>PR#18 | 3.40  | CIRCULAR | 12.00<br>in | 12.00<br>in | 12.00<br>in | 12.00<br>in | 12.00<br>in | 12.00<br>in | 0.79 |                                                                                                                                                              |
| INLET #15 &<br>PR#17 | 5.00  | CIRCULAR | 18.00<br>in | 18.00<br>in | 15.00<br>in | 15.00<br>in | 18.00<br>in | 18.00<br>in | 1.77 |                                                                                                                                                              |
| INLET #14 &<br>PR#16 | 2.60  | CIRCULAR | 15.00<br>in | 15.00<br>in | 12.00<br>in | 12.00<br>in | 15.00<br>in | 15.00<br>in | 1.23 | nresolved:                                                                                                                                                   |
| INLET #13 &<br>PR#15 | 1.90  | CIRCULAR | 15.00<br>in | 15.00<br>in | 12.00<br>in | 12.00<br>in | 15.00<br>in | 15.00<br>in | 1.23 | ddress this comment                                                                                                                                          |
| INLET #12 &<br>PR#14 | 1.30  | CIRCULAR | 12.00<br>in | 12.00<br>in | 9.00 in     | 9.00 in     | 12.00<br>in | 12.00<br>in | 0.79 |                                                                                                                                                              |

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

## Grade Line Summary:

Tailwater Elevation (ft): 6210.54

|                    | Invert             | Elev.            | Ma                   | nstream<br>inhole<br>osses | HG                 | L                | EGL                |                          |                  |  |
|--------------------|--------------------|------------------|----------------------|----------------------------|--------------------|------------------|--------------------|--------------------------|------------------|--|
| Element<br>Name    | Downstream<br>(ft) | Upstream<br>(ft) | Bend<br>Loss<br>(ft) | Lateral<br>Loss<br>(ft)    | Downstream<br>(ft) | Upstream<br>(ft) | Downstream<br>(ft) | Friction<br>Loss<br>(ft) | Upstream<br>(ft) |  |
| MH#1 &<br>PR#1     | 6205.00            | 6205.80          | 0.00                 | 0.00                       | 6210.54            | 6210.66          | 6211.36            | 0.12                     | 6211.48          |  |
| MH#2 &<br>PR#2     | 6211.11            | 6216.00          | 0.04                 | 0.00                       | 6212.93            | 6218.90          | 6217.08            | 3.18                     | 6220.26          |  |
| INLET#1 &<br>PR#3  | 6216.81            | 6217.80          | 0.34                 | 0.00                       | 6219.23            | 6221.52          | 6222.92            | 0.00                     | 6222.92          |  |
| INLET #2 &<br>PR#4 | 6225.49            | 6225.90          | 0.20                 | 0.00                       | 6227.33            | 6229.49          | 6230.34            | 0.00                     | 6230.34          |  |

11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57

| INLET #3 &<br>PR#5   | 6227.00 | 6227.15 | 0.04 | 0.00 | 6229.54 | 6231.41 | 6232.26 | 0.00 | 6232.26 |
|----------------------|---------|---------|------|------|---------|---------|---------|------|---------|
| INLET#8 &<br>PR#11   | 6227.73 | 6231.25 | 0.32 | 0.77 | 6233.03 | 6233.59 | 6233.36 | 0.70 | 6234.05 |
| INLET#9 &<br>PR#12   | 6231.54 | 6231.85 | 0.32 | 0.00 | 6233.93 | 6233.93 | 6234.37 | 0.15 | 6234.52 |
| INLET#4 &<br>PR#6    | 6228.15 | 6230.50 | 0.05 | 0.00 | 6231.46 | 6232.61 | 6232.44 | 1.38 | 6233.82 |
| INLET#5 &<br>PR#7    | 6230.62 | 6231.70 | 0.03 | 0.00 | 6232.64 | 6233.65 | 6234.20 | 0.43 | 6234.63 |
| INLET#6 &<br>PR#8    | 6231.82 | 6233.00 | 0.02 | 0.00 | 6233.67 | 6234.76 | 6235.04 | 0.53 | 6235.57 |
| INLET#7 &<br>PR#9    | 6233.62 | 6234.70 | 0.04 | 0.00 | 6234.82 | 6236.34 | 6236.59 | 0.66 | 6237.25 |
| INLET#10 &<br>PR#10  | 6234.99 | 6235.40 | 0.05 | 0.00 | 6236.40 | 6236.92 | 6237.61 | 0.05 | 6237.66 |
| INLET #11 &<br>PR#13 | 6235.69 | 6236.30 | 0.05 | 0.00 | 6236.97 | 6237.82 | 6238.40 | 0.16 | 6238.56 |
| INLET #18 &<br>PR#20 | 6246.72 | 6247.70 | 0.56 | 0.00 | 6247.97 | 6249.06 | 6248.53 | 1.09 | 6249.62 |
| INLET #17 &<br>PR#19 | 6247.86 | 6248.60 | 0.02 | 0.00 | 6249.30 | 6249.57 | 6249.64 | 0.43 | 6250.07 |
| INLET #16 &<br>PR#18 | 6248.76 | 6249.50 | 0.01 | 0.00 | 6249.79 | 6250.29 | 6250.08 | 0.61 | 6250.70 |
| INLET #15 &<br>PR#17 | 6246.32 | 6247.30 | 0.12 | 0.00 | 6247.01 | 6248.16 | 6247.62 | 0.89 | 6248.51 |
| INLET #14 &<br>PR#16 | 6247.46 | 6248.20 | 0.00 | 0.00 | 6248.41 | 6248.85 | 6248.52 | 0.59 | 6249.10 |
| INLET #13 &<br>PR#15 | 6248.36 | 6249.10 | 0.00 | 0.00 | 6248.85 | 6249.65 | 6249.17 | 0.69 | 6249.86 |
| INLET #12 &<br>PR#14 | 6249.26 | 6250.00 | 0.00 | 0.00 | 6249.66 | 6250.48 | 6249.97 | 0.70 | 6250.67 |

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

• Bend loss = Bend K \*  $V_{fi} ^ 2/(2*g)$ 

• Lateral loss =  $V_{fo} \wedge 2/(2*g)$ - Junction Loss K \*  $V_{fi} \wedge 2/(2*g)$ .

• Friction loss is always Upstream EGL - Downstream EGL.

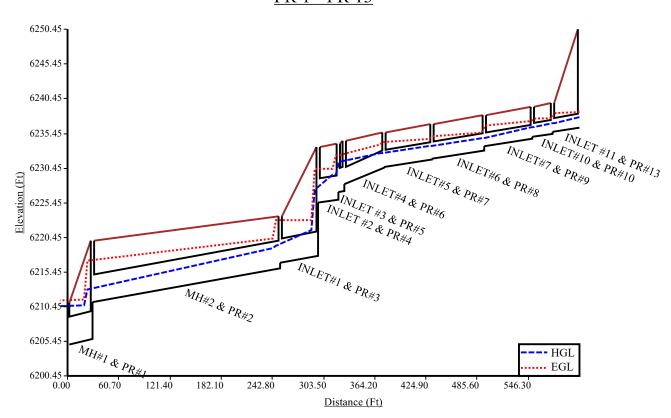
## **Excavation Estimate:**

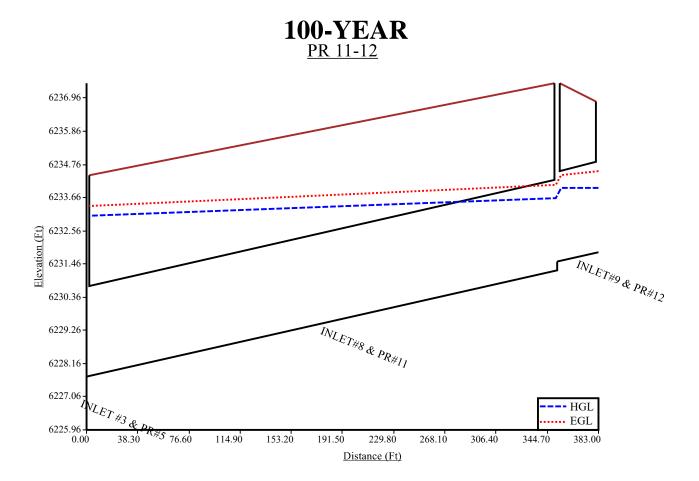
The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

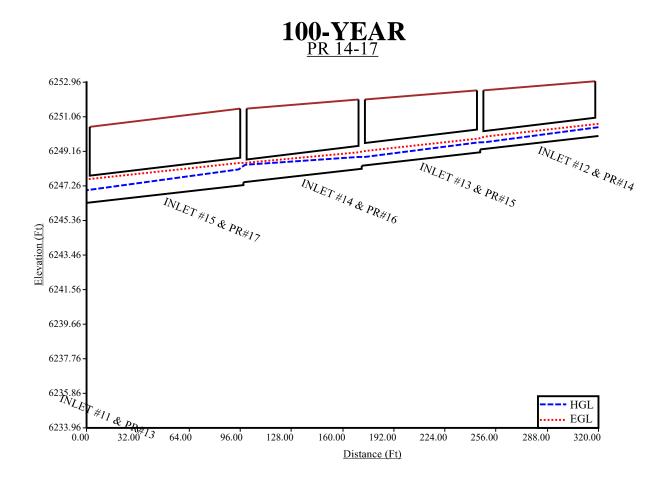
|                 |                |              |                 |                         |                      | wnstrea                 |               | U                    | pstrean                 | n             |                    |         |
|-----------------|----------------|--------------|-----------------|-------------------------|----------------------|-------------------------|---------------|----------------------|-------------------------|---------------|--------------------|---------|
| Element<br>Name | Length<br>(ft) | Wall<br>(in) | Bedding<br>(in) | Bottom<br>Width<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Volume<br>(cu. yd) | Comment |
| MH#1 & PR#1     | 29.50          | 5.00         | 6.00            | 7.83                    | 8.99                 | 6.91                    | 1.58          | 25.40                | 15.12                   | 9.78          | 136.60             |         |

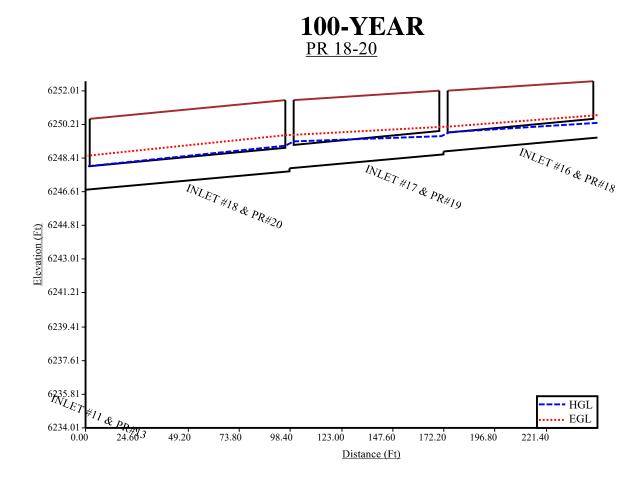
11/7/24, 2:57 PM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 100 Year 11/07/2024 14:57


|                      |        |      |      |      |       | 000110.000 |      | otorago |       | 11/01/202 |        |  |
|----------------------|--------|------|------|------|-------|------------|------|---------|-------|-----------|--------|--|
| MH#2 & PR#2          | 222.50 | 5.00 | 6.00 | 7.83 | 14.79 | 9.81       | 4.48 | 12.00   | 8.42  | 3.08      | 656.08 |  |
| INLET#1 & PR#3       | 45.00  | 4.50 | 6.00 | 7.25 | 10.88 | 7.57       | 2.82 | 28.90   | 16.58 | 11.83     | 246.24 |  |
| INLET #2 & PR#4      | 24.00  | 4.50 | 6.00 | 7.25 | 13.52 | 8.88       | 4.13 | 13.70   | 8.98  | 4.23      | 66.53  |  |
| INLET #3 & PR#5      | 7.00   | 4.50 | 6.00 | 7.25 | 11.49 | 7.87       | 3.12 | 12.00   | 8.13  | 3.38      | 16.35  |  |
| INLET#8 & PR#11      | 352.00 | 4.00 | 6.00 | 6.67 | 11.34 | 7.50       | 3.34 | 10.40   | 7.03  | 2.87      | 690.02 |  |
| INLET#9 & PR#12      | 31.00  | 4.00 | 6.00 | 6.67 | 9.82  | 6.74       | 2.58 | 8.00    | 5.83  | 1.67      | 49.82  |  |
| INLET#4 & PR#6       | 47.00  | 3.50 | 6.00 | 6.08 | 11.00 | 7.04       | 3.46 | 8.70    | 5.89  | 2.31      | 75.23  |  |
| INLET#5 & PR#7       | 57.00  | 3.50 | 6.00 | 6.08 | 8.47  | 5.77       | 2.19 | 8.70    | 5.89  | 2.31      | 78.22  |  |
| INLET#6 & PR#8       | 62.00  | 3.50 | 6.00 | 6.08 | 8.46  | 5.77       | 2.19 | 8.70    | 5.89  | 2.31      | 85.03  |  |
| INLET#7 & PR#9       | 57.00  | 3.00 | 4.00 | 5.50 | 7.97  | 5.07       | 2.23 | 8.20    | 5.18  | 2.35      | 63.03  |  |
| INLET#10 &<br>PR#10  | 24.00  | 3.00 | 4.00 | 5.50 | 7.62  | 4.89       | 2.06 | 7.90    | 5.03  | 2.20      | 25.40  |  |
| INLET #11 &<br>PR#13 | 32.00  | 3.00 | 4.00 | 5.50 | 7.32  | 4.74       | 1.91 | 27.40   | 14.78 | 11.95     | 135.18 |  |
| INLET #18 &<br>PR#20 | 98.00  | 2.25 | 4.00 | 4.63 | 7.31  | 4.30       | 2.34 | 7.35    | 4.32  | 2.36      | 79.01  |  |
| INLET #17 &<br>PR#19 | 74.00  | 2.25 | 4.00 | 4.63 | 7.03  | 4.16       | 2.20 | 6.55    | 3.92  | 1.96      | 54.47  |  |
| INLET #16 &<br>PR#18 | 74.00  | 2.00 | 4.00 | 4.33 | 6.48  | 3.74       | 2.07 | 6.00    | 3.50  | 1.83      | 45.52  |  |
| INLET #15 &<br>PR#17 | 98.00  | 2.50 | 4.00 | 4.92 | 7.86  | 4.72       | 2.47 | 7.90    | 4.74  | 2.49      | 92.41  |  |
| INLET #14 &<br>PR#16 | 74.00  | 2.25 | 4.00 | 4.63 | 7.83  | 4.56       | 2.60 | 7.35    | 4.32  | 2.36      | 62.35  |  |
| INLET #13 &<br>PR#15 | 74.00  | 2.25 | 4.00 | 4.63 | 7.03  | 4.16       | 2.20 | 6.55    | 3.92  | 1.96      | 54.47  |  |
| INLET #12 &<br>PR#14 | 74.00  | 2.00 | 4.00 | 4.33 | 6.48  | 3.74       | 2.07 | 6.00    | 3.50  | 1.83      | 45.52  |  |


#### **Total earth volume for sewer trenches** = 2757 cubic yards.


- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
  - The sewer bedding thickness is equal to:


•

- Four inches for pipes less than 33 inches.
- Six inches for pipes less than 60 inches.
- Eight inches for all larger sizes.









