

#### INNOVATIVE DESIGN. CLASSIC RESULTS.

# PRELIMINARY/FINAL DRAINAGE REPORT FOR REDTAIL RANCH FILING 1

November 2018

Prepared for:
MICHAEL S. LUDWIG
4255 ARROWHEAD DRIVE

COLORADO SPRINGS, CO 80908

Prepared by:

**CLASSIC CONSULTING** 

619 N. CASCADE AVE., SUITE 200 COLORADO SPRINGS, CO 80903 (719) 785-0790

Job no. 2525.00

PCD Project No. SP-18-004/SF-18-021



# PRELIMINARY/FINAL DRAINAGE REPORT FOR REDTAIL RANCH FILING NO. 1

#### **DESIGN ENGINEER'S STATEMENT:**

| are correct to the be according to the critic conformity with the a | e plan and report were prepare<br>st of my knowledge and belief<br>eria established by the County<br>applicable master plan and dra<br>a negligent acts, errors, or omiss | <ul><li>Said drainage rep</li><li>for drainage repor</li><li>inage basin. I accep</li></ul> | ort has been prepared t and said report is in ot responsibility for any |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Marc A. Whorton, Col                                                | orado P.E. #37155                                                                                                                                                         | Date                                                                                        |                                                                         |
| OWNERS/DEVELOPER I, the owner/developed drainage report and p       | er, have read and will comply w                                                                                                                                           | vith all of the require                                                                     | ements specified in this                                                |
| Name:                                                               | Michael S. Ludwig                                                                                                                                                         |                                                                                             |                                                                         |
|                                                                     |                                                                                                                                                                           |                                                                                             |                                                                         |
| Title:                                                              |                                                                                                                                                                           |                                                                                             |                                                                         |
| Address:                                                            | 4255 Arrowhead Drive                                                                                                                                                      |                                                                                             | _                                                                       |
|                                                                     | Colorado Springs, CO 80908                                                                                                                                                |                                                                                             |                                                                         |
|                                                                     | vith the requirements of the Ding Criteria Manual and Land D                                                                                                              | _                                                                                           |                                                                         |

Date

Conditions:

Jennifer Irvine, P.E.

County Engineer / ECM Administrator



# PRELIMINARY/FINAL DRAINAGE REPORT FOR REDTAIL RANCH FILING NO. 1

#### **TABLE OF CONTENTS:**

| PURPOSE                       | Page | 4  |
|-------------------------------|------|----|
| GENERAL DESCRIPTION           | Page | 4  |
| EXISTING DRAINAGE CONDITIONS  | Page | 4  |
| DEVELOPED DRAINAGE CONDITIONS | Page | 6  |
| HYDROLOGIC CALCULATIONS       | Page | 10 |
| FLOODPLAIN STATEMENT          | Page | 12 |
| EROSION CONTROL PLAN          | Page | 12 |
| DRAINAGE/BRIDGE FEES          | Page | 12 |
| SUMMARY                       | Page | 13 |
| REFERENCES                    | Page | 15 |

#### **APPENDICES**

**VICINITY MAP** 

SOILS MAP (WEB SOIL SURVEY)

F.E.M.A. MAP

HYDROLOGIC / HYDRAULIC CALCULATION

**BMP FACILITY CALCULATIONS** 

**DRAINAGE MAPS** 



# PRELIMINARY\FINAL DRAINAGE REPORT FOR REDTAIL RANCH FILING NO. 1

#### **PURPOSE**

This document is the Preliminary/Final Drainage Report for Redtail Ranch Filing No. 1. The purpose of this report is to address on-site and off-site drainage patterns and improvements required for this development to minimize impacts to the adjacent properties.

#### **GENERAL DESCRIPTION**

This development is made up of multiple parcels all owned by a single property owner. The total acreage for the site is 67.9 acres and is located in the county of El Paso within Section 9, Township 12 South, Range 65 West of the Sixth Principal Meridian, El Paso County, Colorado. The site is bounded on the north, west and south by existing platted and unplatted residential properties (RR-5 Zone) and to the east by existing Vollmer Road. The overall site is proposed for 12 single-family 5-acre minimum lots and paved rural roads. The current zoning of the property is RR-5 (5-acre Residential Zoning).

The average soil condition reflects Hydrologic Group "B" (Elbeth sandy loam and Kettle gravelly loamy sand), as determined by the "Soil Survey of El Paso County Area," prepared by the Soil Conservation Service.

#### **EXISTING DRAINAGE CONDITIONS**

This property sits at the very top of two major drainage basins — Upper Black Squirrel to the east and Kettle Creek to the west. Thus, a major ridge-line runs through the middle of the property from north to south. The existing drainage patterns generally run in a southwesterly and southeasterly direction in several natural drainage corridors at slopes ranging from 2% to 5%. Multiple stock ponds exist on the property within these natural drainageways. There are two culvert crossings at Vollmer Road that the east half of the property drain towards. Much of the property was burned in the Black Forest fire several years back. The property owner has cleaned up most of the burn debris leaving some sparse treed areas remaining along the ridgeline. The remainder of the property is covered with native

grasses. The west portion of the property is currently platted as Walker Place, Lots 1 & 2. Several home structures have recently been removed from the site leaving multiple well heads and some gravel paths remaining throughout the property. Current access to and from the property exists in multiple locations. Driveway access from the north off of Ward Lane and driveway access from the south off of Linwood Lane (private road). The public access proposed along with this development is the continuation of Ward Lane (paved) into the site from the north connected with a new east-west public roadway accessing Vollmer Road.

**Design Point H1** ( $Q_5$  = 3 cfs and  $Q_{100}$  = 18 cfs) consists of pre-development flows from Basins OS-1 and EX-1 within the Kettle Creek Basin. These historic flows travel in a westerly direction within a natural drainageway towards the west boundary and then head off-site.

**Design Point H2** ( $Q_5 = 4 \text{ cfs}$  and  $Q_{100} = 19 \text{ cfs}$ ) consists of pre-development flows from Basin EX-2 within the Kettle Creek Basin. These historic flows travel in a southwesterly direction within a natural drainageway towards the west boundary where they are collected in an existing stock pond. As mentioned in the previous Walker Place Drainage Report, this facility collects the minor flows while a grass-lined overflow swale directs the pond outflows around the earthen embankment located near the property line. This facility is planned to remain in place within Lot 3 of the proposed development with ownership and maintenance by the lot owner.

**Design Point H3** ( $Q_5 = 5$  cfs and  $Q_{100} = 25$  cfs) consists of pre-development flows from Basin EX-3 within the Kettle Creek Basin. These historic flows travel in a southwesterly direction within a natural drainageway. Currently, a good portion of this historic basin is collected into another stock pond just east of the existing gravel driveway. This facility was also mentioned in the Walker Place Drainage Report as collecting the pre-developed flows and then releasing them through an 18" pond outfall. This existing facility is proposed to be replaced with a formal BMP to handle the developed flows at this location. (See Developed Conditions)



**Design Point H4** ( $Q_5 = 0.3$  cfs and  $Q_{100} = 1.9$  cfs) consists of pre-development flows from Basin EX-4 within the Kettle Creek Basin. These historic sheet flows travel in a southwesterly direction towards the southwest corner of the property. No development is proposed within this small basin.

**Design Point H5** ( $Q_5$  = 8 cfs and  $Q_{100}$  = 43 cfs) consists of pre-development flows from Basins OS-2, OS-3, OS-4, EX-5 and EX-7 within the Upper Black Squirrel Basin. These historic flows sheet flow in a south easterly direction towards multiple stock ponds at the southeast corner of the property. These historic flows travel to the existing stock pond facilities with an ultimate release point at an existing 18" CMP crossing Vollmer Road.

**Design Point H6** ( $Q_5 = 2$  cfs and  $Q_{100} = 10$  cfs) consists of pre-development flows from Basin EX-8 within the Upper Black Squirrel Basin. These historic sheet flows travel in a easterly direction towards Vollmer Road where an existing 24" CMP conveys the flows under Vollmer Road.

As mentioned earlier, this site was previously studied as part of the Walker Place Subdivision, prepared by ADP, Inc., approved January 2010. This report generally described the drainage characteristics for the majority of the west half of the property. Along with this Walker Place Final Plat, drainage fees in the amount of \$1,904.76 were previously paid within the Kettle Creek Basin for the two lots currently platted.

### DEVELOPED DRAINAGE CONDITIONS (KETTLE CREEK BASIN)

The attached developed conditions drainage map contains several design points related to proposed culvert crossings and BMP facilities. All proposed culverts have been designed for the 100-yr. developed flows. All proposed storm facilities within the public Right-of-way (roadside ditches and culverts) will be public with ownership and maintenance by El Paso County. All proposed BMP facilities within easements will be owned and maintained by the individual lot owners.





**Design Point D1** ( $Q_5 = 3$  cfs and  $Q_{100} = 16$  cfs) consists of developed flows from Basins OS-1 and A. These existing off-site and on-site developed flows travel in a westerly direction within a natural drainageway towards the west boundary and then head off-site. With the reduction in tributary area due to the extension of Ward Lane, the developed flows at this location are equal to or below the predevelopment conditions. Therefore, no further improvements within this basin are proposed at this time. The additional imperviousness with the construction of Ward Lane is collected in a sideroad ditch and conveyed south towards Pond 1.

**Design Point D2** ( $Q_5 = 3$  cfs and  $Q_{100} = 17$  cfs) consists of developed flows from Basin B. These on-site developed flows travel in a westerly direction within a natural drainageway towards the west boundary and the existing stock pond. With the reduction in tributary area due to the extension of Ward Lane, the developed flows at this location are below the pre-development conditions. Therefore, no further improvements within this basin are proposed at this time. The additional imperviousness with the construction of Ward Lane is collected in a sideroad ditch and conveyed south towards Pond 1. The existing stock pond facility is planned to remain in place within Lot 3 with ownership and maintenance by the lot owner.

**Design Point D3** ( $Q_5 = 3$  cfs and  $Q_{100} = 13$  cfs) consists of developed flows from Basin E. These on-site developed flows sheet flow towards the extension of Ward Lane and then travel in a southerly direction within the sideroad ditch towards D3. At this location a 24" RCP culvert is proposed to convey these flows under the roadway. (See Appendix for Culvert Design)

**Design Point D4** ( $Q_5 = 7$  cfs and  $Q_{100} = 28$  cfs) consists of developed flows from Basins D, F and Design Point D3 and represents the total inflow to Pond 1. At this location, the existing stock pond is proposed to be replaced with a formal BMP as described below:



**Pond 1 (Sand Filter Basin)** has the following design parameters as a full-spectrum facility:

(See UD-Detention in Appendix)

Facility sized to release pre-development acreage of 14.8 ac. (Basin EX-3)

0.09 Ac.-ft. WQCV required

0.12 Ac.-ft. EURV required

0.19 Ac.-ft. EURV design with 4:1 max. slopes

0.45 Ac.-ft. 100-yr. storage

Total In-flow:  $Q_5 = 7 \text{ cfs}, \quad Q_{100} = 28 \text{ cfs}$ 

Pond Design Release:  $Q_5 = 0.18 \text{ cfs}, Q_{100} = 15.3 \text{ cfs}$ 

Pre-development Release:  $Q_5 = 0.30 \text{ cfs}$ ,  $Q_{100} = 17.6 \text{ cfs}$ 

This facility will be constructed within a drainage easement with ownership and maintenance by the HOA for the subdivision. The O&M Plan for this project will further specify maintenance responsibilities for this facility.

**Design Point D5** ( $Q_5 = 1.7$  cfs and  $Q_{100} = 24$  cfs) consists of developed flows from Basin C and the outflow from Pond 1. These on-site developed flows travel in a southwesterly direction within a natural drainageway and existing 30' drainage easement towards the south boundary. With the reduction in tributary area due to the extension of Ward Lane and the proposed Pond 1, the developed flows at this location are at or below the pre-development conditions. Therefore, no further improvements within this basin are proposed at this time.

## DEVELOPED DRAINAGE CONDITIONS (UPPER BLACK SQUIRREL BASIN)

**Design Point D6** ( $Q_5$  = 6 cfs and  $Q_{100}$  = 29 cfs) consists of developed flows from Basins OS-2, OS-3, EX-5 and G. These off and on-site developed flows sheet flow towards the sideroad ditch along the north side of the proposed public road (Sanctuary Pine Dr.) and then in an easterly direction towards Design Point D6. At this location, the existing stock pond will be removed along with the road construction



and a 30" RCP culvert is proposed to convey these flows under the roadway. (See Appendix for Culvert Design)

**Design Point D7** ( $Q_5 = 10$  cfs and  $Q_{100} = 46$  cfs) consists of developed flows from Basins OS-4, H and Design Point D6 and represents the total inflow to Pond 2. At this location, the existing stock pond is proposed to be replaced with a formal BMP as described below:

**Pond 2 (Sand Filter Basin)** has the following design parameters as a full-spectrum facility:

(See UD-Detention in Appendix)

0.12 Ac.-ft. WQCV required

0.13 Ac.-ft. EURV required

0.22 Ac.-ft. EURV design with 4:1 max. slopes

0.78 Ac.-ft. 100-yr. storage

Total In-flow:  $Q_5 = 10 \text{ cfs}, \quad Q_{100} = 46 \text{ cfs}$ 

Pond Design Release:  $Q_5 = 0.22 \text{ cfs}, Q_{100} = 22.1 \text{ cfs}$ 

Pre-development Release:  $Q_5 = 0.49 \text{ cfs}, \quad Q_{100} = 29.9 \text{ cfs}$ 

This facility will be constructed within a drainage easement with ownership and maintenance by the HOA for the subdivision. The O&M Plan for this project will further specify maintenance responsibilities for this facility.

**Design Point D8** ( $Q_5 = 2$  cfs and  $Q_{100} = 10$  cfs) consists of developed flows from Basin L. With a reduction of tributary area based on the proposed grading and only a single home anticipated to be built on lot 8 in this basin, the developed flows at Design Point 8 will not see any significant change from the pre-developed condition. These developed sheet flows continue to travel in an easterly direction towards Vollmer Road and the existing 24" CMP under Vollmer Road. With no significant change in flows at this location, this existing culvert will continue to adequately convey the developed flows under Vollmer Road. The necessary ponding at this culvert location is all contained within the



proposed ROW or future 40' ROW easement. Therefore, no further improvements within this basin are proposed at this time.

**Design Point D9** ( $Q_5 = 1$  cfs and  $Q_{100} = 4$  cfs) consists of developed flows from Basin I. These on-site developed flows travel as sideroad ditch flows in an easterly direction towards Vollmer Road. At this location an 18" RCP culvert is proposed to convey these flows under the roadway. (See Appendix for Culvert Design) Sediment control will be provided with on-site grading operations and remain until

site development is complete and vegetation within sideroad ditch is at 75% growth.

The previous comment was made " Address sediment control" Please provide information in the report that calls out where velocities exceed criteria (5fps) in roadside ditches and call out where permanent rip rap checks will be installed in these high velocity areas flows from Basins I, J and K and Design Point Did (155) 2 cris and 150 (155) consists of developed flows from Basins I, J and K and

the proposed outflow from Pond 2. With the construction of Sanctuary Pine Drive to divert the majority of the developed flows within this existing drainage corridor into the proposed Pond 2, the developed flows at Design Point 10 will be significantly lower than the pre-developed condition. These developed sheet flows continue to travel in an easterly direction towards Vollmer Road and the existing 24" CMP under Vollmer Road. With a significant reduction in the flows seen at this location, this existing culvert will continue to adequately convey the developed flows under Vollmer Road. The necessary ponding at this culvert location is all contained within the proposed ROW or future 40' ROW easement. Therefore, no further improvements within this basin are proposed at this time.

#### HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for culvert sizing and system routing was calculated using the Rational Method. BMP design was calculated using the UD-Detention (Version 3.07) spreadsheet developed by the Urban Drainage and Flood Control District.

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume



(WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements. This site adheres to this **Four Step Process** as follows:

- 1. **Employ Runoff Reduction Practices:** Development of project site is proposed large lot single family residential (5.0 ac. min.) with homes and associated landscaping. Proposed impervious areas (roof tops, patios) will sheet flow across landscaped ground and through large open areas within the lots across natural vegetation to slow runoff and increase time of concentration prior to being conveyed to the proposed public roads and adjacent properties. This will minimize directly connected impervious areas within the project site.
- 2. Stabilize Drainageways: This site will utilize roadside ditches with culvert crossings throughout the site. These facilities will then direct the on-site development flows to the multiple BMPs, designed to release at or below historic rates into the Kettle Creek and Upper Black Squirrel drainage basins. Based upon the proposed reduction in released flows compared to the predeveloped flows, no impact to downstream drainageways is anticipated.
- 3. **Provide Water Quality Capture Volume (WQCV):** Runoff from the impervious road areas of this development will be treated through capture and slow release of the WQCV in two permanent Sand Filter Basins designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative is being submitted concurrently with this report and development. Details such as site specific source control construction BMP's as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters. The described BMP's will be constructed and maintained by the developer upon approval by El Paso County Staff.



#### FLOODPLAIN STATEMENT

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C 0325F, with effective date of March 17, 1997 (See Appendix).

#### **EROSION CONTROL PLAN**

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and cost estimate be submitted in conjunction with the Grading and Erosion Control Plan and construction assurances posted prior to obtaining a grading permit.

#### **DRAINAGE & BRIDGE FEES**

This site lies within two major drainage basins: Kettle Creek and Upper Black Squirrel. The total acreage for the property is 67.9 acres. The acreage within each drainage basin equals:

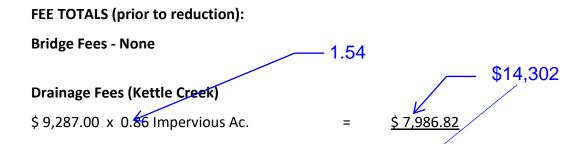
Kettle Creek Basin – 32.17 Ac. (Basin Fees as calculated below)

**Upper Black Squirrel Basin – 35.69 Ac.** (No current Basin Fees)

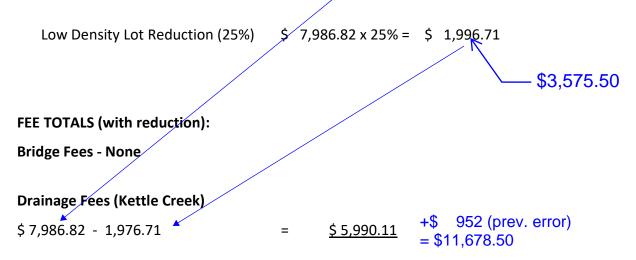
As mentioned previously, a portion of this site within the Kettle Creek Drainage Basin was platted as Lots 1 and 2 or Walker Subdivision. This previously platted acreage equals 19.91 ac. Fees were paid at that time in the amount of \$1,904.76. This acreage will be removed from the total fee acreage within the Kettle Creek Basin. The fees are calculated using the following impervious acreage method approved by El Paso County with current zoning of RR-5 (5-ac. residential land use). Thus, the percent imperviousness for this subdivision is calculated as follows: This amount was in error (EPC Staff

> report) and should have been \$2,857 per the approved drainage report. Add the difference to the fees owed.

(Per El Paso County Percent Impervious Chart for 5.0 ac. lots: 7%)


 $32.17 + 19.91 \, Ac. \times 7\% = 0.86 \, Impervious \, Ac.$ 

**RR-5 Zone Area** 


Only subtract the area of two lots in the previously platted area (5.037+5.093). $22 \times 7\% = 1.54$ 



The following calculations are based on the 2018 drainage/bridge fees for the Kettle Creek Drainage Basin:



Per the ECM 3.10.2a, this development requests a 25% reduction of drainage fees based on the low density lots proposed (5 ac. min lot size). This reduction is as follows:



Upper Black Squirrel currently has no bridge or drainage fees.

#### **SUMMARY**

This proposed development remains consistent with pre-development drainage conditions with the construction of the proposed on-site Sand Filter Basins. These proposed facilities meet current criteria and provide full spectrum design. The proposed development will not adversely impact surrounding developments.



#### PREPARED BY:

**Classic Consulting Engineers & Surveyors, LLC** 

Marc A. Whorton, P.E. Project Manager

mw/252500/Reports/FDR.doc



#### REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. Soil Survey of El Paso County Area, Colorado Soil Conservation Service, June 1981.
- 3. "Preliminary/Final Drainage Report for Walker Place Subdivision", by ADP, Inc., approved January 2010.



