Please update to "Final Drainage Report". The report will be required to meet criteria for a final drainage report listed in the El Paso County's DCM Vol. 1 Section 1 Chapter 4.4

PRLIMINARY DRAINAGE REPORT

FIRST WING SUBDIVISION, FILING NO. 2 0 SPACE VILLAGE AVENUE COLORADO SPRINGS, COLORADO

PREPARED FOR:

COMMERCIAL BUILDING SERVICES 7561 S. GRANT STREET, SUITE A-4 LITTLETON, COLORADO 80122 CONTACT: DAVID SPRATLEN PHONE: 303.730.3001

PREPARED BY:

STERLING DESIGN ASSOCIATES, LLC 2009 W. LITTLETON BLVD. #300 LITTLETON, CO 80120 PH. 303.794.4727 CONTACT: JON SPENCER

Please add "PCD File No. MS-22-007".

MAY 5, 2022

ENGINEER CERTIFICATION

This report for the preliminary design of First Wing Subdivision Filing No. 2 was prepared by me (or under my direct supervision) in accordance with the provisions of the El Paso County *Drainage Criteria Manual* and the Colorado Springs' *Drainage Design and Technical Criteria Manual* for the owners thereof. I understand that El Paso County and the City of Colorado Springs do not and will not assume liability for drainage facilities designed by others.

By:

Licensed Professional Engineer State of Colorado No. _____

Please revise drainage report certification page using the attached word document for the design engineer, owner/developer, and El Paso County signature blocks.

TABLE OF CONTENTS

1) G	ENERAL LOCATION AND DESCRIPTION	.1
A)	Location	.1
B)	DESCRIPTION OF PROPERTY	.2
2) D	RAINAGE BASINS AND SUB-BASINS	.2
A)	Major Basin Descriptions	.2
B)	Sub-Basin Descriptions	.3
3) D	RAINAGE DESIGN CRITERIA	.3
A)	Development Criteria Reference	.3
B)	Hydrologic Criteria	.4
4) D	RAINAGE FACILITY DESIGN	.4
A)	General Concept	.4
B)	Specific Details	.4
5) Ll	ST OF REFERENCES	.5

APPENDICES

A	FIRM	Map.	Web	Soil	Survey
/ \.	1 11/101	iviup,		501	Jurvey

- B. Hydrology and Hydraulics Calculations and Analysis
- C. Excerpts of Existing Drainage Reports
- D. Drainage Basin Maps

1) GENERAL LOCATION AND DESCRIPTION

A) LOCATION

1. CITY AND COUNTY, AND LOCAL STREETS

The subject development is in unincorporated El Paso County; though it is addressed by the USPS to Colorado Springs. The Space Village Avenue right-of-way is immediate to the north property line. Intersection with Peterson Road is one-quarter mile to the west while the Marksheffel Road intersection is a half mile to the east.

2. TOWNSHIP, RANGE, SECTION, 1/4 SECTION

First Wing Subdivision Filing No. 2 is a parcel of land is situated in the Northwest 1/4 of Section 17, Township 14 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado.

VICINITY MAP

3. MAJOR DRAINAGEWAYS AND EXISTING FACILITIES

No major drainageways exist either on or immediately adjacent to the site.

4. SURROUNDING DEVELOPMENTS

The property to the west is, except for a partial access road, the undeveloped commercial Lot 1, Cowperwood SAIC. To the south is Peterson Air Force Base. To the east is open space belonging to the City of Colorado Springs. Several commercial developments, primarily storage facilities, exist north of the adjacent Space Village Avenue ROW including the Eastgate Business Park and Front Range Winwater Works.

B) DESCRIPTION OF PROPERTY

1. AREA AND EXISTING CONDITIONS

The terrain within the 22.80 acre site generally falls north to south at 2 to 4.5 percent grades. The east half of the site is covered with native grasses and a handful of widely spaced trees. The west half is being used as an impromptu storage yard and is largely denuded of significant vegetation.

2. GENERAL SOIL CONDITION

The Web Soil Survey referenced for this Lot indicate a Blakeland loamy sand subgrade with a hydrologic soil group A rating. Where native grasslands remain, the soil is suspected to be in good condition and remain highly porous. In areas being used for storage there is evidenced loss of infiltration due to compaction by vehicle loading.

3. ENCUMBRANCES

A duel 30-inch CMP culvert under Space Village Avenue discharges onto the property approximately 260 feet from the east property line. It appears there is an off-site basin of approximately 53 acres contributing to this facility. There is a low area on site where, it is assumed, most runoff events have sat and infiltrated as there is no evidence of a low flow channel or rill that would be caused by frequent subjection to flowing water.

There are two 30-foot utility easements on the property adjacent to Space Village Avenue. The north most contains an 8-inch sanitary sewer main belonging to the Cherokee Metropolitan District. The southern one contains a 48-inch steel water line belonging to Colorado Springs Utilities. There are no irrigation facilities on-site that we are aware of. These utilities and their easements are not expected to be disturbed or displaced by the proposed development.

	Please revise description.	l
2) DRAINAGE BASINS AND SUB-BASINS	The property is located in	I
	the Peterson Field	l
A) MAJOR BASIN DESCRIPTIONS	Drainage Basin.	l

The site is in the Sand Creek Basin and is a part of the Peterson Field DBS. In both these studies the area of this development is in the far upper reaches of the basin and there are no identifications of existing deficiency or proposed improvements within the property boundary or immediate thereto.

Likely due to the highly pervious soils there is no indication of continuous storm runoff flows either in low flow channels or rill on the site. Existing discharge of runoff from the site is either into the ground or as sheet flow onto Peterson AFB. The site is identified as Zone X, area of minimal flood hazard, by the El Paso County FIRM 08041C0754G with an effective date of 12/7/2018. No irrigation facilities are expected to be impacted by runoff from the proposed development.

It is intended that the 22.80 acre site be re-purposed as an outdoor storage yard. Ultimate tenants and internal circulation geometry is not known at this time.

Preliminary Drainage Report 0 Space Village Avenue Colorado Springs, Colorado

- B) SUB-BASIN DESCRIPTIONS
 - 1. HISTORIC DRAINAGE PATTERN

As part of the sub-basin description please include the total flow rates for each basin and the amount of runoff flowing through.

There are two distinct low points and a ridge that generally divide the site into an east (Basin A) and west (Basin B) half for drainage consideration. Grades within both direct any excess rainfall runoff to the south and onto Peterson AFB. Lack of evidence of past erosion or channel formation indicates this has been accomplished primarily as sheet flow up to now.

- 2. OFF-SITE DRAINAGE
- Please revise basin names to match basin IDs shown on the drainage maps.

 The drainage map showing existing
 conditions labels these basins as H1 and H2.

The large open space on the property that the twin 30-inch CMP culverts under Space Village Avenue contribute will become a part of the proposed storage yard. As such, it will become necessary to pass this flow through, in a channel section, to Peterson AFB. There is a second area, approximately 6.8 acres, north of Space Village Avenue and west of the larger basin described above, that could contribute discharge over the road and onto the western property boundary in very large rain events. There is no evidence this has occurred, but there is no apparent means for water accumulating at that location to discharge other than into the ground or over the road and onto the site. A perimeter swale can easily provide for conveyance of flows, in this eventuality, south onto Peterson.

3) DRAINAGE DESIGN CRITERIA

The existing conditions drainage map identifies off-site basins OS-W and OS-E. Please include these in the sub-basin breakdown. Include the total flow rate, five and 100 year flow rates and runoff pattern descriptions.

- A) DEVELOPMENT CRITERIA REFERENCE
 - 1. CRITERIA, MASTER PLANS, AND TECHNICAL INFO

This report references the El Paso County *Drainage Criteria Manual*, the City of Colorado Springs *Drainage Criteria Manual*, and Volumes I and II of the Mile High Flood District Drainage Criteria Manual for the needed technical information to make estimation of rate and volumetric stormwater considerations presented herein.

As mentioned previously, the area of proposed development is a part of the upper reaches of planning areas presented in the *Peterson Field Drainage Basin Master Plan* (August, 1984) and the *Sand Creek Drainage Basin Planning Study – Final Report* (January, 2021). Neither report particularly addresses the area in question or describes any problems or drainage improvements that may be associated with it. However, the Sand Creek study does graphically show the property as "open space / cemetery" in its future condition mapping; a designation not supported by the El Paso County Zoning Map or the Colorado Springs Comprehensive Plan.

2. PRIOR STUDIES

The area of the proposed development was, most recently, included in the Preliminary Drainage Report for First Wing Development (July, 2005). In that report the subject is referenced as being Filing No. 2 of the First Wing Development. It is described as existing Basin EX-3 and proposed Basin E and is summarized as having an allowed, detained 100-year release onto Peterson AFB of 36 cfs. Two minor basins, OS-3 and OS-4, are shown to contribute to the site from areas of Space Village Avenue south of the road center, only. However, the two aforementioned 30-inch culverts under Space Village Avenue route runoff from a considerably larger area onto the site. It is not known whether this was the case at the time that PDR was developed or occurred subsequent thereto.

