Final Drainage Report The Glen at Widefield Filing No. 12 El Paso County, Colorado

Prepared for:
Widefield Investment Group
3 Widefield Boulevard
Colorado Springs, Colorado 80911

Kiowa Project No. 19016

June 3, 2023

TABLE OF CONTENTS

Table of Contents			
State	ements and Approvals	iii	
l.	General Location and Description		
II.	Major Drainage Basins and Subbasins	1	
III.	Drainage Design Criteria	9	
IV.	Drainage Facility Design	10	
	A. Cost of Proposed Drainage Facilities	11	
	B. Drainage and Bridge Fees	11	
٧.	Conclusions	11	
VI.	References	12	
Арр	endix Table of Contents	13	

List of Figures and Tables (Refer to the Appendix Table of Contents)

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation P694 South 21st Street, Colorado S	prings, Colorado 80904
Andrew W. McCord OPE #25057) For and on Behalf of Kiowa Vingnieering Corporation	June 8, 2023 Date
DEVELOPER'S STATEMENT: I, the Developer, have read and will comply with all of the required report and plan.	ments specified in this drainage June 9th, 2023
Ву:	Date
Print Name: <u>J. Ryan Watson, Glen Development Company</u> Address: <u>3 Widefield Boulevard</u> Colorado Springs, Colorado 80911	
EL PASO COUNTY: Filed in accordance with the requirements of the Drainage Criteria County Engineering Criteria Manual, and Land Development Code, a	
Joshua Palmer, P.E. El Paso County Engineer/ECM Administrator	Date

I. GENERAL LOCATION AND DESCRIPTION

The Glen at Widefield Filing No. 12 (Filing 12) subdivision will be developed as a single-family residential subdivision located in the Widefield area of El Paso County. The subject property is located to the west of Marksheffel Road and north of Mesa Ridge Parkway. The site is located in the southwest portion of Section 22, Township 15 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado. The site is bounded on east by Glen at Widefield Filing No. 11 and further to the east by Marksheffel Road, to the south and west by the Glen at Widefield Filing Nos. 8 thru10, and to the to the north by undeveloped raw land, currently unplatted.

Filing 12 contains 27.23 acres of single-family residential lot development for 79 planned lots. Detention and water quality is provided for the site with the extended detention basin, referred to as Detention Basin 'D' which was constructed with The Glen at Widefield Filing No. 11.

The property is currently overlot graded under grading permit to approximate finished grade conditions. Extended Detention Basin 'D' lies to the south of the site. A vicinity map of the site is shown on Figure 1 included in Appendix A.

With Filing No. 11, Detention Basin 'D' received final grading, perimeter maintenance roads, and a low-flow trickle channel. Slight modification to the outlet plate is planned with Filing 11 and is expected within the outlet structure.

With Filing No. 12, the orifice plate at the detention pond outlet structure reflects 'Ultimate Condition' which represents a full build-out condition, and which accommodates final calculated values for the tributary areas impacted by new development including Filing 11 and Filing 12.

The existing vegetative cover within the development is in poor to fair condition with minimal grasses throughout the site. The existing ground slopes within the property range from 0.2 to 25 percent. Soils within the subject site are mostly classified to be within Hydrologic Soils Group B as shown in the *El Paso County Soils Survey*. For the purposes of computing the existing and proposed hydrology for the site, Hydrologic Soil Groups B and C were used with weighted coefficients.

Existing utilities within or adjacent to the site include a pair of thirty-inch (30") Colorado Interstate Gas (CIG now Kinder-Morgan), mains that run along portions of the westerly property boundary (see maps in Appendix D).

Golden Buffs Drive will be extended west into earlier Filings 8 and 9 of The Glen at Widefield development. A dead-end barricade will be removed to complete the through connection. Roadways improvements with sidewalks and pedestrian ramps are planned to serve the subdivision and match previous work (flowline to flowline).

II. MAJOR DRAINAGE BASINS AND SUBBASINS

The subject property limits are shown on Flood Insurance Rate Maps (FIRMs) 08041C0956G and 08041C0957G (both with effective dates of December 7, 2018) that are included in the Appendix. The FIRMs also show that the property to be developed with buildable lots is located outside of the FEMA regulated floodplain in an unshaded Zone X area, which is described as "Area of Minimal Flood Hazard."

The site lies within the West Fork Jimmy Camp Creek drainage basin. The majority of the overall site presently drains towards the south and southeast by a combination of overlot sheet flow along with curb, gutter, pipe and open channel conveyances to a minor drainage that combines with the West Fork of Jimmy Camp Creek just downstream of Mesa Ridge. The north portion of the site drains east and south within proposed roadway corridors to proposed extended Detention Basin 'D'.

The remaining portions of the site consist of rear lot margins which cannot be captured due to topography. These marginal areas are expected to consist of lawn and rear slope areas which will substantially match historic conditions. These marginal areas will achieve 60% Water Quality treatment through best practices of runoff reduction (Permanent BMP - IRF). The existing drainage patterns for the site are shown on Drainage Plan Sheet 1 provided in a map pocket at the end of this report, and developed flows are compared on Sheets H-1 & D-2 to reflect pre- and post-development impacts (See Appendix D).

The drainage reports that were reviewed in the process of preparing this drainage report are included in the References section. The Glen at Widefield East area was studied as a part of the Master Development Drainage Plan (MDDP) for the Glen at Widefield and the West Fork Jimmy Camp Creek Drainage Basin Planning Study (DBPS). A detention basin shown on the west side of the creek (DP 3101) was designed and constructed as part of the Filing No. 6 improvements. Two additional regional detention basins were identified for the site in the MDDP: one to serve the westerly side of the site with flows released west to the West Fork Jimmy Camp Creek (DP 3091), and the other to serve the easterly side of the site with flows released east across Marksheffel Road to a channel along the north side of Peaceful Valley Road and ultimately to the Jimmy Camp Creek main branch (DP 4021). The detention basin shown in the MDDP and DBPS at DP 3091 was designed and constructed as part of the Glen at Widefield Filing No. 7 improvements as Basin C. However, due to the proposed grading and drainage patterns north of Filing No. 7, two additional detention basins to serve the westerly side of the site were planned and constructed: one for Filing No. 8 (Basin B) and one for Filing No. 9 (Basin A), which is located just north of the Filing No. 8 area. The detention basin shown in the MDDP and DBPS at DP 4021 (Basin D) is designed to its ultimate condition herein and will be constructed to serve most of Filing 10, all of Filing 11, and most of Filing 12 within the Glen at Widefield master planned area.

Sub-Basin Names are prefixed with 'A', 'B' or 'D' depending on the detention pond they are tributary to. i.e. A for Basin 'A' (serving Filing 9 as well as other filings of The Glen), B for Basin 'B' (serving Filing 8), and D for Basin 'D' (serving Filings 10-12). The tributary basins to Basin 'D' are prefaced with the letter 'D' and numbered sequentially D1 to D24.

The Sub-basins herein are generally organized and map-labeled in the order they sit from highest elevation to lowest.

Basin A

A very small portion of Filing 12 is tributary to EDB 'A'. This portion is located in the extreme northwest corner of the site where Golden Buffs Drive drops to meet existing grade and west of its intersection with planned Lance Leaf Drive. Filing 12 Development is anticipated in the Filing No 9 Final Drainage Reporting for these portions in the sizing and installation of the receiving downstream facilities and conveyances. No additional modification to facilities is anticipated to receive runoff from these portions.

Filing 9 Final Drainage Report¹³ Excerpts for Sub-Basins A-6 through A-8 (Tributary to EDB 'A'):

The Following *Italicized* Sub-Basin Descriptions are excerpted with [bracketed] additional comment added for clarity:

<u>Sub-basin A-6</u> is approximately 1.53 acres in area and is located east of Spring Glen Drive and north of Bittercress Place. Undeveloped runoff from this basin will sheet flow west towards Spring Glen Drive until it gutter flows south (DP 6). [Tributary to existing EDB 'A']

<u>Sub-basin A-7</u> is a very small portion of the site lying in the extreme northwest corner of the site. It is characterized by undisturbed raw land lying within the 100-foot-wide Colorado Interstate Gas

Easement. Runoff is directed west in a sheet flow manner and concentrates offsite within the Bittercress Court roadway section and is conveyed along hardened surfaces and pipe systems to [Detention] Basin 'A'13. [Tributary to existing EDB 'A']

<u>Sub-basin A-8</u> is a very small portion of the site lying in the extreme northwest corner of the site. It is characterized by undisturbed raw land lying within the 100-foot-wide Colorado Interstate Gas Easement. Runoff is directed west in a sheet flow manner and concentrates offsite within the Bittercress Court roadway section and is conveyed along hardened surfaces and pipe systems to [Detention] Basin 'A'13. [Tributary to existing EDB 'A']

This Series of sub-basins is unchanged with this reporting in terms of physical boundary and Flow Prediction (Rational Method). The A-Series of sub-basins are tributary to EDB 'A'. These downstream facilities are discussed and approved with The Glen Filing No 9 and are in existing condition.

Basin B

A very small portion of Filing 12 is tributary to Basin 'A' within the extreme northwest corner of the site., and a small portion is tributary to Basin 'B'. These portions are all located along the westerly margins of the site where Golden Buffs Drive drops to meet existing grade and just west of its intersection with planned Lance Leaf Drive. Filing 12 Development is anticipated for these portions in the sizing and installation of the receiving downstream facilities and conveyances. No additional modification to facilities is anticipated to receive runoff from these portions.

Filing 8 Final Drainage Report¹⁶ Excerpts for Sub-Basins B-1, B-1.1, B-2, B-3, B-8, B-9, B-9.1 (Tributary to EDB 'B'):

The Following *Italicized* Sub-Basin Descriptions are excerpted with [bracketed] additional comment added for clarity:

<u>Sub-basin B-1</u> is approximately 2.52 acres in area and is located north and west of Golden Buffs Drive and Lanceleaf Drive. Runoff from this basin will sheet flow and gutter flow south and west to Design Point (DP) 15.

<u>Sub-basin B-1.1</u> is approximately 2.07 acres in area and is located just west of Sub-basin B-1 and north of Golden Buffs Drive. Runoff from this basin will sheet flow south along the existing gas line easement to Golden Buffs Drive, combine with runoff from Sub-basin B-1, and gutter flow southwest to a 10' curb inlet at Peachleaf Drive (DP 15.1).

<u>Sub-basin B-2</u> is approximately 2.77 acres in area and is located north and east of Beebalm Place and Peachleaf Drive. Runoff from this basin will sheet flow and gutter flow west and south to a 10' curb inlet at DP 16.

<u>Sub-basin B-3</u> is approximately 2.65 acres in area and is located south and east of Beebalm Place and Peachleaf Drive. Runoff from this basin will sheet flow and gutter flow southwest to Peachleaf Drive, combine with carry-over flow from Sub-basin B-2, and gutter flow south to a 10' curb inlet at Golden Buffs Drive (DP 17).

<u>Sub-basin B-8</u> is approximately 0.77 acres in area and is located south and west of Golden Buffs Drive and Dwarf Clover Court. Runoff from this basin will sheet flow and gutter flow north and west to Peachleaf Drive (DP 22).

<u>Sub-basin B-9</u> is approximately 2.84 acres in area and is located east of Peachleaf Drive between its south high point and Sub-basin B-9.1. Runoff from this basin will sheet flow and gutter flow north and west to a 10' curb inlet located along Peachleaf Drive approximately 200 feet southeast of Golden Buffs Drive.

<u>Sub-basin B-9.1</u> is approximately 1.23 acres in area and is located east of the Golden Buffs Drive and Peachleaf Drive intersection, consisting primarily of open space area and a portion of the existing gas line easement. Runoff from this basin will sheet flow and gutter flow generally west, combine with carry over flow from Sub-basin B-9 (DP23), and combine with runoff from Sub-basin B-8 at the Golden Buffs Drive and Peachleaf Drive intersection.

This Series of sub-basins is unchanged with this reporting in terms of physical boundary and Flow Prediction (Rational Method). The B-Series of sub-basins are tributary to EDB 'B' lying to the west. These downstream facilities are discussed and approved with The Glen Filing No 8 and are in existing condition.

Basin D

<u>Sub-basins D-1 through D-24</u> are not all located within Filing No. 12 but are all tributary to Detention Basin 'D'. Basins D1-D24 comprise approximately 60 acres. Some edge areas are released undetained and these are accounted for in the E-Series of sub-basins as discussed in the next section.

Detained flows released from Detention Basin 'D' are ultimately conveyed to the existing roadside ditch along Marksheffel Road north of Mesa Ridge Parkway. Design Point D10-1 released flows are discharged from the outlet structure of the Extended Detention Basin 'D' within a reinforced trapezoidal channel. The channel discharges 59.6 cfs during the Major Event. Downstream Culverts have been analyzed for expected flow volume and channel capacity. Flow declarations are provided on the Developed Map Exhibits (D-1 & D-2) along both sides of Marksheffel Rd. Capacity appears to be adequate.

Sub-basins D-1 thru D-19 have similar characteristics with a mix of street, and residential lot area. Refer to Map Sheets 2 of 3 and 3 of 3 (D-1 & D-2). The Following is a description of these sub-basins:

<u>Sub-basin D-1</u> is approximately 1.40 acres in area and is located in the northwest of the subject property (Filing 12). Runoff from this basin will sheet flow south and concentrate in the street flowline. This basin combines with Sub-basin D-2via crosspan at DP68.

<u>Sub-basin D-2</u> is approximately 1.67 acres in area and is located almost entirely within the subject property excepting a small area at the east margin where the sub-basin's downstream end terminates at existing 10' curb inlet 'E-2'. Runoff from this basin will sheet flow south and concentrate in street sections until reaching 10 ft curb inlet 'E-2' at DP69.

<u>Sub-basin D-3</u> is approximately 1.69 acres in area and is located in the northwest area of the subject property (Filing 12). Runoff from this basin will sheet flow south and concentrate in the street flowline. This basin combines with Sub-basin D-4 via crosspan at DP70.

<u>Sub-basin D-4</u> is approximately 2.07 acres in area and is located within the subject property (Filing 12) with the exception of its extreme eastern corner which is off-site. Runoff from this basin will sheet flow south and concentrate in the street flowline. It will also combine with concentrated runoff from upstream Sub-basin D-3 until reaching 10 ft curb inlet 'E-1' at DP71.

<u>Sub-basin D-5</u> is approximately 1.56 acres in area (Filing 12) with the exception of its extreme eastern corner which is off-site. Interim Inlet A-4 is converted from an interim area inlet to a closed manhole with the development of Filing No 12. Runoff from this basin will sheet flow north and concentrate in the south half of the street flowline until reaching curb inlet 'D-4' at DP82.

<u>Sub-basin D-6</u> is approximately 0.41 acres in area and off-site and east of Filing 12. Runoff from this basin will sheet flow south and concentrate in Pennycress Drive and be conveyed by curb and gutter to the south (DP73) where it will continue across a crosspan at the intersection of Lance Leaf Drive and combine with additional surface flows from Sub-basin D-7.

<u>Sub-basin D-7</u> is approximately 2.98 acres in area and is located along the east margin of the subject property. Some of the northwesterly margins of this sub-basin lie within Future Filing No. 12 and consist of rear yard areas. Runoff from this basin sheet flows south and east and concentrates in Pennycress Drive and is conveyed by curb and gutter to the south to on-grade inlet E-6 at DP75. In the Major storm event, 2.0 cfs of bypass flow will continue across a crosspan at the intersection of Marsh Elder Drive and combine with additional surface flows from Sub-basin D-8.

<u>Sub-basin D-8</u> is approximately 1.62 acres in area and is located along the easterly margin of the subject property. Some of the northwesterly margins of this sub-basin lie within Future Filing No. 12 consisting of rear yard areas. Runoff from this basin will sheet flow south and east and concentrate within The Marsh Elder Place cul-de-sac and within Pennycress Drive and be further conveyed by curb and gutter to the south within the Pennycress roadway corridor at DP76. In the Minor event, 2.2 cfs of bypass flow will continue south as gutter flow. In the Major storm event, 9.7 cfs of bypass flow will continue south as gutter flow (at DP 78) and combine with additional surface flows from Sub-basin D-10.

<u>Sub-basin D-9</u> is approximately 2.19 acres in area and is located entirely within the subject property. Runoff from this basin will sheet flow southeast and concentrate in street flowline until captured by a new 10 ft Curb Inlet 'F-1' lying at the southeasterly edge of planned Dwarf Clover Court's cul-desac. This inlet will connect to a new 18" RCP pipe to convey flows to Interim Area Inlet 'F-2' described in the Filing 11 Drainage Report. This Interim Inlet consists of a manhole barrel section which will be completed with a cone section and closed lid for fully-built out conditions.

The temporary diversion ditch which terminated at Structure F-2 – and began at Structure F-1 (New 10' Curb Inlet) will be demoed at the time of Filing 12 construction (DP77).

Sub-basins D-10 through D-23 are offsite, and downstream from Filing 12. Their Sub-basin Descriptions are excerpted herein from the Filing 11 Final Drainage Report¹⁵:

<u>Sub-basin D-10</u> is approximately 2.52 acres in area and is located along the easterly margin of the subject property. General Runoff from this basin sheet flows south and east and concentrates within Pennycress Drive and is further conveyed by curb and gutter to the south within the Pennycress roadway corridor to a 20-foot curb inlet (Inlet H-2) at DP79. In the Minor event, 2.2 cfs of bypassed flow from upstream sub-basins D7 & D-8 will combine with flows from this sub-basin and continue south as gutter flow. In the Major storm event, 9.7 cfs of bypassed flow is received and will continue south as gutter flow to DP 79. Inlet H-2 lies in a sump condition along with a series of other inlets at this intersection which are all hydrostatically interconnected in the Major Event. These inlets collectively intercept one hundred percent (100%) of the Major Event. Hydraulic Analysis (HGL/EGL) using EPA SWMM was performed to validate the storm system's performance at this final junction in the Major Event. The SWMM Model results are included in Appendix C.

<u>Sub-basin D-11</u> is approximately 3.96 acres in area and is located east of the subject property. Runoff from this basin sheet flows south and west and concentrates in Pennycress Drive and is conveyed by curb and gutter to the south (DP80) where it continues across a crosspan at a knuckle cul-de-sac (See Sub-basin D-12).

<u>Sub-basin D-12</u> is approximately 1.39 in area and is located east of the subject property. Runoff from this basin sheet flows south and west and concentrates in Pennycress Drive and is combined with gutter flow from Sub-basin D-11. 4.50 cfs in the Minor event, and 13.0 cfs in the Major event combines with Sub-basin D-11 flows and these are conveyed by curb and gutter to the south to Inlet G-4 (DP81). Inlet G-4 lies in a sump condition along with a series of other inlets at this intersection which are all hydraulically connected. These inlets collectively intercept one hundred percent (100%) of the Major storm event.

<u>Sub-basin D-13</u> is approximately 2.06 acres in area and is located east of the subject property. Runoff from this basin sheet flows south and east and concentrates in Golden Buffs Drive and is conveyed by curb and gutter to the south to on-grade curb inlet D-4 at DP82.

<u>Sub-basin D-14</u> is approximately 3.30 acres in area and is located southeast of the subject property. Runoff from this basin sheet flows south and east and concentrates in Golden Buffs Drive and is conveyed by curb and gutter to the south to on-grade curb inlet G-3 at DP83. Some bypass flows (2.3 cfs) from Sub-basin D-13 combines within the street's gutter section in the Major storm event.

<u>Sub-basin D-15</u> is approximately 2.80 acres in area and is located entirely within the subject property (Filing 12). Runoff from this basin will sheet flow south and east and concentrate in street sections at DP84. This basin combines with Sub-basin D-16 via crosspan. New 10 ft curb inlet 'A-1' lies just past the crosspan and captures the concentrated runoff from Sub-basin D-15. Some bypass flow will continue east (0.9 cfs) to Sub-basin D-16 in the Major storm event.

Sub-basin D-16 is approximately 2.27 acres in area and is located in the northeast of the subject property (Filing 12) excepting a very small portion of its easternmost edge. Runoff from this basin will sheet flow south and concentrate in street sections. This basin combines with upstream Sub-basin D-15 at the point of a planned crosspan. Combined flows continue east in the north half of the street section (Golden Buffs Drive) to the beginning of improved street Golden Buffs Drive. Combined flows continue east about another 80 feet to Inlet B-1 (DP84.1). Some bypass flow will continue east (2.6 cfs) to Sub-basin D-16.1 in the Major storm event.

<u>Sub-basin D-16.1</u> is approximately 2.08 acres in area and is located east of the subject property. Runoff from this basin will sheet flow southwest and concentrate within Golden Buffs Drive. Flows from this basin combine with concentrated gutter flow from upstream Sub-basin D-16 at the point of a planned crosspan (DP84.1). Combined flows continue east in the north half of Golden Buffs Drive to Mouse Ear Place cul-de-sac and the location of Inlet 'C-1' at DP85. Some bypass flow will continue southeast (1.4 cfs) to Sub-basin D-17 in the Major storm event.

<u>Sub-basin D-17</u> is approximately 3.45 acres in area and is located east of the subject property. Runoff from this basin sheet flow west and concentrate in Golden Buffs Drive, and within cul-de-sac gutter sections at Mouse Ear Place, and Kitten Tail Court. These flows combine at Inlet D-1 (DP86). Some bypass flows continue south; 0.1 cfs bypasses this inlet in the Minor event, and 6.0 cfs to Sub-basin D-18 in the Major storm event.

<u>Sub-basin D-18</u> is approximately 2.13 acres in area and is located east of the subject property. Runoff from this basin sheet flows west and concentrates in Golden Buffs Drive, and within cul-de-sac gutter sections at Horse Mint Trail. These flows combine at the east half of Golden Buffs Drive within the gutter section and ahead of an unnamed knuckle cul-de-sac at DP87. Some bypass flows continue south to Subbasin D-19; 2.8 cfs in the Minor storm event, and 13.4 cfs in the Major event.

<u>Sub-basin D-19</u> is approximately 2.97 acres in area and is locate east of the subject property. Runoff from this basin sheet flows west and concentrates in Golden Buffs Drive, and within an unnamed knuckle cul-de-sac. Concentrated gutter flows combines with upstream bypassed flows from Sub-basin D-18. These combined flows will continue south to Inlet G2 at DP88. Bypassing flows from Inlet G-2 are expected to overtop to Inlet G-1 in the Minor storm event and overtop to inlet G-1 and H-1 and J-2 in the Major storm event.

<u>Sub-basin D-19.1</u> is approximately 0.17 acres in area and is located southeast of the subject property. Runoff from this basin will sheet flow west and concentrate in Pennycress Drive. These flows combine at Inlet G-1 (DP89). Some bypass flows will contribute to this inlet in both the Minor storm (0.1 cfs) and the Major storm event (5.7 cfs).

Sub-basins D20-24 have varying surface characteristics, and these are reflected in the weighted coefficients assigned to each basin through Rational methodology. These basins comprise the tributary areas inflowing to Basin 'D' from areas off-site and far to the south.

Refer to Map Sheet D-1. The Following is a description of the southerly sub-basins:

Sub-basin D19.1, D20c & D2315

These basins are now detained as a part of Filing No 11 and are included in the Filing 10 through 12 'Ultimate Condition'. These basins consist of small portions of Pennycress Drive near EDB 'D" along with the emergency spillway structure. An inlet pair (J1-J2) captures developed flows and conveys them directly to Detention Basin 'D'.

Sub-Basin D20a (Modified Discharge)

Excerpt from Addendum to the Filing No 10 Final Drainage Report (PCD File SF1921)17

Sub-basin D20a is located along the southerly margin of Filing 10 and contains portions of residential lots, along with a portion of proposed Pennycress Drive. The basin contains 0.81 Acres. Runoff Volume is 0.9, and 2.5 cfs for the Minor and Major Storm Events, respectively.

A crosspan was originally planned to convey as much surface area as possible to the extended detention basin lying to the north (Detention Basin 'D'), but this pan has now been omitted to preserve the integrity of the existing roadway intersection.

Modified Discharging Flows are now to be conveyed via existing concrete curb & gutter at Peaceful Valley Road and then to a riprap rundown for stabilization prior to entering an existing natural channel which serves the west one-half of Marksheffel Road along with some flows entering the channel from upslope landforms adjacent to the roadway corridor. This channel is trapezoidal and is fully stabilized. Flows from Sub-Basin 20a are expected to enter the channel well ahead of Peak Discharging Flows from Detention Basin 'D'.17

<u>Sub-basin D-20a-c contains 1.64 acres</u> in area and is located south of the subject property. It is comprised of Pennycress Drive and some captured landscape areas. Runoff from these basins sheet flows west and concentrate in Pennycress Drive at Inlet J-1 (DP92a). These flows combine at Inlet J-2 with flows from Sub-basin D-23 and inflow directly to Detention basin 'D'. There are no bypass flows.

<u>Sub-basin D-21</u> is approximately 4.02 acres in area and is located south of the subject property within Filing No. 10. Sub-basin D-21 has similar surface characteristics to Sub-basins D-1 thru D-19. Runoff from this basin sheet flows south and east and concentrates first within Peaceful Valley Road, and Buffalo Bur Trail, and then within Pennycress Drive existing street sections (DP90). These flows currently combine with flows from Sub-basin D-22 and are conveyed to the intersection of Pennycress Drive and Peaceful Valley Road. A crosspan conveys the flows to the northeast and directly to Basin 'D'.

<u>Sub-basin D-22</u> is approximately 1.15 acres in area and is located south of the subject property within Filing No. 10. It is comprised of existing sections of Peaceful Valley Road and some captured overlot areas. Runoff from this basin sheet flows southwest and concentrates in Peaceful Valley Road (DP91). These flows combine with flows from Sub-basin D-21 and inflow directly to Detention Basin 'D'. There are no inlets. All flows from this sub-basin contribute to the north side gutter section of Pennycress Drive and are no longer ditch flow, but rather gutter flow within Sub-basin D-23.

<u>Sub-basin D-23</u> is approximately 0.28 acres in area and is located south of the subject property. It is comprised of Pennycress Drive and some captured landscape areas. Runoff from this basin sheet flows east and concentrates in Pennycress Drive at Inlet J-2 (DP92b). These flows combine at Inlet J-1 with flows from Sub-basin D-23 and inflow directly to Detention basin 'D'. There are no bypass flows.

<u>Sub-basin D-24</u> is approximately 10.18 acres in area and is adjacent to and along the southwest side of the subject property. This sub-basin encompasses all of the planned detention basin area, as well as off-site flows received from the west which traverse the Colorado Interstate Gas Pipeline Easement (C.I.G. Easement). These flows will remain unchanged from historic conditions excepting roadway improvements. Flows from this sub-basin accumulate within rear lot areas north and west of the detention basin and are conveyed along shallow slopes with minimal velocity. There are no bypass flows, or inlets.

Basin E

The E-Series 'edge area' basins are adjacent to the subject property at the extreme west margins of Sub-basin E-1, but all E-Series basins were evaluated as part of the overall IRF analysis for Filings 10 through 11 and are included herein for the sake of continuity and overall understanding of the analysis along with some narrative description of downstream conveyances.

The 'E' Series Basins are located along the easterly edge of the site between the property and Marksheffel Road. Sub-basins E-1 through E-5 drain offsite to the existing roadside ditch along Marksheffel Road.

A description of each of the 'E' Series Sub-basins is included in a reduced form from previous reports for clarity and to accurately describe the condition of downstream conveyances associated with Filings 10 through 12:

Sub-basin E-1 contains 5.27 acres and is located within Filing No 11 and Filing No 12. This basin abuts existing Marksheffel Road and is historically tributary to the west-side ditch for the roadway. The overall characteristics of these basins is unchanged from historic conditions. A narrow strip along the north margin discharges nuisance flows to an east-west drainage that ends at Marksheffel Rd. For purposes of water quality treatment, that portion of these sub-basins discharging from within the Filing No 12 Boundary was analyzed using the IRF Runoff Reduction Method. An Exhibit and MHFD Calculation Sheet (UD- $BMP_v3.07.xls$) are provided in Appendix E. Developed Runoff from this basin will sheet flow north to an existing grass swale, and then travel southeast to the existing roadside ditch along Marksheffel Road (DP 95) as it does currently. A new box culvert crossing at Poa Annua was installed with Filing No. 11 to receive and discharge ditch flows. The Poa Annua Culvert consists of a two-foot high by three-feet wide double box culvert with wingwalls at each end, and aprons with cutoff walls. The culvert passes flows from the Minor Event, and overtops some flow in the Major Event. Full Capacity (Q_{pipe}) is calculated to be 93.58 cfs (See Appendix C), with an additional 6.42 cfs overtopping ($Q_{overtop}$) in the Major Event

<u>Sub-basin E-2</u> contains 0.50 acres and is located within Filing No 11 along the north side of planned Poa Annua Street. This basin also partially abuts existing Marksheffel Road and is historically tributary to the west-side ditch for the roadway. The overall characteristics of these basins is unchanged from historic conditions. Runoff from this basin sheet flows southeast to the existing roadside ditch along Marksheffel Road (DP 96).

<u>Sub-basin E-3</u> contains 1.67 acres and is located within Filing No 11 along the south side of planned Poa Annua Street. This basin also abuts existing Marksheffel Road and is historically tributary to the west-side ditch for the roadway. The overall characteristics of these basins is unchanged from historic conditions. Runoff from this basin sheet flows southeast to the existing roadside ditch along Marksheffel Road (DP 97).

<u>Sub-basin E-4</u> contains 1.17 acres and is located within Filing No 11 and lies between planned Pennycress Drive and existing Marksheffel Rd. It is historically tributary to the west-side ditch for the

roadway. The overall characteristics of these basins is unchanged from historic conditions. Runoff from this basin sheet flows southeast to the existing roadside ditch along Marksheffel Road (DP 98). Subbasin E-4 terminates at an existing six-foot wide by two-foot-high concrete box culvert with two barrels (6'x2' Double CBC) at Design Point 10-2. Just upstream a small eighteen-inch culvert crosses Marksheffel Road and connects the east and west borrow ditches hydraulically (Ref: HDR Report, Structure 'CV152'). This culvert appears to function as a transfer pipe to allow for redundant outflow.

III. DRAINAGE DESIGN CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the El Paso County Drainage Criteria Manual. Topography for the site was compiled using a one-foot contour interval and is presented on the Historic Conditions map. The hydrologic calculations were made for the historic and proposed site conditions. The Drainage Plan presents the drainage patterns for the site, including the 'D'-series sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor storm) and 100-year (Major storm) recurrence intervals were determined. The one-hour rainfall depth was determined from Table 6-2 of the Drainage Criteria Manual. These depths are shown in the runoff calculations spreadsheet. The peak flow data generated using the rational method was used to verify street capacities and to size inlets and storm sewers within the subdivision. The drainage basin area, time of concentration, and rainfall intensity were determined for each of the sub-basins within the property. The onsite soils were assumed to be mostly Hydrologic Soil Group B, based on the Soil Survey and the result of earthmoving operations. For existing conditions, runoff coefficients outside of the roughcut roadways were determined using a land use of pasture/meadow, while the rough-cut road corridors were estimated for conveyance as nearly bare ground (NBG). The land use for the proposed development will be residential land areas with a density of approximately 4 lots per acre.

The onsite hydraulic structures were sized using the methods outlined in the *El Paso County Drainage Criteria Manual*. The hydraulic capacities of the streets and curb inlets were determined using the UD-Inlet spreadsheet developed by the Urban Drainage and Flood Control District (UDFCD), considering the County criteria for the Minor (5-year) and Major (100-year) storms. Ramp curbs will be used throughout the development, except for curb returns, where a 6-inch vertical curb will be used.