#### **APPENDIX**



#### **VICINITY MAP**





VICINITY MAP

#### **SOILS MAP**





#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons



Soil Map Unit Lines



Soil Map Unit Points

#### **Special Point Features**

Blowout



Borrow Pit



Clay Spot



Closed Depression



Gravel Pit



**Gravelly Spot** 



Landfill



Lava Flow



Marsh or swamp



Mine or Quarry Miscellaneous Water



Perennial Water



Rock Outcrop



Saline Spot



Sandy Spot



Severely Eroded Spot Sinkhole





Slide or Slip



Sodic Spot

Spoil Area



Stony Spot



Very Stony Spot



Wet Spot Other



Special Line Features

#### Water Features

Streams and Canals

#### Transportation



Rails



Interstate Highways



**US Routes** 



Major Roads



Local Roads

#### **Background**



Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 22, 2016—Mar 9. 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

### **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                     | Acres in AOI | Percent of AOI |
|-----------------------------|---------------------------------------------------|--------------|----------------|
| 26                          | Elbeth sandy loam, 8 to 15 percent slopes         | 18.3         | 15.2%          |
| 40                          | Kettle gravelly loamy sand, 3 to 8 percent slopes | 102.1        | 84.8%          |
| Totals for Area of Interest |                                                   | 120.4        | 100.0%         |

#### El Paso County Area, Colorado

#### 26—Elbeth sandy loam, 8 to 15 percent slopes

#### **Map Unit Setting**

National map unit symbol: 367y Elevation: 7,300 to 7,600 feet

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Elbeth and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

#### **Description of Elbeth**

#### Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkose

#### Typical profile

A - 0 to 3 inches: sandy loam
E - 3 to 23 inches: loamy sand
Bt - 23 to 68 inches: sandy clay loam
C - 68 to 74 inches: sandy clay loam

#### **Properties and qualities**

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high (0.20 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B Hydric soil rating: No

#### **Minor Components**

#### Other soils

Percent of map unit: Hydric soil rating: No

#### **Pleasant**

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

### **Data Source Information**

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017

#### El Paso County Area, Colorado

#### 40—Kettle gravelly loamy sand, 3 to 8 percent slopes

#### **Map Unit Setting**

National map unit symbol: 368g Elevation: 7,000 to 7,700 feet

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Kettle and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

#### **Description of Kettle**

#### Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

#### **Typical profile**

E - 0 to 16 inches: gravelly loamy sand Bt - 16 to 40 inches: gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

#### **Properties and qualities**

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High

(2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.4 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

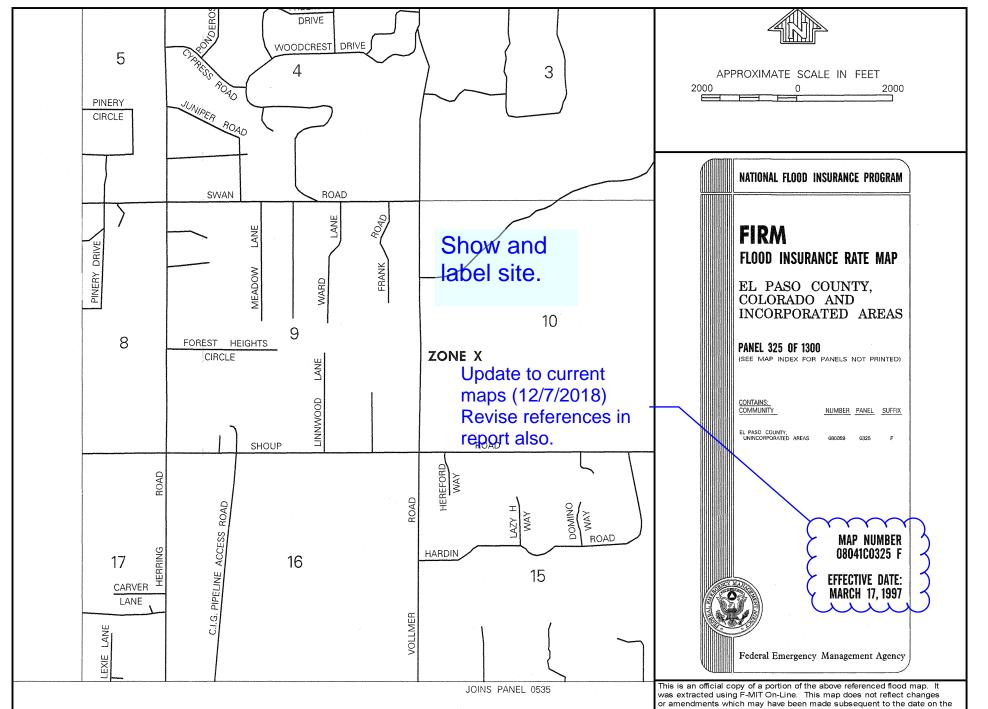
Hydrologic Soil Group: B Hydric soil rating: No

#### **Minor Components**

#### Other soils

Percent of map unit: Hydric soil rating: No

#### **Pleasant**


Percent of map unit: Landform: Depressions Hydric soil rating: Yes

### **Data Source Information**

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017

#### **FEMA MAP**





HYDROLOGIC/HYDRAULIC CALCULATIONS



REDTAIL RANCH FILING NO. 1

JOB NAME: JOB NUMBER: 2525.00 11/14/18 DATE:

CALCULATED BY: MAW

#### FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

|       |           | IMP       | ERVIOUS A | REA / STREI | ETS    | LAND      | SCAPE/UNI | DEVELOPED | AREAS  | V    | VEIGHTED |        |       | WEIGHTED C | Α       |
|-------|-----------|-----------|-----------|-------------|--------|-----------|-----------|-----------|--------|------|----------|--------|-------|------------|---------|
|       | TOTAL     |           |           |             |        |           |           |           |        |      |          |        |       |            |         |
| BASIN | AREA (AC) | AREA (AC) | C(2)      | C(5)        | C(100) | AREA (AC) | C(2)      | C(5)      | C(100) | C(2) | C(5)     | C(100) | CA(2) | CA(5)      | CA(100) |
| EX-1  | 6.1       | 0.12      | 0.57      | 0.59        | 0.70   | 5.98      | 0.03      | 0.09      | 0.36   | 0.04 | 0.10     | 0.37   | 0.25  | 0.61       | 2.24    |
| EX-2  | 10.1      | 1.00      | 0.57      | 0.59        | 0.70   | 9.10      | 0.03      | 0.09      | 0.36   | 0.08 | 0.14     | 0.39   | 0.84  | 1.41       | 3.98    |
| EX-3  | 14.8      | 1.20      | 0.57      | 0.59        | 0.70   | 13.60     | 0.03      | 0.09      | 0.36   | 0.07 | 0.13     | 0.39   | 1.09  | 1.93       | 5.74    |
| EX-4  | 0.9       | 0.00      | 0.89      | 0.90        | 0.96   | 0.90      | 0.03      | 0.09      | 0.36   | 0.03 | 0.09     | 0.36   | 0.03  | 0.08       | 0.32    |
| EX-5  | 2.0       | 0.00      | 0.89      | 0.90        | 0.96   | 2.00      | 0.03      | 0.09      | 0.36   | 0.03 | 0.09     | 0.36   | 0.06  | 0.18       | 0.72    |
| EX-6  | 1.5       | 0.00      | 0.89      | 0.90        | 0.96   | 1.50      | 0.03      | 0.09      | 0.36   | 0.03 | 0.09     | 0.36   | 0.05  | 0.14       | 0.54    |
| EX-7  | 26.4      | 1.10      | 0.57      | 0.59        | 0.70   | 25.30     | 0.03      | 0.09      | 0.36   | 0.05 | 0.11     | 0.37   | 1.39  | 2.93       | 9.88    |
| EX-8  | 6.1       | 0.10      | 0.57      | 0.59        | 0.70   | 6.00      | 0.03      | 0.09      | 0.36   | 0.04 | 0.10     | 0.37   | 0.24  | 0.60       | 2.23    |
|       |           |           |           |             |        |           |           |           |        |      |          |        |       |            |         |
| OS-1  | 3.5       | 0.30      | 0.57      | 0.59        | 0.70   | 3.20      | 0.05      | 0.12      | 0.39   | 0.09 | 0.16     | 0.42   | 0.33  | 0.56       | 1.46    |
| OS-2  | 1.3       | 0.10      | 0.57      | 0.59        | 0.70   | 1.20      | 0.05      | 0.12      | 0.39   | 0.09 | 0.16     | 0.41   | 0.12  | 0.20       | 0.54    |
| OS-3  | 1.7       | 0.10      | 0.57      | 0.59        | 0.70   | 1.60      | 0.05      | 0.12      | 0.39   | 0.08 | 0.15     | 0.41   | 0.14  | 0.25       | 0.69    |
| OS-4  | 1.2       | 0.00      | 0.57      | 0.59        | 0.70   | 1.20      | 0.05      | 0.12      | 0.39   | 0.05 | 0.12     | 0.39   | 0.06  | 0.14       | 0.47    |
|       |           |           |           |             |        |           |           |           |        |      |          |        |       |            |         |
| Α     | 5.0       | 0.00      | 0.89      | 0.90        | 0.96   | 5.00      | 0.05      | 0.12      | 0.39   | 0.05 | 0.12     | 0.39   | 0.25  | 0.60       | 1.95    |
| В     | 8.9       | 0.00      | 0.89      | 0.90        | 0.96   | 8.90      | 0.05      | 0.12      | 0.39   | 0.05 | 0.12     | 0.39   | 0.45  | 1.07       | 3.47    |
| С     | 5.1       | 0.00      | 0.89      | 0.90        | 0.96   | 5.10      | 0.05      | 0.12      | 0.39   | 0.05 | 0.12     | 0.39   | 0.26  | 0.61       | 1.99    |
| D     | 1.4       | 0.40      | 0.89      | 0.90        | 0.96   | 1.00      | 0.05      | 0.12      | 0.39   | 0.29 | 0.34     | 0.55   | 0.41  | 0.48       | 0.77    |
| E     | 5.1       | 0.50      | 0.89      | 0.90        | 0.96   | 4.60      | 0.05      | 0.12      | 0.39   | 0.13 | 0.20     | 0.45   | 0.68  | 1.00       | 2.27    |
| F     | 5.8       | 0.30      | 0.89      | 0.90        | 0.96   | 5.50      | 0.05      | 0.12      | 0.39   | 0.09 | 0.16     | 0.42   | 0.54  | 0.93       | 2.43    |
| G     | 13.3      | 0.30      | 0.89      | 0.90        | 0.96   | 13.00     | 0.05      | 0.12      | 0.39   | 0.07 | 0.14     | 0.40   | 0.92  | 1.83       | 5.36    |
| Н     | 9.1       | 0.50      | 0.89      | 0.90        | 0.96   | 8.60      | 0.05      | 0.12      | 0.39   | 0.10 | 0.16     | 0.42   | 0.88  | 1.48       | 3.83    |
| I     | 1.6       | 0.17      | 0.89      | 0.90        | 0.96   | 1.43      | 0.05      | 0.12      | 0.39   | 0.14 | 0.20     | 0.45   | 0.22  | 0.32       | 0.72    |
| J     | 0.7       | 0.10      | 0.89      | 0.90        | 0.96   | 0.60      | 0.05      | 0.12      | 0.39   | 0.17 | 0.23     | 0.47   | 0.12  | 0.16       | 0.33    |
| K     | 2.1       | 0.08      | 0.57      | 0.59        | 0.70   | 2.02      | 0.05      | 0.12      | 0.39   | 0.07 | 0.14     | 0.40   | 0.15  | 0.29       | 0.84    |
| L     | 5.4       | 0.25      | 0.57      | 0.59        | 0.70   | 5.15      | 0.05      | 0.12      | 0.39   | 0.07 | 0.14     | 0.40   | 0.40  | 0.77       | 2.18    |

| JOB NAME:   | REDTAIL RANCH FILING NO. 1 |
|-------------|----------------------------|
| JOB NUMBER: | 2525.00                    |
| DATE:       | 11/14/18                   |
| CALC'D BY:  | MAW                        |

| 0.            | $.395(1.1-C_5)\sqrt{L}$ | $V = C_v S_w^{0}$ |
|---------------|-------------------------|-------------------|
| $\iota_i$ – – | S <sup>0.33</sup>       | - V-W             |

| Table 6-7. | Conveyance | Coefficient, | Cy |
|------------|------------|--------------|----|

| Type of Land Surface                            | $C_v$ |
|-------------------------------------------------|-------|
| Heavy meadow                                    | 2.5   |
| Tillage/field $t = \frac{L}{L} + 10$            | 5     |
| Riprap (not buried)* $I_c = \frac{1}{180} + 10$ | 6.5   |
| Short pasture and lawns                         | 7     |
| Nearly bare ground                              | 10    |
| Grassed waterway                                | 15    |
| Paved areas and shallow paved swales            | 20    |

#### FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

Tc=L/V

|       | FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY |          |         |      |                |             |             |                |                       |                   |             |                |                 |                 |                   |               |               |                 |
|-------|----------------------------------------------|----------|---------|------|----------------|-------------|-------------|----------------|-----------------------|-------------------|-------------|----------------|-----------------|-----------------|-------------------|---------------|---------------|-----------------|
|       |                                              | WEIGHTED |         |      | OVERLAND       |             |             | STRE           | STREET / CHANNEL FLOW |                   |             |                | IN              | NTENSIT         | Υ                 | тот           | AL FLO        | ows             |
| BASIN | CA(2)                                        | CA(5)    | CA(100) | C(5) | Length<br>(ft) | Height (ft) | Tc<br>(min) | Length<br>(ft) | Slope<br>(%)          | Velocity<br>(fps) | Tc<br>(min) | TOTAL<br>(min) | l(2)<br>(in/hr) | l(5)<br>(in/hr) | I(100)<br>(in/hr) | Q(2)<br>(cfs) | Q(5)<br>(cfs) | Q(100)<br>(cfs) |
| OS-1  | 0.33                                         | 0.56     | 1.46    | 0.12 | 300            | 14          | 18.4        |                |                       |                   |             | 18.4           | 2.57            | 3.21            | 5.39              | 0.8           | 2             | 8               |
| OS-2  | 0.12                                         | 0.20     | 0.54    | 0.12 | 300            | 16          | 17.6        |                |                       |                   |             | 17.6           | 2.62            | 3.28            | 5.50              | 0.3           | 0.7           | 3               |
| OS-3  | 0.14                                         | 0.25     | 0.69    | 0.12 | 300            | 12          | 19.4        |                |                       |                   |             | 19.4           | 2.51            | 3.14            | 5.26              | 0.3           | 0.8           | 4               |
| OS-4  | 0.06                                         | 0.14     | 0.47    | 0.12 | 270            | 12          | 17.8        |                |                       |                   |             | 17.8           | 2.61            | 3.27            | 5.48              | 0.2           | 0.5           | 3               |
|       |                                              |          |         |      |                |             |             |                |                       |                   |             |                |                 |                 |                   |               |               |                 |
| Α     | 0.25                                         | 0.60     | 1.95    | 0.12 | 300            | 18          | 17.0        | 250            | 3.6%                  | 1.3               | 3.1         | 20.1           | 2.46            | 3.08            | 5.17              | 1             | 2             | 10              |
| В     | 0.45                                         | 1.07     | 3.47    | 0.12 | 300            | 14          | 18.4        | 300            | 4.5%                  | 1.5               | 3.4         | 21.8           | 2.37            | 2.96            | 4.97              | 1             | 3             | 17              |
| С     | 0.26                                         | 0.61     | 1.99    | 0.12 | 300            | 15          | 18.0        | 350            | 3.6%                  | 1.3               | 4.4         | 22.4           | 2.33            | 2.92            | 4.90              | 1             | 2             | 10              |
| D     | 0.41                                         | 0.48     | 0.77    | 0.12 | 150            | 8           | 12.5        | 230            | 2.0%                  | 1.4               | 2.7         | 15.2           | 2.80            | 3.50            | 5.88              | 1             | 2             | 5               |
| Е     | 0.68                                         | 1.00     | 2.27    | 0.12 | 300            | 22          | 15.9        | 100            | 3.0%                  | 1.2               | 1.4         | 17.3           | 2.65            | 3.31            | 5.56              | 2             | 3             | 13              |
| F     | 0.54                                         | 0.93     | 2.43    | 0.12 | 300            | 18          | 17.0        | 300            | 4.0%                  | 1.4               | 3.6         | 20.5           | 2.44            | 3.05            | 5.12              | 1             | 3             | 12              |
| G     | 0.92                                         | 1.83     | 5.36    | 0.12 | 300            | 9           | 21.3        | 1100           | 3.0%                  | 1.7               | 10.6        | 31.9           | 1.91            | 2.39            | 4.01              | 2             | 4             | 21              |
| Н     | 0.88                                         | 1.48     | 3.83    | 0.12 | 300            | 12          | 19.4        | 650            | 3.0%                  | 1.7               | 6.3         | 25.7           | 2.17            | 2.72            | 4.56              | 2             | 4             | 17              |
| I     | 0.22                                         | 0.32     | 0.72    | 0.12 | 165            | 8           | 13.5        | 375            | 6.0%                  | 2.4               | 2.6         | 16.1           | 2.73            | 3.42            | 5.74              | 0.6           | 1.1           | 4               |
| J     | 0.12                                         | 0.16     | 0.33    | 0.12 |                |             |             |                |                       |                   |             | 5.0            | 4.12            | 5.17            | 8.68              | 0.5           | 0.8           | 3               |
| К     | 0.15                                         | 0.29     | 0.84    | 0.12 | 300            | 22          | 15.9        | 100            | 4.0%                  | 1.4               | 1.2         | 17.1           | 2.66            | 3.33            | 5.58              | 0.4           | 1.0           | 5               |
| L     | 0.40                                         | 0.77     | 2.18    | 0.12 | 300            | 13          | 18.9        | 480            | 3.1%                  | 1.2               | 6.5         | 25.4           | 2.19            | 2.73            | 4.59              | 1             | 2             | 10              |

 JOB NAME:
 REDTAIL RANCH FILING NO. 1

 JOB NUMBER:
 2525.00

 DATE:
 11/14/18

CALCULATED BY: MAW

#### FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

|                    |                                              |                     |                       |               | Intensity |        | FI   | ow     |                         |
|--------------------|----------------------------------------------|---------------------|-----------------------|---------------|-----------|--------|------|--------|-------------------------|
| Design<br>Point(s) | Contributing Basins                          | Equivalent<br>CA(5) | Equivalent<br>CA(100) | Maximum<br>Tc | I(5)      | I(100) | Q(5) | Q(100) | Outfall /<br>Inlet Size |
| H1                 | OS-1, EX-1 (9.6 AC.)                         | 1.17                | 3.69                  | 21.9          | 2.95      | 4.96   | 3    | 18     |                         |
| H2                 | EX-2 (10.1 AC.)                              | 1.41                | 3.98                  | 24.3          | 2.80      | 4.70   | 4    | 19     |                         |
| H3                 | EX-3 (14.8 AC.)                              | 1.93                | 5.74                  | 27.8          | 2.59      | 4.35   | 5    | 25     |                         |
| H4                 | EX-4 (0.9 AC.)                               | 0.08                | 0.32                  | 15.9          | 3.43      | 5.76   | 0.3  | 1.9    |                         |
| H5                 | OS-2, OS-3, OS-4, EX-5, EX-7<br>(32.6 AC.)   | 3.70                | 12.30                 | 39.3          | 2.08      | 3.48   | 8    | 43     |                         |
| H6                 | EX-8 (6.1 AC.)                               | 0.60                | 2.23                  | 26.0          | 2.70      | 4.53   | 2    | 10     |                         |
|                    |                                              |                     |                       |               |           |        |      |        |                         |
| D1                 | A, OS-1 (8.5 AC.)                            | 1.05                | 3.12                  | 20.1          | 3.08      | 5.17   | 3    | 16     |                         |
| D2                 | B (8.9 AC.)                                  | 1.07                | 3.47                  | 21.8          | 2.96      | 4.97   | 3    | 17     |                         |
| D3                 | E (5.1 AC.)                                  | 1.00                | 2.27                  | 17.3          | 3.31      | 5.56   | 3    | 13     | 24" RCP<br>CULVERT      |
| D4                 | DP-D3, D, F (12.3 AC.)<br>(POND 1)           | 2.41                | 5.48                  | 20.5          | 3.05      | 5.12   | 7    | 28     | POND 1                  |
| D5                 | Pond 1 Outfall, Basin C<br>(17.4 AC.)        |                     | SEE PO                | OND PACK MOD  | DEL       |        | 1.7  | 24     |                         |
| D6                 | OS-2, OS-3, EX-5, G (18.3 AC.)               | 2.46                | 7.31                  | 31.9          | 2.39      | 4.01   | 6    | 29     | 30" RCP<br>CULVERT      |
| D7                 | DP-D6, OS-4, H (28.6 AC.)<br>(POND 2)        | 4.09                | 11.61                 | 32.9          | 2.34      | 3.93   | 10   | 46     | POND 2                  |
| D8                 | L (5.4 AC.)                                  | 0.77                | 2.18                  | 25.4          | 2.73      | 4.59   | 2    | 10     |                         |
| D9                 | I (1.6 AC.)                                  | 0.32                | 0.72                  | 16.1          | 3.42      | 5.74   | 1    | 4      | 18" RCP<br>CULVERT      |
| D10                | Pond 2 Outfall, Basins I, J, K<br>(33.0 AC.) |                     | SEE PO                | OND PACK MOD  | DEL       |        | 2.4  | 29     |                         |