# **POND OUTLET**

STILLING BASIN POND OUTLET & PR#90



**Program:** UDSEWER Math Model Interface 2.1.1.4 **Run Date:** 11/7/2024 9:53:20 AM

### **UDSewer Results Summary**

**Project Title:** 6001 E Platte Storage - 5 Year **Project Description:** Pond Outlet System

# **5-YEAR**

## **System Input Summary**

#### **Rainfall Parameters**

**Rainfall Return Period:** 5 **Rainfall Calculation Method:** Formula

**One Hour Depth (in):** 1.50 **Rainfall Constant "A":** 28.5 **Rainfall Constant "B":** 10 **Rainfall Constant "C":** 0.786

### **Rational Method Constraints**

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

#### **Sizer Constraints**

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

### **Backwater Calculations:**

Tailwater Elevation (ft): 6202.50

### **Manhole Input Summary:**

|                   |                             | Giv                             | ven Flow                       |                           |       | Sub Basir          | n Informat                 | ion  |      |                             |
|-------------------|-----------------------------|---------------------------------|--------------------------------|---------------------------|-------|--------------------|----------------------------|------|------|-----------------------------|
| Element<br>Name   | Ground<br>Elevation<br>(ft) | Total<br>Known<br>Flow<br>(cfs) | Local<br>Contribution<br>(cfs) | Drainage<br>Area<br>(Ac.) | Kunom | 5yr<br>Coefficient | Overland<br>Length<br>(ft) |      | I I  | Gutter<br>Velocity<br>(fps) |
| STILLING<br>BASIN | 6201.00                     | 0.00                            | 0.00                           | 0.00                      | 0.00  | 0.00               | 0.00                       | 0.00 | 0.00 | 0.00                        |

| POND    |         |      |      |      |      |      |      |      |      |      |
|---------|---------|------|------|------|------|------|------|------|------|------|
| OUTLET  | 6209.00 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| & PR#90 |         |      |      |      |      |      |      |      |      |      |

## Manhole Output Summary:

|                           |                           | Local                   | Contri               | bution               |                           |                | <b>Total Des</b>     | ign Flow               |                       |                                          |
|---------------------------|---------------------------|-------------------------|----------------------|----------------------|---------------------------|----------------|----------------------|------------------------|-----------------------|------------------------------------------|
| Element<br>Name           | Overland<br>Time<br>(min) | Gutter<br>Time<br>(min) | Basin<br>Tc<br>(min) | Intensity<br>(in/hr) | Local<br>Contrib<br>(cfs) | Coeff.<br>Area | Intensity<br>(in/hr) | Manhole<br>Tc<br>(min) | Peak<br>Flow<br>(cfs) | Comment                                  |
| STILLING<br>BASIN         | 0.00                      | 0.00                    | 0.00                 | 0.00                 | 0.00                      | 0.11           | 6.22                 | 1.63                   | 0.70                  | Surface Water<br>Present (Upstream)      |
| POND<br>OUTLET &<br>PR#90 | 0.00                      | 0.00                    | 0.00                 | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                   | 0.70                  | Surface Water<br>Present<br>(Downstream) |

## **Sewer Input Summary:**

|                        |                         |                              | evation      |                            | Loss C        | oeffici      | ents            | Given I          | Dimensio              | ons                   |
|------------------------|-------------------------|------------------------------|--------------|----------------------------|---------------|--------------|-----------------|------------------|-----------------------|-----------------------|
| Element<br>Name        | Sewer<br>Length<br>(ft) | Downstream<br>Invert<br>(ft) | Slope<br>(%) | Upstream<br>Invert<br>(ft) | Mannings<br>n | Bend<br>Loss | Lateral<br>Loss | Cross<br>Section | Rise<br>(ft or<br>in) | Span<br>(ft or<br>in) |
| POND OUTLET &<br>PR#90 | 38.63                   | 6201.00                      | 1.3          | 6201.50                    | 0.012         | 0.03         | 0.00            | CIRCULAR         | 18.00<br>in           | 18.00<br>in           |

## **Sewer Flow Summary:**

|                           | 11            | ll Flow<br>pacity | Critic        | cal Flow          |               | Noi  | mal Flow |                       |      |                              |         |
|---------------------------|---------------|-------------------|---------------|-------------------|---------------|------|----------|-----------------------|------|------------------------------|---------|
| Element<br>Name           | Flow<br>(cfs) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Depth<br>(in) |      |          | Flow<br>Condition     |      | Surcharged<br>Length<br>(ft) | Comment |
| POND<br>OUTLET &<br>PR#90 | 13.01         | 7.36              | 3.73          | 2.65              | 2.84          | 3.92 | 1.71     | Supercritical<br>Jump | 0.70 | 0.17                         |         |

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

## Sewer Sizing Summary:

|                     |                       |          | Exis     | ting     | Calcu   | lated   |          | Used     |                |         |
|---------------------|-----------------------|----------|----------|----------|---------|---------|----------|----------|----------------|---------|
| Element<br>Name     | Peak<br>Flow<br>(cfs) | l l'roce | Rise     | Span     | Rise    | Span    | Rise     | Span     | Area<br>(ft^2) | Comment |
| POND OUTLET & PR#90 | 0.70                  | CIRCULAR | 18.00 in | 18.00 in | 9.00 in | 9.00 in | 18.00 in | 18.00 in | 1.77           |         |

file:///C:/Users/terra/OneDrive/Documents/report0.html

11/7/24, 9:53 AM

UDSEWER Math Model Interface Results: 6001 E Platte Storage - 5 Year 11/07/2024 09:53

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

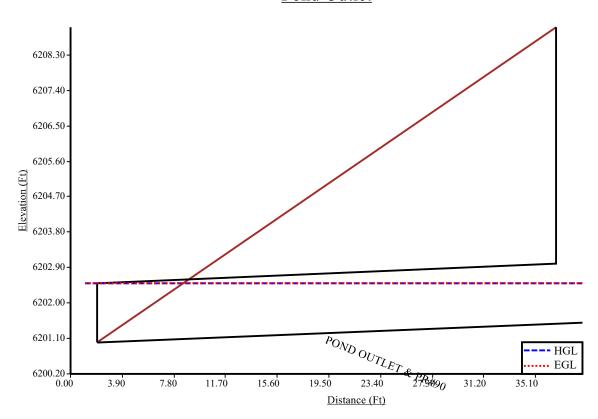
## Grade Line Summary:

Tailwater Elevation (ft): 6202.50

|                           | Invert             | Elev.            | Ma                   | nstream<br>inhole<br>osses | HG                 | Ĺ                |                    | EGL                      |                  |
|---------------------------|--------------------|------------------|----------------------|----------------------------|--------------------|------------------|--------------------|--------------------------|------------------|
| Element<br>Name           | Downstream<br>(ft) | Upstream<br>(ft) | Bend<br>Loss<br>(ft) | Lateral<br>Loss<br>(ft)    | Downstream<br>(ft) | Upstream<br>(ft) | Downstream<br>(ft) | Friction<br>Loss<br>(ft) | Upstream<br>(ft) |
| POND<br>OUTLET &<br>PR#90 | 6201.00            | 6201.50          | 0.00                 | 0.00                       | 6202.50            | 6202.50          | 6202.50            | 0.00                     | 6202.50          |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K \*  $V_{fi} ^ 2/(2*g)$
- Lateral loss = V\_fo  $^2/(2*g)$  Junction Loss K \* V\_fi  $^2/(2*g)$ .
- Friction loss is always Upstream EGL Downstream EGL.

## **Excavation Estimate:**


The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

|                        |                |              |                 |                         | Do                   | wnstrea                 | m             | U                    | Jpstrean                | n             |                    |                      |
|------------------------|----------------|--------------|-----------------|-------------------------|----------------------|-------------------------|---------------|----------------------|-------------------------|---------------|--------------------|----------------------|
| Element<br>Name        | Length<br>(ft) | Wall<br>(in) | Bedding<br>(in) | Bottom<br>Width<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Volume<br>(cu. yd) | Comment              |
| POND OUTLET<br>& PR#90 | 38.63          | 2.50         | 4.00            | 4.92                    | 0.00                 | 0.54                    | 0.00          | 14.50                | 8.04                    | 5.79          | 46.62              | Sewer Too<br>Shallow |

**Total earth volume for sewer trenches** = 47 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
  - Four inches for pipes less than 33 inches.
  - Six inches for pipes less than 60 inches.
  - Eight inches for all larger sizes.

5-YEAR Pond Outlet



Program: UDSEWER Math Model Interface 2.1.1.4 Run Date: 11/7/2024 9:57:43 AM

### **UDSewer Results Summary**

**Project Title:** 6001 E Platte Storage - 100 Year **Project Description:** Pond Outlet System

# **100-YEAR**

## **System Input Summary**

### **Rainfall Parameters**

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

### **Rational Method Constraints**

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 300 Maximum Urban Overland Len. (ft): 100 Used UDFCD Tc. Maximum: Yes

#### **Sizer Constraints**

Minimum Sewer Size (in): 6.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 3.0

### **Backwater Calculations:**

Tailwater Elevation (ft): 6202.50

### **Manhole Input Summary:**

|                   |                             | Gi                              | ven Flow                       |                           |       | Sub Basir          | n Informat                 | ion  |      |                             |
|-------------------|-----------------------------|---------------------------------|--------------------------------|---------------------------|-------|--------------------|----------------------------|------|------|-----------------------------|
| Element<br>Name   | Ground<br>Elevation<br>(ft) | Total<br>Known<br>Flow<br>(cfs) | Local<br>Contribution<br>(cfs) | Drainage<br>Area<br>(Ac.) | Kunom | 5yr<br>Coefficient | Overland<br>Length<br>(ft) |      | I I  | Gutter<br>Velocity<br>(fps) |
| STILLING<br>BASIN | 6201.00                     | 0.00                            | 0.00                           | 0.00                      | 0.00  | 0.00               | 0.00                       | 0.00 | 0.00 | 0.00                        |

| POND    |         |       |      |      |      |      |      |      |      |      |
|---------|---------|-------|------|------|------|------|------|------|------|------|
| OUTLET  | 6209.00 | 21.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| & PR#90 |         |       |      |      |      |      |      |      |      |      |

## Manhole Output Summary:

|                           |                           |                         | Contri               |                      |                           |                | Total Des            | sign Flow              |                       |                                          |
|---------------------------|---------------------------|-------------------------|----------------------|----------------------|---------------------------|----------------|----------------------|------------------------|-----------------------|------------------------------------------|
| Element<br>Name           | Overland<br>Time<br>(min) | Gutter<br>Time<br>(min) | Basin<br>Tc<br>(min) | Intensity<br>(in/hr) | Local<br>Contrib<br>(cfs) | Coeff.<br>Area | Intensity<br>(in/hr) | Manhole<br>Tc<br>(min) | Peak<br>Flow<br>(cfs) | Comment                                  |
| STILLING<br>BASIN         | 0.00                      | 0.00                    | 0.00                 | 0.00                 | 0.00                      | 1.85           | 11.71                | 0.05                   | 21.60                 | Surface Water<br>Present (Upstream)      |
| POND<br>OUTLET &<br>PR#90 | 0.00                      | 0.00                    | 0.00                 | 0.00                 | 0.00                      | 0.00           | 0.00                 | 0.00                   | 21.60                 | Surface Water<br>Present<br>(Downstream) |

## **Sewer Input Summary:**

|                        |                         |                              | evation      |                            | Loss C        | oeffici      | ents            | Given Dimensions |                       |                       |
|------------------------|-------------------------|------------------------------|--------------|----------------------------|---------------|--------------|-----------------|------------------|-----------------------|-----------------------|
| Element<br>Name        | Sewer<br>Length<br>(ft) | Downstream<br>Invert<br>(ft) | Slope<br>(%) | Upstream<br>Invert<br>(ft) | Mannings<br>n | Bend<br>Loss | Lateral<br>Loss | Cross<br>Section | Rise<br>(ft or<br>in) | Span<br>(ft or<br>in) |
| POND OUTLET &<br>PR#90 | 38.63                   | 6201.00                      | 1.3          | 6201.50                    | 0.012         | 0.03         | 0.00            | CIRCULAR         | 18.00<br>in           | 18.00<br>in           |

### **Sewer Flow Summary:**

|                           |               | l Flow<br>pacity  | Critic        | al Flow           |               | Normal Flow |      |                   |       |         |         |
|---------------------------|---------------|-------------------|---------------|-------------------|---------------|-------------|------|-------------------|-------|---------|---------|
| Element<br>Name           | Flow<br>(cfs) | Velocity<br>(fps) | Depth<br>(in) | Velocity<br>(fps) | Depth<br>(in) |             |      | Flow<br>Condition | FIOW  | L ongth | Comment |
| POND<br>OUTLET &<br>PR#90 | 13.01         | 7.36              | 18.00         | 12.22             | 18.00         | 12.22       | 0.00 | Pressurized       | 21.60 | 38.63   |         |

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

## Sewer Sizing Summary:

|                          | Exis     | sting | Calcı | lated |      | Used |      |                |         |
|--------------------------|----------|-------|-------|-------|------|------|------|----------------|---------|
| Element<br>Name<br>(cfs) | I C'rocc | Rise  | Span  | Rise  | Span | Rise | Span | Area<br>(ft^2) | Comment |

| POND OUTLET &<br>PR#90 | 21.60 | CIRCULAR | 18.00<br>in | 18.00<br>in | 24.00<br>in | 24.00<br>in | 18.00<br>in | 18.00<br>in | 1.77 | Existing height is<br>smaller<br>than the suggested<br>height.<br>Existing width is<br>smaller<br>than the suggested<br>width.<br>Exceeds max.<br>Depth/Rise |
|------------------------|-------|----------|-------------|-------------|-------------|-------------|-------------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------|-------|----------|-------------|-------------|-------------|-------------|-------------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

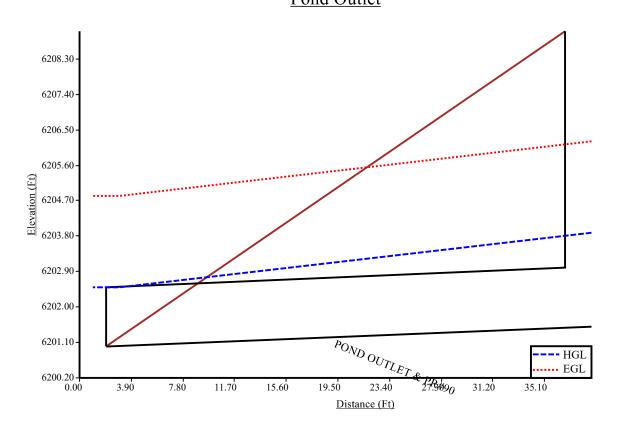
## Grade Line Summary:

Tailwater Elevation (ft): 6202.50

|                           | Invert l           | Elev.            | Ma                   | nstream<br>inhole<br>osses | HG                 | L                |                    |                          |                  |
|---------------------------|--------------------|------------------|----------------------|----------------------------|--------------------|------------------|--------------------|--------------------------|------------------|
| Element<br>Name           | Downstream<br>(ft) | Upstream<br>(ft) | Bend<br>Loss<br>(ft) | Lateral<br>Loss<br>(ft)    | Downstream<br>(ft) | Upstream<br>(ft) | Downstream<br>(ft) | Friction<br>Loss<br>(ft) | Upstream<br>(ft) |
| POND<br>OUTLET &<br>PR#90 | 6201.00            | 6201.50          | 0.00                 | 0.00                       | 6202.50            | 6203.88          | 6204.82            | 1.38                     | 6206.20          |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K \*  $V_{fi} ^ 2/(2*g)$
- Lateral loss =  $V_{fo} \wedge 2/(2*g)$  Junction Loss K \*  $V_{fi} \wedge 2/(2*g)$ .
- Friction loss is always Upstream EGL Downstream EGL.

## **Excavation Estimate:**


The trench side slope is 1.0 ft/ft The minimum trench width is 1.00 ft

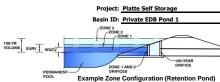
|                        |                |              |                 |                         |                      |                         |               | Upstream             |                         |               |                    |                      |
|------------------------|----------------|--------------|-----------------|-------------------------|----------------------|-------------------------|---------------|----------------------|-------------------------|---------------|--------------------|----------------------|
| Element<br>Name        | Length<br>(ft) | Wall<br>(in) | Bedding<br>(in) | Bottom<br>Width<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Top<br>Width<br>(ft) | Trench<br>Depth<br>(ft) | Cover<br>(ft) | Volume<br>(cu. yd) | Comment              |
| POND OUTLET<br>& PR#90 | 38.63          | 2.50         | 4.00            | 4.92                    | 0.00                 | 0.54                    | 0.00          | 14.50                | 8.04                    | 5.79          | 46.62              | Sewer Too<br>Shallow |

**Total earth volume for sewer trenches** = 47 cubic yards.

• The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.