The off-site Detention Basin 'D' is Extended Detention Basin (EDB) that uses Full Spectrum Detention. The UD-Detention spreadsheets created by UDFCD were used to size and design the detention basin with water quality enhancement, per the County's recommendation.

The supporting calculations associated with hydraulic functioning for this development's storm system were accepted and approved as a part of Filing 11 and have been included herein for reference in Appendix C of this report. Appendix C includes the EPA-SWMM report summaries for reference.

The system was re-analyzed in EPA-SWMM in order to demonstrate drainage performance for Filing 12 alone. Downstream impacts are noted in the form of some inlet flooding at the intersection of Pennycress Drive and Golden Buffs Drive. The <u>Depth of Node Flooding</u> is calculated to be 0.427′ above the lowest inlets at Peak Flow (T_{PK}) which occurs at about 55 minutes. This demonstrates that the overall capture is theoretically 100% as <u>Depth of Flow</u> does not exceed the depth of the surrounding roadway corridor. The Node Flooding Value is the critical value for determination of function in this case and this value is unchanged with the development of Filing 12.

IV. DRAINAGE FACILITY DESIGN

The drainage of the site will be accomplished through a combination of sheet flow, gutter flow and pipe conveyance systems which will outlet directly to the planned extended detention basin (Basin 'D'). A-Series Sub-Basins and B-Series Sub-Basins will receive and treat Runoff within existing extended detention basins associated with Filings No 6 through Filing 9 of The Glen. The receiving ponds are all existing and functioning properly at the time of this report.

The proposed drainage patterns for the site are shown on the Final Drainage Plan for the developed condition (Sheets D-1 and D-2) provided in the map pocket at the end of this report. The hydrologic and hydraulic calculations are provided in the Appendix. Refer to the Drainage Design Criteria section for additional information on the hydrologic and hydraulic calculations.

Evaluations related to sizing of onsite drainage improvements was carried out in accordance with the *County Storm Drainage Criteria Manual*. The capacities of the proposed onsite facilities were calculated in accordance with the *Criteria Manual* and current UDFCD supporting software.

The approved Detention Basin 'D' design included two pre-sedimentation forebays along with trickle channel to a planned three-stage outlet structure.

This detention basin is a private facility maintained by the district and is functioning properly.

Detention Basin 'D' is designed to fully accommodate water quality separation and the emergency conveyance of flow associated with Filing 10, Filing 11, and Filing 12.

The storm sewer system will provide storage and intercept most of the flows with some 100-year flows exceeding and by-passing inlets in the Major event These bypassed flows are contained within the street corridors and eventually enter the detention pond under increased hydraulic pressure associated with curb depth. The Minor event is fully intercepted by the inlet and pipe systems.

WATER QUALITY METHODOLOGY (4-STEP PROCESS):

STEP 1: RUNOFF REDUCTION PRACTICES

New construction will utilize existing and proposed grassed areas as buffers, allowing sediment to drop out of the storm runoff and helping to reduce runoff. The existing grassed swales along the west side of the site (Gas Mains) shall remain undisturbed. Vegetated Hillsides provide some runoff reduction benefit, along with some biofiltering. Runoff Reduction calculations and IRF Reduction Exhibit are provided in Appendix E for the zone encompassing the subject property's north margin and Sub-basin E-1. IRF reduction analysis for this zone resulted in a treatment value of at least 60% of the expected overall WQCV.

STEP 2: IMPLEMENT BMP'S THAT SLOWLY RELEASE THE WATER QUALITY CAPTURE VOLUME

Treatment and slow release of 40 hours of the water quality capture volume (WQCV) will be accomplished by the completed implementation of the proposed, private, Full-Spectrum, extended detention basin.

STEP 3: STABILIZE DRAINAGEWAYS

There are no major drainageways affected by the development. No improvements to any downstream drainageways are required or anticipated at this time. The project discharges into an existing EDB via new and existing storm pipe systems.

STEP 4: IMPLEMENT SITE SPECIFIC & SOURCE CONTROL BMP'S

There are no potential sources of contaminants that could be introduced to the County MS4 that will not be controlled by temporary construction BMPs. Maintenance and sweeping of parking areas is

recommended to limit sediment transport to new inlets, pipes and detention areas. Construction BMPs in the form of vehicle tracking control, concrete washout area, inlet protection, rock socks, and silt fences will be utilized during construction activities to protect receiving waters.

WATER QUALITY

Storm water quality measures are required by the County in Volume 2 of the County's *Drainage Criteria Manual*. The water quality measures instituted for the development include:

- 1. Water quality enhancement of the detention basin. Existing Sedimentation Basin 'D' was operating as a temporary sedimentation basin prior to construction of the Extended Detention Basin. Final improvements at this basin impacted water quality through the addition of pre-sedimentation forebays, trickle channel, and perimeter surface treatments to serve The Glen Filing No 10 through 12.
- 2. Water Quality Treatment via IRF Methodology at the north and east margin of the site.
- 3. The outlet structure includes water quality orifice plate modification to match Ultimate (Full Build-out) Design.

A. COST OF PROPOSED DRAINAGE FACILITIES

<u>Table 2</u> presents a cost estimate for the construction of drainage improvements (Public) for The Glen at Widefield Filing No. 12 development.

B. DRAINAGE AND BRIDGE FEES

The site lies within the West Fork Jimmy Camp Creek Drainage Basin. The current drainage basin fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$14,470 per impervious acre. The current bridge fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$4,281 per impervious acre. The Glen at Widefield Filing No. 12 subdivision encompasses 27.23 acres. Table 1 details the fees due as part of this development.

V. CONCLUSIONS

The Glen at Widefield Filing No. 12 will be a single-lot family residential subdivision covering approximately 27.23 acres. Onsite drainage will include the use of surface conveyance elements such as gutter, crosspan, and inlets to route the runoff from the site to Detention Basin 'D'.

Existing Downstream Receiving Facilities (EDB A and EDB B) are functioning as designed. No adverse impacts are anticipated with Filing No 12 development.

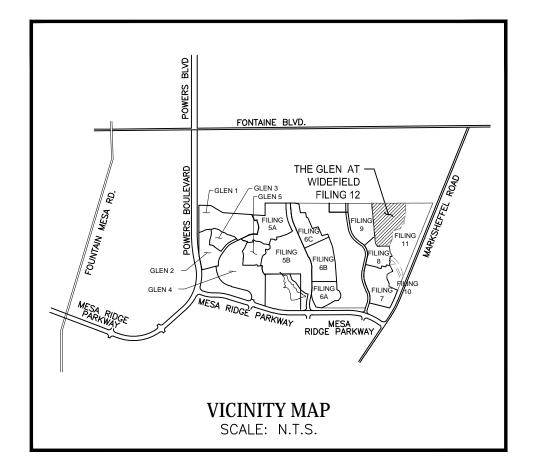
Basin D serves Filing 10 along with northern tributary area Filing 11 and Filing 12 (see maps). Detained runoff from the site will be conveyed to the West Fork Jimmy Camp Creek. With detention serving the site and existing downstream conveyance elements in place, the development of the Glen at Widefield Filing No. 12 property will not adversely impact or deteriorate improvements or natural drainageways downstream of the property.

VI. REFERENCES

- 1) <u>Preliminary Drainage Report, The Glen at Widefield East</u>, prepared by Kiowa Engineering Corporation, dated December 16, 2015.
- 2) <u>Final Drainage Report, The Glen at Widefield Filing No. 7</u>, prepared by Kiowa Engineering Corporation, dated January 11, 2016.
- 3) <u>Amended Master Development Drainage Plan, The Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated June 21, 2007.
- 4) <u>Final Drainage Report, The Glen at Widefield Filing No. 6</u>, prepared by Kiowa Engineering Corporation, dated December 6, 2007.
- 5) <u>Preliminary and Final Drainage Report, Mesa Ridge Parkway Final Design</u>, prepared by Kiowa Engineering Corporation, dated November 29, 2010.
- 6) Mesa Ridge Parkway Roadway Design, Autumn Glen Avenue to Marksheffel Road and Widening from Powers Boulevard to Autumn Glen Avenue, prepared by Kiowa Engineering Corporation, dated December 8, 2010.
- 7) <u>Master Development Drainage Plan for the Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated December 10, 1999.
- 8) <u>West Fork Jimmy Camp Creek Drainage Basin Planning Study</u>, prepared by Kiowa Engineering Corporation, dated October 17, 2003.
- 9) <u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated March 1997.
- 10) <u>El Paso County Drainage Criteria Manual (Volumes 1 and 2) and Engineering Criteria</u> Manual, current editions.
- 11) <u>Soil Survey of El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.
- 12) Final Drainage Report Marksheffel Road South Link Road to US-24, El Paso County, CO, HDR Engineering, August 2015.
- 13) Final Drainage Report The Glen at Widefield Filing No. 9, September 2018
- 14) Final Drainage Report The Glen Filing No 10 Kiowa Engineering, September 2019
- 15) Final Drainage Report The Glen Filing No 11 Kiowa Engineering, June 2022
- 16) Final Drainage Report The Glen at Widefield Filing No 8, October 3, 2016
- 17) Addendum to the Final Drainage Report (Crosspan Removal) The Glen at Widefield Filing No. 10 El Paso County, Colorado (PCD File SF1921), September 14, 2021

APPENDIX TABLE OF CONTENTS

Kiowa Engineering Corporation


APPENDIX A

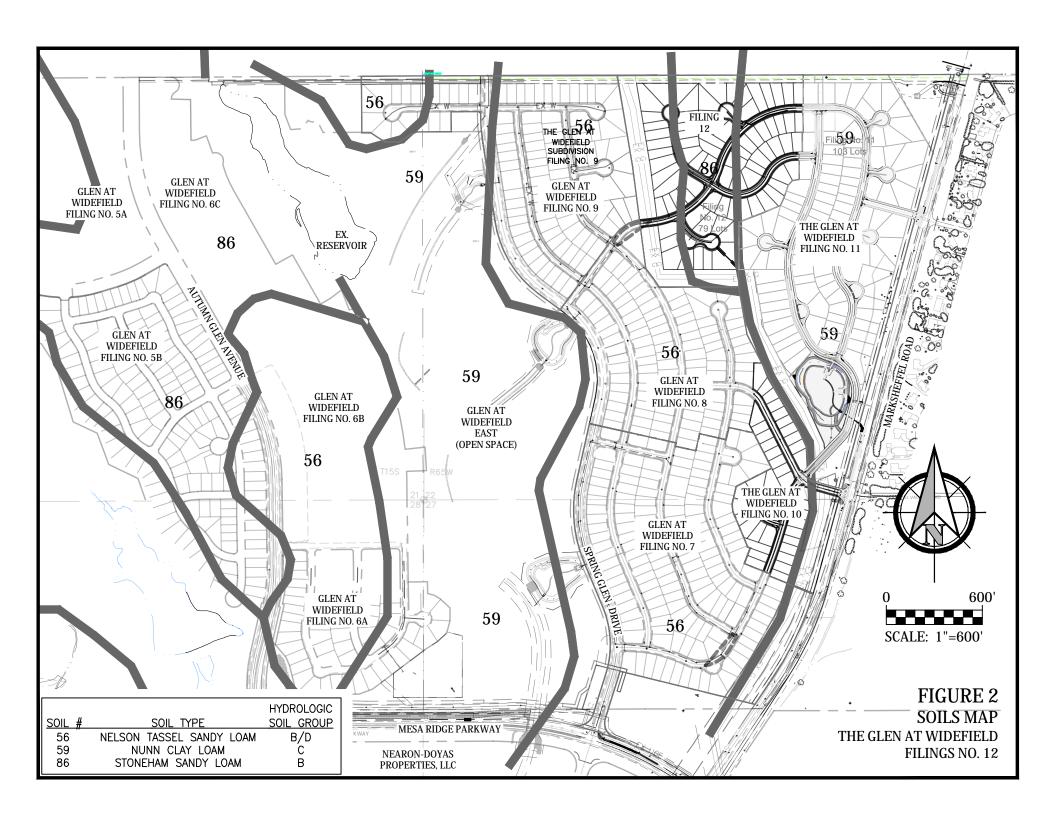

Figure 1: Vicinity Map

Figure 2: Soils Map

FEMA Flood Insurance Rate Map (Panels 956 and 957) Hepworth-Pawlak Geotechnical Report

Hepworth-Pawlak Geotechnical, Inc. 10302 South Progress Way Parker, Colorado 80134

Phone: 303-841-7119 Fax: 303-841-7556 www.hpgeotech.com

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR PROPOSED DEVELOPMENT THE GLEN AT WIDEFIELD FILING NO. 7 WIDEFIELD, COLORADO

Contains portions of Filing 12 Reference Boring Logs B3 and 10

JOB NUMBER: 215292A

NOVEMBER 4, 2015

PREPARED FOR:
MR. J. RYAN WATSON
WIDEFIELD INVESTMENT GROUP
3 WIDEFIELD BOULEVARD
COLORADO SPRINGS, COLORADO 80911

TABLE OF CONTENTS

PURPOSE AND SCOPE OF STUDY				
PROPOSED DEVELOPMENT		2		
SITE CONDITIONS		2		
FIELD EXPLORATION		3		
SUBSURFACE CONDITIONS		3		
General		3		
Clayey Sand (SC):Silty Sand (SM):Claystone:		4 4		
Groundwater:		5		
GEOLOGIC SITE ASSESSME	NT	6		
Moisture Sensitive Soils		6		
Earthquake Considerations		6		
ENGINEERING ANALYSIS		6		
PRELIMINARY DESIGN REC	OMMENDATIONS	8		
Site Grading		8		
Suitability of On-Site Soi		9		
FOUNDATIONS		10		
FLOOR SLABS		11		
DRAINAGE		11		
SURFACE DRAINAGE AND I	EROSION CONTROL:	11		
CONTINUING SERVICES		12		
LIMITATIONS		12		
FIGURE 1 FIGURES 2a,2b FIGURE 3-4 FIGURE 5a,5b FIGURE 5 FIGURE 6-13 FIGURE 14-15	SITE LOCATION BORING LOCATIONS BORING LOGS CROSS SECTIONS LEGEND AND NOTES SWELL-COMPRESSION TEST RESULTS GRADATION ANALYSIS			

PURPOSE AND SCOPE OF STUDY

This report presents the findings of our preliminary geotechnical engineering study for the proposed residential development located at The Glen at Widefield, Filing No. 7. The site location is shown on Figure 1. The study was conducted to evaluate the potential influence of the site geology on the proposed development and to develop preliminary geotechnical engineering recommendations. The study was conducted in accordance with our agreement for professional engineering services to Widefield Investment Group dated September 9, 2015. Site specific geotechnical investigations should be conducted at each lot and within proposed roadways to determine the appropriate foundation type and construction considerations of each individual residence planned.

A review of prior geotechnical investigations conducted by Soil testing and Engineering, Inc. has been conducted. The following reports have been reviewed:

- Preliminary Subsurface Soil Investigation, Sunrise Ridge, Phase II, Colorado Springs, Colorado, Job Number 80415, and Dated June 10, 1998
- Preliminary Subsurface Soil Investigation, Marksheffel Road and Peaceful Valley Road, Job Number 90235, and Dated May 5, 1999
- 3. Preliminary Subsurface Soil Investigation, The Glen at Widefield, Filing 7, Widefield, Colorado, Job Number 060933, and dated April 16, 2007.

Additionally, the mapped geology shown in the following map was consulted:

 Scott, G.R., Taylor, R.B., Epis, R.C., and Wobus, R.A., 1976, Geologic map of the Pueblo 1 degree x 2 degrees quadrangle, south-central Colorado: U.S. Geological Survey, Miscellaneous Field Studies Map MF-775, scale 1:187,500

In addition to the review of the available information listed above, a field exploration program consisting of a site reconnaissance and nine borings was conducted to obtain general information on subsurface conditions. Samples from the borings were tested in the laboratory to determine their engineering characteristics. The previous reports, along with the results of our geologic observations, field exploration, and laboratory testing were analyzed to develop a report on the potential geologic hazards and preliminary geotechnical recommendations. This report summarizes the data obtained during the study and presents our conclusions and preliminary recommendations.

PROPOSED DEVELOPMENT

We understand that this project is part of a larger proposed residential development to be located in the vicinity west of Marksheffel near the intersection with Peaceful Valley Road in El Paso County, Colorado. The scope of this study is limited to the area bound by Marksheffel Road to the east, The Fountain Corporate Boundary to the North (the northern border of Section 22, Township 15 South, Range 65 West), and the rerouted gas line easement to the west and south. This portion of the project has an area of about 53.5 acres, and will potentially include about 185 single family residences and 1.6 miles of roadway. We understand that the houses in this area will be single story units with no basements. As mentioned above, site specific geotechnical studies should be conducted after final grading and platting has been established.

SITE CONDITIONS

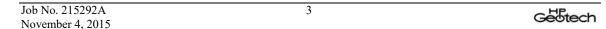
The project area is located to the northeast of the intersection of Marksheffel Road and Peaceful Valley Road. A detailed description of the project boundaries was given in the above section. In general, the western portion of the site is located on a ridge extending south. The ground slopes moderately to the east in this area. The eastern portion of the site (approximately 2/3 of the area) is flat with a very mild slope to the east. Based on the available USGS topographic maps, the elevation varies across the site from about 5680 to 5720 feet MSL. Jimmy camp creek is located about 1,200 feet east of the site at its nearest point.

The majority of the site was vacant at the time of our investigation, but several small well houses are located near the northwest corner, which will be outside of the considered development. Overhead power lines run along the east and north sides of the site. Vegetation on the site consists mostly of weeds and grass with some small deciduous trees, and prairie dog holes were noted throughout. A irrigation ditch was noted at the toe of the slope separating the ridge from the flatter area. Peaceful Valley Country Club Estates (Filing 1), is located just east of the project site.

FIELD EXPLORATION

The field exploration for this project was conducted on September 23 and 24, 2015. Nine exploratory borings were drilled with an all-terrain CME 550X drill rig equipped with an automatic hammer to evaluate the subsurface conditions in the soils. The boring locations are shown in Figure 2. The exploratory borings were logged by a representative of Hepworth-Pawlak Geotechnical, Inc.

Samples of the soils were taken with a nominal 2-inch I.D. California spoon sampler and 1-3/8 inch I.D. split spoon sampler. The samplers were driven into the subsoils at various depths with blows from a 140-pound hammer falling 30 inches. This test is similar to the standard penetration test described by ASTM Method D-1586. The penetration resistance values are an indication of the relative density or consistency of the subsoils. Depths at which the samples were taken and the penetration resistance values are shown on the Boring Logs, Figure 3 and 4. The samples were returned to our laboratory for review by the project engineer and testing.


SUBSURFACE CONDITIONS

GENERAL

Under a thin layer of topsoil up to about 1 foot thick, four major subsurface materials were identified in our investigation. These include sandy clay, clayey sand, silty sand, and claystone bedrock. Claystone was encountered at relatively shallow depths along the west side of the site, and dropped off steeply towards the east side, where it was encountered at depths of over 50 feet below the existing ground surface. A detailed discussion of each soil/bedrock type encountered follows.

Sandy Clay (CL):

Sandy clay was found under the topsoil in all nine borings and extended to depths of about 4 to 35 feet below the ground surface. Sandy clay cover was generally shallower at the west side of the site. The sandy clay was medium stiff to very stiff, with an average penetration resistance blow count of 15 that ranged from 6 to 38 blows required for 12 inches of sampler penetration. Swell-compression test results indicate the sandy clay has

a low to very high swell potential based on vertical expansion ranging from 0.3 to 9.1 percent under a surcharge of 1 ksf when wetted.

Clayey Sand (SC):

Clayey sand was encountered under the sandy clay in all Borings except Borings B-3 and B-4. The clayey sand was found to be loose to medium dense, with an average penetration resistance blow count of 11 that ranged from 6 to 18 blows required for 12 inches of sampler penetration. The clayey sand encountered was generally wet, and the samples tested had an in situ water content that ranged from 26.9 to 31.5 percent.

Silty Sand (SM):

Slightly silty to silty sand with some gravel was encountered below the clayey sand in all Borings except Borings B-3 and B-4. The silty sand was found to be medium dense to dense, with an average penetration resistance blow count of 26 that ranged from 13 to 42 blows required for 12 inches of sampler penetration. In situ water content ranging from 10.0 to 12.7 percent was recorded in the samples tested.

Claystone:

Claystone was found at depths as shallow as 4 feet below the ground surface at the west side of the site, and as deep as 53 feet elsewhere. It was generally hard to very hard, with an average penetration of 5½ inches after 50 blows. The sample of claystone taken at 4 feet at Boring B-4 was softer, with a blow count of 31 for 12 inches of sampler penetration.

LABORATORY TESTING:

Laboratory testing included moisture content, unit weight, Atterberg limits, sieve analysis, percent passing #200 sieve, swell-compression, and water soluble sulfate concentration. Detailed results of swell-compression testing are shown on Figures 6-13 and gradation analyses on Figures 14 and 15. Test results are shown on the boring logs, Figures 3 and 4, and are summarized in Table 1

Geotech

The concentration of water-soluble sulfates in the samples tested ranged from 0.065 to 0.813 percent. According to the Portland Cement Association's publication "Design and Control of Concrete Mixtures, 14th Edition" sulfate concentrations between 0.2 and 2.0 percent represent a severe sulfate exposure to concrete. To limit the effects of sulfate attack, Type V concrete is recommended. Additionally, a water to cementitious material ratio not exceeding 0.42 is recommended.

GROUNDWATER:

Groundwater was generally found at a depth of about 20 feet below the ground surface when measured several days after drilling. The table below lists the specific depths at which ground water was encountered.

Boring	Water Depth at time of Drilling	Water Depth Several Days After Drilling	Cave Depth
B-1	(no water found)	21 feet	21.5 feet
B-2	22 feet	20 feet	20 feet
B-3	(no water found)	(no water found)	19 feet
B-4	(no water found)	(no water found)	14 feet
B-5	(omitted from drilling program)		
B-6	15 feet	(no water found)	20 feet
B-7	22 feet	22 feet	22 feet
B-8	(no water found)	22 feet	24 feet
B-9	44 feet	21 feet	22 feet
B-10	(no water found)	22 feet	26 feet

Our review of previous studies conducted by STE indicate that groundwater depths were significantly shallower in the past. Perched groundwater and water contained in lenses of relatively permeable sands within less permeable clays are likely to be encountered.

It is anticipated that the depth to ground water will fluctuate with time based on seasonal, climatic, and other factors including irrigation.

GEOLOGIC SITE ASSESSMENT

The geologic formations in the vicinity of the project area include Quaternary Piney Creek Alluvium, Colluvium, and Pierre Shale below a thin layer of colluvium on the western side of the proposed development. Geologic hazards include moisture sensitive soils.

MOISTURE SENSITIVE SOILS

Our laboratory testing shows that the clay layers and the Pierre Shale have a medium to very high expansion potential when wetted and some of the soils have a collapse potential. These conditions must be considered in the design of building foundations and road pavements. The previous reports issued by STE have noted the hazards and some of our borings have encountered them. Both compression and swell can be remediated by removal and replacement with suitable material. For the clay, replacement at moisture contents above optimum is a common method. More detailed exploration and testing is required to better define the limits and their effect on the development.

EARTHQUAKE CONSIDERATIONS

The project area could experience earthquake related ground shaking. Modified Mercalli Intensity VI ground shaking should be expected during a reasonable exposure time for the development, but the probability for stronger ground shaking is low. Intensity VI ground shaking is felt by most people and causes general alarm, but results in negligible damage to structures of good design and construction. Occupied structures should be designed to withstand moderately strong ground shaking with little or no damage, and not to collapse under stronger ground shaking. According to the 2003 IBC and local codes, the property is considered to be Site Class C where the overburden is less than 15 feet and Site Class D where the overburden is greater than 15 feet. The Seismic Design Category is considered to be B.

ENGINEERING ANALYSIS

Because of the relatively large area considered within the proposed development, different conditions were identified within different areas of the site. At the western portion, expansive clay over shallow expansive claystone will be the dominant subsurface materials encountered at the anticipated foundation levels. Overburden consisting of

collapsible to expansive soils will encountered throughout the remainder of the site. Though no exceedingly soft/loose areas were identified in our study, such conditions have been identified in past studies, and it is possible that areas requiring significant remediation will be identified when site specific studies are conducted. Particularly, if shallow groundwater is identified, additional fill placement may be necessary to elevate foundations to a suitable distance from the groundwater.

Generally, the moisture sensitive soils should be remediated under all roadways, utility infrastructure, paved walks, drives, and flatwork, and under foundations. This can be accomplished in large part by removing, moisture conditioning, and replacing the existing soils in controlled compacted lifts. Unsuitable material, which includes the expansive claystone bedrock and some highly expansive clay should not be used below foundations. Because of the shallow depth of the bedrock along the western portion of the site, deep foundations, such as drilled piers may be a more cost effective option than over-excavation and replacement. In areas where the existing expansive material is replaced with a more permeable granular material, a toe drain at the base of the fill will be necessary to prevent the accumulation of surface water at this interface.

Structural floors built above crawlspaces will perform the best in the moisture sensitive soils encountered, but if the increased risk of slab movement can be tolerated, on-grade slabs can be used for the garage areas provided the area below has been over-excavated and replaced with suitable material. A more detailed discussion of floor types has been provided in the *Floors* subsection of the *Preliminary Design Recommendations* section below.

We recommend that the potential homeowner be supplied with, read and follow the recommendations presented in the Colorado Geologic Survey's Special Publication 43 "Home Landscaping and Maintenance on Swelling Soil". This publication provides a thorough description of the construction of homes on expansive soil, and includes information about the additional maintenance and care required for such homes. In particular, information about surface drainage and irrigation should be reviewed.

Because high concentrations of water soluble sulfates were found, special cement will likely be necessary for concrete in contact with the native soils. Because special cement could potentially add substantial construction costs, additional testing during the site specific investigations is recommended to determine the extent of these high concentrations.

Roadways will require subgrade improvement, which could be accomplished via over-excavation and replacement, and/or the use of geogrid below the pavement section. Lime stabilization of the native soils with high sulfate concentrations is not recommended due to the potential formation of calcium-sulfate-aluminate-hydrates, and the soil heave associated with the formation of these crystalline compounds.

PRELIMINARY DESIGN RECOMMENDATIONS

Based on the subsurface conditioned encountered, and our understanding of the proposed development, the following preliminary design recommendations have been provided.

SITE GRADING

We anticipate relatively shallow cuts and fills. We should have the opportunity to review construction plans for consistency with our recommendations.

Site Preparation:

The following preliminary recommendations should be observed for site preparation.

- 1. Permanent cut and fill slopes should be no steeper than 3:1 (horizontal to vertical). Any man-made slopes higher than 10 feet should be evaluated for slope stability.
- 2. All unsuitable organic material, debris or soft soils should be removed from areas to receive fill. This applies particularly to the placement of fill on slopes. If grading creates any slope steeper than 4 horizontal to 1 vertical, the ground should be benched to provide a relatively level surface for compaction. The exposed soils should be scarified, moisture conditioned, and compacted to the same density as the overlying fill.

3. All fill and backfill should be approved by the geotechnical engineer, placed in uniform lifts with a thickness compatible with the type of compaction equipment being used, moisture conditioned within 0 to +3 percent of optimum moisture content for the clay soil, and ±2 percent of optimum for the sand soils. The soils should be compacted with the appropriate equipment for the lift thickness used. The following minimum percentages of the maximum dry density, as determined by ASTM D698 (standard Proctor), are considered suitable for the anticipated development.

- a) Below foundations......95%
- b) Below slabs and pavements......95%
- c) Landscaped area fill......90%
- d) Retaining or Foundation Wall Backfill......95%

Suitability of On-Site Soil:

The clay soils encountered in the borings were found to have a relatively high swell potential at their in-situ moisture content and density, and will likely be expansive when placed as fill. Moisture conditioning to optimum and above can reduce the swell potential, but will not eliminate the risk of heaving caused by expansive soils. For fills that contain these clay soils, we recommend Standard Proctor criteria (ASTM D698) as opposed to modified Proctor criteria (ASTM D1557), because its use generally yields fill at higher optimum moisture content at a lower density and hence a lower expansion potential. All soils proposed for use below slabs or foundations should be tested for suitability. Bedrock will not be suitable for placement under structures.

Borrow areas should be stripped and segregated so that the fill will be free of deleterious materials. The on-site soil should be processed so that the fill does not contain rock or soil fragments larger than 4 inches in diameter. Any soils imported to the site should be approved by the geotechnical engineer.

EXCAVATIONS:

The sandy clay overburden, and the bedrock encountered in our borings can be excavated with typical heavy duty excavation equipment. Relatively shallow excavations are

anticipated for the construction of the proposed residences, but deeper excavations may be required for utility trenches.

It is the responsibility of the Contractor to provide safe working conditions and to comply with the regulations in OSHA Standards, Excavations, 29CFS Part 1926. The on-site native clay will likely classify as "Type B" in accordance with OSHA regulations. The regulations allow slopes of 1:1 horizontal to vertical for Type B soils for temporary excavations less than 20 feet deep. Some of the hard native sandy clay and claystone or sandstone bedrock will classify as "Type A" in accordance with OSHA regulations. The regulation allows for slopes of ³/₄:1 for temporary excavations less than 20 feet deep. The native sands encountered below the clay will likely classify as "Type C" in accordance with OSHA regulations. The regulations allow slopes of 1½:1 horizontal to vertical (34°) for Type C soils for temporary excavations less than 20 feet deep. The presence of water, seepage, fissuring, vibrations or surcharge loads will require temporary excavation to have slopes flatter than those allowed by OSHA regulations. The Contractor's competent person should make decisions regarding cut slopes. A qualified Geotechnical engineer should observe any questionable slopes or conditions. Temporary shoring or trench boxes may be necessary. Trench cut slopes in cohesive soils and bedrock should stand at near vertical for a sufficient length of time to install any required temporary shoring unless adversely affected by groundwater seepage, vibrations or surcharge loads. Trenches cut in non-cohesive sand may not stand at a near vertical slope during the time required to install trench boxes, and these areas may require the trench to be sloped instead.

FOUNDATIONS

Considering the subsurface conditions encountered in our investigation and the nature of the proposed construction, either deep foundation systems or over-excavation and replacement should be utilized for proposed structures. Deep foundations consisting of typical drilled shaft piers will likely be suitable at the west side of the site. Helical piers bearing in the overburden materials will be necessary for areas where deep bedrock exists. Particularly in the east portion of the site, deep foundations will not likely be required if over-excavation and replacement is conducted.

These criteria are presented for preliminary planning purposes only. Actual design criteria should be established by drilling closely-spaced borings within each building footprint and performing laboratory testing.

FLOOR SLABS

Floor slabs present a difficult problem where expansive materials are near the proposed floor slab elevation because sufficient dead load cannot be imposed on them to resist the uplift pressure generated when the materials become wet and expand. The only positive method to control floor slab movement on these soils is to construct a structural floor system above a crawl space. The evaluation of mold hazards is beyond the scope of this study and H-P Geotech does not provide recommendations regarding mold mitigation.

Garage floors are subject to the same difficult soils conditions as described above, but are difficult to construct over crawlspaces due to the relatively high live loading conditions anticipated. Slab-on-grade construction can be used for the garage floors provided that the risk of distress resulting from floor slab movement is recognized and accepted by the builder/potential homeowner. In areas with high swell potential, over-excavation of the native soils, and replacement with suitable moisture conditioned soils will be required.

DRAINAGE

Underdrains

Though groundwater was found at relatively low elevations compared to those of the anticipated foundations, it has been known to be significantly higher in the past.