619 N. Cascade Avenue, Suite 200 Colorado Springs, CO 80903

|          | 211112        |                    |
|----------|---------------|--------------------|
| Project: | Redtail Ranch | <u>NOTES</u>       |
| Date:    | 6/27/18       | Telephone Record   |
| Contact: |               | □ Note to the File |
|          |               | ☐ Job Information  |
| Phone:   | 444           | ─                  |
| By:      | MATO          |                    |

| Poul I Imporviousner calcs.                  |
|----------------------------------------------|
| Basin D 1.4 ac. total                        |
| 0.40 ac. arphalt 1.0 ac sac bets             |
| 0.40 × 100% + 1,0 × 714 / 1.40c = 346        |
| Barin E 5.1 ac + tal                         |
| 0.50 ac. asphalt, 4.6 ac sac (6+r            |
| 0.50 × 160%. + 4.6 × 7.1. / 5.1 ac. = 16%    |
| Busin F 5.8 ac. total                        |
| 0.30 ac. arphalt, 5.5 ac sace lot            |
| 0.30 × 100% + 5.5 × 7.6 / 5.8 ac. = 12.6     |
| * 2.5 ac. x 7% (to match pre-dew. busin)     |
| total Baria ac. = 12. Zac. + 2. = 14.8 ac.   |
| 1.4 × 34%. + 5.1 × 166 + 5.8 × 126 / 12.3ac. |
| Poul 1 Imp. = 1561. 14.66                    |
|                                              |

Ph: 719.785.0790 Fax: 719.785.0799

Innovative Design....Classic Results

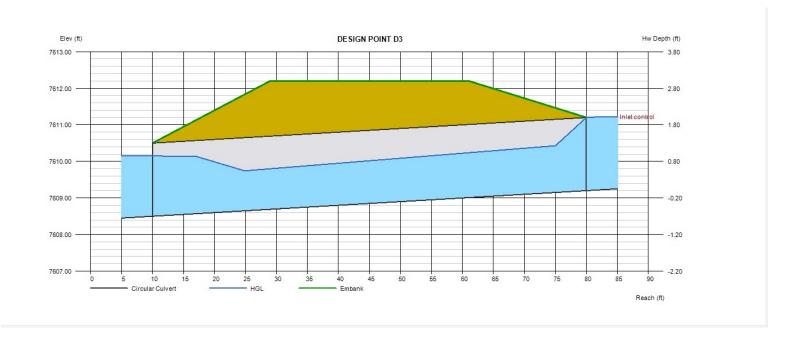




619 N. Cascade Avenue, Suite 200 Colorado Springs, CO 80903

| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Redfail Runch |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | ☐ Note to the File                  |
| The state of the s |               | ☐ Job Information                   |
| Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MA            | <ul> <li>Meeting Minutes</li> </ul> |
| By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Meton         | П                                   |

| [Pourd 2] Imp. calcr.                                                                               |
|-----------------------------------------------------------------------------------------------------|
| Basin Os-2 1.3 ac. total all Fac. lot area. 1.3 x 711 = 76 Imp.                                     |
| Basin Ex-5 and OS-3 ac. total Zioac. + 1.7ac. all sac lot area 7%. Inp.                             |
| Busin G 13.2 ac. Lotal  0.30 ac. arphalt, 12.9 ac. 5ac. lofs  0.3 x 1000 t 12.9 x 7% / 13.2 = 9.1%  |
| Busin H 11.5 ac. total  0.50 ac. asphalt , 11.0 ac. 5ac. lots  0.50 x 109% + 11.0 x 7% / 11.5 = 11% |
| Total Busin ac = 29.7 ac.                                                                           |
| 79.7 ac.  Pond Z Imp. = 9.5%                                                                        |


Ph: 719.785.0790 Fax: 719.785.0799

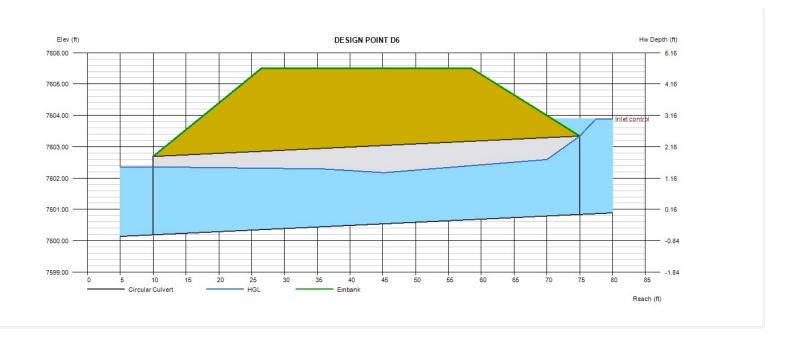
Innovative Design....Classic Results

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

#### **DESIGN POINT D3**

| Invert Elev Dn (ft) | = 7608.50                           | Calculations        |                 |
|---------------------|-------------------------------------|---------------------|-----------------|
| Pipe Length (ft)    | = 70.00                             | Qmin (cfs)          | = 0.00          |
| Slope (%)           | = 1.00                              | Qmax (cfs)          | = 13.00         |
| Invert Elev Up (ft) | = 7609.20                           | Tailwater Elev (ft) | = (dc+D)/2      |
| Rise (in)           | = 24.0                              |                     |                 |
| Shape               | = Circular                          | Highlighted         |                 |
| Span (in)           | = 24.0                              | Qtotal (cfs)        | = 13.00         |
| No. Barrels         | = 1                                 | Qpipe (cfs)         | = 13.00         |
| n-Value             | = 0.013                             | Qovertop (cfs)      | = 0.00          |
| Culvert Type        | <ul><li>Circular Concrete</li></ul> | Veloc Dn (ft/s)     | = 4.69          |
| Culvert Entrance    | = Square edge w/headwall (C)        | Veloc Up (ft/s)     | = 6.03          |
| Coeff. K,M,c,Y,k    | = 0.0098, 2, 0.0398, 0.67, 0.5      | HGL Dn (ft)         | = 7610.15       |
|                     |                                     | HGL Up (ft)         | = 7610.50       |
| Embankment          |                                     | Hw Elev (ft)        | = 7611.22       |
| Top Elevation (ft)  | = 7612.20                           | Hw/D (ft)           | = 1.01          |
| Top Width (ft)      | = 32.00                             | Flow Regime         | = Inlet Control |
| Crest Width (ft)    | = 50.00                             |                     |                 |
|                     |                                     |                     |                 |

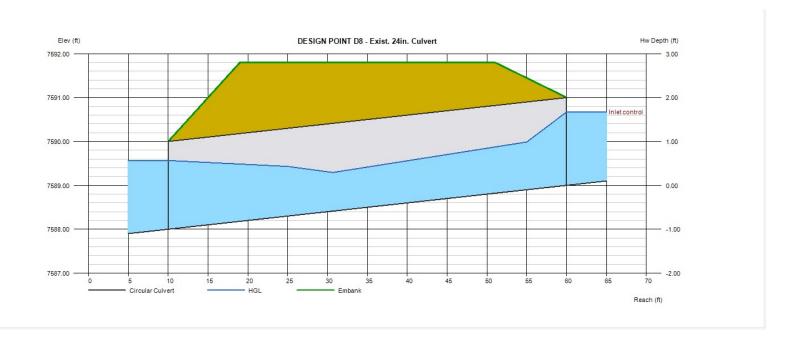



### **Culvert Report**

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

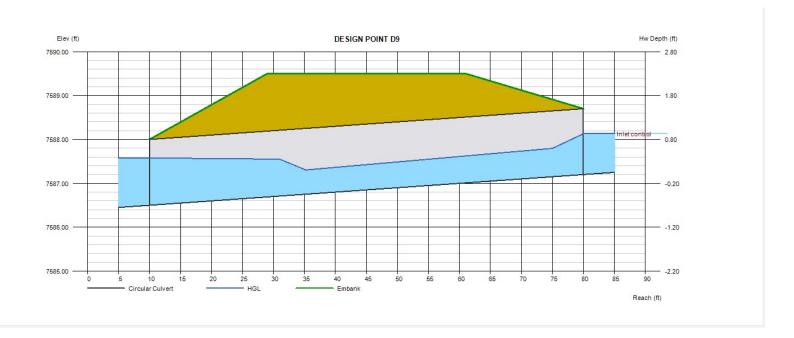
Wednesday, Nov 14 2018

#### **DESIGN POINT D6**


| Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) | = 7600.19<br>= 65.00<br>= 1.00<br>= 7600.84<br>= 30.0 | Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) | = 0.00<br>= 29.00<br>= (dc+D)/2 |
|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------|
| Shape                                                                        | = Circular                                            | Highlighted                                            |                                 |
| Span (in)                                                                    | = 30.0                                                | Qtotal (cfs)                                           | = 29.00                         |
| No. Barrels                                                                  | = 1                                                   | Qpipe (cfs)                                            | = 29.00                         |
| n-Value                                                                      | = 0.013                                               | Qovertop (cfs)                                         | = 0.00                          |
| Culvert Type                                                                 | <ul><li>Circular Concrete</li></ul>                   | Veloc Dn (ft/s)                                        | = 6.41                          |
| Culvert Entrance                                                             | <ul><li>Square edge w/headwall (C)</li></ul>          | Veloc Up (ft/s)                                        | = 7.51                          |
| Coeff. K,M,c,Y,k                                                             | = 0.0098, 2, 0.0398, 0.67, 0.5                        | HGL Dn (ft)                                            | = 7602.36                       |
|                                                                              |                                                       | HGL Up (ft)                                            | = 7602.67                       |
| Embankment                                                                   |                                                       | Hw Elev (ft)                                           | = 7603.89                       |
| Top Elevation (ft)                                                           | = 7605.50                                             | Hw/D (ft)                                              | = 1.22                          |
| Top Width (ft)                                                               | = 32.00                                               | Flow Regime                                            | = Inlet Control                 |
| Crest Width (ft)                                                             | = 50.00                                               | -                                                      |                                 |



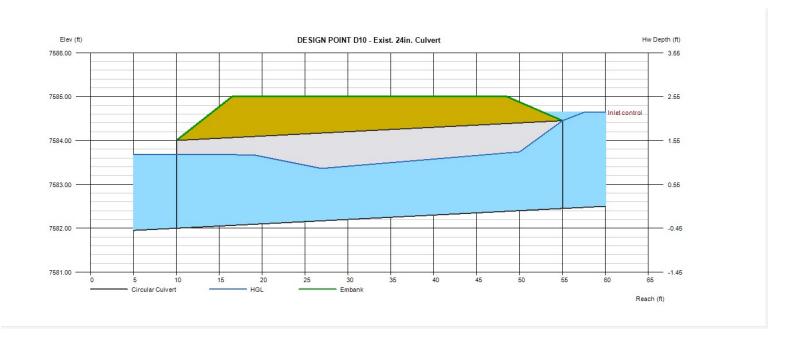
Wednesday, Nov 14 2018


## **DESIGN POINT D8 - Exist. 24in. Culvert**

| Invert Elev Dn (ft) | = 7588.00                      | Calculations        |                 |
|---------------------|--------------------------------|---------------------|-----------------|
| Pipe Length (ft)    | = 50.00                        | Qmin (cfs)          | = 0.00          |
| Slope (%)           | = 2.00                         | Qmax (cfs)          | = 10.00         |
| Invert Elev Up (ft) | = 7589.00                      | Tailwater Elev (ft) | = (dc+D)/2      |
| Rise (in)           | = 24.0                         |                     |                 |
| Shape               | = Circular                     | Highlighted         |                 |
| Span (in)           | = 24.0                         | Qtotal (cfs)        | = 10.00         |
| No. Barrels         | = 1                            | Qpipe (cfs)         | = 10.00         |
| n-Value             | = 0.013                        | Qovertop (cfs)      | = 0.00          |
| Culvert Type        | = Circular Concrete            | Veloc Dn (ft/s)     | = 3.79          |
| Culvert Entrance    | = Square edge w/headwall (C)   | Veloc Up (ft/s)     | = 5.46          |
| Coeff. K,M,c,Y,k    | = 0.0098, 2, 0.0398, 0.67, 0.5 | HGL Dn (ft)         | = 7589.57       |
|                     |                                | HGL Up (ft)         | = 7590.13       |
| Embankment          |                                | Hw Elev (ft)        | = 7590.67       |
| Top Elevation (ft)  | = 7591.80                      | Hw/D (ft)           | = 0.84          |
| Top Width (ft)      | = 32.00                        | Flow Regime         | = Inlet Control |
| Crest Width (ft)    | = 50.00                        | -                   |                 |
|                     |                                |                     |                 |



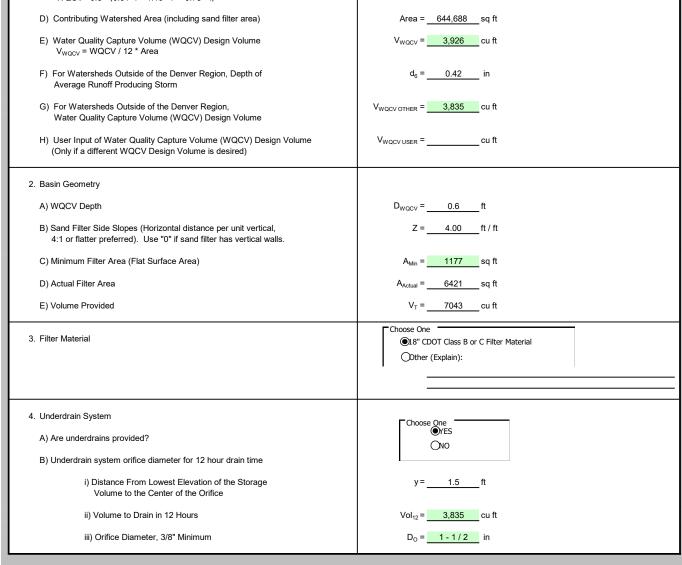
## **DESIGN POINT D9**


| Invert Elev Dn (ft) | = 7586.50                                    | Calculations        |                 |
|---------------------|----------------------------------------------|---------------------|-----------------|
| Pipe Length (ft)    | = 70.00                                      | Qmin (cfs)          | = 0.00          |
| Slope (%)           | = 1.00                                       | Qmax (cfs)          | = 3.00          |
| Invert Elev Up (ft) | = 7587.20                                    | Tailwater Elev (ft) | = (dc+D)/2      |
| Rise (in)           | = 18.0                                       |                     |                 |
| Shape               | = Circular                                   | Highlighted         |                 |
| Span (in)           | = 18.0                                       | Qtotal (cfs)        | = 3.00          |
| No. Barrels         | = 1                                          | Qpipe (cfs)         | = 3.00          |
| n-Value             | = 0.013                                      | Qovertop (cfs)      | = 0.00          |
| Culvert Type        | <ul><li>Circular Concrete</li></ul>          | Veloc Dn (ft/s)     | = 2.20          |
| Culvert Entrance    | <ul><li>Square edge w/headwall (C)</li></ul> | Veloc Up (ft/s)     | = 4.02          |
| Coeff. K,M,c,Y,k    | = 0.0098, 2, 0.0398, 0.67, 0.5               | HGL Dn (ft)         | = 7587.58       |
|                     |                                              | HGL Up (ft)         | = 7587.86       |
| Embankment          |                                              | Hw Elev (ft)        | = 7588.13       |
| Top Elevation (ft)  | = 7589.50                                    | Hw/D (ft)           | = 0.62          |
| Top Width (ft)      | = 32.00                                      | Flow Regime         | = Inlet Control |
| Crest Width (ft)    | = 50.00                                      |                     |                 |
|                     |                                              |                     |                 |



Wednesday, Nov 14 2018

## **DESIGN POINT D10 - Exist. 24in. Culvert**


| Invert Elev Dn (ft) | = 7582.00                           | Calculations        |                 |
|---------------------|-------------------------------------|---------------------|-----------------|
| Pipe Length (ft)    | = 45.00                             | Qmin (cfs)          | = 0.00          |
| Slope (%)           | = 1.00                              | Qmax (cfs)          | = 29.00         |
| Invert Elev Up (ft) | = 7582.45                           | Tailwater Elev (ft) | = (dc+D)/2      |
| Rise (in)           | = 24.0                              |                     |                 |
| Shape               | = Circular                          | Highlighted         |                 |
| Span (in)           | = 24.0                              | Qtotal (cfs)        | = 29.00         |
| No. Barrels         | = 2                                 | Qpipe (cfs)         | = 29.00         |
| n-Value             | = 0.013                             | Qovertop (cfs)      | = 0.00          |
| Culvert Type        | <ul><li>Circular Concrete</li></ul> | Veloc Dn (ft/s)     | = 5.13          |
| Culvert Entrance    | = Square edge w/headwall (C)        | Veloc Up (ft/s)     | = 6.32          |
| Coeff. K,M,c,Y,k    | = 0.0098, 2, 0.0398, 0.67, 0.5      | HGL Dn (ft)         | = 7583.69       |
|                     |                                     | HGL Up (ft)         | = 7583.82       |
| Embankment          |                                     | Hw Elev (ft)        | = 7584.64       |
| Top Elevation (ft)  | = 7585.00                           | Hw/D (ft)           | = 1.09          |
| Top Width (ft)      | = 32.00                             | Flow Regime         | = Inlet Control |
| Crest Width (ft)    | = 50.00                             |                     |                 |
|                     |                                     |                     |                 |



## **BMP FACILITY DESIGN CALCULATIONS**



#### Design Procedure Form: Sand Filter (SF) UD-BMP (Version 3.06, November 2016) Sheet 1 of 2 Marc A. Whorton, P.E. Designer: Classic Consulting Company: November 14, 2018 Date: Redtail Ranch Filing No. 1 (Pond 1) Project: Black Forest, CO Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, $\rm I_a$ I<sub>a</sub> = \_\_\_\_\_14.6\_\_\_\_ % (100% if all paved and roofed areas upstream of sand filter) i = <u>0.1</u>46 B) Tributary Area's Imperviousness Ratio (i = I<sub>a</sub>/100) C) Water Quality Capture Volume (WQCV) Based on 12-hour Drain Time WQCV = 0.07 watershed inches WQCV= $0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$ D) Contributing Watershed Area (including sand filter area) Area = 644,688 sq ft E) Water Quality Capture Volume (WQCV) Design Volume V<sub>WQCV</sub> = 3,926 cu ft V<sub>WQCV</sub> = WQCV / 12 \* Area F) For Watersheds Outside of the Denver Region, Depth of $d_6 = ____ 0.42 ___ in$ Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, V<sub>WQCV OTHER</sub> = 3,835 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume $V_{\text{WQCV USER}} = \underline{\hspace{1cm}} \text{cu ft}$ (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth $D_{WQCV} = \underline{0.6}$ ft B) Sand Filter Side Slopes (Horizontal distance per unit vertical. Z = 4.00 ft / ft 4:1 or flatter preferred). Use "0" if sand filter has vertical walls. A<sub>Min</sub> = 1177 sq ft C) Minimum Filter Area (Flat Surface Area) D) Actual Filter Area A<sub>Actual</sub> = \_\_\_\_6421\_\_\_sq ft



|           | Design Procedure For                                                                                                                    | m: Sand Filter (SF)                                               |                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|
| Designer: | Marc A. Whorton, P.E.                                                                                                                   |                                                                   | Sheet 2 of 2               |
| Company:  | Classic Consulting                                                                                                                      |                                                                   |                            |
| Date:     | November 14, 2018                                                                                                                       |                                                                   |                            |
| Project:  | Redtail Ranch Filing No. 1 (Pond 1)                                                                                                     |                                                                   |                            |
| Location: | Black Forest, CO                                                                                                                        |                                                                   |                            |
| A) Is an  | able Geomembrane Liner and Geotextile Separator Fabric mpermeable liner provided due to proximity actures or groundwater contamination? | Choose One  OrES  NO                                              |                            |
|           | let Works ibe the type of energy dissipation at inlet points and means of ying flows in excess of the WQCV through the outlet           | Rip-Rap at inlet points  Concrete Box Structure for detention and | I release of 100 yr. flows |
| Notes:    |                                                                                                                                         |                                                                   |                            |

## Design Procedure Form: Sand Filter (SF)

UD-BMP (Version 3.06, November 2016)

Sheet 1 of 2

Designer: Marc A. Whorton, P.E.