100-YEAR Pond Outlet




**DETENTION CALCULATIONS** 

### PLATTE SELF STORAGE SURFACE ROUTING SUMMARY

#### Water Quality Treatment Summary Table

| 1             |                           |                                        | <u> </u>                  |                                                      | nt Summary I                                                   |                                                                |                                                |
|---------------|---------------------------|----------------------------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|
| Basin ID      | Total<br>Area             | Total<br>Proposed<br>Disturbed<br>Area | Area<br>Trib to<br>Pond 1 | Disturbed Area<br>Treated via<br>Runoff<br>Reduction | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.C.1 | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.B.# | Applicable WQ<br>Exclusions<br>(App I.7.1.B.#) |
|               | (ac)                      | (ac)                                   | (ac)                      | (ac)                                                 | (ac)                                                           | (ac)                                                           |                                                |
| OS-ZA         | 0.44                      | -                                      | 0.44                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZB         | 0.22                      | -                                      | 0.22                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZC         | 0.23                      | -                                      | 0.23                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZD         | 0.86                      | -                                      | 0.86                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZE         | 1.94                      | -                                      | 1.94                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZF         | 0.56                      | -                                      | 0.56                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZG         | 0.85                      | -                                      | 0.85                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-ZH         | 1.24                      | -                                      | 1.24                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-Y          | 8.15                      | -                                      | 8.15                      | -                                                    | -                                                              | -                                                              | -                                              |
| OS-X          | 1.20                      | -                                      | -                         | -                                                    | -                                                              | -                                                              | -                                              |
| OS-W          | 0.45                      | 0.45                                   | -                         | -                                                    | 0.45                                                           | -                                                              | -                                              |
| PR-1          | 0.07                      | 0.07                                   | -                         | -                                                    | -                                                              | 0.07                                                           | I.7.1.B.7                                      |
| PR-2          | 0.13                      | 0.13                                   | -                         | -                                                    | -                                                              | 0.13                                                           | I.7.1.B.7                                      |
| PR-3A         | 1.10                      | 1.10                                   | 1.10                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-3B         | 1.11                      | 1.11                                   | 1.11                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-3C         | 0.96                      | 0.96                                   | 0.96                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-3D         | 0.97                      | 0.97                                   | 0.97                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-3E         | 1.01                      | 1.01                                   | 1.01                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-4          | 3.66                      | 3.66                                   | 3.66                      | -                                                    | -                                                              | -                                                              | -                                              |
| <b>PR-5</b>   | 0.56                      | 0.56                                   | -                         | -                                                    | 0.55                                                           | 0.01                                                           | I.7.1.B.7                                      |
| PR-6          | 6.64                      | 6.64                                   | 6.64                      | -                                                    | -                                                              | -                                                              | -                                              |
| <b>PR-7</b>   | 0.34                      | 0.34                                   | -                         | -                                                    | -                                                              | 0.34                                                           | I.7.1.B.7                                      |
| PR-8          | 0.30                      | 0.30                                   | -                         | -                                                    | -                                                              | 0.30                                                           | I.7.1.B.7                                      |
| PR-9          | 0.59                      | 0.59                                   | -                         | -                                                    | -                                                              | 0.59                                                           | I.7.1.B.7                                      |
| PR-10A        | 0.06                      | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-10B        | 0.03                      | 0.03                                   | 0.03                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-10C        | 0.04                      | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-10D        | 0.04                      | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-10E        | 0.09                      | 0.09                                   | 0.09                      | -                                                    | -                                                              | -                                                              | -                                              |
| <b>PR-10F</b> | 0.04                      | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                              |
| PR-10G        | 0.05                      | 0.05                                   | 0.05                      | -                                                    | -                                                              | -                                                              | -                                              |
| <b>PR-10H</b> | 0.06                      | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                              |
| D to          | CINC TR                   | TOTALS                                 | 30.33                     |                                                      | 1.00                                                           | 1.44                                                           |                                                |
|               |                           | B TO POND IN<br>5, PR-9 & OS-X         | 2.35                      |                                                      |                                                                | Calc:<br>Date:                                                 | DLF<br>11/8/2024                               |
| -             | AREA TRIB FOR POND DESIGN |                                        | <b>32.68</b>              |                                                      |                                                                | Checked:                                                       | JS                                             |
|               |                           |                                        | 1 = 1.90                  |                                                      |                                                                |                                                                | 00                                             |

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER



Depth Increment = 1.00 ft

| ZONE                                       | 1 AND 2                         | 100-YEA                | R             |           | Depth Increment = | 1.00  | ft                   |        |       |                    | Ontional                |
|--------------------------------------------|---------------------------------|------------------------|---------------|-----------|-------------------|-------|----------------------|--------|-------|--------------------|-------------------------|
|                                            | Configuratio                    | on (Retentio           | n Pond)       |           | Stage - Storage   | Stage | Optional<br>Override | Length | Width | Area               | Optional<br>Override    |
|                                            |                                 | •                      |               |           | Description       | (ft)  | Stage (ft)           | (ft)   | (ft)  | (ft <sup>2</sup> ) | Area (ft <sup>2</sup> ) |
|                                            |                                 | 1                      |               |           | Top of Micropool  |       | 0.00                 |        |       |                    | 63                      |
| 3MP Type =                                 | EDB                             |                        |               |           | 6203              |       | 1.00                 |        |       |                    | 148                     |
| shed Area =                                | 32.68                           | acres                  |               |           | 6204              |       | 2.00                 |        |       |                    | 3,413                   |
| ed Length =                                | 1,610                           | ft                     |               |           | 6205              |       | 3.00                 |        |       |                    | 8,656                   |
| Centroid =<br>ned Slope =                  | 730<br>0.035                    | ft<br>ft/ft            |               |           | 6206<br>6207      |       | 4.00<br>5.00         |        |       |                    | 11,501<br>14,272        |
| viousness =                                | 38.00%                          | percent                |               |           | 6208              |       | 6.00                 |        |       |                    | 16,360                  |
| I Group A =                                | 100.0%                          | percent                |               |           | 6209              |       | 7.00                 |        |       |                    | 18,366                  |
| I Group B =                                | 0.0%                            | percent                |               |           | 6210              |       | 8.00                 |        |       |                    | 20,424                  |
| oups C/D =                                 | 0.0%                            | percent                |               |           | 6211              |       | 9.00                 |        |       |                    | 22,541                  |
| rain Time =                                | 40.0                            | hours                  |               |           | 6212              |       | 10.00                |        |       |                    | 24,740                  |
| all Depths =                               | User Input                      |                        |               |           | 6213              |       | 11.00                |        |       |                    | 27,005                  |
| its above inc                              | luding 1-hour                   | rainfall               |               |           |                   |       |                      |        |       |                    |                         |
|                                            | off hydrograph<br>graph Procedu |                        | 0             | 0         |                   |       |                      |        |       |                    |                         |
| e (WQCV) =                                 | 0.475                           | acre-feet              | Optional User | acre-feet |                   |       |                      |        |       |                    |                         |
| e (EURV) =                                 | 1.326                           | acre-feet              |               | acre-feet |                   |       |                      |        |       |                    |                         |
| 1.19 in.) =                                | 0.986                           | acre-feet              | 1.19          | inches    |                   |       |                      |        |       |                    |                         |
| = 1.5 in.) =                               | 1.333                           | acre-feet              | 1.50          | inches    |                   |       |                      |        |       |                    |                         |
| 1.75 in.) =                                | 1.608                           | acre-feet              | 1.75          | inches    |                   |       |                      |        |       |                    |                         |
| 1 = 2 in.) =                               | 2.161                           | acre-feet              | 2.00          | inches    |                   |       |                      |        |       |                    |                         |
| 2.25 in.) =                                | 2.693                           | acre-feet              | 2.25          | inches    |                   |       |                      |        | -     |                    |                         |
| 2.52 in.) =                                | 3.393                           | acre-feet              | 2.52          | inches    |                   |       |                      |        |       |                    |                         |
| 1 = 3 in.) =                               | 4.538                           | acre-feet              | 3.00          | inches    |                   |       |                      | -      |       |                    |                         |
| n Volume =                                 | 0.842                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| n Volume =                                 | 1.117                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| n Volume =<br>n Volume =                   | 1.381                           | acre-feet              |               |           |                   | -     |                      | -      |       |                    | -                       |
| n Volume =<br>n Volume =                   | 1.719                           | acre-feet<br>acre-feet |               |           |                   |       |                      |        |       |                    |                         |
| n Volume =                                 | 2.283                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 | 1                      |               |           |                   |       |                      |        |       |                    |                         |
| try                                        |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
| e (WQCV) =                                 | 0.475                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| - Zone 1) =                                | 0.851                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| es 1 & 2) =                                | 0.957                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| n Volume =                                 | 2.283                           | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
| ıme (ISV) =                                | user                            | ft <sup>3</sup>        |               |           |                   |       |                      |        |       |                    |                         |
| pth (ISD) =                                | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| th (H <sub>total</sub> ) =                 | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| nnel ( $H_{TC}$ ) =                        | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| nnel $(S_{TC}) =$                          | user                            | ft/ft<br>H:V           |               |           |                   |       |                      |        |       |                    |                         |
| es (S <sub>main</sub> ) =                  | user                            | n.v                    |               |           |                   |       |                      |        |       |                    |                         |
| tio (R <sub>L/W</sub> ) =                  | usei                            | 1                      |               |           |                   | -     |                      | -      |       |                    |                         |
| rea (A <sub>ISV</sub> ) =                  | user                            | ft <sup>2</sup>        |               |           |                   |       |                      |        |       |                    |                         |
| $gth(L_{ISV}) =$                           | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| th $(W_{ISV}) =$                           | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| $(H_{FLOOR}) =$                            | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| $(L_{FLOOR}) =$                            | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| $(W_{FLOOR}) =$                            | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| $(A_{FLOOR}) =$                            | user                            | ft <sup>2</sup>        |               |           |                   |       |                      |        |       |                    |                         |
| $(V_{FLOOR}) =$                            | user                            | ft <sup>3</sup>        |               |           |                   |       |                      |        |       |                    |                         |
| $n(H_{MAIN}) =$                            | user                            | ft                     |               |           |                   |       |                      |        |       |                    |                         |
| $n(L_{MAIN}) =$                            | user                            | ft<br>ft               |               |           |                   | -     |                      |        |       |                    |                         |
| $(W_{MAIN}) =$<br>n (A <sub>MAIN</sub> ) = | user                            | π<br>π <sup>2</sup>    |               |           |                   |       |                      |        |       |                    |                         |
| $n(X_{MAIN}) =$<br>$n(V_{MAIN}) =$         | user                            | ft <sup>-</sup>        |               |           |                   |       |                      |        |       |                    |                         |
| $(V_{MAIN}) =$<br>$(V_{total}) =$          | user                            | acre-feet              |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      | -      |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        | -     |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |
|                                            |                                 |                        |               |           |                   |       |                      |        |       |                    |                         |

Watershed Information

|       |                       | tershed Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | EDB                   | Selected BMP Type =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| acre  | 32.68                 | Watershed Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ft    | 1,610                 | Watershed Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ft    | 730                   | Watershed Length to Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ft/ft | 0.035                 | Watershed Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| perc  | 38.00%                | Watershed Imperviousness =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| perc  | 100.0%                | Percentage Hydrologic Soil Group A =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| perc  | 0.0%                  | Percentage Hydrologic Soil Group B =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| perc  | 0.0%                  | Percentage Hydrologic Soil Groups C/D =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hou   | 40.0                  | Target WQCV Drain Time =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | User Input            | Location for 1-hr Rainfall Depths =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Contractor de la com- | A fear and the state of the difference of the state of th |

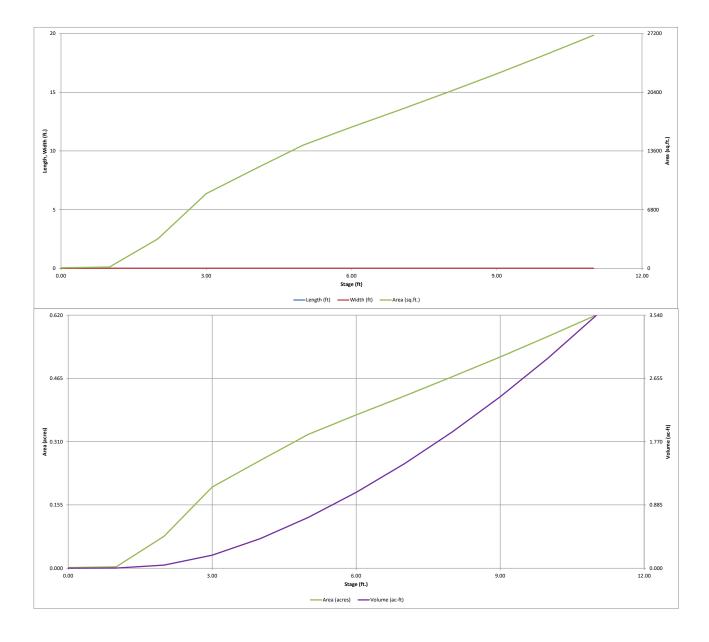
# After providing required inputs depths, click 'Run CUHP' to gen the embedded Colorado Url

|                                        | 5     |           | Option |
|----------------------------------------|-------|-----------|--------|
| Water Quality Capture Volume (WQCV) =  | 0.475 | acre-feet |        |
| Excess Urban Runoff Volume (EURV) =    | 1.326 | acre-feet |        |
| 2-yr Runoff Volume (P1 = 1.19 in.) =   | 0.986 | acre-feet | 1.     |
| 5-yr Runoff Volume (P1 = 1.5 in.) =    | 1.333 | acre-feet | 1.     |
| 10-yr Runoff Volume (P1 = 1.75 in.) =  | 1.608 | acre-feet | 1.     |
| 25-yr Runoff Volume (P1 = 2 in.) =     | 2.161 | acre-feet | 2.     |
| 50-yr Runoff Volume (P1 = 2.25 in.) =  | 2.693 | acre-feet | 2.     |
| 100-yr Runoff Volume (P1 = 2.52 in.) = | 3.393 | acre-feet | 2.     |
| 500-yr Runoff Volume (P1 = 3 in.) =    | 4.538 | acre-feet | 3.     |
| Approximate 2-yr Detention Volume =    | 0.842 | acre-feet |        |
| Approximate 5-yr Detention Volume =    | 1.117 | acre-feet |        |
| Approximate 10-yr Detention Volume =   | 1.381 | acre-feet |        |
| Approximate 25-yr Detention Volume =   | 1.719 | acre-feet |        |
| Approximate 50-yr Detention Volume =   | 1.951 | acre-feet |        |
| Approximate 100-yr Detention Volume =  | 2.283 | acre-feet |        |
|                                        |       |           |        |

#### Define Zones and Basin Geometry

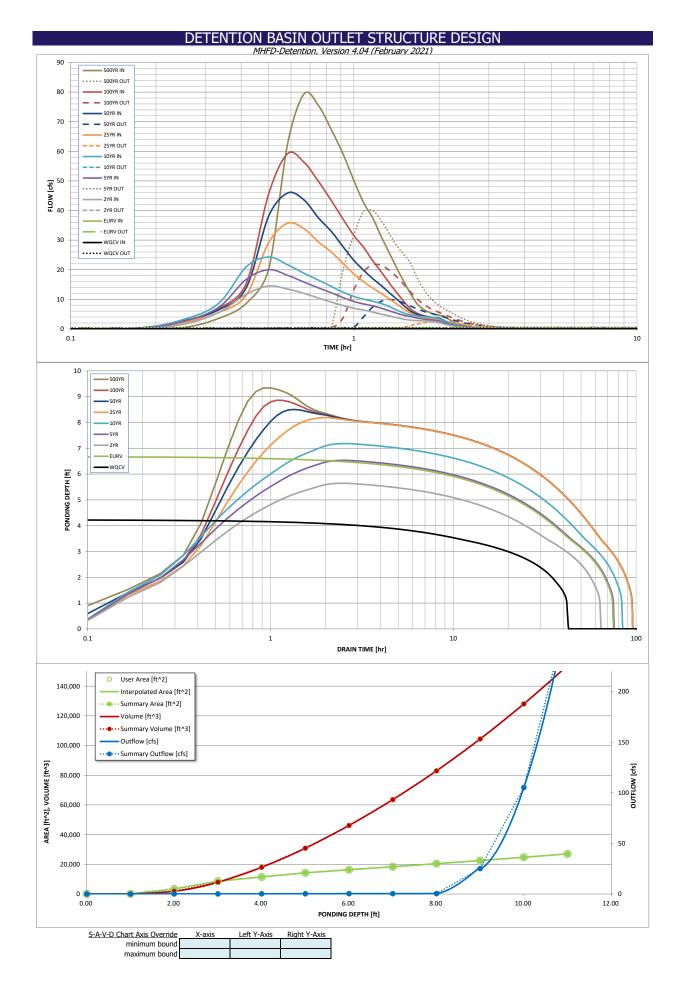
| Zone 1 Volume (WQCV) =                            | 0.475 | acre-fe         |
|---------------------------------------------------|-------|-----------------|
| Zone 2 Volume (EURV - Zone 1) =                   | 0.851 | acre-fe         |
| Zone 3 Volume (100-year - Zones 1 & 2) =          | 0.957 | acre-fe         |
| Total Detention Basin Volume =                    | 2.283 | acre-fe         |
| Initial Surcharge Volume (ISV) =                  | user  | ft <sup>3</sup> |
| Initial Surcharge Depth (ISD) =                   | user  | ft              |
| Total Available Detention Depth $(H_{total}) =$   | user  | ft              |
| Depth of Trickle Channel (H <sub>TC</sub> ) =     | user  | ft              |
| Slope of Trickle Channel (S <sub>TC</sub> ) =     | user  | ft/ft           |
| Slopes of Main Basin Sides (S <sub>main</sub> ) = | user  | H:V             |
| Basin Length-to-Width Ratio (R <sub>L/W</sub> ) = | user  |                 |
|                                                   |       |                 |
| Initial Surcharge Area $(A_{ISV}) =$              | user  | ft <sup>2</sup> |
| Surcharge Volume Length $(L_{ISV}) =$             | user  | ft              |
| Surcharge Volume Width (W <sub>ISV</sub> ) =      | user  | ft              |
| Depth of Basin Floor $(H_{FLOOR}) =$              | user  | ft              |
| Length of Basin Floor $(L_{FLOOR}) =$             | user  | ft              |
| Width of Basin Floor ( $W_{FLOOR}$ ) =            | user  | ft              |
| Area of Basin Floor $(A_{FLOOR}) =$               | user  | ft <sup>2</sup> |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =     | user  | ft <sup>3</sup> |
| Depth of Main Basin $(H_{MAIN}) =$                | user  | ft              |
| Length of Main Basin $(L_{MAIN}) =$               | user  | ft              |
| Width of Main Basin (W <sub>MAIN</sub> ) =        | user  | ft              |
| Area of Main Basin (A <sub>MAIN</sub> ) =         | user  | ft 2            |
| Volume of Main Basin (V <sub>MAIN</sub> ) =       | user  | ft 3            |
| Calculated Total Basin Volume ( $V_{total}$ ) =   | user  | acre-fe         |
|                                                   | -     | •               |