Preliminary Drainage Report 0 Space Village Avenue Colorado Springs, Colorado

ust

A second reference study, presented in letter format as made available, addresses the Highway 24 Eastgate Business Park (December, 2011) north of Space Village Avenue. This is pertinent only in that it demonstrates the twin 30-inch culverts under the avenue and the business parks' discharge $(Q_{100}=20.9 \text{ cfs}, \text{ post detention})$ thereto. There is no further quantification of upstream flows to the culverts or addressing of the discharge condition downstream of Space Village Avenue.

B) HYDROLOGIC CRITERIA

On- and off-site basin runoff was determined through the use of the rational formula for the 5- and 100-year recurrence interval storms. Intensities for which were taken from Figure 6-5 of the Colorado Springs DCM. Intensities for detention sizing were excerpted from NOAA Atlas 14 as available through their website. Detention sizing was estimated using the design tool MHFD-Detention_v4.03.xlsm, an Excel worksheet published by the Mile High Flood District.

4) DRAII	NAGE FACILITY DESIGN		Please include a narrative on the proposed detention facilities in the proposed sub-basin
A) GE	NERAL CONCEPT		description.
	Site drainage patterns are not anticipated to or be routed overland to perimeter berms and s proposed detention and water quality facilitie onto Peterson Air Force Base at the low poir Off-site drainage coming into the site from th (east) or swales (west) which will route those will confluence with other off-site flows from	hange wales s. Tro its alc e nor e flow furth	e with development as a storage yard. Runoff will which will direct excess rainfall to one of two eated and mitigated runoff will then be directed ing the south property line. th will be intercepted in a grass lined channel s to the south property line. The larger, channel, er east at the southerst property corper. Water
2022 Drainage Basin	in the swale will combine with discharge from	the	ast pond facility before exiting onto the AFB.
fee is \$15,243 per	I he channel is directing cor		
mpervious acretand PE	negatively impact the south	erlv	lot
ji, 150 per	On- and How will this impact be mitic	ate	re included in the
the bridge fee	attached Additionally, this channelize	d flo	this report there are no detailed plans for the
and an age to a	Water o does not match historic con	ditio	Sected within the indicated envelopes which will
https://assets-plannin	dimensic please address eliminary sizing	provi	ded by the MHFG-Detention worksheet.
gdevelopment.elpaso	It is estimated that it will require a 10' flat bo	tom	channel flowing at approximately 2' depth to
co.com/wp-content/u	convey off-site flows from Basin OS-E at the a	iverac	e basin grade on the east side of the site.
ploads/2022-DFees-	Similarly, a much smaller 'V' bottom swale flo	wing	at just over a foot of depth will suffice on the west
er-1 pdf	side for flows that may originate is OS-W. Flo	9V WC	elocities in both are coming in at 3.25 cfs for the
or r.pu	erosive velocities on average either through a	rmor	ed intermittent sections at steeper grades or with
Also refer to ECM	drop structures. Please identify what	at	
Appendix L table 3-1.	The existing and propose the existing and propose	su haite	onto Peterson Air Force Base are anticipated to
As site development	coincide. However, there will necessarily be	some	change to the characteristics of discharge, namely
is not known at this	in concentration, duration, and, for larger eve	nts, t	otal volume. We have reached out to the Bases'
time use 85%	infrastructure on Peterson and what, if anythi	ng, w	ill need to be improved. Results of those
calc.	discussions and any subsequent design will be	inclu	ded in updates.
L	- Please include a cost breakdown	for c	Irainage basin fees
\rightarrow	owed by the developer at the time of	of pla	at.
	- Please include the engineer's esti-	mate	e for the total cost of for the sites
	of the cost	san	d provide a preakdown developed flows m
L	or the cost.		be provided.

Please compare the historic flows to the proposed developed condition flows. Are the developed flows at or below historic as required? Do the proposed full spectrum detention/water quality ponds meet the drainage time requirements (senate bill 15-212)2 etc

Pr 0 ECM appendix 1.7.2

Colorado springs, Colorado

5) LIST O 15-212)? etc.

Provide a conclusions section. Confirm

 El Pas whether or not the developed flows will on Jur adversely affect the downstream or
 City d surrounding properties.

2014, as Revised January 2021.

ph MuniCode and created (e-published)

- 3. Volume III <u>Drainage Criteria Manual</u> (DCM) Urban Drainage & Flood Control District, November 2010 with some sections updated April 2018.
- 4. Peterson Field Drainage Master Plan, prepared by URS/NES and dated September 28, 1984.
- 5. <u>Sand Creek Drainage Basin Planning Study Final Report</u>, prepared by Stantec and HDR Dewberry and dated January, 2021.
- 6. Preliminary Drainage Report for First Wing Development by JR Engineering, Revised July 2005.
- 7. <u>Addendum to Drainage Letter Highway 24 Eastgate Business Park</u> by Oliver E. Watts, Consulting Engineer, Inc. and revised December 5, 2011.
- 8. Soil Map-El Paso County Area, Colorado, as available on the Web Soil Survey National Cooperative Soil Survey mapping tool.
- 9. Flood Insurance Rat Map 08041C0754G with an effective date of December 7, 2018.
- 10. NOAA Atlas 14, Volume 8, Version 2 as available at https://hdsc.nws.noaa.gov

Due to the amount and type of comments provided, additional comments should be expected with the re-submittal.

APPENDIX A

FIRM Map Web Soil Survey

National Flood Hazard Layer FIRMette

Legend

104°41'53"W 38°50'34"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D EL PASO COUNTY — – – Channel, Culvert, or Storm Sewer GENERAL 080059 STRUCTURES LIIII Levee, Dike, or Floodwall AREA OF MINIMAL FLOOD HAZARD 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary 08041C0754G **Coastal Transect Baseline** eff. 12/7/2018 OTHER Profile Baseline FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of CITY OF COLORADO SPRINGS digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap 080060 accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 5/4/2022 at 6:52 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for

000 Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

1:6.000

0

250

500

1,000

1,500

2,000

Feet

104°41'16"W 38°50'6"N unmapped and unmodernized areas cannot be used for regulatory purposes.

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

I	MAP LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest Soils Soil Map Unit I Clay Spot Closed Deprest Gravel Pit	Image: Second	MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Cordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator map the net web Mercator
 Gravelly Spot Landfill Lava Flow Marsh or swan Mine or Quarry Miscellaneous Perennial Wate Rock Outcrop Saline Spot Sandy Spot Severely Erode Sinkhole Slide or Slip Sodic Spot 	Major Roads Local Roads Background Mp Merial Photography Water er	 projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI		
8	Blakeland loamy sand, 1 to 9 percent slopes	24.4	100.0%		
Totals for Area of Interest		24.4	100.0%		

Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit symbol Map unit name		Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	24.4	100.0%
Totals for Area of Intere	st	24.4	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

5/2/2022 Page 1 of 3

Spoil Area Stony Spot Very Stony Spot Wet Spot	Spoil Stony Very S Wet S	AOI) ygons	erest (AOI) Area of Interest (AOI) Soil Map Unit Polygons	Area of Intere Soils	
Other Special Line Features	△ Other	nts Wate	Soil Map Unit Points Point Features	Special Poi	
ures Streams and Canals tion Rails Interstate Highways US Routes Major Roads Local Roads d Aerial Photography	Ater Features Strea ransportation +++ Rails -> US R -> US R -> Local ackground -> Aerial	Wate Trans	Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole		
		Spot	Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot		

USDA

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	56.1	100.0%	
Totals for Area of Interest		56.1	100.0%	

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	A	56.1	100.0%	
Totals for Area of Intere	st	56.1	100.0%		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

APPENDIX B

Hydrology & Hydraulics Calculations and Analysis

Weighted Imperviousness

Job Name: 0 Space Village Ave.

as the site development of each of the lots is not yet known, an imperviousness consistent with industrial areas should be utilized (+80%). Using a 50% impervious value will highly limit the development of the two lots. Date: 5/3/22

By: JD**T**

1% Impervious from UDFCD, USDCM Vol. I, Table 6-3

EXISTING SITE

	Open	Single Fam.	Space Village		Drives, Walks,			Weighted F	Runoff Coeff	
Basin	Space	Large	ROW	Yards	& Buildings	Total	I	C ₅	C ₁₀₀	
OS-E	4.299	1.147	0.000	34.328	13.201	52.976	55	0.42	0.54	
OS-W	0.000	2.531	0.000	4.294	0.000	6.825	37	0.26	0.40	
H1	11.414	0.000	0.855	0.000	0.000	12.269	5	0.03	0.15	
H2	11.804	0.000	0.956	0.000	0.000	12.760	5	0.03	0.15	
Site Totals	23.218	0.000	1.810	0.000	0.000	25.029	5	0.03	0.15	

PROPOSED SITE

	Open	Single Fam.	Space Village		Drives, Walks,			Weighted F	Runoff Coeff	
Basin	Space	Large	ROW	Yards	& Buildings	Total	I	C ₅	C ₁₀₀	
A	0.000	0.000	0.855	11.414	0.000	12.269	49	0.35	0.49	
В	0.000	0.000	0.956	11.804	0.000	12.760	49	0.35	0.49	
Site Totals	0.000	0.000	1.810	23.218	0.000	25.029	49	0.35	0.49	

Hydrologic Soil Group = А

Time of Concentration

Job Name: 0 Space Village Ave.