Company: Classic Consulting

Company: Classic Consulting
Date: November 14, 2018

Project: Redtail Ranch Filing No. 1 (Pond 2)

Location: Black Forest, CO

- 1. Basin Storage Volume
  - A) Effective Imperviousness of Tributary Area, I<sub>a</sub> (100% if all paved and roofed areas upstream of sand filter)
  - B) Tributary Area's Imperviousness Ratio (i = I<sub>a</sub>/100)
  - C) Water Quality Capture Volume (WQCV) Based on 12-hour Drain Time WQCV= 0.8 \* (0.91\*  $i^3$  1.19 \*  $i^2$  + 0.78 \* i)
  - D) Contributing Watershed Area (including sand filter area)
  - E) Water Quality Capture Volume (WQCV) Design Volume V<sub>WQCV</sub> = WQCV / 12 \* Area
  - F) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm
  - G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume
  - H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired)

- I<sub>a</sub> = \_\_\_\_\_ %
- i = 0.095
- WQCV = 0.05 watershed inches
- Area = 1,245,816 sq ft
- V<sub>WQCV</sub> = 5,327 cu ft
  - $d_6 = ____ 0.42 ____ in$
- V<sub>WQCV OTHER</sub> = 5,203 cu ft
- V<sub>WQCV USER</sub> = \_\_\_\_\_ cu ft

- 2. Basin Geometry
  - A) WQCV Depth
  - B) Sand Filter Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred). Use "0" if sand filter has vertical walls.
  - C) Minimum Filter Area (Flat Surface Area)
  - D) Actual Filter Area
  - E) Volume Provided

- $D_{WQCV} = \underline{0.6}$  ft
  - Z = 4.00 ft / ft
  - A<sub>Min</sub> = 1479 sq ft
- A<sub>Actual</sub> = \_\_\_\_\_\_ sq ft
  - V<sub>T</sub> = <u>5410</u> cu ft

3. Filter Material

Choose One

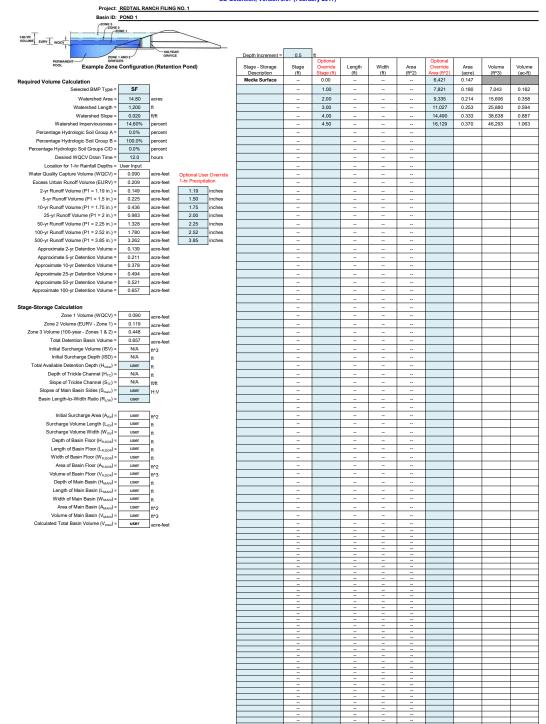
①18" CDOT Class B or C Filter Material

Other (Explain):

4. Underdrain System

- A) Are underdrains provided?
- B) Underdrain system orifice diameter for 12 hour drain time
  - i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice
  - ii) Volume to Drain in 12 Hours
  - iii) Orifice Diameter, 3/8" Minimum

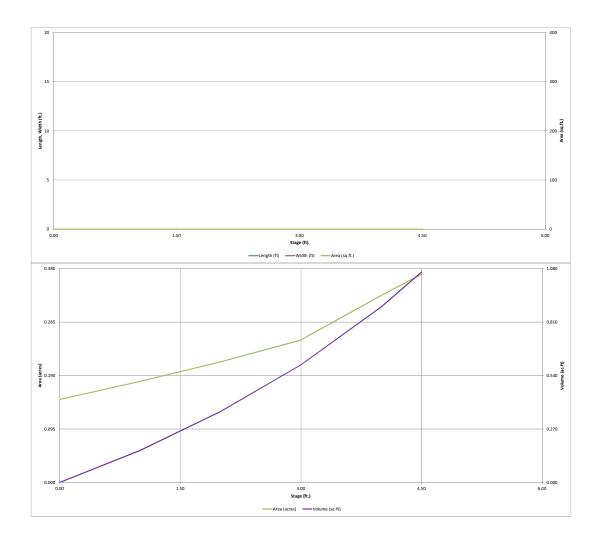
- Choose One


  YES

  NO
- y = \_\_\_\_\_ft
- Vol<sub>12</sub> = 5,203 cu ft
- $D_0 = 1 3/4$  in

|                 | Design Procedure F                                                                                                                       | Form: Sand Filter (SF)                |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Designer:       | Marc A. Whorton, P.E.                                                                                                                    | Sheet 2 of 2                          |  |
| Company:        | Classic Consulting                                                                                                                       |                                       |  |
| Date:           | November 14, 2018                                                                                                                        |                                       |  |
| Project:        | Redtail Ranch Filing No. 1 (Pond 2)                                                                                                      |                                       |  |
| Location:       | Black Forest, CO                                                                                                                         |                                       |  |
| A) Is an        | able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination? | Choose One  OrES  NO                  |  |
| 6-7. Inlet / Ou | tlet Works                                                                                                                               | Rip-Rap at Inflow                     |  |
|                 | ibe the type of energy dissipation at inlet points and means of<br>eying flows in excess of the WQCV through the outlet                  | Concrete Box Outlet for 100 Yr. flows |  |
| Notes:          |                                                                                                                                          | I                                     |  |
|                 |                                                                                                                                          |                                       |  |
|                 |                                                                                                                                          |                                       |  |
|                 |                                                                                                                                          |                                       |  |

#### **DETENTION BASIN STAGE-STORAGE TABLE BUILDER**

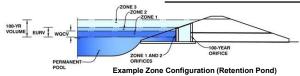

UD-Detention, Version 3.07 (February 2017)



UD-Detertion\_v3.07 - POND 1.xism, Basin 11/15/2018, 8:29 AM

### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)




UD-Debenion\_v3.07 - POND 1.xism, Basin 11/15/2018, 8:29 AM

UD-Detention, Version 3.07 (February 2017)



Basin ID: POND 1



|                  | Stage (ft) | Zone Volume (ac-ft) | Outlet Type          |
|------------------|------------|---------------------|----------------------|
| Zone 1 (WQCV)    | 0.58       | 0.090               | Filtration Media     |
| Zone 2 (EURV)    | 1.25       | 0.119               | Orifice Plate        |
| one 3 (100-year) | 3.24       | 0.448               | Weir&Pipe (Restrict) |
| · ·              |            | 0.657               | Total                |

#### User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) 1.50 Underdrain Orifice Diameter = 1.64 inches

| Calculate                     | ed Parameters for Un | derdrain        |
|-------------------------------|----------------------|-----------------|
| Underdrain Orifice Area =     | 0.0                  | ft <sup>2</sup> |
| Underdrain Orifice Centroid = | 0.07                 | feet            |

#### User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

| Invert of Lowest Orifice =                 | 0.58 | ft (relative to basin bottom at Stage = 0 ft) |
|--------------------------------------------|------|-----------------------------------------------|
| Depth at top of Zone using Orifice Plate = | 2.25 | ft (relative to basin bottom at Stage = 0 ft) |
| Orifice Plate: Orifice Vertical Spacing =  | 6.68 | inches                                        |
| Orifice Plate: Orifice Area per Row =      | 1.80 | sq. inches (diameter = 1-1/2 inches)          |

| Calculated Parameters for Plate |           |                 |  |  |  |  |
|---------------------------------|-----------|-----------------|--|--|--|--|
| NQ Orifice Area per Row =       | 1.250E-02 | ft <sup>2</sup> |  |  |  |  |
| Elliptical Half-Width =         | N/A       | feet            |  |  |  |  |
| Elliptical Slot Centroid =      | N/A       | feet            |  |  |  |  |
| Elliptical Slot Area =          | N/A       | ft <sup>2</sup> |  |  |  |  |
|                                 |           |                 |  |  |  |  |

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|                                | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Stage of Orifice Centroid (ft) | 0.58             | 1.14             | 1.69             |                  |                  |                  |                  |                  |
| Orifice Area (sq. inches)      | 1.80             | 1.80             | 1.80             |                  |                  |                  |                  |                  |

|                                | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Stage of Orifice Centroid (ft) |                  |                   |                   |                   |                   |                   |                   |                   |
| Orifice Area (sq. inches)      |                  |                   |                   |                   |                   |                   |                   |                   |

#### User Input: Vertical Orifice (Circular or Rectangular)

|                                               | (            |              |                                               |  |  |  |
|-----------------------------------------------|--------------|--------------|-----------------------------------------------|--|--|--|
|                                               | Not Selected | Not Selected |                                               |  |  |  |
| Invert of Vertical Orifice =                  | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |  |  |  |
| Depth at top of Zone using Vertical Orifice = | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |  |  |  |
| Vertical Orifice Diameter =                   | N/A          | N/A          | inches                                        |  |  |  |

| Calculated Parameters for Vertical Orifice |     |     |                 |  |  |  |  |  |
|--------------------------------------------|-----|-----|-----------------|--|--|--|--|--|
| Not Selected Not Selected                  |     |     |                 |  |  |  |  |  |
| Vertical Orifice Area =                    | N/A | N/A | ft <sup>2</sup> |  |  |  |  |  |
| Vertical Orifice Centroid =                | N/A | N/A | feet            |  |  |  |  |  |

#### User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

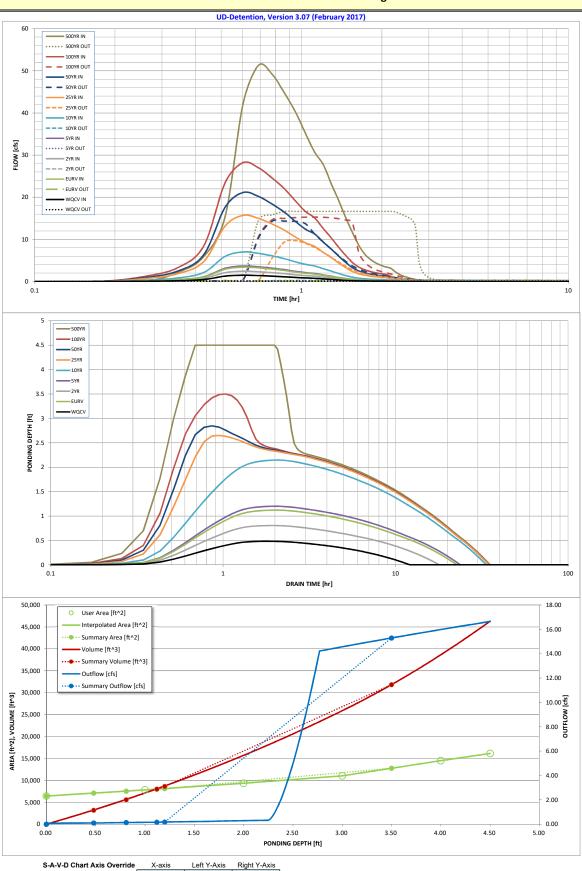
|                                       | Zone 3 Weir | Not Selected |                                               |
|---------------------------------------|-------------|--------------|-----------------------------------------------|
| Overflow Weir Front Edge Height, Ho = | 2.25        | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Overflow Weir Front Edge Length =     | 4.00        | N/A          | feet                                          |
| Overflow Weir Slope =                 | 0.00        | N/A          | H:V (enter zero for flat grate)               |
| Horiz. Length of Weir Sides =         | 4.00        | N/A          | feet                                          |
| Overflow Grate Open Area % =          | 75%         | N/A          | %, grate open area/total area                 |
| Debris Clogging % =                   | 50%         | N/A          | %                                             |

| Calculated                              | _           |              |                 |
|-----------------------------------------|-------------|--------------|-----------------|
|                                         | Zone 3 Weir | Not Selected |                 |
| Height of Grate Upper Edge, $H_t$ =     | 2.25        | N/A          | feet            |
| Over Flow Weir Slope Length =           | 4.00        | N/A          | feet            |
| Grate Open Area / 100-yr Orifice Area = | 8.78        | N/A          | should be ≥ 4   |
| Overflow Grate Open Area w/o Debris =   | 12.00       | N/A          | ft <sup>2</sup> |
| Overflow Grate Open Area w/ Debris =    | 6.00        | N/A          | ft²             |
|                                         |             |              |                 |

### User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| out outer the my flow heatered flate (enterior of heater |                   |              |                                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|--------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Restrictor | Not Selected |                                                  |  |  |  |  |  |  |  |
| Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.50              | N/A          | ft (distance below basin bottom at Stage = 0 ft) |  |  |  |  |  |  |  |
| Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.00             | N/A          | inches                                           |  |  |  |  |  |  |  |
| Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.00             |              | inches Half-Centr                                |  |  |  |  |  |  |  |

|                  | Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate |                   |              |                 |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------|-------------------|--------------|-----------------|--|--|--|--|--|--|
|                  |                                                                 | Zone 3 Restrictor | Not Selected |                 |  |  |  |  |  |  |
| tage = 0 ft)     | Outlet Orifice Area =                                           | 1.37              | N/A          | ft <sup>2</sup> |  |  |  |  |  |  |
|                  | Outlet Orifice Centroid =                                       | 0.60              | N/A          | feet            |  |  |  |  |  |  |
| Half-Central Ang | le of Restrictor Plate on Pipe =                                | 2.03              | N/A          | radiar          |  |  |  |  |  |  |


#### User Input: Emergency Spillway (Rectangular or Trapezoidal)

| Spillway Invert Stage=              | 3.50  | ft (relative to basin bottom at Stage = 0 ft) |
|-------------------------------------|-------|-----------------------------------------------|
| Spillway Crest Length =             | 10.00 | feet                                          |
| Spillway End Slopes =               | 3.00  | H:V                                           |
| Freeboard above Max Water Surface = |       | feet                                          |

| Calcula                          | ted Parameters for S | pillway |
|----------------------------------|----------------------|---------|
| Spillway Design Flow Depth=      | 0.96                 | feet    |
| Stage at Top of Freeboard =      | 4.46                 | feet    |
| Basin Area at Top of Freeboard = | 0.37                 | acres   |

#### Routed Hydrograph Results

| Design Storm Return Period =                  | WQCV             | EURV  | 2 Year | 5 Year | 10 Year | 25 Year          | 50 Year        | 100 Year       | 500 Year |
|-----------------------------------------------|------------------|-------|--------|--------|---------|------------------|----------------|----------------|----------|
| One-Hour Rainfall Depth (in) =                | 0.53             | 1.07  | 1.19   | 1.50   | 1.75    | 2.00             | 2.25           | 2.52           | 3.85     |
| Calculated Runoff Volume (acre-ft) =          | 0.090            | 0.209 | 0.149  | 0.225  | 0.436   | 0.983            | 1.328          | 1.780          | 3.262    |
| OPTIONAL Override Runoff Volume (acre-ft) =   |                  |       |        |        |         |                  |                |                |          |
| Inflow Hydrograph Volume (acre-ft) =          | 0.090            | 0.209 | 0.149  | 0.225  | 0.435   | 0.981            | 1.326          | 1.777          | 3.259    |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00             | 0.00  | 0.01   | 0.02   | 0.19    | 0.64             | 0.88           | 1.19           | 2.16     |
| Predevelopment Peak Q (cfs) =                 | 0.0              | 0.0   | 0.2    | 0.295  | 2.8     | 9.4              | 13.1           | 17.6           | 31.9     |
| Peak Inflow Q (cfs) =                         | 1.5              | 3.4   | 2.4    | 3.7    | 7.0     | 15.7             | 21.1           | 28.2           | 51.3     |
| Peak Outflow Q (cfs) =                        | 0.1              | 0.2   | 0.1    | 0.177  | 0.3     | 9.7              | 14.3           | 15.3           | 16.6     |
| Ratio Peak Outflow to Predevelopment Q =      | N/A              | N/A   | N/A    | 0.6    | 0.1     | 1.0              | 1.1            | 0.9            | 0.5      |
| Structure Controlling Flow =                  | Filtration Media | Plate | Plate  | Plate  | Plate   | Overflow Grate 1 | Outlet Plate 1 | Outlet Plate 1 | N/A      |
| Max Velocity through Grate 1 (fps) =          | N/A              | N/A   | N/A    | N/A    | N/A     | 0.8              | 1.2            | 1.2            | 1.3      |
| Max Velocity through Grate 2 (fps) =          | N/A              | N/A   | N/A    | N/A    | N/A     | N/A              | N/A            | N/A            | N/A      |
| Time to Drain 97% of Inflow Volume (hours) =  | 12               | 22    | 17     | 23     | 32      | 31               | 30             | 28             | 23       |
| Time to Drain 99% of Inflow Volume (hours) =  | 12               | 22    | 18     | 23     | 33      | 33               | 33             | 33             | 31       |
| Maximum Ponding Depth (ft) =                  | 0.48             | 1.12  | 0.81   | 1.20   | 2.15    | 2.65             | 2.85           | 3.50           | 4.50     |
| Area at Maximum Ponding Depth (acres) =       | 0.16             | 0.18  | 0.17   | 0.19   | 0.22    | 0.24             | 0.25           | 0.29           | 0.37     |
| Maximum Volume Stored (acre-ft) =             | 0.074            | 0.185 | 0.128  | 0.200  | 0.391   | 0.506            | 0.554          | 0.731          | 1.063    |



minimum bound maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

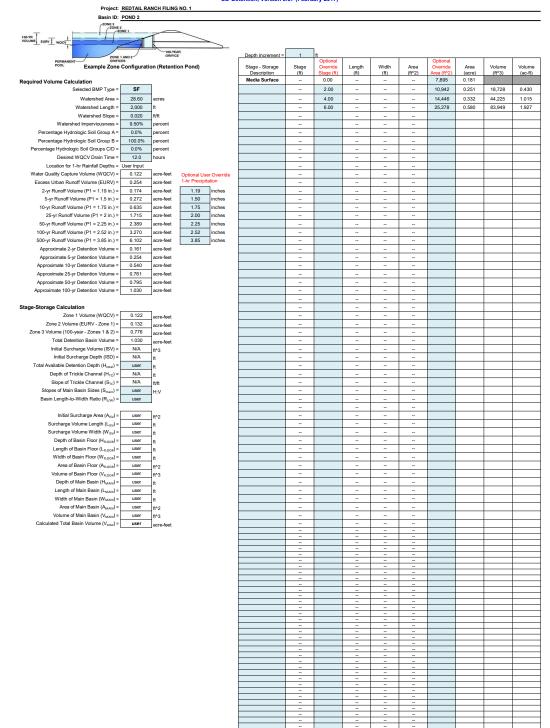
UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