Additionally, surface water infiltration due to storm events and irrigation will change the groundwater depth. Therefore, we recommend below-grade construction, including crawlspaces be protected from excessive wetting by an underdrain system. The drain also will act to prevent buildup of hydrostatic pressures behind foundation walls.

Surface Drainage and Erosion Control:

Moisture-sensitive and erodible subsoils were identified at this site. The satisfactory performance of foundations, floor slabs and pavements are directly related to positive surface and subsurface drainage systems to prevent subgrade wetting. Surface grades should be maintained such that irrigation, snowmelt and precipitation water will easily

run off away from the structures and pavement. A 10 percent slope adjacent to foundations is commonly used. Positive drainage away from all structures and roadways should be maintained.

Additionally, good surface drainage should be provided around all fill areas and cut slopes to direct surface runoff away from these areas. Slopes and other stripped areas should be protected against erosion by paving, re-vegetation or other means.

CONTINUING SERVICES

Two additional elements of geotechnical engineering service are important for the successful completion of this project.

- Consultation with design professionals during the design phases. This is
 important so the intentions of our recommendations are properly incorporated in
 the design, and that any changes in the design concept properly consider
 geotechnical aspects. A design-level geotechnical study should be undertaken
 once siting and configuration of the project is final.
- 2. Observation and monitoring during construction. A geotechnical engineer from our firm should observe the excavation, earthwork, and foundation phases of the work to judge that subsurface conditions are compatible with those used in the analysis and design. During site grading, placement of fill should be observed and tested to confirm that the proper placement conditions have been achieved.

LIMITATIONS

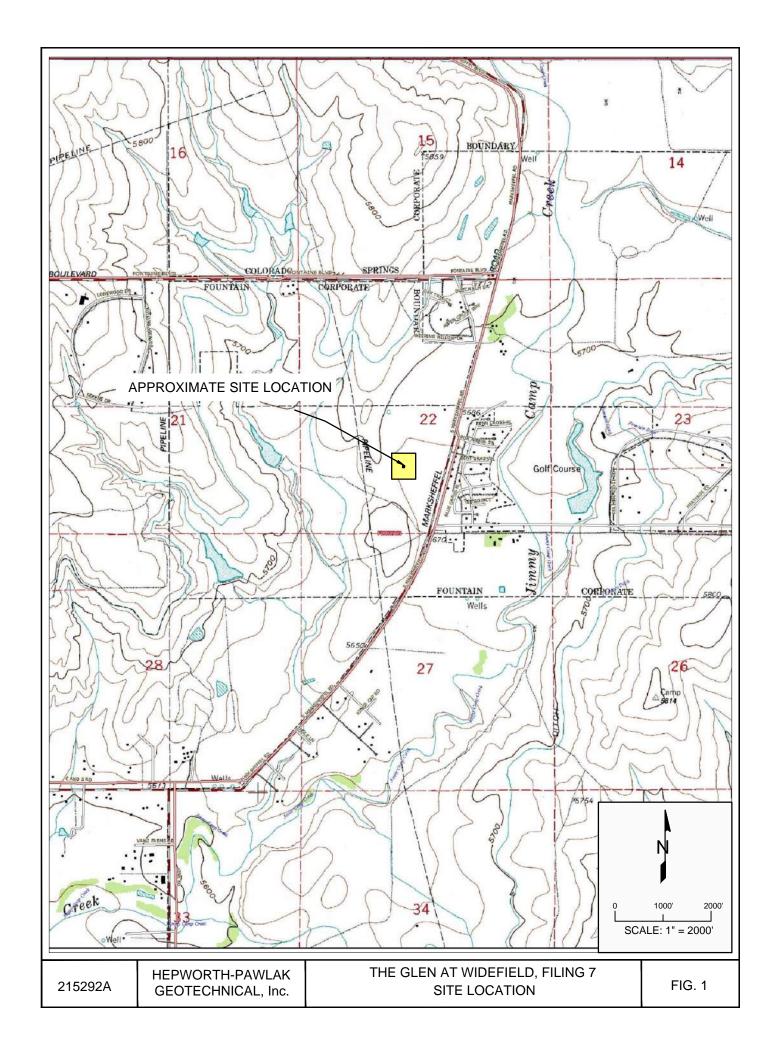
This report has been prepared in accordance with generally accepted geotechnical engineering principles and practices in this area at this time. We make no warranty either express or implied. The conclusions and recommendations submitted in this report are based upon the data obtained from widely-spaced exploratory borings drilled at the locations indicated on Figure 2, the proposed type of construction and our experience in the area, and the review of previous studies conducted in the area. Our findings are preliminary in nature and include interpolation and extrapolation of the subsurface conditions identified at the exploratory borings and variations in the subsurface

conditions may not become evident until further exploration or excavation is performed. A site specific geotechnical study should be performed for each lot.

This report has been prepared for the exclusive use by our client for preliminary design purposes. We are not responsible for technical interpretations by others of our exploratory information which has not been described or documented in this report. As the project evolves, we should provide continued consultation and field services during construction to review and monitor the implementation of our recommendations, and to verify that the recommendations have been appropriately interpreted.

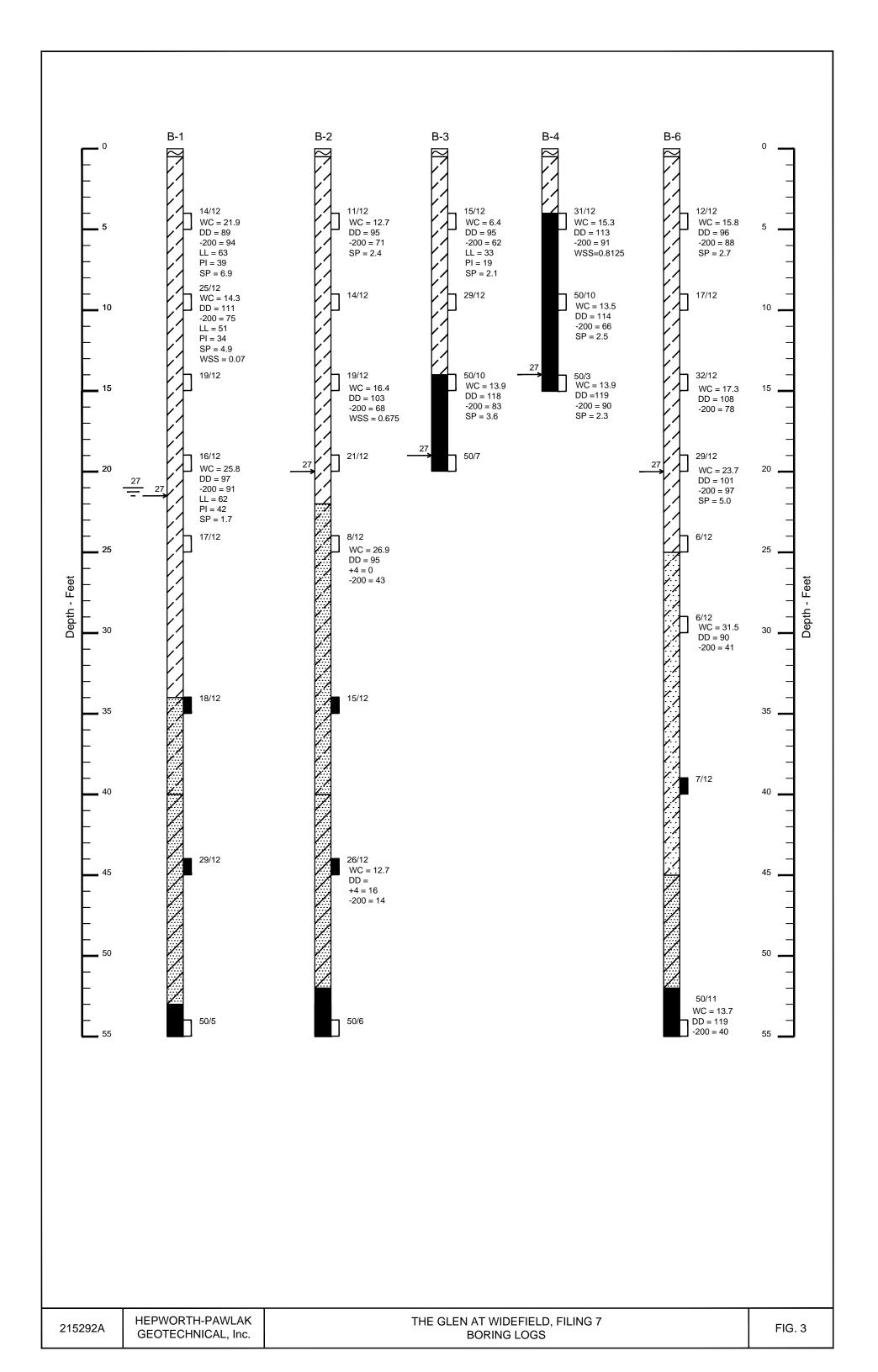
If you have any questions or if we can be of further service, please call. We appreciate the opportunity to have worked on this project.

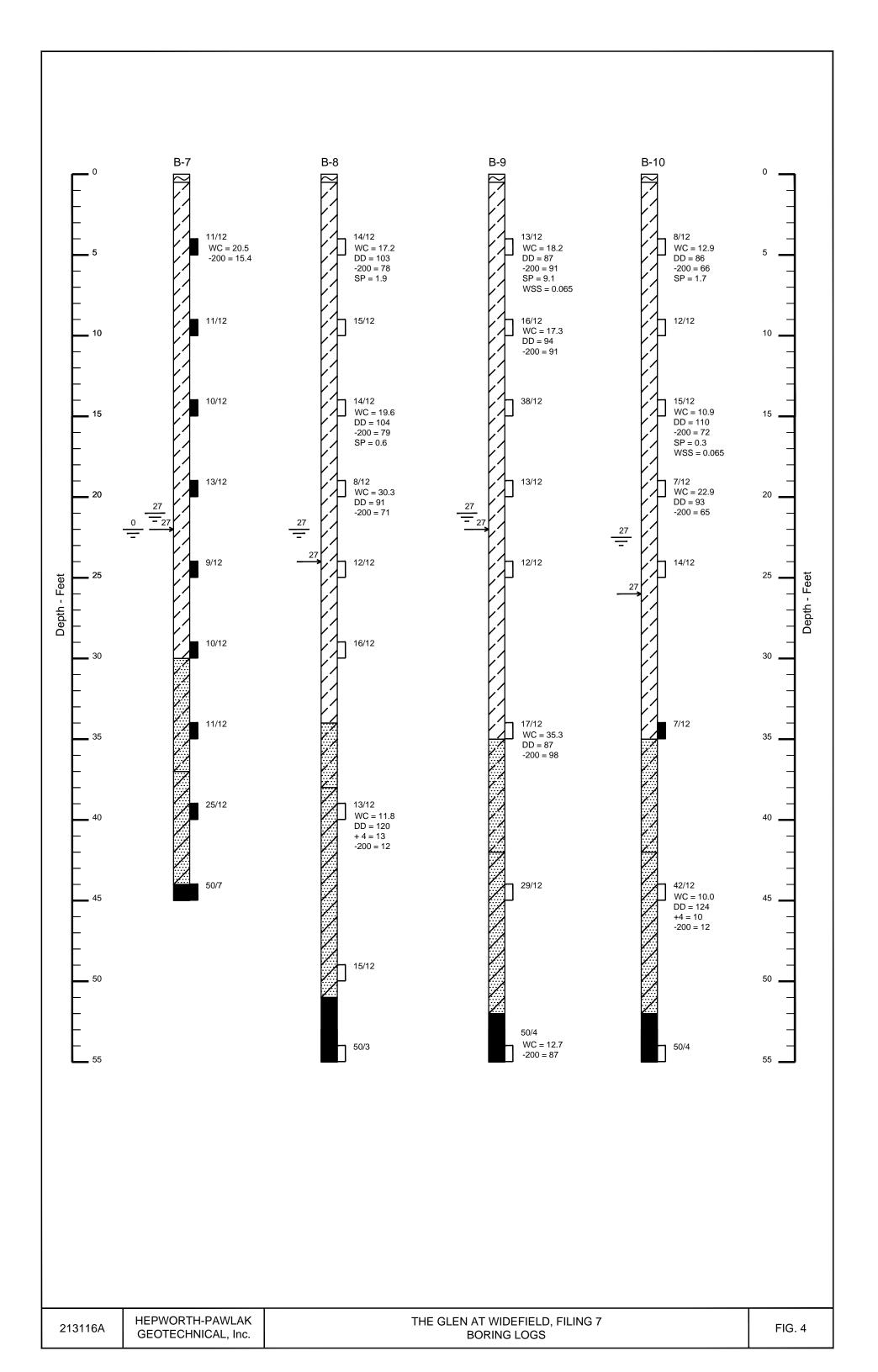
Sincerely,

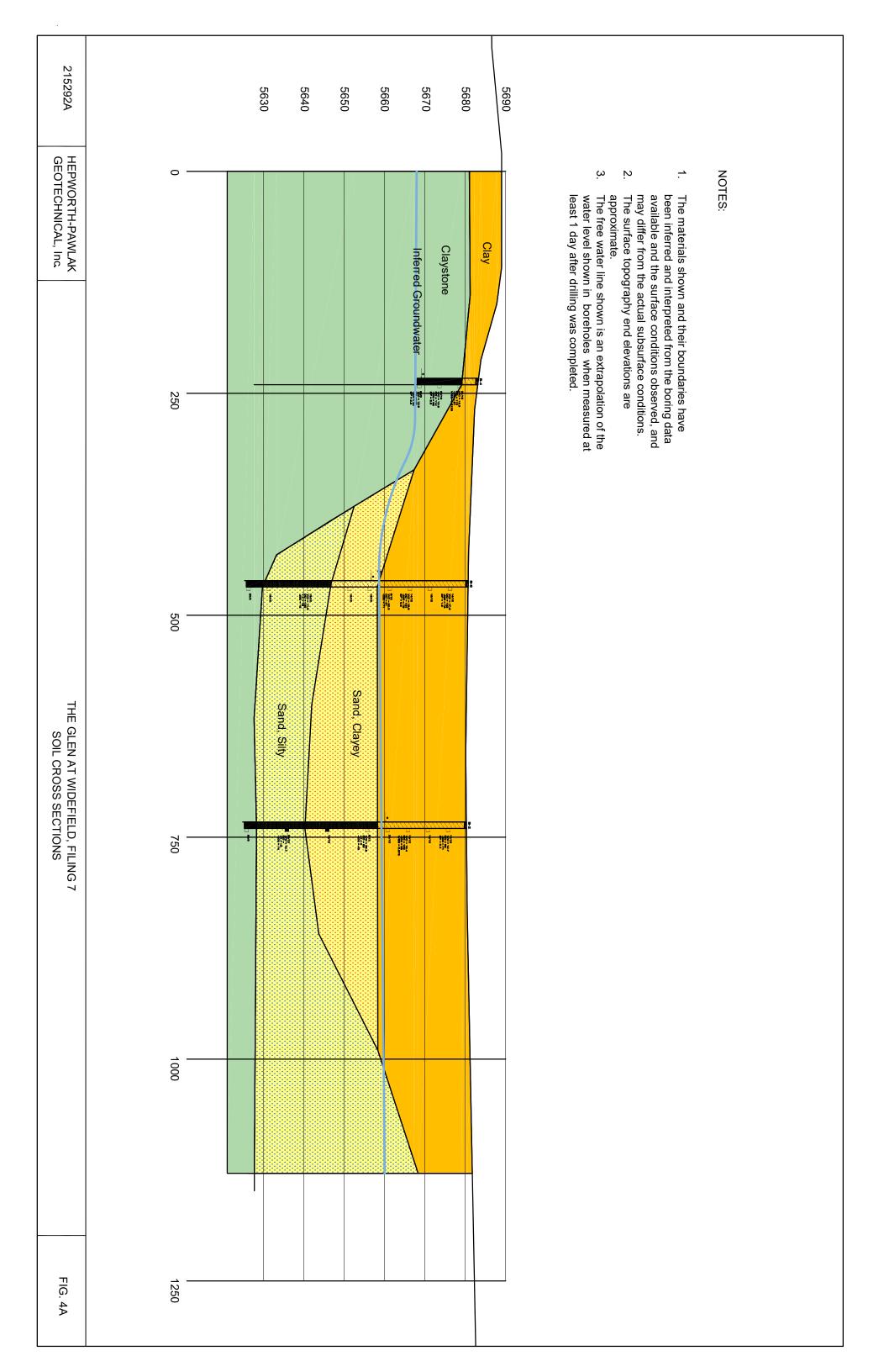

HEPWORTH - PAWLAK GEOTECHNICAL, INC.

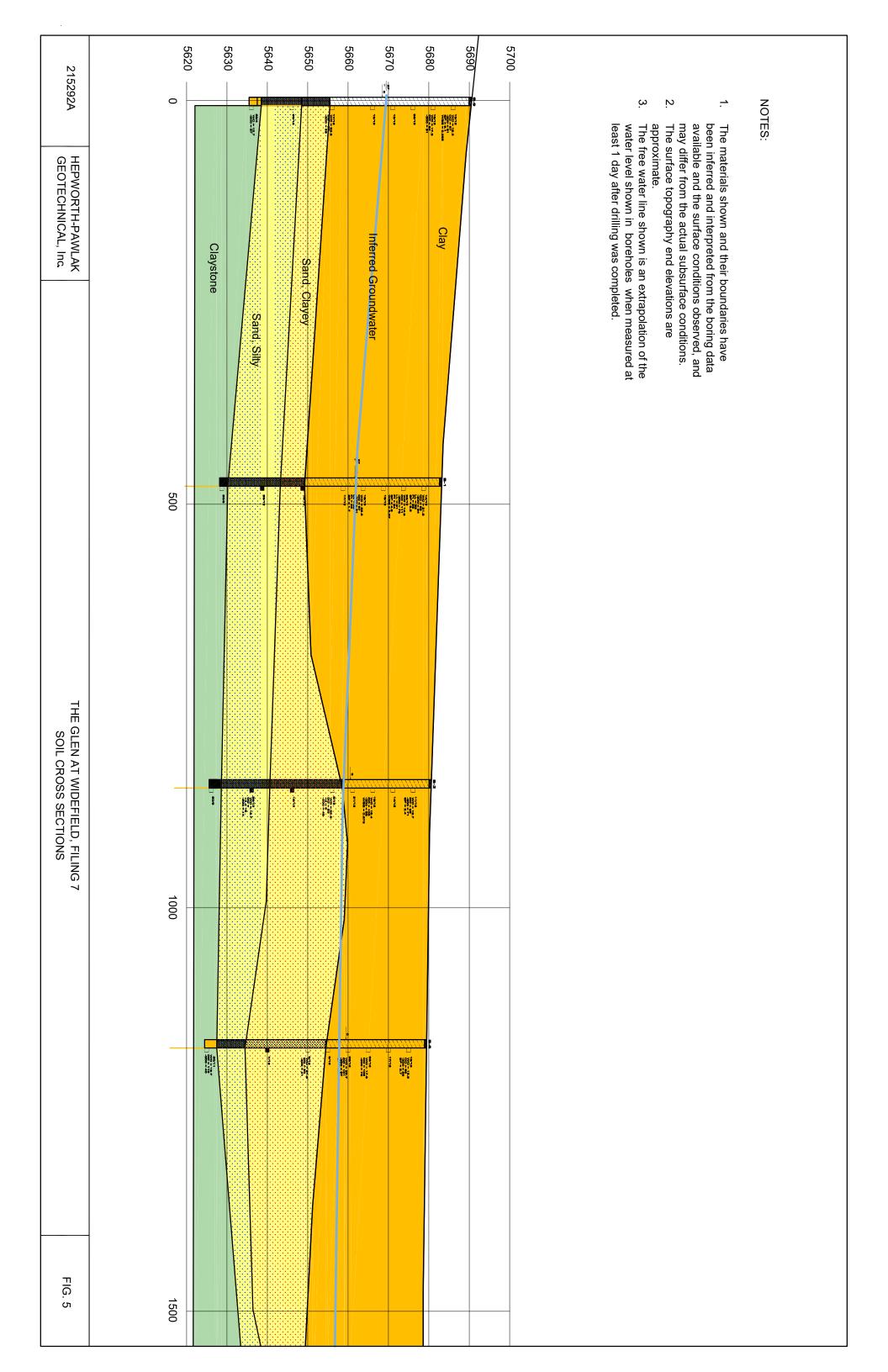

Cuong Vu, Ph.D., P.E.

and


Arben Kalaveshi, P.E.

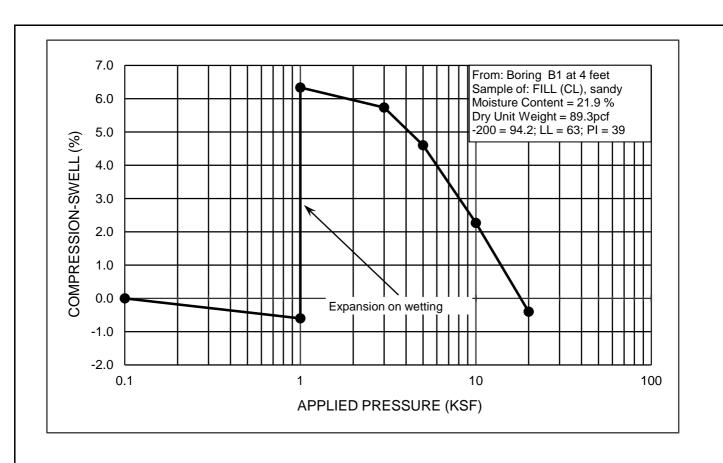


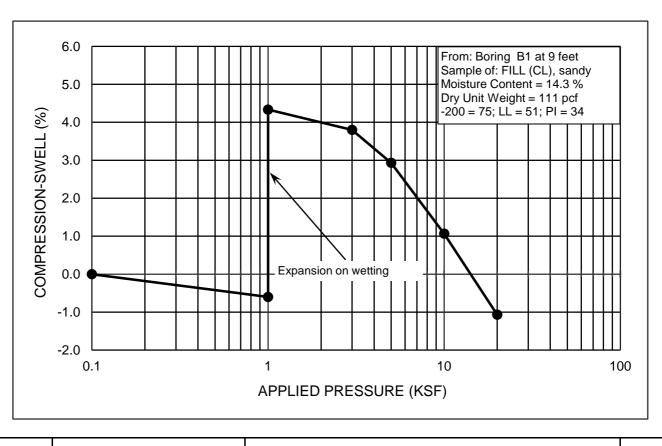


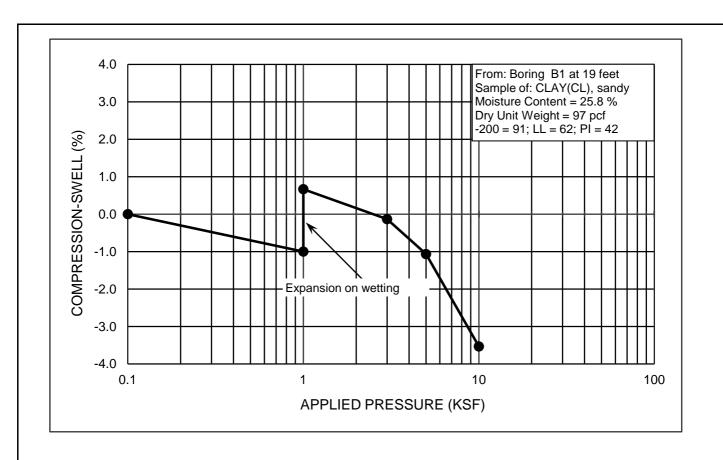


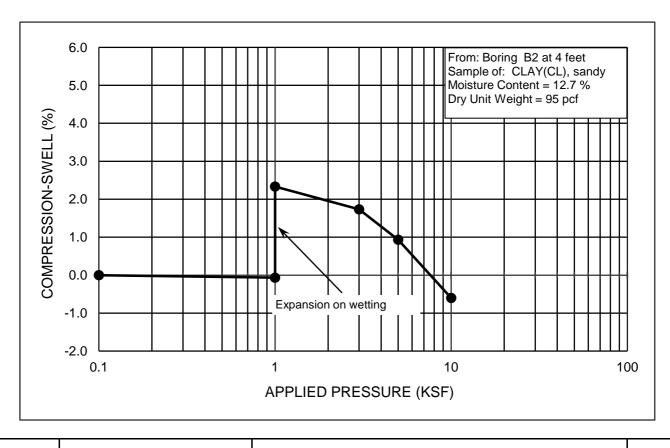
LEGEND
TOPSOIL: Clay (CL), sandy, slightly moist to moist, brown, with grass/weed cover.
CLAY (CL), sandy, fine to medium grained, medium stiff to very stiff, medium plasticity, moist to wet, brown.
SAND (SC), clayey, fine to coarse grained, low plasticity, loose to medium dense, very moist moist to wet, brown.
SAND (SP-SM), silty, gravelly, fine to coarse grained, medium dense, moist, brown.
Claystone, fine grained, medium hard to very hard, moist, brown to blue.
Indicates 1% inch I.D. Split Spoon sampler. 17/12 indicates 17 blows of a 140-pound hammer falling 30 inches were required to drive the sampler 12 inches.
Indicates 2-inch I.D. California sampler. 17/12 indicates 17 blows of a 140-pound hammer falling 30 inches were required to drive the sampler 12 inches.
Indicates depth of cave and number of days after drilling measurement was made.
Indicates depth of free water and number of days after drilling measurement was made.

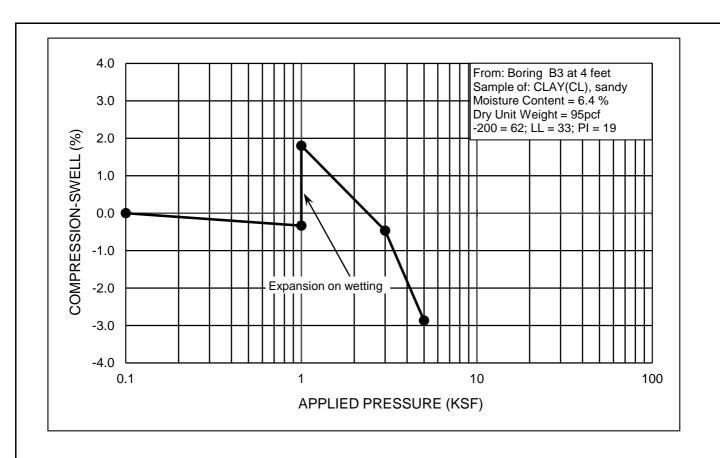
NOTES:

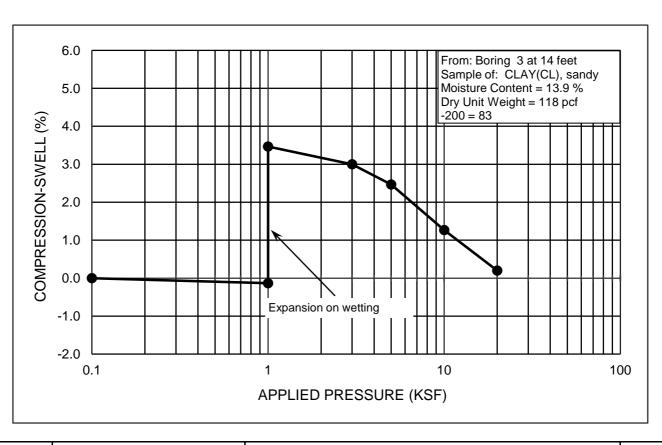

- 1. Fleld work was conducted on September 23 and 24, 2015. The Boring was drilled and sampled using a truck mounted CME 550X All Terrain Drill Rig.
- 2. Location of borings shown on Figure 2 are approximate.
- 3. Elevations of borings were not measured during our site visit.
- 4. The lines between strata represent approximate boundaries and transitions may be gradual.
- 5. Laboratory Testing Results:

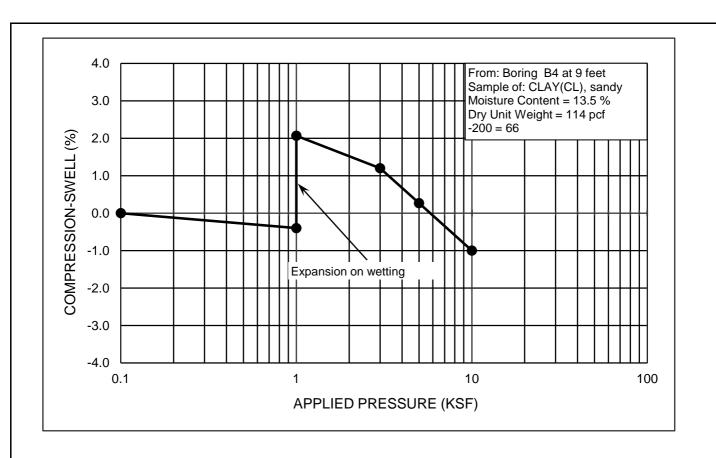

MC=Moisture content (%).

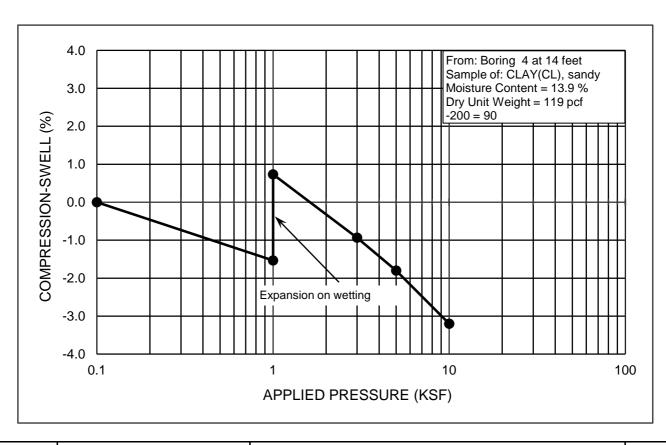

DD=Dry density (pcf).


- +4 = Percent of gravel fraction
- -200 = Percent of silt and clay fraction.
- LL = Liquid limit.
- PI = Plastic index.
- SP = Percent swell under a surcharge of 1,000 psf when wetted.
- WSS = Water Soluble Sulfates in Percent.