|     | Top of Theropool |   | 0.00  |   |      | 05     | 0.001 |         |       |
|-----|------------------|---|-------|---|------|--------|-------|---------|-------|
|     | 6203             |   | 1.00  |   | <br> | 148    | 0.003 | 105     | 0.002 |
| -   |                  |   |       |   |      |        |       |         |       |
|     | 6204             |   | 2.00  |   | <br> | 3,413  | 0.078 | 1,886   | 0.043 |
|     | 6205             |   | 3.00  |   | <br> | 8,656  | 0.199 | 7,920   | 0.182 |
| ł   |                  |   |       |   |      |        |       |         |       |
|     | 6206             |   | 4.00  |   | <br> | 11,501 | 0.264 | 17,998  | 0.413 |
|     | 6207             |   | 5.00  |   | <br> | 14,272 | 0.328 | 30,884  | 0.709 |
|     | 6208             |   | 6.00  |   | <br> | 16,360 | 0.376 | 46,200  | 1.061 |
|     |                  |   |       |   |      |        |       |         |       |
|     | 6209             |   | 7.00  |   | <br> | 18,366 | 0.422 | 63,563  | 1.459 |
|     | 6210             |   | 8.00  |   | <br> | 20,424 | 0.469 | 82,958  | 1.904 |
|     |                  |   |       |   |      |        |       |         |       |
|     | 6211             |   | 9.00  |   |      | 22,541 | 0.517 | 104,440 | 2.398 |
|     | 6212             |   | 10.00 |   | <br> | 24,740 | 0.568 | 128,081 | 2.940 |
|     | 6213             |   | 11.00 |   | <br> | 27,005 | 0.620 | 153,953 | 3.534 |
|     | 0215             |   | 11.00 |   |      | 27,005 | 0.020 | 133,933 | 3.354 |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| .   |                  |   |       |   |      |        |       |         |       |
| des |                  |   |       |   | <br> |        |       |         |       |
| et  |                  |   |       |   | <br> |        |       |         |       |
| eet |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       | 1       | 1     |
| ļ   |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       | 1       |       |
| İ   |                  |   |       |   | <br> |        | -     | 1       |       |
| ł   |                  |   |       |   |      |        |       |         |       |
| ļ   |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       | 1       |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   |      |        |       |         |       |
| l   |                  |   |       |   | <br> |        |       | l       |       |
|     |                  |   |       |   | <br> |        |       | 1       |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| [   |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   |      |        |       |         |       |
| ļ   |                  |   |       |   |      |        |       |         |       |
| ļ   |                  |   |       |   | <br> |        |       |         |       |
| ļ   |                  |   |       |   | <br> |        |       | l       |       |
| -   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| 1   |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| [   |                  |   |       | - | <br> |        |       |         |       |
| ļ   |                  |   |       |   | <br> |        |       |         |       |
| ļ   |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   |      |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   | <br> |        |       |         |       |
| -   |                  |   |       |   | <br> |        |       |         |       |
|     |                  | - |       |   | <br> |        |       | l       |       |
| -   |                  | - |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   |      |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
|     |                  | - |       |   | <br> |        |       |         |       |
| ł   |                  | - |       | - | <br> |        |       |         |       |
| ł   |                  |   |       | - | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  | - |       |   | <br> |        |       | 1       | 1     |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| İ   |                  |   |       |   | <br> |        |       |         |       |
| İ   |                  |   |       |   | <br> |        |       |         |       |
| ł   |                  |   |       |   | <br> |        |       |         |       |
| 1   |                  |   |       |   | <br> |        |       |         |       |
| [   |                  |   |       |   | <br> |        |       |         |       |
| [   |                  |   |       |   | <br> |        |       |         |       |
| [   |                  |   |       |   | <br> |        |       |         |       |
| ļ   |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
|     |                  |   |       |   | <br> |        |       |         |       |
| ļ   |                  |   | 1     |   | <br> | 1      |       | I       | I     |
|     |                  |   |       |   |      |        |       |         |       |


Volume (ft <sup>3</sup>)

Volume (ac-ft)

Area (acre) 0.001


#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)



### DETENTION BASIN OUTLET STRUCTURE DESIGN

| Project:                                                                                                                                                                  | Platte Self Storage                                                                                                         |                                                                                                                                                           | D-Detention, Vers                                                     | ווטו די נו פו אינט אין אינט אין אינטאא | y 2021)           |                      |                     |                                   |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------|----------------------|---------------------|-----------------------------------|-------------------------|
|                                                                                                                                                                           | Private EDB Pond                                                                                                            | 1                                                                                                                                                         |                                                                       |                                        |                   |                      |                     |                                   |                         |
| ZONE 3<br>ZONE 2<br>ZONE 1                                                                                                                                                |                                                                                                                             |                                                                                                                                                           |                                                                       | Estimated                              | Estimated         |                      |                     |                                   |                         |
| 100-YB                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                           |                                                                       | Stage (ft)                             | Volume (ac-ft)    | Outlet Type          |                     |                                   |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           | Zone 1 (WQCV)                                                         | 4.23                                   | 0.475             | Orifice Plate        |                     |                                   |                         |
| ZONE 1 AND 2                                                                                                                                                              | 100-YEAR<br>ORIFICE                                                                                                         |                                                                                                                                                           | Zone 2 (EURV)                                                         | 6.68                                   | 0.851             | Orifice Plate        |                     |                                   |                         |
| PERMANENT ORIFICES                                                                                                                                                        |                                                                                                                             |                                                                                                                                                           | Zone 3 (100-year)                                                     | 8.78                                   | 0.957             | Weir&Pipe (Restrict) |                     |                                   |                         |
| Example Zone                                                                                                                                                              | Configuration (Re                                                                                                           | tention Pond)                                                                                                                                             |                                                                       | Total (all zones)                      | 2.283             |                      | •                   |                                   |                         |
| User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain                                          |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Underdrain Orifice Invert Depth =                                                                                                                                         |                                                                                                                             | ft (distance below                                                                                                                                        | the filtration media                                                  | surface)                               | Underc            | drain Orifice Area = |                     | ft <sup>2</sup>                   |                         |
| Underdrain Orifice Diameter =inches Underdrain Orifice Centroi                                                                                                            |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   | orifice Centroid =   |                     | feet                              |                         |
| User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)                             |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| User Input: Orifice Plate with one or more orific<br>Invert of Lowest Orifice =                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     | ters for Plate<br>ft <sup>2</sup> |                         |
| Depth at top of Zone using Orifice Plate =                                                                                                                                | 6.71                                                                                                                        |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     | feet                              |                         |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                 | N/A                                                                                                                         | inches Elliptical Slot Centroid =                                                                                                                         |                                                                       |                                        |                   |                      | N/A<br>N/A          | feet                              |                         |
| Orifice Plate: Orifice Area per Row =                                                                                                                                     | N/A                                                                                                                         | inches Elliptical Slot Area =                                                                                                                             |                                                                       |                                        |                   |                      | N/A                 | ft <sup>2</sup>                   |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)                                                                                    |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
|                                                                                                                                                                           | Row 1 (required)                                                                                                            | Row 2 (optional)                                                                                                                                          | Row 3 (optional)                                                      | Row 4 (optional)                       | Row 5 (optional)  | Row 6 (optional)     | Row 7 (optional)    | Row 8 (optional)                  |                         |
| Stage of Orifice Centroid (ft)                                                                                                                                            | 0.00                                                                                                                        | 1.70                                                                                                                                                      | 3.40                                                                  |                                        |                   |                      |                     |                                   |                         |
| Orifice Area (sq. inches)                                                                                                                                                 | 1.50                                                                                                                        | 1.10                                                                                                                                                      | 2.75                                                                  |                                        |                   |                      |                     |                                   |                         |
|                                                                                                                                                                           | David ( 11 11                                                                                                               | Day 10 (                                                                                                                                                  | Day 11 (                                                              | Day 12 (                               | Day 12 (          | David 4 ( 11 11 11   | Day 15 (            | David C ( 111 11                  |                         |
|                                                                                                                                                                           | Row 9 (optional)                                                                                                            | Row 10 (optional)                                                                                                                                         | Row 11 (optional)                                                     | Row 12 (optional)                      | Row 13 (optional) | Row 14 (optional)    | Row 15 (optional)   | Row 16 (optional)                 |                         |
| Stage of Orifice Centroid (ft)                                                                                                                                            |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Orifice Area (sq. inches)                                                                                                                                                 |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| User Input: Vertical Orifice (Circular or Rectange                                                                                                                        | ular)                                                                                                                       |                                                                                                                                                           |                                                                       |                                        |                   |                      | Calculated Parame   | ters for Vertical Ori             | fice                    |
|                                                                                                                                                                           | Not Selected                                                                                                                | Not Selected                                                                                                                                              |                                                                       |                                        |                   |                      | Not Selected        | Not Selected                      |                         |
| Invert of Vertical Orifice =                                                                                                                                              | N/A                                                                                                                         | N/A                                                                                                                                                       | ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = |                                        |                   |                      | N/A                 | N/A                               | ft <sup>2</sup>         |
| Depth at top of Zone using Vertical Orifice =                                                                                                                             | N/A                                                                                                                         | N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =                                                                             |                                                                       |                                        |                   |                      | N/A                 | N/A                               | feet                    |
| Vertical Orifice Diameter = N/A N/A inches                                                                                                                                |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Oser Input. Overnow Weir (Dropbox With Flat o                                                                                                                             | Zone 3 Weir Not Selected                                                                                                    |                                                                                                                                                           |                                                                       |                                        |                   |                      | Zone 3 Weir         | Not Selected                      |                         |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                     | 8.00                                                                                                                        | N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t =$                                                                     |                                                                       |                                        |                   |                      | 8.00                | N/A                               | feet                    |
| Overflow Weir Front Edge Length =                                                                                                                                         | 4.00                                                                                                                        | -                                                                                                                                                         | N/A feet Overflow Weir Slope Length =                                 |                                        |                   |                      |                     | N/A                               | feet                    |
| Overflow Weir Grate Slope =                                                                                                                                               | 0.00                                                                                                                        | N/A                                                                                                                                                       |                                                                       |                                        |                   |                      | 7.16                | N/A                               |                         |
| Horiz. Length of Weir Sides =                                                                                                                                             | 4.00                                                                                                                        | N/A                                                                                                                                                       | feet Overflow Grate Open Area w/o Debris =                            |                                        |                   |                      | 12.66               | N/A                               | ft <sup>2</sup>         |
| Overflow Grate Type =                                                                                                                                                     | Close Mesh Grate                                                                                                            | N/A                                                                                                                                                       | Overflow Grate Open Area w/ Debris =                                  |                                        |                   |                      | 6.33                | N/A                               | ft <sup>2</sup>         |
| Debris Clogging % =                                                                                                                                                       | 50%                                                                                                                         | N/A                                                                                                                                                       | %                                                                     |                                        |                   |                      |                     |                                   |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| User Input: Outlet Pipe w/ Flow Restriction Plate                                                                                                                         | put: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Paramete |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   | <u>ate</u>              |
| Death to Invest of Outlet Dise                                                                                                                                            | Zone 3 Restrictor                                                                                                           |                                                                                                                                                           |                                                                       |                                        |                   |                      | Zone 3 Restrictor   | Not Selected                      | c.2                     |
| Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =                                                                                                                | 0.50 18.00                                                                                                                  | N/A         ft (distance below basin bottom at Stage = 0 ft)         Outlet Orifice Area =           N/A         inches         Outlet Orifice Centroid = |                                                                       |                                        |                   |                      | 1.77<br>0.75        | N/A<br>N/A                        | ft <sup>2</sup><br>feet |
| Restrictor Plate Height Above Pipe Invert =                                                                                                                               | 18.00                                                                                                                       |                                                                                                                                                           | inches Half-Central Angle of Restrictor Plate on Pipe =               |                                        |                   |                      |                     | N/A                               | radians                 |
| Restrictor flate freight Above filpe filvert =                                                                                                                            | 10.00                                                                                                                       |                                                                                                                                                           | inches                                                                |                                        |                   | tor rate on ripe =   | 3.14                | N/A                               | T d d l d l d l d       |
| User Input: Emergency Spillway (Rectangular or                                                                                                                            | Trapezoidal)                                                                                                                |                                                                                                                                                           |                                                                       |                                        |                   |                      | Calculated Parame   | ters for Spillway                 |                         |
| Spillway Invert Stage=                                                                                                                                                    | 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth                                               |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Spillway Crest Length =                                                                                                                                                   | 23.00                                                                                                                       | feet Stage at Top of Freeboard =                                                                                                                          |                                                                       |                                        |                   |                      | 10.69               | feet                              |                         |
| Spillway End Slopes =                                                                                                                                                     | 4.00                                                                                                                        | H:V Basin Area at Top of Freeboard =                                                                                                                      |                                                                       |                                        |                   |                      | 0.60                | acres                             |                         |
| Freeboard above Max Water Surface =                                                                                                                                       | 1.00                                                                                                                        | feet                                                                                                                                                      |                                                                       |                                        | Basin Volume at 1 | Fop of Freeboard =   | 3.34                | acre-ft                           |                         |
|                                                                                                                                                                           |                                                                                                                             |                                                                                                                                                           |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Routed Hydrograph Results                                                                                                                                                 | The user can over                                                                                                           | ride the default CUI                                                                                                                                      | HP hydrographs and                                                    | runoff volumes by                      | entering new valu | ies in the Inflow Hy | drographs table (Co | olumns W through A                | 4 <i>F).</i>            |
| Design Storm Return Period =                                                                                                                                              | WQCV                                                                                                                        | EURV                                                                                                                                                      | 2 Year                                                                | 5 Year                                 | 10 Year           | 25 Year              | 50 Year             | 100 Year                          | 500 Year                |
| One-Hour Rainfall Depth (in) =                                                                                                                                            | N/A                                                                                                                         | N/A                                                                                                                                                       | 1.19                                                                  | 1.50                                   | 1.75              | 2.00                 | 2.25                | 2.52                              | 3.00                    |
| CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                    | 0.475<br>N/A                                                                                                                | 1.326<br>N/A                                                                                                                                              | 0.986                                                                 | 1.333<br>1.333                         | 1.608<br>1.608    | 2.161<br>2.161       | 2.693<br>2.693      | 3.393<br>3.393                    | 4.538<br>4.538          |
| CUHP Predevelopment Peak Q (cfs) =                                                                                                                                        | N/A<br>N/A                                                                                                                  | N/A                                                                                                                                                       | 0.986                                                                 | 0.6                                    | 0.8               | 7.3                  | 14.4                | 23.6                              | 37.6                    |
| OPTIONAL Override Predevelopment Peak Q (cfs) =                                                                                                                           | N/A                                                                                                                         | N/A                                                                                                                                                       |                                                                       |                                        |                   |                      |                     |                                   |                         |
| Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                             | N/A<br>N/A                                                                                                                  | N/A<br>N/A                                                                                                                                                | 0.01<br>14.5                                                          | 0.02 20.0                              | 0.02<br>24.3      | 0.22<br>35.7         | 0.44<br>45.9        | 0.72<br>59.2                      | 1.15<br>79.4            |
| Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                           | 0.2                                                                                                                         | 0.4                                                                                                                                                       | 0.3                                                                   | 0.4                                    | 0.4               | 2.6                  | 9.9                 | 21.6                              | 79.4<br>39.9            |
| Ratio Peak Outflow to Predevelopment Q =                                                                                                                                  | N/A                                                                                                                         | N/A                                                                                                                                                       | N/A                                                                   | 0.7                                    | 0.5               | 0.4                  | 0.7                 | 0.9                               | 1.1                     |
| Structure Controlling Flow =                                                                                                                                              | Plate                                                                                                                       | Plate                                                                                                                                                     | Plate                                                                 | Plate                                  | Plate             | Overflow Weir 1      | Overflow Weir 1     | Overflow Weir 1                   | Spillway                |
| Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =                                                                                              | N/A<br>N/A                                                                                                                  | N/A<br>N/A                                                                                                                                                | N/A<br>N/A                                                            | N/A<br>N/A                             | N/A<br>N/A        | 0.2<br>N/A           | 0.7<br>N/A          | 1.7<br>N/A                        | 2.0<br>N/A              |
| Time to Drain 97% of Inflow Volume (hours) =                                                                                                                              | 39                                                                                                                          | 68                                                                                                                                                        | 58                                                                    | 69                                     | 76                | 85                   | 84                  | 81                                | 78                      |
| Time to Drain 99% of Inflow Volume (hours) =                                                                                                                              | 41                                                                                                                          | 72                                                                                                                                                        | 62                                                                    | 73                                     | 81                | 91                   | 90                  | 89                                | 88                      |
| Maximum Ponding Depth (ft) =                                                                                                                                              | 4.23<br>0.28                                                                                                                | 6.68<br>0.41                                                                                                                                              | 5.64<br>0.36                                                          | 6.53<br>0.40                           | 7.18<br>0.43      | 8.19<br>0.48         | 8.50<br>0.49        | 8.86<br>0.51                      | 9.34<br>0.53            |
| Area at Maximum Ponding Depth (acres) =<br>Maximum Volume Stored (acre-ft) =                                                                                              | 0.28                                                                                                                        | 1.327                                                                                                                                                     | 0.929                                                                 | 1.266                                  | 1.536             | 1.990                | 2.145               | 2.321                             | 2.571                   |



#### DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|               | The user can o     | verride the calcu | lated inflow hyd | rographs from t | his workbook wi | th inflow hydrog | raphs developed | l in a separate pr | ogram.         |                |
|---------------|--------------------|-------------------|------------------|-----------------|-----------------|------------------|-----------------|--------------------|----------------|----------------|
|               | SOURCE             | CUHP              | CUHP             | CUHP            | CUHP            | CUHP             | CUHP            | CUHP               | CUHP           | CUHP           |
| Time Interval | TIME               | WQCV [cfs]        | EURV [cfs]       | 2 Year [cfs]    | 5 Year [cfs]    | 10 Year [cfs]    | 25 Year [cfs]   | 50 Year [cfs]      | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min      | 0:00:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
| 5.00 11111    | 0:05:00            |                   |                  |                 |                 |                  |                 |                    |                |                |
|               | 0:10:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 0:15:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.18               | 0.02           | 0.46           |
|               | 0:20:00            | 0.00              | 0.00             | 1.56            | 2.53            | 3.16             | 2.14            | 2.69               | 2.64           | 3.55           |
|               | 0:25:00            | 0.00              | 0.00             | 5.57            | 7.31            | 8.67             | 5.51<br>11.39   | 6.45               | 6.93<br>15.32  | 8.60           |
|               | 0:30:00            | 0.00              | 0.00             | 11.66<br>14.49  | 16.72<br>19.99  | 20.93<br>24.26   | 29.11           | 13.87<br>38.08     | 45.54          | 20.12 62.47    |
|               | 0:35:00            | 0.00              | 0.00             | 13.45           | 18.09           | 21.67            | 35.66           | 45.91              | 59.18          | 79.36          |
|               | 0:40:00            | 0.00              | 0.00             | 12.00           | 15.81           | 18.79            | 33.83           | 43.55              | 56.30          | 75.46          |
|               | 0:45:00            | 0.00              | 0.00             | 10.40           | 13.83           | 16.48            | 29.34           | 37.49              | 49.82          | 67.25          |
|               | 0:50:00            | 0.00              | 0.00             | 9.03            | 12.18           | 14.31            | 25.95           | 32.89              | 43.31          | 59.03          |
|               | 0:55:00            | 0.00              | 0.00             | 7.87            | 10.55           | 12.40            | 22.06           | 27.72              | 37.04          | 50.16          |
|               | 1:00:00            | 0.00              | 0.00             | 6.97            | 9.25            | 10.95            | 18.57           | 23.16              | 31.56          | 42.59          |
|               | 1:05:00            | 0.00              | 0.00             | 6.37            | 8.42            | 10.04            | 15.92           | 19.79              | 27.51          | 37.43          |
|               | 1:10:00            | 0.00              | 0.00             | 5.65            | 7.77            | 9.30             | 13.75           | 16.97              | 23.02          | 31.14          |
|               | 1:15:00            | 0.00              | 0.00             | 4.98            | 6.98            | 8.57             | 11.98           | 14.63              | 19.24          | 25.77          |
|               | 1:20:00            | 0.00              | 0.00             | 4.36            | 6.10            | 7.55             | 10.12           | 12.24              | 15.55          | 20.63          |
|               | 1:25:00            | 0.00              | 0.00             | 3.78            | 5.28            | 6.36             | 8.43            | 10.06              | 12.27          | 16.10          |
|               | 1:30:00            | 0.00              | 0.00             | 3.29            | 4.60            | 5.35             | 6.74            | 7.90               | 9.33           | 12.04          |
|               | 1:35:00            | 0.00              | 0.00             | 2.95            | 4.13            | 4.71             | 5.28            | 6.04               | 6.81           | 8.64           |
|               | 1:40:00            | 0.00              | 0.00             | 2.78            | 3.68            | 4.37             | 4.38            | 4.97               | 5.36           | 6.77           |
|               | 1:45:00            | 0.00              | 0.00             | 2.70            | 3.35            | 4.14             | 3.88            | 4.39               | 4.60           | 5.72           |
|               | 1:50:00            | 0.00              | 0.00             | 2.65            | 3.12            | 3.98             | 3.59            | 4.05               | 4.11           | 5.04           |
|               | 1:55:00            | 0.00              | 0.00             | 2.36            | 2.94            | 3.79             | 3.39            | 3.82               | 3.78           | 4.59           |
|               | 2:00:00            | 0.00              | 0.00             | 2.10            | 2.73            | 3.48             | 3.26            | 3.67               | 3.55           | 4.27           |
|               | 2:05:00            | 0.00              | 0.00             | 1.64            | 2.14            | 2.71             | 2.54            | 2.85               | 2.70           | 3.22           |
|               | 2:10:00            | 0.00              | 0.00             | 1.25            | 1.62            | 2.05             | 1.91            | 2.13               | 1.99           | 2.35           |
|               | 2:15:00            | 0.00              | 0.00             | 0.95            | 1.23            | 1.55             | 1.44            | 1.60               | 1.49           | 1.76           |
|               | 2:20:00            | 0.00              | 0.00             | 0.72            | 0.93            | 1.16             | 1.08            | 1.20               | 1.12           | 1.32           |
|               | 2:25:00            | 0.00              | 0.00             | 0.54            | 0.69            | 0.86             | 0.80            | 0.88               | 0.83           | 0.98           |
|               | 2:30:00            | 0.00              | 0.00             | 0.40            | 0.50            | 0.63             | 0.58            | 0.64               | 0.61           | 0.71           |
|               | 2:35:00<br>2:40:00 | 0.00              | 0.00             | 0.29            | 0.36            | 0.46             | 0.42            | 0.47               | 0.44           | 0.52           |
|               | 2:45:00            | 0.00              | 0.00             | 0.20            | 0.26            | 0.33             | 0.31            | 0.34               | 0.32           | 0.37           |
|               | 2:45:00            | 0.00              | 0.00             | 0.13            | 0.17            | 0.22             | 0.21            | 0.23               | 0.21           | 0.24           |
|               | 2:55:00            | 0.00              | 0.00             | 0.08            | 0.11            | 0.13             | 0.13            | 0.14               | 0.13           | 0.15           |
|               | 3:00:00            | 0.00              | 0.00             | 0.04            | 0.06            | 0.07             | 0.07            | 0.07               | 0.06           | 0.07           |
|               | 3:05:00            | 0.00              | 0.00             | 0.02            | 0.03            | 0.03             | 0.03            | 0.03               | 0.02           | 0.02           |
|               | 3:10:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:15:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:20:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:25:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:30:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:35:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:40:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:45:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:50:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 3:55:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:00:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:05:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:10:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:15:00<br>4:20:00 | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:25:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:30:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:35:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:40:00<br>4:45:00 | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:45:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 4:55:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:00:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:05:00<br>5:10:00 | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:10:00<br>5:15:00 | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:20:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:25:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:30:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:35:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:40:00<br>5:45:00 | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:50:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 5:55:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |
|               | 6:00:00            | 0.00              | 0.00             | 0.00            | 0.00            | 0.00             | 0.00            | 0.00               | 0.00           | 0.00           |

#### DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage<br>Description | Stage<br>[ft] | Area<br>[ft <sup>2</sup> ] | Area<br>[acres] | Volume<br>[ft <sup>3</sup> ] | Volume<br>[ac-ft] | Total<br>Outflow<br>[cfs] |                                 |
|--------------------------------|---------------|----------------------------|-----------------|------------------------------|-------------------|---------------------------|---------------------------------|
|                                | 0.00          | 63                         | 0.001           | 0                            | 0.000             | 0.00                      | For best results, include the   |
|                                |               | 148                        | 0.003           | 105                          | 0.002             | 0.05                      | stages of all grade slope       |
|                                | 1.00          | 3,413                      | 0.078           | 1,886                        | 0.043             | 0.09                      | changes (e.g. ISV and Floor     |
|                                | 2.00 3.00     | 8,656                      | 0.199           | 7,920                        | 0.182             | 0.13                      | from the S-A-V table on         |
|                                | 4.00          | 11,501                     | 0.264           | 17,998                       | 0.102             | 0.23                      | Sheet 'Basin'.                  |
|                                | 5.00          | 14,272                     | 0.328           | 30,884                       | 0.709             | 0.30                      | Also include the inverts of a   |
|                                | 6.00          | 16,360                     | 0.376           | 46,200                       | 1.061             | 0.35                      | outlets (e.g. vertical orifice, |
|                                | 7.00          | 18,366                     | 0.422           | 63,563                       | 1.459             | 0.39                      | overflow grate, and spillway    |
|                                | 8.00          | 20,424                     | 0.469           | 82,958                       | 1.904             | 0.43                      | where applicable).              |
|                                | 9.00          | 22,541                     | 0.517           | 104,440                      | 2.398             | 25.17                     |                                 |
|                                | 10.00         | 24,740                     | 0.568           | 128,081                      | 2.940             | 105.17                    |                                 |
|                                | 11.00         | 27,005                     | 0.620           | 153,953                      | 3.534             | 277.37                    | -                               |
|                                |               |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           | ]                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                | -             |                            |                 |                              |                   |                           | -                               |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           | -                               |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                | 1             |                            |                 |                              |                   |                           | -                               |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           |                                 |
|                                |               |                            |                 |                              |                   |                           | ]                               |
|                                |               |                            |                 |                              |                   |                           | ]                               |
|                                |               |                            |                 |                              |                   |                           | 4                               |
|                                |               |                            |                 |                              |                   | -                         | 1                               |
|                                |               |                            |                 |                              |                   |                           | 1                               |
|                                |               |                            |                 |                              |                   |                           | ]                               |
|                                |               |                            |                 |                              |                   |                           | ]                               |
|                                |               |                            |                 |                              |                   |                           | 4                               |
|                                |               | 1                          |                 |                              |                   |                           | 1                               |
|                                |               |                            |                 |                              |                   |                           |                                 |

### **Stormwater Detention and Infiltration Design Data Sheet**

Vorkbook Protected

Worksheet Protected

User Defined

Stage [ft]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

User Defined Discharge [cfs]

0.00

0.05

0.09

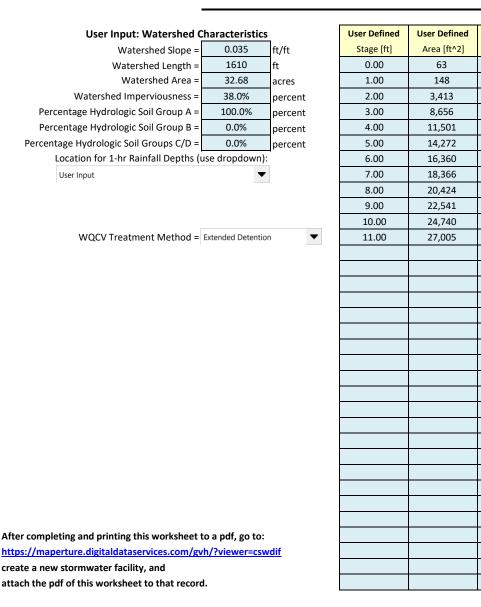
0.13

0.23 0.30

0.35

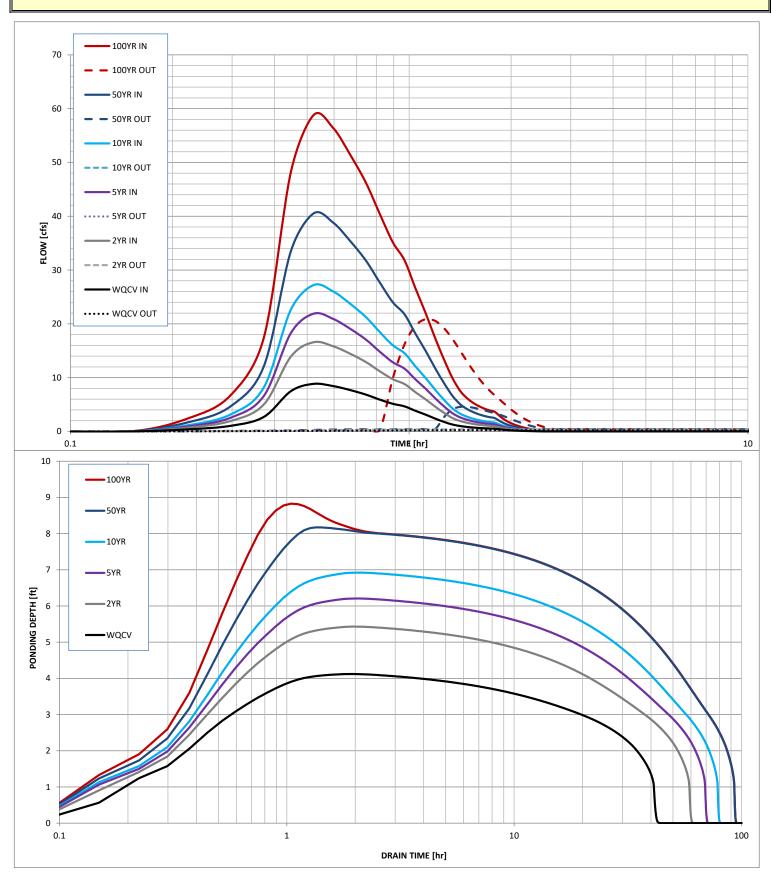
0.39

0.43


25.17

105.17

277.37


#### Stormwater Facility Name: Platte Self Storage EDB

#### Facility Location & Jurisdiction: 6001 E Platte Ave, El Paso County



|                                      | Routed Hydro | graph Results |        |         |         |          | _       |
|--------------------------------------|--------------|---------------|--------|---------|---------|----------|---------|
| Design Storm Return Period =         | WQCV         | 2 Year        | 5 Year | 10 Year | 50 Year | 100 Year |         |
| One-Hour Rainfall Depth =            | 0.53         | 1.19          | 1.50   | 1.75    | 2.00    | 2.52     | in      |
| Calculated Runoff Volume =           | 0.475        | 0.897         | 1.188  | 1.480   | 2.217   | 3.233    | acre-ft |
| OPTIONAL Override Runoff Volume =    |              |               |        |         |         |          | acre-ft |
| Inflow Hydrograph Volume =           | 0.475        | 0.896         | 1.187  | 1.480   | 2.216   | 3.232    | acre-ft |
| Time to Drain 97% of Inflow Volume = | 39.0         | 54.8          | 63.8   | 71.9    | 83.6    | 80.2     | hours   |
| Time to Drain 99% of Inflow Volume = | 40.8         | 57.8          | 67.5   | 76.3    | 89.5    | 88.2     | hours   |
| Maximum Ponding Depth =              | 4.12         | 5.43          | 6.21   | 6.92    | 8.17    | 8.83     | ft      |
| Maximum Ponded Area =                | 0.27         | 0.35          | 0.38   | 0.42    | 0.48    | 0.51     | acres   |
| Maximum Volume Stored =              | 0.444        | 0.851         | 1.136  | 1.422   | 1.980   | 2.304    | acre-ft |

#### 241900 SDI Design Data Sheet - EDB, Design Data



### **Stormwater Detention and Infiltration Design Data Sheet**

### PLATTE SELF STORAGE

|             | PROPOS    | SED FORBA | T DESIGN V | OLUME       |            | _    |
|-------------|-----------|-----------|------------|-------------|------------|------|
| ELEV        | AREA      | AREA      | DELTA      | VOLUME      | VOLUME     |      |
| (FT + 6000) | (SF)      | AVG. (SF) | ELEV. (FT) | (CF)        | TOTAL (CF) |      |
| 204.00      | 425       |           |            |             |            |      |
|             |           | 425       | 1.5        | 638         |            |      |
| 206.00      | 425       |           |            |             | 638        |      |
| 205.5       | 684       |           | End A      | rea Method: | 638        | C.F. |
|             |           |           |            |             | 0.015      | A.F. |
|             |           |           |            |             |            |      |
| 3%          | of WQCV = | 626.33    | cu-ft      |             |            |      |
|             |           |           |            |             |            |      |