| Time Interval   TiME   WQCV [cfs]   EURV [cfs]   2 Year [cfs]   5 Year [cfs]   10 Year [cfs]   50 Year [cfs]   500 Policy   50 |               |         |            |            |              |              |               |               | ed in a separate |                |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------------|------------|--------------|--------------|---------------|---------------|------------------|----------------|----------------|
| \$17 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | SOURCE  | WORKBOOK   | WORKBOOK   | WORKBOOK     | WORKBOOK     | WORKBOOK      | WORKBOOK      | WORKBOOK         | WORKBOOK       | WORKBOOK       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time Interval | TIME    | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs]    | 100 Year [cfs] | 500 Year [cfs] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.17 min      | 0:00:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| Constant   0.15-31   0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 0:05:10 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 0.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hydrograph    | 0:10:20 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 0.1551   0.47   1.66   0.76   1.14   2.16   4.78   6.41   8.52   13.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Constant      |         | 0.07       | 0.15       | 0.11         | 0.17         | 0.31          | 0.69          | 0.92             | 1.22           | 2.16           |
| 0.31-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.966         | 0:20:41 | 0.18       | 0.41       | 0.30         | 0.44         | 0.84          | 1.86          | 2.50             | 3.32           | 5.97           |
| 0.36-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         | 0.47       |            | 0.76         | 1.14         |               |               | 6.41             | 8.52           | 15.32          |
| 04122 141 334 231 336 688 1499 2019 2730 622 04622 122 294 294 137 688 1499 12019 2730 622 04622 131 261 186 282 522 1221 11647 2225 633 05652 086 224 159 144 47 1657 1472 1225 633 10020 084 196 139 211 447 1657 1429 1315 837 10202 084 177 126 139 211 447 920 1124 1644 1686 190 110713 087 177 126 139 211 447 920 1124 1644 1686 190 110713 087 177 126 139 189 189 189 1126 1127 127 127 1127 1127 1128 190 190 190 1127 1127 1128 190 190 190 1127 127 127 128 191 599 189 189 189 190 190 190 1127 11223 061 144 100 156 308 601 9.6 1127 223 11233 0.6 1 144 100 156 308 062 079 189 189 189 189 189 189 189 189 189 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |         |            |            |              |              |               |               |                  |                | 42.02          |
| 0.4632         1.28         2.94         2.10         3.17         6.08         13.60         13.88         24.47         4.72           0.514.2         1.13         2.61         1.99         2.44         4.87         19.57         14.29         19.15         83.21           1.02.02         0.96         1.24         1.99         2.41         4.87         19.57         14.29         19.15         83.21           1.02.02         0.94         1.96         1.91         3.67         14.24         16.64         36.69           1.07.13         0.68         1.44         1.02         1.55         3.03         6.91         1.24         1.15         1.25         1.23           1.17.33         0.48         1.17         0.62         0.55         1.88         4.39         5.99         8.11         1.05         1.23           1.17.243         0.36         0.60         0.45         0.70         1.46         2.27         5.66         7.69         1.01         1.01         1.22         1.23         3.23         1.01         1.11         1.12         1.23         3.24         4.53         4.61         1.12         1.23         3.24         4.53         4.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |         |            |            |              |              |               |               |                  |                |                |
| 0.51.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 1.02.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 1:07:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 1:12:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 1:17:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 1.127-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         |            |            |              |              |               |               |                  |                |                |
| 117753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                | 15.16          |
| 1:3304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 1:27:53 |            |            |              |              |               |               |                  |                | 11.66          |
| 1.4324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 1:33:04 | 0.19       | 0.47       | 0.33         | 0.51         | 1.02          | 2.38          |                  | 4.52           | 8.67           |
| 1-483-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1:38:14 | 0.15       | 0.37       | 0.26         | 0.40         | 0.79          | 1.84          | 2.53             | 3.44           | 6.53           |
| 1:53:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         | 0.13       | 0.31       | 0.21         | 0.33         | 0.65          | 1.51          | 2.07             | 2.80           | 5.27           |
| 1.58.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         | 0.11       | 0.26       | 0.18         | 0.28         | 0.55          | 1.28          | 1.75             | 2.37           | 4.44           |
| 2.040.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         |            |            |              |              |               |               |                  |                |                |
| 2.0915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 2:14:25         0.04         0.10         0.07         0.11         0.22         0.50         0.68         0.92         1.71           2:19:35         0.03         0.08         0.05         0.08         0.16         0.37         0.50         0.67         1.26           2:29:56         0.02         0.04         0.03         0.04         0.08         0.19         0.27         0.36         0.88           2:35:06         0.01         0.03         0.02         0.03         0.06         0.14         0.19         0.26         0.49           2:40:16         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.26         0.49           2:40:16         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.36         0.88           2:40:26         0.00         0.01         0.02         0.04         0.10         0.14         0.19         0.36           2:55:37         0.00         0.01         0.00         0.00         0.00         0.01         0.02         0.04         0.09           3:00:57         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 2:19:35         0.03         0.08         0.05         0.08         0.16         0.37         0.50         0.67         1.26           2:24:46         0.02         0.05         0.04         0.08         0.19         0.27         0.37         0.50         0.94           2:25:506         0.01         0.03         0.02         0.03         0.06         0.14         0.19         0.26         0.49           2:45:26         0.01         0.02         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.26         0.49           2:45:26         0.00         0.01         0.01         0.01         0.03         0.07         0.09         0.13         0.25           2:50:37         0.00         0.01         0.00         0.01         0.02         0.04         0.06         0.08         0.16           2:55:47         0.00         0.00         0.00         0.01         0.02         0.04         0.06         0.08         0.16           3:16:28         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |         |            |            |              |              |               |               |                  |                |                |
| 2:24:46         0.02         0.05         0.04         0.06         0.12         0.27         0.37         0.50         0.94           2:79:56         0.02         0.04         0.03         0.04         0.08         0.19         0.27         0.36         0.68           2:35:06         0.01         0.03         0.02         0.03         0.06         0.14         0.19         0.26         0.49           2:40:16         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.36           2:45:26         0.00         0.01         0.01         0.01         0.02         0.04         0.06         0.08         0.18           2:55:47         0.00         0.01         0.00         0.01         0.02         0.03         0.04         0.09           3:06:07         0.00         0.00         0.00         0.00         0.00         0.01         0.02         0.03         0.04         0.09           3:1:17         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |            |            |              |              |               |               |                  |                |                |
| 2.2956   0.02   0.04   0.03   0.04   0.08   0.19   0.27   0.36   0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |         |            |            |              |              |               |               |                  |                |                |
| 2:35:06         0.01         0.03         0.02         0.03         0.06         0.14         0.19         0.26         0.49           2:40:16         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.38           2:45:26         0.00         0.01         0.01         0.01         0.03         0.07         0.09         0.13         0.25           2:50:37         0.00         0.01         0.00         0.01         0.02         0.04         0.06         0.08         0.16           2:55:47         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.02         0.04         0.06         0.04         0.09         3:06:07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |         |            |            |              |              |               |               |                  |                |                |
| 2:40:16         0.01         0.02         0.01         0.02         0.04         0.10         0.14         0.19         0.36           2:45:26         0.00         0.01         0.01         0.01         0.02         0.04         0.06         0.08         0.13         0.25           2:50:37         0.00         0.01         0.00         0.01         0.02         0.04         0.06         0.08         0.15           2:55:47         0.00         0.00         0.00         0.00         0.00         0.01         0.02         0.03         0.04         0.09           3:00:57         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 2.45;26         0.00         0.01         0.01         0.01         0.03         0.07         0.09         0.13         0.25           2:50:37         0.00         0.01         0.00         0.01         0.02         0.03         0.04         0.09           3:00:57         0.00         0.00         0.00         0.00         0.00         0.01         0.02         0.03         0.04         0.09           3:06:07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |            |            |              |              |               |               |                  |                |                |
| 2:50:37         0.00         0.01         0.00         0.01         0.02         0.04         0.06         0.08         0.16           2:55:47         0.00         0.00         0.00         0.00         0.01         0.02         0.04         0.09         0.04         0.09         0.00         0.01         0.01         0.02         0.04         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |         |            |            |              |              |               |               |                  |                |                |
| 2:55:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 2:50:37 |            |            |              |              |               |               |                  |                |                |
| 3:06:07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 2:55:47 |            | 0.00       |              | 0.00         |               | 0.02          |                  |                |                |
| 3:11:17         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3:00:57 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.01          | 0.01             | 0.02           | 0.04           |
| 3:16:28         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3:06:07 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.01           |
| 3:21:38         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 3:11:17 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 3:26:48         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 3:31:58         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 3:37:08         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 3:42:19         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 3:47:29         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 3:52:39         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 3:57:49         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:02:59         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:08:10         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:13:20         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:18:30         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:28:50         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 4:18:30 |            |            |              |              |               |               |                  |                |                |
| 4:34:01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         | 0.00       |            | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             |                | 0.00           |
| 4:39:11         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:44:21         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:49:31         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 4:54:41         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:05:02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 4:54:41 |            |            |              |              |               |               |                  |                |                |
| 5:10:12         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:15:22         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:20:32         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:25:43         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:36:03         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |         |            |            |              |              |               |               |                  |                |                |
| 5:41:13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |            |            |              |              |               |               |                  |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |         |            |            |              |              |               |               |                  |                |                |
| 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |         |            |            |              |              |               |               |                  |                |                |
| 5:51:34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |            |            |              |              |               |               |                  |                |                |
| 5:56:44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |         |            |            |              |              |               |               |                  |                |                |
| 6:01:54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |            |            |              |              |               |               |                  |                |                |
| 6:07:04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |         | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |
| 6:12:14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 6:12:14 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00          | 0.00             | 0.00           | 0.00           |

UD-Detention, Version 3.07 (February 2017)

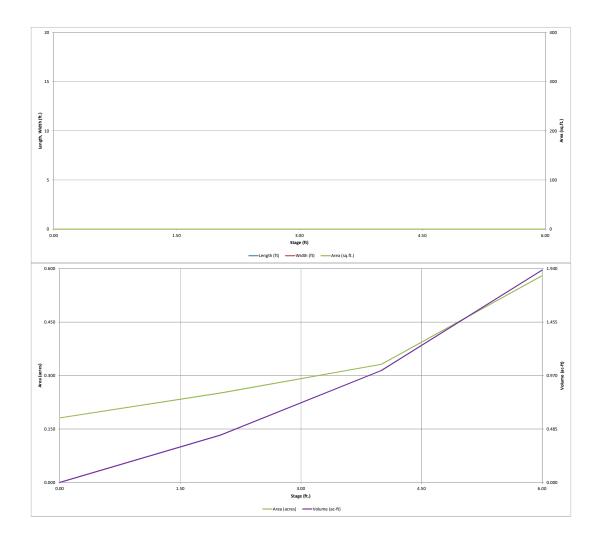
Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

|                                | Chann |        |         | Valuma | Values  | Total   | 1                                                               |
|--------------------------------|-------|--------|---------|--------|---------|---------|-----------------------------------------------------------------|
| Stage - Storage<br>Description | Stage | Area   | Area    | Volume | Volume  | Outflow |                                                                 |
| Description                    | [ft]  | [ft^2] | [acres] | [ft^3] | [ac-ft] | [cfs]   |                                                                 |
| MEDIA SURFACE                  | 0.00  | 6,421  | 0.147   | 0      | 0.000   | 0.00    | For best results, include the                                   |
| WQVC                           | 0.48  | 7,079  | 0.163   | 3,172  | 0.073   | 0.10    | stages of all grade slope                                       |
|                                |       | 7,541  | 0.173   | 5,585  | 0.128   | 0.13    | changes (e.g. ISV and Floor)                                    |
| 2 YR.                          | 0.81  | 7,988  | 0.183   | 7,990  | 0.183   | 0.16    | from the S-A-V table on                                         |
| EURV                           | 1.12  | 8,109  | 0.186   | 8,634  | 0.198   | 0.17    | Sheet 'Basin'.                                                  |
| 5 YR.                          | 1.20  | 12,758 | 0.293   | 31,826 | 0.731   | 15.29   | Alex tool of the terror are affect                              |
| 100 YR.                        | 3.50  | 12,738 | 0.233   | 31,820 | 0.731   | 13.23   | Also include the inverts of all outlets (e.g. vertical orifice, |
|                                |       |        |         |        |         |         | overflow grate, and spillway,                                   |
|                                |       |        |         |        |         |         | where applicable).                                              |
|                                |       |        |         |        |         |         | ,                                                               |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         | 1                                                               |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         |         | †                                                               |
|                                |       |        |         |        |         |         |                                                                 |
|                                |       |        |         |        |         | 1       | •                                                               |

#### **DETENTION BASIN STAGE-STORAGE TABLE BUILDER**

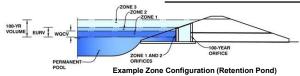

UD-Detention, Version 3.07 (February 2017)



UD-Detertion v3.07 - POND 2.xism, Basin 11/14/2018. 4:23 PM

### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)




UD-Debenion\_v3.07 - POND 2.xism, Basin 11/14/2018, 4:23 PM

UD-Detention, Version 3.07 (February 2017)

#### Project: REDTAIL RANCH FILING NO. 1

Basin ID: POND 2



|                  | Stage (ft) | Zone Volume (ac-ft) | Outlet Type          |
|------------------|------------|---------------------|----------------------|
| Zone 1 (WQCV)    | 0.64       | 0.122               | Filtration Media     |
| Zone 2 (EURV)    | 1.26       | 0.132               | Orifice Plate        |
| one 3 (100-year) | 4.05       | 0.776               | Weir&Pipe (Restrict) |
| · ·              |            | 1.030               | Total                |

#### User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = 1.50 ft (distance below the filtration media surface)
Underdrain Orifice Diameter = 1.92 inches

| Calculate                     | ed Parameters for U | naerar          |
|-------------------------------|---------------------|-----------------|
| Underdrain Orifice Area =     | 0.0                 | ft <sup>2</sup> |
| Underdrain Orifice Centroid = | 0.08                | feet            |

#### User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

| Invert of Lowest Orifice =                 | 0.64 | ft (relative to basin bottom at Stage = 0 ft) |
|--------------------------------------------|------|-----------------------------------------------|
| Depth at top of Zone using Orifice Plate = | 2.50 | ft (relative to basin bottom at Stage = 0 ft) |
| Orifice Plate: Orifice Vertical Spacing =  | 7.44 | inches                                        |
| Orifice Plate: Orifice Area per Row =      | 2.50 | sq. inches (diameter = 1-3/4 inches)          |

| Calcul                     | ated Parameters for | Plate           |
|----------------------------|---------------------|-----------------|
| NQ Orifice Area per Row =  |                     | ft <sup>2</sup> |
| Elliptical Half-Width =    | N/A                 | feet            |
| Elliptical Slot Centroid = | N/A                 | feet            |
| Elliptical Slot Area =     | N/A                 | ft <sup>2</sup> |
|                            |                     |                 |

#### User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| a Total Area of Each Office Row (nambered from lowest to ingliest) |                  |                  |                  |                  |                  |                  |                  |                  |
|--------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                    | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| Stage of Orifice Centroid (ft)                                     | 0.64             | 1.20             | 1.85             |                  |                  |                  |                  |                  |
| Orifice Area (sq. inches)                                          | 2.50             | 2.50             | 2.50             |                  |                  |                  |                  |                  |

|                                | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
|--------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Stage of Orifice Centroid (ft) |                  |                   |                   |                   |                   |                   |                   |                   |
| Orifice Area (sq. inches)      |                  |                   |                   |                   |                   |                   |                   |                   |

#### User Input: Vertical Orifice (Circular or Rectangular)

|                                               |              |              | _                                             |
|-----------------------------------------------|--------------|--------------|-----------------------------------------------|
|                                               | Not Selected | Not Selected |                                               |
| Invert of Vertical Orifice =                  | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Depth at top of Zone using Vertical Orifice = | N/A          | N/A          | ft (relative to basin bottom at Stage = 0 ft) |
| Vertical Orifice Diameter =                   | N/A          | N/A          | inches                                        |

| Calculated Parameters for Vertical Orifice |              |              |                 |  |  |
|--------------------------------------------|--------------|--------------|-----------------|--|--|
|                                            | Not Selected | Not Selected |                 |  |  |
| Vertical Orifice Area =                    | N/A          | N/A          | ft <sup>2</sup> |  |  |
| Vertical Orifice Centroid =                | N/A          | N/A          | feet            |  |  |

#### User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

|                                       | Zone 3 Weir | Not Selected |                                             |
|---------------------------------------|-------------|--------------|---------------------------------------------|
| Overflow Weir Front Edge Height, Ho = | 2.50        | N/A          | ft (relative to basin bottom at Stage = 0 f |
| Overflow Weir Front Edge Length =     | 4.00        | N/A          | feet                                        |
| Overflow Weir Slope =                 | 0.00        | N/A          | H:V (enter zero for flat grate)             |
| Horiz. Length of Weir Sides =         | 4.00        | N/A          | feet                                        |
| Overflow Grate Open Area % =          | 75%         | N/A          | %, grate open area/total area               |
| Debris Clogging % =                   | 50%         | N/A          | %                                           |

| feet            |
|-----------------|
| feet            |
| should be ≥ 4   |
| ft <sup>2</sup> |
| ft <sup>2</sup> |
|                 |

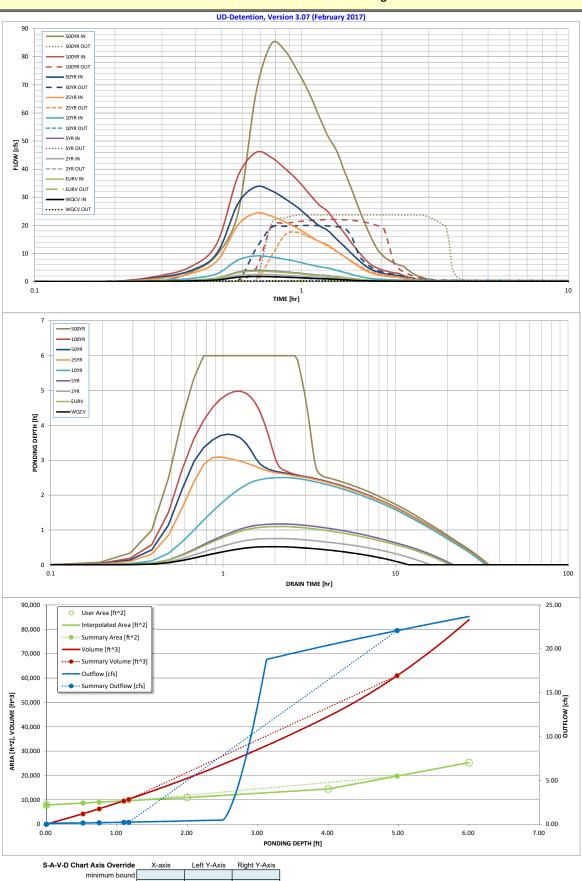
#### User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

|                                             | Zone 3 Restrictor | Not Selected |                                                |
|---------------------------------------------|-------------------|--------------|------------------------------------------------|
| Depth to Invert of Outlet Pipe =            | 2.50              | N/A          | ft (distance below basin bottom at Stage = 0 f |
| Outlet Pipe Diameter =                      | 18.00             | N/A          | inches                                         |
| Restrictor Plate Height Above Pipe Invert = | 18.00             |              | inches Half-Co                                 |

|                | Calculated Parameter            | s for Outlet Pipe w/ | Flow Restriction Pla | te              |
|----------------|---------------------------------|----------------------|----------------------|-----------------|
|                |                                 | Zone 3 Restrictor    | Not Selected         |                 |
| 0 ft)          | Outlet Orifice Area =           | 1.77                 | N/A                  | ft <sup>2</sup> |
|                | Outlet Orifice Centroid =       | 0.75                 | N/A                  | feet            |
| f-Central Angl | e of Restrictor Plate on Pipe = | 3.14                 | N/A                  | radians         |

#### User Input: Emergency Spillway (Rectangular or Trapezoidal)

| oser input. Emergency spinway (nectang | ulai oi ilapezolaai, |                                               |
|----------------------------------------|----------------------|-----------------------------------------------|
| Spillway Invert Stage=                 | 5.00                 | ft (relative to basin bottom at Stage = 0 ft) |
| Spillway Crest Length =                | 18.00                | feet                                          |
| Spillway End Slopes =                  | 3.00                 | H:V                                           |
| Freeboard above Max Water Surface =    |                      | feet                                          |