Date: 5/3/22

By: JDT

	Sub-Basin			*Initial/Overla	nd		Trav	el Time		***Tc	Check	Final	Remarks
	Data			Time (Ti)				Tt		Urbani	zed Basin	Тс	
Desig	C5	Area	Length	Slope	Ti	Length	Slope	*Vel	Tt	Tot Len	Тс		
		Ac	Ft	Ft/Ft	Min	Ft	%	FPS	Min	Ft	Min	Min	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
HISTORIC													
OS-E	0.42	52.98	730	3.3	22.3	630	1.3	0.8	13.2				Undeveloped (K=7)
						320	1.0	1.5	3.6			39.0	Undeveloped (K=15)
OS-W	0.26	6.82	600	2.5	27.6	400	1.0	1.5	4.4			32.0	Undeveloped (K=15)
H1	0.03	12.27	890	2.5	42.7							42.7	Undeveloped
H2	0.03	12.76	890	2.6	42.1							42.1	Undeveloped
PROPOSED		(\sim										
А	0.35	0.00	300	2.5	17.2	590	2.5	2.4	4.1	890	21.5	21.4	(K=15)
В	0.35	0.00	300	2.6	17.0	590	2.6	2.4	4.1	890	21.5	21.1	(K=15)
	B 0.35 0.00												

*Velocity from UDFCD - DCM, Vol. I, Equation 6-4 and Table 6-2 **Ti caclualted from UDFCD - DCM, Vol. I, Equation 6-3

100 foot max for urban land uses

Stormwater Runoff

Job Name: 0 Space Village Ave.

Date: 5/3/22

By: JDT

Return Period: 5-yr

Intensity¹: -1.50 In(Tc) + 7.583

			Direct R	unoff					Total Ru	Inoff		
Design	Area	Area	Runoff	Tc		Ι	Q	Тс	Total	I	Q	
Point	Desig	(Ac)	Coeff	(min)	CA	(in/hr)	(cfs)	(min)	CA	(in/hr)	(cfs)	Remarks
	OS-E	52.98	0.42	39.0	22.39	2.09	46.76					To the two (2) 30" CMP under SV
	OS-W	6.82	0.26	32.0	1.75	2.38	4.17					Overtopping of SV (only)
	H1	12.27	0.03	42.7	0.34	1.95	0.67					
	H2	12.76	0.03	42.1	0.38	1.97	0.74					
	А	12.27	0.35	21.4	4.34	2.99	12.97					
	В	12.76	0.35	21.1	4.51	3.01	13.56					

¹Intensity from Colorado Springs Drainage Criteria Manual, Volume 1, Figure 6-5

Stormwater Runoff

Job Name: 0 Space Village Ave.

Date: 5/3/22

By: JDT

Return Period: 100-yr

Intensity¹: -2.52 In(Tc) + 12.735

			Direct R	unoff					Total Ru	Inoff		
Design	Area	Area	Runoff	Тс		I	Q	Tc	Total	I	Q	
Point	Desig	(Ac)	Coeff	(min)	СА	(in/hr)	(cfs)	(min)	СА	(in/hr)	(cfs)	Remarks
	OS-E	52.98	0.54	39.0	28.68	3.50	100.48					To the two (2) 30" CMP under SV
	OS-W	6.82	0.40	32.0	2.73	4.00	10.91					Overtopping of SV (only)
	H1	12.27	0.15	42.7	1.84	3.28	6.04					
	H2	12.76	0.15	42.1	1.94	3.31	6.41					
	А	12.27	0.49	21.4	6.07	5.02	30.43					
	В	12.76	0.49	21.1	6.30	5.05	31.84					

¹Intensity from Colorado Springs Drainage Criteria Manual, Volume 1, Figure 6-5

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, May 3 2022

OS-E Diversion Channel

Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 1.95
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 100.50
Total Depth (ft)	= 3.00	Area (sqft)	= 30.91
Invert Elev (ft)	= 6276.00	Velocity (ft/s)	= 3.25
Slope (%)	= 0.50	Wetted Perim (ft)	= 22.33
N-Value	= 0.040	Crit Depth, Yc (ft)	= 1.28
		Top Width (ft)	= 21.70
Calculations		EGL (ft)	= 2.11
Compute by:	Known Q		
Known Q (cfs)	= 100.50		

Reach (ft)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

OS-E Diversion Channel

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 1.13
Total Depth (ft)	= 2.00	Q (cfs)	= 10.90
		Area (sqft)	= 3.83
Invert Elev (ft)	= 6271.00	Velocity (ft/s)	= 2.85
Slope (%)	= 1.40	Wetted Perim (ft)	= 7.15
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.97
		Top Width (ft)	= 6.78
Calculations		EGL (ft)	= 1.26
Compute by:	Known Q		
Known Q (cfs)	= 10.90		

Reach (ft)