#### PROPOSED FORBAY DESIGN VOLUME

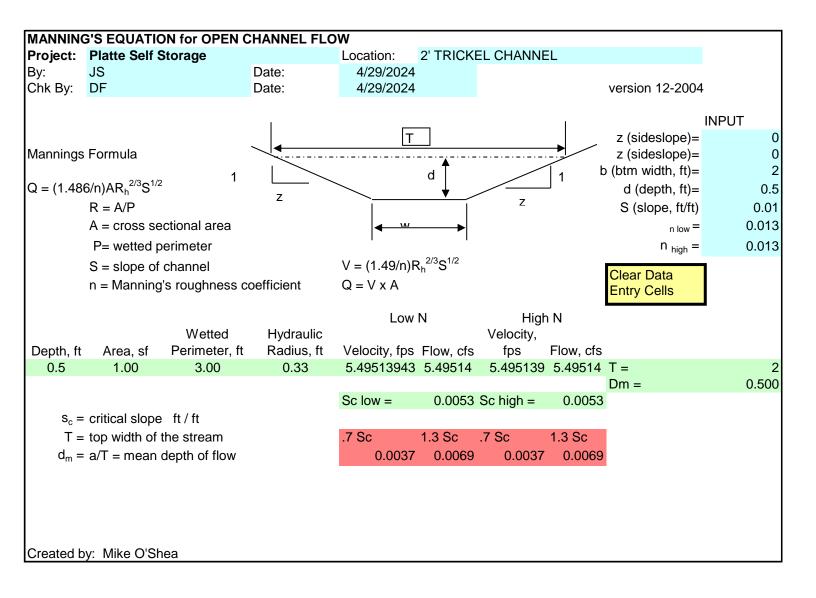
TOTAL= 637.50 > 626.33

#### PROPOSED MICROPOOL VOLUME

| ELEV        | AREA | AREA      | DELTA      | VOLUME      | VOLUME     |      |
|-------------|------|-----------|------------|-------------|------------|------|
| (FT + 6000) | (SF) | AVG. (SF) | ELEV. (FT) | (CF)        | TOTAL (CF) |      |
| 199.50      | 63   |           |            |             |            | Ï    |
|             |      | 63        | 2.5        | 158         |            |      |
| 202.00      | 63   |           |            |             | 158        |      |
|             |      |           | End A      | rea Method: | 158        | C.F. |
|             |      |           |            |             | 0.004      | A.F. |

#### **Forebay Wall Notch**

Notch to releae 2% of the undetained 100-year peak discharge.


| 100-y peak discharge | = | 21.6 cfs |
|----------------------|---|----------|
| 2.0%                 | = | 0.43 cfs |

The general form of the equation for horizontal crested weirs is Q = CLH3/2 where:

| Q = Weir flow discharge (cfs)        | 0.43 |                |
|--------------------------------------|------|----------------|
| C = Weir flow coefficient            | 3.4  |                |
| H = Depth of flow over the weir (ft) | 1.50 | Opening Height |
| L = Length of the weir (ft)          | 0.07 | Length         |
| L = Length of the weir (in)          | 0.8  |                |

Minimim notch length is 3" per standards

# Notch to releae 2% of the undetained 100-year peak discharge is <u>3" wide by 18" high (min allowed)</u>



STILLING BASIN CALCULATIONS

#### PLATTE SELF-STORAGE Calc: JS; Checked: DLF; Date: 11/11/2024

In non-cohesive soil channels and channels where future degradation is expected, especially where there is no drop structure immediately downstream, it is generally recommended that the stilling basin be eliminated and the sloping face extended five feet below the downstream future channel invert elevation (after accounting for future streambed degradation). A scour hole will form naturally downstream of a structure in non-cohesive soils and construction of a hard basin is an unnecessary cost. Additionally, a hard basin would be at risk for undermining. See Figure 9-12 for the profile of the GSB and Figure 9-17 for that of an SC in this configuration. In some cases, the structure may have a net drop height of zero immediately after construction, but is designed with a long-term net height of 3 to 5 feet to accommodate future lowering of the channel invert.

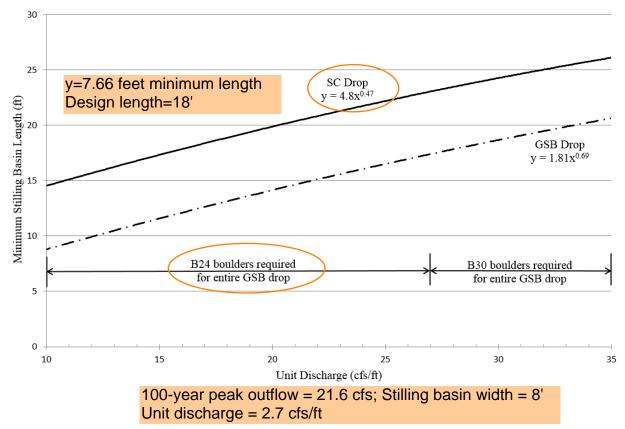
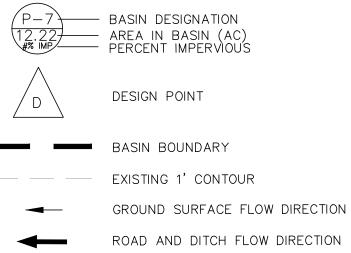



Figure 9-1. Stilling basin length based on unit discharge (for simplified design procedure)

#### 2.2.6 Seepage Analysis and Cutoff Wall Design


The simplified drop structure design only applies to drops with cutoffs located in cohesive soils. Therefore, it is necessary to determine surface and subsurface soil conditions in the vicinity of a proposed drop structure prior to being able to use the simplified approach for cutoff design. For a drop structure constructed in cohesive soils meeting all requirements of a simplified design, the cutoff wall must be a minimum of six feet deep for concrete and ten feet deep for sheet pile.

If a proposed drop structure meets the requirements of the simplified approach, but is located in noncohesive soils, guidance on determining the required cutoff wall depth is described in Section 2.4.

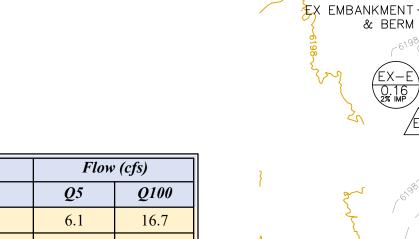
### **DRAINAGE MAPS**

Note: The County wouldn't allow EDB Plans to be included in this report.

### <u>LEGEND</u>



TIME OF CONCENTRATION PATH


# <u>NOTES</u>

\_\_\_\_\_

1. BROWN GROUND SURFACE CONTOURS ARE LIDAR DATA DOWNLOADED FROM THE COLORADO HAZARD MAPPING & RISK MAP PORTAL, DATA SET: 2018 3DEP EAST CO EL PASO. THIS DATA IS APPROXIMATE. LIDAR DATA IS FROM 2018 AND AT 2' INTERVALS.

2. THE EXISTING SITE IS A LANDSCAPING MATERIALS YARD. GROUND SURFACES ARE DIRT, GRAVEL, AND ASPHALT. THE EDGE OF ASPHALT IS OFTEN COVERED BY DIRT/GRAVEL AND IT'S EXTENTS ARE ONLY ROUGHLY KNOWN.

|       |               |                 |              |       |        | E                     | BASIN | SUMM   | <u>IARY</u> |          |       |       |         |         |          |          |
|-------|---------------|-----------------|--------------|-------|--------|-----------------------|-------|--------|-------------|----------|-------|-------|---------|---------|----------|----------|
| BASIN | AREA WEIGHTED |                 | OVE          | RLAND |        | STREET / CHANNEL FLOW |       |        | тс          | INTE     | NSITY | TOTAL | L FLOWS |         |          |          |
| DIGIN |               | C5              | C100         |       | Length | Slope                 | Tt    | Length | Slope       | Velocity | Tt    | TOTAL | 15      | I100    | Q5       | Q100     |
|       | (Acres)       | * For Calco See | Reng/Sammery | C5    | (ft)   | (ft/ft)               | (min) | (ft)   | (%)         | (fps)    | (min) | (min) | (in/hr) | (in/hr) | (c.f.s.) | (c.f.s.) |
| OS-Z  | 6.34          | 0.33            | 0.53         | 0.33  | 300    | 0.02                  | 19.3  | 230    | 2.0%        | 1.4      | 2.7   | 22.0  | 2.9     | 4.9     | 6.1      | 16.7     |
| OS-Y  | 8.15          | 0.16            | 0.41         | 0.16  | 300    | 0.03                  | 20.4  | 505    | 3.0%        | 1.7      | 4.9   | 25.3  | 2.7     | 4.6     | 3.6      | 15.4     |
| OS-X  | 1.20          | 0.09            | 0.36         | 0.09  | 300    | 0.05                  | 18.5  | 0      | 5.0%        | 2.2      | 0.0   | 18.5  | 3.2     | 5.4     | 0.4      | 2.3      |
| OS-W  | 0.45          | 0.28            | 0.50         | 0.28  | 300    | 0.07                  | 13.5  | 160    | 7.0%        | 2.6      | 1.0   | 14.5  | 3.6     | 6.0     | 0.5      | 1.3      |
| EX-A  | 0.30          | 0.22            | 0.45         | 0.22  | 300    | 0.07                  | 14.5  | 0      | 7.0%        | 2.6      | 0.0   | 14.5  | 3.6     | 6.0     | 0.2      | 0.8      |
| EX-B  | 0.64          | 0.45            | 0.63         | 0.45  | 300    | 0.07                  | 10.7  | 250    | 7.0%        | 2.6      | 1.6   | 12.2  | 3.8     | 6.4     | 1.1      | 2.6      |
| EX-C  | 15.4          | 0.49            | 0.66         | 0.49  | 300    | 0.07                  | 10.0  | 330    | 7.0%        | 2.6      | 2.1   | 12.1  | 3.8     | 6.4     | 29.0     | 65.0     |
| EX-D  | 1.05          | 0.10            | 0.36         | 0.10  | 300    | 0.03                  | 21.9  | 40     | 3.0%        | 1.7      | 0.4   | 22.2  | 2.9     | 4.9     | 0.3      | 1.9      |
| EX-E  | 0.16          | 0.08            | 0.35         | 0.08  | 30     | 0.40                  | 3.0   | 0      | 40.0%       | 6.3      | 0.0   | 5.0   | 5.2     | 8.7     | 0.1      | 0.5      |
| EX-F  | 0.23          | 0.08            | 0.35         | 0.08  | 35     | 0.24                  | 3.8   | 0      | 24.0%       | 4.9      | 0.0   | 5.0   | 5.2     | 8.7     | 0.1      | 0.7      |



SAND CREEK EAST FORK

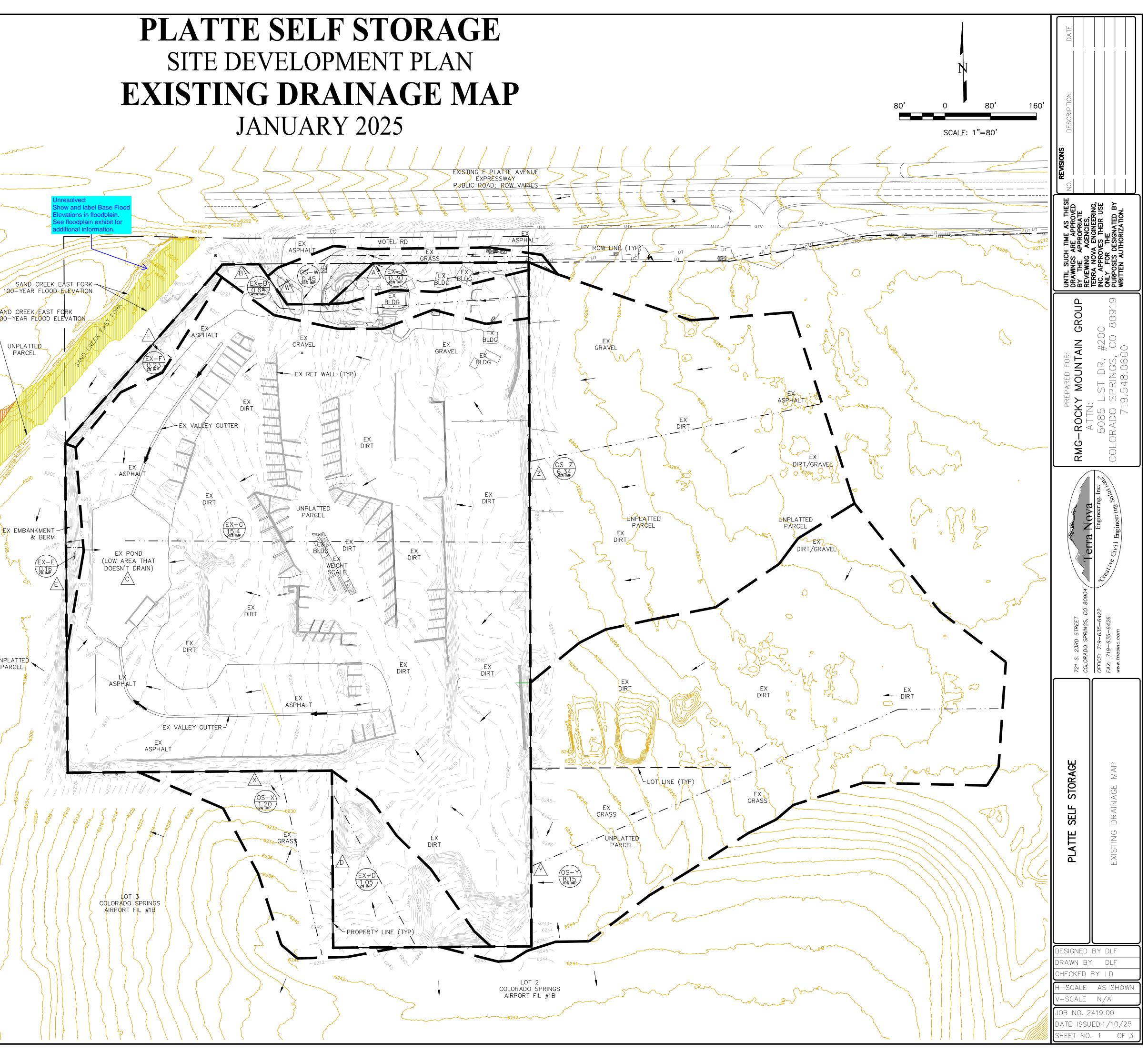
SAND CREEK EAST FORK

EX-E 0.16 27 MP

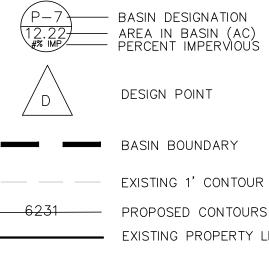
PARCEL

| Design   | Contributing             | Area  | Flow | r (cfs) |
|----------|--------------------------|-------|------|---------|
| Point(s) | Basins                   | (ac)  | Q5   | Q100    |
| Ζ        | OS-Z                     | 6.34  | 6.1  | 16.7    |
| Y        | OS-Y                     | 8.15  | 3.6  | 15.4    |
| X        | OS-X & DP D              | 2.25  | 0.7  | 4.2     |
| W        | OS-W & DP A              | 0.75  | 0.7  | 2.2     |
| A        | EX-A                     | 0.30  | 0.2  | 0.8     |
| В        | EX-B & DP W              | 1.39  | 1.8  | 4.7     |
| С        | EX-C, DP D, DP X, & DP Y | 26.85 | 33.6 | 86.5    |
| D        | EX-D                     | 1.05  | 0.3  | 1.9     |
| E        | EX-E                     | 0.16  | 0.1  | 0.5     |