# Calculated Parameters for Spillwa Spillway Design Flow Depth= Stage at Top of Freeboard = 5.83 feet feet

0.56

acres

Basin Area at Top of Freeboard =

| Routed Hydrograph Results                     |                  |       |        |        |                  |                  |                |                |          |
|-----------------------------------------------|------------------|-------|--------|--------|------------------|------------------|----------------|----------------|----------|
| Design Storm Return Period =                  | WQCV             | EURV  | 2 Year | 5 Year | 10 Year          | 25 Year          | 50 Year        | 100 Year       | 500 Year |
| One-Hour Rainfall Depth (in) =                | 0.53             | 1.07  | 1.19   | 1.50   | 1.75             | 2.00             | 2.25           | 2.52           | 3.85     |
| Calculated Runoff Volume (acre-ft) =          | 0.122            | 0.254 | 0.174  | 0.272  | 0.635            | 1.715            | 2.389          | 3.270          | 6.102    |
| OPTIONAL Override Runoff Volume (acre-ft) =   |                  |       |        |        |                  |                  |                |                |          |
| Inflow Hydrograph Volume (acre-ft) =          | 0.121            | 0.254 | 0.174  | 0.272  | 0.635            | 1.715            | 2.390          | 3.271          | 6.104    |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | 0.00             | 0.00  | 0.01   | 0.02   | 0.16             | 0.56             | 0.77           | 1.05           | 1.90     |
| Predevelopment Peak Q (cfs) =                 | 0.0              | 0.0   | 0.3    | 0.494  | 4.7              | 15.9             | 22.1           | 29.9           | 54.4     |
| Peak Inflow Q (cfs) =                         | 1.8              | 3.7   | 2.5    | 3.9    | 9.1              | 24.3             | 33.7           | 46.0           | 84.7     |
| Peak Outflow Q (cfs) =                        | 0.1              | 0.2   | 0.2    | 0.217  | 0.5              | 17.5             | 19.9           | 22.1           | 23.7     |
| Ratio Peak Outflow to Predevelopment Q =      | N/A              | N/A   | N/A    | 0.4    | 0.1              | 1.1              | 0.9            | 0.7            | 0.4      |
| Structure Controlling Flow =                  | Filtration Media | Plate | Plate  | Plate  | Overflow Grate 1 | Overflow Grate 1 | Outlet Plate 1 | Outlet Plate 1 | N/A      |
| Max Velocity through Grate 1 (fps) =          | N/A              | N/A   | N/A    | N/A    | 0.0              | 1.4              | 1.6            | 1.8            | 1.9      |
| Max Velocity through Grate 2 (fps) =          | N/A              | N/A   | N/A    | N/A    | N/A              | N/A              | N/A            | N/A            | N/A      |
| Time to Drain 97% of Inflow Volume (hours) =  | 12               | 20    | 15     | 21     | 32               | 29               | 27             | 25             | 19       |
| Time to Drain 99% of Inflow Volume (hours) =  | 12               | 21    | 16     | 21     | 33               | 32               | 32             | 31             | 29       |
| Maximum Ponding Depth (ft) =                  | 0.52             | 1.10  | 0.75   | 1.17   | 2.50             | 3.09             | 3.75           | 4.98           | 6.00     |
| Area at Maximum Ponding Depth (acres) =       | 0.20             | 0.22  | 0.21   | 0.22   | 0.27             | 0.30             | 0.32           | 0.45           | 0.58     |
| Maximum Volume Stored (acre-ft) =             | 0.097            | 0.218 | 0.146  | 0.236  | 0.563            | 0.730            | 0.930          | 1.400          | 1.927    |



maximum bound

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|               | The user can o     | verride the calc | ulated inflow hy | drographs from | this workbook v | ith inflow hydro | graphs develop | ed in a separate | program.       |                |
|---------------|--------------------|------------------|------------------|----------------|-----------------|------------------|----------------|------------------|----------------|----------------|
|               | SOURCE             | WORKBOOK         | WORKBOOK         | WORKBOOK       | WORKBOOK        | WORKBOOK         | WORKBOOK       | WORKBOOK         | WORKBOOK       | WORKBOOK       |
| Time Interval | TIME               | WQCV [cfs]       | EURV [cfs]       | 2 Year [cfs]   | 5 Year [cfs]    | 10 Year [cfs]    | 25 Year [cfs]  | 50 Year [cfs]    | 100 Year [cfs] | 500 Year [cfs] |
|               | 0:00:00            |                  |                  |                |                 |                  |                |                  |                |                |
| 5.79 min      |                    | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 0:05:47            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
| Hydrograph    | 0:11:35            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
| Constant      | 0:17:22            | 0.08             | 0.17             | 0.12           | 0.18            | 0.40             | 1.05           | 1.44             | 1.94           | 3.37           |
| 0.864         | 0:23:10            | 0.22             | 0.44             | 0.31           | 0.47            | 1.09             | 2.86           | 3.95             | 5.35           | 9.56           |
|               | 0:28:57            | 0.56             | 1.14             | 0.79           | 1.22            | 2.79             | 7.35           | 10.14            | 13.72          | 24.55          |
|               | 0:34:44            | 1.53             | 3.14             | 2.17           | 3.35            | 7.67             | 20.18          | 27.83            | 37.65          | 67.23          |
|               | 0:40:32            | 1.78             | 3.69             | 2.54           | 3.94            | 9.10             | 24.31          | 33.73            | 45.95          | 84.68          |
|               | 0:46:19            | 1.69             | 3.51             | 2.41           | 3.75            | 8.69             | 23.27          | 32.32            | 44.10          | 82.07          |
|               | 0:52:07            | 1.54             | 3.19             | 2.19           | 3.41            | 7.91             | 21.18          | 29.42            | 40.13          | 74.99          |
|               | 0:57:54            | 1.36             | 2.84             | 1.94           | 3.03            | 7.06             | 19.00          | 26.44            | 36.12          | 67.60          |
|               | 1:03:41            | 1.16             | 2.43             | 1.66           | 2.60            | 6.10             | 16.50          | 23.02            | 31.54          | 59.30          |
|               | 1:09:29            | 1.01             | 2.13             | 1.45           | 2.27            | 5.31             | 14.34          | 20.03            | 27.50          | 51.86          |
|               | 1:15:16            | 0.92             | 1.92             | 1.31           | 2.05            | 4.81             | 13.00          | 18.14            | 24.86          | 46.67          |
|               | 1:21:04            | 0.74             | 1.57             | 1.07           | 1.68            | 3.97             | 10.83          | 15.14            | 20.79          | 39.30          |
|               | 1:26:51            | 0.60             | 1.27             | 0.86           | 1.36            | 3.24             | 8.92           | 12.50            | 17.21          | 32.63          |
|               | 1:32:38            | 0.45             | 0.96             | 0.65           | 1.03            | 2.50             | 6.98           | 9.83             | 13.59          | 26.01          |
|               | 1:38:26            | 0.32             | 0.71             | 0.47           | 0.76            | 1.86             | 5.30           | 7.52             | 10.45          | 20.19          |
|               | 1:44:13            | 0.24             | 0.52             | 0.35           | 0.55            | 1.35             | 3.89           | 5.55             | 7.77           | 15.19          |
|               | 1:50:01            | 0.19             | 0.40             | 0.27           | 0.43            | 1.04             | 2.96           | 4.20             | 5.85           | 11.32          |
|               | 1:55:48            | 0.16             | 0.33             | 0.23           | 0.36            | 0.86             | 2.41           | 3.41             | 4.72           | 9.04           |
|               | 2:01:35            | 0.13             | 0.28             | 0.19           | 0.30            | 0.73             | 2.04           | 2.87             | 3.98           | 7.60           |
|               | 2:07:23            | 0.13             | 0.25             | 0.19           | 0.30            | 0.73             | 1.78           | 2.51             | 3.47           | 6.59           |
|               | 2:13:10            | 0.11             | 0.23             | 0.17           | 0.24            | 0.58             | 1.60           | 2.25             | 3.10           | 5.89           |
|               | 2:18:58            |                  |                  |                |                 |                  |                |                  |                |                |
|               | 2:24:45            | 0.10             | 0.21             | 0.14           | 0.22            | 0.53             | 1.47           | 2.06             | 2.84           | 5.38           |
|               | 2:30:32            | 0.07             | 0.15             | 0.10           | 0.16            | 0.39             | 1.08           | 1.53             | 2.11           | 4.06           |
|               | 2:36:20            | 0.05             | 0.11             | 0.08           | 0.12            | 0.29             | 0.79           | 1.11             | 1.53           | 2.93           |
|               |                    | 0.04             | 0.08             | 0.06           | 0.09            | 0.21             | 0.58           | 0.82             | 1.13           | 2.17           |
|               | 2:42:07            | 0.03             | 0.06             | 0.04           | 0.06            | 0.15             | 0.43           | 0.61             | 0.84           | 1.61           |
|               | 2:47:55            | 0.02             | 0.04             | 0.03           | 0.05            | 0.11             | 0.31           | 0.44             | 0.61           | 1.19           |
|               | 2:53:42            | 0.01             | 0.03             | 0.02           | 0.03            | 0.08             | 0.22           | 0.31             | 0.44           | 0.86           |
|               | 2:59:29            | 0.01             | 0.02             | 0.01           | 0.02            | 0.06             | 0.16           | 0.23             | 0.32           | 0.62           |
|               | 3:05:17            | 0.01             | 0.01             | 0.01           | 0.01            | 0.04             | 0.11           | 0.16             | 0.22           | 0.44           |
|               | 3:11:04            | 0.00             | 0.01             | 0.00           | 0.01            | 0.02             | 0.07           | 0.10             | 0.14           | 0.29           |
|               | 3:16:52            | 0.00             | 0.00             | 0.00           | 0.00            | 0.01             | 0.04           | 0.05             | 0.08           | 0.17           |
|               | 3:22:39            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.01           | 0.02             | 0.04           | 0.08           |
|               | 3:28:26            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.01           | 0.02           |
|               | 3:34:14            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 3:40:01            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 3:45:49            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 3:51:36            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 3:57:23            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:03:11            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:08:58            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:14:46            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:20:33            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:26:20            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:32:08            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:37:55            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:43:43            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:49:30            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 4:55:17            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:01:05            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:06:52            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:12:40            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:18:27            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:24:14            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:30:02            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:35:49            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:41:37            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:47:24            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:53:11            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 5:58:59<br>6:04:46 | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:04:46            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:10:34            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:22:08            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:27:56            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:33:43            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:39:31            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               |                    |                  |                  |                |                 |                  |                |                  |                |                |
|               | 6:45:18            | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |
|               | 6:45:18<br>6:51:05 | 0.00             | 0.00             | 0.00           | 0.00            | 0.00             | 0.00           | 0.00             | 0.00           | 0.00           |

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

|                                | Stage | Area   | Area    | Volume | Volume  | Total   | ו י                                                     |
|--------------------------------|-------|--------|---------|--------|---------|---------|---------------------------------------------------------|
| Stage - Storage<br>Description |       |        |         |        |         | Outflow |                                                         |
| ·                              | [ft]  | [ft^2] | [acres] | [ft^3] | [ac-ft] | [cfs]   |                                                         |
| Media Surface                  | 0.00  | 7,895  | 0.181   | 0      | 0.000   | 0.00    | For best results, include the                           |
| WQCV                           | 0.52  | 8,672  | 0.199   | 4,225  | 0.097   | 0.13    | stages of all grade slope                               |
| 2 YR.                          | 0.75  | 9,022  | 0.207   | 6,259  | 0.144   | 0.17    | changes (e.g. ISV and Floor)<br>from the S-A-V table on |
| EURV                           | 1.10  | 9,556  | 0.219   | 9,511  | 0.218   | 0.21    | Sheet 'Basin'.                                          |
| 5 YR.                          | 1.17  | 9,662  | 0.222   | 10,183 | 0.234   | 0.22    |                                                         |
| 100 YR.                        | 4.98  | 19,754 | 0.453   | 60,983 | 1.400   | 22.07   | Also include the inverts of all                         |
|                                |       |        |         |        |         |         | outlets (e.g. vertical orifice,                         |
|                                |       |        |         |        |         |         | overflow grate, and spillway, where applicable).        |
|                                |       |        |         |        |         |         | where applicable).                                      |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         | •                                                       |
|                                |       |        |         |        |         |         | •                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         | †                                                       |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         | ]                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | +                                                       |
|                                |       |        |         |        |         |         | +                                                       |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         | ]                                                       |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         |                                                         |
|                                |       |        |         |        |         |         | -                                                       |
|                                |       |        |         |        |         |         | +                                                       |
|                                |       |        |         |        |         |         | 1                                                       |
|                                |       |        |         |        |         |         | ]                                                       |
|                                |       |        |         |        |         |         | ]                                                       |
|                                |       |        |         |        |         |         |                                                         |

| Project Summary |                               |
|-----------------|-------------------------------|
| Title           | Redtail Ranch<br>Filing No. 1 |
| Engineer        | MAW                           |
| Company         | CCES                          |
| Date            | 7/2/2018                      |
|                 |                               |
| Notes           | 5 Year                        |

## Table of Contents

|            | Master Network Summary               | 2 |
|------------|--------------------------------------|---|
| CO SPRINGS | I-D-F Table, 5 years                 | 3 |
| Pond 1     |                                      |   |
|            | Elevation-Area Volume Curve, 5 years | 4 |
| Pond 2     |                                      |   |
|            | Elevation-Area Volume Curve, 5 years | 5 |

Subsection: Master Network Summary

## **Catchments Summary**

| Label                                   | Scenario                 | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ac-ft) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-----------------------------------------|--------------------------|----------------------------|---------------------------------|-------------------------|----------------------|
| Basin C                                 | Post-Development 5<br>YR | 5                          | 0.055                           | 0.350                   | 1.70                 |
| Basin K                                 | Post-Development 5<br>YR | 5                          | 0.024                           | 0.300                   | 0.98                 |
| Basins E, D, F                          | Post-Development 5<br>YR | 5                          | 0.211                           | 0.350                   | 7.29                 |
| Basins I, J                             | Post-Development 5<br>YR | 5                          | 0.033                           | 0.250                   | 1.38                 |
| Basins OS-2, EX-5, OS-<br>3, OS-4, G, H | Post-Development 5<br>YR | 5                          | 0.430                           | 0.550                   | 9.47                 |

### **Node Summary**

| Label | Scenario                 | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ac-ft) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-------|--------------------------|----------------------------|---------------------------------|-------------------------|----------------------|
| D10   | Post-Development 5<br>YR | 5                          | 0.297                           | 0.950                   | 2.39                 |
| D5    | Post-Development 5<br>YR | 5                          | 0.166                           | 0.350                   | 1.74                 |

### **Pond Summary**

| Label           | Scenario                     | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ac-ft) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) | Maximum<br>Water<br>Surface<br>Elevation<br>(ft) | Maximum<br>Pond Storage<br>(ac-ft) |
|-----------------|------------------------------|----------------------------|---------------------------------|-------------------------|----------------------|--------------------------------------------------|------------------------------------|
| Pond 1 (IN)     | Post-<br>Development<br>5 YR | 5                          | 0.211                           | 0.350                   | 7.29                 | (N/A)                                            | (N/A)                              |
| Pond 1<br>(OUT) | Post-<br>Development<br>5 YR | 5                          | 0.111                           | 0.700                   | 0.22                 | 7,601.27                                         | 0.208                              |
| Pond 2 (IN)     | Post-<br>Development<br>5 YR | 5                          | 0.430                           | 0.550                   | 9.47                 | (N/A)                                            | (N/A)                              |
| Pond 2<br>(OUT) | Post-<br>Development<br>5 YR | 5                          | 0.240                           | 0.950                   | 2.39                 | 7,596.56                                         | 0.378                              |

Subsection: I-D-F Table Return Event: 5 years
Label: CO SPRINGS Storm Event: CO SPRINGS - 5 Year

### **I-D-F Curve**

| Time    | Intensity |
|---------|-----------|
| (hours) | (in/h)    |
| 0.083   | 5.170     |
| 0.167   | 4.130     |
| 0.250   | 3.520     |
| 0.333   | 3.090     |
| 0.417   | 2.750     |
| 0.500   | 2.480     |
| 0.583   | 2.250     |
| 0.667   | 2.050     |
| 0.750   | 1.870     |
| 0.833   | 1.710     |
| 0.917   | 1.570     |
| 1.000   | 1.440     |

Subsection: Elevation-Area Volume Curve Return Event: 5 years Label: Pond 1 Storm Event: CO SPRINGS - 5 Year

| Elevation<br>(ft) | Planimeter<br>(ft²) | Area<br>(acres) | A1+A2+sqr<br>(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume (Total)<br>(ac-ft) |
|-------------------|---------------------|-----------------|---------------------------------|-------------------|---------------------------|
| 7,600.00          | 0.000               | 0.144           | 0.000                           | 0.000             | 0.000                     |
| 7,601.00          | 0.000               | 0.174           | 0.476                           | 0.159             | 0.159                     |
| 7,602.00          | 0.000               | 0.206           | 0.569                           | 0.190             | 0.349                     |
| 7,603.00          | 0.000               | 0.241           | 0.670                           | 0.223             | 0.572                     |
| 7,604.00          | 0.000               | 0.333           | 0.857                           | 0.286             | 0.858                     |

Subsection: Elevation-Area Volume Curve Return Event: 5 years
Label: Pond 2 Storm Event: CO SPRINGS - 5 Year

| Elevation<br>(ft) | Planimeter<br>(ft²) | Area<br>(acres) | A1+A2+sqr<br>(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume (Total)<br>(ac-ft) |
|-------------------|---------------------|-----------------|---------------------------------|-------------------|---------------------------|
| 7,595.00          | 0.000               | 0.215           | 0.000                           | 0.000             | 0.000                     |
| 7,596.00          | 0.000               | 0.249           | 0.695                           | 0.232             | 0.232                     |
| 7,597.00          | 0.000               | 0.286           | 0.802                           | 0.267             | 0.499                     |
| 7,598.00          | 0.000               | 0.325           | 0.916                           | 0.305             | 0.804                     |
| 7,599.00          | 0.000               | 0.424           | 1.120                           | 0.373             | 1.178                     |
| 7,600.00          | 0.000               | 0.579           | 1.498                           | 0.499             | 1.677                     |

## Index

С

CO SPRINGS (I-D-F Table, 5 years)...3

М

Master Network Summary...2

Р

Pond 1 (Elevation-Area Volume Curve, 5 years)...4

Pond 2 (Elevation-Area Volume Curve, 5 years)...5

| Project Summary |                               |
|-----------------|-------------------------------|
| Title           | Redtail Ranch<br>Filing No. 1 |
| Engineer        | MAW                           |
| Company         | CCES                          |
| Date            | 7/2/2018                      |
|                 |                               |
| Notes           | 100 Year                      |

## Table of Contents

|            | Master Network Summary                 | 2 |
|------------|----------------------------------------|---|
| CO SPRINGS | I-D-F Table, 100 years                 | 3 |
| Pond 1     |                                        |   |
|            | Elevation-Area Volume Curve, 100 years | 4 |
| Pond 2     |                                        |   |
|            | Elevation-Area Volume Curve, 100 years | 5 |

Subsection: Master Network Summary

## **Catchments Summary**

| Label                                   | Scenario                   | Return Hydrograph<br>Event Volume<br>(years) (ac-ft) |       | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-----------------------------------------|----------------------------|------------------------------------------------------|-------|-------------------------|----------------------|
| Basin C                                 | Post-Development<br>100 YR | 100                                                  | 0.303 | 0.350                   | 9.26                 |
| Basin K                                 | Post-Development<br>100 YR | 100                                                  | 0.127 | 0.300                   | 4.61                 |
| Basins E, D, F                          | Post-Development<br>100 YR | 100                                                  | 0.804 | 0.350                   | 27.79                |
| Basins I, J                             | Post-Development<br>100 YR | 100                                                  | 0.099 | 0.250                   | 4.20                 |
| Basins OS-2, EX-5, OS-<br>3, OS-4, G, H | Post-Development<br>100 YR | 100                                                  | 2.064 | 0.550                   | 45.41                |

### **Node Summary**

| Label | Scenario                   | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ac-ft) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) |
|-------|----------------------------|----------------------------|---------------------------------|-------------------------|----------------------|
| D10   | Post-Development<br>100 YR | 100                        | 2.098                           | 0.750                   | 29.07                |
| D5    | Post-Development<br>100 YR | 100                        | 1.003                           | 0.450                   | 24.57                |