NOAA Atlas 14, Volume 8, Version 2 Location name: Cimarron Hills, Colorado, USA* Latitude: 38.8377°, Longitude: -104.6941° Elevation: 6285.18 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	based poi	int precip	itation fre	quency es	stimates v	with 90% (confiden	ce interv	als (in in	ches) ¹
Duration				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.238 (0.200-0.286)	0.289 (0.242-0.348)	0.378 (0.315-0.456)	0.457 (0.379-0.554)	0.573 (0.461-0.728)	0.669 (0.523-0.860)	0.771 (0.579-1.02)	0.880 (0.631-1.19)	1.03 (0.708-1.44)	1.15 (0.767-1.62)
10-min	0.349 (0.292-0.419)	0.423 (0.354-0.509)	0.553 (0.461-0.667)	0.669 (0.554-0.811)	0.839 (0.675-1.07)	0.980 (0.766-1.26)	1.13 (0.848-1.49)	1.29 (0.924-1.75)	1.51 (1.04-2.11)	1.69 (1.12-2.38)
15-min	0.425 (0.357-0.511)	0.516 (0.432-0.621)	0.674 (0.563-0.814)	0.815 (0.676-0.989)	1.02 (0.823-1.30)	1.20 (0.934-1.54)	1.38 (1.03-1.81)	1.57 (1.13-2.13)	1.84 (1.26-2.57)	2.06 (1.37-2.90)
30-min	0.647 (0.543-0.778)	0.783 (0.656-0.943)	1.02 (0.852-1.23)	1.23 (1.02-1.50)	1.55 (1.24-1.97)	1.81 (1.41-2.32)	2.08 (1.56-2.74)	2.37 (1.70-3.21)	2.78 (1.91-3.88)	3.11 (2.07-4.38)
60-min	0.863 (0.724-1.04)	1.02 (0.853-1.23)	1.30 (1.09-1.58)	1.57 (1.31-1.91)	1.99 (1.61-2.55)	2.35 (1.84-3.04)	2.74 (2.07-3.64)	3.17 (2.28-4.32)	3.79 (2.61-5.30)	4.30 (2.86-6.04)
2-hr	1.08 (0.912-1.29)	1.25 (1.06-1.50)	1.59 (1.34-1.91)	1.92 (1.60-2.31)	2.44 (2.00-3.12)	2.90 (2.30-3.74)	3.40 (2.59-4.50)	3.97 (2.88-5.39)	4.80 (3.33-6.68)	5.48 (3.67-7.66)
3-hr	1.19 (1.01-1.42)	1.36 (1.15-1.62)	1.71 (1.44-2.04)	2.06 (1.73-2.47)	2.64 (2.18-3.39)	3.16 (2.52-4.08)	3.74 (2.87-4.95)	4.41 (3.22-5.98)	5.39 (3.77-7.50)	6.21 (4.18-8.65)
6-hr	1.36 (1.17-1.61)	1.54 (1.32-1.82)	1.92 (1.63-2.28)	2.31 (1.96-2.76)	2.98 (2.49-3.82)	3.59 (2.90-4.62)	4.28 (3.32-5.64)	5.07 (3.74-6.86)	6.25 (4.41-8.66)	7.24 (4.91-10.0)
12-hr	1.51 (1.30-1.77)	1.73 (1.49-2.03)	2.18 (1.87-2.57)	2.63 (2.24-3.11)	3.37 (2.83-4.26)	4.03 (3.27-5.13)	4.77 (3.72-6.23)	5.61 (4.17-7.51)	6.85 (4.86-9.40)	7.88 (5.38-10.8)
24-hr	1.68 (1.46-1.96)	1.95 (1.70-2.28)	2.48 (2.15-2.91)	2.99 (2.57-3.51)	3.78 (3.18-4.72)	4.48 (3.65-5.63)	5.24 (4.10-6.75)	6.08 (4.54-8.06)	7.31 (5.21-9.94)	8.32 (5.72-11.4)
2-day	1.91 (1.68-2.22)	2.24 (1.96-2.59)	2.83 (2.47-3.29)	3.38 (2.94-3.95)	4.22 (3.57-5.20)	4.94 (4.05-6.15)	5.72 (4.50-7.29)	6.57 (4.93-8.61)	7.78 (5.58-10.5)	8.77 (6.08-11.9)
3-day	2.08 (1.84-2.40)	2.44 (2.15-2.82)	3.08 (2.70-3.56)	3.66 (3.19-4.25)	4.53 (3.83-5.53)	5.26 (4.32-6.49)	6.04 (4.77-7.65)	6.89 (5.18-8.97)	8.09 (5.82-10.8)	9.06 (6.30-12.2)
4-day	2.23 (1.97-2.56)	2.61 (2.31-3.00)	3.27 (2.88-3.78)	3.87 (3.39-4.49)	4.77 (4.05-5.79)	5.51 (4.54-6.78)	6.30 (4.99-7.95)	7.15 (5.40-9.28)	8.35 (6.03-11.1)	9.31 (6.50-12.6)
7-day	2.60 (2.32-2.98)	3.02 (2.69-3.46)	3.75 (3.33-4.30)	4.40 (3.87-5.07)	5.35 (4.56-6.45)	6.13 (5.08-7.49)	6.96 (5.54-8.72)	7.84 (5.95-10.1)	9.08 (6.59-12.0)	10.1 (7.07-13.5)
10-day	2.93 (2.63-3.34)	3.39 (3.03-3.86)	4.17 (3.71-4.77)	4.86 (4.30-5.58)	5.87 (5.02-7.03)	6.69 (5.56-8.12)	7.55 (6.04-9.41)	8.47 (6.45-10.9)	9.74 (7.10-12.9)	10.8 (7.59-14.4)
20-day	3.87 (3.50-4.38)	4.45 (4.01-5.04)	5.41 (4.86-6.15)	6.24 (5.57-7.12)	7.41 (6.37-8.77)	8.34 (6.98-10.0)	9.29 (7.47-11.5)	10.3 (7.88-13.0)	11.6 (8.53-15.2)	12.7 (9.02-16.8)
30-day	4.66 (4.23-5.25)	5.35 (4.85-6.03)	6.48 (5.85-7.33)	7.43 (6.66-8.44)	8.74 (7.53-10.3)	9.76 (8.19-11.6)	10.8 (8.70-13.2)	11.8 (9.09-14.9)	13.2 (9.71-17.1)	14.3 (10.2-18.9)
45-day	5.65 (5.16-6.34)	6.50 (5.92-7.30)	7.86 (7.13-8.85)	8.97 (8.08-10.1)	10.5 (9.04-12.2)	11.6 (9.76-13.7)	12.7 (10.3-15.4)	13.8 (10.6-17.2)	15.2 (11.2-19.6)	16.2 (11.7-21.4)
60-day	6.50 (5.95-7.27)	7.49 (6.85-8.39)	9.05 (8.24-10.2)	10.3 (9.32-11.6)	12.0 (10.3-13.8)	13.2 (11.1-15.5)	14.3 (11.6-17.3)	15.5 (12.0-19.3)	16.9 (12.5-21.7)	17.9 (12.9-23.5)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Duration										
— 5-min — 2-day										
- 10-min	— 3-day									
15-min	— 4-day									
30-min	- 7-day									
- 60-min	- 10-day									
- 2-hr	- 20-day									
— 3-hr	— 30-day									
— 6-hr	— 45-day									
- 12-hr	- 60-day									
— 24-hr										

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Thu May 5 18:17:53 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Provide outlet structure calc.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

			MHFD-Det
Project:	Hampton Pa	artners	
Basin ID:	West Half		
ZONE 3	2 ONE 1	_	
100-YR			
ZONE	1 AND 2	ORIFICE	Dep
PERMANENT ORIFIC POOL Example Zone	Ces Configuration	ion (Retention Pond)	Sta
		(
Watershed Information		-	Тор
Selected BMP Type =	EDB	Note: L / W Ra	atio < 1
Watershed Area =	12.76	acres L / W Ratio =	0.99
Watershed Length =	740	ft	
Watershed Length to Centroid =	350	ft	
Watershed Slope =	0.026	ft/ft	
Watershed Imperviousness =	49.00%	percent	
Percentage Hydrologic Soil Group R =	0.0%	percent	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent	
Target WQCV Drain Time =	40.0	hours	
Location for 1-hr Rainfall Depths =	User Input	_	
After providing required inputs above inc	luding 1-hour i	rainfall	\sim $-$
depths, click 'Run CUHP' to generate rund	off hydrograph	ns using	`)
the embedded Colorado Urban Hydro	graph Procedu	Optional User Ov	verrides
Water Quality Capture Volume (WQCV) =	0.216	acre-teet ac	re-feet
Excess Urban Runoff Volume (EURV) =	0.717	acre-eet ac	re-feet
2-yr Runoff Volume (P1 = 1.02 in.) =	0.427	acre-feet 1.02 inc	thes 7
5-yr Runoff Volume (P1 = 1.3 in.) =	0.570	acre-reet 1.30 inc	ines Zor
25-vr Runoff Volume (P1 = 1.97 in.) =	1.026	acre-feet 1.57 int	thes
50-vr Runoff Volume (P1 = 2.35 in.) =	1.333	acre-leet 2.35 inc	thes
100-yr Runoff Volume (P1 = 2.74 in.) =	1.720	acre-eet 2.74 inc	thes
500-yr Runoff Volume (P1 = 3.79 in.) =	2.758	acre-feet 3.79 inc	:hes 🖌
Approximate 2-yr Detention Volume =	0.395	acre-leet) —
Approximate 5-yr Detention Volume =	0.526	acre-fee	ノ 匚
Approximate 10-yr Detention Volume =	0.665	acre-feet	_
Approximate 25-yr Detention Volume =	0.903	acre-feet	
Approximate 50-yr Detention Volume =	1.059	acre-feet	
Approximate 100-yr Detention Volume =	1.246	acre-feet	Zo
Define Zenes and Pasin Coometry			
Zone 1 Volume (WOCV) -	0.216	acre-feet	
Zone 2 Volume (EURV - Zone 1) =	0.500	acre-feet	
Zone 3 Volume (100-year - Zones 1 & 2) =	0.529	acre-feet	
Total Detention Basin Volume =	1.246	acre-feet	
Initial Surcharge Volume (ISV) =	28	ft ³	
Initial Surcharge Depth (ISD) =	1.00	ft	
Total Available Detention Depth $(H_{total}) =$	4.50	ft	
Depth of Trickle Channel (H_{TC}) =	0.50	ft	Zone
Slope of Trickle Channel (S_{TC}) =	0.005	ft/ft	
Slopes of Main Basin Sides $(S_{main}) =$	4	H:V	
basin Lengurto-Width Kato (KE/W) -	2	1	
Initial Surcharge Area (Arey) =	28	ft ²	
Surcharge Volume Length (L _{ISV}) =	5.3	ft	
Surcharge Volume Width (WISV) =	5.3	ft	
Depth of Basin Floor (H_{FLOOR}) =	0.97	ft	
Length of Basin Floor (L_{FLOOR}) =	203.2	ft	
Width of Basin Floor (W_{FLOOR}) =	102.3	ft	
Area of Basin Floor $(A_{FLOOR}) =$	20,791	ft ²	
Volume of Basin Floor (V _{FLOOR}) =	6,979	π - #	
Length of Main Basin (Π_{MAIN}) =	2.03	ft	
Width of Main Basin (WMAIN) =	118.6	ft	
Area of Main Basin (A _{MAIN}) =	26,016	ft ²	
Volume of Main Basin (V _{MAIN}) =	47,410	ft ³	
Calculated Total Basin Volume (V_{total}) =	1.250	acre-feet	