0.23

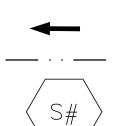

0.1 0.7

EX-F


F

## DESIGN POINT SUMMARY

# PLATTE SELF STORAGE SITE DEVELOPMENT PLAN JANUARY 2025




## <u>LEGEND</u>



EXISTING PROPERTY LINE -O----O------ PROPOSED FENCE 

ROPOSED RIPRAP -

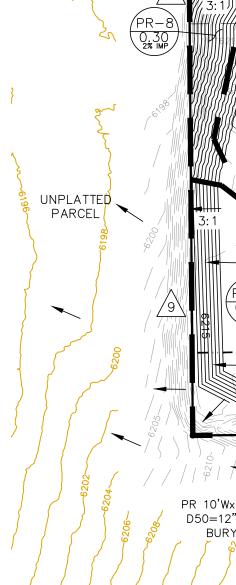


GROUND SURFACE FLOW DIRECTION ROAD AND DITCH FLOW DIRECTION TIME OF CONCENTRATION PATH

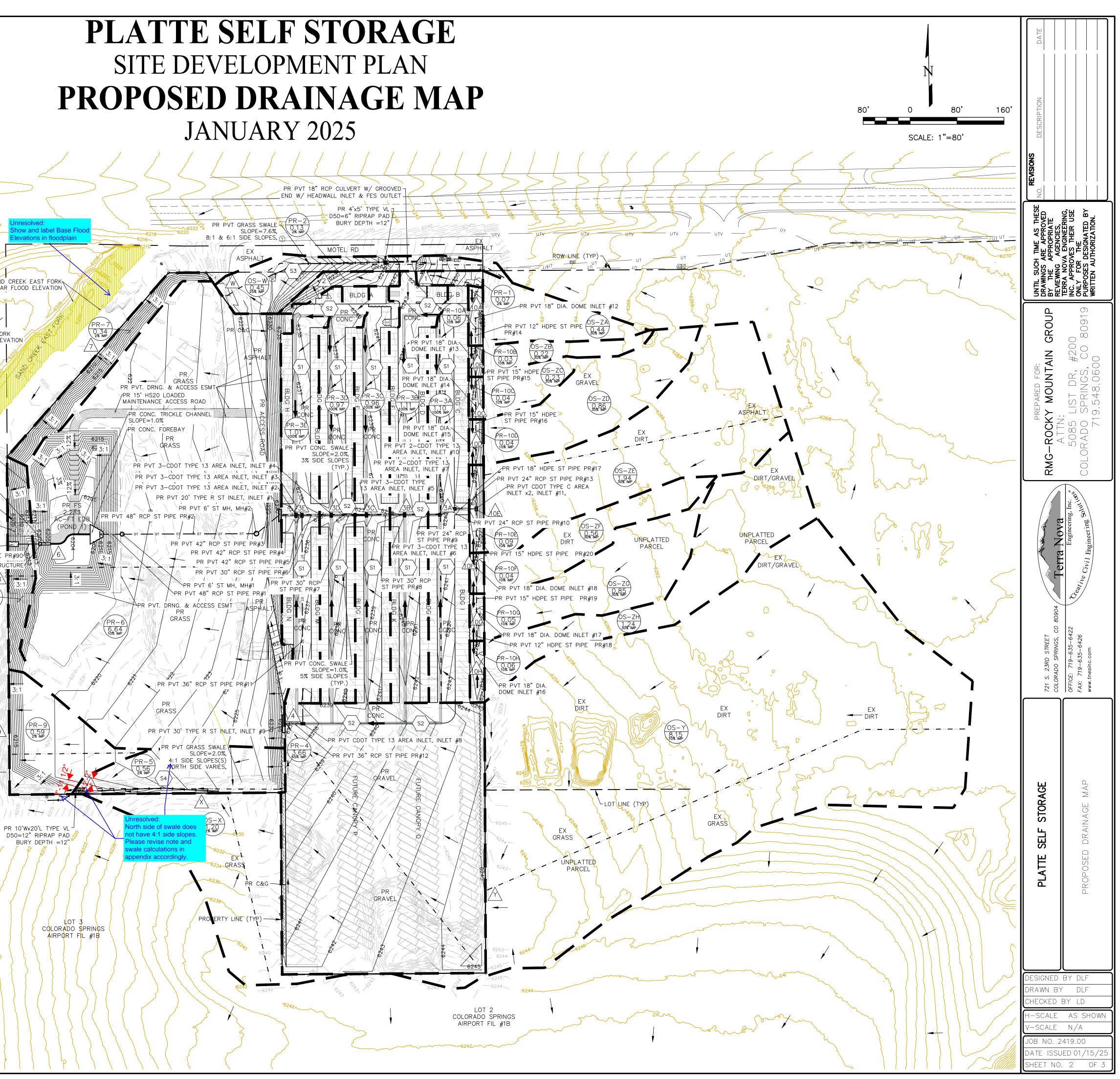
SWALE IDENTIFIER

## <u>NOTES</u>

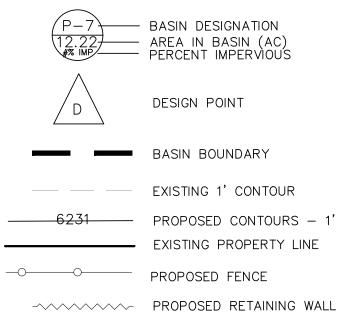
1. BROWN GROUND SURFACE CONTOURS ARE LIDAR DATA DOWNLOADED FROM THE COLORADO HAZARD MAPPING & RISK MAP PORTAL, DATA SET: 2018 3DEP EAST CO EL PASO. THIS DATA IS APPROXIMATE. LIDAR DATA IS FROM 2018 AND AT 2' INTERVALS.

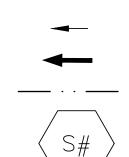

|              |         | <u>PIPE_RU</u>      | N SUMMA    | <u>NRY</u> |       |           |       |
|--------------|---------|---------------------|------------|------------|-------|-----------|-------|
| Pipe         | Inlet # | Contributing        | 5 Year     | 100 Year   | CI    | Pipe Size | Owner |
| Run          |         | Flow Sources        | Flow (cfs) | Flow (cfs) | Slope | & Type    |       |
| <b>PR#1</b>  | -       | PR#2                | 41.2       | 91.4       | 2.7%  | 48" RCP   | PVT   |
| <b>PR#2</b>  | -       | PR#3                | 41.2       | 91.4       | 2.2%  | 48" RCP   | PVT   |
| <b>PR#3</b>  | #1      | DP 3E & PR#4        | 41.2       | 91.4       | 2.2%  | 42" RCP   | PVT   |
| <b>PR#4</b>  | #2      | PR#5                | 32.4       | 71.2       | 1.7%  | 42" RCP   | PVT   |
| <b>PR#5</b>  | #3      | PR#6 & PR#11        | 32.4       | 71.2       | 2.1%  | 42" RCP   | PVT   |
| <b>PR#6</b>  | #4      | DP 3D & PR#7        | 20.6       | 39.0       | 5.0%  | 30" RCP   | PVT   |
| <b>PR</b> #7 | #5      | DP 3C & PR#8        | 16.5       | 32.7       | 1.9%  | 30" RCP   | PVT   |
| <b>PR#8</b>  | #6      | DP 3B & PR#9        | 12.5       | 26.7       | 1.9%  | 30" RCP   | PVT   |
| <b>PR#9</b>  | #7      | DP3A & PR#13        | 8.7        | 21.1       | 1.9%  | 24" RCP   | PVT   |
| PR#10        | #10     | PR#13               | 6.2        | 17.7       | 1.7%  | 24" RCP   | PVT   |
| PR#11        | #8      | PR#12               | 11.8       | 32.2       | 1.0%  | 36" RCP   | PVT   |
| <b>PR#12</b> | #9      | DP 4                | 11.8       | 32.2       | 1.0%  | 36" RCP   | PVT   |
| PR#13        | #11     | DP 10E & PR#17 & 20 | 6.2        | 17.7       | 1.0%  | 24" RCP   | PVT   |
| <b>PR#14</b> | #12     | DP 10A              | 0.4        | 1.3        | 1.0%  | 12" HDPE  | PVT   |
| PR#15        | #13     | DP 10B & PR#14      | 0.7        | 1.9        | 1.0%  | 15" HDPE  | PVT   |
| PR#16        | #14     | DP 10C & PR#15      | 0.9        | 2.6        | 1.0%  | 15" HDPE  | PVT   |
| <b>PR#17</b> | #15     | DP 10D & PR#16      | 1.7        | 5.0        | 1.0%  | 18" HDPE  | PVT   |
| PR#18        | #16     | DP 10H              | 1.2        | 3.4        | 1.0%  | 12" HDPE  | PVT   |
| PR#19        | #17     | DP 10G & PR#18      | 2.0        | 5.8        | 1.0%  | 15" HDPE  | PVT   |
| PR#20        | #18     | DP 10F & PR#19      | 2.6        | 7.4        | 1.0%  | 15" HDPE  | PVT   |
| PR#90        | -       | Pond outlet         | 0.5        | 11.3       | 1.4%  | 18" HDPE  | PVT   |
|              |         | BAS                 | IN SUMM    | ARY        |       |           |       |

|               |         |               |                  |      |        | <u> </u> | BASI  | <u>v St</u> | JMM     | <u> 4R Y</u> |                |       |                |                  |          |          |
|---------------|---------|---------------|------------------|------|--------|----------|-------|-------------|---------|--------------|----------------|-------|----------------|------------------|----------|----------|
|               | AREA    | WEIG          | HTED             |      | OVEI   | RLAND    |       | STRE        | ET / CH | ANNEL I      | FLOW           | Tc    | INTER          | VSITY            | TOTAL    | FLOWS    |
| BAS IN        | TOTAL   | C5            | C <sub>100</sub> | C,   | Length | S lope   | T,    | Length      | S lope  | Velocity     | T <sub>t</sub> | TOTAL | I <sub>5</sub> | I <sub>100</sub> | Qş       | Q100     |
|               | (Acres) | For Calus See | Pand / Summey    | ~,   | (1)    | (ʃi/ʃi)  | (min) | (1)         | (%)     | (fps)        | (min)          | (min) | (in/hr)        | (in/hr)          | (c.f.s.) | (c.f.s.) |
| OS-ZA         | 0.44    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 230         | 2.0%    | 1.4          | 2.7            | 22.0  | 2.9            | 4.9              | 0.4      | 1.1      |
| OS-ZB         | 0.22    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 231         | 2.0%    | 1.4          | 2.7            | 22.0  | 2.9            | 4.9              | 0.2      | 0.6      |
| OS-ZC         | 0.23    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 232         | 2.0%    | 1.4          | 2.7            | 22.0  | 2.9            | 4.9              | 0.2      | 0.6      |
| OS-ZD         | 0.86    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 233         | 2.0%    | 1.4          | 2.7            | 22.0  | 2.9            | 4.9              | 0.8      | 2.3      |
| OS-ZE         | 1.94    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 234         | 2.0%    | 1.4          | 2.8            | 22.0  | 2.9            | 4.9              | 1.9      | 5.1      |
| OS-ZF         | 0.56    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 235         | 2.0%    | 1.4          | 2.8            | 22.0  | 2.9            | 4.9              | 0.5      | 1.5      |
| OS-ZG         | 0.85    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 236         | 2.0%    | 1.4          | 2.8            | 22.0  | 2.9            | 4.9              | 0.8      | 2.3      |
| OS-ZH         | 1.24    | 0.33          | 0.53             | 0.33 | 300    | 0.02     | 19.3  | 237         | 2.0%    | 1.4          | 2.8            | 22.0  | 2.9            | 4.9              | 1.2      | 3.3      |
| OS-Y          | 8.15    | 0.16          | 0.41             | 0.16 | 300    | 0.03     | 20.4  | 505         | 3.0%    | 1.7          | 4.9            | 25.3  | 2.7            | 4.6              | 3.6      | 15.4     |
| OS-X          | 1.20    | 0.09          | 0.36             | 0.09 | 300    | 0.05     | 18.5  | 0           | 5.0%    | 2.2          | 0.0            | 18.5  | 3.2            | 5.4              | 0.4      | 2.3      |
| OS-W          | 0.45    | 0.28          | 0.50             | 0.28 | 300    | 0.07     | 13.5  | 160         | 7.0%    | 2.6          | 1.0            | 14.5  | 3.6            | 6.0              | 0.5      | 1.3      |
| PR-1          | 0.07    | 0.08          | 0.35             | 0.08 | 100    | 0.08     | 9.3   | 0           | 8.0%    | 2.8          | 0.0            | 9.3   | 4.2            | 7.1              | 0.0      | 0.2      |
| PR-2          | 0.13    | 0.08          | 0.35             | 0.08 | 45     | 0.25     | 4.3   | 0           | 25.0%   | 5.0          | 0.0            | 5.0   | 5.2            | 8.7              | 0.1      | 0.4      |
| PR-3A         | 1.10    | 0.90          | 0.96             | 0.90 | 100    | 0.02     | 2.9   | 450         | 2.0%    | 2.8          | 2.7            | 5.5   | 5.0            | 8.4              | 5.0      | 8.9      |
| PR-3B         | 1.11    | 0.90          | 0.96             | 0.90 | 100    | 0.02     | 2.9   | 451         | 2.0%    | 2.8          | 2.7            | 5.5   | 5.0            | 8.4              | 5.0      | 8.9      |
| PR-3C         | 0.96    | 0.90          | 0.96             | 0.90 | 100    | 0.02     | 2.9   | 452         | 2.0%    | 2.8          | 2.7            | 5.5   | 5.0            | 8.4              | 4.3      | 7.8      |
| PR-3D         | 0.97    | 0.90          | 0.96             | 0.90 | 100    | 0.02     | 2.9   | 453         | 2.0%    | 2.8          | 2.7            | 5.5   | 5.0            | 8.4              | 4.4      | 7.8      |
| PR-3E         | 1.01    | 0.90          | 0.96             | 0.90 | 100    | 0.02     | 2.9   | 454         | 2.0%    | 2.8          | 2.7            | 5.5   | 5.0            | 8.4              | 4.5      | 8.1      |
| PR-4          | 3.66    | 0.61          | 0.75             | 0.61 | 100    | 0.02     | 7.0   | 400         | 2.0%    | 1.0          | 6.7            | 13.7  | 3.7            | 6.1              | 8.2      | 16.8     |
| PR-5          | 0.56    | 0.09          | 0.36             | 0.09 | 300    | 0.02     | 25.0  | 0           | 2.0%    | 1.0          | 0.0            | 25.0  | 2.8            | 4.6              | 0.1      | 0.9      |
| PR-6          | 6.64    | 0.16          | 0.41             | 0.16 | 300    | 0.02     | 23.3  | 0           | 2.0%    | 1.0          | 0.0            | 23.3  | 2.9            | 4.8              | 3.1      | 13.1     |
| <b>PR-7</b>   | 0.34    | 0.10          | 0.37             | 0.10 | 25     | 0.33     | 2.8   | 0           | 33.0%   | 4.0          | 0.0            | 5.0   | 5.2            | 8.7              | 0.2      | 1.1      |
| PR-8          | 0.30    | 0.11          | 0.37             | 0.11 | 35     | 0.33     | 3.3   | 0           | 33.0%   | 4.0          | 0.0            | 5.0   | 5.2            | 8.7              | 0.2      | 1.0      |
| PR-9          | 0.59    | 0.09          | 0.36             | 0.09 | 100    | 0.06     | 10.1  | 0           | 6.0%    | 1.7          | 0.0            | 10.1  | 4.1            | 6.9              | 0.2      | 1.5      |
| PR-10A        | 0.06    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 1           | 1.0%    | 1.7          | 0.0            | 10.2  | 4.1            | 6.9              | 0.0      | 0.1      |
| PR-10B        | 0.03    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 2           | 1.0%    | 1.7          | 0.0            | 10.2  | 4.1            | 6.9              | 0.0      | 0.1      |
| PR-10C        | 0.04    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 3           | 1.0%    | 1.7          | 0.0            | 10.2  | 4.1            | 6.9              | 0.0      | 0.1      |
| PR-10D        | 0.04    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 4           | 1.0%    | 1.7          | 0.0            | 10.2  | 4.1            | 6.9              | 0.0      | 0.1      |
| PR-10E        | 0.09    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 5           | 1.0%    | 1.7          | 0.0            | 10.2  | 4.1            | 6.9              | 0.0      | 0.2      |
| PR-10F        | 0.04    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 6           | 1.0%    | 1.7          | 0.1            | 10.3  | 4.1            | 6.9              | 0.0      | 0.1      |
| <b>PR-10G</b> | 0.05    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 7           | 1.0%    | 1.7          | 0.1            | 10.3  | 4.1            | 6.9              | 0.0      | 0.1      |
| PR-10H        | 0.06    | 0.08          | 0.35             | 0.08 | 100    | 0.06     | 10.2  | 8           | 1.0%    | 1.7          | 0.1            | 10.3  | 4.1            | 6.9              | 0.0      | 0.1      |