### **Pond Summary**

| Label           | Scenario                       | Return<br>Event<br>(years) | Hydrograph<br>Volume<br>(ac-ft) | Time to Peak<br>(hours) | Peak Flow<br>(ft³/s) | Maximum<br>Water<br>Surface<br>Elevation<br>(ft) | Maximum<br>Pond Storage<br>(ac-ft) |
|-----------------|--------------------------------|----------------------------|---------------------------------|-------------------------|----------------------|--------------------------------------------------|------------------------------------|
| Pond 1 (IN)     | Post-<br>Development<br>100 YR | 100                        | 0.804                           | 0.350                   | 27.79                | (N/A)                                            | (N/A)                              |
| Pond 1<br>(OUT) | Post-<br>Development<br>100 YR | 100                        | 0.700                           | 0.500                   | 16.87                | 7,602.51                                         | 0.457                              |
| Pond 2 (IN)     | Post-<br>Development<br>100 YR | 100                        | 2.064                           | 0.550                   | 45.41                | (N/A)                                            | (N/A)                              |
| Pond 2<br>(OUT) | Post-<br>Development<br>100 YR | 100                        | 1.872                           | 0.750                   | 29.07                | 7,598.35                                         | 0.925                              |

Subsection: I-D-F Table Return Event: 100 years Label: CO SPRINGS Storm Event: CO SPRINGS - 100 Year

### **I-D-F Curve**

| Time<br>(hours) | Intensity<br>(in/h) |
|-----------------|---------------------|
| 0.083           | 8.680               |
| 0.167           | 6.930               |
| 0.250           | 5.910               |
| 0.333           | 5.190               |
| 0.417           | 4.620               |
| 0.500           | 4.160               |
| 0.583           | 3.780               |
| 0.667           | 3.440               |
| 0.750           | 3.140               |
| 0.833           | 2.880               |
| 0.917           | 2.640               |
| 1.000           | 2.420               |

Subsection: Elevation-Area Volume Curve Return Event: 100 years Label: Pond 1 Storm Event: CO SPRINGS - 100 Year

| Elevation<br>(ft) | Planimeter<br>(ft²) | Area<br>(acres) | A1+A2+sqr<br>(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume (Total)<br>(ac-ft) |
|-------------------|---------------------|-----------------|---------------------------------|-------------------|---------------------------|
| 7,600.00          | 0.000               | 0.144           | 0.000                           | 0.000             | 0.000                     |
| 7,601.00          | 0.000               | 0.174           | 0.476                           | 0.159             | 0.159                     |
| 7,602.00          | 0.000               | 0.206           | 0.569                           | 0.190             | 0.349                     |
| 7,603.00          | 0.000               | 0.241           | 0.670                           | 0.223             | 0.572                     |
| 7,604.00          | 0.000               | 0.333           | 0.857                           | 0.286             | 0.858                     |

Subsection: Elevation-Area Volume Curve Return Event: 100 years Label: Pond 2 Storm Event: CO SPRINGS - 100 Year

| Elevation<br>(ft) | Planimeter<br>(ft²) | Area<br>(acres) | A1+A2+sqr<br>(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume (Total)<br>(ac-ft) |
|-------------------|---------------------|-----------------|---------------------------------|-------------------|---------------------------|
| 7,595.00          | 0.000               | 0.215           | 0.000                           | 0.000             | 0.000                     |
| 7,596.00          | 0.000               | 0.249           | 0.695                           | 0.232             | 0.232                     |
| 7,597.00          | 0.000               | 0.286           | 0.802                           | 0.267             | 0.499                     |
| 7,598.00          | 0.000               | 0.325           | 0.916                           | 0.305             | 0.804                     |
| 7,599.00          | 0.000               | 0.424           | 1.120                           | 0.373             | 1.178                     |
| 7,600.00          | 0.000               | 0.579           | 1.498                           | 0.499             | 1.677                     |

## Index

С

CO SPRINGS (I-D-F Table, 100 years)...3

М

Master Network Summary...2

Р

Pond 1 (Elevation-Area Volume Curve, 100 years)...4

Pond 2 (Elevation-Area Volume Curve, 100 years)...5

Sand Filter T-6

## **Description**

A sand filter is a filtering or infiltrating BMP that consists of a surcharge zone underlain by a sand bed with an underdrain system. During a storm, accumulated runoff collects in the surcharge zone and gradually infiltrates into the underlying sand bed, filling the void spaces of the sand. The underdrain gradually dewaters the sand bed and discharges the runoff to a nearby channel, swale, or storm drain. It is similar to a BMP designed for bioretention in that it utilizes filtering, but differs in that it is not specifically designed for vegetative growth. The absence of vegetation in a sand filter allows for active maintenance at the

surface of the filter, (i.e., raking for removing a layer of sediment). For this reason, sand filter criteria allows for a larger contributing area and greater depth of storage. A sand filter is also a dry basin, which can be designed to include the flood control volume above the WQCV or EURV. Sand filters can also be placed in a vault. Underground sand filters have additional requirements. See Fact Sheet T-11 for additional discussion on underground BMPs.

## **Site Selection**

Sand filters require a stable watershed. When the watershed includes phased construction, sparsely vegetated areas, or steep slopes in sandy soils, consider another BMP or provide pretreatment before runoff from these areas reach the rain garden.

When sand filters (and other BMPs used for infiltration) are located adjacent to buildings or pavement areas, protective measures should be implemented to avoid adverse impacts to these structures. Oversaturated subgrade soil underlying a structure can cause the structure to settle or result in moisture-related problems. Wetting of expansive soils or bedrock can cause swelling, resulting in structural movements. A geotechnical engineer should evaluate the potential impact of the BMP on adjacent structures based on an evaluation of the subgrade soil, groundwater, and bedrock conditions at the site.

In locations where potentially expansive soils or bedrock exist, placement of a sand filter adjacent to a structure should only be considered if the BMP includes a drainage layer (with underdrain)



**Photograph SF-1.** This sand filter, constructed on two sides of a parking garage, is accessible for maintenance, yet screened from public view by a landscape buffer.

| Sand/Media Filter                                 |                        |  |  |  |  |
|---------------------------------------------------|------------------------|--|--|--|--|
| Functions                                         |                        |  |  |  |  |
| LID/Volume Red.                                   | Yes                    |  |  |  |  |
| WQCV Capture                                      | Yes                    |  |  |  |  |
| WQCV+Flood Control                                | Yes                    |  |  |  |  |
| Fact Sheet Includes<br>EURV Guidance              | No                     |  |  |  |  |
| Typical Effectiveness for Pollutants <sup>3</sup> | r Targeted             |  |  |  |  |
| Sediment/Solids                                   | Very Good <sup>1</sup> |  |  |  |  |
| Nutrients                                         | Good                   |  |  |  |  |
| Total Metals                                      | Good                   |  |  |  |  |
| Bacteria                                          | Moderate               |  |  |  |  |
| Other Considerations                              |                        |  |  |  |  |
| Aife-cycle Costs <sup>4</sup>                     | Moderate               |  |  |  |  |

- <sup>1</sup> Not recommended for watersheds with high sediment yields (unless pretreatment is provided).
- <sup>3</sup> Based primarily on data from the International Stormwater BMP Database (www.bmpdatabase.org).
- <sup>4</sup> Based primarily on BMP-REAL COST available at <a href="https://www.udfcd.org">www.udfcd.org</a>. Analysis based on a single installation (not based on the maximum recommended watershed tributary to each BMP).

November 2015

Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 3 SF-1

structure, and is lined with an impermeable geomembrane liner designed to restrict seepage.

## **Designing for Maintenance**

Recommended maintenance practices for all BMPs are provided in Chapter 6 of this manual. During design, the following should be considered to ensure ease of maintenance over the long-term:

- Do not put a filter sock on the underdrain. This is not necessary and can cause the BMP to clog.
- Install cleanouts. Cleanouts can be used for inspection (by camera) immediately following construction to ensure that the underdrain pipe was not crushed during construction. They can also be used to for ongoing maintenance practices. Consider locating cleanouts in the side slopes of the basin and above the depth of ponding.
- Provide vegetated side slopes to pre-treat runoff by filtering (straining). This will reduce the frequency of maintenance.

### **Benefits**

 Filtering BMPs provide effective water quality enhancement including phosphorus removal.

### Limitations

- This BMP may clog and require maintenance if a moderate to high level of silts and clays are allowed to flow into the facility.
- This BMP should not be located within 10 feet of a building foundation without an impermeable membrane. See Bioretention (BMP Fact Sheet T-3) of this manual for additional information.
- The sand filter should not be put into operation while construction or major landscaping activities are taking place in the watershed.

## **Design Procedure and Criteria**

The following steps outline the design procedure and criteria for a sand filter.

- 1. **Basin Storage Volume**: Provide a storage volume above the sand bed of the basin equal to the WQCV based on a 12-hour drain time.
  - Determine the imperviousness of the tributary area (or effective imperviousness where LID techniques are implemented). Determine the required WQCV (watershed inches of runoff) using Figure 3-2 in Chapter 3 of this manual. The volume should be based on a drain time of 12 hours.
  - Calculate the design volume as follows:

$$V = \left[\frac{\text{WQCV}}{12}\right] A$$

Equation SF-1

Where:

 $V = \text{design volume (ft}^3)$ 

A = watershed area tributary to the sand filter (ft<sup>2</sup>)

2. **Basin Geometry:** Use equation SF-2 to calculate the minimum filter area, which is the flat surface of the sand filter. Sediment will reside on the filter area of the sand filter. Therefore, if the filter area is too small, the filter may clog prematurely. If this is of particular concern, increasing the filter area will decrease the frequency of maintenance. The following equation provides the minimum filter area allowing for some of the volume to be stored beyond the area of the filter. **Note that the total** 

Sand Filter T-6

## volume must also equal or exceed the design volume.

The side slopes of the basin should be stable and maintainable. For vegetated side slopes, a 4:1 (horizontal: vertical) minimum slope is recommended. Use vertical walls where side slopes are steeper than 3:1

$$A_F = 0.0125AI$$

**Equation SF-2** 

#### Where:

 $A_F$  = minimum filter area (flat surface area) (ft<sup>2</sup>)

A = area tributary to the sand filter (ft<sup>2</sup>)

I = imperviousness of area tributary to the sand filter (percent expressed as a decimal)

Filter Material: Provide, at a minimum, an 18-inch layer of CDOT Class B or C filter material (see Table SF-1). Maintain a flat surface on the top of the sand bed.

Table SF-1. Gradation specifications for CDOT Class B or C filter material (Source: CDOT Table 703-7)

|                  | CDOT Class B filter                     | CDOT Class C filter |  |
|------------------|-----------------------------------------|---------------------|--|
|                  | material                                | material            |  |
| Sieve Size       | Mass Percent Passing Square Mesh Sieves |                     |  |
| 37.5 mm (1.5")   | 100                                     |                     |  |
| 19.0 mm (0.75")  |                                         | 100                 |  |
| 4.75 mm (No.4)   | 20-60                                   | 60-100              |  |
| 1.18 um (No. 16) | 10-30                                   |                     |  |
| 300 um (No. 50)  | 0-10                                    | 10-30               |  |
| 150 um (No. 100) |                                         | 0-10                |  |
| 75 um (No. 200)  | 0-3                                     | 0-3                 |  |

- 4. Underdrain System: Underdrains are typically required for sand filters and should be provided if infiltration tests show rates slower than 2 times that required to drain the WQCV over 12 hours, or where required to divert water away from structures as determined by a professional engineer. Infiltration tests should be performed or supervised by a licensed professional engineer and conducted at a minimum depth equal to the bottom of the sand filter. Additionally, underdrains are required where impermeable membranes are used. There are three basic types of sand filters:
  - No-Infiltration Section: This section includes an underdrain and an impermeable liner that prevents infiltration of stormwater into the subgrade soils. Consider using this section when any of the following conditions exist:
    - The site is a stormwater hotspot and infiltration could result in contamination of groundwater.
    - The site is located over contaminated soils and infiltration could mobilize these contaminants.
    - The facility is located over potentially expansive soils or bedrock that could swell due to infiltration and potentially damage adjacent structures (e.g., building foundation or pavement).
  - Partial Infiltration Section: This section does not include an impermeable liner, and allows some infiltration. Stormwater that does not infiltrate is collected and removed by an underdrain system.
    - Full Infiltration Section: This section is designed to infiltrate the water stored in the basin into the subgrade below. UDFCD recommends a minimum infiltration rate of 2 times the rate needed to drain the WQCV over 12 hours. A conservative design could utilize the partial infiltration section with the addition of a valve at the underdrain outlet. In the event that infiltration does not remain adequate following construction, the valve could be opened and allow this section to operate as a partial infiltration section. It is rare that sand filters are designed to fully infiltrate.

When using an underdrain system, provide a control orifice sized to drain the design volume in approximately 12 hours or more (see Equation SF-3). Use a minimum orifice size of 3/8 inch to avoid clogging. This will provide detention and slow release of the WQCV to offset hydromodification. Provide cleanouts to allow inspection of the drainpipe system during and after construction to ensure that the pipe was not crushed or disconnected during construction and to allow for maintenance of the underdrain. Space underdrain pipes a maximum of 20 feet on-center.

$$D_{12 \text{ hour drain time}} = \sqrt{\frac{V}{1414 \, y^{0.41}}}$$
 Equation SF-3

Where:

D = orifice diameter (in)

y = distance from the lowest elevation of the storage volume (ft) (i.e., surface of the filter) to the center of the orifice

V = volume to drain in 12 hours (WQCV) ( $ft^3$ )

In previous versions of this manual, UDFCD recommended that the underdrain be placed in an aggregate layer and that a geotextile (separator fabric) be placed between this aggregate and the growing medium. This version of the manual replaces that section with materials that, when used

Sand Filter

together, eliminate the need for a separator fabric.

The underdrain system should be placed below the 18-inch (minimum) filter layer. The underdrain system should be placed within an 5-inch-thick section of CDOT Class C filter material meeting the gradation in Table SF-1. Areas of the underdrain layer may be deeper due to the slope of the underdrain. If no underdrain is required, the minimum section can be reduced to the 18-inch filter layer. Use slotted pipe that meets the slot dimensions provided in Table SF-2.

| Pipe Size | Slot Length | Maximum Slot<br>Width | Slot<br>Centers | Open Area (per foot) |
|-----------|-------------|-----------------------|-----------------|----------------------|
| 4"        | 1-1/16"     | 0.032"                | 0.413"          | 1.90 in <sup>2</sup> |
| 6"        | 1-3/8"      | 0.032"                | 0.516"          | 1,98 in <sup>2</sup> |

Table SF-2. Dimensions for Slotted Pipe<sup>1</sup>

<sup>1</sup> Pipe must conform to requirements of ASTM designation F949. There shall be no evidence of splitting, cracking, or breaking when the pipe is tested per ASTM test method D2412 in accordance with F949 section 7.5 and ASTM F794 section 8.5. Contech A-2000 slotted pipe (or equal).

|                                              | Class B                                                       |                               |             |  |
|----------------------------------------------|---------------------------------------------------------------|-------------------------------|-------------|--|
| Property                                     | Elongation < 50% <sup>2</sup>                                 | Elongation > 50% <sup>2</sup> | Test Method |  |
| Grab Strength, N (lbs)                       | 800 (180)                                                     | 510 (115)                     | ASTM D 4632 |  |
| Puncture Resistance, N (lbs)                 | 310 (70)                                                      | 180 (40)                      | ASTM D 4833 |  |
| Trapezoidal Tear Strength, N (lbs)           | 310 (70)                                                      | 180 (40)                      | ASTM D 4533 |  |
| Apparent Opening Size, mm<br>(US Sieve Size) | AOS < 0.3mm (US Sieve Size No. 50)                            |                               | ASTM D 4751 |  |
| Permittivity, sec <sup>-1</sup>              | 0.02 default value,<br>must also be greater than that of soil |                               | ASTM D 4491 |  |
| Permeability, cm/sec                         | k fabric > k soil for all classes                             |                               | ASTM D 4491 |  |
| Ultraviolet Degradation at 500 hours         | 50% strength retained for all classes                         |                               | ASTM D 4355 |  |

Strength values are in the weaker principle direction
 As measured in accordance with ASTM D 4632

T-6 Sand Filter

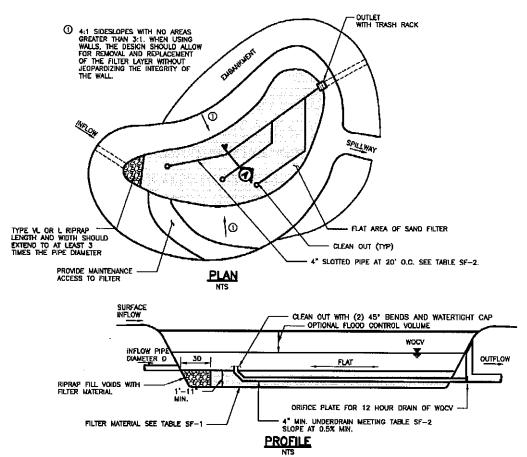
5. Impermeable Geomembrane Liner and Geotextile Separator Fabric: For no-infiltration sections, install a minimum 30-mil thick PVC geomembrane liner, per Table SF-4, on the bottom and sides of the basin, extending up at least to the top of the underdrain layer. Provide at least 9 inches (12 inches if possible) of cover over the membrane where it is attached to the wall to protect the membrane from UV deterioration. The geomembrane should be field-seamed using a dual track welder, which allows for non-destructive testing of almost all field seams. A small amount of single track and/or adhesive seaming should be allowed in limited areas to seam around pipe perforations, to patch seams removed for destructive seam testing, and for limited repairs. The liner should be installed with slack to prevent tearing due to backfill, compaction, and settling. Place CDOT Class B geotextile separator fabric above the geomembrane to protect it from being punctured during the placement of the filter material above the liner. If the subgrade contains angular rocks or other material that could puncture the geomembrane, smooth-roll the surface to create a suitable surface. If smooth-rolling the surface does not provide a suitable surface, also place the separator fabric between the geomembrane and the underlying subgrade. This should only be done when necessary because fabric placed under the geomembrane can increase seepage losses through pinholes or other geomembrane defects. Connect the geomembrane to perimeter concrete walls around the basin perimeter, creating a watertight seal between the geomembrane and the walls using a continuous batten bar and anchor connection (see Figure SF-3). Where the need for the impermeable membrane is not as critical, the membrane can be attached with a nitrile-based vinyl adhesive. Use watertight PVC boots for underdrain pipe penetrations through the liner (see Figure SF-2).

Table SF-4. Physical Requirements for Geomembrane

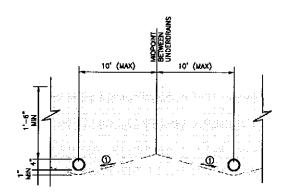
| Property                                                      | Thickness<br>0.76 mm<br>(30 mil) | Test Method           |
|---------------------------------------------------------------|----------------------------------|-----------------------|
| Thickness, % Tolerance                                        | ±5                               | ASTM D 1593           |
| Tensile Strength, kN/m (lbs/in) width                         | 12.25 (70)                       | ASTM D 882, Method B  |
| Modulus at 100% Elongation, kN/m (lbs/in)                     | 5.25 (30)                        | ASTM D 882, Method B  |
| Ultimate Elongation, %                                        | 350                              | ASTM D 882, Method A  |
| Tear Resistance, N (lbs)                                      | 38 (8.5)                         | ASTM D 1004           |
| Low Temperature Impact, °C (°F)                               | -29 (-20)                        | ASTM D 1790           |
| Volatile loss, % max.                                         | 0.7                              | ASTM D 1203, Method A |
| Pinholes, No. Per 8 m <sup>2</sup> (No. per 10 sq. yds.) max. | 1                                | N/A                   |
| Bonded Seam Strength, % of tensile strength                   | 80                               | N/A                   |

6. Inlet Works: Provide energy dissipation and a forebay at all locations where concentrated flows enter the basin. Use an impact basin for pipes and a baffle chute or grouted sloping boulder drop if a channel or swale is used, or install a Type VL or L riprap basin underlain with geotextile fabric at the inlet (see Figure SF-1). Fill all rock voids with the filter material specified in Table SF-1.

Sand Filter T-6


7. Outlet Works: Slope the underdrain into a larger outlet structure. As discussed in Step 4, use an orifice plate to drain the WQCV over approximately 12 hours. Flows exceeding the WQCV should also drain into the outlet structure. Additional flow restrictions may be incorporated to provide full spectrum detention, as discussed in the Storage chapter of Volume 2, or peak reduction for other specific storm events.