Depth Increment =	0.10	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Top of Micropool	0.00		5.3	5.3	28		0.001		
ISV	1.00		5.3	5.3	28		0.001	28	0.001
	1.10		5.3	5.3	28		0.001	31	0.001
	1.20		5.3	5.3	28		0.001	34	0.001
	1.30		5.3	5.3	28		0.001	37	0.001
	1.40		5.3	5.3	28		0.001	40	0.001
	1.50		5.3	5.3	28		0.001	42	0.001
	1.60		25.7	15.3	394		0.009	60	0.001
	1.70		46.1	25.3	1,168		0.027	135	0.003
	1.80		66.5	35.3	2,349		0.054	307	0.007
	1.90		86.9	45.3	3,939		0.090	618	0.014
	2.00		107.3	55.3	5,937		0.135	1,109	0.025
	2.10		127.7	75.0	8,34Z		0.192	1,819	0.042
	2.20		140.1	75.3	14,150		0.230	2,791	0.064
	2.30		199.0	05.3	14,376		0.330	5,680	0.093
Eloor	2.40		203.2	90.0 102.3	20 701		0.413	7,037	0.130
FIOOI	2.47		203.2	102.3	20,791		0.477	7,037	0.102
	2.50		203.4	102.0	20,804		0.479	0.540	0.170
2011e 1 (WQCV)	2.39		204.2	103.3	21,005		0.485	9,349	0.219
	2.00		204.2	103.4	21,110		0.400	11 992	0.224
	2.70		205.0	104.2	21,550		0.496	14.031	0.273
	2.00		205.0	105.8	21,004		0.502	16 204	0.372
	3.00		200.0	105.6	22,004		0.502	18 402	0.422
	3 10		208.2	107.4	22,356		0.513	20.625	0.473
	3.20		209.0	108.2	22,609		0.519	22.874	0.525
	3.30		209.8	109.0	22,864		0.525	25,147	0.577
	3.40		210.6	109.8	23,119		0.531	27,446	0.630
	3.50		211.4	110.6	23.376		0.537	29,771	0.683
Zone 2 (EURV)	3.57		212.0	111.1	23,557		0.541	31,414	0.721
	3.60		212.2	111.4	23,634		0.543	32,122	0.737
	3.70		213.0	112.2	23,894		0.549	34,498	0.792
	3.80		213.8	113.0	24,155		0.555	36,900	0.847
	3.90		214.6	113.8	24,417		0.561	39,329	0.903
	4.00		215.4	114.6	24,680		0.567	41,784	0.959
	4.10		216.2	115.4	24,945		0.573	44,265	1.016
	4.20		217.0	116.2	25,211		0.579	46,773	1.074
	4.30		217.8	117.0	25,478		0.585	49,307	1.132
	4.40		218.6	117.8	25,746		0.591	51,868	1.191
Zone 3 (100-year)	4.50		219.4	118.6	26,016		0.597	54,457	1.250
	4.60		220.2	119.4	26,287		0.603	57,072	1.310
	4.70		221.0	120.2	26,560		0.610	59,714	1.371
	4.80		221.8	121.0	26,833		0.616	62,384	1.432
	4.90		222.6	121.8	27,108		0.622	65,081	1.494
	5.00		223.4	122.6	27,384		0.629	67,805	1.557
	5.10		224.2	123.4	27,662		0.635	70,558	1.620
	5.20		225.0	124.2	27,940		0.641	73,338	1.684
	5.30		225.8	125.0	28,220		0.648	76,146	1.748
	5.40		226.6	125.8	28,502		0.654	78,982	1.813
	5.50		227.4	126.6	28,784		0.661	81,846	1.879
	5.60		228.2	127.4	29,068		0.667	84,739	1.945
	5.70		229.0	128.2	29,353		0.674	87,660	2.012
	5.80		229.8	129.0	29,640		0.680	90,609	2.080
	5.90		230.6	129.8	29,927		0.687	93,588	2.148
	6.00		231.4	130.6	30,216		0.694	96,595	2.218
	6.10		232.2	131.4	30,506		0.700	99,631	2.287
	6.20		233.0	132.2	30,798		0.707	102,696	2.358
	6.30		233.8	133.0	31,091		0.714	105,791	2.429

APPENDIX C

Excerpts of Existing Reports

PRELIMINARY DRAINAGE REPORT FOR FIRST WING DEVELOPMENT

.

May 2005 Revised July 2005

Prepared For:

COWPERWOOD COMPANY

6102 Broadway, Suite B-2 San Antonio, TX 78209 (210) 930-5192

Prepared By:

JR ENGINEERING

4310 ArrowsWest Drive Colorado Springs, CO 80907 (719) 593-2593

Job No. 9965.10

PRELIMINARY DRAINAGE REPORT FOR FIRST WING DEVELOPMENT

PURPOSE

The purpose of this preliminary drainage report is to identify and estimate existing and proposed drainage patterns, determine storm water runoff quantities resulting from First Wing Development Filings No. 1 and 2, and to recommend proposed drainage facilities within the development. Additionally, this report will show that there will be no impacts from this development downstream.

GENERAL DESCRIPTION

The proposed First Wing Development occupies a 37.0-acre site in El Paso County in the north half of the northwest quarter of Section 17, Township 14 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso. The site is bounded on the northwest by an existing retail development, on the north by Space Village Road, on the west by Peterson Road, and on the east by undeveloped land owned by the city of Colorado Springs. Peterson Air Force Base borders the south side of this site. First Wing Development has been planned in two filings; Filing No. 1 occupies the western-most 14 acres of the site and will be developed in two phases. The first phase will be the 6.9-acre Cowperwood SAIC site that will be developed immediately; the remaining second phase will be developed at some indefinite point in the future. Filing No. 2 occupies the eastern-most 23 acres and will be developed at some indefinite point in the future. (See VICINITY MAP in the Appendix).

EXISTING DRAINAGE CONDITIONS

The First Wing Development site drains into two basins. The western-most 10 acres currently drain towards Sand Creek Basin while the remaining 27 acres drain to Peterson Air Field Basin. Existing drainage flows overland to the southern boundary of the site and onto Peterson Air Force Base. There are no existing drainage facilities on-site. (See EXISTING DRAINAGE MAP in the Appendix).

1

Basin OS-3 encompasses the 0.7 acres of Space Village from the high point north of Filing No. 1 to the ridgeline that divides Filing No. 2. Drainage from this area flows south across the street section onto Filing No. 2. Properties north of Space Village drain to the north side of the road where they are conveyed in roadside ditches away from our site. Historic flows from this off-site basin are 5 cfs in the 5-year storm and 9 cfs in the 100-year storm. (Sce the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix).

The 0.8 acres of Space Village from the ridgeline that divides Filing No. 2 to its eastern boundary comprise Basin OS-4. Drainage from this area flows south across the street section onto Filing No. 2. Properties north of Space Village drain to the north side of the road where they are conveyed in roadside ditches away from our site. Historic flows from this off-site basin are 5 cfs in the 5-year storm and 9 cfs in the 100-year storm. (See the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix).

Basin EX-1 is comprised of the western 10.3 acres of Filing No. 1 and drains to the Sand Creek Drainage Basin. The land in this basin is currently undeveloped. All storm runoff flows overland to the southern boundary of the site and onto Peterson Air Force Base. (See the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix).

Along the boundary of Filing No. 1, 4.4 acres make up Basin EX-2. This basin drains to the Peterson Drainage Basin, specifically to the low point in the southwest corner of Filing No. 1. The land in this basin is currently undeveloped. All storm runoff flows overland to the low point and onto Peterson Air Force Base. (See the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix).

Basin EX-3 includes 11.4 acres along the boundary between the filings and the western half of Filing No. 2. This basin drains to the Peterson Drainage Basin. The land in this basin is currently undeveloped. All storm runoff flows overland to southwest corner of Filing No. 2 and onto Peterson Air Force Base. (See the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix). The eastern half of Filing No. 2 comprises Basin EX-4 (11.0 acres). This basin drains to the Peterson Drainage Basin. The land in this basin is currently undeveloped. All storm runoff flows overland to the lowpoint along the southern boundary of the site in the middle of the basin and onto Peterson Air Force Base. (See the EXISTING BASIN PARAMETERS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix).

The hydrologic calculations shown in the Appendix for the existing conditions calculate the historic drainage rates of the existing drainage basins. These rates are 6 cfs for the 5-year storm and 16 cfs for the 100-year storm for basin EX-1; basin EX-2 runoff is $Q_5 = 3$ cfs and $Q_{100} = 7$ cfs; historic rates for basin EX-3 are 7 cfs and 18 cfs for the 5 and 100-year storms respectively; and basin EX-4 runoff is $Q_5 = 7$ cfs and $Q_{100} = 18$ cfs.

PROPOSED DRAINAGE CONDITIONS

First Wing Development Filing No. 1 is a 14-acre proposed business development. The 6.9-acre Cowperwood SAIC site will be developed immediately including one 85,000 square foot office building and the road through phase two which provides access to Space Village Drive. Development of phase two will include one 120,000 square foot office building and required parking. There are currently no plans to develop this portion of the site.