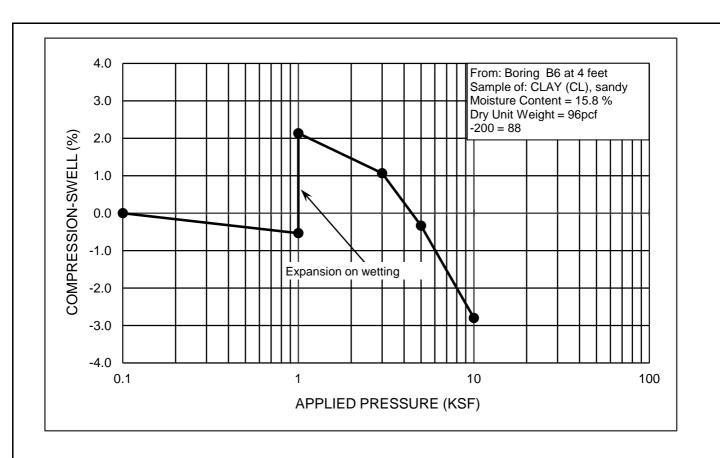

HEPWORTH-PAWLAK THE GLEN AT WIDEFIELD, FILING 7 GEOTECHNICAL, Inc. LEGEND AND NOTES FIG

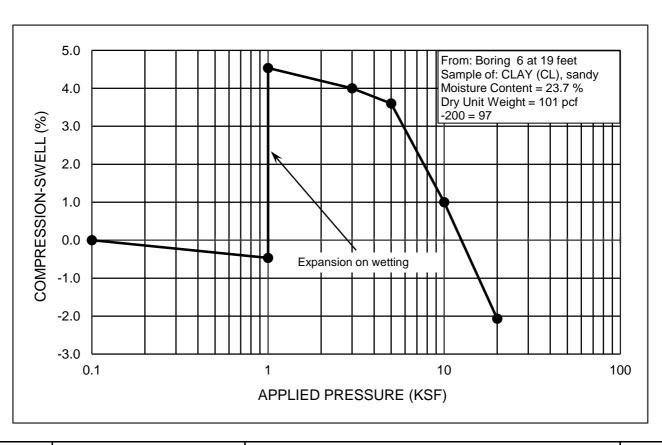






WIDEFIELD


SWELL-COMPRESSION TEST RESULTS

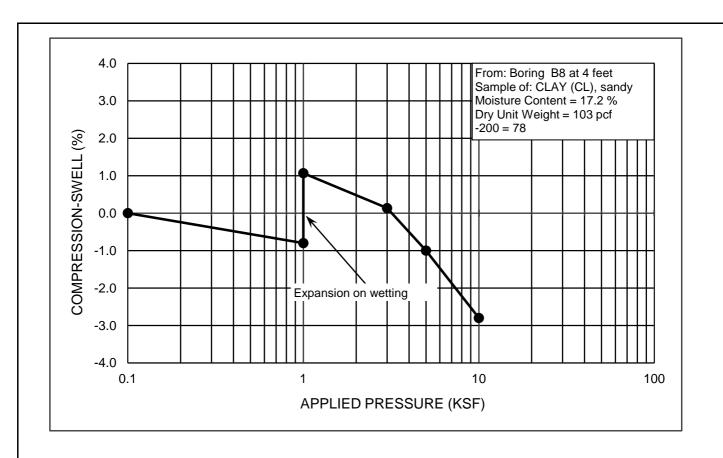

FIG. 9

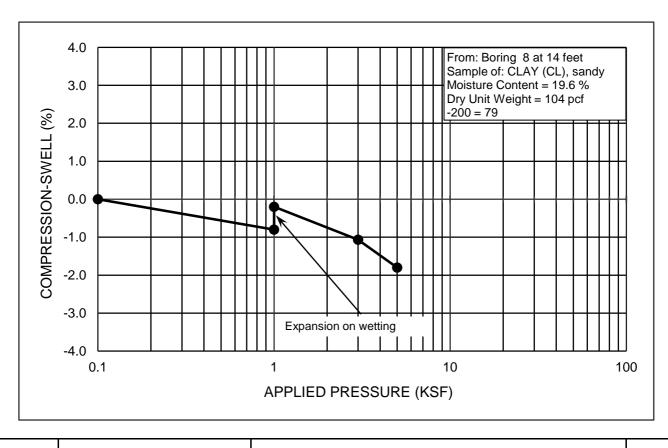
HEPWORTH-PAWLAK

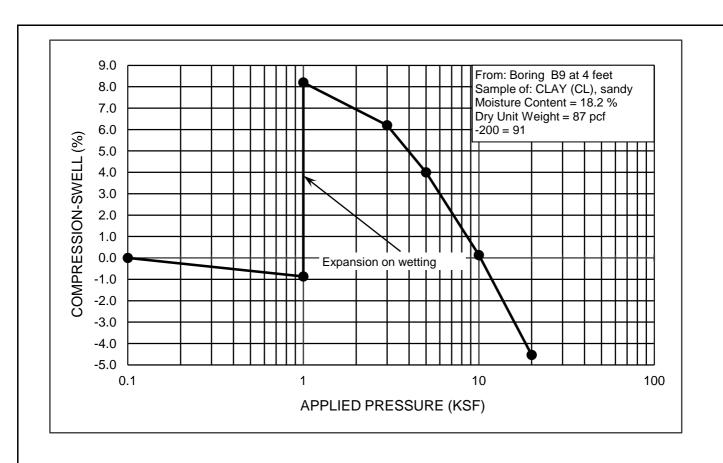
GEOTECHNICAL, INC.

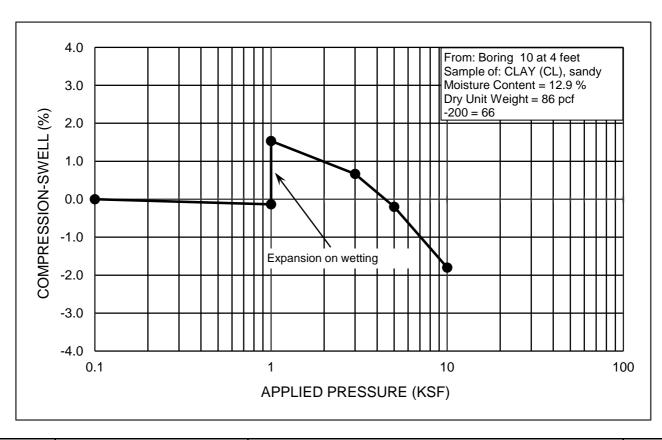
215292A

WIDEFIELD


SWELL-COMPRESSION TEST RESULTS

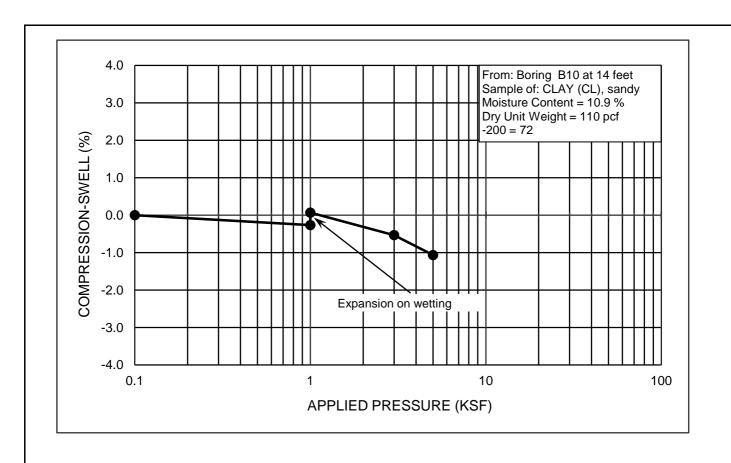

FIG. 10

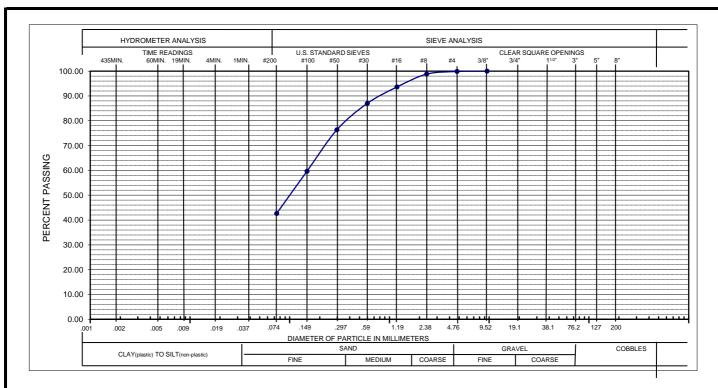

HEPWORTH-PAWLAK


GEOTECHNICAL, INC.

215292A

WIDEFIELD

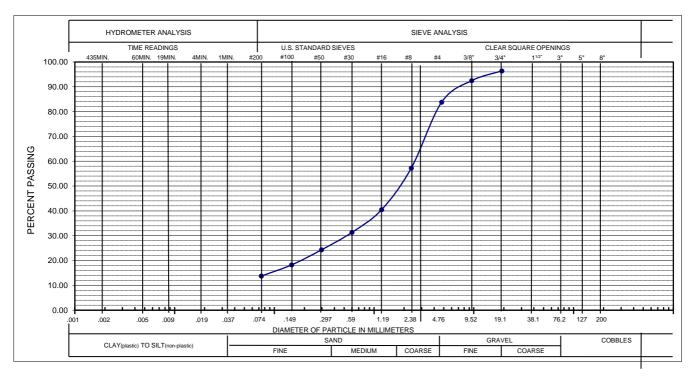

SWELL-COMPRESSION TEST RESULTS


FIG. 12

HEPWORTH-PAWLAK

GEOTECHNICAL, INC.

215292A

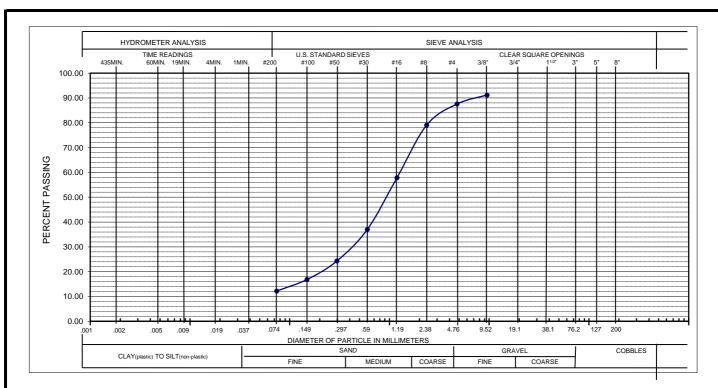


GRAVEL: 0% SAND: 57% SILT AND CLAY: 43%

LIQUID LIMIT:
SAMPLE OF: SAND (SC), clayey

GEOTECHNICAL, INC.

PLASTICITY INDEX:
FROM: B2 @ 24 feet



GRAVEL: 16% SAND: 70% SILT AND CLAY: 14%

GRADATION ANALYSIS

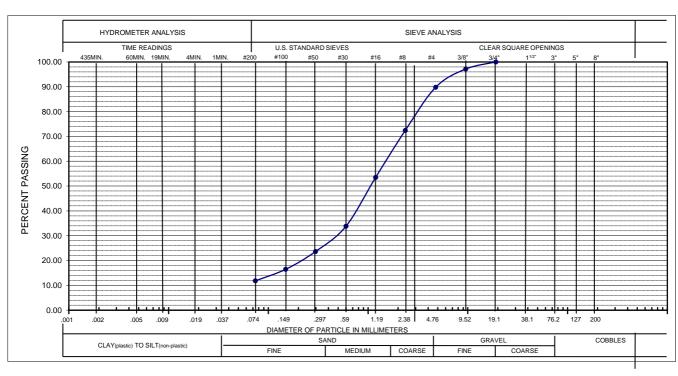
LIQUID LIMIT: PLASTICITY INDEX:
SAMPLE OF: SAND (SP-SM), gravelly, silty FROM: B2 @ 44 feet

215292A HEPWORTH-PAWLAK WIDEFIELD FIG. 14

GRAVEL:

13%

SAND: 75%


SILT AND CLAY:

12%

LIQUID LIMIT: SAMPLE OF:

SAND (SP-SM), gravelly, sandy

PLASTICITY INDEX: FROM: B8 @ 39 feet

GRAVEL:

10%

SAND: 78%

SILT AND CLAY:

12%

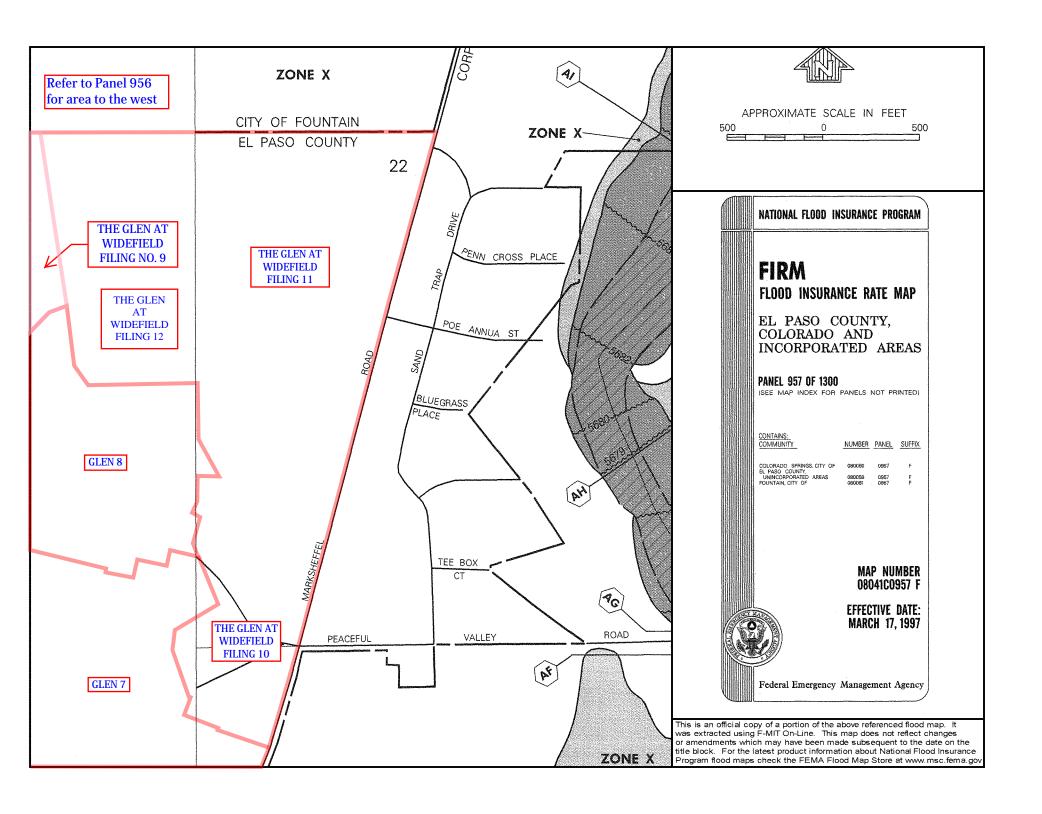
LIQUID LIMIT: SAMPLE OF:

SAND (SP-SM), gravelly, silty

PLASTICITY INDEX:

FROM: B2 @ 44 feet

215292A HEPWORTH-PAWLAK GEOTECHNICAL, INC. WIDEFIELD GRADATION ANALYSIS


FIG. 15

HEPWORTH-PAWLAK GEOTECHNICAL, INC.

JOB NO. 215292A PROJECT: WIDEFIELD

TABLE 1 SUMMARY OF LABORATORY TEST RESULTS

		Ī	i					ST KESULTS			
	MPLE	NATURAL	NATURAL		GRADATIO			ERG LIMITS	SWELL/COMP	WATER	
	ATION	MOISTURE	DRY	GRAVEL	SAND	SILT &	LIQUID	PLASTIC	WITH 1,000 psf	SOLUBLE	SOIL OR BEDROCK TYPE
BORING	DEPTH (teet)	CONTENT (%)	UNIT WEIGHT (PCF)	(%)	(%)	CLAY (%)	LIMIT (%)	INDEX (%)	SURCHARGE (%)	SULFATES (%)	(USCS CLASSIFICATION)
B-1	4	21.9	89			94	63	39	6.9		CLAY (CL), sandy
D 1	9	14.3	111			75	51	34	0.7	0.07	CLAY (CL), sandy
	19	25.8	97			91	62	42	1.7	0.07	CLAY (CL), sandy
B-2	4	12.7	95			71	02	42	2.4		CLAY (CL), sandy
D-2	14	16.4	103			68			2.4	0.675	CLAY (CL), sandy
	24	26.9	95	0	57	43				0.073	SAND (SM), silty
	44	12.7	73	16	70	14					SAND (SP-SM), gravelly, silty
B-3	4	6.4	95	10	70	62	33	19	2.1		CLAY (CL), sandy
р-3	14	13.9	118			83	33	19	3.6		CLAYSTONE
B-4	4	15.3	113			91			3.0	0.813	CLAYSTONE
D-4	9	13.5	114			66			2.5	0.013	CLAYSTONE
	14	13.9	118			83			2.3		CLAYSTONE
B-6	4	15.8	96			88			2.7		CLATSTONE CLAY (CL), sandy
D-0	14	17.3	108			78			2.1		CLAY (CL), sandy
	19	23.7	101			97			5.0		CLAY (CL), sandy
	29	31.5	90			41			5.0		SAND (SC), clayey
	54	13.7	119			40					CLAYSTONE
B-7	34	20.5	15			40					CLAY (CL), sandy
B-8	4	17.2	103			78			1.9		CLAY (CL), sandy
D-0	14	19.6	104			79			0.6		CLAY (CL), sandy
	19	30.3	91			71			0.0		CLAY (CL), sandy
	39	11.8	120	13	75	12					SAND (SP-SM), gravelly, silty
D 0	4		87	13	13	91			9.1	0.065	
B-9		18.2							9.1	0.003	CLAY (CL), sandy
	9	17.3	94			91					CLAY (CL), sandy
	34	35.3	87			98					CLAY (CL), sandy
D 10	54	12.7	0.6			87			1.7		CLAYSTONE
B-10	4	12.9	86			66			1.7	0.065	CLAY (CL), sandy
	14	10.9	110			72			0.3	0.065	CLAY (CL), sandy
	19	22.9	93	10		65					CLAY (CL), sandy
	44	10.0	124	10	88	12					SAND (SC), clayey

APPENDIX A.1

Supporting Hydrologic Tables and Figures
Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc
Table 2: Opinion of Cost – Drainage Facilities

Glen at Widefield Filing No. 12 Drainage Basin and Bridge Fees

Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculation

Total Lots =	79 lots
Total Development Area =	27.229 ac
Total Undeveloped Acres =	5.523 ac
Total Developed Area =	21.7 ac
Building/Patio/Drive Per Lot =	2,500 sf
Total Building/Patio/Drive Area =	4.534 ac
Total Street/Sidewalk Area =	4.000 ac
Total Impervious Area =	8.534 ac
% Impervious Area =	39.32 %

West Fork Jimmy Camp Creek Drainage Basin

Drainage Basin Fee and Bridge Fee Calculations												
Drainage Basin Fee =	\$14,470 / ac	Drainage Basin Fee =	\$ 123,486.63									
Bridge Fee =	\$4,281 / ac	Bridge Fee =	\$ 36,533.95									
Less Previous Drainage Fee Credit (Widefield Filing No. 7)	\$0.00	\$ 0.00									
2	asin Fee Reimbursement n Fee Credit Available	\$0.00 \$0.00										

	Drainage Basin	Bridge
Total Fees Due for the Glen at Widefield Filing No. 12	\$123,486.63	\$ 36,533.95

The Glen at Widefield Engineer's Opinion of Probable Cost Calculation

Basin 'D' Storm Pipe Quantities -DONE/12/05/2022 -mjk

Mat'l.	Pipe Size	Total LF		Unit Cost	Total
RCP	18"	1014.49	LF	\$72	\$ 73,043
RCP	21"	595.72	LF	\$84	\$ 50,040
RCP	24"	411.17	LF	\$96	\$ 39,472
HERCP	24" equiv	112.46	LF	\$105	\$ 11,808
RCP	27"	0.00	LF	\$105	\$ -
RCP	30"	504.98	LF	\$110	\$ 55,548
RCP	36"	1288.76	LF	\$128	\$ 164,961
RCP	36"	78.14	LF	\$128	\$ 10,002
RCP IV	36"	249.41	LF	\$142	\$ 35,416
HERCP	48 equiv	101.50	LF	\$140	\$ 14,210
C.B.C.	3'x2'	180.00	LF	\$140	\$ 25,200
	· · ·	4536.63		Grand Total:	\$ 479,702

FILING 12 ONLY - Storm Pipe Quantities -

Mat'l.	Pipe Size	Total LF		Unit Cost	Total
RCP	18"	284.38	LF	\$72	\$ 20,475
	•	284.38		Grand Total:	\$ 20,475

APPENDIX B

Rational Calculations

Existing Condition – Runoff Co-eff, Time of Concentration and Runoff Calcs

Developed Condition – Runoff Co-eff, Time of Concentration and Runoff Calcs

The Glen at Widefield **Existing Condition** Runoff Coeficient and Percent Impervious Calculation

Filing 1	12 - Exis	sting Conditio	n		PV	Area 1 L	and Use	LA	Area 2	Land Use	RS2	Area 3 Land Use	RS1	Area 4	Land Use		HI A	Area 5 Land Use								
		Basin or D		oil Type	Imperv	Land Use Area	% Area Comp Land Use % Imp	% Imperv	Land Use Area	% Area Comp Land	% Imperv	Land Use Area % Area omp Land Ise % Imp	% Imperv	Land Use Area	% Area	Use % Imp	% Imperv	- %	Basin %		Basin	Runo	ff Coe	ficient	t	
Basin	DP	(DP contributi	ng basins)	Soil	1 %	Lan	% Com Use	11 %	Lan	% Com	% II	Land l Are %Ar Comp I Use %	11 %	Lan	% Com	Use	ıı %	Land Are % A:	Bas Im	$\mathbf{C_2}$	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Notes:
D-1	DP 68	61,148 sf	1.40ac	В	100%		0% 0%	0%	1.40ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-2		72,745 sf	1.67ac	В	100%		0% 0%	0%	1.67ac	100% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-3	DP 70	73,555 sf	1.69ac	В	100%		0% 0%	0%	1.69ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.02	0.08	0.15	0.25		0.35	Undeveloped Condition
D-4		90,208 sf	2.07ac	С	100%		0% 0%	0%	2.07ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-5	DP 72	68,122 sf	1.56ac	С	100%		0% 0%	0%	1.56ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-6	DP 73	18,040 sf	0.41ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.41ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-7		130,015 sf	2.98ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.98ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-8		70,452 sf	1.62ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.62ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-9	DP 77	95,396 sf	2.19ac	В	100%		0% 0%	0%	2.19ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-10		109,710 sf	2.52ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.52ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-11	DP 80	172,355 sf	3.96ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.96ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-12		60,400 sf	1.39ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.39ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-13		89,754 sf	2.06ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.06ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-14		143,954 sf	3.30ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.30ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-15	DP 84	122,155 sf	2.80ac	В	100%		0% 0%	0%	2.80ac	100% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-16		98,963 sf	2.27ac	С	100%		0% 0%	0%	2.27ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%	0.0%	0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-16.1		90,495 sf	2.08ac	С	100%		0% 0%	0%		0% 0%		0% 0%	37%	2.08ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41		0.54	0.58	Developed with Filing No 11
D-17		150,208 sf	3.45ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.45ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-18		92,997 sf	2.13ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.13ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-19		129,215 sf	2.97ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.97ac	100% 3	7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-19.1	DP89	7,235 sf	0.17ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.17ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-20a	DP 92a	35,151 sf	0.81ac	С	100%		42% 42%	0%	0.37ac	46% 0%	46%	0% 0%	37%	0.10ac		1%	2%	0% 0%	46.6%	0.32	0.38	0.44	0.52			Developed with Filing No 10
D-20b	DP 92b	20,481 sf	0.47ac	С	100%	0.40ac	85% 85%	0%	0.07ac	15% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.66	0.68	0.71	0.75	0.78	0.79	Developed with Filing No 11
D-20c	DP 92d	15,896 sf	0.36ac	С	100%	0.17ac	47% 47%	0%	0.19ac	52% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	46.6%	0.32	0.38	0.44	0.52	0.56	0.60	Developed with Filing No 11
D-21	DP 91	175,102 sf	4.02ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	4.02ac	100% 3	7%	2%	0% 0%	37.0%	0.22	0.28	0.35	0.41	0.45	0.49	Developed with Filing No 10
D-22	DP 90	50,194 sf	1.15ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.15ac	100% 3	7%	2%	0% 0%	37.0%	0.22	0.28	0.35	0.41	0.45	0.49	Developed with Filing No 10
D-23	DP92e	12,393 sf	0.28ac	С	100%	0.24ac	84% 84%	0%	0.04ac	16% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	84.4%	0.65	0.67	0.71	0.74	0.77	0.78	Developed with Filing No 11
D-24		443,273 sf	10.18ac	C	100%		0% 0%	0%	8.18ac	80% 0%	46%	0% 0%	37%	2.00ac	20%	7%	2%	0% 0%	7.3%	0.09	0.20	0.29	0.40	0.47	0.52	Developed with Filing No 10
(Combine	d Design Point S	Summary																							
	DP 69	D1, D2	3.07ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.00ac	0% ()%	2%	0% 0%	0.0%	0.02	0.08		0.25		0.35	
	DP 71	D3, D4	3.76ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.00ac		0%	2%	0% 0%		0.02	0.08	0.15	0.25	-		
	DP 74	D3, D4, D6	4.17ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.41ac		1%	2%	0% 0%	3.7%	0.07	0.17	0.27	0.39	0.46	0.51	
	DP 75	D1-D4, D6, D7	10.23ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.40ac		2%	2%	0% 0%	12.3%	0.12	0.22	0.31	0.42		0.54	
	DP 76	D1-D4, D6-D8	11.85ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.02ac		6%	2%	0% 0%	15.7%	0.15	0.24	0.33	0.43	0.49	0.54	
	DP 78	D1-D4, D6-D9	14.04ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.02ac		3%	2%	0% 0%		0.13	0.23	0.32	0.42	0.49	0.54	
	DP 79	D8, D10	4.14ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	4.14ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 81	D11, D12	5.34ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.34ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 82	D5, D13	3.62ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.06ac	57% 2	1%	2%	0% 0%	21.0%	0.18	0.26	0.35	0.45	0.51	0.55	
	DP 83	D5, D13, D14	6.93ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.37ac	77% 2	9%	2%	0% 0%	28.6%	0.22	0.30	0.38	0.47	0.52	0.57	
	DP 85	D15,D16, D16.1	7.15ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.08ac	29% 1	1%	2%	0% 0%	10.7%	0.12	0.21	0.31	0.42	0.48	0.53	
	DP 86	D15 - D17	10.60ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.53ac	52% 1	9%	2%	0% 0%	19.3%	0.17	0.26	0.34	0.44	0.50	0.55	
	DP 87	D15 - D18	12.74ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	7.66ac	60% 2	2%	2%	0% 0%	22.3%	0.18	0.27	0.35	0.45	0.51	0.56	
	DP 88	D15 - D19	15.70ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	10.63ac	68% 2	5%	2%	0% 0%	25.0%	0.20	0.28	0.36	0.46	0.52	0.56	
	DP 92a	D20a	0.81ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.81ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 92b	D21,D22,D23	5.46ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.46ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 93a	D1 -D19.1	44.70ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	44.70ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 93b	D20b,D20c,D23	1.12ac	С	100%	0.56ac	50% 50%	0%	0.56ac	50% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	50.0%	0.34	0.40	0.46	0.53	0.57	0.60	
D1-24	DP 94	Existing	61.97ac	С	100%	1.15ac	2% 2%	0%	23.11ac	37% 0%	37%	0% 0%	37%	36.31ac	59% 2	2%	2%	0% 0%	6 23.5%	N/A	0.28	###	###	###	0.56	Existing
	•							•															•			

Basin Runoff Coefficient is based	on UDFCD % Imp	ervious	sness Calci	ılation				
Runoff Coefficients and Percer	nts Impervious							
Hydrologic Soil Type:	С			Runo	ff Coef	Calc M	ethod	%Imp
Land Use	Abb	%	C_2	C_5	C_{10}	C_{25}	C_{50}	C ₁₀₀
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58
Historic Flow Analysis	HI	2%	0.06	0.16	0.26	0.38	0.45	0.51
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83
Residential: 3.7 Lots/Acre	RS1	37%	0.26	0.34	0.41	0.49	0.54	0.58
Residential: 1/5 Acre	RS2	46%	0.31	0.38	0.44	0.51	0.56	0.59

Equations (% Impervious Calculation): $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6] $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn RO-7]

 $C_{B} = (C_{A} + C_{CD}) / 2$ $C_{B} = (C_{A} + C_{CD}) / 2$ I = % imperviousness/100 as a decimal (See Table RO-3) $C_{A} = \text{Runoff coefficient for NRCS Type A Soils}$ $C_{B} = \text{Runoff coefficient for NRCS Type B Soils}$ $C_{CD} = \text{Runoff coefficient for NRCS Type C and D Soils}$

373

Correction Factors - Table RO-4

 $K_A = For Type A Soils$

 $K_A (2-yr) = 0$

$$\begin{split} &K_A \left(5^2 \text{yr} \right) = 0.08i + 0.09 \\ &K_A \left(10^2 \text{yr} \right) = -0.14i + 0.17 \\ &K_A \left(25^2 \text{yr} \right) = -0.19i + 0.24 \\ &K_A \left(50^2 \text{yr} \right) = -0.22i + 0.28 \\ &K_A \left(100^2 \text{yr} \right) = -0.25i + 0.32 \end{split}$$

$$\begin{split} &K_A\left(100\text{-yr}\right) = -0.25\text{i} + 0.32 \\ &K_{\text{CD}} = &\text{For Type C \& D Soils} \\ &K_{\text{CD}}\left(2\text{-yr}\right) = 0 \\ &K_{\text{CD}}\left(5\text{-yr}\right) = -0.10\text{i} + 0.11 \\ &K_{\text{CD}}\left(10\text{-yr}\right) = -0.18\text{i} + 0.21 \\ &K_{\text{CD}}\left(25\text{-yr}\right) = -0.28\text{i} + 0.33 \\ &K_{\text{CD}}\left(50\text{-yr}\right) = -0.33\text{i} + 0.40 \\ &K_{\text{CD}}\left(100\text{-yr}\right) = -0.39\text{i} + 0.46 \end{split}$$

The Glen at Widefield Developed Condition Runoff Coeficient and Percent Impervious Calculation