For full spectrum detention, perform reservoir routing calculations to design the outlet structure. The *UD-Detention* workbook, available at <u>www.udfcd.org</u>, can be used for this purpose. The design could include a second orifice located at the WQCV elevation or could include a downstream point of control designed to drain the full excess urban runoff volume (EURV).


# **Construction Considerations**

Proper construction of sand filters involves careful attention to material specifications and construction details. For a successful project, do the following:

- Protect area from excessive sediment loading during construction. The portion of the site draining to the sand filter must be stabilized before allowing flow into the sand filter.
- When using an impermeable liner, ensure enough slack in the liner to allow for backfill, compaction, and settling without tearing the liner.



NOTE: THIS DETAIL SHOWS A PARTIAL INFILTRATION SECTION. FOR FULL INFILTRATION ELIMINATE UNDERDRAIN AND PROVIDE 1"-6" OF FILTER MATERIAL. FOR NO INFILTRATION PROVIDE IMPERMEABLE NEMBRANE SECURED TO CAST-IN-PLACE CONCRETE WALL. SEE DETAILS 5F-2 AND 5F-3.



() SLOPE (STRAIGHT GRADE) SUBGRADE (2-10%) TO UNDERORAIN TO REDUCE SATURATED SOIL CONDITIONS BETWEEN STORM EVENTS (OPTIONAL)

SECTION (A)

Figure SF-1. Sand Filter Plan and Sections

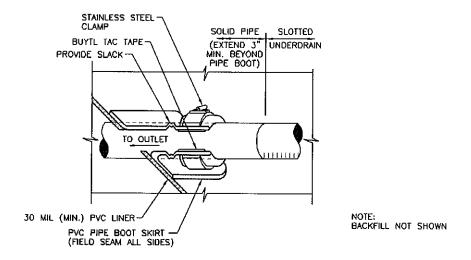
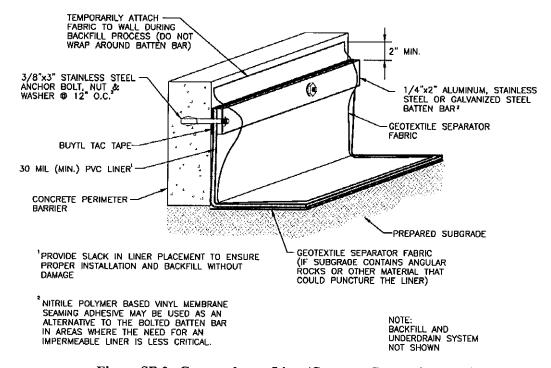
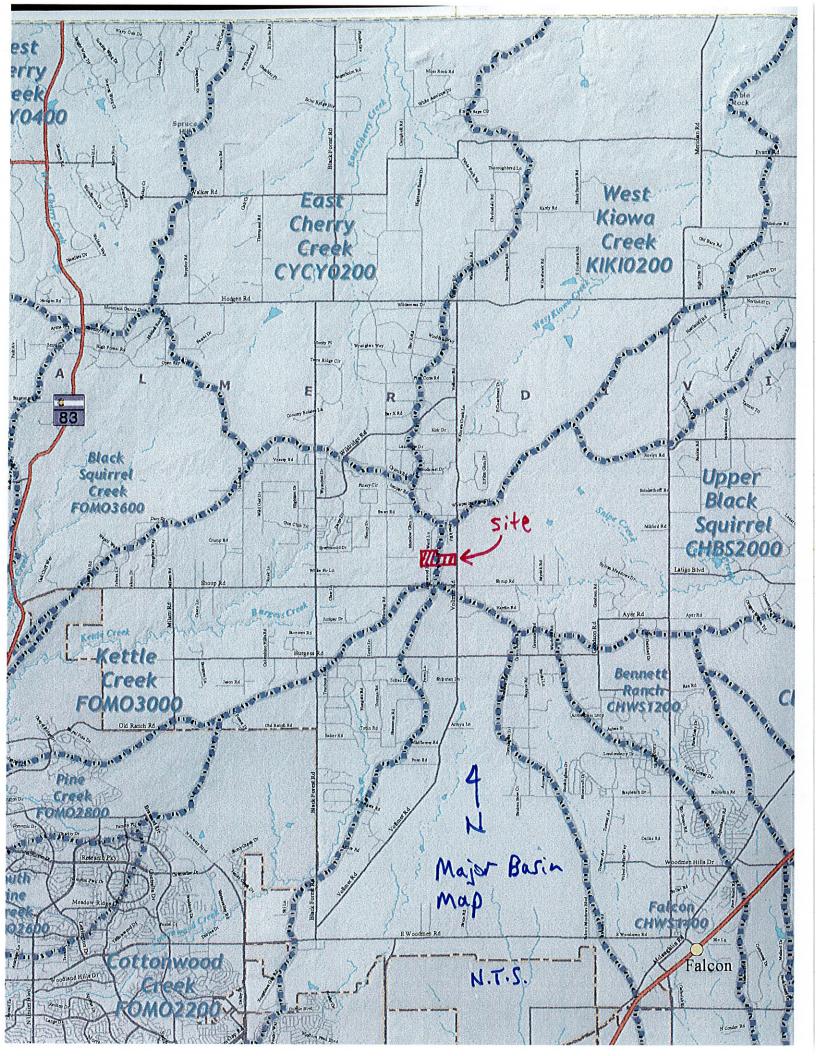
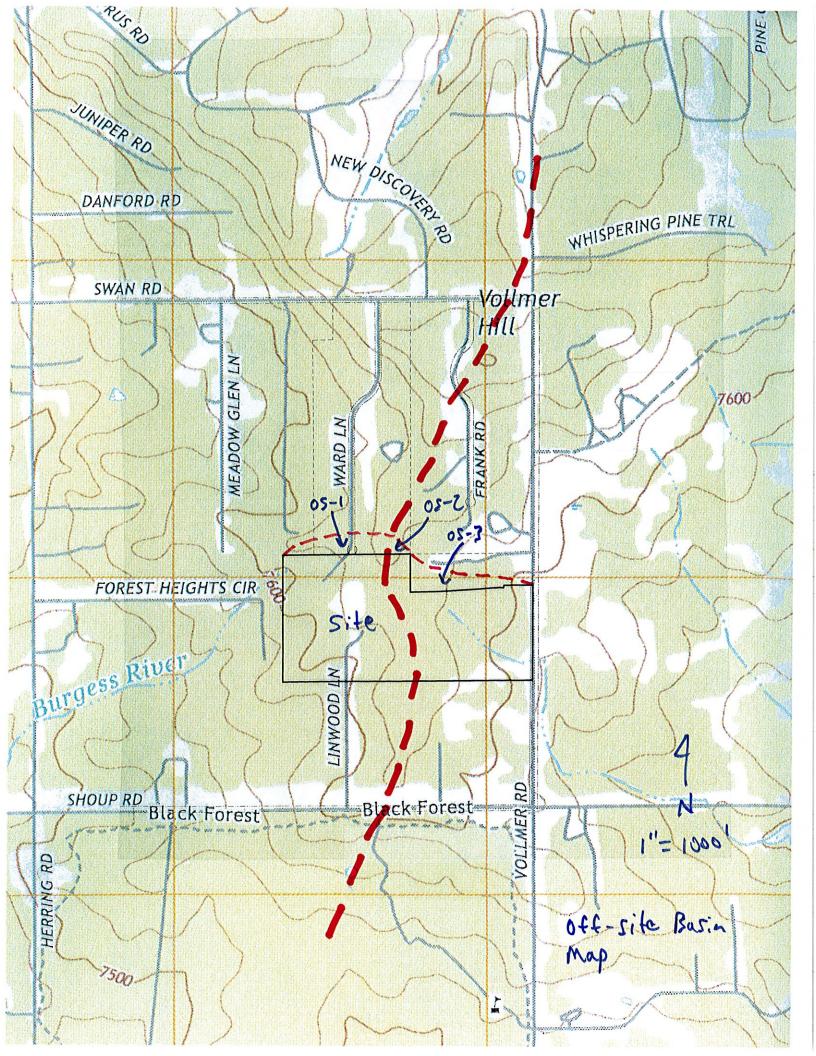
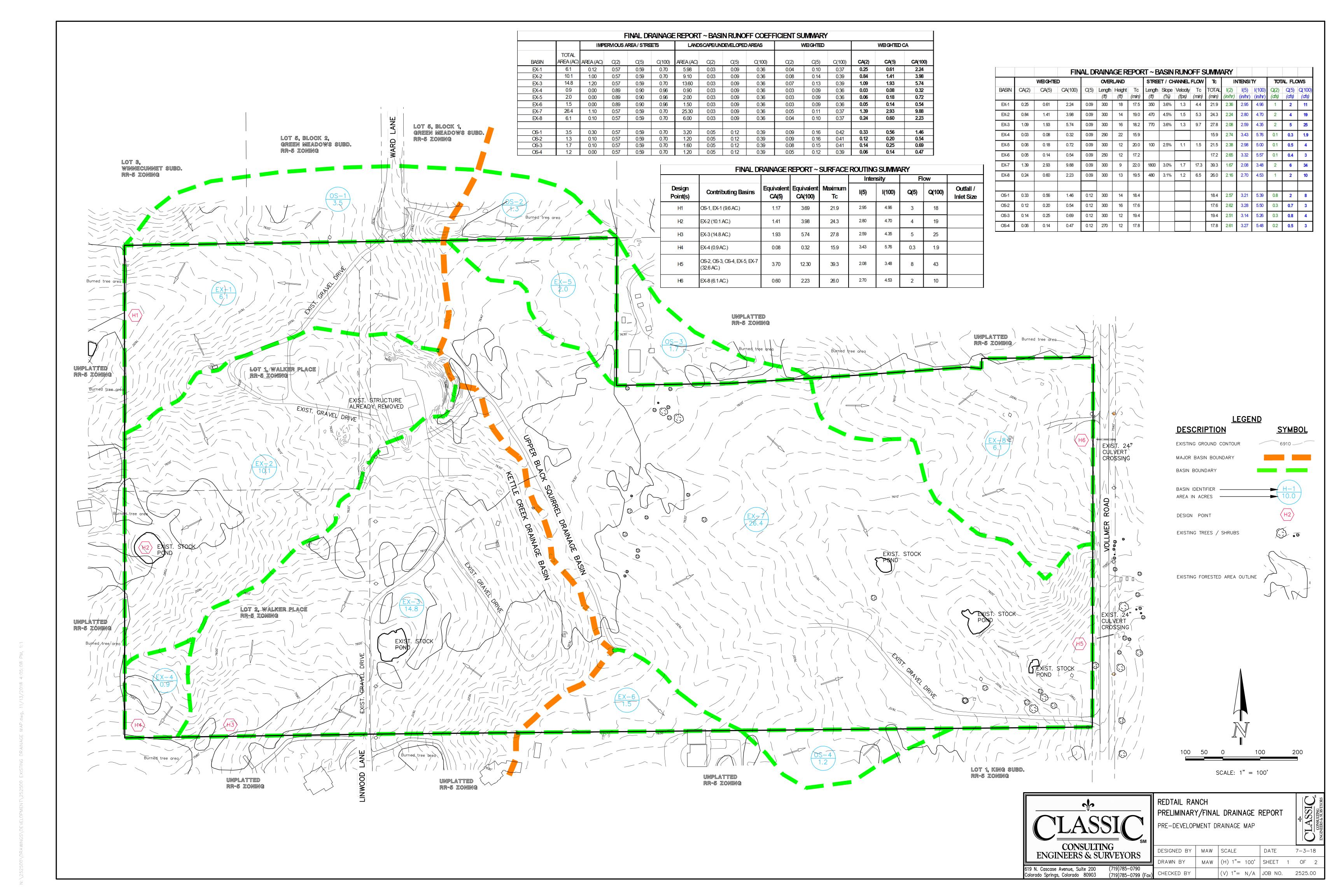
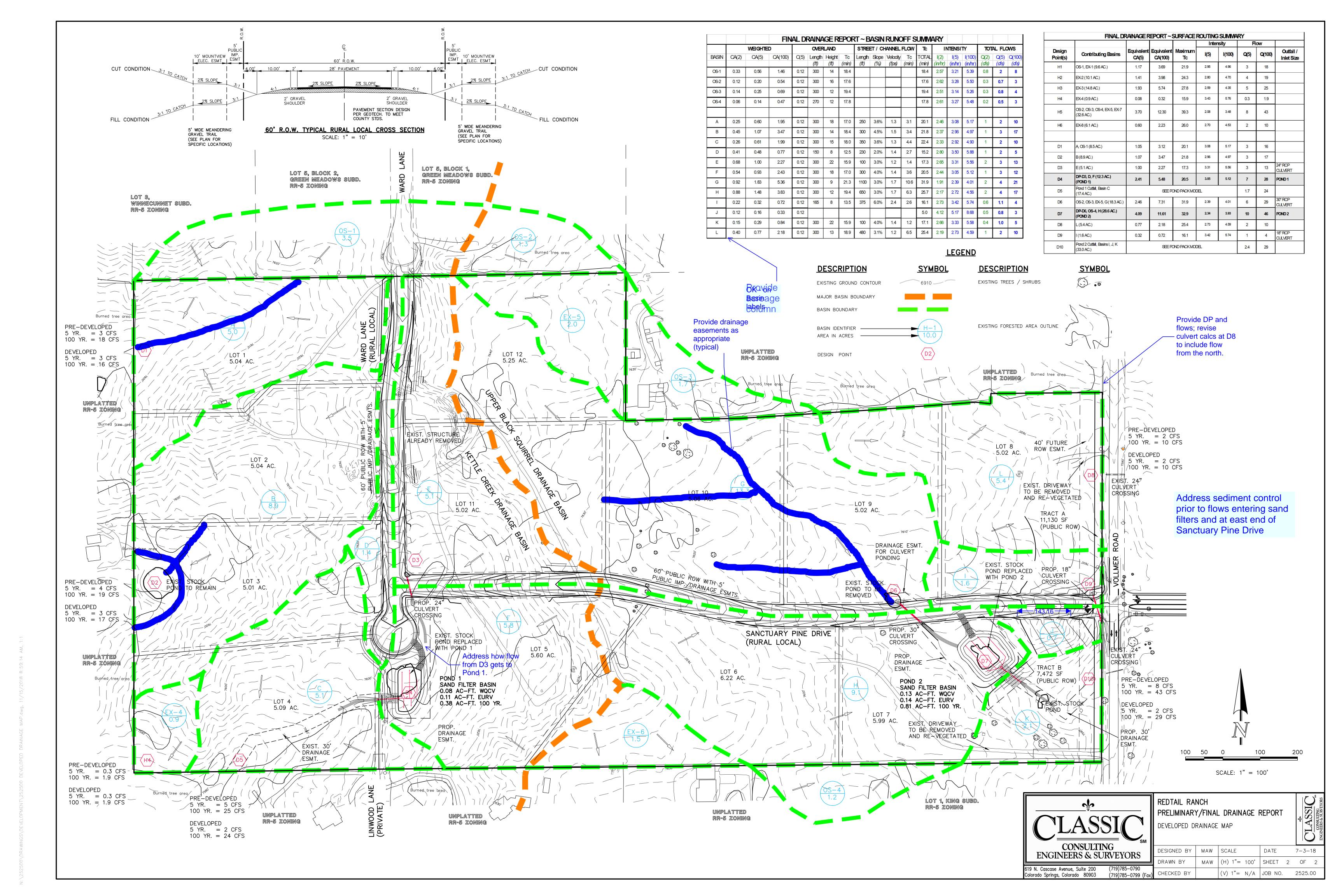



Figure SF-2. Geomembrane Liner/Underdrain Penetration Detail



Figure SF-3. Geomembrane Liner/Concrete Connection Detail

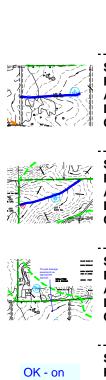

# **DRAINAGE MAPS**












# Markup Summary

## dsdrice (22) Subject: Text Box See additional Engineering comments in letter. Page Label: 1 Author: dsdrice Date: 12/28/2018 4:54:59 PM Color: Subject: Callout or HOA Page Label: 6 Author: dsdrice Date: 12/31/2018 10:37:30 AM Color: Subject: Callout (or other permanent erosion protection) Page Label: 10 Author: dsdrice Date: 12/31/2018 10:42:20 AM Color: Subject: Cloud+ This amount was in error (EPC Staff report) and Page Label: 12 should have been \$2,857 per the approved Author: dsdrice drainage report. Add the difference to the fees Date: 12/31/2018 12:09:00 PM Color: Subject: Cloud+ Only subtract the area of two lots in the previously Page Label: 12 platted area (5.037+5.093). Author: dsdrice $22 \times 7\% = 1.54$ Date: 12/31/2018 12:12:23 PM Color: Subject: Callout 1.54 Page Label: 13 Author: dsdrice Date: 12/31/2018 12:12:43 PM Color: Subject: Callout \$14,302 Page Label: 13 Author: dsdrice Date: 12/31/2018 12:15:11 PM Color: Subject: Callout \$3,575.50 Page Label: 13 Author: dsdrice Date: 12/31/2018 12:16:59 PM Color: Subject: Arrow Page Label: 13 Author: dsdrice Date: 12/31/2018 12:18:19 PM Color:

Subject: Text Box +\$ 952 (prev. error) Page Label: 13 = \$11,678.50 +\$ 952 (prev. error) = \$11,678.50 Author: dsdrice Date: 12/31/2018 12:19:11 PM Color: Subject: Cloud+ Update to current maps (12/7/2018) Revise Page Label: 28 references in report also. Author: dsdrice Date: 12/31/2018 12:25:31 PM Color: Subject: Cloud+ provide Page Label: 71 Author: dsdrice Date: 12/31/2018 12:33:40 PM Color: Subject: Callout Address how flow from D3 gets to Pond 1. Page Label: 84 Author: dsdrice Date: 12/31/2018 12:43:19 PM Color: Subject: Callout Provide DP and flows; revise culvert calcs at D8 to Page Label: 84 include flow from the north. Author: dsdrice Date: 12/31/2018 12:49:28 PM Color: Subject: Highlight Provide drainage easement as appropriate Page Label: 84 Author: dsdrice Date: 12/31/2018 12:54:52 PM Color: Subject: Highlight Provide drainage easement as appropriate Page Label: 84 Author: dsdrice Date: 12/31/2018 12:54:52 PM Color: Subject: Highlight Provide drainage easement as appropriate Page Label: 84 Author: dsdrice Date: 12/31/2018 12:54:52 PM Color: Subject: Highlight Provide drainage easement as appropriate Page Label: 84 Author: dsdrice Date: 12/31/2018 12:54:52 PM

Color:



Subject: Highlight Page Label: 84 Author: dsdrice

Date: 12/31/2018 12:54:52 PM

Color:

Subject: Highlight Page Label: 84 Author: dsdrice

Date: 12/31/2018 12:54:52 PM

Color:

Subject: Callout Page Label: 84

Author: dsdrice Date: 12/31/2018 12:55:50 PM

Color:

Basin labels Subject: Text Box Page Label: 84

Color:

Provide drainage easement as appropriate

Provide drainage easement as appropriate

Provide drainage easements as appropriate

(typical)

Author: dsdrice

Date: 12/31/2018 12:57:01 PM

OK - on Basin labels

# Steve Kuehster (6)



Subject: Arrow Page Label: 13

Author: Steve Kuehster Date: 12/19/2018 1:12:38 PM

Color:



Subject: Text Box Page Label: 28

Author: Steve Kuehster Date: 12/19/2018 1:17:53 PM

Color:

Show and label site.



Subject: Callout Page Label: 84

Author: Steve Kuehster Date: 12/19/2018 1:49:11 PM

Color:

Provide acreage column

= 2 CFS

Subject: Text Box Page Label: 84 Author: Steve Kuehster

Date: 12/19/2018 1:52:40 PM

Color:

Address sediment control prior to flows entering sand filters and at east end of Sanctuary Pine

Drive



Subject: text box Page Label: 10

Author: Steve Kuehster Date: 12/19/2018 10:22:34 AM

Color:

The previous comment was made " Address sediment control" Please provide information in the report that calls out where velocities exceed criteria (5fps) in roadside ditches and call out where permanent rip rap checks will be installed in

these high velocity areas.

Subject: Length Measurement Page Label: 84
Author: Steve Kuehster
Date: 12/19/2018 2:08:35 PM
Color:

143.16