Runoff from 3.6-acre Basin A will be directed to the west pond as surface runoff and through gutter pans. These flows will enter the west pond through a curb chase located along the eastern boundary of the pond at Design Point 1 ($Q_5 = 14$ cfs, $Q_{100} = 27$ cfs). Drainage from the pond will flow offsite into the Sand Creek Basin. (See PROPOSED DRAINAGE MAP and PROPOSED HYDROLOGIC CALCULATIONS in Appendix.)

Draining flows from proposed Basin B will collect in an inlet directly south of the phase 1 building (at design point 2) and will flow overland into Pond 1 along the western boundary of the site ($Q_5 = 10$ cfs, $Q_{100} = 19$ cfs). (See PROPOSED DRAINAGE MAP and HYDROLOGIC CALCULATIONS in Appendix.)

Flows from Basin C ($Q_5 = 4cfs$, $Q_{100} = 8 cfs$) will flow via curb and gutter to the west onto Peterson Road at DP 4.

Basin D is comprised of 6.7 acres along the eastern boundary of the site and will have developed flows of $Q_5 = 27$ cfs, $Q_{100} = 51$ cfs. This area will be developed in the second phase of development. Developed storm runoff will drain via surface flow to pond 2, the pond in the southeast corner of Filing No. 1.

Two detention ponds will be built in Filing No. 1. Pond 1 will be built in conjunction with Phase 1; Pond 2 will be built with Phase 2. Runoff will be conveyed to the detention ponds via overland flow, channelized flows in gutter pans and swales. (See PROPOSED DRAINAGE MAP in the Appendix.) The detention ponds will restrict flows to historic rates and were sized using Haestad Methods Pond Pack software. (See Detention Pond Design below.)

The remaining 23 acres, which form Filing No. 2, will remain zoned for a heavy industrial district (PHID) including a maximum of 400,000 square feet of industrial space. There are currently no plans to plans to develop this portion of the site. Storm runoff from Filing No. 2 (Basin E) will continue to flow into Peterson Drainage Basin. A detention pond will be built in the southeast corner of the site. Runoff ($Q_5 = 95$ cfs, $Q_{100} = 178$ cfs) will be conveyed to the detention pond (Design Point 8) via overland flows and channelized flows in gutter pans. (See PROPOSED DRAINAGE MAP and HYDROLOGIC CALCULATIONS in Appendix.) This detention pond will restrict flows to historic rates (Design Point 9) and was sized using Haestad Methods Pond Pack software. (See Detention Pond Design below.)

DRAINAGE BASIN TRANSFERS

Existing on-site basins EX-2, EX-3 and EX-4 flow to Peterson Drainage Basin for a total area of 26.8 acres. Only basin EX-1, area of 10.3 acres, currently flows to Sand Creek Drainage Basin. Once development of Filing No. 1 occurs, proposed basins D and E will flow to Peterson Drainage Basin. This will be a total area of 29.5 acres, for an increase of 2.7 acres from the existing tributary area. This 2.7-acre increase in tributary area will not affect the basin downstream because the detention ponds being proposed for basins D and E will restrict flows to

The detention pond in Filing No. 2 will collect drainage from proposed Basin E to be developed as part of Filing No. 2. (See the PROPOSED DRAINAGE MAP in the Appendix.) This pond was sized using Haestad Methods Pond Pack software. The necessary capacity is 3.4 acre-ft to store the developed flows of $Q_5 = 95$ cfs and $Q_{100} = 178$ cfs (DP 8). The bottom elevation of the pond will be 6100.00 and the top of berm elevation is 6106.00. The 100-ycar water surface elevation is 6105.2'. Flows from the pond will outfall through an outfall structure on the south side of the pond. The flow through this structure will be restricted to the historic flows of $Q_5 =$ 14 cfs and $Q_{100} = 36$ cfs (DP 10). These flow rates represent a combination of the historic flows at design points 9 and 10. Since there will be no water exiting Filing No. 2 at design point 9, flows equal to the historic flows from Filing No. 2 onto Peterson Air Force Base will be released at design point 10.

Erosion control for flows exiting the First Wing Development and flowing onto Peterson Air Force Base will be addressed in the Final Drainage Report.

DRAINAGE DESIGN CRITERIA

This report has been prepared in accordance with the 1991 County Drainage Criteria Manual, revised October 1994. All proposed and existing basin flows were determined using the Rational Method. (See PROPOSED HYDROLOGIC CALCULATIONS and EXISTING HYDROLOGIC CALCULATIONS in the Appendix). All proposed drainage systems were designed to handle runoff from both the initial design storm (5 year event) and the major design storm (100 year event). All proposed culverts are 18" or greater in diameter, per El Paso County standards. Preliminary detention ponds were sized using Haestead Methods Pond Pack software.

FLOODPLAIN STATEMENT

The First Wing Development site is not within a designated F.E.M.A. Floodplain as determined by the Flood Insurance Rate Map, Community Panel Number 02041 CO754 F, effective date March 17, 1997. (See FLOOD INSURANCE RATE MAP OF EL PASO COUNTY in the Appendix).

FIRST WING PRELIMINARY DRAINAGE REPORT (Area Runoff Summary)

05-4- ±	2. OS-3	OS-2	1. CS-1	·····································	EX-3	EX-2 2	147 EX-1 -253	の方法におりてた。	BASIN	A PERSONAL PROPERTY OF A PARTY OF A
0.8	0.7	9.8	0.6	11.0	11.4	4.4	10.3	Acres) TE		了学校的关系。
0.90 20 20.95	0.90	NO.71 (1) - 20.78 %	0.90 × 0.95	0.25 4035 4	· · · · · · · · · · · · · · · · · · ·	三0.25 记出 至 0.35 至	240.25 Part 0.35	2010年1月20日,2011年1月1日,1月1日 1月1日日日,1月1日日日(1月1日日) 1月1日日日(1月1日日)	C(5)/1 + C(100)	Historic Weighted
0.71-10.0.75	0.672E	》如第7:01 33年, [36] 第36] 35] [36] 35] 56] 36] [36] 36] 36] 37] 37] 37] 37] 37] 37] 37] 37] 37] 37	0.53 20 0.56	2.76 3.86	2.86 2 4.00	是来1317年4月。 1.55年代。	第52.57%第1年至3.60×平利	这个时间,在这些个人 学们的时候,在这时间,	CA(5)	Historic Weighted

FIRST WING PRELIMINARY DRAINAGE REPORT (Proposed Area Runoff Summary)

18							122
$\mathbf{F}_{\mathbf{r}}$	1	C	- B. () 2.	1. S. A. S. S.	の自己の言語であった	BASIN	
22.8	6.7	1.4	2.6	3.6	رات (Acres) کار ا	AREA	
0.90	0.78	0.76	0.74	30.77 N	一方法等に加加	2) 1.3 1.3 C(5) ≈	WEIG
0.95 × %	0.84	₩ 0.82 ₩	2 3 1 0.80 , 540	0.83	· ····································	C(100)	HTED
三, 20:54 (宋)	5.25 Mile	》(1:06和他)	1.92	2.79	いいないないないです。	CA(5)	WEIG
21.68	5.65 SA	学育1.15学习	2.08 - ž	143 3.00 -57	の言語でないたとう	-CA(100)	HIED
⑦ 0.25 ○	1.5.0.25 AS	0.25	¥₹ 0:25 ≷* ₹	53,0:25 長米 参	「日本の日本のない」「日	((1,1)) ≂1C(5)	Historic W
0.35	S.0.35 ↔ 🔅	0.35	0.35	0.35	A ANTAL AND A CONTRACT OF	C(100)	eighted
**** 5.71 *** [2	1.68	0.35	0.65	0.90	A STATE TO A STATE OF	CA(5)	Historic W
7:99	1. 2.35	0.49	0.91	1.26	あったいないでいる	中联合。 CA(100)	eighted

FIRST WING PRELIMINARY DRAINAGE REPORT (Area Drainage Summary)