Filing 1	12 - Dev	eloped Condi	tion		PV	Area 1	Land U	Jse	LA	Area 2	Land U	Use	RS2	Area 3 L	and Us	se	RS1	Area 4	4 Land U	se			
- 8		•		ē		ø.		pr di		a)		pr dı		a)	7	g d		đ)		pr dh	9	Basin	Runoff
		Basin or Di	P Area	Soil Type	%Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	Area	Comp Land Use % Imp	%Imperv	Land Use Area	% Area	Lan	%Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv		cient
		(DP contributi	ng basins)	ii 7	<u>H</u>	and Us Area	% A	mp e %	Im	and Are	% A	mp e %	Im	and Us Area	% A	comp I Use %	II	and Us Area	% A	mp e %	Basin Impei		
Basin	DP		,	So	%	Ľ,	0,	Coo	%	Ä	0,	Coo	%	Ä	ث °	US	%	Ľ,	0,	Coo	B.	C ₅	C ₁₀₀
D-1	DP 68	61,148 sf	1.40ac	В	100%		0%	0%	0%		0%	0%	46%			0%	37%	1.40ac	100%	37%	37.0%	0.28	0.49
D-2		72,845 sf	1.67ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.67ac	100%	37%	37.0%	0.28	0.49
D-3	DP 70	73,555 sf	1.69ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.69ac	100%	37%	37.0%	0.28	0.49
D-4		90,208 sf	2.07ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.07ac	100%	37%	37.0%	0.34	0.58
D-5	DP 72	68,122 sf	1.56ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.56ac	100%	37%	37.0%	0.34	0.58
D-6	DP 73	18,040 sf	0.41ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	0.41ac	100%	37%	37.0%	0.34	0.58
D-7		130,015 sf	2.98ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.98ac	100%	37%	37.0%	0.34	0.58
D-8		70,452 sf	1.62ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.62ac	100%	37%	37.0%	0.34	0.58
D-9	DP 77	95,301 sf	2.19ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.19ac	100%	37%	37.0%	0.28	0.49
D-10		109,710 sf	2.52ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.52ac	100%	37%	37.0%	0.34	0.58
D-11	DP 80	172,355 sf	3.96ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	3.96ac	100%	37%	37.0%	0.34	0.58
D-12		60,400 sf	1.39ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.39ac	100%	37%	37.0%	0.34	0.58
D-13		89,754 sf	2.06ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.06ac	100%	37%	37.0%	0.34	0.58
D-14		143,954 sf	3.30ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	3.30ac	100%	37%	37.0%	0.34	0.58
D-15	DP 84	122,155 sf	2.80ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.80ac	100%	37%	37.0%	0.28	0.49
D-16		98,963 sf	2.27ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	2.27ac	100%	37%	37.0%	0.34	0.58
-16.1		90,495 sf	2.08ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.08ac	100%	37%	37.0%	0.34	0.58
0-17		150,208 sf	3.45ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	3.45ac	100%	37%	37.0%	0.34	0.58
0-18		92,997 sf	2.13ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.13ac	100%	37%	37.0%	0.34	0.58
0-19		129,215 sf	2.97ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	2.97ac	100%	37%	37.0%	0.34	0.58
-19.1	DP89	7,235 sf	0.17ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	0.17ac	100%	37%	37.0%	0.34	0.58
-20a	DP 92a	35,151 sf	0.81ac	С	100%	0.34ac	42%	42%	0%	0.37ac	46%	0%	46%		0%	0%	37%	0.10ac	12%	4%	46.6%	0.38	0.60
-20b	DP 92b	20,481 sf	0.47ac	С	100%	0.40ac	85%	85%	0%	0.07ac	15%	0%	46%		0%	0%	37%		0%	0%	85.1%	0.68	0.79
D-20c	DP 92d	15,896 sf	0.36ac	С	100%	0.17ac	47%	47%	0%	0.19ac	52%	0%	46%		0%	0%	37%		0%	0%	46.6%	0.38	0.60
D-21	DP 91	175,102 sf	4.02ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	4.02ac	100%	37%	37.0%	0.28	0.49
0-22	DP 90	50,194 sf	1.15ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	1.15ac	100%	37%	37.0%	0.28	0.49
D-23	DP92e	12,393 sf	0.28ac	С	100%	0.24ac	84%	84%	0%	0.04ac	16%	0%	46%		0%	0%	37%		0%	0%	84.4%	0.67	0.78
D-24		443,273 sf	10.18ac	С	100%		0%	0%	0%	8.18ac	80%	0%	46%		0%	0%	37%	2.00ac	20%	7%	7.3%	0.20	0.52
(Combine	d Design Point S	Summary																				
	DP 69	D1, D2	3.08ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	3.08ac	100%	37%	37.0%	0.28	0.49
	DP 71	D3, D4	3.76ac	В	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	3.76ac	100%	37%	37.0%	0.28	0.49
	DP 74	D3, D4, D6	4.17ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	37%	4.17ac	100%	37%	37.0%	0.34	0.58
	DP 75	D1-D4, D6, D7	10.23ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	10.23ac	100%	37%	37.0%	0.34	0.58
	DP 76	D1-D4, D6-D8	11.85ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	11.85ac	100%	37%	37.0%	0.34	0.58
	DP 78	D1-D4, D6-D9	14.04ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	14.04ac	100%	37%	37.0%	0.34	0.58
	DP 79	D8, D10	4.14ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	4.14ac	100%	37%	37.0%	0.34	0.58
	DP 81	D11, D12	5.34ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	5.34ac	100%	37%	37.0%	0.34	0.58
	DP 82	D5, D13	3.62ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	3.62ac	100%	37%	37.0%	0.34	0.58
	DP 83	D5, D13, D14	6.93ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	6.93ac	100%	37%	37.0%	0.34	0.58
	DP 85	D15,D16, D16.1	7.15ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	7.15ac	100%	37%	37.0%	0.34	0.58
	DP 86	D15 - D17	10.60ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	10.60ac	100%	37%	37.0%	0.34	0.58
	DP 87	D15 - D18	12.74ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	12.74ac	100%	37%	37.0%	0.34	0.58
	DP 88	D15 - D19	15.70ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	15.70ac	100%	37%	37.0%	0.34	0.58
	DP 92a	D20a	0.81ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	0.81ac	100%	37%	37.0%	0.34	0.58
	DP 92b	D21,D22,D23	5.46ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	5.46ac	100%	37%	37.0%	0.34	0.58
	DP 93a	D1 -D19.1	44.70ac	С	100%		0%	0%	0%		0%	0%	46%			0%	37%	44.70ac	100%	37%	37.0%	0.34	0.58
	DP 93b	D20b,D20c,D23	1.12ac	С	100%	0.56ac	50%	50%	0%	0.56ac	50%	0%	46%		0%	0%	37%		0%	0%	50.0%	0.40	0.60
		Developed	61.97ac	C	100%	1.15ac	2%	2%	00/	8.85ac	1 10/	00/	37%		0% (00/	37%	51.97ac	0.407	31%	32.9%	0.32	0.57

Basin Runoff Coefficient is based on U	DFCD % Imp	ervious	sness Calci	ulation									
Runoff Coefficients and Percents In	pervious												
Hydrologic Soil Type:	С			Runo	ff Coef	Calc M	ethod	%Imp					
Land Use	Abb	% C ₂ C ₅ C ₁₀ C ₂₅ C ₅₀ C ₁₀₀											
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89					
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83					
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58					
Historic Flow Analysis	HI	2%	0.06	0.16	0.26	0.38	0.45	0.51					
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50					
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59					
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52					
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54					
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96					
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83					
Residential: 3.7 Lots/Acre	RS1	37%	0.26	0.34	0.41	0.49	0.54	0.58					
Residential: 1/5 Acre	RS2	46%	0.31	0.38	0.44	0.51	0.56	0.59					

Equations (% Impervious Calculation): $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn R0-6] $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn R0-7] $C_B = (C_A + C_{CD}) / 2$ $C_B = (M_A + C_{CD}) / 2$

 $C_{B} = (C_{A} + C_{CD}) / 2$ I = % imperviousness / 100 as a decimal (See Table RO-3) $C_{A} = \text{Runoff coefficient for NRCS Type A Soils}$ $C_{B} = \text{Runoff coefficient for NRCS Type B Soils}$ $C_{CD} = \text{Runoff coefficient for NRCS Type C and D Soils}$

373

$$\begin{split} & \text{Correction Factors} - \text{Table RO-4} \\ & \text{K}_A = \text{For Type A Soils} \\ & \text{K}_A \left(2\text{-yr} \right) = 0 \\ & \text{K}_A \left(5\text{-yr} \right) = -0.08i + 0.09 \\ & \text{K}_A \left(10\text{-yr} \right) = -0.14i + 0.17 \\ & \text{K}_A \left(25\text{-yr} \right) = -0.19i + 0.24 \\ & \text{K}_A \left(50\text{-yr} \right) = -0.22i + 0.28 \\ & \text{K}_A \left(100\text{-yr} \right) = -0.25i + 0.32 \\ & \text{K}_{CD} = \text{For Type C \& D Soils} \\ & \text{K}_{CD} \left(2\text{-yr} \right) = 0 \\ & \text{K}_{CD} \left(5\text{-yr} \right) = -0.10i + 0.11 \\ & \text{K}_{CD} \left(10\text{-yr} \right) = -0.18i + 0.21 \\ & \text{K}_{CD} \left(25\text{-yr} \right) = -0.28i + 0.33 \\ & \text{K}_{CD} \left(50\text{-yr} \right) = -0.33i + 0.40 \\ & \text{K}_{CD} \left(100\text{-yr} \right) = -0.39i + 0.46 \\ \end{split}$$

The Glen at Widefield **Existing Condition** Time of Concentration Calculation

	Existing Sub-Basin Data				Filing 12 Existing Condition - Time of Concentration Estimate										Min. To	c in Urban		
					Initial	/Overlan	d Time (t _i)			Trav	el Ti	me (t _t)		Comp.	Tc Che	ck (urban)	Final t _c	
Basin	Design Point	Contributing Basins	Area	C ₅	Length	Slope	t_i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check		Notes:
D-1	DP 68		1.40ac	0.08	100lf	2.4%	14.0 min.	600lf	3.5%	NBG	10	1.9 ft/sec	5.3 min.	19.4 min.	700lf	13.9 min.	13.9 min.	Undeveloped Condition
D-2			1.67ac	0.08	85lf	1.5%	15.1 min.	655lf	0.9%	NBG	10	0.9 ft/sec	11.5 min.	26.6 min.	740lf	14.1 min.	14.1 min.	Undeveloped Condition
D-3	DP 70		1.69ac	0.08	100lf	2.4%	14.0 min.	600lf	3.5%	NBG	10	1.9 ft/sec	5.3 min.	19.4 min.	700lf	13.9 min.	13.9 min.	Undeveloped Condition
D-4			2.07ac	0.15	50lf	1.0%	12.3 min.	610lf	0.9%	NBG	10	0.9 ft/sec	10.7 min.	23.0 min.	660lf	13.7 min.	13.7 min.	Undeveloped Condition
D-5	DP 72		1.56ac	0.15	60lf	2.0%	10.7 min.	790lf	0.5%	NBG	10	0.7 ft/sec	18.6 min.	29.3 min.	850lf	14.7 min.	14.7 min.	Undeveloped Condition
D-6	DP 73		0.41ac	0.34	90lf	1.0%	13.3 min.	140lf	0.8%	PV	20	1.8 ft/sec	1.3 min.	14.6 min.	230lf	11.3 min.	11.3 min.	Developed with Filing No 11
D-7			2.98ac	0.34	100lf	1.5%	12.2 min.	430lf	1.3%	PV	20	2.3 ft/sec	3.1 min.	15.4 min.	530lf	12.9 min.	12.9 min.	Developed with Filing No 11
D-8			1.62ac	0.34	100lf	1.0%	14.0 min.	330lf	1.5%	PV	20	2.4 ft/sec	2.2 min.	16.2 min.	430lf	12.4 min.	12.4 min.	Developed with Filing No 11
D-9	DP 77		2.19ac	0.08	100lf	2.0%	14.9 min.	300lf	1.3%	PV	20	2.3 ft/sec	2.2 min.	17.1 min.	400lf	12.2 min.	12.2 min.	Undeveloped Condition
D-10			2.52ac	0.34	100lf	1.5%	12.2 min.	660lf	1.1%	PV	20	2.1 ft/sec	5.2 min.	17.5 min.	760lf	14.2 min.	14.2 min.	Developed with Filing No 11
D-11	DP 80		3.96ac	0.34	70lf	1.5%	10.2 min.	1095lf	1.2%	PV	20	2.2 ft/sec	8.3 min.	18.6 min.	1165lf	16.5 min.	16.5 min.	Developed with Filing No 11
D-12			1.39ac	0.34	100lf	1.3%	12.8 min.	450lf	1.2%	PV	20	2.2 ft/sec	3.4 min.	16.3 min.	550lf	13.1 min.	13.1 min.	Developed with Filing No 11
D-13			2.06ac	0.34	55lf	1.0%	10.4 min.	660lf	0.6%	PV	20	1.5 ft/sec	7.1 min.	17.5 min.	715lf	14.0 min.	14.0 min.	Developed with Filing No 11
D-14			3.30ac	0.34	100lf	1.8%	11.5 min.	980lf	1.6%	PV	20	2.5 ft/sec	6.5 min.	18.0 min.	1080lf	16.0 min.	16.0 min.	Developed with Filing No 11
D-15	DP 84		2.80ac	0.08	100lf	2.0%	14.9 min.	185lf	2.0%	NBG	10	1.4 ft/sec	2.2 min.	17.1 min.	285lf	11.6 min.	17.1 min.	Undeveloped Condition
D-16			2.27ac	0.15	100lf	2.0%	13.8 min.	660lf	0.8%	NBG	10	0.9 ft/sec	12.3 min.	26.1 min.	760lf	14.2 min.	26.1 min.	Undeveloped Condition
D-16.1			2.08ac	0.34	100lf	1.4%	12.5 min.	360lf	0.8%	PV	20	1.8 ft/sec	3.4 min.	15.9 min.	460lf	12.6 min.	15.9 min.	Backyard IRF
D-17			3.45ac	0.34	60lf	1.5%	9.5 min.	410lf	1.5%	PV	20	2.4 ft/sec	2.8 min.	12.3 min.	470lf	12.6 min.	12.6 min.	Backyard IRF
D-18			2.13ac	0.34	60lf	1.5%	9.5 min.	510lf	2.2%	PV	20	3.0 ft/sec	2.9 min.	12.3 min.	570lf	13.2 min.	13.2 min.	Backyard IRF
D-19			2.97ac	0.34	100lf	2.6%	10.2 min.	510lf	1.1%	PV	20	2.1 ft/sec	4.1 min.	14.2 min.	610lf	13.4 min.	14.2 min.	Backyard IRF
D-19.1	DP89		0.17ac	0.34	45lf	2.0%	7.5 min.	36lf	1.1%	PV	20	2.1 ft/sec	0.3 min.	7.7 min.	81lf	10.5 min.	7.7 min.	Developed with Filing No 11
D-20a	DP 92a		0.81ac	0.38	100lf	3.3%	8.8 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	20.9 min.	1400lf	17.8 min.	17.8 min.	Developed with Filing No 10
D-20b	DP 92b		0.47ac	0.68	100lf	3.3%	5.1 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	17.2 min.	1400lf	17.8 min.	17.2 min.	Developed with Filing No 11
D-20c	DP 92d		0.36ac	0.38	100lf	3.3%	8.8 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	20.9 min.	1400lf	17.8 min.	17.8 min.	Developed with Filing No 11
D-21	DP 91		4.02ac	0.28	50lf	2.0%	8.4 min.	610lf	2.1%	PV	20	2.9 ft/sec	3.5 min.	11.9 min.	660lf	13.7 min.	11.9 min.	Developed with Filing No 10
D-22	DP 90		1.15ac	0.28	50lf	2.0%	8.4 min.	610lf	2.1%	PV	20	2.9 ft/sec	3.5 min.	11.9 min.	660lf	13.7 min.	11.9 min.	Developed with Filing No 10
D-23	DP92e		0.28ac	0.67	100lf	2.5%	5.7 min.	660lf	1.0%	PV	20	2.0 ft/sec	5.5 min.	11.2 min.	760lf	14.2 min.	11.2 min.	Developed with Filing No 11
D-24			10.18ac	0.20	100lf	4.9%	9.8 min.	800lf	0.5%	GW	15	1.1 ft/sec	12.6 min.	22.3 min.	900lf	15.0 min.	22.3 min.	Mostly Historic
	Combin	ned Design Point Summa																
	DP 69	D1, D2	3.07ac	0.08	100lf	2.4%	14.0 min.	1385lf	2.0%	PV	20	2.8 ft/sec	8.2 min.	22.2 min.	1485lf	18.3 min.	18.3 min.	Undeveloped Condition
	DP 71	D3, D4	3.76ac	0.08	100lf	2.4%	14.0 min.	1370lf	2.0%	PV	20	2.8 ft/sec	8.1 min.	22.1 min.	1470lf	18.2 min.	18.2 min.	Undeveloped Condition
	DP 74	D3, D4, D6	4.17ac	0.17	100lf	2.4%	12.7 min.	1370lf	2.0%	PV	20	2.8 ft/sec	8.1 min.	20.7 min.	1470lf	18.2 min.	18.2 min.	Developed with Filing No 11
	DP 75	D1-D4, D6, D7	10.23ac	0.22	100lf	2.4%	12.0 min.	1970lf	1.8%	PV	20	2.7 ft/sec	12.2 min.	24.2 min.	2070lf	21.5 min.	21.5 min.	Developed with Filing No 11
	DP 76	D1-D4, D6-D8	11.85ac	0.24	100lf	2.4%	11.8 min.	2110lf	1.8%	PV	20	2.7 ft/sec	13.1 min.	24.9 min.	2210lf	22.3 min.	22.3 min.	Developed with Filing No 11
	DP 78	D1-D4, D6-D9	14.04ac	0.23	100lf	2.4%	11.9 min.	2110lf	1.8%	PV	20	2.7 ft/sec	13.1 min.	25.0 min.	2210lf	22.3 min.	22.3 min.	Developed with Filing No 11
	DP 79	D8, D10	4.14ac	0.34	100lf	2.4%	10.5 min.	896lf	1.6%	PV	20	2.5 ft/sec	5.9 min.	16.4 min.	996lf	15.5 min.	15.5 min.	Developed with Filing No 11
	DP 81	D11, D12	5.34ac	0.34	70lf	1.5%	10.2 min.	1545lf	1.2%		20	2.2 ft/sec	11.8 min.	22.0 min.	1615lf	19.0 min.	19.0 min.	Developed with Filing No 11
	DP 82	D5, D13	3.62ac	0.26	60lf	2.0%	9.4 min.	1590lf	0.6%	PV		1.5 ft/sec	17.7 min.	27.1 min.	1650lf	19.2 min.	19.2 min.	Developed with Filing No 11
	DP 83	D5, D13, D14	6.93ac	0.30	60lf	2.0%	9.0 min.	2640lf	0.9%		20	1.9 ft/sec	23.2 min.	32.2 min.	2700lf	25.0 min.	25.0 min.	Developed with Filing No 11
	DP 85	D15,D16, D16.1	7.15ac	0.21	100lf	2.0%	12.9 min.	847lf	0.6%	PV	20	1.5 ft/sec	9.3 min.	22.2 min.	947lf	15.3 min.	22.2 min.	Backyard IRF
	DP 86	D15 - D17	10.60ac	0.26	100lf	2.0%	12.3 min.	1035lf	0.8%		20	1.8 ft/sec	9.6 min.	21.9 min.	1135lf	16.3 min.	21.9 min.	Backyard IRF
	DP 87	D15 - D18	12.74ac	0.27	100lf	2.0%	12.1 min.	1320lf	0.7%	PV	20	1.7 ft/sec	13.1 min.	25.2 min.	1420lf	17.9 min.	25.2 min.	Backyard IRF
	DP 88	D15 - D19	15.70ac	0.28	100lf	2.0%	11.9 min.	2080lf	1.0%	PV	20	2.0 ft/sec	17.3 min.	29.2 min.	2180lf	22.1 min.	29.2 min.	Backyard IRF
	DP 92a	D20a	0.81ac	0.34	100lf	2.0%	11.1 min.	2080lf	1.0%	PV	20	2.0 ft/sec	17.3 min.	28.4 min.	2180lf	22.1 min.	29.2 min.	Backyard IRF
	DP 92b	D21,D22,D23	5.46ac	0.34	124lf	2.5%	11.5 min.	825lf	1.0%		20	2.0 ft/sec	6.9 min.	18.4 min.	949lf	15.3 min.	15.3 min.	Developed with Filing No 11
	DP 93a	D1 -D19.1	44.70ac	0.34	168lf	2.5%	13.4 min.	2820lf	1.0%	PV	20	2.0 ft/sec	23.5 min.	36.9 min.	2988lf	26.6 min.	26.6 min.	Developed with Filing No 11 & 12
ı	DP 93b	D20b,D20c,D23		0.40	14lf	2.4%	3.6 min.	56lf	1.6%	PV	20	2.5 ft/sec	0.4 min.	5.0 min.	70lf	10.4 min.	5.0 min.	
	DP 94	Existing Condition	61.97ac	0.32	100lf	2.4%	10.7 min.	3110lf	1.0%	PV	20	2.0 ft/sec	25.9 min.	36.6 min.	3210lf	27.8 min.	27.8 min.	Final Existing T _C

Equations:

 t_i (Overland) = 0.395(1.1- C_5)L $^{0.5}$ S $^{-0.333}$ C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)
tc Check = (L/180)+10 (Developed Cond. Only)
L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see Table RO-2) S = Watercourse slope (ft/ft)

Land Surface Type	Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

The Glen at Widefield **Developed Condition** Time of Concentration Calculation

	Dev	veloped Sub-Basin Data				Filir	ıg 12 Devel	oped Con	dition -	Tim	e of	Concentra	tion Estima	te	Min. T	c in Urban		
					Initial	/Overlan	d Time (t _i)			Trav	el Tir	me (t _t)		Comp.	Tc Che	ck (urban)	Final t _c	
Basin	Design Point	Contributing Basins	Area	C ₅	Length	Slope	t_{i}	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check	rillai t _c	Notes:
D-1	DP 68		1.40ac	0.28	100lf	2.4%	11.2 min.	600lf	3.5%	PV	20	3.7 ft/sec	2.7 min.	13.9 min.	700lf	13.9 min.	13.9 min.	Developed with Filing No 12
D-2			1.67ac	0.28	85lf	1.5%	12.1 min.	655lf	0.9%	PV	20	1.9 ft/sec	5.8 min.	17.8 min.	740lf	14.1 min.	14.1 min.	Developed with Filing No 12
D-3	DP 70		1.69ac	0.28	100lf	2.4%	11.2 min.	600lf	3.5%	PV	20	3.7 ft/sec	2.7 min.	13.9 min.	700lf	13.9 min.	13.9 min.	Developed with Filing No 12
D-4			2.07ac	0.34	50lf	1.0%	9.9 min.	610lf	0.9%	PV	20	1.9 ft/sec	5.4 min.	15.3 min.	660lf	13.7 min.	13.7 min.	Developed with Filing No 12
D-5	DP 72		1.56ac	0.34	60lf	2.0%	8.6 min.	790lf	0.5%	PV	20	1.4 ft/sec	9.3 min.	17.9 min.	850lf	14.7 min.	14.7 min.	Developed with Filing No 12
D-6	DP 73		0.41ac	0.34	90lf	1.0%	13.3 min.	140lf	0.8%	PV	20	1.8 ft/sec	1.3 min.	14.6 min.	230lf	11.3 min.	11.3 min.	Developed with Filing No 11
D-7			2.98ac	0.34	100lf	1.5%	12.2 min.	430lf	1.3%	PV	20	2.3 ft/sec	3.1 min.	15.4 min.	530lf	12.9 min.	12.9 min.	Developed with Filing No 11
D-8			1.62ac	0.34	100lf	1.0%	14.0 min.	330lf	1.5%	PV	20	2.4 ft/sec	2.2 min.	16.2 min.	430lf	12.4 min.	12.4 min.	Developed with Filing No 11
D-9	DP 77		2.19ac	0.28	100lf	2.0%	11.9 min.	300lf	1.3%	PV	20	2.3 ft/sec	2.2 min.	14.1 min.	400lf	12.2 min.	12.2 min.	Developed with Filing No 12
D-10			2.52ac	0.34	100lf	1.5%	12.2 min.	660lf	1.1%	PV	20	2.1 ft/sec	5.2 min.	17.5 min.	760lf	14.2 min.	14.2 min.	Developed with Filing No 11
D-11	DP 80		3.96ac	0.34	70lf	1.5%	10.2 min.	1095lf	1.2%	PV	20	2.2 ft/sec	8.3 min.	18.6 min.	1165lf	16.5 min.	16.5 min.	Developed with Filing No 11
D-12			1.39ac	0.34	100lf	1.3%	12.8 min.	450lf	1.2%	PV	20	2.2 ft/sec	3.4 min.	16.3 min.	550lf	13.1 min.	13.1 min.	Developed with Filing No 11
D-13			2.06ac	0.34	55lf	1.0%	10.4 min.	660lf	0.6%	PV	20	1.5 ft/sec	7.1 min.	17.5 min.	715lf	14.0 min.	14.0 min.	Developed with Filing No 11
D-14			3.30ac	0.34	100lf	1.8%	11.5 min.	980lf	1.6%	PV	20	2.5 ft/sec	6.5 min.	18.0 min.	1080lf	16.0 min.	16.0 min.	Developed with Filing No 11
D-15	DP 84		2.80ac	0.28	100lf	2.0%	11.9 min.	185lf	2.0%	PV	20	2.8 ft/sec	1.1 min.	13.0 min.	285lf	11.6 min.	13.0 min.	Filing 12 - Backyard IRF
D-16			2.27ac	0.34	100lf	2.0%	11.1 min.	660lf	0.8%	PV	20	1.8 ft/sec	6.1 min.	17.3 min.	760lf	14.2 min.	17.3 min.	Filing 12 - Backyard IRF
D-16.1			2.08ac	0.34	100lf	1.4%	12.5 min.	360lf	0.8%	PV	20	1.8 ft/sec	3.4 min.	15.9 min.	460lf	12.6 min.	15.9 min.	Filing 11 - Backyard IRF
D-17			3.45ac	0.34	60lf	1.5%	9.5 min.	410lf	1.5%	PV	20	2.4 ft/sec	2.8 min.	12.3 min.	470lf	12.6 min.	12.6 min.	Filing 11 - Backyard IRF
D-18			2.13ac	0.34	60lf	1.5%	9.5 min.	510lf	2.2%	PV	20	3.0 ft/sec	2.9 min.	12.3 min.	570lf	13.2 min.	13.2 min.	Filing 11 - Backyard IRF
D-19			2.97ac	0.34	100lf	2.6%	10.2 min.	510lf	1.1%	PV	20	2.1 ft/sec	4.1 min.	14.2 min.	610lf	13.4 min.	14.2 min.	Filing 11 - Backyard IRF
D-19.1			0.17ac	0.34	45lf	2.0%	7.5 min.	36lf	1.1%	PV	20	2.1 ft/sec	0.3 min.	7.7 min.	81lf	10.5 min.	7.7 min.	Developed with Filing No 11
D-20a	DP 92a		0.81ac	0.38	100lf	3.3%	8.8 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	20.9 min.	1400lf	17.8 min.	17.8 min.	Developed with Filing No 10
D-20b	DP 92b		0.47ac	0.68	100lf	3.3%	5.1 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	17.2 min.	1400lf	17.8 min.	17.2 min.	Developed with Filing No 11
D-20c	DP 92d		0.47ac	0.38	100lf	3.3%	8.8 min.	1300lf	0.8%	PV	20	1.8 ft/sec	12.1 min.	20.9 min.	1400lf	17.8 min.	17.2 min.	Developed with Filing No 11
D-200 D-21	DP 91		4.02ac	0.38	50lf	2.0%	8.4 min.	610lf	2.1%	PV	20	2.9 ft/sec	3.5 min.	11.9 min.	660lf	13.7 min.	11.9 min.	Developed with Filing No 10
D-21 D-22	DP 90		1.15ac	0.28	50lf	2.0%	8.4 min.	610lf	2.1%	PV	20	2.9 ft/sec	3.5 min.	11.9 min.	660lf	13.7 min.	11.9 min.	Developed with Filing No 10
D-22 D-23	D1 70		0.28ac	0.67	100lf	2.5%	5.7 min.	660lf	1.0%	PV	20	2.0 ft/sec	5.5 min.	11.2 min.	760lf	14.2 min.	11.7 min. 11.2 min.	Developed with Filing No 11
D-23 D-24			10.18ac	0.20	100lf	4.9%	9.8 min.	800lf	0.5%	GW	15	1.1 ft/sec	12.6 min.	22.3 min.	900lf	15.0 min.	22.3 min.	Mostly Historic
D-24	Combi	ned Design Point Summa		0.20	10011	7.770	7.0 IIIII.	00011	0.5 /0	uw	13	1.1 10/300	12.0 11111.	22.3 11111.	70011	13.0 11111.	22.3 IIIII.	Mostly Historic
	DP 69	D1, D2	3.08ac	0.28	100lf	2.4%	11.2 min.	1385lf	2.0%	PV	20	2.8 ft/sec	8.2 min.	19.3 min.	1485lf	18.3 min.	18.3 min.	Developed with Filing No 12
	DP 71	D3, D4	3.76ac	0.28	100lf	2.4%	11.2 min.	1370lf	2.0%	PV	20	2.8 ft/sec	8.1 min.	19.3 min.	1470lf	18.2 min.	18.2 min.	Developed with Filing No 12
	DP 74	D3, D4, D6	4.17ac	0.20	100lf	2.4%	10.5 min.	1370lf	2.0%	PV	20	2.8 ft/sec	8.1 min.	19.5 min.	1470lf	18.2 min.	18.2 min.	Developed with Filing No 11
	DP 75	D1-D4, D6, D7	10.23ac	0.34	100lf	2.4%	10.5 min.	1970lf	1.8%	PV	20	2.7 ft/sec	12.2 min.	22.7 min.	2070lf	21.5 min.	21.5 min.	Developed with Filing No 11
	DF 75 DP 76	D1-D4, D6, D7	10.23ac 11.85ac	0.34	100lf	2.4%	10.5 min.	2110lf	1.8%	PV	20	2.7 ft/sec 2.7 ft/sec	13.1 min.	23.6 min.	2070lf 2210lf	22.3 min.	22.3 min.	Developed with Filing No 11
	DP 78	D1-D4, D6-D9	14.04ac	0.34	100lf	2.4%	10.5 min.	2110lf 2110lf	1.8%	PV	20	2.7 ft/sec 2.7 ft/sec	13.1 min.	23.6 min.	2210lf 2210lf	22.3 min.	22.3 min.	Developed with Filing No 11
	DP 78 DP 79	D8, D10	4.14ac	0.34	100lf	2.4%	10.5 min.	896lf	1.6%	PV	20	2.7 ft/sec 2.5 ft/sec	5.9 min.	25.6 mm.	996lf	15.5 min.	15.5 min.	Developed with Filing No 11
	DP 79 DP 81	D8, D10 D11, D12	5.34ac	0.34	70lf	1.5%	10.3 min.	1545lf	1.0%	PV	20	2.3 ft/sec 2.2 ft/sec	11.8 min.	22.0 min.	1615lf	19.0 min.	19.0 min.	Developed with Filing No 11
	DP 81 DP 82	D5, D13	3.62ac	0.34	60lf	2.0%	8.6 min.	1545II 1590lf	0.6%		20	1.5 ft/sec	11.8 min. 17.7 min.	26.3 min.	1650lf	19.0 min. 19.2 min.	19.0 mm. 19.2 min.	Developed with Filing No 11 Developed with Filing No 11
		D5, D13 D5, D13, D14		0.34		2.0%		2640lf	0.6%		20	1.5 ft/sec 1.9 ft/sec			2700lf		25.0 min.	Developed with Filing No 11
	DP 83 DP 85	D5, D13, D14 D15,D16, D16.1	6.93ac 7.15ac		60lf 100lf		8.6 min.	2640lf 847lf	0.9%	PV	20	1.9 ft/sec 1.5 ft/sec	23.2 min. 9.3 min.	31.8 min. 20.5 min.	2700ff 947lf	25.0 min. 15.3 min.	25.0 min. 20.5 min.	Filing 12 - Backyard IRF
				0.34		2.0%	11.1 min.				20							
	DP 86	D15 - D17	10.60ac	0.34	100lf	2.0%	11.1 min.	1035lf	0.8%			1.8 ft/sec	9.6 min.	20.8 min.	1135lf	16.3 min.	20.8 min.	Filing 11 - Backyard IRF Filing 11 - Backyard IRF
	DP 87	D15 - D18	12.74ac	0.34	100lf	2.0%	11.1 min.	1320lf	0.7%	PV	20	1.7 ft/sec	13.1 min.	24.3 min.	1420lf	17.9 min.	24.3 min.	
	DP 88	D15 - D19	15.70ac	0.34	100lf	2.0%	11.1 min.	2080lf	1.0%	PV	20	2.0 ft/sec	17.3 min.	28.4 min.	2180lf	22.1 min.	28.4 min.	Filing 11 - Backyard IRF
	DP 92a	D20a	0.81ac	0.34	100lf	2.0%	11.1 min.	2080lf	1.0%	PV	20	2.0 ft/sec	17.3 min.	28.4 min.	2180lf	22.1 min.	28.4 min.	Filing 11 - Backyard IRF
	DP 92b	D21,D22,D23	5.46ac	0.34	124lf	2.5%	11.5 min.	825lf	1.0%	PV	20	2.0 ft/sec	6.9 min.	18.4 min.	949lf	15.3 min.	15.3 min.	Developed with Filing No 11
	DP 93a	D1 -D19.1	44.70ac	0.34	168lf	2.5%	13.4 min.	2820lf	1.0%	PV	20	2.0 ft/sec	23.5 min.	36.9 min.	2988lf	26.6 min.	26.6 min.	Developed with Filing No 11 & 12
	DP 93b	D20b,D20c,D23	1.12ac	0.40	14lf	2.4%	3.6 min.	56lf	1.6%		20	2.5 ft/sec	0.4 min.	5.0 min.	70lf	10.4 min.	5.0 min.	Developed with Filing No 11
	DP 94	Developed	61.97ac	0.32	100lf	2.4%	10.7 min.	3110lf	1.0%	PV	20	2.0 ft/sec	25.9 min.	36.6 min.	3210lf	27.8 min.	27.8 min.	Final Developed T _C
Fauations:																		

 t_i (Overland) = 0.395(1.1- C_5)L $^{0.5}$ S $^{-0.333}$ C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft) tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see Table RO-2) S = Watercourse slope (ft/ft)