#### DESIGN POINT SUMMARY

| Design   | Contributing          | Area  | Flow (cfs) |       |  |  |
|----------|-----------------------|-------|------------|-------|--|--|
| Point(s) | Basins                | (ac)  | Qs         | Q 100 |  |  |
| 1        | PR-1                  | 0.07  | 0.0        | 0.2   |  |  |
| 2        | PR-2                  | 0.13  | 0.1        | 0.4   |  |  |
| 3.4      | PR-3A                 | 1.10  | 5.0        | 8.9   |  |  |
| 3B       | PR-3B & PR 3A FLOW BY | 1.11  | 7.5        | 14.4  |  |  |
| 3C       | PR-3C & PR 3B FLOW BY | 0.96  | 8.0        | 16.6  |  |  |
| 3D       | PR-3D & PR 3C FLOW BY | 0.97  | 8.4        | 18.4  |  |  |
| 3E       | PR-3E & PR 3D FLOW BY | 1.01  | 8.8        | 20.2  |  |  |
| 4        | PR-4 & DP Y           | 11.81 | 11.8       | 32.2  |  |  |
| 5        | PR-5 & DP X           | 1.76  | 0.5        | 3.3   |  |  |
| 6        | PR-6 & PR#1           | 7.74  | 44.3       | 104.5 |  |  |
| 7        | PR-7                  | 0.34  | 0.2        | 1.1   |  |  |
| 8        | PR-8                  | 0.30  | 0.2        | 1.0   |  |  |
| 9        | PR-9                  | 0.59  | 0.2        | 1.5   |  |  |
| 10.4     | PR-10A & OS-ZA        | 0.49  | 0.4        | 1.3   |  |  |
| 10B      | PR-10B & DP ZB        | 0.25  | 0.2        | 0.6   |  |  |
| 10C      | PR-10C & DP ZC        | 0.27  | 0.2        | 0.7   |  |  |
| 10D      | PR-10D & DP ZD        | 0.90  | 0.8        | 2.4   |  |  |
| 10E      | PR-10E & DP ZE        | 2.03  | 1.9        | 5.3   |  |  |
| 10F      | PR-10F & DP ZF        | 0.60  | 0.6        | 1.6   |  |  |
| 10G      | PR-10G & DP ZG        | 0.90  | 0.8        | 2.4   |  |  |
| 10H      | PR-10H & DP ZH        | 1.30  | 1.2        | 3.4   |  |  |
| W        | OS-W, DP 1 & DP 2     | 0.65  | 0.5        | 1.9   |  |  |
| X        | OS-X                  | 1.20  | 0.4        | 2.3   |  |  |
| Y        | OS-Y                  | 8.15  | 3.6        | 15.4  |  |  |


|                              | Unre                     |
|------------------------------|--------------------------|
| ~ 2                          | Sho<br>Elev              |
|                              |                          |
| SAND                         | CREE                     |
| 100-YEA                      |                          |
|                              | Ì                        |
| SAND CREEK EAST FOR          | <b> </b><br>RK<br>/ATION |
| UNPLATTED                    | 6292                     |
| PARCEL                       |                          |
|                              |                          |
|                              |                          |
|                              |                          |
| PR 12' BERM (TYP.)           |                          |
|                              |                          |
| PR CONC. MICROPOOL           | 3:                       |
| EX/PR EMBANKMENT             |                          |
| PR 23'x54'<br>CONC. SPILLWAY |                          |
| PR STILLING BASIN-           | PR#90                    |
| PR POND OUTLET STRU          |                          |
|                              | 3:                       |




# PLATTE SELF STORAGE SITE DEVELOPMENT PLAN JANUARY 2025



## <u>LEGEND</u>



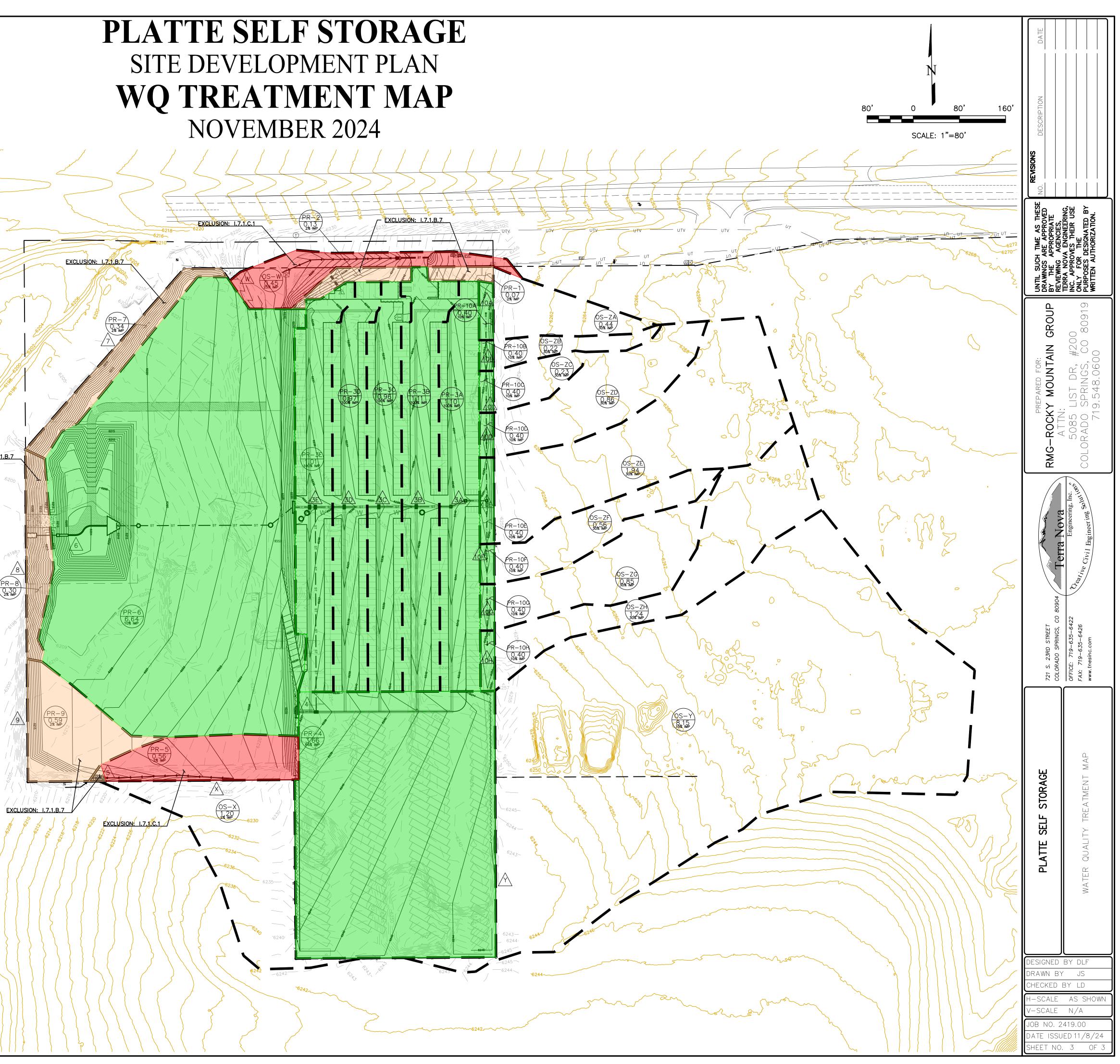


ROPOSED RIPRAP GROUND SURFACE FLOW DIRECTION ROAD AND DITCH FLOW DIRECTION TIME OF CONCENTRATION PATH

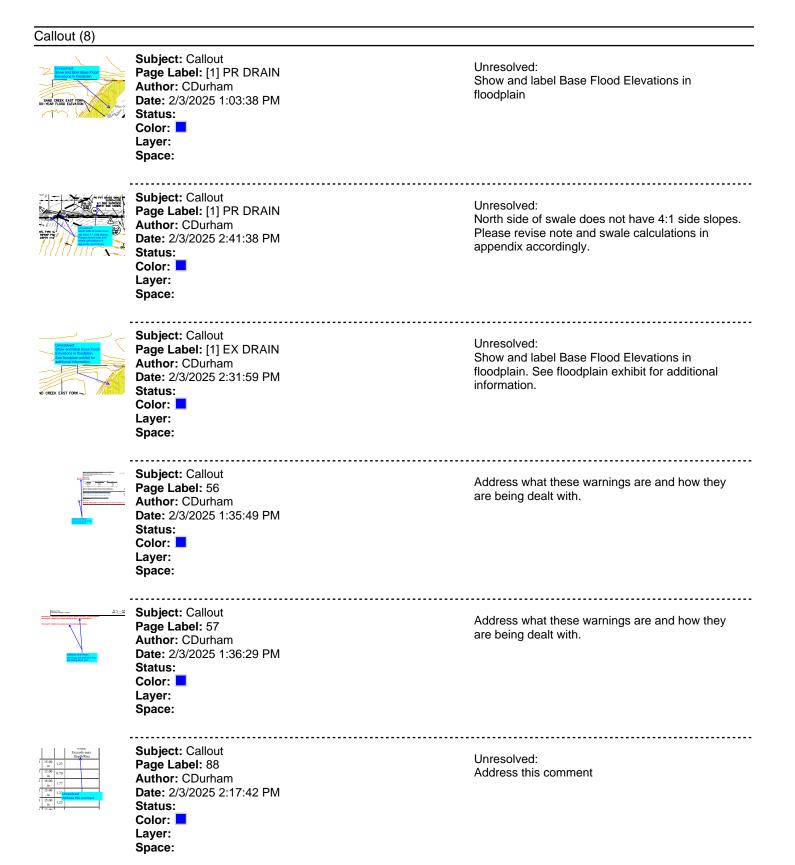
SWALE IDENTIFIER

## <u>NOTES</u>

1. BROWN GROUND SURFACE CONTOURS ARE LIDAR DATA DOWNLOADED FROM THE COLORADO HAZARD MAPPING & RISK MAP PORTAL, DATA SET: 2018 3DEP EAST CO EL PASO. THIS DATA IS APPROXIMATE. LIDAR DATA IS FROM 2018 AND AT 2' INTERVALS.


EXCLUSION: I.7.1.B.7

PR-8 0.30 27 IMP


| Basin<br>ID               | Total<br>Area | Total<br>Proposed<br>Disturbed<br>Area | Area<br>Trib to<br>Pond 1 | Disturbed Area<br>Treated via<br>Runoff<br>Reduction | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.C.1 | Disturbed Area<br>Excluded from<br>WQ per ECM<br>App I.7.1.B.# | Applicable<br>WQ<br>Exclusions<br>(App I.7.1.B.#)                                                                                                                               |
|---------------------------|---------------|----------------------------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | (ac)          | (ac)                                   | (ac)                      | (ac)                                                 | (ac)                                                           | (ac)                                                           | ( <i>i</i> , <i>p</i> , <i>p</i> , <i>i</i> , <i>i</i> , <i>i</i> , <i>j</i> , <i>i</i> , <i>j</i> |
| OS-ZA                     | 0.44          | -                                      | 0.44                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZB                     | 0.22          | -                                      | 0.22                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZC                     | 0.23          | -                                      | 0.23                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZD                     | 0.86          | -                                      | 0.86                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZE                     | 1.94          | -                                      | 1.94                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZF                     | 0.56          | -                                      | 0.56                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZG                     | 0.85          | -                                      | 0.85                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-ZH                     | 1.24          | -                                      | 1.24                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-Y                      | 8.15          | -                                      | 8.15                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-X                      | 1.20          | -                                      | -                         | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| OS-W                      | 0.45          | 0.45                                   | -                         | -                                                    | 0.45                                                           | -                                                              | -                                                                                                                                                                               |
| <b>PR-1</b>               | 0.07          | 0.07                                   | -                         | -                                                    | -                                                              | 0.07                                                           | I.7.1.B.7                                                                                                                                                                       |
| <b>PR-2</b>               | 0.13          | 0.13                                   | -                         | -                                                    | -                                                              | 0.13                                                           | I.7.1.B.7                                                                                                                                                                       |
| PR-3A                     | 1.10          | 1.10                                   | 1.10                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| PR-3B                     | 1.11          | 1.11                                   | 1.11                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| PR-3C                     | 0.96          | 0.96                                   | 0.96                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| PR-3D                     | 0.97          | 0.97                                   | 0.97                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-3E</b>              | 1.01          | 1.01                                   | 1.01                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-4</b>               | 3.66          | 3.66                                   | 3.66                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-5</b>               | 0.56          | 0.56                                   | -                         | -                                                    | 0.55                                                           | 0.01                                                           | I.7.1.B.7                                                                                                                                                                       |
| <b>PR-6</b>               | 6.64          | 6.64                                   | 6.64                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-</b> 7              | 0.34          | 0.34                                   | -                         | -                                                    | -                                                              | 0.34                                                           | I.7.1.B.7                                                                                                                                                                       |
| <b>PR-8</b>               | 0.30          | 0.30                                   | -                         | -                                                    | -                                                              | 0.30                                                           | I.7.1.B.7                                                                                                                                                                       |
| <i>PR-9</i>               | 0.59          | 0.59                                   | -                         | -                                                    | -                                                              | 0.59                                                           | I.7.1.B.7                                                                                                                                                                       |
| <b>PR-10</b> A            | 0.06          | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-10B</b>             | 0.03          | 0.03                                   | 0.03                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-10C</b>             | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| PR-10D                    | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-10E</b>             | 0.09          | 0.09                                   | 0.09                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-10F</b>             | 0.04          | 0.04                                   | 0.04                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| <b>PR-10G</b>             | 0.05          | 0.05                                   | 0.05                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| PR-10H                    | 0.06          | 0.06                                   | 0.06                      | -                                                    | -                                                              | -                                                              | -                                                                                                                                                                               |
| TOTALS                    |               | 30.33                                  |                           | 1.00                                                 | 1.44                                                           |                                                                |                                                                                                                                                                                 |
| BASINS TRIB TO POND IN    |               |                                        |                           |                                                      | Calc:                                                          | DLF                                                            |                                                                                                                                                                                 |
| FUTURE PR-5, PR-9 & OS-X  |               | 2.35                                   |                           |                                                      | Date:                                                          | 11/8/2024                                                      |                                                                                                                                                                                 |
| AREA TRIB FOR POND DESIGN |               | 32.68                                  |                           |                                                      | Checked:                                                       | JS                                                             |                                                                                                                                                                                 |

#### WO TREATMENT SUMMARY

# SITE DEVELOPMENT PLAN WQ TREATMENT MAP NOVEMBER 2024



# V4\_Drainage Report\_Final.pdf Markup Summary



|                     | Subject: Callout<br>Page Label: 29<br>Author: CDurham<br>Date: 2/3/2025 2:36:03 PM<br>Status:<br>Color: Layer:<br>Space:                         | These are the base flood elevations that need to be shown on the drainage maps |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 54 tr Bash PPL5<br> | Subject: Callout<br>Page Label: 64<br>Author: CDurham<br>Date: 2/3/2025 2:42:24 PM<br>Status:<br>Color:<br>Layer:<br>Space:                      | See comment on drainage report regarding side slope                            |
| Highlight (1)       |                                                                                                                                                  |                                                                                |
| -<br>4<br>0         | Subject: Highlight<br>Page Label: 64<br>Author: CDurham<br>Date: 2/3/2025 2:42:07 PM<br>Status:<br>Color:<br>Layer:<br>Space:                    | 4                                                                              |
| Length Measure      | ment (2)                                                                                                                                         |                                                                                |
|                     | Subject: Length Measurement<br>Page Label: [1] PR DRAIN<br>Author: CDurham<br>Date: 2/3/2025 1:07:19 PM<br>Status:<br>Color:<br>Layer:<br>Space: | 12'-2"                                                                         |
|                     | Subject: Length Measurement<br>Page Label: [1] PR DRAIN<br>Author: CDurham<br>Date: 2/3/2025 1:07:40 PM<br>Status:<br>Color: Layer:<br>Space:    | 7'-11 1/2"                                                                     |

Text Box (3)

ming 94: Provide No. exceeds USDCM Volume I Provide explanation of how sigh Fr # is being dealt with. Typical comment for all nlets that have this warning.)

\_

Subject: Text Box Page Label: 47 Author: CDurham Date: 2/3/2025 1:23:52 PM Status: Color: Layer: Space:

Provide explanation of how high Fr # is being dealt with. (Typical comment for all inlets that have this warning.)

| 03: Velocity exceeds USDCM Volume I recommendation.<br>D4: Froude No. exceeds USDCM Volume I recommendation. |                                                                                              |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                              | Provide explanation of how<br>high velocity is being dealt<br>with. (Typical comment for all |  |  |  |  |  |  |  |
|                                                                                                              | inlets that have this warning.)                                                              |  |  |  |  |  |  |  |

Subject: Text Box Page Label: 51 Author: CDurham Date: 2/3/2025 1:25:12 PM Status: Color: Layer: Space:

Provide explanation of how high velocity is being dealt with. (Typical comment for all inlets that have this warning.)

.....

#### Seperitati Unresolved: Indicate what is being done for supercritical to condition. Per criteria, FR # needs to be less n than 0.9.

Subject: Text Box Page Label: 68 Author: CDurham Date: 2/3/2025 1:49:23 PM Status: Color: Layer: Space:

Unresolved: Indicate what is being done for supercritical condition. Per criteria, FR # needs to be less than 0.9.

-----