-cost	Solution Sol	08-2	05-1-10 					1244 1 2 4 4 4 1 1 1	BASIN	1889 F
0.8	0,7	9.8	0.6	11.0	11.4	<u>ب</u> ه	10.3	(Acres)	TOTAL	
0.90	0.90	0.71	0,90	0.25	0.25	0.25	0.25	A	ç cisi și	WEIGH
0.95	0,95	0.78	0.95	0.35	5C.0	sr.o	5E.0	A State Links	Č(100)	ITED
				0,25	0.25	0.25	0.25	10^{-10}	C(S)	和意思
				765	765	765	825	2. (1).01	Langth	OVER
				32	32	32	32	AC (1) SA	Height	UND -
				27.4	27,4	27.4	29.2	(min)		行政部
so	SO	1750	450			0		1. (U) (2.		STRE
2.0%	2.0%	1.1%	3,1%			12.0%	10.0% 4.0%	2000	Slope S	ST./ CH
<u>د</u> و	4.9	3.7	6.2			12.1	11.1 7.0	- ([p a)	Velochy	INNEL F
0.2	0.2	7,9	1.2			0.0	0.0	(m(n) T	ALC: NO	LOW
0.2	0.2	7.9	1.2	27.4	27.4	27,4	29.2	itte (min) 😳	TOTAL	WTC.
6.9	6,9	4 .5	6,4	2.5	2.5	2.5	2.5	(inthr)	2.03 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	INTEN
12.2	12.2	7.9	E11	4.5	4.5	4.5	4.4	(In/tor)	1(100)	SITI
								(c[s]	(j0(s)-2	TOTAL
		19	14. 19. 19.	18			5	(cfs)	Q(100)	LOHS

JR Engineering 996510_FW_fdr.xls

FIRST WING PRELIMINARY DRAINAGE REPORT (Area Drainage Summary)

					_		
FILING 2	PHASE 3	SOUTH	B SE SE (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		115-14 70-15-	BASIN	NALX WELL
22.8	6.7	- -	2.6	3.6	(Acres)	AREA Y	AL
0.90	0.78	0.76	0.74	0.77		(GD)	WEIG
0.95	0.84	0.82	0.80	0.83		C(100)	HTED IN
0.90	0.78	0.76	0,74	0.77	1997 - Mar	(Q9)	東部の
				3 3	14. (n) 64	usury.	OVER
					- (ft) - 5	o Height	LIND
					> (min)	Solet.	C. CONTRACT
1500	300	300	460	575	31 (n) - Z -	Length (STRE
1.0%	1.0%	1.0%	1.5%	1.6%	Nr (96) Tu	Slope	ET./ CH
S'E	21	3.5	4.3	4.4	v: ((p3)	Velocity	ANNEL F
7.1	NI.	14	1.8	2.2	37 (min)??		LOW
1.1	5.0	5.0	5.0	5.0	: (min)	TVIDE	法 76法
4.6	5.1	5.1	t'S	5.1	"(luthir) -	Seil.	INTEN
8.2	9.1	17 6	9,1	9.1	: (in/hr)	1(100)	SITY
			the second		S (c. [s.) '	20(5).	TOTAL
		10			" (c.f.s.)	Q(100)	FLOWS
			NWART OF	9352			- 2000-0

FIRST WING PRELIMINARY DRAINAGE REPORT (Existing Flows at Design Points)

, <u>'</u> ''			1.ä.		P	H
1.1	10	9	71	·s	esign oint(s	stori
0		Ē	E	0	.	c Fl
S-2	4	x-ω	X-2	S-1, 1		SMO
	e :			EX-1		FIGN
						のため
					Con	
(i 2					asin	
					Supp.	家語
			ļ	 		
						が語る
-						語語
.1	N	N			Equi	合語
.01	.76	98.9	-11	10	ival. 4(5)	
						高いた
					0 1	有效
7.6	3.8	4.0	1.5	4.1	A(I	通知
4	6	0	S	S	00)	
		\vdash	 			
7.	27	27	27	29.	Taxii	
9	¥	4	4	19		
		Η		line i		
4.5	2.5	2.5	2.5	2.5	(5)	In
		-			19 A 43	tens
7.9	4.5	4.5	4.5	4.4	0[]	ġ
م ر ا	الارتقاد	- sket			1.2 S	A STATE
1.5.31	Sec. 7.	Z	. 3	8	8	
				$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	S	S.FL
12.17	1.4.71	1. 1.		·	20	DMA
1251	85.2	8	2.10	81	00)	

FIRST WING PRELIMINARY DRAINAGE REPORT (Developed Flows at Design Points)

OS-2: Flows along Peterson Road	Filing No. 2 Detention Pond	7. Phase 2 Detention Pond	6	Design points 3 & 4		2.2 3 Phase 1 Detention Pond	B	h = h	Design Contributing Point(s)	Developed Flows
7.01	20.04	12 00	5.25		1.06		1.92	2.79	Equivalent CA(5)	
7.64	21.00	02.10	5.65		1.15		2.08	3.00	Equivalent CA(100)	
7.95	1.14	7 14	5.00		5.00		5.00	5.00	Maximum Tc	
4.5	4.0	16	5.1		5.1		5.1	5.1	(s)	Inter
7.9	0.2	0 2	9.1		9.1		9.1	9.1	(00 L)I	nsity
当時131日前 12月時日 12月時日に日本	ALL CKA	1. 20 MA	27	8.1	*******	· 2	IO	14	Q(S)	
61	363 J	17.7.7.1.4.	N.S. 51 2013	18, 20		0	- 19		Q(100)	OW

ADDENDUM TO DRAINAGE LETTER

HIGHWAY 24 EASTGATE BUSINESS PARK

A REPLAT OF LOT 3, HILLCREST ACRES

November 20, 2008

Revised December 29, 2008

Revised January 8, 2009

Revised December 5, 2011

Prepared for

LACA-LOJA LLP

Oliver E. Watts, Consulting Engineer, Inc. Colorado Springs, Colorado

EPC DEVELOPMENT SERVICES

1 VR-08-012

OLIVER E. WATTS, PE-LS

OLIVER E. WATTS, CONSULTING ENGINEER, INC. CIVIL ENGINEERING AND SURVEYING 614 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907 (719) 593-0173 fax (719) 265-9660 olliewatts@aol.com

December 5, 2011

El Paso County D.O.T. 3460 Marksheffel Road Colorado Springs, CO 80922

ATTN: Paul Danley

SUBJECT: Addendum to Drainage Letter Highway 24 Eastgate Business Park

Gentlemen

Transmitted herewith for your review and approval is the addendum to the drainage letter for the Highway 24 Eastgate Business Park, which is a replat of Lot 3, Hillcrest Acres. The original drainage letter was dated January 28, 2005, and was approved by the County Engineer on February 7, 2005. This addendum revises the water quality outlet in the existing detention pond to a standard CDOT inlet box, similar to those used on the recent COSMIX project.

There will be no change in the approved runoff as a result of this subdivision. Please contact our office if we may provide any further information.

Oliver E. Watts, Consulting Engineer, Inc.

BY:

Oliver E. Watts, President

Encl:

Drainage Letter 3 pages Computations, 5 Pages SCS Soils Map and Interpretation Sheet Backup Information, 3 pages Drainage Plan, Dwg 04-3486-07 Detention Pond Details, Dwg 04-3486-11 Highway 24 Eastgate Business Park Drainage Letter

1. ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Oliver E. Watts, Consulting Engineer, Inc, THE B GISTERED 253 S No. 9853 Colo 2. 8 2. OWNERS / DEVELOPER'S STATEMENT:

I the owner / developer have read and will comply with all of the requirements specified in this drainage report and plan.

Laca-Loja, LP

By: Ula

James Whidden P.O. Box 75903 Colorado Springs, CO 80970 492-5001

3. EL PASO COUNTY:

Filed in accordance with the requirements of the El Paso Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

TAN

Andre P. Brackin, P.E., County Engineer / ECM Administrator

date

date

Conditions:

Highway 24 Eastgate Business Park Drainage Letter

4. LOCATION AND DESCRIPTION:

The Highway 24 Eastgate Business Park is a replat of Lot 3, Hillcrest Acres, and is located on the north side of Space Village Boulevard East of Peterson Road and South of Highway 24, as shown on the enclosed drainage plan. An approved drainage report is on file for Lots 2 and 3, Hillcrest Acres, as prepared by Professional Consultants, Inc., June, 2002. This report will accompany the replat of Lot 3 and the associated development plan so that a number of storage buildings may be constructed on Lot 3. Condominium plats will be prepared as the units are constructed, as required by El Paso County. The drainage for Lot 3 is associated with the detention pond on Lot 2, the capacity for which is analyzed as part of this report. The pond exists and the details of the design are not part of this report.

This subdivision lies within the boundaries of the Peterson Field Drainage Basin. This report complies with the requirements of the Master Plan for that basin.

5. METHOD AND CRITERIA:

The criteria used for all computations in this report are that specified in the City County Drainage Criteria Manual. All computations are enclosed for reference and review.

The soils in this subdivision have been mapped by the local office of the USDA/SCS and a copy of their soils map and interpretation sheet are enclosed. All soils within the drainage basins associated with this report are of hydrologic group "A".