Land Surface Type	Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

The Glen at Widefield **Existing Condition** Runoff Coeficient and Percent Impervious Calculation

Filing 1	12 - Exis	sting Conditio	n		PV	Area 1 L	and Use	LA	Area 2	Land Use	RS2	Area 3 Land Use	RS1	Area 4	Land Use		HI A	Area 5 Land Use								
		Basin or D		oil Type	Imperv	Land Use Area	% Area Comp Land Use % Imp	% Imperv	Land Use Area	% Area Comp Land	% Imperv	Land Use Area % Area omp Land Ise % Imp	% Imperv	Land Use Area	% Area	Use % Imp	% Imperv	- %	Basin %		Basin	Runo	ff Coe	ficient	t	
Basin	DP	(DP contributi	ng basins)	Soil	1 %	Lan	% Com Use	11 %	Lan	% Com	% II	Land l Are %Ar Comp I Use %	11 %	Lan	% Com	Use	ıı %	Land Are % A:	Bas Im	$\mathbf{C_2}$	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Notes:
D-1	DP 68	61,148 sf	1.40ac	В	100%		0% 0%	0%	1.40ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-2		72,745 sf	1.67ac	В	100%		0% 0%	0%	1.67ac	100% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-3	DP 70	73,555 sf	1.69ac	В	100%		0% 0%	0%	1.69ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.02	0.08	0.15	0.25		0.35	Undeveloped Condition
D-4		90,208 sf	2.07ac	С	100%		0% 0%	0%	2.07ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-5	DP 72	68,122 sf	1.56ac	С	100%		0% 0%	0%	1.56ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-6	DP 73	18,040 sf	0.41ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.41ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-7		130,015 sf	2.98ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.98ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-8		70,452 sf	1.62ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.62ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-9	DP 77	95,396 sf	2.19ac	В	100%		0% 0%	0%	2.19ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-10		109,710 sf	2.52ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.52ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-11	DP 80	172,355 sf	3.96ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.96ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-12		60,400 sf	1.39ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.39ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-13		89,754 sf	2.06ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.06ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-14		143,954 sf	3.30ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.30ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-15	DP 84	122,155 sf	2.80ac	В	100%		0% 0%	0%	2.80ac	100% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	0.0%	0.02	0.08	0.15	0.25	0.30	0.35	Undeveloped Condition
D-16		98,963 sf	2.27ac	С	100%		0% 0%	0%	2.27ac	100% 0%	46%	0% 0%	37%			0%	2%	0% 0%	0.0%	0.04	0.15	0.25	0.37	0.44	0.50	Undeveloped Condition
D-16.1		90,495 sf	2.08ac	С	100%		0% 0%	0%		0% 0%		0% 0%	37%	2.08ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41		0.54	0.58	Developed with Filing No 11
D-17		150,208 sf	3.45ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.45ac		7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-18		92,997 sf	2.13ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.13ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-19		129,215 sf	2.97ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.97ac	100% 3	7%	2%	0% 0%		0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-19.1	DP89	7,235 sf	0.17ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.17ac		7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	Developed with Filing No 11
D-20a	DP 92a	35,151 sf	0.81ac	С	100%		42% 42%	0%	0.37ac	46% 0%	46%	0% 0%	37%	0.10ac		1%	2%	0% 0%	46.6%	0.32	0.38	0.44	0.52			Developed with Filing No 10
D-20b	DP 92b	20,481 sf	0.47ac	С	100%	0.40ac	85% 85%	0%	0.07ac	15% 0%	46%	0% 0%	37%			0%	2%	0% 0%		0.66	0.68	0.71	0.75	0.78	0.79	Developed with Filing No 11
D-20c	DP 92d	15,896 sf	0.36ac	С	100%	0.17ac	47% 47%	0%	0.19ac	52% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	46.6%	0.32	0.38	0.44	0.52	0.56	0.60	Developed with Filing No 11
D-21	DP 91	175,102 sf	4.02ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	4.02ac	100% 3	7%	2%	0% 0%	37.0%	0.22	0.28	0.35	0.41	0.45	0.49	Developed with Filing No 10
D-22	DP 90	50,194 sf	1.15ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	1.15ac	100% 3	7%	2%	0% 0%	37.0%	0.22	0.28	0.35	0.41	0.45	0.49	Developed with Filing No 10
D-23	DP92e	12,393 sf	0.28ac	С	100%	0.24ac	84% 84%	0%	0.04ac	16% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	84.4%	0.65	0.67	0.71	0.74	0.77	0.78	Developed with Filing No 11
D-24		443,273 sf	10.18ac	C	100%		0% 0%	0%	8.18ac	80% 0%	46%	0% 0%	37%	2.00ac	20%	7%	2%	0% 0%	7.3%	0.09	0.20	0.29	0.40	0.47	0.52	Developed with Filing No 10
(Combine	d Design Point S	Summary																							
	DP 69	D1, D2	3.07ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.00ac	0% ()%	2%	0% 0%	0.0%	0.02	0.08		0.25		0.35	
	DP 71	D3, D4	3.76ac	В	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.00ac		0%	2%	0% 0%		0.02	0.08	0.15	0.25	-		
	DP 74	D3, D4, D6	4.17ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.41ac		1%	2%	0% 0%	3.7%	0.07	0.17	0.27	0.39	0.46	0.51	
	DP 75	D1-D4, D6, D7	10.23ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	3.40ac		2%	2%	0% 0%	12.3%	0.12	0.22	0.31	0.42		0.54	
	DP 76	D1-D4, D6-D8	11.85ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.02ac		6%	2%	0% 0%	15.7%	0.15	0.24	0.33	0.43	0.49	0.54	
	DP 78	D1-D4, D6-D9	14.04ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.02ac		3%	2%	0% 0%		0.13	0.23	0.32	0.42	0.49	0.54	
	DP 79	D8, D10	4.14ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	4.14ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 81	D11, D12	5.34ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.34ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 82	D5, D13	3.62ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.06ac	57% 2	1%	2%	0% 0%	21.0%	0.18	0.26	0.35	0.45	0.51	0.55	
	DP 83	D5, D13, D14	6.93ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.37ac	77% 2	9%	2%	0% 0%	28.6%	0.22	0.30	0.38	0.47	0.52	0.57	
	DP 85	D15,D16, D16.1	7.15ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	2.08ac	29% 1	1%	2%	0% 0%	10.7%	0.12	0.21	0.31	0.42	0.48	0.53	
	DP 86	D15 - D17	10.60ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.53ac	52% 1	9%	2%	0% 0%	19.3%	0.17	0.26	0.34	0.44	0.50	0.55	
	DP 87	D15 - D18	12.74ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	7.66ac	60% 2	2%	2%	0% 0%	22.3%	0.18	0.27	0.35	0.45	0.51	0.56	
	DP 88	D15 - D19	15.70ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	10.63ac	68% 2	5%	2%	0% 0%	25.0%	0.20	0.28	0.36	0.46	0.52	0.56	
	DP 92a	D20a	0.81ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	0.81ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 92b	D21,D22,D23	5.46ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	5.46ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 93a	D1 -D19.1	44.70ac	С	100%		0% 0%	0%		0% 0%	46%	0% 0%	37%	44.70ac	100% 3	7%	2%	0% 0%	37.0%	0.26	0.34	0.41	0.49	0.54	0.58	
	DP 93b	D20b,D20c,D23	1.12ac	С	100%	0.56ac	50% 50%	0%	0.56ac	50% 0%	46%	0% 0%	37%		0% (0%	2%	0% 0%	50.0%	0.34	0.40	0.46	0.53	0.57	0.60	
D1-24	DP 94	Existing	61.97ac	С	100%	1.15ac	2% 2%	0%	23.11ac	37% 0%	37%	0% 0%	37%	36.31ac	59% 2	2%	2%	0% 0%	6 23.5%	N/A	0.28	###	###	###	0.56	Existing
	•							•															•			

Basin Runoff Coefficient is based on UDFCD % Imperviousness Calculation												
Runoff Coefficients and Percer	nts Impervious											
Hydrologic Soil Type:	С			Runo	ff Coef	Calc M	ethod	%Imp				
Land Use	Abb	%	C_2	C_5	C_{10}	C_{25}	C_{50}	C ₁₀₀				
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89				
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83				
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58				
Historic Flow Analysis	HI	2%	0.06	0.16	0.26	0.38	0.45	0.51				
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50				
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59				
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52				
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54				
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96				
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83				
Residential: 3.7 Lots/Acre	RS1	37%	0.26	0.34	0.41	0.49	0.54	0.58				
Residential: 1/5 Acre	RS2	46%	0.31	0.38	0.44	0.51	0.56	0.59				

Equations (% Impervious Calculation): $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6] $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn RO-7]

 $C_{B} = (C_{A} + C_{CD}) / 2$ $C_{B} = (C_{A} + C_{CD}) / 2$ I = % imperviousness/100 as a decimal (See Table RO-3) $C_{A} = \text{Runoff coefficient for NRCS Type A Soils}$ $C_{B} = \text{Runoff coefficient for NRCS Type B Soils}$ $C_{CD} = \text{Runoff coefficient for NRCS Type C and D Soils}$

373

Correction Factors - Table RO-4

 $K_A = For Type A Soils$

 $K_A (2-yr) = 0$

$$\begin{split} &K_A \left(5^2 \text{yr} \right) = 0.08i + 0.09 \\ &K_A \left(10^2 \text{yr} \right) = -0.14i + 0.17 \\ &K_A \left(25^2 \text{yr} \right) = -0.19i + 0.24 \\ &K_A \left(50^2 \text{yr} \right) = -0.22i + 0.28 \\ &K_A \left(100^2 \text{yr} \right) = -0.25i + 0.32 \end{split}$$

$$\begin{split} &K_A\left(100\text{-yr}\right) = -0.25\text{i} + 0.32 \\ &K_{\text{CD}} = &\text{For Type C \& D Soils} \\ &K_{\text{CD}}\left(2\text{-yr}\right) = 0 \\ &K_{\text{CD}}\left(5\text{-yr}\right) = -0.10\text{i} + 0.11 \\ &K_{\text{CD}}\left(10\text{-yr}\right) = -0.18\text{i} + 0.21 \\ &K_{\text{CD}}\left(25\text{-yr}\right) = -0.28\text{i} + 0.33 \\ &K_{\text{CD}}\left(50\text{-yr}\right) = -0.33\text{i} + 0.40 \\ &K_{\text{CD}}\left(100\text{-yr}\right) = -0.39\text{i} + 0.46 \end{split}$$

The Glen at Widefield Developed Condition Runoff Volume Calculation

	Design		Drainage			Time of	Rainfall	Intensity	Runoff		
Basin	Point	Contributing Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	\mathbf{Q}_{5}	Q_{100}	Basin / DP
D-1	DP 68		1.40 ac	0.28	0.49	13.9 min.	3.6 in/hr	6.1 in/hr	1.4 cfs	4.2 cfs	D-1
D-2			1.67 ac	0.28	0.49	14.1 min.	3.6 in/hr	6.1 in/hr	1.7 cfs	4.9 cfs	D-2
D-3	DP 70		1.69 ac	0.28	0.49	13.9 min.	3.6 in/hr	6.1 in/hr	1.7 cfs	5.0 cfs	D-3
D-4	51.70		2.07 ac	0.34	0.58	13.7 min.	3.7 in/hr		2.5 cfs	7.4 cfs	D-4
D-5	DP 72		1.56 ac	0.34	0.58	14.7 min.	3.5 in/hr	6.0 in/hr	1.9 cfs	5.4 cfs	D-5
D-6	DP 73		0.41 ac	0.34	0.58	11.3 min.	3.9 in/hr	6.6 in/hr	0.5 cfs	1.6 cfs	D-6
D-7	21.70		2.98 ac	0.34	0.58	12.9 min.	3.7 in/hr	6.3 in/hr	3.7 cfs	10.8 cfs	D-7
D-8			1.62 ac	0.34	0.58	12.4 min.	3.8 in/hr	6.4 in/hr	2.1 cfs	6.0 cfs	D-8
D-9	DP 77		2.19 ac	0.28	0.49	12.2 min.	3.8 in/hr	6.4 in/hr	2.4 cfs	6.9 cfs	D-9
D-10	51 //		2.52 ac	0.34	0.58	14.2 min.	3.6 in/hr	6.0 in/hr	3.0 cfs	8.8 cfs	D-10
D-11	DP 80		3.96 ac	0.34	0.58	16.5 min.	3.4 in/hr	5.7 in/hr	4.5 cfs	13.0 cfs	D-11
D-12	D1 00		1.39 ac	0.34	0.58	13.1 min.	3.7 in/hr	6.3 in/hr	1.7 cfs	5.0 cfs	D-12
D-13			2.06 ac	0.34	0.58	14.0 min.	3.6 in/hr	6.1 in/hr	2.5 cfs	7.3 cfs	D-13
D-14			3.30 ac	0.34	0.58	16.0 min.	3.4 in/hr	5.7 in/hr	3.8 cfs	11.0 cfs	D-14
D-15	DP 84		2.80 ac	0.28	0.49	13.0 min.	3.7 in/hr	6.3 in/hr	3.0 cfs	8.6 cfs	D-15
D-16	DP84.1		2.27 ac	0.34	0.58	17.3 min.	3.3 in/hr	5.6 in/hr	2.5 cfs	7.3 cfs	D-16
D-16.1	DI 04.1		2.08 ac	0.34	0.58	15.9 min.	3.4 in/hr	5.8 in/hr	2.4 cfs	6.9 cfs	D-16.1
D-10.1			3.45 ac	0.34	0.58	12.6 min.	3.8 in/hr	6.3 in/hr	4.4 cfs	12.7 cfs	D-17
D-18			2.13 ac	0.34	0.58	13.2 min.	3.7 in/hr		2.7 cfs	7.7 cfs	D-18
D-10 D-19			2.13 ac	0.34	0.58	14.2 min.	3.6 in/hr	6.0 in/hr	3.6 cfs	10.4 cfs	D-18 D-19
D-19.1	DP 89		0.17 ac	0.34	0.58	7.7 min.	4.5 in/hr	7.6 in/hr	0.3 cfs	0.7 cfs	D-19.1
D-19.1 D-20a	DP 92a		0.17 ac	0.34	0.60	17.8 min.	,	5.5 in/hr	1.0 cfs	2.6 cfs	D-20a
D-20a D-20b	DP 92b		0.47 ac	0.58	0.79	17.8 min.	3.3 in/hr	5.6 in/hr	1.0 cfs	2.1 cfs	D-20a D-20b
D-200 D-20c	DP 92d		0.47 ac	0.38	0.60	17.2 min.	3.3 in/hr		0.5 cfs	1.2 cfs	D-206
D-200 D-21	DP 92u DP 91		4.02 ac	0.38	0.49	11.9 min.	3.9 in/hr	6.5 in/hr	4.4 cfs	1.2 cis 12.7 cfs	D-200 D-21
D-21 D-22	DP 91 DP 90		1.15 ac	0.28	0.49	11.9 min.	3.9 in/hr	6.5 in/hr	1.3 cfs	3.6 cfs	D-21 D-22
D-22 D-23	D1 90		0.28 ac	0.20	0.78	11.9 min.	4.0 in/hr	6.6 in/hr	0.8 cfs	1.5 cfs	D-22 D-23
D-23 D-24			10.18 ac	0.07	0.78	22.3 min.	2.9 in/hr		5.8 cfs	26.2 cfs	D-23 D-24
D-24	Combi	ned Design Point Summary	10.16 at	0.20	0.32	22.3 11111.		ummation:	67.0 cfs	201.3 cfs	D-24
	DP 69	D1, D2	3.08 ac	0.28	0.49	18.3 min.	3.2 in/hr	5.4 in/hr	2.8 cfs	8.1 cfs	DP 69
	DP 09	D3, D4	3.76 ac	0.28	0.49	18.2 min.	3.2 in/hr	5.4 in/hr	3.4 cfs	9.9 cfs	DP 09
	DP 74	D3, D4, D6	4.17 ac	0.20	0.58	18.2 min.	3.2 in/hr	5.4 in/hr	4.5 cfs	13.1 cfs	DP 74
	DP 74 DP 75	D1-D4, D6, D7	10.23 ac	0.34	0.58	21.5 min.	3.0 in/hr	5.0 in/hr	10.2 cfs	29.6 cfs	DP 74 DP 75
	DP 75	D1-D4, D6, D7	10.23 ac 11.85 ac	0.34	0.58	22.3 min.	2.9 in/hr	4.9 in/hr	10.2 cis 11.6 cfs	33.7 cfs	DP 76
	DP 78	D1-D4, D6-D9	14.04 ac	0.34	0.58	22.3 min.	2.9 in/hr	4.9 in/hr	13.8 cfs	39.9 cfs	DP 78
	DP 78 DP 79	D1-D4, D6-D9 D8, D10	4.14 ac	0.34	0.58	15.5 min.	3.5 in/hr	5.8 in/hr	4.8 cfs	13.9 cfs	DP 78 DP 79
	DP 79 DP 81	D8, D10 D11, D12	5.34 ac	0.34	0.58	19.0 min.	3.2 in/hr	5.8 in/hr	5.7 cfs	16.4 cfs	DP 79 DP 81
	DP 81 DP 82	D5, D13	3.62 ac	0.34	0.58	19.0 min. 19.2 min.	3.2 in/hr	5.3 in/hr	3.7 cis 3.8 cfs	10.4 cis 11.1 cfs	DP 81 DP 82
	DP 82 DP 83	D5, D13 D5, D13, D14	6.93 ac	0.34	0.58	25.0 min.	2.8 in/hr	4.6 in/hr	6.4 cfs	11.1 cis 18.5 cfs	DP 82 DP 83
	DP 83 DP 85	D15, D13, D14 D15,D16, D16.1	7.15 ac	0.34	0.58	25.0 min. 20.5 min.	3.1 in/hr	4.6 in/nr 5.1 in/hr	7.3 cfs	21.2 cfs	DP 83 DP 85
	DP 85 DP 86	D15,D16, D16.1 D15 - D17	7.15 ac 10.60 ac	0.34	0.58	20.5 min. 20.8 min.	3.1 in/hr 3.0 in/hr	5.1 in/nr 5.1 in/hr	7.3 cis 10.8 cfs	31.2 cfs	DP 85 DP 86
	DP 86 DP 87	D15 - D17 D15 - D18	10.60 ac 12.74 ac	0.34	0.58	20.8 min. 24.3 min.	2.8 in/hr	5.1 in/nr 4.7 in/hr	10.8 cis 12.0 cfs	31.2 cis 34.6 cfs	DP 86 DP 87
	DP 87 DP 88	D15 - D18 D15 - D19	12.74 ac 15.70 ac	0.34		24.3 min. 28.4 min.	2.8 in/hr 2.6 in/hr	,	12.0 cis 13.5 cfs		DP 87 DP 88
	DP 88 DP 92a			0.34	0.58 0.58		,	4.3 in/hr		39.0 cfs	
	DP 92a DP 92b	D20a D21,D22,D23	0.81 ac	0.34	0.58	28.4 min. 15.3 min.	2.6 in/hr 3.5 in/hr	4.3 in/hr	0.7 cfs 6.4 cfs	2.0 cfs 18.5 cfs	DP 92a DP 92b
	DP 926 DP 93a	D21,D22,D23 D1 -D19.1	5.46 ac	0.34	0.58			5.9 in/hr	39.9 cfs		DP 926 DP 93a
			44.70 ac			26.6 min.	2.7 in/hr	4.5 in/hr		115.4 cfs	
	DP 93b	D20b,D20c,D23	1.12 ac	0.40	0.60	5.0 min.	5.2 in/hr		2.3 cfs	5.9 cfs	DP 93b
	DP94	Developed	61.97 ac	0.32	0.57	27.8 min.	2.6 in/hr	4.4 in/hr	51.0 cfs	154.3 cfs	Developed

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

i₂=-1.19 ln(T_c) + 6.035

 i_5 =-1.50 ln(T_c) + 7.583

 i_{10} =-1.75 ln(T_c) + 8.847

 i_{25} =-2.00 ln(T_c) + 10.111

 i_{50} =-2.25 ln(T_c) + 11.375

 i_{100} =-2.52 ln(T_c) + 12.735

= CiA

Q = Peak Runoff Rate (cubic feet/second)

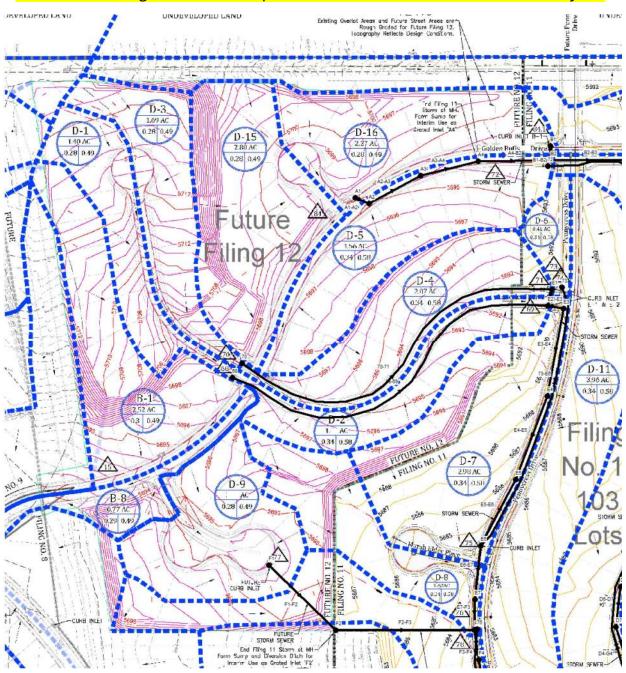
C = Runoff coef representing a ration of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

APPENDIX C


Hydraulic Calculations

EPA-SWMM HGL/EGL Open Channel and Pipe System Report

MHFD Inlet Summaries & Calculations

The Glen Filing No 12 Developed Condition 100-Year HGL/EGL Analysis


```
WARNING 10: crest elevation raised to downstream invert for regulator Link H2-HighPtS
WARNING 02: maximum depth increased for Node HighPtN
WARNING 02: maximum depth increased for Node 68
WARNING 02: maximum depth increased for Node 73
WARNING 02: maximum depth increased for Node 76
WARNING 02: maximum depth increased for Node 87
WARNING 02: maximum depth increased for Node 80
WARNING 02: maximum depth increased for Node 72
*****************
NOTE: The summary statistics displayed in this report are
based on results found at every computational time step,
not just on results from each reporting time step.
****************
******
Analysis Options
*******
Flow Units ..... CFS
Process Models:
 Rainfall/Runoff ..... YES
 RDII ..... NO
 Snowmelt ..... NO
 Groundwater ..... NO
 Flow Routing ..... YES
 Ponding Allowed ..... YES
 Water Quality ..... NO
Flow Routing Method ..... DYNWAVE
Surcharge Method ..... EXTRAN
Starting Date ..... 03/16/2021 00:00:00
Ending Date ..... 03/16/2021 03:00:00
Antecedent Dry Days ..... 0.0
Report Time Step ..... 00:05:00
```

Routing Time Step	30.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	0.005000 ft

********	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	63.195	20.593
External Outflow	34.244	11.159
Flooding Loss	25.516	8.315
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.001	0.000
Final Stored Volume	0.429	0.140
Continuity Error (%)	4.758	

Node G1 (30.44%)

Node F6 (9.79%)

Node F7 (6.27%)

Node F5 (2.77%)

Node D4 (-2.70%)

```
********
Time-Step Critical Elements
********
Link D10-D11 (3369.31%)
Link G4-H1 (82.10%)
Link H2-H3 (11.00%)
Link H1-H2 (2.56%)
Link G2-H1 (1.79%)
**********
Highest Flow Instability Indexes
**********
Link H2-G3-Overtopping (13)
Link G4-H1 (11)
Link G4-G3-Gutter (9)
Link G2-H1 (6)
Link G3-G4 (6)
********
Routing Time Step Summary
********
Minimum Time Step
                :
                        0.21 sec
Average Time Step :
                        0.67 sec
              :
Maximum Time Step
                        1.74 sec
Percent in Steady State : 97.57
Average Iterations per Step :
                          2.67
Percent Not Converging
                    :
                          5.63
Time Step Frequencies
  30.000 - 13.228 sec
                    :
                        0.00 %
  13.228 - 5.833 sec : 0.00 %
  5.833 - 2.572 sec :
                        0.00 %
   2.572 - 1.134 sec
                    : 15.42 %
```

1.134 - 0.500 sec

: 84.58 %

Node Depth Summary

						Reported Max Depth
						n Feet
H2					0 00:04	
H1					0 00:04	
F7	JUNCTION	3.05	3.79	5676.92	0 00:03	3.09
D12					0 00:02	
D11	JUNCTION	3.05	3.10	5677.27	0 00:04	3.10
D10	JUNCTION	2.94	2.99	5677.57	0 00:04	2.99
D9	JUNCTION	2.62	2.67	5677.99	0 00:04	2.67
D8	JUNCTION	2.04	2.08	5678.36	0 00:04	2.08
D7	JUNCTION	1.90	1.93	5679.02	0 00:04	1.93
D6	JUNCTION	1.88	1.91	5679.87	0 00:04	1.91
D5	JUNCTION	1.76	1.79	5682.23	0 00:04	1.79
D4	JUNCTION	1.96	2.01	5683.84	0 00:03	1.98
D2	JUNCTION	1.75	1.86	5685.11	0 00:03	1.76
D1	JUNCTION	0.95	1.12	5685.45	0 00:00	0.95
C3	JUNCTION	1.38	1.50	5685.94	0 00:03	1.40
C2	JUNCTION	1.54	1.61	5686.70	0 00:02	1.55
B4	JUNCTION	1.41	1.49	5687.40	0 00:02	1.42
В3	JUNCTION	1.46	1.52	5688.07	0 00:02	1.47
B2	JUNCTION	1.44	1.49	5689.32	0 00:02	1.44
B1	JUNCTION	1.17	1.50	5689.88	0 00:00	1.17
A4	JUNCTION	1.06	1.21	5690.21	0 00:01	1.07
А3	JUNCTION	1.05	1.14	5690.99	0 00:01	1.05
A2	JUNCTION	1.05	1.11	5691.81	0 00:00	1.05
A1	JUNCTION	0.99	1.20	5692.24	0 00:00	0.99
E1	JUNCTION	1.06	1.31	5687.02	0 00:00	1.06

E2	JUNCTION	1.31	1.59	5686.86	0	00:00	1.31
E3	JUNCTION	1.17	1.54	5686.35	0	00:00	1.17
E4	JUNCTION	1.16	1.21	5684.12	0	00:01	1.17
E5	JUNCTION	1.11	1.20	5682.12	0	00:01	1.12
E6	JUNCTION	1.59	1.68	5680.30	0	00:02	1.60
E7	JUNCTION	1.55	1.64	5679.28	0	00:02	1.56
F3	JUNCTION	1.58	1.69	5678.69	0	00:02	1.59
F2	JUNCTION	1.10	1.11	5680.19	0	00:03	1.11
F1	JUNCTION	0.59	0.59	5688.12	0	00:00	0.59
F4	JUNCTION	1.62	1.80	5678.19	0	00:02	1.64
F5	JUNCTION	2.31	2.34	5676.63	0	00:04	2.34
F6	JUNCTION	2.76	3.19	5676.62	0	00:03	2.80
G3	JUNCTION	2.57	2.60	5676.70	0	00:04	2.60
G4	JUNCTION	2.97	3.00	5676.66	0	00:04	3.00
G2	JUNCTION	3.05	3.08	5676.68	0	00:04	3.08
G1	JUNCTION	2.45	2.47	5676.70	0	00:04	2.47
C1	JUNCTION	0.74	0.77	5686.95	0	00:02	0.75
J2	JUNCTION	0.68	0.99	5673.76	0	00:00	0.68
J1	JUNCTION	0.98	1.12	5673.61	0	00:00	0.98
PA1	JUNCTION	1.81	2.00	5679.81	0	00:00	1.81
PA2	JUNCTION	2.00	2.00	5679.36	0	00:00	2.00
HighPtN	JUNCTION	0.00	0.00	5677.88	0	00:00	0.00
HighPtS	JUNCTION	0.00	0.00	5677.88	0	00:00	0.00
68	JUNCTION	0.00	0.00	5698.00	0	00:00	0.00
70	JUNCTION	0.00	0.00	5698.00	0	00:00	0.00
73	JUNCTION	0.00	0.00	5690.25	0	00:00	0.00
76	JUNCTION	0.00	0.00	5682.75	0	00:00	0.00
87	JUNCTION	0.00	0.00	5682.00	0	00:00	0.00
80	JUNCTION	0.00	0.00	5680.75	0	00:00	0.00
72	JUNCTION	0.00	0.00	5692.00	0	00:00	0.00
Forebay-H	OUTFALL	2.43	2.45	5674.70	0	00:04	2.45
Forebay-J	OUTFALL	0.00	0.00	5671.61	0	00:00	0.00

		Maximum	Maximum			Lateral	Total	Flow	
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance	
		Inflow	Inflow	0ccu	rrence	Volume	Volume	Error	
Node	Type			-		10^6 gal			
H2						1.11			
H1	JUNCTION	0.00	76.59	0	00:02	0	6.11	0.114	
F7	JUNCTION	0.00	36.58	0	00:03	0	2.36	6.685	
D12	JUNCTION	0.00	38.08	0	00:04	0	3.03	0.354	
D11	JUNCTION	0.00	39.23	0	00:04	0	3.13	0.349	
D10	JUNCTION	0.00	39.78	0	00:04	0	3.17	1.521	
D9	JUNCTION	0.00	40.61	0	00:04	0	3.23	1.861	
D8	JUNCTION	0.00	41.18	0	00:04	0	3.29	1.791	
D7	JUNCTION	0.00	41.41	0	00:04	0	3.31	0.585	
D6	JUNCTION	0.00	41.76	0	00:04	0	3.34	0.948	
D5	JUNCTION	0.00	41.64	0	00:04	0	3.31	-0.704	
D4	JUNCTION	9.90	41.98	0	00:03	0.8	3.23	-2.632	
D2	JUNCTION	0.00	32.35	0	00:03	0	2.41	-0.502	
D1	JUNCTION	8.10	8.10	0	00:00	0.654	0.654	0.033	
C3	JUNCTION	0.00	23.40	0	00:03	0	1.79	1.432	
C2	JUNCTION	0.00	23.14	0	00:02	0	1.79	0.216	
B4	JUNCTION	0.00	17.18	0	00:02	0	1.32	0.122	
В3	JUNCTION	0.00	16.99	0	00:02	0	1.32	0.140	
B2	JUNCTION	0.00	17.19	0	00:01	0	1.33	0.320	
B1	JUNCTION	9.60	9.60	0	00:00	0.776	0.776	0.048	
A4	JUNCTION	0.00	7.40	0	00:01	0	0.555	0.124	
А3	JUNCTION	0.00	7.24	0	00:01	0	0.556	0.229	
A2	JUNCTION	0.00	7.93	0	00:00	0	0.557	0.225	
A1	JUNCTION	6.90	6.90	0	00:00	0.557	0.557	0.060	
E1	JUNCTION	8.50	8.50	0	00:00	0.687	0.687	0.047	
E2	JUNCTION	6.10	15.87	0	00:00	0.493	1.18	0.052	

E3	JUNCTION	0.00	17.10	0	00:00	0	1.18	0.104
E4	JUNCTION	0.00	18.22	0	00:00	0	1.18	0.359
E5	JUNCTION	0.00	15.10	0	00:01	0	1.17	0.124
E6	JUNCTION	11.60	27.23	0	00:01	0.937	2.11	0.189
E7	JUNCTION	0.00	27.69	0	00:02	0	2.1	0.094
F3	JUNCTION	0.00	34.84	0	00:02	0	2.66	0.176
F2	JUNCTION	0.00	6.95	0	00:00	0	0.556	0.436
F1	JUNCTION	6.90	6.90	0	00:00	0.557	0.557	0.175
F4	JUNCTION	0.00	35.19	0	00:02	0	2.65	-0.982
F5	JUNCTION	0.00	36.96	0	00:02	0	2.68	2.849
F6	JUNCTION	0.00	37.52	0	00:03	0	2.61	10.857
G3	JUNCTION	16.40	16.43	0	00:02	1.32	1.32	1.093
G4	JUNCTION	7.10	24.85	0	00:00	0.574	1.5	-0.214
G2	JUNCTION	13.60	32.51	0	00:00	1.1	1.6	0.452
G1	JUNCTION	16.30	16.30	0	00:00	1.32	1.32	43.758
C1	JUNCTION	5.80	5.80	0	00:00	0.469	0.469	0.003
J2	JUNCTION	3.70	3.70	0	00:00	0.299	0.299	1.142
J1	JUNCTION	8.70	13.82	0	00:00	0.703	0.998	-0.191
PA1	JUNCTION	102.00	102.00	0	00:00	8.24	8.24	0.192
PA2	JUNCTION	0.00	107.99	0	00:00	0	8.22	0.000
HighPtN	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
HighPtS	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
68	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
70	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
73	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
76	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
87	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
80	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
72	JUNCTION	0.00	0.00	0	00:00	0	0	0.000 gal
Forebay-H	OUTFALL	0.00	126.96	0	00:04	0	10.2	0.000
Forebay-J	OUTFALL	0.00	13.59	0	00:01	0	1	0.000

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Туре	Surcharged	Feet	Feet
H1	JUNCTION	2.95	0.522	1.551
F7	JUNCTION	0.01	0.694	0.466
D12	JUNCTION	2.94	0.628	0.412
D11	JUNCTION	2.93	0.000	0.000
B1	JUNCTION	0.01	0.000	0.000
F6	JUNCTION	0.01	0.088	1.202
PA1	JUNCTION	0.01	0.000	0.000
PA2	JUNCTION	3.00	0.000	0.000

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	CFS	days hr:min	10^6 gal	Feet
D11	2.93	1.14	0 00:04	0.090	0.000
B1	0.01	0.28	0 00:00	0.000	0.000
G1	2.95	13.75	0 00:03	0.420	0.470
PA1	0.01	87.31	0 00:00	0.007	0.000
PA2	3.00	107.99	0 00:00	8.217	0.000

(PAn = Poa Annua Box Culvert)

Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
Forebay-H	100.00	125.16	126.96	10.158
Forebay-J	100.00	12.38	13.59	1.000
System	100.00	137.53	139.37	11.158

Link Flow Summary

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	0ccu	rrence	Veloc	Full	Full
Link	Type	CFS	days	hr:min	ft/sec	Flow	Depth
A1-A2	CONDUIT	7.93	0	00:00	5.84	0.89	0.75
A2-A3	CONDUIT	7.24	0	00:01	5.41	0.89	0.71
A3-A4	CONDUIT	7.40	0	00:01	5.32	0.91	0.74
A4-B2	CONDUIT	7.69	0	00:01	5.15	0.95	0.79
B1-B2	CONDUIT	11.11	0	00:00	7.07	1.05	0.90
B2-B3	CONDUIT	16.99	0	00:02	6.83	0.90	0.74
B3-B4	CONDUIT	17.18	0	00:02	6.80	0.93	0.75
B4-C2	CONDUIT	17.33	0	00:02	6.98	0.90	0.74
C1-C2	CONDUIT	5.87	0	00:00	8.16	0.39	0.62

C2-C3	CONDUIT	23.40	0	00:03	7.09	0.74	0.64
C3-D2	CONDUIT	24.25	0	00:03	7.41	0.59	0.64
D10-D11	CONDUIT	39.23	0	00:04	5.55	0.93	1.00
D11-D12	CONDUIT	38.08	0	00:04	5.39	0.90	1.00
D12-H1	CONDUIT	38.07	0	00:04	5.82	0.69	1.00
D1-D2	CONDUIT	10.51	0	00:00	9.76	0.71	0.77
D2-D4	CONDUIT	32.08	0	00:03	7.57	0.78	0.67
D4-D5	CONDUIT	41.64	0	00:04	9.01	0.88	0.73
D5-D6	CONDUIT	41.76	0	00:04	10.15	0.75	0.65
D6-D7	CONDUIT	41.41	0	00:04	9.43	0.82	0.69
D7-D8	CONDUIT	41.18	0	00:04	9.07	0.77	0.73
D8-D9	CONDUIT	40.61	0	00:04	8.49	0.77	0.84
D9-D10	CONDUIT	39.78	0	00:04	6.96	0.84	0.99
E1-E2	CONDUIT	9.77	0	00:00	5.48	0.65	0.74
E2-E3	CONDUIT	17.10	0	00:00	7.04	0.90	0.75
E3-E4	CONDUIT	18.22	0	00:00	10.82	0.80	0.59
E4-E5	CONDUIT	15.10	0	00:01	7.72	0.67	0.60
E5-E6	CONDUIT	15.63	0	00:01	8.15	0.64	0.59
E6-E7	CONDUIT	27.69	0	00:02	8.04	0.78	0.67
E7-F3	CONDUIT	27.96	0	00:02	8.29	0.76	0.65
F1-F2	CONDUIT	6.95	0	00:00	10.69	0.33	0.40
F2-F3	CONDUIT	6.91	0	00:03	4.99	0.89	0.76
F3-F4	CONDUIT	35.19	0	00:02	8.78	0.59	0.57
F4-F5	CONDUIT	36.96	0	00:02	7.85	0.62	0.65
F5-F6	CONDUIT	37.52	0	00:03	6.17	0.89	0.86
F6-F7	CONDUIT	36.58	0	00:03	5.48	1.06	1.00
F7-H2	CONDUIT	34.89	0	00:03	4.94	0.74	1.00
G1-G2	CONDUIT	18.91	0	00:00	7.10	1.22	1.00
G2-H1	CONDUIT	35.33	0	00:00	9.09	0.89	1.00
G3-G4	CONDUIT	17.75	0	00:00	6.60	0.83	1.00
G4-H1	CONDUIT	26.76	0	00:00	8.95	1.26	1.00
H1-H2	CONDUIT	76.51	0	00:03	9.71	1.40	1.00
H2-H3	CONDUIT	126.96	0	00:04	10.47	1.02	0.89

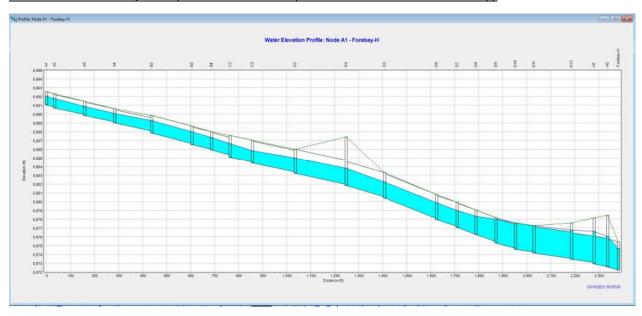
J1-EDB	CONDUIT	13.59	0	00:01	5.76	0.82	0.66
J2-J1	CONDUIT	5.12	0	00:00	3.12	0.29	0.62
PA1-PA2	CONDUIT	107.99	0	00:00	9.46	0.74	1.00
68-69	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
70-71	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
80-G3	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
H2-HighPtS	WEIR	0.00	0	00:00			0.00
87-G2	WEIR	0.00	0	00:00			0.00
HighPtN-J2	WEIR	0.00	0	00:00			0.00
D4-G4	WEIR	0.00	0	00:00			0.00
H2-G1-Overtopping	WEIR	5.16	0	00:04			0.18
H2-G3-Overtopping	WEIR	5.06	0	00:04			0.18
73-E6	WEIR	0.00	0	00:00			0.00
76-H2	WEIR	0.00	0	00:00			0.00
HighPtS-J1	WEIR	0.00	0	00:00			0.00
72-D4	WEIR	0.00	0	00:00			0.00
G4-G3-Gutter	WEIR	0.82	0	00:04			0.06
G2-G1-Gutter	WEIR	2.10	0	00:04			0.17
HighPtN-G1	WEIR	0.00	0	00:00			0.00

Flow Classification Summary

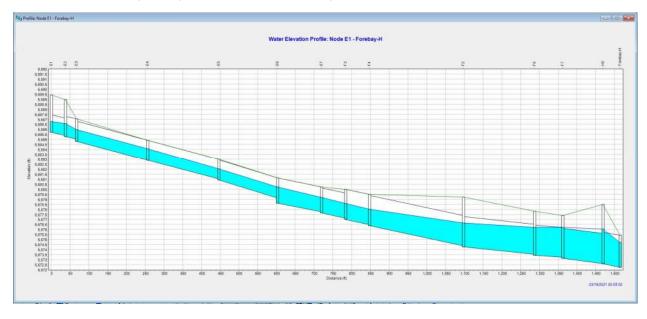
	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
A1-A2	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
A2-A3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
A3-A4	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00

A4-B2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.01	0.00
B1-B2	1.00	0.00	0.00	0.00	0.01	0.98	0.00	0.02	0.00	0.00
B2-B3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
B3-B4	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
B4-C2	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C1-C2	1.00	0.00	0.00	0.00	0.00	0.99	0.00	0.01	0.00	0.00
C2-C3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
C3-D2	1.00	0.00	0.00	0.00	0.02	0.98	0.00	0.00	0.00	0.00
D10-D11	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.01	0.00	0.00
D11-D12	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
D12-H1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
D1-D2	1.00	0.00	0.00	0.00	0.98	0.01	0.00	0.01	0.00	0.00
D2-D4	1.00	0.00	0.00	0.00	0.02	0.98	0.00	0.00	0.00	0.00
D4-D5	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
D5-D6	1.00	0.00	0.00	0.00	0.00	0.98	0.00	0.02	0.00	0.00
D6-D7	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
D7-D8	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
D8-D9	1.00	0.00	0.00	0.00	0.97	0.01	0.00	0.02	0.00	0.00
D9-D10	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.01	0.00	0.00
E1-E2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
E2-E3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
E3-E4	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.01	0.00
E4-E5	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
E5-E6	1.00	0.00	0.00	0.00	0.01	0.01	0.00	0.98	0.01	0.00
E6-E7	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
E7-F3	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
F1-F2	1.00	0.00	0.00	0.00	0.00	0.98	0.00	0.02	0.99	0.00
F2-F3	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.01	0.00	0.00
F3-F4	1.00	0.00	0.00	0.00	0.00	0.01	0.00	0.99	0.00	0.00
F4-F5	1.00	0.00	0.00	0.00	0.97	0.01	0.00	0.02	0.00	0.00
F5-F6	1.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00
F6-F7	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
F7-H2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00

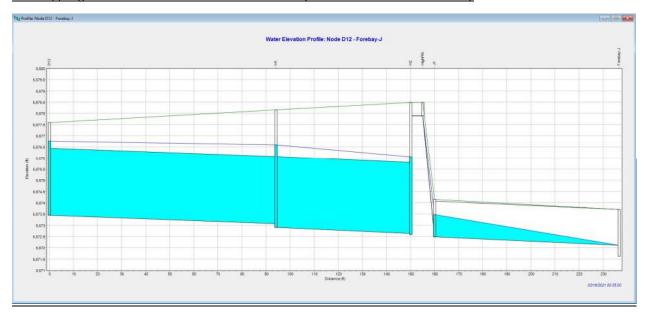
G1-G2	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.02	0.00	0.00
G2-H1	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.01	0.00	0.00
G3-G4	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
G4-H1	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.02	0.00	0.00
H1-H2	1.00	0.00	0.00	0.00	0.98	0.00	0.00	0.02	0.00	0.00
H2-H3	1.00	0.00	0.00	0.00	0.98	0.02	0.00	0.00	0.00	0.00
J1-EDB	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
J2-J1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
PA1-PA2	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
68-69	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70-71	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80-G3	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

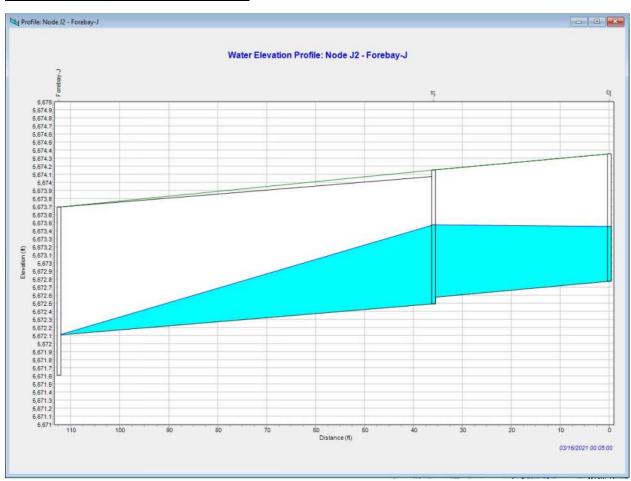

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
B1-B2	0.01	0.01	0.01	0.01	0.01
D10-D11	0.01	0.01	2.93	0.01	0.01
D11-D12	2.94	2.94	2.94	0.01	0.01
D12-H1	2.95	2.95	2. 95	0.01	0.01
D9-D10	0.01	0.01	2.94	0.01	0.01
F5-F6	0.01	0.01	0.01	0.01	0.01
F6-F7	0.01	0.01	0.01	0.01	0.01
F7-H2	2.94	2.94	2.95	0.01	0.01
G1-G2	2.95	2.95	2.95	0.04	0.01
G2-H1	2.95	2.95	2.95	0.01	0.01
G3-G4	2.95	2.95	2.95	0.01	0.01
G4-H1	2.95	2.95	2.95	0.06	0.01
H1-H2	2.95	2.95	2.95	2.96	2.95
H2-H3	0.01	2.95	0.01	2.93	0.01
PA1-PA2	0.01	0.01	3.00	0.01	0.01

Analysis begun on: Thu Mar 30 14:37:18 2023
Analysis ended on: Thu Mar 30 14:37:18 2023


Total elapsed time: < 1 sec

Note: Node Flooding Resolves at the inlet complex G1 through G4 along with Inlets J1 and J2 to intercept 100% of the Major Event at a depth 0.47'.


Inlet A-1 to Forebay H Major Event Profile (Golden Buffs Drive Trunkline))


Inlet E-1 to Forebay H Major Event Profile (Pennycress Drive Trunkline)

Overtopping Characteristics at Inlets G1-G4 (Near Detention Basin 'D')

Inlets J1-J2 Major Event to Forebay J

INLET MANAGEMENT

Worksheet Protected

URBAN URBA						
Intell Application (Street or Anna)	INLET NAME					
Hydrakinic Condition	Site Type (Urban or Rural)		URBAN	URBAN	URBAN	URBAN
Intel Type			STREET	STREET		
### Common Program Review Common Review Co						
User-Defined Design Flows	Inlet Type		CDOT Type R Curb Opening			
Minor Commercial Com	ER-DEFINED INPUT					
Minor Commercial Com	User-Defined Design Flows					
Nagor Cycons (16) 7.3 6.9 12.7 11.1			2.5	2.4	4.4	3.8
Vacence Bypass Flow Form Vacence Month Vacence Flow Received Vacence Flow Received Vacence Flow Received Vacence Flow Vacence Vace	Major Q _{Known} (cfs)			6.9	12.7	11.1
No Bypass Flow Received User-Defined	Bypass (Carry-Over) Flow from Upstream	1				
Minor Sypass Flow Received, Q _s (cfs) 0.0 0.0 0.0 0.0 0.0	Receive Bypass Flow from:	:	User-Defined	No Bypass Flow Received	User-Defined	No Bypass Flow Received
Major Bypass Flow Received, Q _v (rfs)	Minor Bypass Flow Received, Q _b (cfs)					
Watershed Characteristics Subcatchment Area (acres)	Major Bypass Flow Received, Q _b (cfs)					
Subcatchment Area (acros) Percent Impervious C						
Percent Impervious						
Watershed Profile						
Watershed Profile			0	C	C	C
Diverland Slope (ft/ft) Diverland Length (ft) Di	NRCS Soli Type		C	C	C	C
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
Minor Storm Rainfall Input Design Storm Return Period, T, (years)						
Design Storm Return Period, T₁ (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ C₂ User-defined C User-defined T₂ User-defined T₂ Major Storm Rainfall Input Design Storm Return Period, T₁ (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ User-defined S₂ User-defined C User-defined C User-defined S₂ User-defined S₂ User-defined T₂ User-defined S₂ User-defi	Channel Length (ft)					
Design Storm Return Period, T, (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ User-defined C User-defined T₂ Major Storm Rainfall Input Design Storm Return Period, T, (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ User-defined T₂ Major Storm Rainfall Input Design Storm Return Period, T, (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ User-defined C User-defined C User-defined T₂ User-defined T₂ Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) N.C. User-defined C O. O	Minor Storm Rainfall Input					
C ₁ C ₂ C ₃ User-defined C User-defined 5-yr C ₅ User-defined T _c Major Storm Rainfall Input Design Storm Return Period, T ₁ (years) One-Hour Precipitation, P ₁ (inches) C ₁ C ₂ C ₃ User-defined C User-defined C User-defined C User-defined C User-defined T _c Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) D, 0, 0, 0, 0, 0.						
C2 C3 C3 C4 C5 User-defined C User-defined 5-yr C5 User-defined Tc User-defined C User-defined C User-defined Tc User-defined	One-Hour Precipitation, P ₁ (inches)					
C3	C ₁					
C3	C_2					
User-defined 5-yr C ₅	C_3					
Major Storm Rainfall Input	User-defined C					
Major Storm Rainfall Input Design Storm Return Period, T₁ (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ C₂ User-defined C User-defined 5-yr C₂ User-defined T₂ User-defined T₂ LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₂ (cfs) 0.0 0.1 0.0	User-defined 5-yr C ₅					
Design Storm Return Period, T, (years) One-Hour Precipitation, P1 (inches) C1 C2 C3 User-defined C User-defined 5-yr C5 User-defined Tc User-defined Tc Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) Minor Flow Bypassed Downstream, Qb (cfs) 0.0 0.0 0.1 0.0	User-defined T _c					
Design Storm Return Period, T _r (years) One-Hour Precipitation, P₁ (inches) C₁ C₂ C₂ C₃ C₃ User-defined C User-defined 5-yr C₂ User-defined T₂ User-defined T₂ User-defined T₂ ALCULATED OUTPUT Sign Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₂ (cfs) 0.0 0.0 0.1 0.0	Major Storm Rainfall Input					
One-Hour Precipitation, P₁ (inches) C₁ C₁ C₂ C₂ C₃ User-defined C User-defined 5-yr C₅ User-defined T₂ User-defined T₂ LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₅ (cfs) 0.0 0.0 0.0 0.0	Design Storm Return Period, T. (vears)					
C₁ C₂ C₂ C₃ User-defined C User-defined 5-yr C₅ User-defined T₀ User-defined T₀ LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₀ (cfs) 0.0 0.0 0.1 0.0						
C₂ C₃ C₃ User-defined C User-defined 5-yr C₅ User-defined T₀ LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₀ (cfs) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 , ,					
C3						
User-defined C User-defined S-yr C ₅ User-defined T _c Us	02					
User-defined 5-yr C₅ User-defined T₀ LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q₀ (cfs) 0.0 0.0 0.1 0.0						
LCULATED OUTPUT						
LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q _b (cfs) 0.0 0.0 0.1 0.0						
Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q _b (cfs) 0.0 0.0 0.1 0.0	User-defined T _c					
Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q _b (cfs) 0.0 0.0 0.1 0.0						
Minor Total Design Peak Flow, Q (cfs) 2.5 2.4 4.4 3.8 Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q _b (cfs) 0.0 0.0 0.1 0.0	I CUI ATED OUTPUT					
Major Total Design Peak Flow, Q (cfs) 9.0 6.9 13.8 11.1 Minor Flow Bypassed Downstream, Q _b (cfs) 0.0 0.0 0.1 0.0						
Minor Flow Bypassed Downstream, Q_b (cfs) 0.0 0.0 0.1 0.0			2.5	2.4	4.4	3.8
Minor Flow Bypassed Downstream, Q_b (cfs) 0.0 0.0 0.1 0.0	Major Total Design Peak Flow, Q (cfs)		9.0	6.9	13.8	11.1
		-				
	Major Flow Bypassed Downstream, Q _b (cfs)		2.3	1.1	5.4	1.2

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>G-1</u>	<u>G-2</u>	<u>E-1</u>	<u>E-2</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	On Grade	On Grade	On Grade
nlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Openi
ER-DEFINED INPUT				
Jser-Defined Design Flows				
Minor Q _{Known} (cfs)	0.3	6.2	3.4	2.8
Major Q _{Known} (cfs)	0.7	14.5	9.9	8.1
Bypass (Carry-Over) Flow from Upstream				
Receive Bypass Flow from:	No Bypass Flow Received	D-1	No Bypass Flow Received	No Bypass Flow Receive
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.1	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	5.4	0.0	0.0
Watershed Characteristics				
Subcatchment Area (acres)				
Percent Impervious		_		
NRCS Soil Type	С	С	С	С
Natershed Profile		_		
Overland Slope (ft/ft)				
Overland Length (ft)				
Channel Slope (ft/ft)				
Channel Length (ft)				
Minor Storm Rainfall Input Design Storm Return Period, T _r (years) De-Hour Precipitation, P ₁ (inches)				
2 ₁				
Jser-defined C				
Jser-defined 5-yr C ₅				
Jser-defined T _c				
Major Storm Rainfall Input				
Design Storm Return Period, T _r (years)				
One-Hour Precipitation, P ₁ (inches)				
S ₁				
02				
5 ₃				
-3 Jser-defined C				
Jser-defined C Jser-defined 5-yr C ₅				
Jser-defined 5-yr C ₅ Jser-defined T _c				
Oser-defined 1 _c				
LCULATED OUTPUT				
		1 00	II 0.4	
Minor Total Design Peak Flow, Q (cfs)	0.3	6.3	3.4	2.8
Major Total Design Peak Flow, Q (cfs)	0.7	19.9	9.9	8.1
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	6.1	2.8	1.7

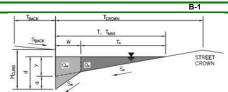
INLET MANAGEMENT

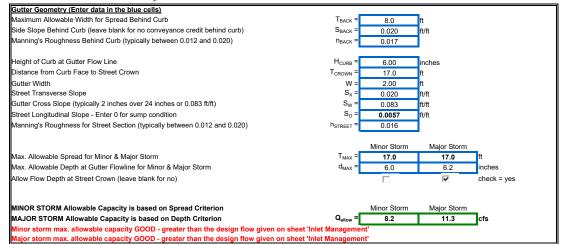
Worksheet Protected

NLET NAME	<u>E-6</u>	<u>H-2</u>	<u>J-1</u>	<u>J-2</u>
ite Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET
lydraulic Condition	On Grade	In Sump	In Sump	In Sump
nlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Oper
R-DEFINED INPUT				
Iser-Defined Design Flows				
linor Q _{Known} (cfs)	3.7	15.1	1.0	0.8
lajor Q _{Known} (cfs)	10.8	43.8	2.6	1.5
sypass (Carry-Over) Flow from Upstream				
Receive Bypass Flow from:	User-Defined	User-Defined	User-Defined	User-Defined
linor Bypass Flow Received, Q _b (cfs)	0.2	0.0		
lajor Bypass Flow Received, Q _b (cfs)	3.5	2.7	8.2	9.5
Vatershed Characteristics				
ubcatchment Area (acres)				
ercent Impervious				
RCS Soil Type	С	С	С	С
/atershed Profile				
verland Slope (ft/ft)				
verland Slope (frit)				
hannel Slope (ft/ft)				
Channel Length (ft)				
linor Storm Rainfall Input esign Storm Return Period, T _r (years)				
ne-Hour Precipitation, P ₁ (inches)				
2				
3				
3 ser-defined C				
ser-defined 5-yr C ₅				
Iser-defined T _c				
		•		•
ajor Storm Rainfall Input esign Storm Return Period, T _r (years)				
ne-Hour Precipitation, P ₁ (inches)				
1				
2				
3				
ser-defined C				
ser-defined 5-yr C ₅				
Jser-defined T _c				

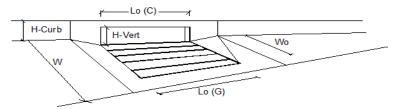
Minor Total Design Peak Flow, Q (cfs)	3.9	15.1	1.0	0.8
Major Total Design Peak Flow, Q (cfs)	14.3	46.5	10.8	11.0
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	2.7	N/A	N/A	N/A

INLET MANAGEMENT

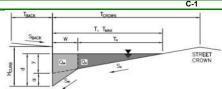

Worksheet Protected

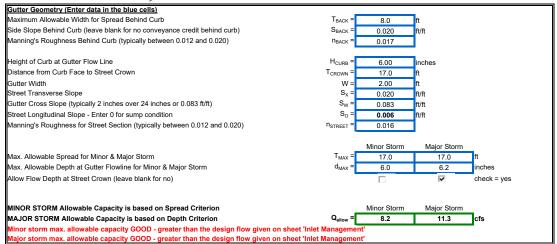

NLET NAME	<u>F-1</u>	<u>A-1</u>	<u>G-3</u>	G-4 ON GRADE
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
nlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	On Grade	In Sump	On Grade
nlet Type	CDOT Type R Curb Opening			
ER-DEFINED INPUT				
Jser-Defined Design Flows				
Minor Q _{Known} (cfs)	2.4	3.0	5.7	3.8
Major Q _{Known} (cfs)	6.9	8.6	16.4	12.2
Sypass (Carry-Over) Flow from Upstream				
Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	No Bypass Flow Received	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	•	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0		1.2
Natershed Characteristics				
Subcatchment Area (acres)				
Percent Impervious				
NRCS Soil Type	C	С	C	С
21		•	-	
Natershed Profile				
Overland Slope (ft/ft)				
Overland Length (ft)				
Channel Slope (ft/ft)				
Channel Length (ft)				
Minor Storm Rainfall Input				
Design Storm Return Period, T _r (years)				
One-Hour Precipitation, P ₁ (inches)				
C ₁				
D ₂				
\sum_{3}^{2}				
D ₃ User-defined C				
Jser-defined C				
Jser-defined C Jser-defined 5-yr C ₅				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years)				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches)				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches)				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches)				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches) C ₂ C ₃				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches) 22 23 Jser-defined C				
Jser-defined C Jser-defined 5-yr C ₅ Jser-defined T _c Major Storm Rainfall Input Design Storm Return Period, T _r (years) Dne-Hour Precipitation, P ₁ (inches) C ₂ C ₃				

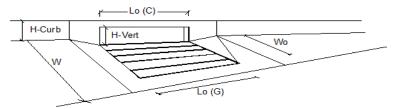
CALCULATED OUTPUT


Minor Total Design Peak Flow, Q (cfs)	2.4	3.0	5.7	3.8
Major Total Design Peak Flow, Q (cfs)	6.9	8.6	16.4	13.4
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	2.0	N/A	2.3
•				

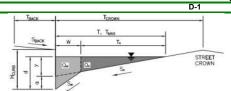
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

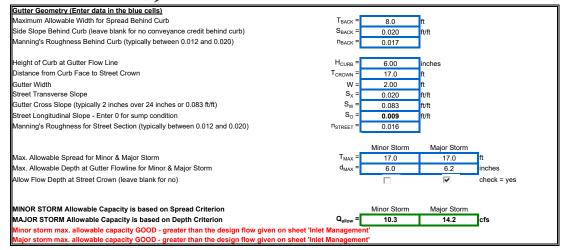


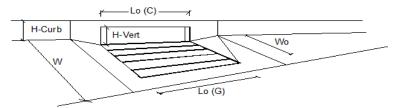

Version 4.05 Released March 2017


Design Information (Input)	CDOT Type R Curb Opening	T	-	MINOR	MAJOR	
Type of Inlet			Type =	CDOT Type F	Curb Opening	
Local Depression (additional to cor	ntinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr	reater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit 0	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	2.5	6.7	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	75	%

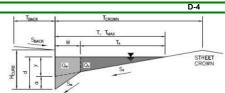
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

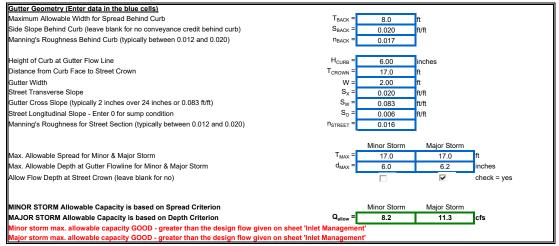


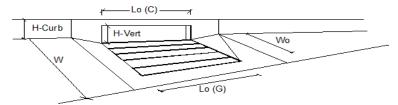

Version 4.05 Released March 2017


Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	T	Type =	MINOR	MAJOR Curb Opening	1
Local Depression (additional to co	entinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet	(Grate or Curb Opening)		No =	2	2	1
Length of a Single Unit Inlet (Grate	e or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit (Curb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allo	wable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity	•		Q =	2.4	5.8	cfs
Total Inlet Carry-Over Flow (flow	v bypassing inlet)		Q _b =	0.0	1.1	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	84	%

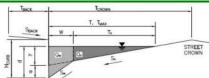
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11




Version 4.05 Released March 2017

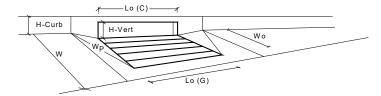

Design Information (Input)	CDOT Type R Curb Opening		_	MINOR	MAJOR	_
Type of Inlet	CDO1 Type R Curb Opening	<u> </u>	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to con	tinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (0	Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	4.3	8.4	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	0.1	5.4	cfs
Capture Percentage = Q _a /Q _o =			C% =	97	61	%

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

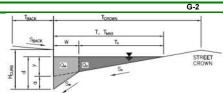


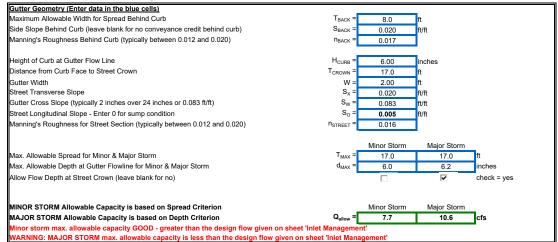
Version 4.05 Released March 2017

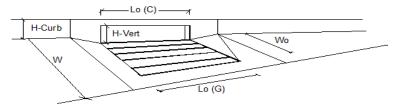
Design Information (Input)				MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	▼	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to cont	inuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (G	rate or Curb Opening)		No =	3	3	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be gre	eater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	rate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Cu	rb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	able Street Capacity'			MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	3.8	9.9	cfs
Total Inlet Carry-Over Flow (flow	oypassing inlet)		Q _b =	0.0	1.2	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	89	%