6. DESCRIPTION OF RUNOFF:

Basin "A" shown on the enclosed drainage plan comprises this lot and the area south of the centerline of Highway 24 that flows into it. The inflow will be of a sheet flow type until the driveways serving the storage units are encountered, which will have an inverted crown typical of all similar storage units, in which the runoff will be channelized. The runoff will be routed to the end of the existing asphalt driveways at the northerly end of Lot 2, where a total of 19.5 cfs / 35.3 cfs (5-year / 100-year runoffs) will discharge into Lot 2. The normal grading of the driveways will accommodate this runoff as shown on the enclosed computation sheets, any one of which would accommodate the total. This runoff will be routed to the existing detention pond in Lot 2 by existing driveways through an existing concrete pan off of the driveway adjacent to the ponds. The easterly half of Lot 2 is presently constructed, including the detention pond and outfall facilities. The above runoff will be combined with that of Lot 2 (Basin "B"), including the anticipated developed runoff from the westerly portion, and a total of 31.9 cfs / 58.0 cfs will outfall into the detention pond.

The design for the detention pond was approved with the drainage report for Lots 2 and 3, Hillcrest Acres and is not part of this report. A check on the capacity of this pond is computed, and it is determined that a total of 23,900 cubic feet of detention would be required to mitigate the total development of these two lots to the 100-year historic runoff value of 6.2 cfs / 20.9 cfs, as shown on the enclosed computations. According to the referenced drainage report for Lots 2 and 3, Hillcrest Acres, a total detention of 44,072 cubic feet is available, more that adequate to accommodate this proposed development, which occurs at elevation 84.30 in the existing pond. The pond has also been checked for the capacity of the two year storm, and found more than adequate. The water surface elevations for these storms are shown on the drainage plan.

There will be no negative impact to offsite properties as a result of this development.

Highway 24 Eastgate Business Park Drainage Letter

The site has been graded for some time to accommodate this proposed development and only finish grading remains, which is less than one acre of disturbance. Therefore a temporary sediment basin and State permit will not be required. The BMP's related to the finish grading and the below described work are shown on the design drawings.

7. Water Quality Detention

The existing detention pond was surveyed and the enclosed storage sheet was developed in accordance with Volume 2 of the Drainage Criteria Manual. Enclosed is a computation sheet for a sand filter basin. The required detention for water quality for the entire site is 0.264 AF (11,500 CF), which occurs at elevation 82.93. Riprap is added to each of the three inlet slabs and to the outlet of the pond outlet pipe. A standard CDOT outlet structure with a trash rack and perforated orifice plate will be added at the inlet to the existing pond outlet pipe. This will provide added staging of the design runoff for additional benefit to downstream properties. The details of the pond design are shown on the enclosed sheet.

8. Fees

The Commissioners determined in their meeting of January 8, 2009 that drainage fees would be due as part of the subdivision process. It was also agreed that 2008 fees would be computed, and that 50% of the construction cost for the detention pond would be credited against the fees. The fees have been paid as follows.

Total area = 4.54 acres x (70% impervious – 11% SF impervious) Drainage: 4.54X0.59X \$9232.00 = \$24,728 2008 Fees: 4.54X0.59X \$ 700 = \$ 1,875 Bridge:

Item No.	Description	Quantity	Unit Cost	Cost	
1	Existing Pond Earthwork	240 CY	\$ 3.00	\$ 720.00	
2	Existing Concrete Inlets & Spillway	1603 SF	5.00	8015.00	
3	Existing 18" CMP outlet	40 LF	25.00	. 1000.00	
4	Proposed Riprap	1 CY	100.00	100.00	
5	Proposed Pond Outlet	3000.00			
	\$12835.00				
	1283.50				
	\$14118.50				

Detention Pond Cost Estimate:

Net Drainage Fees Due: \$ 24,728 - 50% x 12,835.00 = \$ 18,310.50 \$1875.00 Total Bridge Fees Due: \$20,185.50 Total fees due:

DLIVER E. WATTS CONSULTING ENGINEER COLORADO SPRINGS

FUTURE BUILDING, RESERVED FOR FUTURE DEVELOPMENT

LEGEND:

⇒ 29.0\60.7 — — A — —

RUNDFF IN CFS: 5-YEAR/100-YEAR LIMIT OF DRAINAGE BASIN AND DESIGNATION EXISTING STORM SEWER AS LABELED PROPOSED STORM SEWER AS LABELED LIMIT OF SDILS TYPE AND GROUP

> PREPARED BY THE DFFICE DF: DLIVER E. WATTS PE-LS CONSULTING ENGINEER 614 ELKTON DRIVE COLORADO SPRINGS, CD 80907 (719) 593-0173 olliewotts@aol.com CURRENT HRDUGH 12-204 FIELD WORK DEV 12-1-08 10-19-04 DEV/04-2484

APPENDIX D

Drainage Maps

EXISTING BASINS

		EXISTI	NG CON	IDITION	I BASIN	SUMMAF	RY	
		BASIN ID	AREA (AC)	C5	C100	Q5 (CFS)	Q100 (CFS)	NOTES
	5	Н1	12.27	0.03	0.15	0.67	6.04	SHEET FLOW TO PETERSON AFB
	3	H2	12.76	0.03	0.15	0.74	6.41	SHEET FLOW TO PETERSON AFB
	Ę	OS-E	52.98	0.42	0.54	46.76	100.48	ENTERS SITE AT 2X 30" CMP AT SV
Please use the same	£	OS-W	6.82	0.26	0.40	4.17	10.91	ROAD OVERTOPPING CONTRIBUTION
naming in the report	Y	uu						

0 SPACE VILLAGE AVENUE A PORTION OF THE NW 1/4 OF SEC. 17, T14S, R65W, OF THE 6th P.M., EL PASO COUNTY, COLORADO PRELIMINARY DRAINAGE PLAN EXISTING CONDITION & OFF-SITE

LEGEND

lease identify etype and include in the legend if applicable.

lease delineate the time of concentration paths for each basin or he drainage map.

OFF-SITE BASIN CONTRIBUTION

-100-YR RUNOFF COEFFICENT

ISSUES 8	& REVISIONS	
NO.: 1	DATE:	BY:
DESCRIF	PTION:	
NO.: 2	DATE: -	BY: -
DESCRIF	PTION: -	
NO.: 3	DATE: -	BY: -
DESCRIF	PTION: -	
NO.: 4	DATE: -	BY: -
DESCRIF	PTION: -	
NO.: 5	DATE: -	BY: -
DESCRIF	PTION: -	
NO.: 6	DATE: -	BY: -
DESCRIF	PTION: -	

SCALE: **1" = 20'**

PROJECT NO .:

DRAWING FILE:

0 SPACE VILLAGE AVENUE COLORADO SPRINGS, CO

COMMERCIAL BUILDING SERVICES 7561 S. GRANT STR., SUITE A-4 LITTLETON, COLORADO 80122

PRELIMINARY DRAINAGE PLAN

DATE: 05/12/2022

JS

JT

DRAWN BY:

PROJECT:

CLIENT:

SHEET TITLE:

SHEET NUMBER:

1 OF 2

TEL: (303) 730-3001

PROJECT MANAGER:

STERLING DESIGN ASSOCIATES, LLC

N SUMMA	ARY	
Q5 (CFS)	Q100 (CFS)	NOTES
12.97	30.43	100-YR DETAINED <90% HISTORIC
13.56	31.84	100-YR DETAINED <90% HISTORIC
46.76	100.48	DIVERTED AROUND PERIMETER
4.17	10.91	DIVERTED AROUND PERIMETER

ease revise drainage maps as the Gradi and Erosion Control Plan shows a differen

> Please create a basic overview map (or modify existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc) and those areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.#). A summary table on the current map would also be acceptable (example provided):

BASINS	PBMP TRIBUTARY AREA (AC)	PBMP
A1.1	1.43	RG-A1.1
A3.1	1.87	RG-A3.1
B1,B2	8.60	EDB-B
0A2,A2	0.95	EXCLUDED*

STERLING DESIGN ASSOCIATES, LLC

ISSUES & REVISIONS							
NO.: 1 DATE:	BY:						
DESCRIPTION:							
NO.: 2 DATE: -	BY: -						
DESCRIPTION: -							
NO.: 3 DATE: -	BY: -						
DESCRIPTION: -							
NO.: 4 DATE: -	BY: -						
DESCRIPTION: -							
NO.: 5 DATE: -	BY: -						
DESCRIPTION: -							
NO.: 6 DATE: -	BY: -						
DESCRIPTION: -							
DATE: 05/12/2022	SCALE:						
PROJECT MANAGER:	PROJECT NO.:						

DRAWING FILE:

DRAWN BY:

PROJECT:

0 SPACE VILLAGE AVENUE COLORADO SPRINGS, CO

CLIENT:

COMMERCIAL BUILDING SERVICES 7561 S. GRANT STR., SUITE A-4 LITTLETON, COLORADO 80122 TEL: (303) 730-3001

SHEET TITLE:

SHEET NUMBER: 2 OF 2