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11
G-1

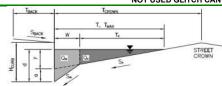
Gutter Geometry (Enter data in the blue cells)			_	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.017		
			_	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016		
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	6.2	inches
Check boxes are not applicable in SUMP conditions	_			
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Vater Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches
Vater Depth at Gutter Flowline	d =	5.59	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.350	0.350	
Discharge outside the Gutter Section W, carried in Section T _X	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W (Q _T - Q _X)	Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	Q _T =	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section	V =	0.0	0.0	fps
/*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	0.0	0.0	₫`
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} =		<u> </u>	ft
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	18.7 16.7	19.4 17.4	"t
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _O =	0.318	0.306	- "
Figure Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. S1-7) Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}				cfe
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _{x TH} = Q _x =	0.0	0.0	cfs cfs
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _X =			cfs
	Q _{BACK} =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)		0.0	0.0	_
Fotal Discharge for Major & Minor Storm (Pre-Safety Factor)	Q=	0.0	0.0	cfs
Average Flow Velocity Within the Gutter Section	V =	0.0	0.0	fps
/*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	V*d = R =	0.0	0.0	-1
	Q _d =	SUMP	SUMP	cfs
Max Flow Based on Allowable Depth (Safety Factor Applied)	d =	SUMP	SUMP	
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	d = d _{CROWN} =			inches inches
resultant i now Depth at Street Grown (Salety Factor Applied)	GCROWN -			inches
MINOR STORM Allowable Capacity is based on Depth Criterion	o -F	Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	SUMP	SUMP	cfs

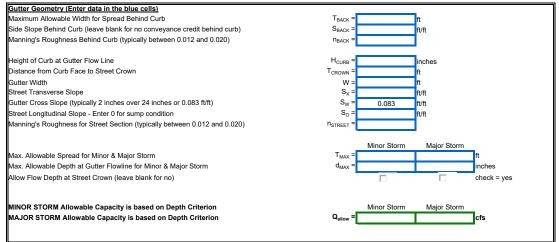

INLET IN A SUMP OR SAG LOCATION

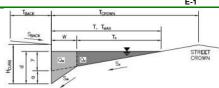

Version 4.05 Released March 2017

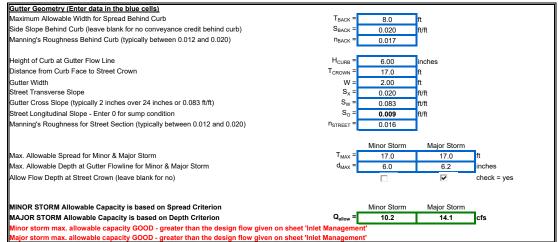

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.35	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.47	0.58	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.72	0.80	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.8	19.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.3	0.7	cfs

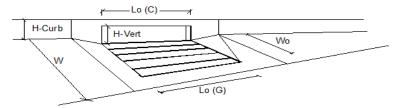
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11



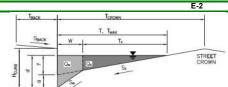

Version 4.05 Released March 2017

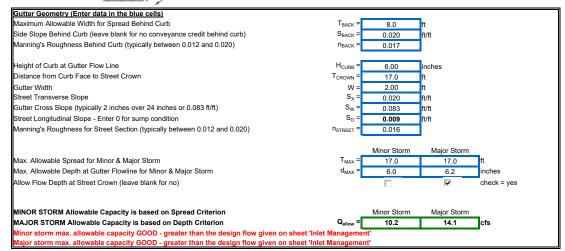

Design Information (Input)	CDOT Time B Cont On anima		MINOR	MAJOR	_
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type I	R Curb Opening	
Local Depression (additional to cor	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate	or Curb Opening)	$L_o =$	5.00	5.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit 0	Grate (typical min. value = 0.5)	C _F G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q	> ALLOWABLE Q FOR MAJOR STORM	_	MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	6.3	13.8	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	6.1	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	70	%

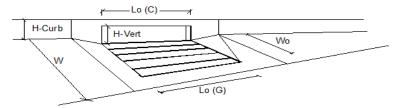

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11
NOT USED GLITCH CAN'T ERASE



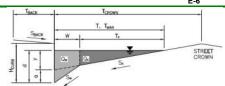
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

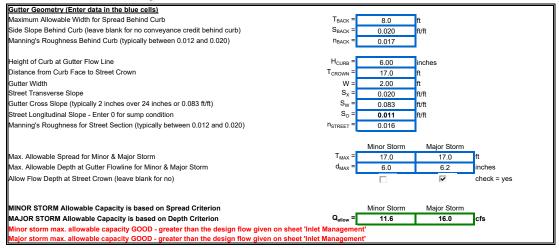


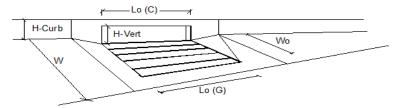

Version 4.05 Released March 2017


Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.4	7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	72	%

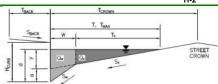
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11




Version 4.05 Released March 2017

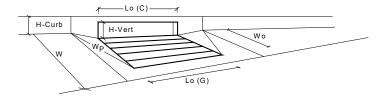

Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.8	6.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

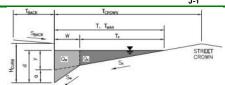


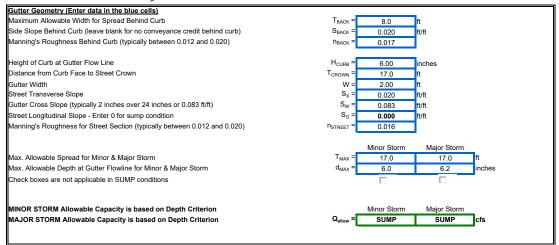
Version 4.05 Released March 2017

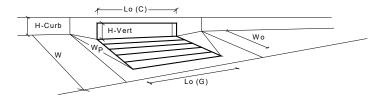
Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.9	11.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11
H-2

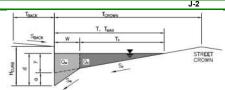
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	SUMP	SUMP	cfs
MINOR STORM Allowable Capacity is based on Depth Criterion	_	Minor Storm	Major Storm	_
and the second approach in commentation				
Check boxes are not applicable in SUMP conditions	11000	Π	U.E.	_
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	6.2	inches
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft
		Minor Storm	Major Storm	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016	J	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.000	ft/ft	
Sutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Width	W =	2.00	ft	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
leight of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.017	J	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	8.0	ft	
Sutter Geometry (Enter data in the blue cells)	_		_	


INLET IN A SUMP OR SAG LOCATION

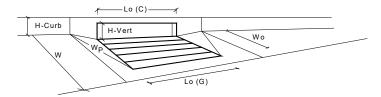

Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.35	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.58	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.80	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	J
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	18.2	19.9	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	15.1	46.5	cfs

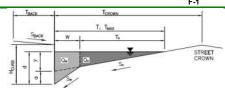
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11



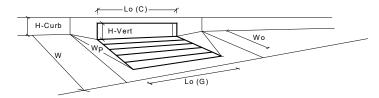
Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.7	8.7	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	1.0	10.8	cfs

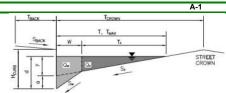
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11
J-2

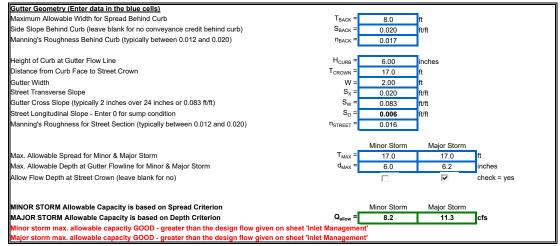

Gutter Geometry (Enter data in the blue cells)	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} = 8.0 ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} = 0.017
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00 inches
Distance from Curb Face to Street Crown	T _{CROWN} = 17.0 ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_X = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W = 0.083 ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	S _O = 0.000 ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} = 0.016
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	T _{MAX} = 17.0 17.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} = 6.0 6.2 inches
Check boxes are not applicable in SUMP conditions	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm Major Storm
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} = SUMP SUMP cfs

Version 4.05 Released March 2017

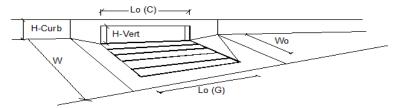

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.7	8.7	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	0.8	11.0	cfs

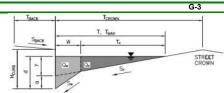
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11
F-1

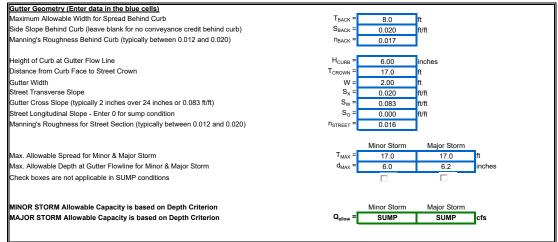

,	
Gutter Geometry (Enter data in the blue cells)	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} = 8.0 ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} = 0.020 ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} = 0.017
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00 inches
Distance from Curb Face to Street Crown	
	T _{CROWN} = 20.0 ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_X = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = 0.083$ ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	S _o = 0.000 ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} = 0.016
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = 17.0$ 17.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} = 6.0 6.2 inches
Check boxes are not applicable in SUMP conditions	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm Major Storm
INITIVOR 3 FORIN ATTOWADIE CAPACITY IS DASED ON DEPTH CRITETION	,
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} = SUMP SUMP cfs

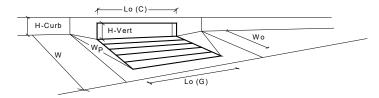

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Inlet	Type =		R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	6.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	reet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.35	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.58	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	0.94	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.7	11.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.4	6.9	cfs

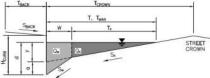

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11

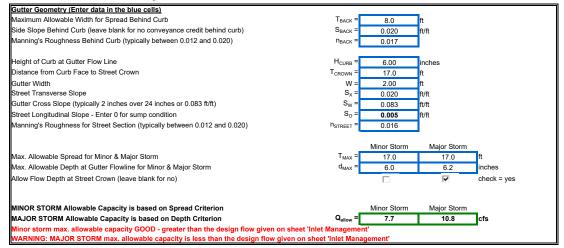

INLET ON A CONTINUOUS GRADE


Version 4.05 Released March 2017


Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	₩	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
1 · · · · · · · · · · · · · · · · · · ·		a _{LOCAL} =	3.0	3.0	inches	
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	2	2	
Length of a Single Unit Inlet (Grate	Length of a Single Unit Inlet (Grate or Curb Opening)		L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)			W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)			C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10		
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	3.0	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Q _b =		Q _b =	0.0	2.0	cfs	
Capture Percentage = Q _a /Q _o =		C% =	100	76	%	

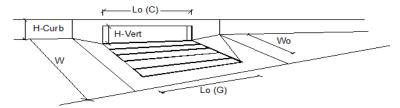
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
The Glen at Widefield Filing No 11


Version 4.05 Released March 2017



Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.35	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.47	0.58	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.72	0.80	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.8	19.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.7	16.4	cfs

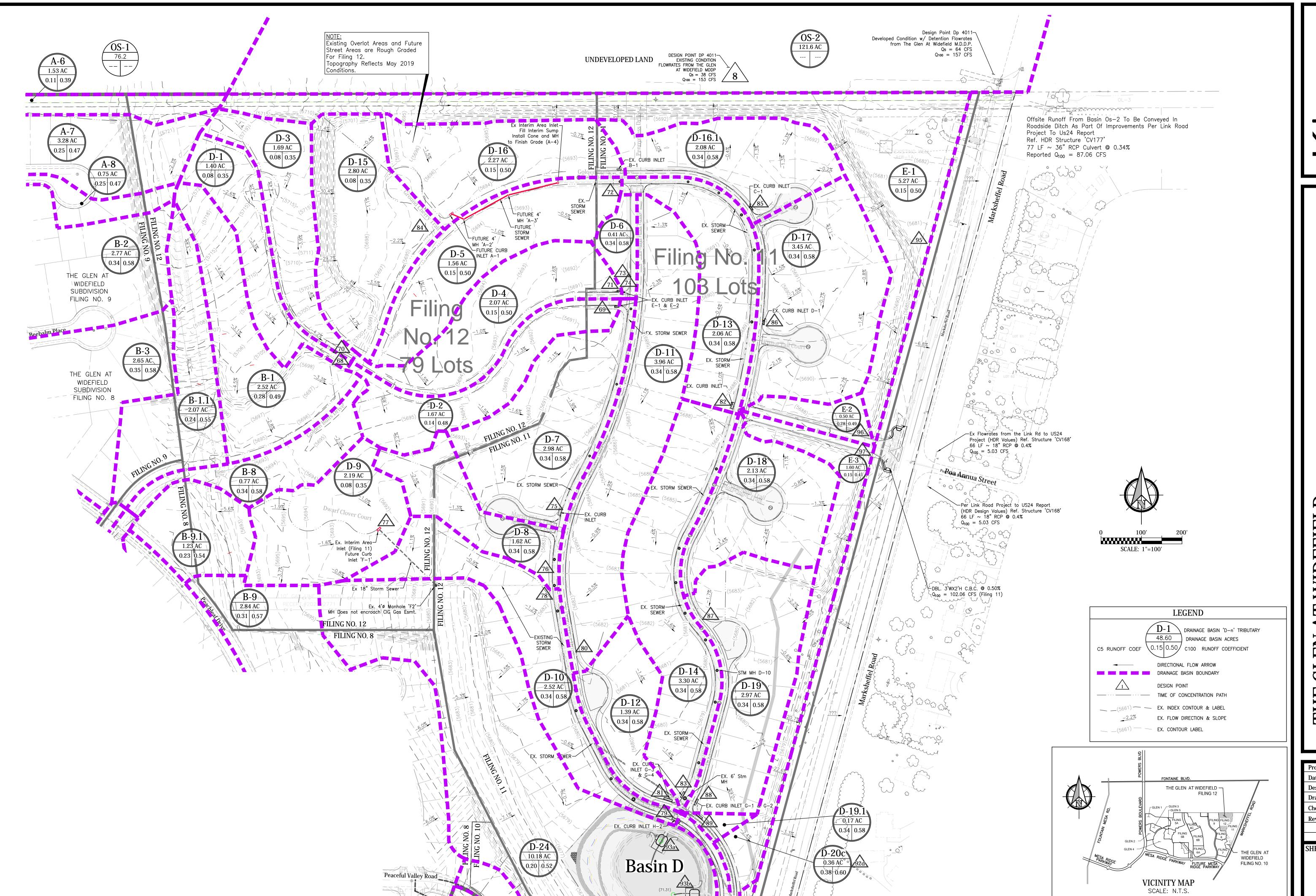
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) The Glen at Widefield Filing No 11


Project: Inlet ID: G-4 ON GRADE

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Тур	e =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOC}	AL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	N	o =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)		-o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		/ _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)		G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr	C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	3.8	11.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)) _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =	C	% =	100	83	%


APPENDIX D

Existing and Proposed Drainage Plans

H-1 – Historic Conditions (Overall)

D-1 - Developed Conditions Onsite (South)

D-2 – Developed Conditions Onsite (North)

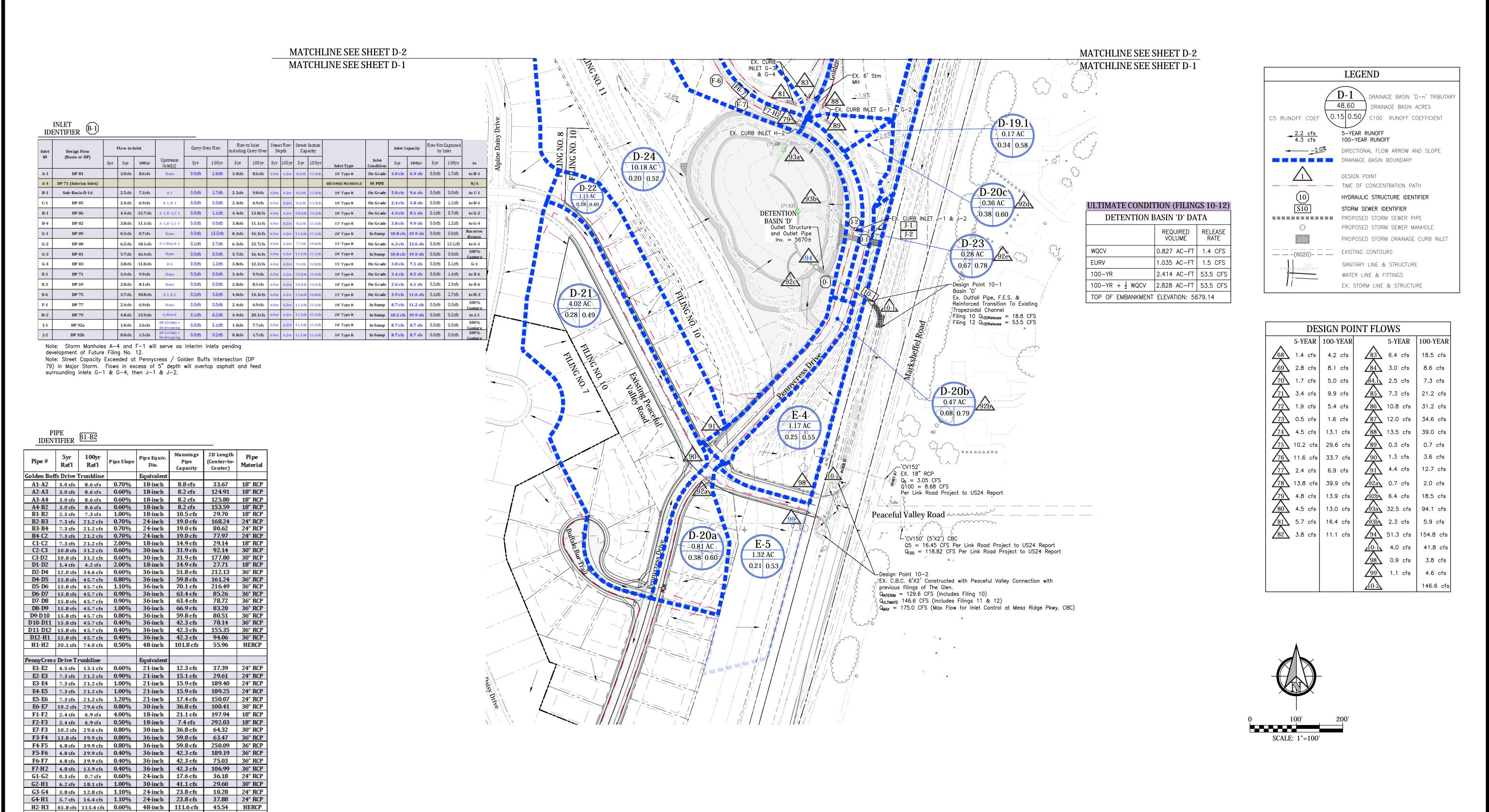
Engineering Corporation

THE GLEN AT WIDEFIELD
FILING NO. 12
HISTORIC DRAINAGE BASINS (WITH CURRENT
El Paso, County, Colorado

Project No.: 19016

Date: Mar 30, 2023

Design: MJK

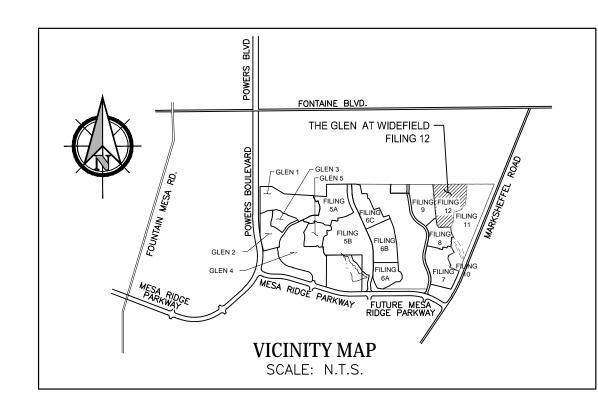

Drawn: MJK

Check: AMcC

Revisions:

HEET

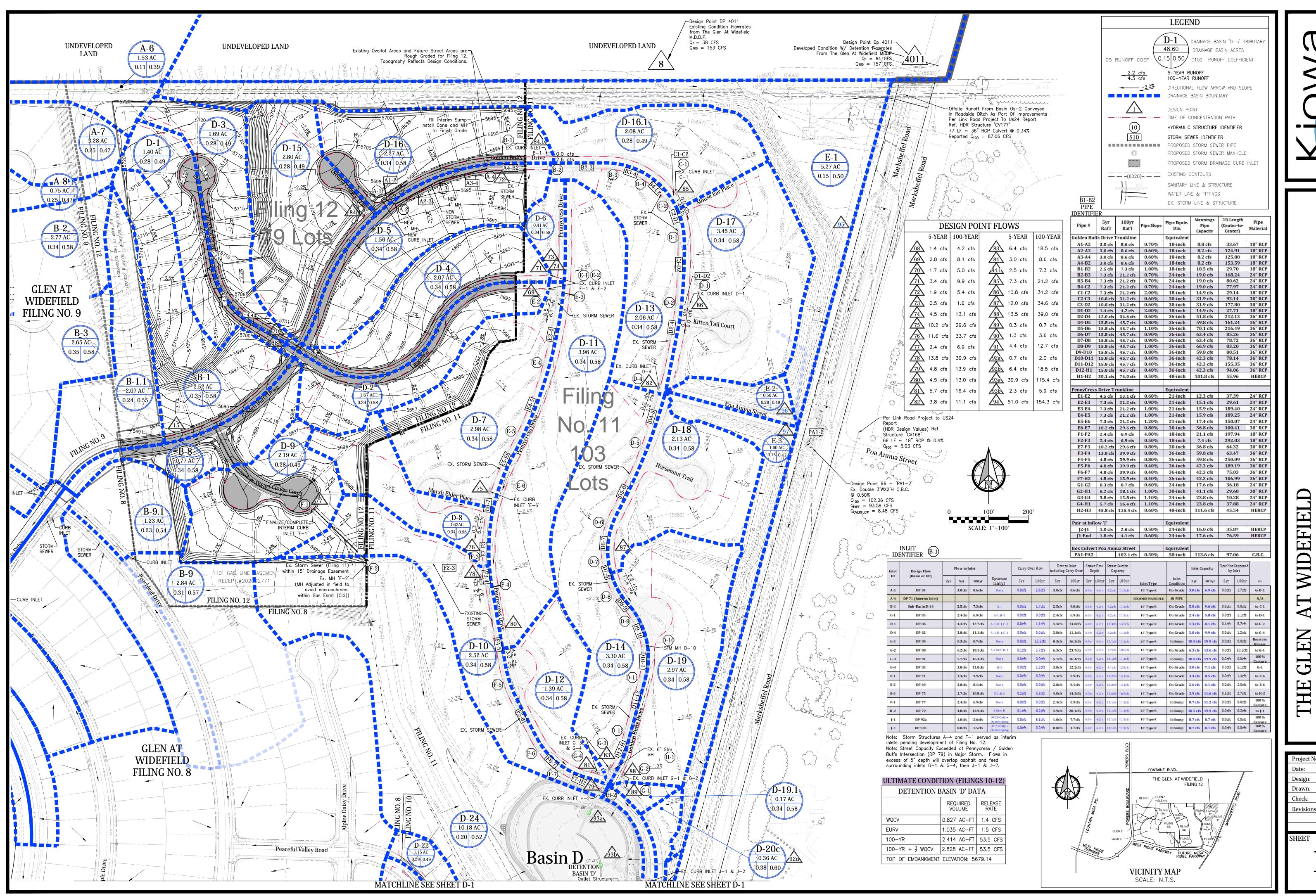
1 of 3 Sheets



Pair at Inflow 'J'

Equivalent J2-J1 1.0 cfs 2.6 cfs 0.50% 24-inch 16.0 cfs 35.87 HERCP J1-End 1.8 cfs 4.1 cfs 0.60% 24-inch 17.6 cfs 76.59 HERCP

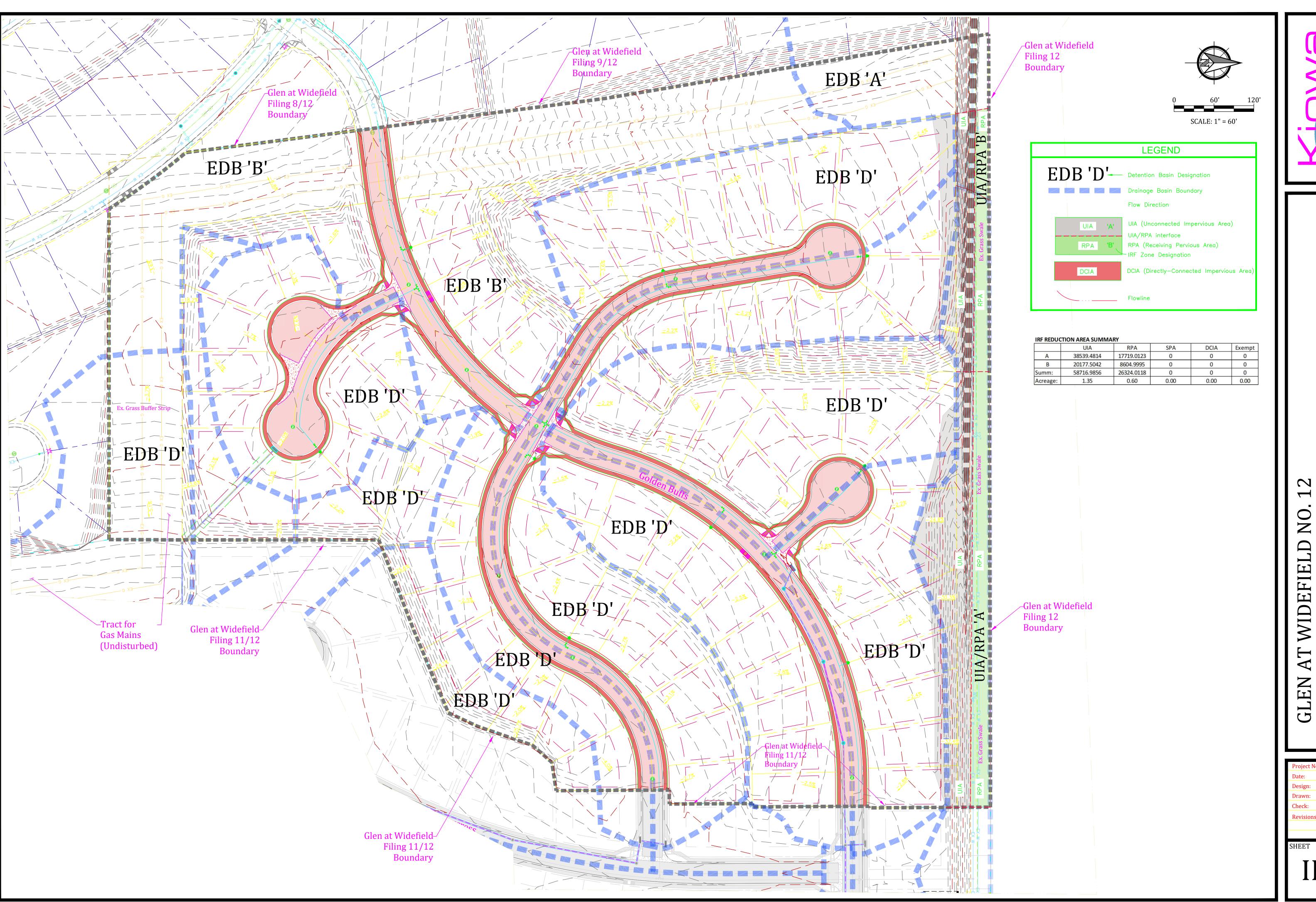
 Box Culvert Poa Annua Street
 Equivalent

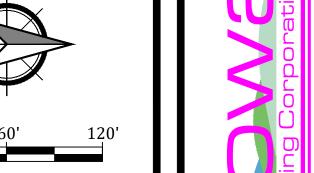

 PA1-PA2
 102.1 cfs
 0.50%
 50-inch
 113.6 cfs
 97.06
 C.B.C.

SITE (OFF-SINS H H B AGE DRAIN. LEN FILING NO.
DEVELOPED |
El Paso, County, (THE

AREA)

Project N	Io.: 19016	
Date:	June 7th, 2023	
Design:	MJK	
Drawn:	MJK	
Check:	AMcC	
Revisions:		


(LOO-0


(FULL **BASINS** DRAINAGE FILING NO.
DEVELOPED I

Project No.: 19016 March 30, 2023 Design: MJK Drawn: MJK Check: AMcC

APPENDIX E IRF Reduction Calculations and Exhibits

IRF Zones A & B (UIA/RPA)
IRF UD_BMP Spreadsheet Results

MIDEFIELD NO.

Drawn: MJK

IRF-1

Design Procedure Form: Runoff Reduction UD-BMP (Version 3.07, March 2018) Sheet 1 of 1 Designer: **AWMc** Kiowa Engineering Corporation Company: May 7, 2020 Date: Project: The Glen Filing No 10 & 11 - 'Runoff Reduction' 53676 Widefield, CO Location: SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth 0.60 inches Depth of Average Runoff Producing Storm, d_6 = inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3) 0.43 UIA:RPA UIA:RPA UIA:RPA UIA:RPA UIA:RPA Area Type Area ID 3 4 5 2 Downstream Design Point ID 2 1 3 4 5 Downstream BMP Type None None None None None DCIA (ft² UIA (ft² 13,193 28,509 23,724 16,086 15,564 RPA (ft² 27,826 16,858 13,992 29,565 23,737 SPA (ft² HSG A (%) 0% 0% 0% 0% 0% HSG B (%) 0% 0% 0% 0% 0% HSG C/D (%) 100% 100% 100% 100% 100% Average Slope of RPA (ft/ft) 0.250 0.250 0.250 0.150 0.150 UIA:RPA Interface Width (ft) 62.80 80.00 80.00 80.00 80.00 **CALCULATED RUNOFF RESULTS** Area ID 4 5 2 3 UIA:RPA Area (ft²) #RFF! 45 367 37 716 39 301 41 020 45 651 L / W Ratio 10.40 #REF! 7.09 5.89 7.13 6.14 UIA / Area 0.3216 #REF! 0.6284 0.6290 0.3524 0.3960 Runoff (in 0.00 0.07 0.08 0.00 0.00 237 Runoff (ft³) 268 0 0 Runoff Reduction (ft³) 920 751 670 649 550 **CALCULATED WQCV RESULTS** Area ID 3 4 5 WQCV (ft3 550 1188 989 670 649 WQCV Reduction (ft³ 550 920 751 670 649 WQCV Reduction (%) 100% 100% 77% 76% 100% Untreated WQCV (ft3) 268 237 0 CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID) Downstream Design Point ID 4 5 DCIA (ft² 0 0 0 0 0 UIA (ft² 13,193 28,509 23,724 16,086 15,564 23,737 RPA (ft² 27,826 16,858 13,992 29,565 SPA (ft2 0 0 0 0 37,716 45.367 45.651 39.301 Total Area (ft2 41.020 Total Impervious Area (ft² 13.193 28.509 23.724 16.086 15.564 WQCV (ft3 550 1 188 989 670 649 WQCV Reduction (ft3) 550 920 751 670 649 WQCV Reduction (% 237 0 0 Untreated WQCV (ft3) CALCULATED SITE RESULTS (sums results from all columns in worksheet) Total Area (ft²) 209.054 97.076 Total Impervious Area (ft2) WQCV (ft3) 4,045 WQCV Reduction (ft³ 3,540 WQCV Reduction (%) 88% Untreated WQCV (ft3) 505